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Introduction by the Organisers

The aim of this meeting was to bring together people from different fields in
which the cohomology of finite groups is an important tool. Several such meetings
have taken place in the past (for example at Oberwolfach in 2000) and they have
contributed substantially to the development of interactions between such fields, in
particular between commutative algebra, homological algebra, homotopy theory,
modular representation theory and transformation groups.

The meeting was attended by 54 participants from about a dozen countries.
There were 24 talks of various length. Several of them were directly concerned
with the cohomology of finite groups, but beyond that there were talks in which
the relation of the cohomology of finite groups with other topics was emphasized:
among them talks on the cohomology of infinite groups, of quantum groups and
of local rings, on functor cohomology, on transformation groups and p-compact
groups, on homological algebra and triangulated categories, on endotrivial modules
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in modular representation theory and on the Alperin conjecture as well as on
K-theory, on invariant theory, on commutative algebra and relations to stable
homotopy theory.

The schedule allowed for enough time for extensive and lively interactions be-
tween the participants. Besides the traditional and popular Wednesday afternoon
hike (during a week with an exceptionally nice weather) an excellent concert was
organized on Thursday evening by some of the participants of the conference. As
always the very pleasant and stimulating atmosphere at the institute contributed
to make this a very successful meeting.
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Ergün Yalçın (joint with Jonathan Pakianathan)
Bockstein Closed Central Extensions of Elementary Abelian 2-Groups;
Binding Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2397

Julia Pevtsova (joint with E. Friedlander and A. Suslin)
Generic Jordan type of modular representations . . . . . . . . . . . . . . . . . . . . . . . 2400

John Greenlees (joint with D.J.Benson, building on work with W.C.Dwyer
and S.B.Iyengar)
Brave new commutative algebra and modular representation theory . . . . . . 2402

Wolfgang Lück
From finite groups to infinite groups: Baum-Connes Conjecture,
equivariant stable cohomotopy, Segal Conjecture . . . . . . . . . . . . . . . . . . . . . . . 2403



2378 Oberwolfach Report 42/2005

Eric M. Friedlander (joint with Vincent Franjou)
Cohomology of Bifunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2405

Nadia Mazza (joint with Jon F. Carlson and Daniel K. Nakano)
Endotrivial modules for finite groups of Lie type . . . . . . . . . . . . . . . . . . . . . . 2407

Alexander Zimmermann
Invariance of generalized Reynolds ideals under derived equivalence . . . . . . 2410

Luchezar L. Avramov (joint with Oana Veliche)
Stable cohomology algebra of local rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2412

Michael A. Jackson
Homotopy rank and small rank groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2415

Jean Lannes (joint with Jean Barge)
Sturm sequences and H2 of the hyperbolic homomorphism . . . . . . . . . . . . . . 2418

Peter Symonds
Cyclic group actions on polynomial rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2421

Bernhard Hanke (joint with Volker Puppe)
Equivariant Gysin maps and pulling back fixed points . . . . . . . . . . . . . . . . . . 2423

Henning Krause (joint with Aslak B. Buan, Øyvind Solberg)
A universal construction of support varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 2424

Frederick R. Cohen (joint with Alejandro Adem)
On spaces of homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2426



Cohomology of Finite Groups: Interactions and Applications 2379

Abstracts

The classification of 2-compact groups

Kasper K. S. Andersen

(joint work with Jesper Grodal)

A p-compact group, as introduced by Dwyer-Wilkerson [7], is a homotopy the-
oretic version of a compact Lie group, but with all its structure concentrated
at a single prime p. In this talk I will announce a proof of the classification of
2-compact groups, joint with J. Grodal, hence completing the classification of p-
compact groups at all primes p. Our work will appear in the papers [2] and [3]; a
longer and more detailed summary than this can be found in [4].

Recall that a p-compact group is a triple (X,BX, e : X
≃
−→ ΩBX) where BX is

a pointed, connected, p-complete space of the homotopy type of a CW -complex,
X satisfies that H∗(X ; Fp) is finite over Fp, and e is a homotopy equivalence. A
p-compact group is said to be connected if X is a connected space. Our main
theorem is the following

Theorem 1 ([3]). Let (X,BX, e : X
≃
−→ ΩBX) be a connected 2-compact group.

Then

BX ≃ (BG)2̂ ×BDI(4)s

where (BG)2̂ is the 2-completion of a connected compact Lie group G, and BDI(4)
is the classifying space of the exotic 2-compact group DI(4) constructed by Dwyer-
Wilkerson in [6], s ≥ 0.

A corresponding statement for odd primes was proved by the authors together
with Møller and Viruel in [5]. Partial results for p = 2 have been obtained by
Dwyer-Miller-Wilkerson, Notbohm, Viruel, and Vavpetič-Viruel. Independently
Møller has also announced a proof of the classification relying on computer algebra.
Our proof is a self-contained induction.

There is a better, more precise, formulation of our theorem which both makes
it clear why it is the correct 2-local version of the classification of compact Lie
groups and suggests our strategy of proof. It is based on the notion of root data
for p-compact groups as introduced by [9] and further developed in [2].

For a principal ideal domain R, an R-root datum is defined to be a triple
(W,L, {Rbσ}), where L is a free R-module of finite rank, W ⊆ AutR(L) is a finite
subgroup generated by reflections (i.e., elements σ such that 1−σ ∈ EndR(L) has
rank one), and {Rbσ} is a collection of rank one submodules of L, indexed by the
reflections σ in W , satisfying

im(1− σ) ⊆ Rbσ and w(Rbσ) = Rbwσw−1 for all w ∈ W

The element bσ ∈ L, called the coroot corresponding to σ, is determined up to
a unit in R. Together with σ it determines a root βσ : L → R via the formula
σ(x) = x+ βσ(x)bσ.
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For R = Z there is a 1-1-correspondence between Z-root data and classically
defined root data, by to (W,L, {Zbσ}) associating (L, {±bσ}, L∗, {±βσ}); see [9,
Prop. 2.16]. Two R-root data D = (W,L, {Rbσ}) and D′ = (W ′, L′, {Rb′σ})
are said to be isomorphic if there exists an isomorphism ϕ : L → L′ such that
ϕWϕ−1 = W ′ and ϕ(Rbσ) = Rb′ϕσϕ−1 . In particular the automorphism group is

given by Aut(D) = {ϕ ∈ NAutR(L)(W )|ϕ(Rbσ) = Rbϕ(σ)} and we define the outer
automorphism group as Out(D) = Aut(D)/W .

We now quickly recall Dwyer-Wilkersons construction [9] of Zp-root data for
p-compact groups. Dwyer and Wilkerson [7] showed that any p-compact group
(X,BX, e) has a maximal torus, that is a map i : BT = (B(S1)r)p̂ → BX whose
fiber has finite Fp-cohomology and non-trivial Euler characteristic. Replacing i by
an equivalent fibration, we define the Weyl space WX as the topological monoid of
self-maps BT → BT over i and the Weyl group as WX = π0(WX). By definition
WX acts on L = π2(BT ), and Dwyer-Wilkerson [7] proved that for X connected,
this gives a faithful representation of WX in AutZp

(L) as a finite Zp-reflection
group. Next let NX be the maximal torus normalizer, given by NX = ΩBNX

where BNX = BThWX
. Finally one defines the coroots bσ in terms of NX , for

details see [9] or [2]. This gives a root datum DX = (WX , L, {bσ}) over the p-adic
integers Zp for any connected p-compact group X . (For p odd, a Zp-root datum
is in fact completely determined by the finite Zp-reflection group (W,L), which
explains the formulation of our classification theorem with Møller and Viruel in
[5].) We are now ready to state the precise version of our main theorem.

Theorem 2 ([3]). The assignment which to a connected 2-compact group X as-
sociates its Z2-root datum DX root gives a one-to-one correspondence between
connected 2-compact groups and Z2-root data. Furthermore there is an isomor-

phism π0(Aut(BX))
∼=
−→ Out(DX), and BAut(BX) is the unique total space of a

split fibration

B2Z(DX)→ BAut(BX)→ BOut(DX)

Here Z(D) is the center of the root datum D, defined so as to agree with the
formula for the center of a p-compact group given in [8], and BAut(BX) denotes
the classifying space of the topological monoid of self-homotopy equivalences of
BX .

The main theorem has a number of corollaries. The most important is perhaps
that it gives a proof of the maximal torus conjecture, giving a purely homotopy
theoretic characterization of compact Lie groups amongst finite loop spaces.

Theorem 3 (Maximal torus conjecture [3]). The classifying space functor, which

to a compact Lie group G associates the finite loop space (G,BG, e : G
≃
−→ ΩBG)

gives a one-to-one correspondence between compact Lie groups and finite loop
spaces with a maximal torus. (Moreover, if G is connected we have a split fi-
bration B2Z(DG)→ BAut(BG)→ BOut(DG).)

The fact that the functor “B” is faithful was already known by work of Not-
bohm, Møller, and Osse and the statement about the space BAut(BG) follows
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easily from earlier work of Jackowski-McClure-Oliver and Dwyer-Wilkerson. The
new, and a priori quite surprising, result here is the statement that if a finite loop
space has a maximal torus, then it has to come from a compact Lie group.

Another application of the classification of 2-compact groups is to give an answer
to the so-called Steenrod problem for p = 2 (see [13] and [12]), which asks which
graded polynomial algebras can occur as the mod 2 cohomology ring of a space?
Steenrod’s problem was solved for p “large enough” by Adams-Wilkerson [1] and
for all odd primes by Notbohm [11] using a partial classification of p-compact
groups, p odd.

Theorem 4 (Steenrod’s problem for p = 2 [3]). Suppose that P ∗ is a graded
polynomial algebra over F2 in finitely many variables. If P ∗ occurs as H∗(Y ; F2)
for some space Y , then P ∗ is isomorphic, as a graded algebra, to

H∗(BG; F2)⊗H
∗(BDI(4); F2)

⊗s ⊗Q∗

where G is a connected semi-simple Lie group and Q∗ is a polynomial ring with
generators in degrees one and two.

In particular if the generators of P ∗ have degree ≥ 3, then P ∗ is a tensor product
of the following graded algebras:

F2[x4, x6, . . . , x2n] (SU(n)), F2[x4, x8, . . . , x4n] (Sp(n)),

F2[x4, x6, x7, x8] (Spin(7)), F2[x4, x6, x7, x8, y8] (Spin(8)),

F2[x4, x6, x7, x8, x16] (Spin(9)), F2[x4, x6, x7] (G2),

F2[x4, x6, x7, x16, x24] (F4), F2[x8, x12, x14, x15] (DI(4))

It seems reasonable that one can in fact list all polynomial rings which occur
as H∗(BG; F2) for G semi-simple, although we have not been able to locate such
a list in the literature; for G simple a list can be found in [10].

We finally point out that many classical theorems from Lie theory by Borel,
Bott, Demazure, Steinberg, and others also carry over to 2-compact groups via
the classification. Applications of this type were already pointed out in [5], to
which we refer.
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Weight conjectures and fusion

Geoffrey R. Robinson

Since Alperin’s Weight Conjecture (AWC) was formulated, a number of conjectures
have attempted to make precise how p-local structure of a finite group determines
various invariants of its characteristic p-representation theoretic. One of these is
the Ordinary Weight Conjecture (OWC). The key distinction of this conjecture,
which is locally equivalent to Dade’s Projective Conjecture (DPC), is that for a
given block B, only chains of B-subpairs beginning with subpairs (U, bU ) such that

Z(U) is a defect group of bU and Op(
NG(U,bU )
UCG(U) ) = 1 contribute to the alternating

sums appearing in the conjectural formulae. In various contexts, such subpairs
play an important role (e.g. control of cohomology, control of fusion), and we call
such subpairs “Alperin-Goldschmidt” subpairs.

The relationship between control of fusion and control of representation theo-
retic invariants is a subtle one. For example, if x is an element of order p such that
CG(x) controls strong p-fusion in G, then there is a bijection between p-blocks
of G whose defect group contains a conjugate of x and p-blocks of CG(x) , such
that corresponding blocks have equivalent module categories (for p = 2 this fol-
lows from Glaubeman’s Z∗-theorem – for odd p it follows from CFSG, through a
direct proof would be desirable). Such a statement would fail in general if NG(〈x〉)
controls fusion.

A key role is played by the Külshammer-Puig extension LU , an extension of
NG(U,bU )
UCG(U) by U such that the fusion of p-subgroups in LU containing U corresponds

to fusion of subpairs inNG(U, bU) containing (U, bU ), with various other properties.

However, it is important to work with a p-central extension, L̃U of LU , by the

Külshammer-Puig 2-cocycle which arises from the action of NG(U,bU )
UCG(U) on the unique

simple module in bU (or its endomorphism ring). For representation-theoretic
invariants, these 2-cocycles generally must be confronted.

In alternating sums of OWC, it is possible to calculate the contribution from
chains beginning with (U, bU ) by working entirely in L̃U . The same L̃U can occur
for many blocks B and many groups G.
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In our talk, we calculate the contributions in the case that U is metacyclic. If U
is not a defect group, the only cases in which a non-zero contribution is obtained
is when U ∼= Q8, or U ∼= Z/pnZ × Z/pnZ for n > 1, p ≤ 3, and we calculate
the contributions explicitly in that case. In this situation, the Külshammer-Puig
2-cocycle is trivial.

In another direction, we show that if a block B satisfies OWC and contains
irreducible characters of very large height (small defect), then for some Alperin-
GoldschmidtB-subpair (U, bU ), the Külshammer-Puig extension LU involvesQd(p)
(the semi-direct product of Z/p× Z/p by SL(2, p) with its natural action.

Cohomology primitives associated to central extensions

Nicholas J. Kuhn

1. Introduction

Let p be a fixed prime, and let H∗(G) mean H∗(G; Z/p). In the mid 1990’s, H.-
W. Henn, J. Lannes, and L. Schwartz [HLS] studied mod p group cohomology using
technology developed to study the categories of unstable modules and algebras
over the mod p Steenrod algebra A. Among their discoveries was that the low
dimensional cohomology of the centralizers of the elementary abelian p–subgroups
of a finite groupG determinesH∗(G). As an aspect of this, they prove the existence
of a ‘detection number’ d0(G) defined below.

Thinking about possible extensions of their work has led me to a number of
formulae involving cohomology primitives associated to central group extensions.
As an application, I am able to calculate d0(G) when G is ‘p-central’: a group in
which every element of order p is central.

2. The detection number d0(G)

Recall that Quillen considered the category Ap(G) with objects the elementary
p–subgroups ofG, and with morphisms the group homomorphisms between objects
generated by subgroup inclusions and conjugation by elements in G.

