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Introduction by the Organisers

The Oberwolfach mini-workshop “Convergence of Adaptive Algorithms” origi-
nated from a previous Oberwolfach meeting 16/2004 on the topic of “Self-adaptive
Methods for Partial Differential Equations” which took place in Spring 2004. One
motivation for the mini-workshop was the resolution of the key issues of ‘error
reduction’ in adaptive finite element schemes and the necessity, or otherwise, for
’coarsening strategies’ in adaptive algorithms. While the former topic might be
regarded as more theoretical, the latter has important practical repercussions in
the sense that essentially every practical numerical example would indicate that
coarsening is unnecessary. However, the existing proofs of optimal complexity
would seem to suggest that coarsening is essential if one is to control discretisation
error at an optimal computational cost.

Set against this background, the mini-workshop comprised of 18 leading experts
on the convergence of adaptive finite element methods representing 8 different
countries and three continents, who identified and discussed the following specific
open questions:



2092 Oberwolfach Report 37/2005

(1) For which class of problems and adaptive finite element methods can con-
vergence and error reduction properties be guaranteed?

(2) In what sense and for which classes of algorithm and mesh refinement
schemes are adaptive algorithms optimal?

(3) Is coarsening necessary to guarantee the optimality of an adaptive algo-
rithm?

(4) Can the proofs of convergence for adaptive algorithms be carried over from
the bulk criterion to other more widespread criteria often used in practice,
such as the maximum criterion?

During the mini-workshop 11 talks were given concerning adaptive finite element
methods and covering a range of new extensions to the classical convergence anal-
ysis were presented. The talks directly addressed the important issues including
the role of coarsening, marking rules, hp-adaptive refinement strategies, discrete
weighted residual (DWR) adaptive methods in addition to the convergence of non-
conforming and mixed methods. The participants also presented very recent work
on applications to new classes of equations, e.g. for rough and non-conforming
obstacles, for the Laplace–Beltrami operator and the Stokes equations.

The presentations were complemented by several more wide-ranging discussion
sessions on open questions and future directions in the field. In particular, it was
widely felt that in the case of the class of adaptive algorithms for which there
is a proof of optimality, more numerical experiments are necessary to achieve a
deeper understanding of the insights and issues highlighted by the abstract anal-
ysis. Moreover, numerical experiments were seen to be important in providing
quantitative information on the generic constants that appear in the abstract er-
ror bounds, where it appears infeasible to derive realistic estimates of the constants
that arise in the existing theory. In a similar vein, it would also be of considerable
interest to quantify the saving in computational effort through the use of differ-
ent adaptive schemes and in comparison to uniform refinement. Furthermore, the
theory may be used to identify specific examples where coarsening steps are really
needed to attain an optimal algorithm. More generally, the identification of a
suite benchmark tests and comparisons with other adaptive strategies, for which
current theory is lacking, was also suggested.

The importance of understanding the relationship between the numerical solu-
tion and the best approximation in the pre-asymptotic range as one can construct
problems for which the cost of computations in the asymptotic range is prohibi-
tively high.

Duality-based adaptive strategies compute a weighting of the relevance of the
data in the course of the calculation. Starting with this aspect, it was also discussed
how the convergence analysis of adaptive algorithms can be related to a data
analysis of the problem. Participants proposed that the analysis of duality-based
strategies provides an indication that after sufficiently many adaptive refinement
steps it may simply be the case that the best strategy to continue the computation
with uniform refinement. The presence of singularities in the solution may play a
subtle role here.
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Part of the session was dedicated to adaptive refinement strategies in three
space dimensions, including the question of convergence of adaptive methods in
this setting.

Another topic hotly discussed were outstanding hp-approximation issues. Par-
ticipants agreed that automatic decision mechanisms when h- and when p-refinement
is preferable but that there is a definite need for further fundamental improve-
ments. The issue of the development and analysis of reliable and efficient error
estimators is less developed for the p- and hp-version of the finite element method
than for the h-version. Similarly, convergence proofs for hp-adaptive finite element
methods need to be addressed in future in more detail.
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Abstracts

Some Thoughts about Convergence of the DWR Method

Roland Becker and Rolf Rannacher

1. Introduction

The convergence theory for adaptive finite elements has recently received tremen-
dous improvements, which are reported on in this mini-workshop. Convergence of
the adaptively generated sequence of discrete solutions towards the solution of an
elliptic partial differential equation in the energy norm is proved [5, 6], and even
the optimal complexity can be shown in certain cases [4]. Unfortunately, these
results cannot directly be used to prove that similar convergence properties also
hold for the DWR method [1] for “goal-oriented” mesh adaptation. In this talk
we investigate some topics related to convergence of this method.

Let Ω ⊂ R
d, d = 2, 3, be a bounded domain with polygonal boundary ∂Ω. For

given f ∈ L2(Ω), we consider the usual model problem

(1) −∆u = f in Ω, u = 0 on ∂Ω,

Let Vh ⊂ H1
0 (Ω) be a conforming finite element space constructed from a partition

Th of Ω , and uh ∈ Vh the Ritz projection of the solution u ∈ H1
0 (Ω) , defined by

(2) (∇uh,∇vh) = (f, vh) ∀vh ∈ Vh.

Here, (·, ·) denotes the L2 scalar product on Ω. The basic idea of goal-oriented a
posteriori error estimation is to bound the error with respect to a given functional
J ∈ H−1(Ω). In many interesting cases the functional is more singular and has to
be regularized. We then introduce the adjoint solution z ∈ H1

0 (Ω) by

(3) (∇v,∇z) = J(v) ∀v ∈ H1
0 (Ω).

With this we find that, with an appropriate interpolation operator Ih ,

J(u) − J(uh) = (∇(u− uh),∇z) = (f, z − Ihz) + (∇uh,∇(z − Ihz))

=
∑

K∈Th

{
(f + ∆uh, z − Ihz)K − 1

2 ([∂nuh], z − Ihz)∂K

}
,(4)

and the standard mesh adaptation procedures can be employed. However, here
the unknown function z has in general to be approximated, and a lower bound
for the estimator with respect to the error is generally impossible. Such a lower
bound exists for estimation with respect to the energy norm and is a key property
for convergence proofs.

2. Some technical problems

The convergence analysis of the DWR method depends on two critical ingredi-
ents, which are presented next. They can be formulated as independent questions
concerning the finite-element Ritz projection.
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2.1. Stability of second-order differences. The first hypothesis concerns the
stability of the finite element solution. Let K denote the cells of the mesh Th,
and E an edge of the cell boundary ∂K. Then, we conjecture that for u ∈ C2(Ω)

(5)
∑

E⊂∂K

h−3
E ‖[∂nuh]‖2

E ≤ C(u), K ∈ Th, h > 0.

The left-hand side can be viewed as a second-order difference quotient which we
denote by D2

h and the inequality (5) resembles a local version of the continuous
a priori estimate ‖∇2u‖ ≤ C‖f‖. We further conjecture that (5) even holds true
for u with certain singularities.

It is easy to prove that (5) holds on quasi-uniform meshes which are character-
ized by the additional property that the ratio of maximal cell-width to minimal
cell-width is bounded, i.e., hmax/hmin ≤ C. The proof relies on a quasi-optimal
L∞-error estimate and the main idea is shortly given:

|D2
huh|K | ≤ h−1

K ‖D2
huh‖K

≤ h−1
K ‖D2

h(uh−Ihu)‖K + h−1
K ‖D2

hIhu‖K

≤ ch−2
K ‖∇e‖K̃ + ch−2

K ‖∇(u−Ihu)‖K̃ + h−1
K ‖D2

hIhu‖K

≤ ch−2
K ‖∇e‖K̃ + ch−1

K ‖∇2u‖K̃ ≤ c‖∇2u‖∞
where K̃ denotes a cell-patch neighborhood of K . Unfortunately, this argument
only works on quasi-uniform meshes, since the local error estimate (see [7])

‖∇e‖∞;K ≤ hKc(u)

does not hold in this strong form on meshes with hmax/hmin → ∞ .

2.2. Accuracy of averaging on locally refined meshes. Our next assumption
is again well-established on quasi-uniform meshes. It is needed to theoretically
justify the approximation of the interpolation error of the adjoint solution, either
by computation with higher accuracy (finer mesh or high-order polynomials) or
by local post-processing of the discrete solution computed on the same mesh.

If we suppose that the mesh Th is strictly uniform with mesh-width h , then, it
is known that in the nodal points, the error z−zh allows an asymptotic expansion
in powers of h which can be expressed in the form (see [3])

(6) Ihz−zh = Ih(z−zh) = h2Ihw + h3τh,

with some h-independent function w ∈ H1
0 (Ω) and a remainder ‖τh‖ ≤ c‖∇3z‖ .

Our hypothesis is that a similar error expansion as (6) holds on locally refined
meshes, where the function w depends on the mesh but this dependency can be
localized. To be more precise we assume that the domain can be decomposed into
two mesh domains Ωh and Ω \ Ωh , such that

(7) Ihz−zh = h2Ihw + h3τh, x ∈ Ωh, |Ω \ Ωh| ≤ Ch.

In order to see how assumption (7) might be used for estimating the error in
approximation of the dual solution z we give a heuristic argument.
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Let Ĩh denote a post-processing operator, for example patch-wise quadratic in-
terpolation. The simplest error estimator of the DWR method uses approximation

of z by Ĩhzh where zh is the dual solution on the same mesh. The error term
introduced by this can be written as (setting e := u− uh )

(∇e,∇(z − Ĩhzh)) = (∇e,∇(z − Ĩhz)) + (∇e,∇Ĩh(z − zh)).

We only need to estimate the last term, supposing enough regularity of z using
the expansion (7). The leading error term can now be estimated by

(∇e,∇Ĩh(Ihz − zh)) = h2(∇e,∇(Ĩhw − Ihw))Ωh
+ h.o.t

≤ Ch3‖∇2w‖ + h.o.t.

Hence, (7) seems to be the key to prove that the proposed approximation is actually
of higher order.

3. A convergent algorithm

In order to guarantee the convergence of the DWR method, we introduce at
each step of the mesh refinement iteration an additional finer mesh which is used
to control the accuracy of the dual solution. We call these gendarme meshes.
Reasoning for the corresponding spaces, we have the following scheme:

. . . Ṽk−1 Ṽk Ṽk+1 . . .
∪ → ∪ →

. . . Vk−1 Vk Vk+1 . . .,

At each step of the iteration the meshes are refined by one of the two following
rules. The first rule is to refine the base mesh Vk according to the estimator
obtained by approximation of the dual solution on the gendarme mesh:

ηk ≈
∑

K∈Tk

‖R(uh)‖K‖z̃k − Ik z̃k‖K .

