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Introduction by the Organisers

One of the aims of population genetics is to explain how the genetic variation
within and between biological populations is generated and maintained. Popula-
tion genetics theory describes the change in the genetic composition of populations
under the influence of various evolutionary processes such as genetic drift, muta-
tion, selection, recombination, and migration. Elements of randomness turn out
to be essential in the modelling of these processes. Random genetic drift, for ex-
ample, is a consequence of the fact that, even without fitness differences, some
individuals may, by chance, have more offspring than others, so that the offspring
of one genotype may displace another.

The basic processes of evolution are known in principle, along with fundamental
equations which describe the effects of interactions between genes. Indeed, of the
biological sciences, genetics – and population genetics in particular – is the one
with the most clearly defined mathematical models, with a strong emphasis on
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probability. This fact has increasingly attracted probabilists who have given the
theory a new impetus through powerful modern methods. Thus there is now an
increasingly large community of biologists and mathematicians speaking a com-
mon language, learning from each other, and identifying problems that should be
attacked. This spirit was manifest in our meeting, with its small group of senior
mathematicians and biologists, and its larger fraction of young researchers.

The topics presented during the workshop crystallized into the following the-
matic groups:

Genetic hitchhiking and selective sweeps (Stephan, Schweinsberg, Ethe-
ridge);
Mutation-selection systems (Evans, Stannat);
Speciation and adaptation (Bürger, Champagnat);
Spatially structured systems (Birkner, Swart, Hutzenthaler);
Stochastic processes associated with the coalescent (Krone, Pfaffelhuber);
Poisson-Dirichlet distributions (Spano, Feng);
Sampling formulae and coalescent-based inference (Ewens, Griffiths, Wake-
ley, Möhle, Hudson);
Recombination, gene-rearrangement and sequence alignment (M. Baake,
Beresticky, Metzler)

Stimulated by these lectures, there were many discussions and a rich scientific
exchange during the workshop, between generations as well as between disciplines.
Last not least, the meeting also profited greatly from the friendly and serene
Oberwolfach atmosphere.
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Abstracts

Deterministic recombination dynamics in continuous time

Michael Baake

(joint work with Ellen Baake)

The deterministic limit of the stochastic process of recombination in population
genetics, in continuous time, leads to an interesting nonlinear ODE system that
has been studied for a long time. The first major advances to understand the
classical system are due to H. Geiringer [5] in the 1940s (though her formulation
was slightly different). A full characterization of solutions (in algorithmic terms,
but not in explicit form) was later obtained by Lyubich, compare [7] and references
given there, and [4] for general background material.

Motivated by this problem in genetics, the relevant subclass that emerges from
single crossover events was considered in [1], where an explicit solution to the
resulting large system of nonlinear differential equations was constructed. Soon
after, this was reformulated as a measure-valued differential equation and solved
for a more general class of state spaces [3]. In this context, the main focus was on
the exact solution and the compatibility with other genetic processes, in particular
with mutation and (additive) selection.

On the other hand, nonlinear semigroups are rarely known explicitly, and if so,
this usually rests upon the transformability of the system to a linear one. It is thus
rather natural to start with the most elementary semigroup constituents. Among
them, one can then identify mutually commuting ones, which may be used to
reconstruct the solution to the full recombination equation of [3] in an alternative
and perhaps more transparent way.

Given the solution, a mode decoupling on the basis of the combinatorial Möbius
inversion is possible that explicitly shows how the nonlinear semigroup is related
to a (larger) linear one and furthermore gives systematic access to the so-called
linkage disequilibria, compare [4], of population genetics.

The key to the understanding of the nonlinear semigroup involved is the follow-
ing result, whose proof is a simple direct verification (for details, see [2]).