Note that the inclusion V → G extends to a group homomorphism

V × CG(V )→ G.

For a fixed d ≥ 0, these induce a map

(1) H∗(G) −→
∏

V ∈Ap(G)

H∗(V )⊗H≤d(CG(V )),

where M≤d denotes a graded vector space M∗ modulo all elements of degree
greater than d. Then d0(G) is defined as the smallest d such that map (1) is a
monomorphism. (That the map is monic for some d is shown in [HLS].)

Note that d0(G) = 0 exactly when the V ∈ Ap(G) detect all of H∗(G).
A general property is that d0(G ×H) = d0(G) + d0(H). As examples, one has

d0(Σn) = 0 for all n (and all p), d0(Z/p
k) = 1 if k > 1, and d0(Q8) = 3. As any
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finite group embeds in a symmetric group, it follows from the first of these that
d0(G) is not, in general, well behaved with respect to subgroup inclusion.

[HLS] use a theorem of J.Duflot to prove rough upper bounds like the following:
if G admits a faithful complex representation of (complex) dimension n, then
d0(G) ≤ n2. However, the precise calculation of d0(G), especially in cases where
H∗(G) has not itself been completely calculated, has been elusive for most groups.

3. Primitives

Let C ≃ (Z/p)c < G be central. The multiplication map m : C × G → G
induces a map of unstable A–algebras m∗ : H∗(G) → H∗(G) ⊗ H∗(C) making
H∗(G) into a H∗(C)–comodule. (H∗(C) is a Hopf algebra.)

Definition 1. In this situation, we let

PCH
∗(G) = {x ∈ H∗(G) | m∗(x) = x⊗ 1}

= equalizer {m∗, π∗ : H∗(G)→ H∗(C ×G)}.

What sort of beast is PCH
∗(G)? We begin by observing that PCH

∗(G) is an
unstable algebra, and also that it becomes a H∗(G/C)–module via the inflation
map H∗(G/C)→ H∗(G).

Recall that the Krull dimension of H∗(G) equals the p–rank of G.

Theorem 2. PCH
∗(G) is a finitely generated H∗(G/C)–module, and thus is a

Noetherian ring. It has dimension equal to (the p–rank of G) - (the rank of C).

4. General formulae involving the primitives

If G is a finite group, we let Cp(G) denote the elementary abelian p–part of
its center, and then let AC

p (G) denote the full subcategory of Ap(G) with objects
V < G such that Cp(G) ⊆ V . The definition of d0(G) remains the same if we
replace Ap(G) by the smaller category AC

p (G) in (1).

The associated twisted arrow category AC
p (G)# has objects V1

α
−→ V2, and

morphisms α β consisting of commutative squares in AC
p (G)

V1

��

α // V2

W1
β // W2

OO

For M is an unstable A–module, let

Mloc.fin. = {x | Ax ⊂M is finite dimensional}.

Proposition 3. H∗(G)loc.fin. = lim
V1

α−→V2∈AC
p (G)#

Pα(V1)H
∗(Cα(V1)(V2)).

An unstable module M has a canonical ‘nilpotent’ filtration

· · · ⊆ nil2M ⊆ nil1M ⊆ nil0M = M.
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In general, nildM/nild+1M = ΣdRd(M), where Rd(M) is reduced, i.e, has no
nonzero nilpotent elements. We let R̄d(M) denote the nilclosure of Rd(M).

The module nildH
∗(G) identifies with the kernel of the map (1). Thus d0(G)

is the length of the filtration of H∗(G), and so also is the biggest d such that
R̄d(H

∗(G)) 6= 0.

Proposition 4. R̄d(H
∗(G)) = lim

V1
α−→V2∈AC

p (G)#
H∗(V1)⊗ Pα(V1)H

d(Cα(V1)(V2)).

5. p–central groups

Now suppose that G is p–central, and let C = Cp(G) denote its maximal el-
ementary abelian p–subgroup. The category AC

p (G)# has only one object and
morphism, and the propositions of the last section simplify as follows.

Corollary 5. H∗(G)loc.fin. = PCH
∗(G), and R̄d(H

∗(G)) = H∗(C) ⊗ PCHd(G).
Thus d0(G) is the degree of the top nonzero primitive class.

Now we describe how to compute this top degree. For simplicity, assume that
G, of p–rank r, cannot be written as H × Z/p. Then the image of restriction,

ResCG : H∗(G) → H∗(C), will be a Hopf algebra of the form Z/p[yp
e1

1 , . . . , yp
er

r ],
where each yi has degree 2.

Theorem 6. In this situation, d0(G) =
∑r

i=1(2p
ei − 1).

Corollary 7. If G is p–central, and H < G, then d0(H) ≤ d0(G).

Examples include the following. If W (k, p) is the universal p–central group with
quotient (Z/p)k (as studied in papers of Adem, Pakianathan, and Karagueuzian),
then d0(W (k, p)) = the p–rank = k(k+1)/2. We note that H∗(W (k, p)) has not
been completely calculated in all cases. If P is the 2–Sylow subgroup of SU3(F4),
a group of order 64 and rank 2, then d0(P ) = 14. David Green has recently shown
that this last group is the smallest group having nonzero products in its essential
cohomology, and the fact that its d0 is so large seems related.

6. Ideas behind the proofs of the theorems

One studies the Serre spectral sequence for the extension C → G→ G/C. Note
that E0,∗

∞ = Im(ResCG). For all r, E∗,∗
r is simultaneously an E0,∗

∞ ⊗ H∗(G/C)–
module and an H∗(C)–comodule, such that

E0,∗
∞ ⊗ E∗,∗

r → E∗,∗
r

is a map of H∗(C)–comodules.
One can then deduce that, for all r, (a) the composite PCE

∗,∗
r → E∗,∗

r →
QE0,∗

∞
E∗,∗
r is monic, and (b) E∗,∗

r is a free E0,∗
∞ –module.

For Theorem 2, by induction on r, one shows that E∗,∗
r is a finitely gener-

ated E0,∗
∞ ⊗H∗(G/C)–module. Thus QE0,∗

∞
E∗,∗

∞ is a finitely generated H∗(G/C)–

module. By (a), so is PCE
∗,∗
∞ , and Theorem 2 easily follows.

For Theorem 6, by a theorem of Benson and Carlson [BC], QE0,∗
∞
E∗,∗

∞ is the
associated graded of a finite dimensional Poincare duality algebra of degree equal
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to the formula given in Theorem 6. By (a), we are done, after noting that the top
indecomposable class must be represented by a primitive.
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The classification of endo-permutation modules

Serge Bouc

The Dade group : • Let k be a field of characteristic p > 0, and let P be a finite
p-group. A finitely generated kP -module M is called an endo-permutation module
if Endk(M) is a permutation kP -module, i.e. admits a P -invariant k-basis. Such
modules are ubiquitous in the modular representation theory of finite groups. In
particular, they appear as sources of simple modules for p-solvable groups (Dade,
Puig), or in the local study of Morita, stable or derived equivalences between
blocks.
• If M is an endo-permutation kP -module, then M is called capped if M admits

an indecomposable summand with vertex P . In this case, such a summand is
unique up to isomorphism, and it is called the cap of M . Two capped endo-
permutation kP -modules are said to be equivalent if their caps are isomorphic.
The set of equivalence classes for this relation is denoted by D(P ) = Dk(P ).
• The tensor product M ⊗kN of two capped endo-permutation kP -modules M

andN is again a capped endo-permutation kP -module, and this endowsD(P ) with
an (abelian) group structure. This group was introduced by E.C. Dade (1978),
and it is now called the Dade group of P (over k). Dade also determined the
structure of D(P ) when P is abelian.
• In a series of fundamental papers, J. Carlson and J. Thévenaz recently de-

termined the structure of the subgroup T (P ) of D(P ), consisting of the images of
endo-trivial modules. This is an essential step in understanding the structure of
D(P ).

Operations on the Dade group : • Let Q be a subgroup of P . Restriction of

modules from P to Q induces a group homomorphism ResPQ : D(P ) → D(Q). In
the same situation, tensor induction of modules from Q to P gives a group homo-
morphism TenPQ : D(Q)→ D(P ). Now if N is a normal subgroup of P . Inflation of

modules from P/N to P induces group homomorphism InfPP/N : D(P/N)→ D(P ).
In the same situation, there is a group homomorphism in the other direction, in-
troduced by Dade as the slash construction, that we now call deflation, and denote
by DefPP/N : D(P ) → D(P/N). Finally, if ϕ : P → P ′ is a group isomorphism,

there is a corresponding group isomorphism Iso(ϕ) : D(P )→ D(P ′).
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• All these operations are subject to various composition conditions, e.g. tran-
sitivity of restrictions and tensor inductions, Mackey formula, etc. . . They can be
unified in a single formalism, using bisets : if P and Q are finite p-groups, if
U is a finite (Q,P )-biset, then one can define a group homomorphism D(U) :
D(P ) → D(Q) associated to U , and one recovers all the previous operations for
some specific biset in each case.
• There one more operation on the Dade group, which appears when composing

the above operations. It is a map γa : D(P )→ D(P ) associated to any endomor-
phism a of the ground field k, called Galois torsion. This map has to be taken
into account for theoretical reasons, though the final classification theorem shows
that it is almost always the identity map.

Biset functors : • A biset functor F (over p-groups) consists of the following
data : for each finite p-group P , an abelian group F (P ), and for each finite (Q,P )-
biset U (where Q and P are finite p-groups), a group homomorphism F (U) :
F (P )→ F (Q). These data are subject to the following four conditions :

(1) If U and U ′ are isomorphic (Q,P )-bisets, then F (U) = F (U ′).
(2) If U = A ⊔ B is the disjoint union of two (Q,P )-bisets A and B, then

F (U) = F (A) + F (B).
(3) If U is the (P, P )-biset P for left and right multiplication, then F (U) is

the identity map.
(4) If P , Q, and R are finite p-groups, if U is a (Q,P )-biset and V is an

(R,Q)-biset, then F (V ) ◦ F (U) = F (V ×Q U).

• There is an obvious notion of natural transformation or morphism of biset
functors. So biset functors over p-groups form a category Fp. This category is an
abelian category.

Examples of biset functors : K, B, RQ : • If P is a finite p-group, denote by

B(P ) the Burnside group of P . If Q is a finite p-group, and if U is a finite (Q,P )-
biset, denote by B(U) : B(P ) → B(Q) the map induced by the correspondence
sending a finite P set X to the finite Q-set U ×P X . Then B is a biset functor,
called the Burnside functor.
• In the same situation, denote by RQ(P ) the group of rational representations

of P . Denote by RQ(U) the map induced by the correspondence sending a finite
dimensional QP -module M to the finite dimensional QQ-module QU ⊗QP M .
Then RQ is a biset functor, called the functor of rational representations.
• The natural morphism χP : B(P ) → RQ(P ) sending the isomorphism class

of the finite P -set X to the class of the permutation module QX is surjective, by
the Ritter-Segal theorem, since P is a p-group. This gives a surjective morphism
χ : B → RQ in the category Fp.
• Set K = Kerχ, i.e. K(P ) = KerχP , for any P . This gives the following short

exact sequence in Fp :

0→ K → B → RQ → 0
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• An almost example : The correspondence P 7→ D(P ) is not a biset functor
in general, because of Galois torsions. Fortunately, there is a big enough subobject
of D which is a biset functor.

From K to D : • Let X be a finite P -set. Denote by ωX the linear form on B(P ),
with values in Z, defined by ωX(P/Q) = 1 if XQ 6= ∅, and ωX(P/Q) = 0 otherwise.
In the same situation, denote by ΩX the kernel of the augmentation map kX → k.
Then ΩX is an endo-permutation module (Alperin), called the syzygy of the trivial
module relative to X . Denote by DΩ(P ) the subgroup of D(P ) generated by the
images in D(P ) of all these ΩX . Then the correspondence P 7→ DΩ(P ) is a biset
functor, called functor of relative syzygies in the Dade group.
• The link between K and the Dade group is a kind of duality, given by the

following theorem :

• Theorem :

* Let B∗ denote Z-dual of B. Then B∗ ∈ Fp, and there is a surjective
natural transformation Θ : B∗ → DΩ , such that ΘP (ωX) = ΩX , for any
p-group P and any finite P -set X.

* This natural transformation gives rise to a short exact exact sequence in
Fp :

0→ R∗
Q → B∗ → DΩ/DΩ

tors → 0 ,

where R∗
Q is the Z-dual of RQ, and DΩ

tors is the torsion part of DΩ
tors.

Generating K : • Notation :

(1) If p 6= 2, denote by Xp3 an extraspecial group of order p3 and exponent p,
and by Z its center. Choose two non conjugate non central subgroups
I and J of order p in Xp3 . Let δ be the element of B(Xp3) defined by
δ = (Xp3/I −Xp3/IZ)− (Xp3/J −Xp3/JZ).

(2) If p = 2, and if n ≥ 3 is an integer, denote by D2n a dihedral group of order
2n, and by Z its center. Choose two non conjugate non central subgroups
In and Jn of order 2 in D2n . Let δn be the element of B(D2n) defined by
δn = (D2n/In −D2n/InZ)− (D2n/Jn −D2n/JnZ).

• Theorem : If p 6= 2 (resp. if p = 2), then the functor K is generated by δ
(resp. by all the δn’s, for n ≥ 3).
• Corollary : D = DΩ +Dtors. If moreover p 6= 2, then D = DΩ.

Genetic subgroups : •When studying biset functors for p-groups, some special
subgroups of a p-group P , called genetic subgroups, appear as an important tool.
These are defined as follows : if Q is a subgroup of P , let ZP (Q) denote the

subgroup of NP (Q) defined by ZP (Q)/Q = Z
(
NP (Q)/Q

)
. The subgroup Q

is called genetic if the following two conditions are satisfied : firstly, the group
NP (Q)/Q has normal p-rank 1. And secondly, if x ∈ P , then Qx ∩ ZP (Q) ⊆ Q if
and only if Qx = Q. The isomorphism class of the group NP (Q)/Q is called the
type of Q.
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• Two genetic subgroups Q and R are said to be linked modulo P (notation
Q P R), if there exist elements x and y in P such that Qx ∩ ZP (R) ⊆ R and
Ry ∩ ZP (Q) ⊆ Q. In this case in particular Q and R have the same type. The
relation P is an equivalence relation on the set of genetic subgroups of P . A
genetic basis of P is a set of representatives of these equivalences classes.