The same refinement procedure is performed for the gendarme mesh. The second
rule is to refine the gendarme mesh by an energy error estimator for the adjoint
equation. In order to decide which of the two rules is used, we introduce a sequence
of tolerances (ǫl), ǫl → 0. With this we define a sequence of subindices kl which
are defined such that kl is the first index for which the tolerance ǫl is satisfied,
ηkl

≤ ǫl < ηkl−1. The description of the algorithm is completed by asking for a
global refinement of the gendarme mesh if k = kl for some l, and refinement with
the weighted estimator otherwise. By construction, the meshes are always nested,
but the basic meshes do not need to contain a sequence of global refinement. Since
this is however true for the gendarme mesh, we easily obtain the following result.

Proposition 1. The “gendarme algorithm” ensures convergence in the sense that

lim
k→∞

J(uk) = J(u).
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4. Complexity estimate

For analyzing the algorithmical complexity of the DWR method, we may try to
adopt the arguments presented in [2, 8] for energy-norm error control. Meshes are
generated by hierarchical refinement, which leads to a tree of admissible meshes.
Let VN := {V admissible, dim(V ) = N}. Suppose, we have an error measure
φ : ∪N∈NVN → R, for example constructed from the error representation (4),
which is quasi-monotone,

(8) V ⊂ Ṽ ⇒ φ(V ) ≤ cφ φ(Ṽ ).

For given ǫ > 0, we define Vǫ := {V admissible, φ(V ) ≤ ǫ}, and assume that

(9) sup
ǫ>0

ǫ−1/s inf
V ∈Vǫ

dim(V ) < +∞,

for some s ≥ 0. We make the following crucial assumption on the refinement
algorithm. The spaces Vk are constructed such that, with a constant ρ < 1, there

holds, with V̂k := {V ⊃ Vk−1 : φ(V ) ≤ ρkφ(V1)},

(10) Nk = dim(Vk) ≤ dim(V ), V ∈ V̂k,

Proposition 2. Let the meshes be constructed such that (10) holds and further
assume that (9) is satisfied. Let ǫ > 0 be given. Suppose that Tn is the first
mesh for which ρn ≤ ǫ . Then there exists a constant c independent of ǫ and n
such that

(11) Nn −N1 ≤ cǫ−1/s.

Of course, this gives an optimal complexity estimate only if condition (10) can be
satisfied with optimal complexity, which is a hard problem still to be solved.
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Adaptive Finite Element Methods with Optimal Complexity

Peter Binev

(joint work with Wolfgang Dahmen and Ronald DeVore)

Adaptive methods are frequently used to numerically compute solutions to el-
liptic equations. While these methods have been shown to be very successful
computationally, the theory describing the advantages of such methods over their
non-adaptive counterparts is still not complete. Recently, it was proven (see [6],
[7]) the convergence of such methods. These proofs of convergence still do not
show any guaranteed advantage of these adaptive methods since there is no anal-
ysis of their rate of convergence in terms of the number of degrees of freedom or
the number of computations. The only known algorithm with a proven rate of
convergence was the one for the univariate case [3].

In our recent paper [2] we propose an Adaptive Finite Element Method (AFEM)
and prove convergence rates for this method using as a model example the Poisson
problem

(1) −∆u = f in Ω, u = 0 on ∂Ω,

where Ω is a polygonal domain in R
2 and ∂Ω is its boundary. As approximations

of the solution u we consider piecewise linear elements using a very specific adap-
tive refinement strategy (called newest vertex bisection) well-known in the FEM
literature. We show that if the solution u can be approximated (using complete
knowledge of u) in the energy norm by a piecewise linear function on the trian-
gulation with n triangles to accuracy O(n−s), n → ∞, then the adaptive method
will do the same using only knowledge of u gained through the adaptive iteration.

Our algorithm is not much different from existing adaptive methods based on
bulk chasing of a posteriori error estimators. The one main difference is the utiliza-
tion of a coarsening strategy. The role of coarsening in the algorithm is to ensure
that at any iteration the approximated solution has near optimal representation
in terms of degrees of freedom. We should mention that coarsening also played an
important role in the analysis of adaptive wavelet methods (see [4],[5]).

In our analysis we rely on the theory of nonlinear approximation by piecewise
polynomials. Since adaptive methods are a form of nonlinear approximation, this
theory will on the one hand help us to provide a benchmark for measuring the
success of adaptive methods, and on the other hand, provide an effective imple-
mentation for the coarsening.

As it was emphasized in [2], we consider our algorithm mainly as a contribution
to the theory of adaptive methods. However, the ideas suggested in [2] can be
useful in practice. The goal of this presentation is to give an overview of the
coarsening strategy and its possible implications in the development of practical
adaptive algorithms.

An important feature of the coarsening strategy is that it is applicable practi-
cally to any problem for which there exists an error reduction algorithm. In order
to avoid complications of the presentation we shall sometimes refer to (1). In this
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way, the essentials of our arguments will be clear and we can also call on several
known results concerning a-posteriori error estimates that can be found in the
literature. In particular, we shall make use of the error reduction property given
in [7]. However, by no means is the theory restricted to this particular problem.
On the contrary, as it will be made clear in the text, we expect the coarsening
strategy to give higher payoff for complicated problems.

An adaptive procedure can be related to a decision tree. Thus it is natural
to assume that the space of finite element functions S is associated to an infinite
master tree T , namely, that every function v ∈ S corresponds to a tree T (v) ⊂ T .
The trees that correspond to a function from S are called admissible and their set
is denoted by Ta. To indicate that the final leaves of a tree T ⊂ T correspond to
cells of some partition of the domain Ω, we shall call them cells. Then the adaptive
process can be described as follows. We start with some initial tree T0 ∈ Ta and
mark a set M1 of certain cells for subdivision. After doing these subdivisions we
arrive at the tree T ′

1. This tree is not necessarily admissible and so we shall make
some additional subdivisions which will complete T ′

1 to an admissible partition
T1 ∈ Ta. We then repeat this process of marking and completing to obtain sets
Mk and trees Tk, k = 1, ..., n. It will be important for us to see that the completion
process does not seriously inflate #(Tn), the number cells in Tn. Namely, that there
is a constant C0 > 0 depending only on T0 such that

(2) #(Tn) ≤ #(T0) + C0(#(M1) + · · · + #(Mn)) .

In [2] we proved (2) for the newest vertex bisection procedure.
Given the functions v from the finite element space S, we denote by ΣN the set

of all of them for which #(T (v)) ≤ N . The best approximation of a function u is
defined by

σN (u) := inf
v∈ΣN

‖u− v‖ .

It is unreasonable to expect that any numerical procedure will result in finding the
best approximant to u. Usually, the goal is to find a procedure which exhibits the
same rate of convergence for the error as σN (u). Here we have higher standards
requiring that for every N our procedure finds a near best approximation uN to u
with #(T (uN)) ≤ N and the property

(3) ‖u− uN‖ ≤ C1σc2N (u)

with some absolute constants C1 and c2. In [1] we consider a tree approximation

procedure based upon special error functionals placed on the nodes of T . In the
case the norm of the error ‖u − uN‖ is equivalent to the discrete norm of these
error functionals over the leaves of T (uN), we have shown that (3) is valid with
constants C1 and c2 relatively close to 1. Moreover, the number of computations
needed to find uN is O(N). In [2] we apply these results to find a near best
approximation in H−1-norm to the right hand side f of (1), as well as to find a
near best approximation in the energy norm to the approximate Galerkin solution
in the coarsening step.
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The decisions in standard AFEM are often based upon local error estimators

which sum Φ(T ) gives a reliable estimate of the square of the error in the energy
norm for a given tree T . This estimate is used as stopping criteria in different
procedures. The knowledge of Φ(T ) is also important in the choice of the numerical
precision of the algorithms in AFEM.

A basic ingredient of AFEM is the error reduction procedure. Given approximate
solution uT with a tree T , it finds a refinement T+ of T and an approximate
solution uT+ which error is at least C3 times smaller than the one for uT . In
addition, we have that #(T+) ≤ C4#(T ) and the number of calculations needed
does not exceed C5#(T ). This procedure can be composed as several iterations of
bulk chasing (see [6], [7]), or could be just several consecutive uniform refinements
of the current partition tree T . We denote the result of the latter by R(T ). It
is important to note that for fixed C3 we can design different algorithms that
have different constants C4 and C5. Keeping the optimality constant C4 low will
increase the efficiency constant C5 and vice versa.

Finally, the coarsening step takes the current approximate solution uT+ and
finds a sparse near best approximation uT∗ ∈ S to it using the tree algorithm
with stopping criterium based upon the estimate of the error Φ(T+). This could
eventually increase the error by at most C3/2 times but will keep the solution
near optimal in terms of the complexity of T ∗. In case Φ(T+) is equivalent to the
square of the error in the energy norm, the approximation uT∗ to u is near best
in terms of (3). Theoretically, the algorithm continues with the error reduction
procedure setting T := T ∗. However, in practice we may use a certain refinement
of T ∗ instead.

Algorithmically, the biggest advantage of the coarsening strategy is the pos-
sibility to use error reduction with a small constant C5 and by this increasing
the efficiency of the algorithm. In comparison, the algorithms without coarsening
should keep the constant C4 low (in a hope that the optimal convergence rates
will be preserved) which could result in an enormous number of iterations with a
very small bulk.

The utilization of coarsening strategy could take different forms. The coarsening
step could be used as an inexpensive test for the optimality of the solution. In case
#(T+) is not much higher than #(T ∗), we can continue with T := T+ instead of
T := T ∗. It should be also clear that using coarsening strategy does not always
mean that the partition should be coarsen. For example, we can immediately set
T+ := R(T ∗) and calculate the local error estimators only to use Φ(T+) as a
threshold in the tree algorithm. In this case the adaptivity of the procedure comes
from near optimality properties of the tree approximation. Blending this approach
with bulk chasing could be very beneficial for solving complicated problems which
require heavy calculations to find the local error estimators and/or do not have
lower estimates to the error of the approximate solution. Some ideas from the
tree algorithms can also be used in the design of the error reduction procedure in
practice, although the theory for this is still under development.
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In conclusion, the coarsening strategy not only provides an AFEM with best
performance rates and a near best approximation of the solution, it also can give
new opportunities of improving the existing practical algorithms especially for
problems with complicated solutions.
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Survey on the Convergence of Adaptive Finite Element Methods

Carsten Carstensen

State of the art simulations in computational mechanics aim reliability and
efficiency via adaptive finite element methods (AFEMs) with a posteriori error
control. The a priori convergence of finite element methods is justified by the
density property of the sequence of finite element spaces which essentially assumes
a quasi-uniform mesh-refining. The advantage is guaranteed convergence for a
large class of data and solutions; the disadvantage is a global mesh refinement
everywhere accompanied by large computational costs.