Theorem 1. Let K be a closed convex subset of a Banach space B, and assume
that R : K −→ K is a (nonlinear) Lipschitz map which satisfies

(1) R
(

ax+ (1 − a)R(x)
)

= R(x)

for all a ∈ [0, 1] and all x ∈ K. Let ̺ ≥ 0 be arbitrary.
Then, the (nonlinear) Cauchy problem

(2) ẋ = ̺
(

R− 1
)

(x) , x(0) = x0 ∈ K ,

has the unique solution x(t) = e−̺tx0 + (1 − e−̺t)R(x0) for t ≥ 0, and the
entire forward orbit remains in K. In particular, with ϕt := e−̺t1 + (1− e−̺t)R,
{ϕt | t ≥ 0} is a (nonlinear) semigroup that preserves K. �
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Defining ν1(t) := R(x(t)) ≡ R(x0) and ν2(t) := R(x0) − x(t), one has the
decomposition x(t) = ν1(t) − ν2(t) with ν̇1 ≡ 0 and ν̇2 = −̺ν2. This shows how
the situation of Theorem 1 relates to a linear semigroup that acts on the larger
space B ⊗ B, bound to special initial conditions. Although the condition in the
theorem looks a bit special, an example of such a nonlinear operator R is given
by the so-called recombinator in population genetics.

Let N := {0, 1, . . . , n} denote the set of sites or nodes (of a genetic sequence,
say), and L := { 1

2 ,
3
2 , . . . ,

n−1
2 } the corresponding set of links. Here, a half-integer

α always denotes the link between nodes ⌊α⌋ = α− 1
2 and ⌈α⌉ = α+ 1

2 . Let Xi be
a locally compact space, attached to node i. The total state space of sequences is
X = X0 ×X1 × . . .×Xn. If πi denotes the canonical projection to Xi, one defines

π<α : X −→ X0 × . . .×X⌊α⌋ and π>α : X −→ X⌈α⌉ × . . .×Xn

in the obvious way. Finally, if M(X) is the Banach space of finite measures on X
(with total variation as norm), one defines the pullback πi : M(X) −→ M(Xi)
via

(

πi.ω
)

(E) := ω
(

π−1
i (E)

)

for all Borel sets E of Xi.
In this setting, the elementary recombinator Rα : M(X) −→ M(X), defined

by Rα(0) = 0 and

(3) Rα(ω) =
1

‖ω‖
(

(π<α.ω) ⊗ (π>α.ω)
)

for ω 6= 0, is an example of the operator R of Theorem 1, with B = M(X) and
K the closed cone of positive measures, see [3, 2] for details.

The deterministic recombination dynamics, in continuous time, on (pairs of)
sequences with nodes according to N and with single crossover events at the links
of L, is described by the measure-valued nonlinear ODE

(4) ω̇ =
∑

α∈L

̺α
(

Rα − 1
)

(ω) ,

where ̺α is the individual recombination rate at link α. Each single term on the

right hand side gives rise to a nonlinear semigroup {ϕ(α)
t | t ≥ 0} of the type

discussed above. As these semigroups mutually commute (which is a stronger
condition than commutativity of the recombinators, due to nonlinearity), one can
now proceed via a multiple application of Theorem 1.

The corresponding Cauchy problem with a positive measure ω0 as initial con-
dition has the solution

(5) ωt =
∑

G⊂L

aG(t)RG(ω0)

for t ≥ 0, where the coefficient functions are given by

(6) aG(t) =
∏

α∈G

exp(−̺αt)
∏

β∈G

(

1 − exp(−̺βt)
)

.

These coefficients can be seen as the result of expanding the product (over α ∈ L)

of the commuting semigroups {ϕ(α)
t | t ≥ 0}. They admit a nice probabilistic
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interpretation: aG(t) is nothing but the probability that the set of links hit by
crossover events until time t is precisely G.

The next step is the decoupling into modes by means of the general inclusion-
exclusion principle. One starts from the observation that

RG =
∑

H⊃G

TH ⇐⇒ TG =
∑

H⊃G

(−1)|H−G|RH ,

which simultaneously defines the new operators TG. If one further defines the
signed measures TG(ωt), where ωt is the solution from (5), they satisfy the linear
ODEs

(7)
d

dt
TG(ωt) = −

(

∑

α∈G

̺α

)

· TG(ωt),

see [3] for a proof and further details on this kind of Möbius linearization. This is
the analogue of the decomposition encountered after Theorem 1.

For applications, it is important that the time evolution in forward direction
converges exponentially fast to the total product measure, TL(ω0) = RL(ω0). In
other words, all deviations from the equilibrium of mutual independence of sites
decay exponentially, at characteristic rates. With the help of suitably chosen
correlation functions, one can now derive a complete set of so-called linkage dise-
quilibria, compare [4] for the concept, that are the quantities used in practice to
determine recombination patterns experimentally.