The structure of D(P ) : • Let [sP ] denote a set of representatives of conjugacy

classes of subgroups of P , and let G be a genetic basis of P . Using results of
Carlson-Thévenaz and B.-Mazza, one can show the following :

• Theorem : The natural map ⊕
S∈G

Ttors(NP (S)/S) → Dtors(P ) obtained by

inflation and tensor induction, is a group isomorphism.
• Let (δP/Q)Q∈[sP ] denote the basis of B∗(P ), dual to the canonical basis of

B(P ). Denote by ∆P/Q the image of δP/Q in DΩ(P ) by the map ΘP . If p =
2, let Q be the subset of G consisting of subgroups Q of generalized quaternion
type (of order at least 16 if k has no non trivial cubic roots of unity). To each
Q ∈ Q, one can associate an element ΛQ in D(P ), called exotic, defined by ΛQ =

TenPNP (Q)Inf
NP (Q)
TQ

ηTQ
, where TQ = NP (Q)/Q, and ηTQ

is one of the two elements

of order 2 in D(TQ)−DΩ(TQ) (Carlson-Thévenaz).

•Theorem : The group D(P ) is generated by the elements ∆P/Q, for Q ∈ [sP ],
and by the elements ΛQ, for Q ∈ Q (when p = 2), subject to the following relations :

* one relation between the ∆P/Q’s, for each S ∈ G, namely

τS
∑

Q∈[sP ]

(aSiP (Q,S) + jP (Q,S))∆P/Q = 0 ,

where, setting TS = NP (S)/S, the integer τS is equal to 1 if TS is of
order at most 2 or dihedral, to 2 if TS is cyclic of order at least 3 or
semi-dihedral, and to 4 if TS is generalized quaternion, and the integer aS
is equal to 1 if TS is cyclic or generalized quaternion, and to 2 if TS is
dihedral or semi-dihedral. Moreover, the integer iP (Q,S) is the number
of x ∈ Q\P/NP (S) such that Qx ∩ NP (S) ⊆ S, whereas jP (Q,S) is the
number of such x such that the group (Qx ∩ NP (S))S/S has order p and
is not contained in the center of NP (S)/S.

* 2ΛQ = 0, for each Q ∈ Q.

Moreover this is a presentation of D(P ) as an abelian group.
• Corollary : There is a group isomorphism

D(P ) ∼= ZncP ⊕ (Z/4Z)aP ⊕ (Z/2Z)bP ,

where ncP is the number of conjugacy classes of non cyclic subgroups of P , where
aP is the number of elements of G whose type is generalized quaternion, and bP is
the number of elements of G whose type is cyclic of order at least 3, semidihedral,
or generalized quaternion (of order at least 16 if k has only one cubic root of unity).

• Corollary : “Endo-permutation kP -modules can be lifted to endo-permuta-
tion OP -lattices.”
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• The following completes the proof of the two conjectures I proposed in 2003
in Oberwolfach meeting “Darstellungen endlicher Gruppen” :

• Corollary : When p = 2, the quotient D/DΩ is a biset functor, isomorphic
to the subfunctor HQ of F2RQ, where Q = Q8 if k has all cubic roots of unity, and
Q = Q16 otherwise.

Approaching the Alperin weight conjecture

Jeff Smith

The weight conjecture relates the modular representation theory of a finite
group to the representation theory of its local subgroups. Let G be a finite group.
A weight is a conjugacy class of pairs (D,P ) where D is a p-group in G and P is
a projective simple module over F̄pND/D. The weight conjecture is that :

# of simple F̄pG-modules = # of weights.

This approach attempts to prove the weight conjecture when the subgroup
complex of G is simply connected.

Let XpG be the nerve of the partially ordered set of non-trivial p-subgroups of
G. Let LG = HomG(FpXpG,Hom(F̄pG,FpG)). LG is a cosimplicial F̄p-algebra.
The weight conjecture would follow from two assertions in the situation that XpG
is simply connected :

(a) rankK0LG = # of weights with non-trivial defect
(b) LG is Rickard equivalent to B = sum block of FpG that have non-trivial defect.

Cohomology for quantum groups

Daniel K. Nakano

(joint work with Christopher P. Bendel, Brian J. Parshall and Cornelius Pillen)

Given a semisimple algebraic group G over an algebraically closed field k of char-
acteristic p > 0, one of the central problems is to find a character formula for the
finite-dimensional simple G-modules. For p ≥ h, a character formula is given by a
conjectural formula due to Lusztig.

In the analogous world of quantum groups over the complex numbers, this
formula is verified for l ≥ h where ζ is a primitive lth root of unity. The first proof
used an equivalence of categories due to Kazhdan and Lusztig between quantum
groups and affine Lie algebras. Kashiwara and Tanisaki subsequently verified the
character formula for affine Lie algebras. A second proof was found recently by
Arkhipov, Bezrukavnikov and Ginzburg [ABG]. One of the key components of
their proof involved employing the computation of the cohomology of quantum
groups for l > h due to Ginzberg and Kumar [GK] in 1993.

The main purpose of our work is to demonstrate how to compute cohomology
for quantum groups when l ≤ h. This computation entails many beautiful results:
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1) Realization of the “restricted nullcone” due to Carlson, Lin, Nakano and Par-
shall [CLNP].

2) Combinatorics involving the decomposition of the exterior algebra via the Stein-
berg representation. Our decomposition results makes use of MAGMA computa-
tions on root systems for exceptional Lie algebras.

3) Powerful vanishing results on line bundle cohomology proved via complex alge-
braic geometry (i.e. Grauert-Riemenschnieder theorem).

4) Normality results on the closures of nilpotent orbits due to Kraft-Procesi [KP1,
KP2], Sommers [So1, So2], Broer [Br], Kumar-Lauritzen-Thomsen [KLT].

Our results show that the cohomology ring is finitely generated. This allows us
to define support varieties and compute the support varieties for quantum Weyl
modules in the case when (l, p) = 1 where p is any bad prime for the underlying
root system.
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Rank varieties for a class of finite-dimensional local algebras

Karin Erdmann

(joint work with D. Benson and M. Holloway)

Assume k is an algebraically closed field. The theory of the rank variety associated
to a finite-dimensional module over a group algeba of an elementary abelian p-
group when k has characteristic p > 0 was introduced by Jon Carlson [3]. Since
then the theory has proven to be extremely sueful, and analogous structures have
been discovered in several other settings, especially p-restricted Lie algebras, and
finite group schemes.
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We develop a rank variety for a class of finite-dimensional k-algebras, with k
not necessarily of prime chacteristic, which can be viewed as quantum complete
intersections. Included in this class are the truncated polynomial algebras Λnm :=
k[X1, . . . , Xn]/(X

n
i ). This generalizes [4] where the case n = 2 was considered.

Let A be a finite-dimensional k-algebra, we would like to define for any A-
module M , a ’rank variety’ V rA(M), which can be explicitly computed, and which
has as many of the properties that hold in the group algebra case as make sense.
Apart from additivity, and the usual relationship between terms of short exact
sequences, we require that ’Dade’s lemma’ should hold. That is, is V rA(M) is
trivial if and only if M is projective.

Let q = [qij ] ∈ Matm(k) be a commutation matrix, that is qii = 1 for all i and
qijqji = 1 for i 6= j. The quantum symmetric algebra, as introduced by Manin,
is the algebra kq[X ] := k〈X1, . . . , Xm〉/(XiXj − qijXjXi). We assume that all qij
are roots of unity, and let r ≥ 1 such that qrij = 1 for all i, j. For n ≥ 2, let

Anq := kq[X ]/(Xn
i )

a ’quantum complete intersection’.
We start with the special case for which rank varieties can be defined most

naturally. Let A := Aζ be the quantum complete intersection with qij = ζ for
i < j where ζ is a primitive n′-th root of unity, for n′ the p′-part of n.

For 0 6= λ := (λ1, . . . , λm) ∈ km, define uλ :=
∑m
i=1 λiXi ∈ A; it is crucial that

unλ = 0 for any such λ. Let k[uλ] be the subalgebra of A generated by uλ. For an

A-module M we define

V r(M) := {0} ∪ {λ 6= 0 :∈ km : M as a module for k[uλ] is not projective }.

This is a homogeneous affine variety and when n = p we recover the original
definition by Jon Carlson. By adapting the proof of Dade’s Lemma from [1] we
show:

Theorem V r(M) = {0} if and only if M is projective.

We extend the classes of algebras for which rank varieties are defined, using the
following setup.

Theorem Let A and A′ be two finite-dimensional self-injective k-algebras and
suppose the following conditions hold.

(1) There exists a rank variety theory for A-modules, V rA.
(2) There exists a finite-dimensional k-algebra B and a Morita equivalence G :

A′-mod → B−mod .
(3) A is a subalgebra of B such that B is projective as an A-module, and more-

over every B-module is relative A-projective.
Then A′-mod has rank varieties, defined by V rA′(M) := V rA(GM ↓A). If V rA

satisfies Dade’s Lemma then so does V rA′ .

We apply this with A′ = Aq[X ]/(Xn
i ), and A = Aζ . We construct a simple

algebra C, which can be viewed as a ’generalized Clifford algebra’ such that the
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tensor product B := C⊗kA
′ has a subalgebra isomorphic to Aζ , satisfying the hy-

potheses of this second theorem. Hence the above quantum complete intersections
have rank varieties, satisfying Dade’s Lemma.

As a corollary we deduce that ’Webb’s theorem’ holds for these quantum com-
plete intersections. This describes the possible tree classes of the stable Auslander
Reiten quiver. Furthermore, the class of these quantum complete intersections
contain the algebras defined by Benson and Green in [2]. They define rank vari-
eties by identifying their algebra with a block of a group algebra, and then using
Carlson’s definition. Our rank variety is isomorphic to theirs.
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Levels in triangulated categories and finite group actions

Srikanth B. Iyengar

(joint work with Luchezar Avramov, Ragnar-Olaf Buchweitz, Claudia Miller)

The results reported in this talk are motivated in part by the following theorem
proved by Carlsson [5], when p = 2, and by Allday and Puppe [1], when p is odd.

Theorem 1. Let k a field of positive characteristic p, and let G be an elementary
abelian p-group of rank c. If G acts freely on a finite CW-complex X , then

∑

n∈Z

ℓℓk[G] Hn(X ; k) ≥ c+ 1

In the statement, H∗(X ; k) is the singular homology of X with coefficients in
k. For any k[G]-module H , the number

ℓℓk[G](H) = inf{i ≥ 0 | miH = 0}

where m is the augmentation ideal of k[G], is the Loewy length of H .
Now, for G as in the theorem, the group algebra k[G] is isomorphic to the

commutative local ring R = Q/I, where Q = k[x1, . . . , xc] and I = (xp1, . . . , x
p
c).

There is a natural R-module structure on I/I2, and it is not hard to check that,
for this structure, I/I2 ∼= Rc. Moreover, the hypotheses on X implies that, as a
complex of R-modules, the chain complex that computes singular cohomology is
equivalent to a finite free complex. Thus, Theorem 1 is a special case of
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Theorem 2. Let R be a local ring and let R = Q/I where (Q, q, k) is a local ring
with I ⊆ q2. If F is a finite free complex of R-modules with H(F ) 6= 0, then

∑

n∈Z

ℓℓR Hn(F ) ≥ f-rankR(I/I2) + 1

where f-rankR(I/I2) denotes the maximal rank of R-free summands of I/I2.

This result reveals an unexpected relationship between (free ranks of) conormal
modules and the homology of finite free complexes. In [2], it is used to derive new
lower bounds on Loewy lengths of modules of finite projective dimension.

In my talk I gave an overview of the proof of Theorem 2. A crucial new in-
gredient in it is the consideration of numerical invariants of objects in arbitrary
triangulated categories, called levels. Their introduction is motivated in part by
work of Dwyer, Greenlees, and Iyengar [6], where a notion of building objects
(modules, complexes, etc.) from a given one was transported into commutative
algebra from algebraic topology; levels provide a way to quantify the complexity
of the “building process”.

Levels can be defined with respect to an arbitrary class of objects: given a non-
empty class C in a triangulated category T, an object T ∈ T has levelCT(T ) ≤ n if
it is isomorphic to a direct summand of an n-fold extension of finite direct sums
of shifts of objects in C. The utility of this notion was suggested to us by the
spectacular recent work of Rouquier [10, 11], see also Bondal and Van den Bergh
[4], on the representation dimension, in the sense of Auslander, of exterior algebras.

Two levels in the derived category DR of R-modules play a special role in this
work: one, with respect to the class of simple modules, tracks Loewy length; the
other, with respect to the class of projective modules, tracks projective dimen-
sion. It is remarkable that homological invariants, such as projective dimension,
as well as ring theoretic invariants, such as Loewy length, are captured by the
same formalism. This attests to the flexibility afforded by the notion of levels.

To elaborate on this point, we consider levels with respect to k, the residue field
of R. If C is a complex of R-modules, then

∑

n∈Z

ℓℓR Hn(C) ≥ levelkDR(C) + 1 ≥ max
n∈Z
{ℓℓR Hn(C)}(†)

In particular, for an R-module M one has

levelkDR(M) = ℓℓRM − 1

On the other hand, levels with respect to R have the property that every finite
free complex F : 0→ Fl → · · · → F0 → 0 with H(F ) 6= 0 satisfies an inequality:

(‡) l ≥ levelRDR(F )

The inequality is typically strict; however, when F is the free resolution of an
R-module M , a result of Krause and Kussin [9] implies that

levelRDR(M) = levelRDR(F ) = l = proj dimRM



Cohomology of Finite Groups: Interactions and Applications 2395

Now, if A is a DG algebra, the function levelADA(−), defined on the derived
category DA of DG modules over A, provides an analogue of projective dimension
of modules. Indeed, many of the formal properties of projective dimension for
modules over rings extend to this setting.

An outline of the proof of Theorem 2. The argument involves a passage from
the derived category R of R-modules, to the derived category S of DG modules
over a polynomial ring S = k[x1, · · · , xc], where k is the residue field of R, the
degree of xi is −2 for each i, and c = f-rankR(I/I2). The transition from R to S

is via a chain of exact functors of triangulated categories:

R
K=K⊗R− // K

B
∼

// B
L // L

S
∼

// S

In this diagram K is the derived category of DG modules over the Koszul complex
K on a minimal generating set for the maximal ideal of R. The presence of a free
summand of rank c in I/I2 entails that K is quasi-isomorphic to a DG algebra
B of the form C ⊗k Λ, where Λ is an exterior algebra on the k-vectorspace kc in
degree 1; this was proved in [8]. This quasi-isomorphism induces an equivalence B

between K and B, the derived category of DG modules over B. The inclusion of
DG algebras Λ→ C⊗kΛ yields the functor L from B to L, the derived category of
DG modules over Λ. The equivalence S is a DG version of the Bernstein-Gelfand-
Gelfand [3] correspondence.