AFEMs automatically refine exclusively wherever the refinement indication sug-
gests to do so and so violate the density property on purpose. Then, the a priori
convergence of AFEMs is not guaranteed automatically and, in fact, crucially de-
pends on algorithmic details. The advantage of AFEMs is a more effective mesh
accompanied by smaller computational costs in many practical examples; the dis-
advantage is that the desirable error reduction property is not always guaranteed
a priori. Efficient error estimators can justify a numerical approximation a poste-
riori and so achieve reliability. But it is not clear from the start that the adaptive
mesh-refinement will generate an accurate solution at all.

This paper discusses particular versions of an AFEMs and their analyses for
error reduction, energy reduction, and convergence results for linear and nonlinear
problems.
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1. Introduction

This paper discusses limitations and generalisations of the recent convergence
theory of adaptive finite element methods (AFEMs) so far mainly established for
the Laplacian and the p-Laplacian in [4, 14, 18, 24]. Therein and below, AFEMs
consist of recursive loops of the form

(1) SOLVE → ESTIMATE → MARK → REFINE.

There exists a vast literature on a posteriori error control for step ESTIMATE and
we refer to the books [1, 3, 15, 23] and the reference included therein plus some
select references [2, 6, 11, 17, 20, 21] for elastoplasticity.

A typical reliable error estimator, such as the explicit error estimator, results in
local contributions ηM associated with an edge, face, or element M in the current
mesh and their sum η2 :=

∑
M η2

M over all such objects M . Frequently in the
literature, a maximum criterion marks a subset M according to

M ∈ M if and only if ηM ≥ Θ max η,

where max η denotes the maximum of all of the ηM and 0 ≤ Θ < 1 is a parame-
ter. Even though the titles of corresponding articles and books suggest adaptive
algorithms, those mesh-refinement strategies are considered therein without any
mathematical analysis. The numerical experiments reported in those references
appear to be extremely successful. This success, however, is not understood in
theory and hence not guaranteed in the forthcoming refinement loops.

This papers follows [14, 4, 18] and adopts the bulk-criterion in the step MARK
which defines a set M, the marked objects, by

∑

M∈M

η2
M ≥ Θ η2

with a parameter 0 < Θ ≤ 1. Section 2 introduces the adaptive algorithm and the
mesh-refinement strategy for an edge-oriented explicit error estimator. Section 3
discusses the error reduction property and some counter example. Section 4 studies
the main arguments for energy reduction. Further details, proofs, and software
will appear elsewhere [9, 10, 12].

2. Adaptive Mesh-Refining

A typical adaptive algorithm is sketched below where, on each level ℓ
= 0, 1, 2, 3, . . . , the discrete stress σℓ is piecewise constant with respect to the
triangulation Tℓ with the set Eℓ of edges and faces in 2D and 3D, respectively.
Then, for each edge or face E ∈ Eℓ of diameter hE := diam(E) and with unit
normal νE , the contribution

(2) η
(ℓ)
E := h

1/2
E

(∫

E

|[σℓ]νE |2 ds
)1/2

accounts for the jump [σℓ]νE of the discrete stresses across the interior edge E in
the normal direction.
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Adaptive Algorithm (AFEM)
Input: Coarse shape-regular triangulation T0 of Ω into triangles with set of edges
E0; 0 < Θ < 1.
For ℓ = 0, 1, 2, 3 . . . do (a)—(e):
(a) Solve the discrete problem with respect to the actual mesh Tℓ and correspond-
ing FE spaces. Let uℓ denote the FE displacement and let σℓ denote the discrete
stress field.
(b) Compute η

(ℓ)
E for all edges or faces E ∈ Eℓ and ηℓ := (

∑
E∈Eℓ

(η
(ℓ)
E )2)1/2 as

stress-error estimator.
(c) Generate a set Mℓ of edges or faces in Eℓ such that

(3) Θ η2
ℓ ≤

∑

E∈Mℓ

(η
(ℓ)
E )2.

(d) Control oscillations OSCℓ and (possibly) add further edges to Mℓ to decrease
OSCℓ+1 ≤ Θ OSCℓ.
(e) Run closure algorithm to avoid handing nodes; refine all triangles T with some
edge or face E in Mℓ with bisc5(T) and all other elements with red-green-blue or
newest-vertex bisection refinement after Figure 1. Let Tℓ+1 denote the resulting
shape-regular triangulation.
Output: Sequence of discrete stress fields σ0, σ1, σ2, . . . in L2(Ω; Rd×d

sym).
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@
@@

red(T ) (red) bisec3(T ) bisec5(T )

Figure 1. Possible refinements of a triangle for red-green-blue
and newest-vertex bisection refinement [4, 8, 12].

This algorithm yields a strongly convergent stress field in linear and nonlinear
elasticity as well as in elastoplasticity [10].

3. Error Reduction Property

The error reduction property is frequently also called saturation assumption
when it is used as a hypothesis. However, this property has to be guaranteed
by the mesh-design. To fix ideas, suppose that σℓ is the finite element stress
approximation to the exact stress field σ in level ℓ as in Algorithm 2. Then,
consider the error reduction property in the form

(4) |‖σ − σℓ+1|‖2 ≤ ̺ |‖σ − σℓ|‖2 + C OSC2
ℓ for all ℓ = 0, 1, 2, . . . .
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Here, |‖ · |‖ denotes the energy norm and ̺ < 1 is the reduction factor. The last
term C OSC2

ℓ accounts for oscillations of the data, i.e. in f when we suppose an
equilibrium of the (strong) form

f + div σ = 0 in Ω

and suppose Dirichlet boundary conditions on the entire boundary ΓD := Γ := ∂Ω
of the domain Ω such that no traction conditions appear (which would arise further
data oscillations [10]). Then,

(5) OSCℓ(f) :=
( ∑

z∈Kℓ

h2
z

∫

ωz

|f(x) − fωz |2 dx
)1/2

,

where fωz :=
∫

ωz
f(x) dx/|ωz | abbreviates the integral mean of f over the patch

ωz := {x ∈ Ω : 0 < ϕ(x)} and so ωz = ∪T (z) where T (z) = {T ∈ Tℓ : z ∈ T }.
This ωz is the interior of the union of the set T (z) of neighbouring elements of a
free node z ∈ Kℓ := Nℓ \ ΓD and has volume |ωz| and size hz := diam(ωz).

The first observation on error reduction (4) is that the oscillations cannot be
omitted. In fact, given a sequence of (even successive e.g. uniform refinements
and associated) discrete spaces V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V there exists a problem
with some exact solution u and with discrete solutions uℓ and

|‖u− uℓ|‖ = dist|‖·|‖(u;Vℓ) → 0 as slow as we want.

This is a general fact from approximation theory in separable Hilbert spaces. The
point is that the regularity of the exact solution could be as bad as we want
and so the convergence could be as poor as possible and this contradicts a linear
convergence implied by (4) for C = 0. The good news is that the additional term is
given in terms of the data and not completely in terms of the unknown regularity
of the unknown exact solution.

The second observation is that there exist good and bad refinements. A simple
Poisson problem with constant right-hand side f ≡ 1 and homogeneous Dirichlet
boundary conditions on the unit square for P1 finite element methods on the
meshes T0 and T1 of Figure 2 allows no error reduction in this refinement step.

4. Energy Reduction Property

For nonlinear elasticity such as Hencky elastoplasticity with hardening let E(v)
denote the elastic energy and δℓ := E(uℓ) − E(u) the difference of the discrete
energy E(uℓ) to the minimal energy E(u). Assume that the energy E is uniformly
convex and its derivative DE is Lipschitz continuous. A typical example is the
nonlinear Hencky material or nonlinear Hooke’s law of [19, Sect. 3.3] and [25,
Sect. 62.8].

The energy reduction property reads, with some 0 < ̺ < 1,

(6) δℓ+1 ≤ ̺ δℓ + C OSC2
ℓ for all ℓ = 0, 1, 2, . . .

The energy reduction is equivalent to the error reduction in linear problems (e.g.
for Poisson or Lamé equations). Observe in the general case that the energy
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Figure 2. Counter example for error reduction: Two meshes
with finite element solutions u0 = u1 and so with ̺ = 1 and
OSCℓ(f) = 0 in (4).

reduction property implies an error decrease and the R-order of convergence (up
to higher-order terms) in the form

(7) |‖σ − σℓ|‖2 ≤ ̺ℓ δ0 +
ℓ−1∑

k=0

C̺ℓ−1−k OSC2
k for ℓ = 1, 2, 3, . . .

The remaining part of this section is devoted to arguments sufficient for energy
reduction (6). Under the present assumptions on the energy functional, one may
define a computable residual Rℓ(v) := −DE(uℓ; v) with a norm

‖Rℓ‖V ∗ = sup
v∈V \{0}

Rℓ(v)/‖v‖V .

A first key argument is equivalence of ‖Rℓ‖V ∗ to the error or the energy differences
[9, 10], e.g.

(8) δℓ + α|‖u− uℓ|‖2 ≤ Rℓ(u − uℓ).

A similar consequence of uniform convexity reads

(9) α|‖uℓ+1 − uℓ|‖2 ≤ δℓ − δℓ+1.

A second key argument is refined reliability of the error estimator [13, 10] which
reads in terms of the residual as

(10) ‖Rℓ‖V ∗ ≤ C1 ηℓ + C2 OSCℓ(f).

A third key argument is the residual coverage [9] which leads to a discrete efficiency
in the form

(11) ηℓ ≤ C3|‖uℓ+1 − uℓ|‖ + C4 OSCℓ .
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The proof of (11) follows as in the linear case from the design of a local trial
function bE ∈ Vℓ+1 with

(η
(ℓ)
E )2 =

∫

Ω

σℓ : DbE dx

followed by the equilibrium condition (with respect to the refined mesh and induced
finite element space)

∫

Ω

σℓ+1 : DbE dx =

∫

Ω

f · bE dx

plus the extra mean property ∫

Ω

bE dx = 0.

For this extra property, one needs an inner-node property of the mesh-refining.
That is, for each marked edge, either one of the neighbouring elements requires a
bisec5-refinement or one complete patch is refined in an appropriate way. The
counter example of Figure 2 clearly implies that one needs at least one red-
refinement [or a perturbation of the configuration in that the newest-vertex must
not be the mid-point for all the triangles] in a patch [9].