It is rather obvious that one can extend Eq. (4) to include site-wise mutation
without disturbing complete solvability [1, 3]. Some further analysis reveals [3]
that this remains true even for a model with additive selection. Further directions
should include non-additive selection as well as multiple crossovers. Also, the
corresponding models in discrete time need a better understanding. In all cases,
the precise relation between the deterministic limit considered above and the full
stochastic picture needs to be studied, though first results [6] indicate that expec-
tation values are well described. Finally, recombination with sequences of different
length seems a challenging extension, see [8] for first steps in that direction.
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Of mice and men (and random walks)

Nathanaël Berestycki

(joint work with Rick Durrett)

Traditionally, biologists have studied rates of evolution induced by certain types
of mutations with parsimony methods. Hannehalli and Pevzner [7] developed a
polynomial algorithm to deal with this problem in the case of random reversals.
Our work is motivated by Bourque and Pevzner’s simulation study [4] of the effec-
tiveness of this parsimony method in studying genome rearrangement. With the
help of numerical simulations Bourque and Pevzner [4] concluded that the parsi-
mony distance was an accurate estimate only as long as the distance was at most
0.4n, where n is the size of the analyzed sample. To have a cleaner mathematical
problem, we consider the analogous problem of random transpositions, and obtain
a surprising result about the random transposition random walk (σt, t ≥ 0) on the
symmetric group of order n. Let Dt be the minimum number of transpositions
needed to go back to the identity from the location at time t. We show that Dt

undergoes a phase transition around the critical time n/2.

Theorem 1. Let c > 0.

1

n
Dcn/2 →p u(c) = 1 −

∞
∑

k=1

1

c

kk−2

k!
(ce−c)k

Moreover u(c) = c/2 for c ≤ 1, u(c) < c/2 for c > 1 and there is no second
derivative at c = 1.

In other words, the distance to the identity is roughly linear during the subcritical
phase, and after critical time n/2 it becomes sublinear. This result may be used to
return to the original problem of random reversals, therefore providing a theoretical
explanation for the observation of Bourque and Pevzner (2002).

In addition, in the random transposition case, we describe the fluctuations of
Dcn/2 about its mean in each of the three regimes: subcritical, critical and super-
critical. (The results can be found in [1] and [3]). The techniques used involve
viewing the cycles in the random permutation as a coagulation-fragmentation pro-
cess and relating the behavior to the Erdős-Renyi random graph model.

To say a few words about the proof of this result, the Erdős-Renyi random
graph is obtained when all

(

n
2

)

possible edges on a graph with n vertices are
declared open independently with probability p. Here we may couple our random
walk σt with an Erdős-Renyi random graph by drawing an edge between i and j
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whenever a transposition (i, j) is performed on the random walk. Then it is easy
to check that at time cn/2, the resulting graph is a realization of the Erdős-Renyi
random graph with parameter p ∼ c/n. Moreover in this coupling, the cycles of
the permutation are subsets of the connected components of the random graph.
Our phase transition may be understood as coming from the well-known double
jump phenomenon for the size of clusters at c = 1.

While Theorem 1 is a nice theoretical result, some aspects are overly simplistic
with respect to the original motivation. For instance it is naive to assume that
all transpositions (i.e. all reversals) are equally likely. In fact, we expect that
reversals can only involve markers that no further apart than L markers. Since
for general L this a hard problem, we first investigate the simplest possible case
where L = 1. This is the case of random adjacent transpositions, studied by
computer scientists and biologists in this context for a long time ([5], [6]). To
rephrase our problem, consider σt the composition of adjacent transpositions (i.e.,
those transpositions of the form (i, i + 1)) where we multiply σt− by a randomly
chosen adjacent transposition at rate 1. The distance dadj(σ) between σ and the
identity is the minimum number of adjacent transpositions that is needed to build
σ starting from the identity. As mentioned this problem is not new but so far
only formulae for the expectation of the distance the random walk were known.
Moreover these were generally quite involved and not easy to analyze.

Using a simple excursion representation for this process we are able to prove:

Theorem 2. Let t > 0. Then as n → ∞, n−1Edadj(σnt) → f(t) for an explicit
smooth function f(t). Moreover its behavior at ∞ is diffusive:

lim
t→∞

f(t)√
t

=
1

2
E[ max

0≤s≤1
B2s] =

√
2/2

where Bt is a standard Brownian motion.