Let N be the image of the complex F , in the statement of Theorem 2, under
the composite functor R→ S. We prove:

(a) F finite free implies that the graded S-module H(N) has finite length;

(b) levelkDR(F ) ≥ levelSDS(N) + 1.

The proof is based on the fact that, in contrast to many homological invariants,
levels behave predictably under changes of categories. To complete the proof of
Theorem 2 it remains to recall (†), and apply the next result:

Theorem 3. Let S be a graded noetherian commutative ring with S0 a local ring
containing a field. If N is a DG S-module with lengthS H(N) finite and non-zero,

then levelSDS(N) ≥ dimS.

This result improves upon the New Intersection Theorem [7] for local rings
containing a field: if S is concentrated in degree 0 and 0 → Pl → · · · → P0 → 0
is a finite free complex with homology non-zero and of finite length, inequality (‡)
and Theorem 3 yield l ≥ dimS.

The proof of Theorem 3 builds on an idea of Carlsson [5], by using big Cohen-
Macaulay modules constructed by Hochster [7]; this remark explains the hypoth-
esis that S contains a field.
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Group actions on homogically finite dimensional spaces

William Browder

Much of the technology of the homological study of finite group actions necessitates
geometrical assumptions such as finite dimensionality or stronger assumptions.
On might ask whether there is some body of results which can be proved simply
assuming that the homology of the space is finite dimensionality. We study an even
weaker content : let G be a finite p-group and C a projective ZG chain complex
with Ci = 0 for i < 0 and Hi(C) = 0 for i > n.

Definition 1. A ‘fixed point’ for G on C is a splitting of G-chain complexes
C ⇄ P [n] where P is a projective resolution of Z over ZG and [n] indicates the
shift by n of the grading (we say this is a ‘fixed point’ of degree n).

The existence of a fixed point implies that CG is not homologically finite di-
mensional. Note that :

Theorem 2. If C/G is homologically finite dimensional, then dimC/G = dimC
(i.e. the dimension of the highest non-zero homology group).

(This is proved by considering C ⊗D where D = C(W ) where W is a closed
manifold, n connected for large n (>> hom dim of C/G) and comparing the two
spectral sequences, filtering on dimC or dimD.)

Theorem 3. If n = hom dimC and Hn(C) ∼= Z and if j∗ : Hn(C/G) → Hn(C)
is surjective then G has a degree n fixed point in C.

¿From this one can derived :

Theorem 4. If n = hom dimC, Hn(C) and if C/G is hom. finite dimensional
then degree j : C → C/G is |G|.

In particular if j∗(Hn(C/G)) is qHn(C), q < |G| then some Z/p ⊂ G has a
fixed point on C.
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Conjecture 5. If G = (Z/p)r and j∗Hn(C/G) = pkHn(C) then some subgroup
isomorphic to (Z/p)r−k has a fixed point on C.

I proved such a theorem about 1990 with a strong geometrical hypothesis, of
G acting on a connected oriented compact near manifold (i.e. a space which is a
manifold off a subset of codimension 2).

Bockstein Closed Central Extensions of Elementary Abelian 2-Groups;

Binding Operators

Ergün Yalçın

(joint work with Jonathan Pakianathan)

We consider central extensions of the form

E : 0→ V → G→W → 0

where V and W are elementary abelian 2-groups. Let n and m denote the ranks of
V andW respectively, and let q ∈ H2(W,V ) be the extension class for E. Choosing
a basis for V , we can write q = (q1, . . . , qn) with qi ∈ H

2(W,Z/2). The elements
q1, . . . , qn are called the components of q. Note that if {x1, . . . , xm} is a basis
for the dual space of W , the components of q can be considered as homogeneous
quadratic polynomials in x1, . . . , xm.

Definition 1. Let I(q) ⊆ H∗(W,Z/2) ∼= Z/2[x1, . . . , xm] denote the ideal gener-
ated by the components of q. We say E is Bockstein closed if the ideal I(q) is closed
under the Bockstein operator β : H∗(W,Z/2)→ H∗+1(W,Z/2) (or equivalently if
it is Steenrod closed).

It is easy to see that E is a Bockstein closed extension if and only if there
is a one dimensional class L ∈ H1(W,End(V )) such that β(q) = Lq. Here, the
multiplication Lq is given by the composite

H1(W,End(V ))⊗H2(W,V )
∪
−→H3(W,End(V )⊗ V )

(ev)∗

−→ H3(W,V )

where the second map is induced by the evaluation map ev : End(V ) ⊗ V → V .
If L is a class satisfying the equation β(q) = Lq, we say L is a binding operator
for E. Note that it is possible to have more then one binding operator for a given
Bockstein closed extension.

A rich source of Bockstein closed extensions comes from matrix groups. Let G
be the kernel of the mod 2 reduction map GLn(Z/8) → GLn(Z/2). It is easy to
show that G fits into a central extension of the form

E : 0→ gln(F2)→ G→ gln(F2)→ 0

where gln(F2) is the vector space of n × n-matrices over F2. In this case the
binding operator L corresponds to the homomorphism L : W → End(V ) defined
by L(A)(B) = AB+BA. So, E is Bockstein closed (we actually verify this using a
more general theorem we prove for Bockstein closed quadratic maps Q : W → V ).
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Note that restrictions of E to suitable subspaces of gln(F2), such as sln(F2) or
un(F2), also give us Bockstein closed extensions.

The cohomology of the extension group has been studied for various Bockstein
closed extensions of elementary abelian groups. Under the assumption that the
extension is 2-power exact (Frattini, effective, and dim V = dimW ), the mod
p cohomology calculations have been completed by Browder and Pakianathan
[1] for p > 2, and by Minh and Symonds [2] for p = 2. In this research, we
concentrate on the connections between the binding operators and the uniform
liftings of Bockstein extensions.

It is well known that Bockstein closed extensions are precisely the extensions
which uniformly lift to extensions of the form

Ẽ : 0→M → G̃→W → 0,

where M is a Z/4-free Z/4[W ]-module (Z/4[W ]-lattice). By uniform lifting, we

mean that the extension 0 → M/2M → G̃/2M → W → 0 is equivalent to
E. In this case M is called a lifting module for E. Note that a lifting module
M has the property that 2M ∼= M/2M ∼= V is a trivial Z/2[W ]-module. We
are interested with the following question: Given a Z/4[W ]-lattice M having the
property 2M ∼= M/2M ∼= V , is there a direct way to tell if it is a lifting module
for E? We give the following nice characterization:

Theorem 2. Let E : 0 → V → G → W → 0 be a central extension with V and
W are elementary abelian 2-groups. Suppose M is a Z/4[W ]-lattice with 2M ∼=
M/2M ∼= V . Associated to M there is a cohomology class LM ∈ H1(W,End(V )),
defined in a specific way, such that M is a lifting module for E if and only if LM
is a binding operator for E.

We now describe how the class LM is defined. Let ρM ∈ Hom(W,Aut(M))
denote the representation associated to M . Since both 2M and M/2M are trivial
Z/2[W ]-modules we can write

ρM = IM + 2 log ρM

with log ρM is defined only modulo 2. We consider log ρM as an homomorphism
from W to End(V ), and define the class LM in H1(W,End(V )) as the image of
log ρM under the isomorphism

Hom(W,End(V ))
∼=
−→H1(W,End(V )).

Theorem 2 can be used in many ways to study Bockstein closed extensions.
In particular, we use it to study diagonalizable and triangulable extensions. An
extension E is called diagonalizable if there exists a basis for V such that the
components of q are individually Bockstein closed. There is a well known result
that a homogeneous quadratic polynomial is Bockstein closed if and only if it is
product of two linear polynomials. So, the extension class of a diagonalizable
extension has a very special form. We find the following equivalent statements to
diagonalizability of extensions:
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Theorem 3. Let E : 0 → V → G → W → 0 be a central extension with V and
W are elementary abelian 2-groups. The following are equivalent:
(i) E is diagonalizable.
(ii) There is a choice of basis of V , such that the components qi of the extension
class q all decompose as qi = uivi where ui, vi are linear polynomials.
(iii) There exists a diagonalizable binding operator L ∈ Hom(W,End(V )) such that
β(q) = Lq. This is characterized exactly by the equation β(L) + L2 = 0.

(iv) E lifts uniformly to an extension 0 → M → G̃ → W → 0 where M is a
Z/4[W ]-lattice which is a direct sum of one dimensional Z/4[W ]-lattices.

(v) E lifts uniformly to an extension 0 → M → G̃ → W → 0 where M is a
Z/8[W ]-lattice.

(vi) E lifts uniformly to an extension 0 → M → G̃ → W → 0 where M is a
Z[W ]-lattice.

Some of the implications in Theorem 3 are well known to specialist and they
are proved using spectral sequence arguments. We provide easier arguments which
only require simple extension theory. The most interesting implication above is
(vi)⇒ (i) which says the Bockstein closed extensions coming from integral exten-
sions are always diagonalizable. We use Theorem 2 to prove this, and we do not
know any other way to prove this statement.

Another striking consequence of Theorem 3 is that using the characterization
given in (iii), one can easily construct Bockstein closed extensions which are not
diagonalizable. For this it is enough to find a 2-power exact Bockstein closed
extension where the binding operator L does not satisfy the equation β(L)+L2 = 0.
Since in this case the binding operator L is unique, the extension will not be
diagonalizable. We give an explicit example satisfying these properties, hence
provide an example of a Bockstein closed extension which is not diagonalizable.
This example is a counterexample to a result in the literature by Dave Rusin
(Lemma 20 on page 11 of [3].)

Next, we consider triangulable extensions. We say E is triangulable if there
is a basis for V such that the components q1, . . . , qn of q has the property that
for each i = 1, . . . , n, the ideal (qi, qi+1, . . . , qn) is a Bockstein closed ideal. We
show that the triangulability of E is equivalent to E having a lifting lattice M
with the property that M has a filtration 0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mm = M such
that each factor Mi/Mi−1 is a one dimensional Z/4[W ]-lattice. We would like to
have more equivalent conditions for the triangulability of extensions, like in the
case of diagonalizable extension, but so far we were not successful in our attempts.
Also, we do not know any Bockstein closed 2-power exact extensions which are
not triangulable.
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Generic Jordan type of modular representations

Julia Pevtsova

(joint work with E. Friedlander and A. Suslin)

Elementary abelian p-subgroups of a finite group G capture significant aspects
of the cohomology and representation theory of G. For example, if k is a field
of characteristic p > 0, then a theorem of D. Quillen [9] asserts that the Krull
dimension of the cohomology algebra H•(G, k) is equal to the maximum of the
ranks of elementary abelian p-subgroups of G and a theorem of L. Chouinard [3]
asserts that a kG-module is projective if and only if its restrictions to all elemen-
tary abelian p-subgroups of G are projective. Quillen’s geometric description of
SpecH•(G, k) [9] provides the basis for interesting invariants of kG-modules, most
notably the cohomological support variety |G|M of a kG-module M .

The geometric methods developed by Quillen were further applied to study
representations of other algebraic structures, such as restricted Lie algebras. E.
Friedlander and B. Parshall developed a theory of support varieties for finite di-
mensional p-restricted Lie algebras g over a field k of characteristic p > 0 (e.g.,
[4]). For restricted Lie algebras, the role of the group algebra kG of the finite
group G is played by the restricted enveloping algebra u(g). Indeed, restricted Lie
algebras lead one to more interesting geometrical structure than do finite groups,
and seemingly lead to stronger results. For example, the theorem of G. Avrunin
and L. Scott [1] identifying the cohomological support variety |E|M of a finite
dimensional kE module M for an elementary abelian p-group E with the rank va-
riety of J. Carlson [2] admits a formulation in the case of a restricted Lie algebras
g in terms of closed subvarieties of the p-nilpotent cone of g (cf. [4], [8], [11]).

A uniform approach to the study of the cohomology and related representation
theory of all finite group schemes was presented in [5], [6]. This approach involves
the use of π-points ofG, which are finite flat maps ofK-algebrasK[t]/tp → KG for
field extensions K/k; these play the role of “cyclic shifted subgroups” in the case
that G is an elementary abelian p-group and the role of 1-parameter subgroups
in the case that G is an infinitesimal group scheme. In [6], the space Π(G) of
equivalence classes [αK ] of π-points αK : K[t]/tp → KG of G is given a scheme
structure without reference to cohomology such that Π(G) is isomorphic as a
scheme to ProjH•(G, k). In particular, there is a natural bijection between such
equivalence classes of π-points and homogeneous prime ideals of H•(G, k).

The purpose of the talk, though, is to demonstrate that one can go further in
the search of information about modules encoded geometrically.

For a finite group scheme G over a field k of characteristic p > 0, we as-
sociate new invariants to a finite dimensional kG-module M . Namely, for each
generic point of the projectivized cohomological variety ProjH•(G, k) we exhibit
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a “generic Jordan type” of M . We prove the following theorem which both de-
scribes the invariant and demonstrates that it is well-defined.

Theorem 1. Let G be a finite group scheme, let M be a finite dimensional G-
module and let αK : KZ/p → KG be a π-point of G which represents a generic
point [αK ] ∈ Π(G). Then the Jordan type of αK(t) viewed as a nilpotent operator
on MK depends only upon [αK ] and not the choice of αK representing [αK ].

The Jordan type of such αK(t) is called the generic Jordan type of M . In a
special case when G = E is an elementary abelian p-group, the theorem specializes
to the non-trivial observation that the Jordan type obtained by restricting M via
a generic cyclic shifted subgroup does not depend upon a choice of generators for
E.

We verify that sending a module M to its generic Jordan type [αK ]∗(MK) for
generic [αK ] ∈ ProjH•(G, k) determines a well-defined tensor triangulated functor
on stable module categories

[αK ]∗ : stmod(kG)→ stmod(K[t]/tp).

The second invariant we present is the non-maximal support variety of a finite-
dimensional kG-module M , Γ(G)M ⊂ ProjH•(G, k). The non-maximal support
variety coincides with the “classical” support when the module is generically pro-
jective but gives a new non-tautological invariant in the case when the “classical”
support variety of M is the entire cohomological spectrum: for example, when the
dimension of M is not divisible by p.
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Brave new commutative algebra and modular representation theory

John Greenlees

(joint work with D.J.Benson, building on work with W.C.Dwyer and S.B.Iyengar)

The underlying philosophy is that for a finite group G and a field k one can
move between representation theory and modules over the group cohomology ring
using a morita equivalence of derived categories

Ho(C∗(BG; k)−mod)

⊗kGk←−−−−−−−−−−
−−−−−−−−−−→
HomC∗Bg(k,−)

Ho(Mod− kG)

Here C∗(BG; k) := map(BG,Hk) is a strictly commutative ring spectrum.
Hence one may prove Benson’s conjecture about the Benson-Carlson-Rickard mod-
ule KP picking out the subquotient of D(kG) corresponding to the prime ideal P

of H∗BG.
This is done by working in the category of modules over C∗(BG) using methods

of commutative algebra. In this context everything is a formal consequence of the
fact that kG is a Frobenius algebra.