The combination of the foregoing three identities, namely (with a proper mean
fE of f)

(η
(ℓ)
E )2 =

∫

Ω

(σℓ − σℓ+1) : DbE dx+

∫

Ω

(f − fE) · bE dx,

plus the bulk criterion eventually lead to (10) [9, 10].
To finish the proof of the energy reduction (6), one employs (8) and (10) to

obtain

δℓ + α|‖u− uℓ|‖2 ≤ (C1 ηℓ + C2 OSCℓ(f))‖u− uℓ‖V

≤ α |‖u− uℓ|‖2 + C5 η
2
ℓ + C6 OSCℓ(f)2.

The immediate estimate of δℓ combines first with (11) and second with (9) to

δℓ ≤ C7 |‖uℓ+1 − uℓ|‖2 + C8 OSCℓ(f)2 ≤ C7/α(δℓ − δℓ+1) + C8 OSCℓ(f)2.

This implies (6) with ̺ = (1 − α/C7) and C = αC8/C7.
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Automatic hp-Adaptivity. A Progress Report

Leszek Demkowicz

(joint work with Jason Kurtz, David Pardo)

With appropriately selected element size h and order of approximation p, hp-
Adaptive Finite Element Methods should deliver exponential convergence, both for
regular and singular solutions, [13]. The first fully automatic hp-adaptive strategy
for elliptic problems was proposed and verified for 1D and 2D elliptic problems in
[8]. The method was further developed and generalized to 2D Maxwell equations
in [5], and for 3D elliptic problems in [12]. For a comprehensive presentation of
the whole technology and details of the method, we refer to [4].

The lecture presented a further development of the method focusing on two
directions:

• a new implementation of the method for 3D elliptic problems, driven by a
class of acoustics scattering problems,

• a fully automatic, goal-oriented hp-adaptive method, with applications to
simulations of EM logging.

Automatic hp-Adaptivity for 3D Elliptic Problems. Referring to [9] for
details, we shall review quickly the main idea of the method and discuss the
accomplishments of the new implementation. The main idea of the method is
based on the notion of the Projection Based Interpolation, see [6, 3, 7, 2, 4]. Given
a hexahedral finite element K, possibly refined into two, four, or eight element-
sons, and a function u ∈ H3/2+ǫ(K), we define the corresponding projection-based
interpolant up as a sum of vertex, edge, face, and interior contributions,

Πu = up = u1 +
∑

e

up
2,e

︸ ︷︷ ︸
up
2

+
∑

f

up
3,f

︸ ︷︷ ︸
up
3

+u4 .

Here u1 is the standard trilinear vertex interpolant of u. The edge contribution
up

2 is obtained by summing up contributions up
2,e from individual edges obtained

by projecting the difference u− u1 onto the “edge bubbles”,

‖up
2,e − (u− u1)‖L2(e) → min .

By the edge bubbles we mean the traces of the element shape functions on the
particular edge, vanishing at the edge endpoints. For an unrefined element and
edge of order pe, these will be simply polynomials of order pe, vanishing at the end
points. For a refined edge, we mean piece-wise polynomials. The edge contribution
is extended to the rest of the element using the element shape functions. Similarly,
function up

3 is obtained by summing up contributions up
3,f obtained by projecting

difference u− u1 − up
2 onto face bubbles,

|up
3,f − (u− u1 − up

2)|H1/2(f) → min .



2112 Oberwolfach Report 37/2005

Finally, the element interior contribution is obtained by projecting the difference
u− u1 − up

2 − up
3 onto the element bubbles,

|up
4 − (u − u1 − up

2 − up
3)|H1(K) → min .

It has been shown (for the latest versions of the theory, see [7, 2]) that the
projection-based interpolation delivers optimal p and h convergence rates. The
energy-driven automatic hp-adaptivity produces a sequence of coarse/fine hpmeshes
where the fine mesh is obtained from the coarse one by a global hp-refinement,
i.e. each hexa in the coarse mesh is broken into eight element-sons, and the or-
der is raised uniformly by one. Both meshes may be very non-uniform, including
possible strong anisotropies (both in h and p). The two meshes paradigm is essen-
tially different from standard adaptive methods working only with a single mesh
and an error indicator (estimator). The problem is solved on the fine mesh. The
fine mesh solution u = uh/2,p+1 is then interpolated on the coarse mesh and a se-
quence of meshes obtained from the coarse mesh with various h and p refinements,
to determine the mesh that maximizes the rate with which the interpolation error
decreases,

|u− Πhpu|H1(K) − |u− Πhpoptu|H1(K)

Nhp −Nhpopt

→ max .

Here Πhpu denotes the interpolant on the coarse mesh, and Πhpoptu denotes the
interpolant on a optimally refined coarse mesh to be determined.

The algorithm explores the logic of the projection-based interpolation by de-
termining first optimal refinements of the coarse element edges, then faces and,
finally, the coarse element interiors. The result of each of the steps determines
initial conditions for the next (discrete) optimization problem. A competition be-
tween various types of refinement determines not only whether an edge, face or
element is to be h- or p-refinement but also a proper kind of (possibly) anisotropic
refinement (recall that a face can be h-refined in three different ways, and an
element can be h-refined in seven different ways. Enabling the competitions on
face and element levels is probably the most significant departure from the earlier
implementations that staged the competition at the edge levels only, and explored
the (possibly anisotropic) structure of the error to choose between the anisotropic
and isotropic h-refinements.

We list shortly other significant advancements of the new implementation and
differences with the previous work.

• The new code has been written as a stand alone package.
• Consistently with [5], the method ignores constrained nodes in the projec-

tions. This restores a full locality of the interpolation and commutativity
of de Rham diagram.

• Two enabling technologies: order O(p7) integration (with the O(p2) speed-
up fully realized in practice), and a telescopic solver for a sequence of
dynamically determined nested hp meshes, make the competition on all
levels feasible.
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Figure 1. Fichera’s problem. Optimal coarse grid and conver-
gence history for the coarse (green) and fine (red) meshes

• A special version of 1-irregular meshes algorithm (based on “virtual refine-
ments”) enforces the optimal h-refinements with the final mesh indepen-

dent of order in which the refinements have been performed, and elements
refined only in one shot into two, four or eight elements.

• Upon communicating the unwanted h-refinements to the mesh optimiza-
tion package, an optimal distribution of orders p is returned.

• Due to the algorithmical improvements, the size of the package has been
reduced to 15k lines.

• The complexity of the algorithm is of the same order as the complexity of a
multifrontal linear equations solver. In performed numerical experiments
the time spent to determine optimal refinements has always been smaller
that the time needed by the fine grid solver (MUMPS [10]).

Fig. 1 presents an optimal (coarse) hp mesh for the Fichera problem, and the
corresponding exponential convergence of the coarse and fine grid errors. The
results were obtained on a four-year-old Dell laptop with 512Mb memory and
Intel 3 processor in less than 20 minutes.
Automatic Goal-oriented hp-Adaptivity. Simulations of EM waves in the
borehole environment presents a class of challenging problems that are not solvable
not only with classical discretization methods but also with h-adaptive schemes.
In presence of casing, the modeling involves the solution of an elliptic or Maxwell
problem (only axisymmetric simulations are reported here) with a material con-
trast up to 10-12 orders of magnitude, and a dynamic range (ratio of signal at
the radiating antenna to the signal at the receiving antenna) of up to 8-10 orders
of magnitude. The problem is out of range for the energy driven hp algorithm
discussed above, but also for a goal-driven h-adaptivity paradigm [1]. Only a
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combination of the goal-driven adaptivity with the automatic hp-adaptivity has
made the solution of the problem possible.

Let {
u ∈ V

b(u, v) = l(v), ∀v ∈ V ,

be the usual (abstract) variational boundary-value formulation corresponding to
an elliptic or Maxwell problem. The main idea of the goal-driven adaptivity is to
introduce the dual problem,

{
v ∈ V

b(u, v) = g(u), ∀u ∈ V ,

where g(u) represents a goal functional. Standard derivation based on Galerkin
orthogonality property leads then to a representation of the error in goal,

|g(u− uhp)| = inf
whp∈Vhp

|b(u− uhp, v − whp)| ≤ inf
whp∈Vhp

∑

K

|bK(u− uhp, v − whp)| .

Here uhp is the discrete solution for an hp mesh, Vhp denotes the corresponding
finite element space, and bK stands for element K contribution to the global
bilinear form. The representation holds also for exact solutions u, v replaced with
fine grid solutions u = uh/2,p+1 and v = vh/2,p+1. Replacing the coarse grid
solution with the coarse grid interpolant, we obtain,

|g(u− uhp)| = inf
whp∈Vhp

|b(u− uhp, v − whp)|

≤ |b(u− uhp, v − Πhpv)|

= |b(u− Πhpu, v − Πhpv) + b(Πhpu− uhp, v − Πhpv)︸ ︷︷ ︸
neglected

| .

We use the error representation not for an error estimate but for the mesh opti-
mization. We redefine then our mesh optimization problem as,

∑
K |bK(u − Πhpu, v − Πhpv)| −

∑
K |bK(u− Πhpoptu, v − Πhpoptv)|

Nhp −Nhpopt

→ max .

The goal-oriented hp algorithm is then a generalization of the energy driven al-
gorithm. Referring to [11] for details, we point to only to essential differences of
the new implementation when compared with the original version of the algorithm
presented in [14].

• In presence of strong material contrast, the use of energy norms rather
than generic Sobolev norms is very essential. The same comment applies
to indefinite wave propagation problems where the norm has to include in
particular the wave number.

• The “edge norms” have to be derived from the element energy norms using
an approximation to minimum energy extensions.
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Figure 2. Trough Casing Resistivity Login Problem (DC). Ma-
terial data and a final log obtained using goal-oriented hp-
adaptivity. The log represents a second difference of the potential
corresponding to three receiving antennas as a function of the
position of the tool

Fig. 2 represents a fully reproduced log corresponding to 80 positions of an in-
ductive EM tool with the relative error varying in the range 0.01 − 0.1 percent
and the problem size not exceeding 14k unknowns. The result was obtained in 20
minutes on a laptop. We mention that, in case of Maxwell problems, the prob-
lem can be solved using both H1- and H(curl)-conforming elements, with the two
formulations delivering results that are identical in first 8 digits in the quantity of
interest !
Conclusions. The hp-adaptive finite elements not only can deliver solutions with
an accuracy not accessible for other versions of finite elements 1 in finite time
and on small platforms, but enable solutions of challenging problems with strong
material contrasts and large dynamic range.
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[6] L. Demkowicz and I. Babuška. p interpolation error estimates for edge finite elements of
variable order in two dimensions. SIAM J. Numer. Anal., 41(4):1195–1208 (electronic),
2003.