This should be regarded as a ”diffusive behavior” type of result. When we
decide to choose a time-scale of order n3t, we obtain the following result.

Theorem 3. Let t > 0.

1

n2
dadj(Xn3t) →p Pr[B1(t) > B2(t)]

where B1 and B2 are two reflecting Brownian motions started uniformly on 0 ≤
B1(0) < B2(0) ≤ 1 evolving independently.

The last two results contrast sharply with the behavior of random transposi-
tions. Although there are different regimes, we never observe a clear-cut phase
transition. Moreover the distance is a strictly sublinear function of time in both
regimes. This raises the question of what are the random walks where we observe
some phase transition for the distance to the origin. The last part of our results
deals with the study of examples where such a phase transition does or does not
occur.
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Consider first the composition of p-cycles. That is, suppose that the step distri-
bution is now uniform on cycles of lengths p, where p ≥ 3 (so p = 2 is exactly
the case of random transpositions). To avoid complications we explain our results
for p = 3. As the next result shows shows, this random walk displays a phase
transition very similar to that of random transpositions. Let Dt be the distance
to the identity of σt, where σt denotes the random walk which is a product of a
Poisson number of 3-cycles.

Theorem 4. For c > 0

Dcn

n
→p u(c) = 1 −

∞
∑

s=0

(2s+ 1)s−2

s!
(3c)se−6c(s+1/2)

Of course the function has similar characteristics as in the case of random trans-
positions for c < 1/6, u(c) = c, it has no-second derivative at c = 1/6 and u(c) < c
for c > 1/6.

We also study a random walk on a random regular graph, i.e. a graph which is
uniform on all graphs where each vertex has degree 3. The result says that the
random walk also displays an interesting phase transition.

Theorem 5. For fixed t > 0

d(X⌊t log2 n⌋
)

log2 n
→p f(t) := min

(

1

3
t, 1

)

We end by proposing a challenging open problem. Let L be a number that may
even depend on n, and consider the random walk obtained by composition random
L-reversals. For which values of L does this random walk have a phase transition?
In particular, since L = 1 gives the diffusive example of adjacent transpositions
and L = n is the case of random transpositions, is there a critical value of L for
the existence of a phase transition?
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Survival in the face of competition

Matthias Birkner

(joint work with Andrej Depperschmidt)

We study a microscopic stochastic model for the time evolution of a ‘population’,
say of animals or plants, which live, move – in the case of plants, we think rather
of the dispersal of seeds – and reproduce in space, subject to random fluctuations.
Individuals live on the discrete space Z

d (we mostly think of d = 2) in non-
overlapping generations. In the absence of competition, an individual would have
on average m > 1 offspring. Due to competition for local resources, the average
reproductive success of an individual at position x is reduced by an amount of
λxy ≥ 0 by each individual at position y. Here λxy is a positive finite range kernel
on Z

d which depends only on the displacement y−x, and decays as |y−x| increases.
We assume that at least λxx > 0. Thus, an individual at x in generation n will
have a random number of offspring with mean given by

(

m−
∑

y

λxy(ξn(y) − δxy)
)+

,

where ξn(y) denotes the number of particles at spatial position y in generation
n. We take the positive part because it is impossible to have a negative number
of children. For definiteness and simplicity, we assume that the actual number of
offspring, given the present configuration, is Poisson-distributed with the above
mean, and independent for different individuals. Once created, offspring take an
independent random walk step with kernel p from the location of their mother,
where p is a symmetric finite range kernel. In this way, our model incorporates
individual-based random fluctuations in the number and spatial dispersal of off-
spring. We note that the regulation by competition is essential for the possibility
of long-time stability of such systems: the situation λxy ≡ 0 corresponds to non-
interacting branching random walks, and it is well known that then there exist no
non-trivial equilibria in the biologically most interesting case d = 2.

Similar models have been studied in the ecology literature, using simulations
and non-rigorous methods, see [2], [5]. Continuous mass versions (in the spirit of
‘superprocesses’) of these models have been investigated in [3] and [1], and the
possibility of long-term survival in d = 2 for certain parameters has been proved
there. Mathematical aspects of the spatially continuous model considered in [2], in
particular a high-density rescaling which leads to a related deterministic integro-
differential system, have been studied in [4].
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We prove that form ∈ (1, 4), if the coefficients of competition λxy are sufficiently
small, the population, starting from any initial condition which has ξ1 6≡ 0 with
positive probability, will survive for all times with positive probability, locally as
well as globally: it will spread out into the whole of Z

d, and for any given site,
the asymptotic fraction of times when one observes particles there is then strictly
positive.