Hilbert series Modules Derived Derived
categories category

over over kG
R = C∗BG

R is ⇔ kG
hGorenstein Frobenius

⇓
Benson-Carlson ⇐ Local ⇐ hGorenstein

duality cohomology duality for R
spectral
sequence
⇓ ⇓

Dual localized ⇐ hGorenstein ⇒ Benson’s
local duality for RP conjecture

cohomology on KP

spectral
sequence

(with Lynbeznik)



Cohomology of Finite Groups: Interactions and Applications 2403

From finite groups to infinite groups: Baum-Connes Conjecture,

equivariant stable cohomotopy, Segal Conjecture

Wolfgang Lück

The purpose of this talk is to explain how methods, constructions and definitions
for finite groups can be transferred and applied to infinite groups. We will focus
on questions about the algebraic K- and L-theory of group rings, topological K-
theory of group C∗-algebras, Burnside rings and equivariant stable cohomotopy.
Some of the results and notions can be found in [1] and [3].

When we will consider actions of an infinite group, we will only consider proper
actions. Recall that a G-CW -complex is proper if and only if all its isotropy groups
are finite. The role which the one-point-space plays for finite groups is now taken
over by the following notion (see for instance [2]).

Definition 1. A classifying space for proper G-actions is a G-CW -complex EG
such that EGH is contractible for H ⊆ G with |H | < ∞ and EGH is empty for
H ⊆ G with |H | =∞.

If X is a proper G-CW -complex, then there is up to G-homotopy precisely one
G-map X → EG. In particular two models for EG are G-homotopy equivalent.
We have EG = {∗} if and only if G is finite. We get EG = EG if and only if
G is torsionfree. If L is a connected Lie group and K ⊆ L its maximal compact
subgroup, then for any discrete subgroup G ⊆ L the space L/K is a model for EG.
For instance Rips complexes for word-hyperbolic groups and Teichmüller spaces
for mapping class groups are models for EG.

Next we deal with the question how the notion of the representation ring RK(G)
and of the Burnside ring A(G) for finite groups carry over to infinite groups. There
are several possible definitions. Each represents a different aspect of the original
notions. All of them coincide with the original notion in the case of a finite group.
The table 1 briefly lists the various definitions.
Next we consider

Conjecture 2 (Baum-Connes). The assembly map

KG
n (EG)

∼=
−→ Kn(C

∗
r (G))

is bijective for all n ∈ Z.

Here the target is the group of interest. The assembly map is essential given by
taking an equivariant index. The source is in comparison easier to compute since
it is given by an equivariant homology theory and standard tools from algebraic
topology apply. The Baum-Connes Conjecture is known to be true for many groups
and has a lot of applications. For a survey on the Baum-Connes Conjecture we
refer for instance to [4].

A rational computation of its source can be given in terms of Chern characters.
For H ⊆ G let NGH be its normalizer, CGH be its centralizer and WGH =
NGH/H · CGH be its Weyl group. The latter is finite if H is finite. Let Z ⊆
ΛG ⊆ Q be the ring obtained from the integers by inverting the orders of the finite
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Table 1. Definitions

RF (G) A(G) key words

K0(FG) A(G) universal additive in-
variant, equivariant
Euler characteristic

Swf (G;F ) A(G) induction theory,
Green functors

Rcov,F (G) :=
colimH⊆G,|H|<∞RF (H)

Acov(G) :=
colimH⊆G,|H|<∞A(H)

collecting all values
for finite subgroups
with respect to induc-
tion

Rinv,F (G) :=
invlimH⊆G,|H|<∞RF (H)

Ainv(G) :=
invlimH⊆G,|H|<∞ A(H)

collecting all values
for finite subgroups
with respect to re-
striction

K0
G(EG) Aho(G) := π0

G(EG) completion theorems,
equivariant vector
bundles

KG
0 (EG) πG0 (EG) representation theo-

ry, Baum-Connes
Conjecture, equi-
variant homotopy
theory

subgroups of G. For a finite cyclic subgroup C ⊆ G let θC ∈ ΛG ⊗Z RQ(C) be
the idempotent whose character evaluated at a generator of C is 1 and is zero
otherwise. It acts on RC(C).

Theorem 3. Let X be a proper G-CW -complex. Then there is for n ∈ Z a
natural isomorphism called equivariant Chern character

⊕

(C)

Λ⊗Z Kn(CGC\X
C)⊗ΛG[WGC]

(
θC · Λ

G ⊗Z RC(C)
) ∼=−→ ΛG ⊗Z K

G
n (X),

where (C) runs through the conjugacy classes of finite cyclic subgroups of G.

This implies the following corollary which illustrates how a K-group associated
to an infinite group can be rationally computed by group homology and represen-
tation theory of finite cyclic groups.

Corollary 4. If the Baum-Connes Conjecture holds for G, we get an isomorphism

⊕

(C)

⊕

k∈Z

Hp(BCGC,Q) ⊗Q[WGC] (θC ·Q⊗Z RC(C))
∼=
−→ Q ⊗Z Kp(C

∗
r (G)).
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Finally we explain how one can extend the definition of equivariant stable co-
homotopy for finite groups. The main idea is to use instead of representations
equivariant vector bundles and their associated sphere bundles for the stabiliza-
tion. We show

Theorem 5. Equivariant stable cohomotopy π∗
? defines an equivariant cohomol-

ogy theory with multiplicative structure for cocompact proper equivariant CW -
complexes. For every finite subgroup H of a group G the abelian groups πnG(G/H)
and πnH are isomorphic for every n ∈ Z and the rings π0

G(G/H) and π0
H = A(H)

are isomorphic.

A (hard) test case for the question whether this theory is worthwhile studying
is to prove the following version of the Segal Conjecture. It boils down for finite
groups to the classical Segal Conjecture which has been proved by Carlsson.

Conjecture 6 (Segal Conjecture for infinite groups). Let G be a group with a
cocompact model for EG. Then there is an isomorphism

π0(BG) ∼= Aho(G)Î ,

where I is kernel of the augmentation homomorphism Aho(G)→ Z.
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Cohomology of Bifunctors

Eric M. Friedlander

(joint work with Vincent Franjou)

The following paragraphs are a slight modification of the introduction of the
preprint [3] on which Friedlander’s talk was based.

We fix a prime p, a base field k of characteristic p, and consider the category V of
finite dimensional k-vector spaces and k-linear maps. The study of the cohomology
of categories of functors from V to k-vector spaces has had numerous applications,
including insight into the structure of modules for the Steenrod algebra [2] and
proof of finite generation of the cohomology of finite group schemes [4]. The
computational power of functor cohomology arises as follows: the abelian category
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of strict polynomial functors P of bounded degree enjoys many pleasing properties
which lead to various cohomological computations (cf. [5]); this cohomology for
the category P is closely related to the cohomology for the abelian category of all
functors F provided that our base field k is finite; for k finite, the cohomology of
finite functors F ∈ F is equal to the stabilized cohomology of general linear groups
with coefficients determined by F .

On the other hand, many natural coefficients modules for the general linear
group are not given by functors but by bifunctors (contravariant in one variable,
covariant in the other variable). Initially motivated by the quest to determine the
group cohomology H∗(GL(n,Z/p2), k), efforts have been made to compute the
cohomology of GL(n, k) with coefficients in symmetric and exterior powers of the
adjoint representation gℓn (cf. [1]). These coefficients are not given by functors
but by bifunctors. The purpose of this paper is to provide computational tools
and first computations towards the determination of the stable (with respect to
n) values of H∗(GL(n, k), Sd(gℓ)) and H∗(GL(n, k),Λd(gℓ)).

Our first task is to formulate in terms of Ext groups in the category Pop × P

of strict polynomial bifunctors the stable version of rational cohomology of the
algebraic group GL with coefficients determined by the given bifunctor. We show
that

Ext∗Pop×P(Γd(gℓ), T ) ∼= H∗
rat(GLn, T (kn, kn))

where T is a strict polynomial bifunctor of homogeneous bidegree (d, d) with n ≥ d.
In the special case that T is of the form A(gℓ) (for example, Sd(gℓ)), we write this
as

H∗
P(GL,A) ∼= H∗

rat(GLn, T (kn, kn)).

As for rational cohomology, the most relevant coefficients are given by beginning
with a strict polynomial bifunctors T and applying the Frobenius twist operation
(i.e., I(1) ◦ (−)) sufficiently often until the Ext-group of interest stabilizes. This
“generic” strict polynomial bifunctor cohomology is our main target of computa-
tions.

In [4], the fundamental computation of Ext∗P(I(r), I(r)) is achieved, modeled on
the computation of Ext∗F(I, I) in [2]. For bifunctor cohomology, the computation
of

H∗
P(GL,⊗n(r)) ≡ ExtPop×P(Γnp

r

,Hom(I(r), I(r))⊗n)

which we present plays an analogous role.
We prove various useful formal results concerning bifunctor cohomology. For

example, we relate the strict polynomial bifunctor cohomology with coefficients
in a functor of separable type (i.e., of the from Hom(A,B) where A,B are strict
polynomial functors) to Ext computations in the category P. We establish a
base change result (one of the important advantages of strict polynomial func-
tors/bifunctors in contrast to “ususal” functors/bifunctors) and a twist stability
theorem; both results follow from analogus results proved in [5] for Ext-groups in
the category P.

We consider bifunctor cohomology such as H∗
P(GL, Sd(gℓ(r))) where d is less

than p. This is in principle completely computable. However, computations for
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p ≤ d would appear to be much more difficult. We work out the case p = 2 = d,
a computation which is quite involved. The applicability of this computation is
extended to other examples.

Finally, we relate our computations of strict polynomial bifunctor cohomology
to the cohomology of the finite groups GL(n, k) where k is a finite field of char-
acteristic p. We develop sufficient formalism for bifunctor cohomology to enable
comparison of this bifunctor cohomology with both the cohomology of strict poly-
nomial bifunctors and with group cohomology. Many explicit computations of
group cohomology are obtained; in particular, we extend the low degree, unstable
computations of [1] to stable (i.e., for the infinite general linear group) computa-
tions for all degrees.
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Endotrivial modules for finite groups of Lie type

Nadia Mazza

(joint work with Jon F. Carlson and Daniel K. Nakano)

Let G be a finite group and k be a field of characteristic p > 0. An endotriv-
ial kG-module is a finitely generated kG-module M whose k-endomorphism ring
is isomorphic to a trivial module in the stable module category. That is, M is
an endotrivial module provided Homk(M,M) ∼= k ⊕ P where P is a projective
kG-module. Now recall that as kG-modules, Homk(M,M) ∼= M∗ ⊗k M where
M∗ = Homk(M,k) is the k-dual of M . Hence, the functor “ ⊗k M” induces
an equivalence on the stable module category and the collection of all endotriv-
ial modules makes up a part of the Picard group of all stable equivalences of
kG-modules. In particular, equivalence classes of endotrivial modules modulo
projective summands form a group that is an essential part of the group of stable
self-equivalences.

Endotrivial modules were first defined by Dade in [Da]. He demonstrated that
for p-groups, the endotrivial modules formed the building blocks of the endo-
permutation modules which he proved are the sources for the irreducible modules
in finite p-nilpotent groups. Dade also showed that if G is an abelian p-group,
then any endotrivial kG-module is the direct sum of a syzygy of the trivial module
(Ωn(k) for some integer n) and a projective module. More recently, the first author
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and Thévenaz have given complete classification of the endotrivial modules for p-
groups (cf. [CaTh3]). The group T (G) of endotrivial modules is torsion-free except
in the cases that the group G is cyclic, quaternion or semi-dihedral (cf. [CaTh1]).
The torsion-free rank of T (G) was determined by Alperin in [Al]. This rank
depends on the number of conjugacy classes of maximal elementary abelian p-
subgroups of p-rank 2. A complete set of generators for the group of endotrivial
modules can also be constructed (cf. [Ca]).

The purpose of this joint work is to determine the group of endotrivial modules
in the defining characteristic for all finite groups of Lie type, including those of
twisted type. It is well understood that if G is an arbitrary finite group and M
is an endotrivial kG-module, then both the Green correspondent and the source
of M are endotrivial modules. For this reason we first consider the endotrivial
modules for a Sylow p-subgroup U and its normalizer B, a Borel subgroup, of a
given finite group G of Lie type. For the unipotent and Borel subgroups we present
a complete classification of the endotrivial modules. For the finite groups G of Lie
type, T (G) has torsion-free rank one and is generated by the class of Ω(k) except
in cases where the Lie rank is small and the field of the group is close to the prime
field. In these exceptional cases, we find the torsion-free rank of T (G). It would
seem that finding a complete set of generators for the group of endotrivial modules
would require a more detailed knowledge of the cohomology ring H∗(G, k) than is
currently available.

In the process of classifying the endotrivial modules for finite groups of Lie
type, many of the results for p-groups are extended to arbitrary finite groups. We
first introduce the group T (G) of endotrivial kG-modules and show that it is a
finitely generated abelian group. Hence it is the direct sum of its torsion subgroup
TT (G) and a torsion-free subgroup TF (G) which we identify with the image of
the product of the restriction maps onto the groups of endotrivial modules of
elementary abelian p-subgroups of G of p-rank at least 2. Then, we prove that
Alperin’s theorem on the rank of T (G) holds also for all finite groups, not just
p-groups. Thereafter, we focus on the finite groups of Lie type, starting with the
case where the Sylow p-subgroups are trivial intersection subgroups. Then we
handle the larger groups, where it turns out that T (G) is cyclic.

The following statements summarize the results of our investigations.

Theorem A:

(a) If G is not of type A1(p) (p > 2), 2A2(p), or 2B2(2
1
2 ), then the tor-

sion subgroup TT (U) of T (U) is trivial, by the classification of endotrival
modules over p-groups.

(b) The torsion subgroup TT (B) of T (B) is isomorphic to the direct sum of
TT (U) and the character group of the torus T ∼= B/U .

(c) If G is not of type A1(p) (p > 2), 2A2(p), or 2B2(2
1
2 ), then the torsion

subgroup TT (G) of T (G) is trivial.