[7] L. Demkowicz and A. Buffa. H1, H(curl) and H(div)-conforming projection-based interpo-
lation in three dimensions. Quasi-optimal p-interpolation estimates. Comput. Methods Appl.
Mech. Engrg, 194:267–296, 2005.

[8] L. Demkowicz, W. Rachowicz, and Ph. Devloo. A fully automatic hp-adaptivity. Journal of
Scientific Computing, 17(1-3):127–155, 2002.

[9] J. Kurtz. Fully automatic hp-adaptive finite element method with applications to 3d acoustic
and Maxwell scattering problems, Sep. 2005. Ph.D. Proposal.

[10] Mumps: a multifrontal massively parallel sparse direct solver.
http://www.enseeiht.fr/lima/apo/MUMPS/.

[11] D. Pardo, L. Demkowicz, C. Torres-Verdin, and L. Tabarovsky. A goal-oriented hp-adaptive
finite element method with electromagnetic applications. Part 1: electrostatics. Technical
Report 57, ICES, 2004.

[12] W. Rachowicz, Pardo D., and Demkowicz L. Fully automatic hp-adaptivity in three di-
mensions. Comput. Methods Appl. Mech. Engrg., 2005. to appear, see also ICES Report
22-04.

[13] Ch. Schwab. p and hp-Finite Element Methods. Clarendon Press, Oxford, 1998.
[14] P. Solin and L. Demkowicz. Goal-oriented hp-adaptivity for elliptic problems. Comput. Meth-

ods Appl. Mech. Engrg., 193:44–468, 2004.

Convergence of an Adaptive hp Finite Element Method

Willy Dörfler, Vincent Heuveline

Aim. We consider finite element methods with varying meshsize as well as vary-
ing polynomial degree. Such methods have been proven to show exponentially
fast convergence in some classes of partial differential equations if an adequate
distribution of h– and p–refinement is chosen [10, Ch. 4.5]. In order to find hp–
refinement strategies that show up automatically with optimal complexity, it is a
first step to establish convergent adaptive algorithms.

To be specific, we will refer to the model problem
∫

Ω

u′v′ =

∫

Ω

{
fv − gv′

}
for all v ∈ H1

0 (Ω)(1)

for Ω := (0, 1). We develop a strategy that automatically constructs a solution
adapted approximation space by combining local h– and p–refinement and can be
proven to be convergent at a linear rate.

For this we need an a posteriori error estimate that gives rigorous bounds to
the error in the energy norm from above and below, both uniformly in h and p.
Such a result is so far open in the case of more than one space dimension [7].
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Theorem 1 (A posteriori error estimate). [10, Ch. 3.5] Let VN ⊂ H1
0 (Ω) be

the finite element space over the discretisation K of Ω = (0, 1), Ω =
⋃

K∈KK =⋃n
k=1[xk−1, xk], with polynomial degree pK on K. Let u ∈ H1

0 (Ω) a solution of
(1) and uN ∈ VN be a solution of the discrete problem

∫

Ω

u′Nv
′
N =

∫

Ω

{
fvN − gv′N

}
for all vN ∈ VN .(2)

Then, we have the a posteriori bound

‖(u− uN )′‖L2(Ω)2 ≤
∑

K∈K

{
η2

K + δ2K
}

(3)

for the error in the energy norm. Here,

η2
K :=

1

pK(pK + 1)
‖√ωK(u′′N + fqK

+ g′qK
)‖L2(K)2,(4)

δ2K :=
1

4

h2
K

p2
K

‖f − fqK
‖L2(K)2 + ‖g − gqK

‖L2(K)2(5)

with ωK(x) := (xk − x)(x − xk−1) for all x ∈ K = [xk−1, xk] and fqK
, gqK

∈ PqK
,

for some qK ∈ N with qK ≥ pK , being arbitrary approximations to f⌊K and g⌊K ,

respectively. Furthermore, we have the lower bound

2c0 ηK ≤ ‖(u− uN )′‖L2(K) +
1

2

hK

pK
‖f − fqK

‖L2(K) + ‖g − gqK
‖L2(K).(6)

The constant c0 is a number in (0, 1) that depends on maxK∈K{qK/pK}.
The adaptive algorithm.

0. Initialization. We usually start with a (coarse) uniform decomposition K(0) and
polynomial degree 1.

1. Error estimation. On the given grid K(j), j ≥ 0, we solve for the discrete
solution u(j) ∈ V (j), the finite element space on K(j). It is assumed here, that
u(j) is the exact solution of the resulting linear system. Now compute and store

the values [ηK ]K and stop the loop if
(∑

K∈K{η2
K + δ2K}

)1/2
is below a prescribed

tolerance. Compute and store the values β
(ℓ)
K for ℓ = 1, . . . , r that are described

below.

2. Marking elements. Let the numbers ηK and β
(ℓ)
K be given for ℓ = 1, . . . , r

and K ∈ K. We seek A ⊂ K and [ℓK ]K∈K to be the solution of the following
minimization problem

∑

K∈K

w
(ℓK)
K

β
(ℓK)
K

−→ min,

under the constraint
∑

K∈A

(β
(ℓK)
K ηK)2 ≥ θ2

∑

K∈K

η2
K
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Figure 1. Refinement pattern on K = [xk−1, xk]. Left: Increase
polynomial degree by 1 (ℓ = 1). Right: Bisection of K into K ′,
K ′′ with pK′ = pK′′ = pK (ℓ = 2).

for some θ ∈ (0, 1). The weighting factors w
(ℓK)
K are here set to the number of

degrees of freedom that the local finite element space would have after having
followed the refinement pattern ℓ. In practice we proceed as follows: first we
define ℓK by

w
(ℓK)
K

β
(ℓK)
K

= min
ℓ=1,...,r

{w(ℓ)
K

β
(ℓ)
K

}

and then we construct a minimal possible A fulfilling the constraint in the usual
way [3]. In case the constraint cannot be fulfilled, we set A := K and let ℓK := 2
for all K ∈ K.

3. Element refinement. Refine V (j) on K according to the refinement pattern ℓK .

If necessary (e.g., when using iterative solvers), u(j) has to be interpolated onto
the new space V (j+1). After having established the new decomposition, one sets
up the new linear system and continues with step 1.

Refinement pattern and computation of β
(ℓ)
K . We consider for example the following

two possible refinements of the finite element space on the interval K (see Figure
1): we keep K but increase the polynomial degree by 1 (ℓ := 1) or we bisect K into
halves while maintaining the polynomial degree in both the new intervals (ℓ := 2).
Other refinements, like graded bisection with fixed and optimized grading may
also be added to get a list of pattern indexed by ℓ = 1, . . . , r with r ≥ 2. Applying
the refinement pattern ℓ on K will lead to a locally refined new finite element

space Ṽ ℓ
N ;K of functions compactly supported in K. We now define a number β

(ℓ)
K

through the optimization problem

β
(ℓ)
K

1

pK
‖√ωK resK‖L2(K) = sup

ewN∈eV ℓ
N ;K

{∫
K

resKw̃N

‖w̃′
N‖L2(K)

}
.(7)
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If z̃
(ℓ)
N ∈ Ṽ ℓ

N ;K is the solution of
∫

K

z̃
(ℓ)
N

′w̃′
N =

∫

K

resKw̃N for all w̃N ∈ Ṽ ℓ
N ;K ,(8)

then the right hand side of (7) is given by ‖z̃(ℓ)
N

′‖L2(K).

Theorem 2 (Convergence of an adaptive method). Assume in addition to
Theorem 1 that fqK

is the L2–projection to f⌊K onto PqK
for some qK ≥ pK and

that
∑

K∈K δ
2
K ≤ µ2

∑
K∈K η

2
K holds for some sufficiently small µ > 0. Construct

the refined space V eN from VN using the strategies either (I) or (II) presented
before. If u eN is the solution in the finite element space V eN , we have decrease of
the energy error

‖(u− u eN)′‖L2(Ω) ≤ ρ ‖(u− uN)′‖L2(Ω)

for some ρ < 1. ρ and µ depend both on c0, θ, β0 in case (I), and c0, θ in case (II).

Bibliographical notes. Convergence and optimal complexity proofs for the h–
method have been published in [3] [6] [2] [12]. Other automatic hp refinement
strategies have been proposed in [4] [8] [9] [1] [11] [7] [5].

Open questions.

• Extend proof to higher space dimensions.
• Optimal complexity for an automatic hp-method.
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Convergence Analysis of Adaptive Mixed and Nonconforming Finite
Element Methods

Ronald H.W. Hoppe

(joint work with Carsten Carstensen)

We are concerned with a convergence analysis of adaptive mixed and nonconform-
ing finite element methods for second order elliptic boundary value problems. We
note that in case of standard conforming Lagrangian type finite element approxi-
mations, such methods have been considered in [4, 5]. The methods presented in
this contribution provide a guaranteed error reduction and thus imply convergence
of the adaptive loop which consists of the essential steps ’SOLVE’, ’ESTIMATE’,
’MARK’, and ’REFINE’. Here, ’SOLVE’ means the efficient solution of the finite
element discretized problems with respect to a given coarse shape-regular trian-
gulation TH(Ω) of the computational domain Ω. The following step ’ESTIMATE’
is devoted to the a posteriori error estimation of the global discretization error. A
greedy algorithm is the basic tool of the step ’MARK’ to indicate selected elements
for refinement. The final step ’REFINE’ deals with the technical realization of the
refinement process resulting in a refined triangulation Th(Ω).
The analysis is carried out for a model problem, namely the 2D Poisson equa-
tion in a bounded polygonal domain Ω under homogeneous Dirichlet boundary
conditions. Discretization by the lowest order Raviart-Thomas elements with re-
spect to the triangulation TH(Ω) amounts to the computation of (pM

H , uM
H ) ∈

RT0(Ω; TH(Ω) × P0(Ω; TH(Ω) such that

(pM
H , qH)L2(Ω) + (uM

H ,∇ · qH)L2(Ω) = 0 for all qH ∈ RT0(Ω; TH(Ω)) ,

(∇ · pH , vH)L2(Ω) = −(f, vH)L2(Ω) for all vH ∈ P0(Ω; TH(Ω)) ,

where RT0(Ω; TH(Ω) stands for the associated Raviart-Thomas space and
P0(Ω; TH(Ω) refers to the linear space of elementwise constants.
The residual-type a posteriori error estimator ηH consists of edge residuals

ηH := (
∑

E∈EH(Ω)

η2
E)1/2 with η2

E := hE‖τE · [pM
H ]E‖2

L2(E) .