The torsion-free group TF (G) is described as follows.
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Theorem B: The ranks of TF (U), TF (B) and TF (G) are determined entirely
by the number of conjugacy classes of maximal elementary abelian p-subgroups of
p-rank 2 in the groups U, B and respectively G.

(a) If G has type A1(p) (p > 2), or 2B2(2
1
2 ), then TF (U), TF (B) and TF (G)

are all trivial.
(b) If G is one of the of the following, then the rank of TF (G) is explored in

detail:
(i) G has type A2(p),
(ii) G has type B2(p),
(iii) G has type G2(p),
(iv) G has type 2A2(p),

(v) G has type 2B2(2
a+ 1

2 ) (for a ≥ 1),

(vi) G has type 2G2(3
a+ 1

2 ) (for a ≥ 0).
(c) In all the other cases, the ranks of TF (U), TF (B) and TF (G) are one.
(d) A complete set of generators for TF (U) and TF (B) can be specified.

It is worth stating that in the process of proving part (b) of Theorem B we
enumerate the conjugacy classes of maximal elementary abelian p-subgroups of G.
These conjugacy classes are in one-to-one correspondence with the components of
the maximal ideal spectrum VG(k) of the cohomology ring H∗(G, k). Hence the
results are of some interest, independent of the structure of endotrivial modules.
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Invariance of generalized Reynolds ideals under derived equivalence

Alexander Zimmermann

Let k be an algebraically closed field of characteristic p > 0 and let A be a sym-
metric finite dimensional k-algebra with symmetrising bilinear form ( , ). Let KA
be the k-vector space generated by the subset {xy−yx| x, y ∈ A} of A. This space
was defined and used by R. Brauer in [1].

Külshammer defined in [3] and [4] for any integer n the spaces

Tn(A) := {x ∈ A | xp
n

∈ KA}

and Tn(A)⊥ the orthogonal space to Tn(A) with respect to the symmetrising form
( , ). Then, Tn(A)⊥ is an ideal of the centre Z(A) of A.

Z(A) = T0(A)⊥ ⊇ T1(A)⊥ ⊇ T2(A)⊥ ⊇ · · · ⊇
⋂

n∈N

Tn(A)⊥ = soc(A) ∩ Z(A)

Héthelyi et al. show in [2] that Z0A ⊆ (T1A
⊥)2 ⊆ HA, whereHA is the Higman

ideal, that is the image of the trace map of A, and where Z0A is the sum of the
centres of those blocks of A which are simple algebras. They show that for odd
p the left inclusion is an equality, whereas for p = 2 one gets Z0A = (T1A

⊥)3 =
(T1A

⊥) · (T2A
⊥). Many more interesting properties of these ideals are given there.

The authors of [2] show that the ideals are invariant under Morita equivalence
in the obvious sense and they ask if for derived equivalent symmetric algebras A
and B there is an isomorphism ϕ : Z(A) −→ Z(B) with ϕ(Tn(A)⊥) = Tn(B)⊥ for
all n ∈ N.

Let B be a k-algebra. By Rickard’s theory [5] given an equivalence Db(A) ≃
Db(B) as triangulated categories there is a complex X in Db(B ⊗k Aop) so that

X ⊗L
A − : Db(A) −→ Db(B)

is an equivalence, called “of standard type”. Now, for a symmetric algebra A,
given such an equivalence the algebra B is symmetric as well again by [5], or in
a more general context by [6]. Then, replacing X by a suitable isomorphic copy
consisting of a complex formed of left and right projective A-modules,

X ⊗A −⊗A Homk(X, k) : Db(A⊗k A
op) −→ Db(B ⊗k B

op)

is an equivalence. Moreover, this equivalence maps the bimodule A to B and
therefore induces an isomorphism

HHn(A) = HomDb(A⊗kAop)(A,A[n]) ≃ HomDb(B⊗kBop)(B,B[n]) = HHn(B)

between the degree n Hochschild cohomology of A and B. Now, observe that
HH0(A) = Z(A) and HH0(B) = Z(B).

Theorem. [7] Let k be an algebraically closed field of characteristic p > 0 and let
A and B be finite dimensional k-algebras. Then, the isomorphism ϕ : ZA −→ ZB
between the centres ZA of A and ZB of B induced by an equivalence Db(A) ≃
Db(B) of standard type has the property ϕ(TnA

⊥) = TnB
⊥ for all positive integers

n ∈ N.
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Remark: As an application of the theorem it is possible to distinguish the derived
categories of certain algebras arising as blocks of group rings of tame representation
type, which could not be distinguished otherwise. This will be subsequent joint
work with Thorsten Holm.

The proof of the theorem uses first that the ideals Tn(A)⊥ are images of map-
pings ζn defined by the property

(ζn(x), y)
pn

= (x, yp
n

) ∀x ∈ Z(A)∀y ∈ A/KA .

Then, we study in detail the mapping ζn as a composition of mappings

HomA⊗kAop(A,A) −→ HomA⊗kAop(A,Homk(A, k))
ψ
−→ HomA⊗kAop(A,Homk(A, k))

−→ HomA⊗kAop(A,A).

Here ψ is the composition of the n fold p-power mapping and the inverse of the
Frobenius mapping. It is then possible to study the behaviour under a derived
equivalence and this discussion gives the statement.
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Stable cohomology algebra of local rings

Luchezar L. Avramov

(joint work with Oana Veliche)

Stable cohomology theory assigns to each pair (M,N) of modules over an as-

sociative ring R groups ÊxtnR(M,N) defined for every n ∈ Z, which vanish if
either M or N has finite projective dimension. The prototype is Tate cohomology

(ÊxtnZG(Z, N) = Ĥ(G,N) when G is a finite group), based on complete resolu-
tions. Buchweitz [4] extended this approach to produce a stable theory when R is
noetherian with finite self injective dimension on each side. Vogel, see [6], Benson
and Carlson [3], and Mislin [9] have given (equivalent) general constructions; see
[7] for background and details, [2] for interpretations and further generalizations.

For applications to commutative algebra we fix a commutative noetherian local
ring R with maximal ideal m and residue field k = R/m. Let d denote the Krull
dimension of R and e the minimal number of generators of m; one has e ≥ d.

We characterize three important classes of local rings in terms of the stable
cohomology of k. The results reflect a basic hierarchy: regular ⊆ complete inter-
section ⊆ Gorenstein. In each case, the difficult part is the first implication.

Regular local rings, defined by e = d, are precisely the local rings of finite global
dimension, and can be described by the condition Exte+1

R (k, k) = 0. We prove:

1. ÊxtnR(k, k) = 0 for some n ∈ Z =⇒ R regular =⇒ ÊxtnR(k, k) = 0 for all n ∈ Z.

Complete intersections, or c.i., rings are (essentially) quotients of regular rings

by regular sequences; they are characterized by rankk Ext2R(k, k) =
(
e+1
2

)
− d.

2. For every singular (that is, not regular) ring R and each n ∈ Z one has

rankk ÊxtnR(k, k) ≥
d∑

i=0

(
d

i

) ((
e− d+ n− i− 1

e− d− 1

)
+

(
e− n− i− 2

e− d− 1

))
.

Equality holds for some n 6∈ [d−2, 1] =⇒ Rc.i. =⇒ equalities hold for all n ∈ Z.

Gorenstein local rings are the local rings of finite self-injective dimension. No
characterization of these rings is known in terms of the absolute cohomology groups
ExtnR(k, k). For that reason, the first implication below is surprising.

3. rankk ÊxtnR(k, k) is finite for some n ∈ Z =⇒ R Gorenstein =⇒

rankk ÊxtnR(k, k) is finite for all n ∈ Z.

The statements above concern k-vector spaces, but their proofs use the graded

k-algebras E = Ext∗R(k, k) and S = Êxt∗R(k, k) and a canonical homomorphism
ι : E→ S. Martsinkovsky [8] proved that ι is injective, unless R is regular.

Following Félix et al [5], using the left E-module E and k = E/E> 1 we set

depth E = inf{n ∈ Z | ExtnE(k,E) 6= 0} ,

An inequality depth E ≥ 1 holds if and only if R is singular. We assume this is
the case, as otherwise there is not much to say, see Theorem 1.
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Let I denote Homk(E, k) with the canonical graded left E-module structure. Set
T = {σ ∈ S | E>n · σ = 0 for some i ≥ 0}; this is a E-subbimodule of S.

The next result contains most of what we know about S in general.

4. For a singular local ring R the following hold.

(1) There is an exact sequence of left E-modules

(∗) 0 −→ E
ι
−−→ S

ð
−−→

∞∐

i=depthR

(Σ1−iI)µ
i

−→ 0

where g = depthR and µi = rankk ExtiR(k,R), and there are equalities

S = ι(E) + E · S6 0 and ι(E) ∩ T = 0 .

(2) If S = ι(E) ⊕ T′ for some graded left E-submodule T′ ⊆ S, then T′ = T.
(3) If depth E ≥ 2, then S = ι(E) ⊕ T as graded E-bimodules.
(4) If R = Q/(f), where (Q, n) is a singular local ring, f is a non-zero-divisor,

and f is in n2, then depth E ≥ 2 and T is a two-sided ideal of S such that

S = ι(E) ⊕ T and T · T = 0 .

As one already has depth E ≥ 1, the hypothesis depth E ≥ 2 covers, in some
sense, the ‘generic, case. The assertion in (2) shows that if the exact sequence (∗)
admits any left E-linear splitting, then such a splitting is unique and is automati-
cally right E-linear as well. The sequence shows that, as a left module, Coker(ι) is
a direct sum of shifts of I, so the left action of E on Coker(ι) is locally nilpotent.

The theorem provides no information about the right action of E. Furthermore,
it says nothing about rings with depth E = 1. In the example below E is the
tensor algebra of the vector space E1, isomorphic to ke; as tensor algebras have
global dimension 1, on gets depth E = 1. (We show that all Golod rings have this
property.) The simple nature of R and E notwithstanding, the structure of S turns
out to be intrinsically more complicated than in the cases covered by Theorem 4.

5. If m2 = 0 and the ideal m is not principal, then (∗) does not split as a sequence
of left E-modules, and the right action of E on Coker(ι) is not locally nilpotent.

The behavior of Bass numbers displays a striking cohomological dichotomy: If
R is not Gorenstein, then µi > 0 for all i ≥ depthR; else, µdepthR = 1 and µi = 0
for i 6= depthR. In view of the exact sequence (∗), this property accounts for
Theorem 3. It also shows that when R is Gorenstein the sequence (∗) simplifies to

(∗∗) 0 −→ E
ι
−−→ S

ð
−−→ Σ

1−dI −→ 0

We prove that splitting of this sequence largely determines the algebra structure.

6. Let R be a Gorenstein local ring with e− d ≥ 2. If (∗∗) splits as a sequence of
left E-modules, then T is a two-sided ideal of S and satisfies

S = ι(E) ⊕ T and T · T = 0 .

As a graded left E-module T is generated by S<0 and is isomorphic to Σ1−dI.
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The theorem applies to Gorenstein rings described by any of the conditions:
e− d = 2; e− d = 3; multiplicity equal to e− d+ 2; localizations of graded Koszul
algebras at the maximal homogeneous ideal; tensor products of singular algebras
over a field; isomorphic toQ/(f) with (Q, n) singular and a non-zero-divisor f ∈ n2.

The latter class includes all complete intersections with d − e ≥ 2. Rings
of the form Q/(f) with Q regular and f ∈ n2 are called hypersurface rings; they
essentially coincide with Gorenstein rings with e−d = 1. Their stable cohomology,
computed by Buchweitz’s [4], should be contrasted with the result of Theorem 4(4):

7. If R is a hypersurface ring, then S = E[ϑ−1], where ϑ ∈ E2 is a central non-
zero-divisor and E/(ϑ) is an exterior algebra on e generators of degree 1.

It is easy to see that hypersurface rings have depth E = 1 and that for them the
sequence (∗∗) does not split. Non-hypersurface Gorenstein rings with depth E = 1
do exist, but in all known examples the defining exact sequence split.

Our results for Gorenstein rings offer striking parallels to theorems of Benson

and Carlson [3], relating the structure of the Tate cohomology algebra Ĥ∗(G, k)of
a finite group G with that of the absolute cohomology algebra H∗(G, k). The
parallelism might have been anticipated additively, at the level of the underlying
vector spaces, where it can be traced to the self-injectivity of the group ring kG
and the finite self-injective dimension of the Gorenstein local ring R.

On the other hand, the similarities of the graded algebra structures are com-

pletely unexpected. Indeed, both algebras H∗(G, k) and Ĥ∗(G, k) are graded-com-
mutative; moreover, the first one is finitely generated over k, and hence noetherian.
In stark contrast, E may not be finitely generated; it is noetherian if and only if R
is complete intersection; it is commutative if and only if, it is c.i. and the length
of the R-module R/m3 is equal to

(
e+2
2

)
(which is the largest possible value).

Proofs of the results above and further developments can be found in [1].
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Homotopy rank and small rank groups

Michael A. Jackson

Recall that the p-rank of a finite group G, rkp(G), is the largest rank of an elemen-
tary abelian p-subgroup of G and that the rank of a finite group G, rk(G), is the
maximum of rkp(G) taken over all primes p. We define the homotopy rank of a
finite group G, h(G), to be the minimal integer k such that G acts freely on a finite
CW-complex Y ≃ Sn1 × Sn2 × · · · × Snk . Benson and Carlson [3] have conjectured
that for any finite group G, rk(G) = h(G). The case of their conjecture, when G
is a rank one group, is a direct result of Swan’s theorem [9]. Benson and Carlson’s
conjecture has also been verified by Adem and Smith [1] for rank two p-groups as
well as for all rank two finite simple groups except PSL3(Fp) for p an odd prime.

Recall that Qd(p) is the semidirect product of (Z/pZ)2 by SL2(Fp) with the
natural action. We say that a group G does not involve Qd(p) if no subquotient
of G is isomorphic to Qd(p). In addition, a group that does not involve Qd(p) is
called Qd(p)-free. Here we will verify Benson and Carlson’s conjecture for Qd(p)-
free finite groups of rank two. A result of Heller [5] states that if h(G) = 2, then
rk(G) = 2; therefore, the conjecture holds for a given rank two group G, if G acts
freely on a finite CW-complex Y ≃ Sn1 × Sn2 . We will find such actions using a
recent result of Adem and Smith, but we need to include two definitions before
stating their result.

Definition 1. Let ϕ : BG→ BU(n) be a map and let α ∈ H2n(BU(n),Z) be the
Euler class (top Chern class) of U(n). The Euler class in H2n(BG,Z) associated
to ϕ is ϕ∗(α).

Definition 2. A cohomology class α ∈ H∗(BG,Z) is called effective if for each
elementary abelian subgroup E ⊆ G with rk(E) = rk(G), resGE(α) 6= 0.

Theorem 3 (Adem and Smith [1]). Let G be a finite group with rk(G) = 2. If the
Euler class associated to some map ϕ : BG→ BU(n) is effective, then h(G) = 2.

In light of Theorem 3, verifying Benson and Carlson’s conjecture for a rank two
group G can be reduced to finding a particular map ϕ : BG → BU(n) with an
effective Euler class. Two properties of maps from BG to BU(n) will prove useful:
homotopic maps have the same Euler class; and if G is a p-group for some prime
p, then maps from BG to BU(n) are in one-to-one correspondence with complex
characters of degree n. The second property uses a result of Dwyer and Zabrodsky
[4].

In light of the second property above, we will be relating maps from BG to
BU(n) to characters. To do so, we must introduce the following notation: Gp
will denote a Sylow p-subgroup of G; Charn(Gp) will denote the set of degree n

complex characters of Gp; and CharGn (Gp) will denote the subset of Charn(Gp)
consisting of those degree n complex characters of Gp that are the restrictions of
class functions on G, meaning that they respect fusion in G.
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We now define a map ψG : [BG,BU(n)] →
∏
p||G| CharGn (Gp), by using the

following composition:

[BG, BU(n)]
∼=
→

Y

p||G|

[BG, BU(n)∧p ]
res
→

Y

p||G|

[BGp, BU(n)∧p ]
∼=
→

Y

p||G|

Charn(Gp).

Notice that spaces in the center and at the right of the top row contain BU(n)∧p ,
which is the p-completion of the space BU(n). The left bijection is a result by
Jackowski, McClure, and Oliver [6] while the right bijection follows is the previ-
ously mentioned property. The restriction map res is induced by the inclusion of
the Sylow p-subgroups Gp into G. We notice that the image of the composition

above lies in the subset
∏
p||G| CharGn (Gp); therefore, we let ψG be the composition

above with the range restricted to
∏
p||G| CharGn (Gp). We get the following result

concerning the map ψG:

Theorem 4 (Jackson [7, Theorem 1.3]). If G is a finite group of rank two, then

the natural mapping ψG : [BG,BU(n)]→
∏
p||G| CharGn (Gp) is a surjection.

Using Theorem 4, we see that a map from BG to BU(n) with an effective Euler

class can be demonstrated by giving appropriate characters in CharGn (Gp) for each
prime p dividing the order of G, which leads to Definition 5 and Theorem 6

Definition 5. Let G be a finite group, p a prime dividing |G|, and Gp a Sylow
p-subgroup of G. A character χ of Gp is called a p-effective character of G if

χ ∈ CharGn (Gp) and if for each elementary abelian subgroup E ⊆ Gp with rk(E) =
rk(G), the trivial character of E is not an irreducible summand of the character
χ|E .

Theorem 6 (Jackson[8]). Let G be a finite group. If for each prime p dividing
|G| there exists a p-effective character of G, then there is a map ϕ : BG→ BU(n)
whose associated Euler class is effective. If in addition rk(G) = 2, then h(G) = 2

Theorem 6 has reduced the process of showing that a rank two group has
homotopy rank two to finding p-effective characters for each prime p dividing the
order of the group. A definition from group theory is necessary in demonstrating
the existence of p-effective characters.

Definition 7. Let G be a finite group, and let H and K be subgroups such that
H ⊂ K. We say that H is strongly closed in K with respect to G if for each g ∈ G,
Hg ∩K ⊆ H .

We are now able to show a sufficient condition for the existence of a p-effective
character.

Proposition 8. Let G be a finite group, p a prime divisor of |G|, and Gp a Sylow
p-subgroup of G. If H ⊆ Z(Gp) exists such that H is non-trivial and strongly
closed in Gp with respect to G, then G has a p-effective character.

Recall that Ω1(P ), for a p-group P , is the subgroup of P generated by the order
p elements of P . Notice that if P is abelian, then Ω1(P ) is elementary abelian. The
next theorem shows that in many cases the sufficient condition may be applied.
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Theorem 9 (Jackson [8]). Let G be a finite group, p a prime with rkp(G) =
rk(G) = 2, and Gp ∈ Sylp(G). If Ω1(Z(Gp)) is not strongly closed in Gp with
respect to G, then either p is odd and Qd(p) is involved in G, or p = 2 and G2 is
dihedral, semi-dihedral, or wreathed.

The prime 2 portion of Theorem 9 is a result of Alperin, Brauer, and Gorenstein
[2, Proposition 7.1]. As a result of Theorem 9, a rank two finite group has a
2-effective character if its Sylow 2-subgroups are not dihedral, semi-dihedral or
wreathed. The cases of dihedral, semi-dihedral and wreathed Sylow 2-subgroups
are shown to have 2-effective characters in Theorem 9.

Theorem 10 (Jackson [8]). If G is a finite group with a dihedral, semi-dihedral,
or wreathed Sylow 2-subgroup such that rk(G) = 2, then G has a 2-effective
character.

Theorem 10 is shown by explicitly demonstrating the 2-effective character in
each case.

Theorem 11 (Jackson). Let G be a finite group such that rk(G) = 2. G acts
freely on a finite CW-complex Y ≃ Sn1 × Sn2 unless for some odd prime p, G
involves Qd(p). In particular, if G is a rank two group that is Qd(p)-free for each
odd prime p, then h(G) = 2.

We end by pointing out that for an odd prime p, Qd(p) does not have a p-
effective character.
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Sturm sequences and H2 of the hyperbolic homomorphism

Jean Lannes

(joint work with Jean Barge)

Short abstract: Let R be an arbitrary ring (let’s say commutative). Let GL(R) and Sp(R) be the
“infinite” general linear group and symplectic group; let H : GL(R) → Sp(R) be the hyperbolic
homomorphism. Let ESp(R) be the “elementary subgroup” of Sp(R),
ESp(R) · GL(R) the subgroup of Sp(R) generated by ESp(R) and GL(R), and
rH : GL(R) → ESp(R)·GL(R) the group homomorphism induced by H. Finally let I(R) be
the fundamental ideal of the Witt ring of R (the one of the theory of non-degenerate symmetric
bilinear forms, defined here in terms of free R-modules). Our aim is to show that the homology
group H2(rH), group which takes place naturally in a five term exact sequence

K2(R) −−−−−→ KSp2(R) −−−−−→ H2(rH) −−−−−→ K1(R) −−−−−→ KSp1(R) ,

is the fibre product of I(R) and K1(R) over K1(R)/(1 + τ), τ denoting the involution of K1(R)
defined by matrix transposition.

This result is a variant of results of R. W. Sharpe [On the structure of the unitary Steinberg

group, Ann. of Math., 96 (1972), 444-479]. Our method of proof is distantly related to the

classical theory of Sturm sequences, hence our title.

1. Variations on the Hopf formula

Let ρ : G → G′ be a group homomorphism. One may choose for definition of
the homology of ρ, the reduced homology of the cone of the application

Bρ : BG→ BG′ ;

so one has a long exact sequence

. . .→ HnG→ HnG
′ → Hnρ→ Hn−1G→ Hn−1G

′ → . . . .

Proposition (Hopf formula) . Let ρ : G→ G′ be a group epimorphism. Then
one has a canonical isomorphism

H2 ρ ∼= kerρ/ [G, kerρ ] .

In other words, “centralization” of the exact sequence

1 −−−−→ kerρ −−−−→ G
ρ

−−−−→ G′ −−−−→ 1

gives a central extension of the form

1 −−−−→ H2ρ −−−−→ G/ [G, kerρ ]
ρ

−−−−→ G′ −−−−→ 1 .

2. Symplectic groups

Let R be a commutative ring and L a free R-module of finite dimension.
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One denotes by H(L) the R-module L ⊕ L∗ equipped with the alternating bi-
linear form

((x, ξ) , (y, η)) 7→ 〈x, η〉 − 〈y, ξ〉

(one says that H(L) is the symplectic hyperbolic space associated to L and that the
bilinear form above is its symplectic form). One denotes by SpL the group made
of the automorphisms of the R-module H(L) which preserve the symplectic form.

One denotes by GLL the group of automorphisms of the R-module L. The map
from GLL to SpL,

a 7→

[
a 0
0 (a∗)−1

]
,

is a group homomorphism which is denoted by H.

Let q : L → L∗ (resp. q : L∗ → L) an R-module homomorphism. The
automorphism [

1 0
q 1

]
(resp.

[
1 q
0 1

]
)

of the R-module H(L) belongs to SpL if and only if one has q = q∗. One will observe
that such a q identifies with a symmetric bilinear form on L (resp. L∗) ; we will
denote by SL (resp. SL∗) the submodule of HomR(L,L∗) (resp. HomR(L∗, L))
made of the homomorphisms q satisfying q = q∗. The symplectic automorphisms
of H(L) of the preceeding type are called elementary; we will denote by ESpL the
subgroup of SpL they generate.

One denotes by GLn, Spn, ESpn,. . . , the functors R 7→ GLRn , R 7→ SpRn ,
R 7→ ESpRn ,. . . . One denotes by GL, Sp, ESp,. . . the functors colimits of these
functors.

The three group homomorphisms

GLL → SpL , a 7→

»

a 0
0 a∗−1

–

; SL → SpL , q 7→

»

1 0
q 1

–

; SL∗ → SpL , q 7→

»

1 q
0 1

–

induce a homomorphism from the semi-direct product (SL∗SL∗)⋊GLL to SpL (cor-
responding to the natural left action of GLL on SL and SL∗).
We set ΘL = (SL ∗ SL∗) ⋊ GLL and denote by ρL : ΘL → SpL the canonical
homomorphism just evoked. From the very definition, the image of ρL is the
subgroup ESpL·GLL of SpL generated by the subgroups ESpL and GLL .

Now one centralizes the exact sequence

1 −−−−→ kerρL −−−−→ ΘL
ρL

−−−−→ ESpL·GLL −−−−→ 1 .

Let [ΘL, kerρL] be the (normal) subgroup of ΘL generated by commutators of
elements of ΘL and of kerρL; we denote respectively by ΓL et AL the quotient
groups ΘL/[ΘL, kerρL] and kerρL/[ΘL, kerρL], we denote by π : ΓL → SpL the
homomorphism induced by ρL . By the very contruction the exact sequence

1 −−−−→ AL −−−−→ ΓL
π

−−−−→ ESpL·GLL −−−−→ 1

is a central extension.
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Our aim is to study the central extension

1 −−−−→ A(R) −−−−→ Γ(R)
π

−−−−→ ESp(R)·GL(R) −−−−→ 1

colimit of the central extensions

1 −−−−→ An(R) −−−−→ Γn(R)
π

−−−−→ ESpn(R)·GLn(R) −−−−→ 1 .

Proposition. The group A(R) is canonically isomorphic to the H2 of the hy-
perbolic homomorphism GL(R)→ ESp(R)·GL(R).

Corollary. The group A(R) takes place in a five term exact sequence:

K2(R) −−−−→ KSp2(R) −−−−→ A(R) −−−−→ K1(R) −−−−→ KSp1(R) .

3. Identification of the group A(R) in terms of symmetric bilinear forms

3.1. The group V(R)

One considers the isomorphism classes [L; q0, q1] of triples (L; q0, q1) of the fol-
lowing type:

– L is a free R-module of finite dimension;
– q0 and q1 are symmetric bilinear forms on L which are assumed to be

non-degenerate.

One denotes by V(R) the quotient of the abelian Grothendieck group gener-
ated by these [L; q0, q1], with the orthogonal sum for group law, by the subgroup
generated by the elements of the form

[L; q0, q1] + [L; q1, q2]− [L; q0, q2] .

Proposition. One has a canonical cartesian diagram of abelian groups

V(R) −−−−→ I(R)
y

y

K1(R) −−−−→ K1(R)/(1 + τ)
.

3.2. The homomorphism µ : A(R)→ V(R)

Sturm forms

Let L be a finite dimensional free R-module.

Let k be an integer, we set

Lk =

{
L for k even,

L∗ for k odd.
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Let q = (qm, qm+1, . . . , qn) be a sequence with qk ∈ SLk
for m ≤ k ≤ n (we call

this type of sequence a Sturm sequence).

We set Lm,n =
n⊕

k=m

Lk and we denote by S(q) the symmetric bilinear form on

the finite dimensional free R-module Lm,n whose matrix is the following one:

L∗
m

L∗
m+1

. . .

. . .

. . .

. . .
L∗

n

2

6

6

6

6

6

6

6

6

4

Lm

(−1)mqm

1
0

. . .

. . .

. . .
0

Lm+1

1
(−1)m+1 qm+1

1
0

. . .

. . .
0

. . .

0
1

. . .
1
0

. . .
0

. . .

0
0
1

. . .

. . .

. . .
0

. . .

0
0
0

. . .

. . .
1
0

. . .

0
0
0

. . .
1

. . .
1

Ln

0
0
0

. . .

. . .
1

(−1)nqn

3

7

7

7

7

7

7

7

7

5

(it is this symmetric bilinear form that we call Sturm form).

Let us say that an element θ of ΘL is represented by a finite sequence of elements
of SL

∐
SL∗

∐
GLL, if θ is the product of the elements of this sequence.

Proposition-definition. Let L be a finite dimensional free R-module. There
exists a unique group homomorphism

µL : kerρL → V(R)

such that the image by µL of an element of kerρL represented by a sequence

(q0, q1, . . . , q2m−1; a) ,

with m ≥ 1, qk ∈ SLk
for 0 ≤ k ≤ 2m− 1 and a ∈ GLL , is the element of V(R)

represented by the triple

(L0,2m−1 ; S(0, 0, . . . , 0) , S(q0, q1, . . . , q2m−1))

This homomorphism is trivial on kerρL/[ΘL, kerρL] and so induces a homomor-
phism still denoted by µL : AL → V(R). One denotes by

µ : A(R)→ V(R)

the homomorphism induced by these µL.

Here is the main result of the work I am reporting on:

Theorem. The homomorphism µ : A(R)→ V(R) is an isomorphism.

Cyclic group actions on polynomial rings

Peter Symonds

Consider a cyclic group of order pn acting on a polynomial ring S = k[x1, . . . , xr ],
where k is a field of characteristic p; this is equivalent to the symmetric algebra
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S∗(V ) on the module V generated by x1, . . . , xr. We would like to know the
decomposition of S into indecomposables.

This was calculated by Almkvist and Fossum in [1] in the case n = 1. They
reduced the problem to the calculation of the exterior powers of V , and then gave
a formula for these.