Here, EH(Ω) is the set of interior edges and τE · [pM
H ] denotes the jump of the tan-

gential component of the discrete flux across an interior edge E. The convergence
analysis further invokes the data term ‖HfH‖0,Ω and the data oscillation oscH as
given by

‖HfH‖0,Ω :=
( ∑

T∈TH

h2
T |

∫

T

f(x)dx|2
)1/2

, oscH := (
∑

E∈EH

h2
E‖f − fωE‖2

0,ωE
)1/2 ,
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where ωE := T1 ∪ T2 is the patch consisting of the two triangles T1, T2 ∈ TH(Ω)
sharing E as a common edge and fωE is the integral mean of f with respect to
the patch ωE .
In the step ’MARK’, we select a set ME of edges E ∈ EH(Ω) such that for some
universal constant 0 < θ < 1

θη2
H ≤

∑

E∈ME

η2
E .

We can show the following error reduction property which implies R-linear con-
vergence of the mixed flux approximations:

Theorem 1. Let p be the flux and assume that pM
h and pM

H are the mixed finite
element approximations to p with respect to Th(Ω) and TH(Ω). Then, there exist
positive constants ρ < 1 and C depending only on θ and on the shape regularity
of Th(Ω) and TH(Ω) such that

‖p− pM
h ‖2

0,Ω ≤ ρ‖p− pM
H ‖2

0,Ω + C
(
‖HfH‖0,Ω + oscH

)
oscH .

On the other hand, discretizing the model problem by the lowest order Crouzeix-
Raviart finite elements and denoting by CR1

0(Ω; TH(Ω) the associated nonconform-
ing finite element space, we are looking for uN

H ∈ CR1,0(Ω; TH(Ω) such that
∑

T∈TH

(∇Hu
N
H ,∇HvH)0,T = (f, vH)0,Ω for all vH ∈ CR1,0(Ω; TH(Ω) .

A novel residual-type a posteriori error estimator ηH is derived in terms of edge
residuals involving the jump of the tangential derivatives across interior edges

ηH := (
∑

E∈EH(Ω)

η2
E)1/2 with η2

E := hE‖[∂uN
H/∂s]‖2

0,E .

Moreover, the convergence analysis requires the consideration of the data term

µH := (
∑

T∈TH(Ω)

|T |‖f‖2
0,T )1/2.

and the data oscillation oscH . Again, in ’MARK’ we select ME ⊂ EH(Ω) such
that for some 0 < θ1 < 1

θ1
∑

E∈EH(Ω)

hE‖[∂uN
H/∂s]‖2

0,E ≤
∑

E∈ME

hE‖[∂uN
H/∂s]‖2

0,E .

We further assume that the refined regular triangulation Th(Ω) from ’REFINE’
satisfies

µ2
h ≤ ̺2µ

2
H , osc2h ≤ ̺3osc

2
H ,

for some 0 < ρν < 1, 2 ≤ ν ≤ 3, which can always be achieved by including the
data terms and data oscillations in the selection step ’MARK’.
Under these assumptions, the following error reduction property can be verified:
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Theorem 2. Let p = ∇u and denote by uN
h ∈ CR1,0(Ω; Th(Ω)) and uN

H ∈
CR1,0(Ω; TH(Ω)) the nonconforming finite element approximations to u and by
pN

H = ∇Hu
N
H and pN

h = ∇hu
N
h the associated discrete fluxes. Then, there exist

positive constants ̺1 < 1, and C1, C2 depending only on θ1 and on the shape
regularity of the triangulations such that




‖p − pN

h ‖2
0,Ω

µ2
h

osc2h



 ≤




̺1 C1 C2

0 ̺2 0
0 0 ̺3








‖p − pN

H‖2
0,Ω

µ2
H

osc2H



 .

The essential steps in the proofs of Theorem 1 and Theorem 2 are the reliability of
the estimator, a discrete local efficiency, and quasi-orthogonality properties. Also,
we strongly utilize the following fundamental relationship between the discrete
mixed and nonconforming fluxes

pM
H (x) = pN

H(x) − 1

2
fT (x− xT ) , x ∈ T , T ∈ TH(Ω) ,

where fT is the integral mean of f on T and xT refers to the center of gravity.
In contrast to the convergence analysis of standard Lagrangian finite element dis-
cretizations, there are no special assumptions with regard to the refinement pro-
cess. In particular, we do not need an internal node property. The convergence
proofs do not require any regularity of the solution nor do they make use of duality
arguments.
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On Adaptivity in hp-FEM

Markus Melenk

(joint work with Tino Eibner, Barbara Wohlmuth)

In the hp-version of the finite element method (FEM) convergence can be achieved
by refining the mesh or by increasing the approximation order or by a combination
of both. In fact, suitable combinations of both techniques can lead, for a large
class of problems, to very fast, exponential, convergence. The adaptive algorithm
presented aim at realizing this exponential convergence.



Mini-Workshop: Convergence of Adaptive Algorithms 2123

We consider the elliptic model problem

−∆u = fon Ω ⊂ R
2, u|∂Ω = 0.

The hp-FEM space used is Sp(T ) := {u ∈ H1
0 (Ω) |u|K ∈ PpK}, where T is a

shape-regular triangulation of the polygon Ω and a polynomial degree pK ∈ N is
associated with each element K ∈ T . The FE-solution uFE ∈ Sp(T ) is then given
by the projection of u onto Sp(T ) in the energy norm ‖v‖2

E :=
∫
Ω
|∇v|2.

1. Residual based error estimation

In a first step, the adaptive algorithm identifies elements with large errors. This
is done with the aid of the error indicators

η2
K :=

h2
K

p2
K

‖f + ∆uFE‖2
L2(K) +

hK

pK

∑

e:e ⊂ Ω is edge of K

‖[∂nuFE ]‖2
L2(e),

where K denotes an element of the mesh and [∂nuFE] denotes the jump of the
normal derivative of the FE-solution uFE across the edge e. These error indicators
ηK have the following properties, [2]:

‖u− uFE‖2
E ≤ C

∑

K∈T

η2
K ,

∑

K∈T

η2
K ≤ Cp2+ε{‖u− uFE‖2

E + osc(f)},

where osc(f) is typically of higher order and p = maxK∈T pK ; the constant ε > 0
is arbitrary. The presence of the factor p2+ε points to a reliability-efficiency gap.
This gap is not entirely an artefact of the method of proof as the following numer-
ical example illustrates.
Example: We consider the p-version FEM (i.e., the mesh is fixed as depicted
below and the polynomial degree pK = p for all K ∈ T ) on an L-shaped domain
with exact solution (given in polar coordinates where the origin is located at the
reentrant corner) u = r2/3 sin(2/3ϕ)χ, where χ is a smooth cut-off function. We
note that the singularity of u is located at a mesh point.
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polynomial degree
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Example: In order to get more insight into the p-dependence of the error estima-
tor, we performed calculations where the exact solution (in polar coordinates) has
the form u(r, ϕ) = rα sin(αϕ)χ for a smooth cut-off function χ and different choices
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of the parameter α. Neumann boundary conditions are prescribed on the bottom
part of the computational domain (shown below) and the error indicators ηK for
the elements K touching the Neumann part of the boundary are appropriately
adjusted. Again the mesh is fixed (as shown below) and the polynomial degree is
uniformly raised. We note that the singularity (marked by a dot in the geometry

below) is not at a mesh point. The effectivity index

√P
K∈T

η2
K

‖u−uF E‖E
is plotted versus

the polynomial degree p in the following graph. We note that the dependence on
the polynomial degree p is significantly reduced as compared with the preceding
example.
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2. Adaptive algorithms

We present an algorithm that is based on locally testing for analyticity; details
and references to related work can be found in [1]. For an interval I = (−1, 1), it is
well-known that a function u ∈ L2(I) is analytic on I if and only if the coefficients

un of the expansion u =
∑

n∈N0
unP

(0,0)
n , where the functions P

(0,0)
n are the clas-

sical Legendre polynomials, decay exponentially in n. Tensor product arguments
extend this result to domains with product structure (squares, hexahedra, etc.).
The following result generalizes this observation to triangles and tetrahedra:

Theorem: Let T = {(ξ1, ξ2)| − 1 < ξ1 < 1,−1 < ξ2 < ξ1} be the reference
triangle and define the L2(T )-orthogonal polynomials

ψi,j(ξ1, ξ2) := P
(0,0)
i (2

1 + ξ1
1 − ξ2

− 1)

(
1 − ξ2

2

)i

P
(2i+1,0)
j (ξ2),

where the polynomials P
(α,β)
i are the standard Jacobi polynomials. Then any

u ∈ L2(T ) can be expanded as u =
∑

i,j∈N0
ui,jψi,j , and we have the following

characterization of analyticity: u is analytic on T if and only if there exist C, b > 0
such that

|ui,j| ≤ Ce−b(i+j) ∀i, j ∈ N0.

An analogous statement holds for tetrahedra as well, [1].
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With this characterization in hand, one can formulate an hp-adaptive algorithm
whose inner loop is as follows:

(1) based on the error indicators ηK identify the elements with large error (in
the numerical example below: η2

K ≥ ση2, where η2 = 1
#T

∑
K∈T η

2
K and

σ = 0.75)
(2) for each element K that has a large error do:

(a) expand ûK := uFE|K ◦ FK (here, FK : T → K is the element map)
as ûK =

∑
i+j≤pK

ui,jψi,j

(b) determine CK , bK by fitting (in a least squares sense) the coefficients
ui,j to the law ui,j = CKe

−bK(i+j)

(c) If bK ≥ b (in the numerical example: b = 0.9), then increase the
polynomial degree pK of element K by 1. If bK < b, then split
the element K into 4 elements (”red” refinement) and perform the
appropriate mesh closure (remove hanging nodes).

The following numerical example illustrates the performance of the algorithm.
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Example:
We consider the L-shaped domain as depicted below with an exact solution u of

the form u(r, ϕ) = r2/3 sin(2/3ϕ)χ, where the cut-off function is smooth and the
origin is located at the reentrant corner. In order to ensure that a sufficient number
of coefficients in the expansion is available for all elements, the initial polynomial
degree is pK = 3 for all elements. We depict the meshes and polynomial degree
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distributions for steps 15 and 25 of the adaptive algorithm. Additionally, we
show for step 25 of the algorithm the polynomial degree distribution along the
line connecting the origin with the point (1/2, 1); furthermore, we plot the error
versus N1/3, where N is the problem size. We observe that the algorithm yields a

convergence behavior of the form ‖u− uFE‖E ≤ Ce−bN1/3

.
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A Convergent Adaptive Algorithm for the Laplace-Beltrami Operator

Pedro Morin

(joint work with Khamron Mekchay, Ricardo H. Nochetto)

We consider a surface Γ ⊂ R
d as a graph of a function z(x) defined on a bounded

polygonal region Ω ⊂ R
d−1, d ≥ 2, namely,

Γ :=
{
(x, z(x)) ∈ R

d | x ∈ Ω ⊂ R
d−1

}
,

where z : Ω → R is a C1 function. In general we may also include the case when
z is C0,1 where discontinuities of ∇z align with polygonal lines on Ω.