In this note we accomplish the first part for general n, that is to say the reduction
of the calculation of the symmetric algebra to that of the exterior algebra. Many
of the results extend to a group with normal cyclic Sylow p-subgroup, in particular
to any finite cyclic group. for more details see [4].

We wish to thank Dikran Karagueuzian for providing the computer calculations
using Magma that motivated this work.

Let Cpn denote the cyclic group of order pn and consider kCpn -modules, where
k is a field of characteristic p.

Recall that kCpn ∼= k[X ]/Xpn

, where X corresponds to g−1 for some generator
g ∈ Cpn . The indecomposable representations of kCpn are Vt = k[X ]/Xt, up to
isomorphism, where 1 ≤ t ≤ pn.

First we use the main theorem of [3] to prove a conjecture of Hughes and Kemper
in [2].

Theorem 1. Suppose that V is an indecomposable kCpn -module. Then S∗(V ) ∼=
k[a]⊗B modulo modules that are induced from proper subgroups, where a is an
eigenvector for Cpn of degree pn and B is a sum of homogeneous submodules of
degree strictly less than deg a.

Next we show that it is sufficient to work modulo induced modules.

Lemma 2. If V is a kCpn module that is known up to induced summands both
over kCpn and on restriction to subgroups then V is determined up to isomorphism.

Our main results depend on analyzing Koszul complexes with a group action.
They are as follows, where Ω denotes the Heller translate.

Theorem 3. For r < pn and pn−1 ≤ t ≤ pn we have Sr(Vt) ∼= Ω−rΛr(Vpn−t)
modulo induced modules. In particular, if r + t > pn then Sr(Vt) is induced.

We adopt the convention that Sr = 0 for r < 0.

Corollary 4. With the same conditions as above, Sr(Vt) ∼= Ωp
n−tSp

n−t−r(Vt)
modulo induced modules.
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Equivariant Gysin maps and pulling back fixed points

Bernhard Hanke

(joint work with Volker Puppe)

In [1] W. Browder proved the following result:

Let G be a finite abelian p-group, let M be an oriented smooth G-manifold and let
N be an oriented PL G-manifold. Assume that M and N are without boundary
and have the same dimension. Let

f : M→N

be a continuous proper G-equivariant map. Additionally, assume that if p = 2 and
H < G, then the normal bundle of MH in M has the structure of a complex linear
G-bundle. Then, if the degree of f is not divisible by p, the induced map of fixed
point sets

fG : MG→NG

is surjective (put differently, any point in NG can be pulled back under f to a point
in MG).

This result was shown by an involved argument relying heavily on the differ-
entiability of the action on M . As Browder pointed out at the end of his paper,
it would be desirable to prove versions of his theorem in more general contexts,
above all to weaken the differentiability assumption on M .

In our work [2], we provide such generalizations and in particular, if G is a finite
cyclic p-group (p odd), we remove the assumption of the differentiability of the G-
action on M . Our approach is different from Browder’s: Based on a combination
of the Atiyah-Segal-tom Dieck localization theorem with equivariant Gysin maps
for generalized equivariant cohomology theories, we prove a general pulling back
fixed points theorem whose precise form depends on the particular cohomology
theory chosen. In this respect, our discussion provides a link of Browder’s result
to methods building on classical Smith theory.

Starting from this general fact, ordinary cohomology with Fp-coefficients (as
in classical Smith theory) leads to a pulling back fixed points theorem for topo-
logical actions of elementary abelian p-groups, Browder’s original theorem can be
derived (for smooth actions) with the use of p-local unitary bordism and the above
mentioned generalization to topological actions of cyclic p-groups relies on p-local
K-theory together with Sullivan’s K-theoretic orientation of topological bordism.
A generalization of Browder’s result to topological actions of finite abelian p-groups
would be possible, if the following question has an affirmative answer: Let G be
a finite abelian p-group (p odd) and let V be a complex G-representation with-
out trivial direct summand. Is the Euler class of V in topological bordism theory
different from zero?
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A universal construction of support varieties

Henning Krause

(joint work with Aslak B. Buan, Øyvind Solberg)

Given a category of representations (abelian or triangulated) endowed with a
tensor product, we discuss a universal construction which assigns to each object
its support. In many cases, all thick tensor ideals can be classified in terms of this
support. The idea of this construction is based on work of Balmer [1] and has been
extended more recently in joint work with Aslak Buan and Øyvind Solberg [3]. One
obtains an elegant and conceptual explanation of various existing classifications.
This includes the classification of thick tensor ideals for the category of perfect
complexes on a scheme by Hopkins, Neeman, and Thomason [5] and a similar
classification for the stable category of representations of a finite group by Benson,
Carlson, and Rickard [2].

The first basic observation is the following. We assume that we work in an
abelian or triangulated tensor category C. Then two objects of C have the same
support if and only if they generate the same thick tensor ideal of C. Therefore only
the lattice of thick tensor ideals of C is relevant if we want to study the support of
objects of C. Note that the tensor product on C induces a multiplication on this
lattice of ideals. This observation motivates the following general set-up.

We define an ideal lattice to be a partially ordered set L = (L,≤), together with
an associative multiplication L× L→ L, such that the following holds.

(L1) The poset L is a complete lattice, that is,
∨

a∈A

a = supA and
∧

a∈A

a = inf A

exist in L for every subset A ⊆ L.
(L2) The lattice L is compactly generated, that is, every element in L is the

supremum of compact elements. (An element a ∈ L is compact, if for all
A ⊆ L with a ≤ supA there exists some finite A′ ⊆ A with a ≤ supA′.)

(L3) We have for all a, b, c ∈ L

a(b ∨ c) = ab ∨ ac and (a ∨ b)c = ac ∨ bc.

(L4) The element 1 = supL is compact, and 1a = a = a1 for all a ∈ L.
(L5) The product of two compact elements is again compact.

For example, the thick tensor ideals of a small triangulated tensor category form
such an ideal lattice. The compact elements are precisely the finitely generated
ideals.
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Call 1 6= p ∈ L prime if ab ≤ p implies a ≤ p or b ≤ p for all a, b ∈ L. Let
SpecL denote the set of all primes in L and consider the usual Zariski topology.
Thus the Zariski closed subsets are those of the form

V (a) = {p ∈ SpecL | a ≤ p}

for some a ∈ L. This space is spectral in the sense of Hochster [4] and this
observation justifies the use of another topology on SpecL, where basic Zariski
open sets are turned into basic closed sets. We denote this new space by Spec∗ L
and define the support of each a ∈ L to be

supp(a) = {p ∈ Spec∗ L | a 6≤ p}.

This set is closed whenever a is compact.
A support datum on an ideal lattice L is a pair (X,σ) consisting of a topological

space X and a map σ which assigns to each compact a ∈ L a closed subset σ(a)
such that for all a, b ∈ L

(1) σ(a ∨ b) = σ(a) ∪ σ(b),
(2) σ(ab) = σ(a) ∩ σ(b),
(3) σ(1) = X .

A morphism f : (X,σ)→ (X ′, σ′) of support data is a continuous map f : X → X ′

such that σ(a) = f−1(σ′(a)) for all compact a ∈ L.
The following theorem formulates the universal property of the support supp(a).

Theorem 1. Let L be an ideal lattice. Then the pair (Spec∗ L, supp) is a support
datum on L. For every support datum (X,σ) on L, there exists a unique continuous
map f : X → Spec∗ L such that σ(a) = f−1(supp(a)) for every compact a ∈ L.
The map f is defined by

f(x) =
∨

x 6∈σ(c)
c compact

c for x ∈ X.

Let us return to our applications. We fix an abelian or triangulated tensor
category C and let L(C) be the lattice of thick tensor ideals. We define the spectrum
of C

Spec C = Spec∗ L(C)

and the support of an object C ∈ C is by definition the closed subset supp(〈C〉)
where 〈C〉 denotes the smallest thick tensor ideal of C containing C.

It is interesting to compute Spec C in some specific examples and to see that
this abstract notion of support coincides (up to a homeomorphism) with the more
familiar definitions.

Example 1. Let (X,OX) be a noetherian scheme and let C be the abelian cate-
gory of coherent OX -modules. Given an object C ∈ C, denote by suppX(C) the
usual support of X (which is a closed subset of the underlying space of X). Then
(X, suppX) is a support datum and the induced map SpecC→ X is a homeomor-
phism.
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Example 2. Let (X,OX) be a quasi-compact and quasi-separated scheme and let
C be the triangulated category of perfect complexes on X . Given an object C ∈ C,
denote by suppX(C) the usual support of X (which is a closed subset of the space
X). Then (X, suppX) is a support datum and the induced map Spec C → X is a
homeomorphism.

Example 3. Let G be a finite group and k be a field. Let C the stable category of
finite dimensional k-linear representations of G. Given an object C ∈ C, denote
by suppG(C) the usual cohomological support of X (which is a closed subset of
the projective variety X = ProjH∗(G, k)). Then (X, suppG) is a support datum
and the induced map Spec C→ X is a homeomorphism.

One can define a sheaf of rings on Spec C, and it is interesting to note that
in all three examples the homeomorphism Spec C → X can be extended to an
isomorphism of ringed spaces. We refer to [1] and [3] for details.
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On spaces of homomorphisms

Frederick R. Cohen1

(joint work with Alejandro Adem2)

1. Introduction

Let Γ denote a finitely generated discrete group and G a finite dimensional
Lie group. The purpose of this lecture is to give properties of Hom(Γ, G) the
space of all group homomorphisms from Γ to G topologized with the compact
open topology. Many beautiful properties of these spaces have been developed
by Goldman, Akbulut-McCarthy, Dwyer-Wilkerson, Lannes and others . One
interesting feature of these spaces is that in case Γ is finite, Jean Lannes proved
that these spaces are manifolds (possibly not connected).

1F.R. Cohen partially supported by the NSF
2A. Adem partially supported by NSERC
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2. Homologically toroidal groups

The results in this section are joint work with A. Adem and D. Cohen.

Definition 1. (1) The groups KU0
rep(BΓ) and KO0

rep(BΓ) are defined to be the

subgroups of KU0(BΓ) and KO0(BΓ) generated by the images, for all n ≥ 1, of
the maps

Hom(Γ, U(n))→ [BΓ, BU ] and Hom(Γ, O(n))→ [BΓ, BO].

(2) A discrete group Γ is said to be homologically toroidal if there is a homomor-
phism F → Γ inducing a split epimorphism in integral homology, where F is a
finite free product of free abelian groups of finite rank.

Proposition 2. Let Γ be the fundamental group of the complement of a K(Γ, 1)
arrangement. Then Γ is homologically toroidal.

Theorem 3. Let Γ be homologically toroidal and let ζ1 and ζ2 be arbitrary classes
in H1(Γ; Z/2Z) and H2(Γ; Z/2Z). Then there is a finite dimensional orthogonal
representation of Γ which factors through the abelianization of Γ with first and
second Stiefel-Whitney classes given by ζ1 and ζ2 respectively. Moreover for these
groups the Stiefel-Whitney classes induce an isomorphism

KO0
rep(BΓ) ∼= H1(Γ,Z/2)⊕H2(Γ,Z/2).

Theorem 4. Let Γ be homologically toroidal.

(1) The spaces Hom(Γ, U(n)) are path-connected.
(2) For n sufficiently large, the number of path components of Hom(Γ, O(n)),

#π0(Hom(Γ, O(n)), is bounded below by

#π0(Hom(Γ, O(n)) ≥ |H1(Γ,F2)||H
2(Γ,F2)|.

(3) Let M denote the complement of an arrangement of hyperplanes which
happens to be aspherical; if π denotes its fundamental group and n is
sufficiently large, then #π0(Hom(π,O(n)) ≥ |H1(π,F2)||H

2(π,F2)|.

3. Commuting n-tuples

A special case of a homologically toroidal group is Γ = Zn. Natural subspaces
of Hom(Zn, G) arise from the so-called fat wedge filtration of the product Gn

where the base-point of G is 1G. Thus FjG
n is the subspace of Gn with at least

j coordinates equal to 1G. Define subspaces of Hom(Zn, G) by the formula

Sn(j,G) = Hom(Zn, G) ∩ FjG
n.

Notice that Sn(n− 1, G) = ∨nG. Consider the natural inclusions Sn(n− 1, G)→
Hom(Zn, G) with mapping cone denoted An(G). This section is joint work with
A. Adem.

Proposition 5. If G is a Lie group (not necessarily compact), then there are
homotopy equivalences Σ(∨nG) ∨ Σ(An(G))→ Σ(Hom(Zn, G)).

A more precise result applies in special cases.
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Definition 6. A Lie group G is said to be good if the natural inclusion Ij :
Sn(j,G)→ Sn(j − 1, G) is a cofibration for all n and j for which both spaces are
non-empty.

Theorem 7. If G is good, there are homotopy equivalences

∨1≤k≤nΣ(∨(n
k)
Hom(Zk, G)/Sk(1, G))→ Σ(Hom(Zn, G)).

Remark: This theorem is a special case of properties for certain choices of
simplicial spaces.

Theorem 8. If G is either SU(2) or G = GL(n,F) for F given by C, or R, then
G is good.

Corollary 9. If G = SU(2), there are homotopy equivalences

Σ(G ∨G) ∨Σ(S6 − SO(3))→ Σ(Hom(Z2, G)),

and
∨3Σ

3(S6 − SO(3))→ Hom(Z3, G)/S3(G)).

Remark. Notice that Σ(Hom(Zn, SU(2))) has ∨q=1,2,3(∨(n

q)
Hom(Zq , G)/Sq(1, G))

as a retract and that these summands have been identified in 9 .

Examples concerning the singular homology for Hom(Zn, SU(2)) are given
next.

Theorem 10. (1) The integral cohomology of the space of (ordered) commut-
ing pairs in SU(2) is given by

Hi(Hom(Z⊕ Z, SU(2)),Z) ∼=





Z if i = 0
0 if i = 1
Z if i = 2

Z⊕ Z if i = 3
Z/2Z if i = 4

0 if i ≥ 5

(2) The integral cohomology of the space of (ordered) commuting triples in
SU(2) is given by

Hi(Hom(Z⊕ Z⊕ Z, SU(2)),Z) ∼=





Z if i = 0
0 if i = 1

Z⊕ Z⊕ Z if i = 2
Z⊕ Z⊕ Z if i = 3

Z/2Z⊕ Z/2Z⊕ Z/2Z if i = 4
Z⊕ Z⊕ Z if i = 5

0 if i = 6
Z/2Z⊕ Z2Z⊕ Z/2Z if i = 7

0 if i ≥ 8

Reporter: Nicolas Weiss
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