We consider a Dirichlet boundary value problem for Poisson’s equation on Γ

−∆Γu = f on Γ,(1)

u = 0 on ∂Γ,(2)

where f ∈ L2(Γ). Here, ∆Γ denotes the Laplace-Beltrami operator on the sur-
face Γ. In weak form this problem reads

u ∈ H1
0 (Γ) :

∫

Γ

∇Γu · ∇Γϕ =

∫

Γ

fϕ ∀ ϕ ∈ H1
0 (Γ),(3)

where ∇Γu ∈ R
d denotes the tangential gradient of u computed on Γ.

To find a discrete approximation we consider a polyhedral approximation Γk of
Γ, a finite element space Vk, and define

uk ∈ Vk :

∫

Γ

∇Γuk · ∇Γϕk =

∫

Γ

Fkϕk ∀ ϕk ∈ Vk.(4)

For T ∈ Tk, we define the energy error indicator ηk(T ) by

η
2(T )
k := h2

T ‖RT (uk)‖2
L2(T ) +

∑

S∈So
k
;S⊂∂T

hS ‖JS(uk)‖2
L2(S) ,
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where

RT (uk) := (∆Γk
uk + Fk)|T ,(5)

JS(uk) := (∇Γuk
)+ · n+

S + (∇Γuk
)− · n−

S ,(6)

and the energy error estimator ηk := (
∑

T∈Tk
η2

k(T ))1/2.

Similarly, for T ∈ Tk we define the geometric error indicator ζk(T ) by

ζk(T ) := ‖ν − νk‖L∞(T ) ‖∇Γuk‖L2(T̃ ) ,

and the geometric error estimator ζk := (
∑

T∈Tk
ζ2
k(T ))1/2. Here ν and νk denote

the normals to Γ, Γk respectively. We also define the geometric oscillation

λk(T ) := ‖ν − νk‖L∞(T ) and λk := max
T∈Tk

λk(T ).

With this definition we prove the following Upper Bound

There exist constants C1 and C2 depending only on shape regu-
larity and the surface Γ such that

‖∇Γ(u− uk)‖2
L2(Γ) ≤ C1η

2
k + C2ζ

2
k .(7)

We also prove the following lower bound

There exist constants c3, c4 and c5 depending on shape regularity
and the surface Γ such that for T ∈ Tk

η2
k(T ) ≤ c3 ‖∇Γ(u − uk)‖2

L2(ωk(T )) + c4osc2
k(ωk(T )) + c5ζ

2
k(ωk(T )),(8)

where ωk(T ) region consists all elements in Tk that share at least
a side with T .

For T ∈ Tk the oscillation term is defined by

osc2
k(T ) := h2

T

∥∥RT (uk) −RT

∥∥2

L2(T )
+ hT

∑

S⊂∂T

∥∥JS(uk) − J S

∥∥2

L2(S)
,

where RT and J S are L2-projections of RT (uk) and JS(uk) onto Pm(T ) and
Pm(S), respectively, the spaces of polynomial functions of degree ≤ m on T , and
S, respectively.

For ωk(T ) ⊂ Γk we define osc2
k(ωk(T )) :=

∑
T⊂ωk(T ) osc2

k(T ) and denote osck :=

osck(Γk); and analogously we define ζ2
k(ωk(T )).

The final ingredient for convergence is given by a quasi-orthogonality relation:

The exist constants C6, C7 > 0 and a number k∗ ≥ 0 such that
Λ0 := (1

2 − ρ2C6λ
2
k∗

) ∈ [ 14 ,
1
2 ), and for any k ≥ k∗

(9) ‖∇Γ(u− uk+1)‖2
L2(Γ)

≤ ‖∇Γ(u− uk)‖2
L2(Γ) − Λ0 ‖∇Γ(uk − uk+1)‖2

L2(Γ) + C7ζ
2
k ,

provided λk is decreasing.
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This is a conditional quasi-orthogonality relation between ∇Γ(u−uk) and ∇Γ(uk−
uk+1), which is valid only if λk is small enough. But this does not matter. Our al-
gorithm ensures a monotone reduction of λk which in turn will lead to convergence.
To be more specific, we define the following:

Marking Strategy: Given parameters 0 < θe, θg, θo < 1, construct a subset

T̂k of Tk such that the followings hold:

(M1) :
∑

T∈bTk

η2
h(T ) ≥ θ2eη

2
h,(10)

(M2) :
∑

T∈bTk

ζ2
h(T ) ≥ θ2gζ

2
h,(11)

(M3) :
∑

T∈bTk

osc2
h(T ) ≥ θ2oosc2

h.(12)

Interior Node Property: Refine each marked element T ∈ T̂k to obtain a
new mesh Tk+1 compatible with Tk such that

T and the adjacent elements T ′ ∈ Tk of T , as well as their
common sides, contain a node of the finer mesh Tk+1 in their
interior.

Reduction of geometric oscillation: Given a reduction factor θλ < 1,

refine all T ∈ T̂k such that for all T ′ ∈ Tk+1(T ) we have

λk+1(T
′) ≤ θλλk(T ),

where Tk+1(T ) := {T ′ ∈ Tk+1 | T ′ is obtained by refining T }.

The procedure REFINE is performed in several steps as follow:

Refining Strategy: Given a sequence {ak} ց 0, a marked set T̂k, geometric
oscillations {λk(T )}T∈Tk

, and a fixed reduction rate of element size 0 < γr < 1;

(1) Refine all T ∈ T̂k according to Interior Node Property;
(2) Refine more according to Reduction of geometric oscillation;
(3) Refine more if needed so that for any T ∈ Tk

∀T ′ ∈ Tk+1(T ) : λk+1(T
′) ≤ min {ak, λk(T )} ;

(4) Refine more if needed so that for any T ′ ∈ Tk+1(T ), T ∈ Tk,

(13)
|T ′

k|
|T ′| ≤ γT

( |T |
|T ′|

) 2
d−1

where γT :=

{
γr if T ∈ T̂k

1 if T /∈ T̂k

,

and T ′
k ⊂ T is the projection of T ′ back to T .

This algorithm ensures that λk → 0 in a monotonic way, which implies that
eventually the orthogonality relationship (9) will eventually start to hold and will
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continue to hold thereof. Consequently, following similar ideas to those in [1], we
can prove the following error reduction formula:

There exists a number k0 ≥ 0 and constants ξ < 1, γ, C > 0
such that for any k ≥ k0 the sequence generated by a repeated
application of the refinement procedure above satisfies

(14) (‖∇Γ(u− uk+1)‖2
+ γζ2

k+1) ≤ ξ(‖∇Γ(u − uk)‖2
+ γζ2

k) + Cosc2
k.

Since this holds for all k ≥ k0 we have convergence of the adaptive
loop.

A full version of this result, together with all the details and the missing proofs
will be published in a forthcoming article.
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Convergence of the Equidistribution Strategy

Kunibert G. Siebert

(joint work with Andreas Veeser)

We consider linear symmetric elliptic boundary value problems with homogeneous
Dirichlet boundary values in two space dimensions. For the adaptive approximation

of the exact solution u we use a discretization by piecewise linear finite elements

over a sequence of conforming and shape-regular triangulations {Tk}k∈N0
. Here,

we start with an initial triangulation T0 and triangulation Tk+1 is generated by
(local) refinement of Tk using bisectioning of selected elements. This in turn leads

to a sequence of nested finite element spaces {V̊k}k∈N0
. For estimating the true

error we use the standard residual type error estimator where the error indicator
on a single element splits into the element and jump residual [1, 9].

The convergence analysis of adaptive finite element discretizations in higher
space dimensions was initiated by Dörfler in [3]. Involving a notion of data oscil-
lation, Morin, Nochetto and Siebert could avoid the assumption of Dörfler, that
given data on the initial grid is sufficiently resolved [5, 6, 7]. The ingredients for
the convergence proof are

• Orthogonality of the error relating the actual error to the error on the next
grid and error reduction due to the nesting of the finite element spaces.

• A refinement rule for single elements, which guarantees that for all marked
elements in each of its sides and in its interior a new node in the next
triangulation is created.

• A strict error reduction property up to data oscillation using the fixed
fraction marking for the estimator proposed by Dörfler [3].

• A strict oscillation reduction up to error reduction using a fixed fraction
marking for data oscillation by Morin et al. [5], generalized by [2] and [4].
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However, adaptive algorithms used in practice, like the equidistribution strategy
devised by Babuška and Rheinboldt e.g. [1], seem to converge without an interior
node property, without a fixed fraction marking strategy, and without treating
data oscillation. An adaptive algorithm using the equidistribution strategy is
given by:

Given tolerance TOL > 0 and safety parameter θ ∈ (0, 1):

(1) Choose an initial mesh T0, set k := 0.
(2) Compute the discrete solution uk on Tk.

(3) Compute the local indicators Ek(T ) and the total error

estimate Ek(Tk). If Ek(Tk) ≤ TOL stop.

(4) Define

T̂k :=
{
T ∈ Tk | Ek(T ) ≥ θTOL |Tk|−1/2

}
.

(5) Refine Tk into Tk+1 by refining all elements in T̂k by two

bisections.

(6) Set k := k + 1 and goto (2).

In this talk, we prove the convergence of the above algorithm. To be more
precise, we prove that any given tolerance TOL > 0 is reached in a finite number
of steps. Note, that no special marking for data oscillation is applied and the
refinement rule does not require the creation of new nodes in the interior of marked
elements. The convergence proof is based on the following results:

• The sequence of mesh-size functions {hk}k∈N0
converges to some limiting

function h∞ in L∞(Ω). Note, that in general h∞ 6≡ 0 holds.
• For any sequence of tolerances TOLk > 0 in the kth iteration of an adap-

tive procedure with limk→∞ TOLk we prove that the limit of the element
residual is 0. The proof is based on an idea used by Siebert and Veeser for
controling the element residual in a convergent algorithm for the elliptic
obstacle problem [8].

• Using the equidistribution strategy, the contribution of non-marked ele-

ments to the total estimate Ek(Tk) satisfies Ek(Tk \ T̂k) < θTOL. Contri-
butions of marked elements are controled via discrete local efficiency by
the error reduction and the element residual [3] which both converge to 0.

The presentation is part of ongoing research and it seems that the presented
ideas can also be used for proving convergence of other practical marking strategies,
like the popular maximum strategy [1].
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Optimal Adaptive Finite Element Methods without Coarsening

Rob Stevenson

Adaptive finite element methods for solving elliptic boundary value problems have
the potential to produce a sequence of approximations to the solution that con-
verges with a rate that is optimal in view of the polynomial order that is applied,
also in the, common, situation that finite element approximations with respect
to uniformly refined partitions exhibit a reduced rate due to a lacking (Sobolev)
regularity of the solution. The basic idea of an adaptive finite element method is,
given some finite element approximation, to create a refined partition by subdivid-
ing those elements where local error estimators indicate that the error is large, and
then, on this refined partition, to compute the next approximation, after which
the process can be repeated. Although, because of their success in practice, during
the last 25 years the use of these adaptive methods became more and more widely
spread, apart from results in the one-dimensional case by Babuška and Vogelius
([1]), their convergence was not shown before the work by Dörfler ([6]), that was
later extended by Morin, Nochetto and Siebert ([7]).

Although these results meant a break through in the theoretical understanding
of adaptive methods, they do not tell anything about the rate of convergence, and
so, in particular, they do not show that adaptive methods are more effective than,
or even competitive with non-adaptive ones in the situation that the solution has
a lacking regularity.

Recently, in [2], Binev, Dahmen and DeVore developed an adaptive finite el-
ement method which they showed to be of optimal computational complexity.
Whenever for some s > 0, the solution is in the approximation class As, meaning
that there exists a sequence of partitions of the domain into n elements such that
the best finite element approximation with respect to this partition has an error
in energy norm of order n−s, then the adaptive method produces a sequence of
approximations that converge with the same rate, where, moreover, the cost of
computing such an approximation is of the order of the number of elements in
the underlying partition. A combination of the (near) characterization of As in
terms of Besov spaces from [3], and Besov regularity theorems from [5, 4], indicate
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that under very mild conditions the value of s is indeed only restricted by the
polynomial order. An additional condition was required on the right-hand side,
the discussion of which we postpone to the end of this abstract.

The key to obtain the optimal computational complexity result was the addition
of a so-called coarsening or derefinement routine to the method from [7], that
has to be applied after each fixed number of iterations, as well as, in view of
the cost, to replace the exact Galerkin solvers by inexact ones. Thanks to the
linear convergence of the method from [7], and the fact that after this coarsening,
the underlying partition can be shown to have, up to some constant factor, the
smallest possible cardinality in relation to the current error, optimal computational
complexity could be shown.

The result of [2] is of great theoretical importance, but the adaptive method
may not be very practical. The implementation of the coarsening procedure is
not trivial, whereas, moreover, numerical results indicate that coarsening is not
needed for obtaining an optimal method. In this talk, we will present a proof of
this fact (see [8]). We construct an adaptive finite element method, that, except
that we solve the Galerkin systems inexactly, is very similar to the one from [7],
and show that it has optimal computational complexity.

As in [2, 7], we restrict ourselves to the model case of the Poisson equation
in two space dimensions, linear finite elements, and partitions that are created
by newest vertex bisection. Our results, however, rely on three ingredients only,
two dealing with residual based a posteriori error estimators, and one dealing
with bounding the number of bisections needed to find the smallest conforming
refinement of a partition. The two results on a posteriori error estimators extend to
more general second order elliptic differential operators, to more space dimensions,
and to higher order finite elements. It can be expected that also the result about
newest vertex bisection extends to more space dimensions, which, however, has to
be investigated.

To solve a boundary value problem on a computer, it is indispensable to be able
to approximate the right-hand side by some finite representation within a given
tolerance. As (implicitly) in [7, 2], we use piecewise constant approximations, but,
in particular for higher order elements, by a modification of the adaptive refinement
routine, piecewise polynomial approximations of higher order can be applied as
well. Our aforementioned result concerning optimal computational complexity
is valid only under the additional assumption that if the solution u ∈ As, then
for any n we know how to approximate the right-hand side f by a piecewise
constant function with respect to a partition of n elements such that the error
in the dual norm is of order n−s. For s ∈ (0, 1

2 ], which is the relevant range for
piecewise linear elements, we conjecture that if u ∈ As, then such approximations
for the corresponding right-hand side exist, which, however, is something different
than knowing how to construct them. For f ∈ L2(Ω), however, the additional
assumption is always satisfied, where for constructing the approximations of the
right-hand side we may even rely on uniform refinements.
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The adaptive methods from [7, 2] apply only to f ∈ L2(Ω). Our additional
assumption on the right-hand side is weaker than that of [2], but for f ∈ H−1(Ω)
not in L2(Ω), it has to be verified for the right-hand side at hand.

At the end of the talk we discuss some work in progress. We present an extension
of our results for solving the Stokes equations, and discuss a possible application
for goal oriented adaptivity.
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Convergent Adaptive Finite Elements for Rough and Conforming
Obstacles

Andreas Veeser

(joint work with Kunibert G. Siebert)

There has been recent progress in the analysis of adaptive finite element methods
for linear elliptic problems, addressing also the issues of optimality, convergence
rates, and complexity. For an overview of these results, we refer to the other
contributions of this report and the references therein.

This contribution concerns adaptive finite elements and their convergence for
the elliptic variant of the obstacle problem. The obstacle problem may be consid-
ered as a model case for variational inequalities – a problem class that is ubiquitous
and includes, e.g., contact and phase transition problems. Important features of
the obstacle problem are described by the following properties of its resolution
operator: nonlinearity, nondifferentiability, and loos of information.

Let Ω ⊂ R
d, d = 2, 3, be a polyhedral Lipschitz domain and f ∈ L2(Ω) a load

term. The lower obstacle is given by a finite sequence of pairs {(Ki, ψi)}n
i=1 such

that

(1) each Ki ⊂ Ω is a nondegenerate m-simplex, m ∈ {d− 1, d},
(2) their interiors (with respect to the induced topology) are pairwise disjoint,
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(3) each ψi is an affine function over Ki satisfying ψi ≤ 0 on ∂Ω ∩Ki.

Notice that this covers continuous, piecewise affine obstacles but allows also for
(combinations of) discontinuous and ‘singular’ obstacles.

Let u be the typically unknown minimizer of the ‘inhomogeneous Dirichlet
energy’

I[v] :=

∫

Ω

1
2 |∇v|2 − fv

in the set
F := {v ∈ H1

0 (Ω) | v ≥ ψi on Ki for i = 1, . . . , n},
which is nonempty, convex, and closed thanks to the trace theorem. Such mini-
mizer exists, is unique, and is characterized by the variational inequality

∀ v ∈ F 〈∇u,∇(v − u)〉 ≥ 〈f, v − u〉,
where 〈·, ·〉 indicates the L2-scalar product. We are interested in both the compu-
tational approximation of the minimum point u and the minimum value I[u].

To this end, we design an adaptive algorithm with continuous linear finite ele-
ments. The algorithm is based upon an iteration of the following main steps:

solve → estimate → mark → refine,

i.e., solve for the minimum uk of I in the current finite element subset Fk of F
and estimate its error to test if it already meets a prescribed tolerance. If not,
mark certain elements and refine them in order to obtain a new, enlarged discrete
feasible set Fk+1.

The realization of the steps ‘estimate’ and ‘mark’ involve a new a posteriori
estimator Ek for the error in the energy minimum I[uk] − I[u]. Although it is
somehow related to the hierarchical estimator (see, e.g., [2]), it differs from other
previous ones in various aspects, e.g. error notion, accumulation of indicators, and
range of covered obstacles. Our main result about the estimator Ek is as follows.

Theorem 1 (Upper bound). The estimator Ek bounds the error in the energy
minimum,

I[uk] − I[u] 4 max{ 1
2E2

k , Ek}.
The hidden constant depends on d, the shape regularity of the initial mesh, and,
only if there are isolated contact nodes, in addition on the load term f and the
lower obstacle.

The proof is based upon the inequality

(1) ρk(−Dk) 4 Ek

where the quantity

ρk(−Dk) := sup{〈−Dk, ϕ〉 | ϕ ∈ H1
0 (Ω) s.th. ‖∇ϕ‖ ≤ 1, uk + ϕ ∈ F}

is a modification of the H−1(Ω)-norm of the residual or the derivative Dk of I in
the current approximate minimizer uk, i.e.

∀ϕ ∈ H1
0 (Ω) 〈Dk, ϕ〉 = 〈∇uk,∇ϕ〉 − 〈f, ϕ〉.
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Figure 1. Example with a discontinuous and singular obstacle:
a finite element minimizer (left) and estimator versus number of
degrees of freedom with maximum decay rate for linear finite el-
ements in log-log scale (right).

Notice that ρk(−Dk) combines the usual L2-constraint for the gradient of the test
function with a constraint of pointwise nature. The special form of the upper
bound arises from the relationship I[uk] − I[u] ≤ max{ 1

2ρk(−Dk)2, ρk(−Dk)},
which is a generalization of the unconstrained case.

Important ingredients of the proof of (1) are the concept of full contact intro-
duced in [1] and an adaptation of the projection operators on stars in [3].

The upper bound in Theorem 1 is accompanied by appropriate lower bounds
such that, exploiting the technique in [5], one can derive the following result.

Theorem 2 (Convergence). Suppose that the initial triangulation is subordinated
to the lower obstacle.

Then the indicated algorithm converges in a finite number of steps or produces
an infinite sequence of approximate minima {uk}k∈N such that

I[uk] → I[u] and uk → u in H1(Ω) (k → ∞).

The algorithm has been implemented within the framework of the finite element
toolbox ALBERTA [4]. Our numerical results corroborate and complement the
theoretical results. In particular, they indicate that typically I[uk] − I[u] ≈ 1

2E2
k

and that the convergence rate in terms of the number of unknowns coincide with
the one of nonlinear approximation of u.

As an illustration, we present an example with a discontinuous and ‘singular’
obstacle, the exact solution of which has singularities that are related to reentrant
corner singularities for the linear Poisson equation. Figure 1 depicts a correspond-
ing finite element minimizer on the left and the decay of Ek versus the number of
degrees of freedom in a log-log scale on the right. In this particular example, our
theory ensures 1

2‖∇(uk − u)‖2 ≤ I[uk] − I[u] ≈ 1
2Ek and so the shown estimator

decay rate implies an almost maximum decay rate for linear finite elements in the
H1-norm, which here cannot be reached by uniform refinement.
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