Our proof uses a suitable coarse graining and then comparison with finite-
range oriented percolation. The restriction on m comes from the corresponding
deterministic system with which we compare. We have at the moment no clear
picture of the behaviour of our system when m > 4.

Furthermore we strongly suspect (and in fact outline a possible route to a proof
via coupling) that when m ∈ (1, 3) and the λxy are sufficiently small, it is possible

to couple versions of the system starting from initial conditions ξ0, ξ̃0 in such a
way that on the event that both populations survive, we have

∪m∈Z+
∩n≥m {∀x ∈ B : ξn(x) = ξ̃n(x)}

almost surely for all finite B ⊂ Z
d. This would imply in particular that in this

parameter range, there is a unique non-trivial equilibrium µ for the process, and
the distribution of ξn, given that ξn 6≡ 0, converges to µ for any initial condition.
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Intraspecific competition and sympatric speciation

Reinhard Bürger

(joint work with Kristan Schneider)

Ecologically driven sympatric speciation has received much attention recently. A
multilocus model of a quantitative trait is treated, in which the trait is under
frequency-dependent selection and acts as mating character for assortment. The
purpose of the analysis is the identification of conditions that lead to competitive
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divergence and the establishment of reproductively isolated clusters in the popu-
lation. This may be interpreted as evolutionary splitting or sympatric speciation.
In our model, there are parameters that independently determine the strength of
assortment, the costs for being choosy, and the strength of frequency-dependent
natural selection. The latter results from intraspecific competition for a continuous
resource spectrum. Sufficiently strong frequency dependence leads to disruptive
selection on the phenotypes. Two modes of assortative mating are analyzed in
detail, one without costs for being choosy, the other with high costs. The popu-
lation is assumed to consist of sexual haploid or diploid individuals. The diallelic
loci contribute additively to the trait. If frequency dependence is strong enough
to induce disruptive selection and costs are absent or weak, the result of evolution
depends in a distinctive nonlinear way on the strength of assortment: less genetic
variation is maintained under moderately strong assortment than under weak or
very strong assortment, sometimes none at all. Competitive divergence and evo-
lutionary splitting can occur if frequency dependence and assortment are both
strong enough. Even then, the evolutionary outcome depends on the genetics and
the initial conditions; populations with little initial variation are likely to evolve
to a monomorphic state (because mutation is ignored in the model). The roles of
the number of loci, of linkage, and of asymmetric selection are explored. If assor-
tative mating is very costly, competitive divergence never occurs. Instead, unless
assortment is weak, populations convergence to one of the monomorphic states. In
the absence of assortative mating, i.e., with random mating, the equilibrium and
stability structure can be determined completely by assuming linkage equilibrium
because a global Lyapunov function is found.
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A microscopic interpretation for a Markov jump model of evolution in
adaptive dynamics

Nicolas Champagnat

(joint work with Régis Ferreière, Sylvie Méléard)

We study the links between two models of Darwinian evolution in an asexual pop-
ulation. The first one is a “microscopic” model, describing all individual’s births
and deaths in a finite population, natural in various biological settings, including
plants populations dispersing in a spatial environment [1, 7] and asexual popula-
tions undergoing natural selection [9]. The second one, called “trait substitution
sequence” (TSS), describes the dynamics of the population’s dominant phenotype
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as a markov jump process in the phenotype space, and belongs to the recent bio-
logical theory of evolution called “adaptive dynamics” [9, 5], which has revealed an
important tool to understand various biological phenomena, including evolution-
ary branching and speciation [4]. We propose to give a firm mathematical basis
to this model by recovering it from the microscopic model under proper scaling.

1. The microscopic model

We consider a finite population in which each individual is characterized by a
quantitative phenotypic trait (or simply trait) belonging to a closed subset X of
R
d. If at some time t ≥ 0, the population is composed of N(t) individuals with

traits x1(t), . . . , xN(t)(t) in X , the state of the population is represented by the
counting measure

νt =

N(t)
∑

i=1

δxi(t).

In such a population, an individual with trait x may

• give birth to a new individual with rate b(x),

• dye with rate d(x) +
∑N(t)
i=1 α(x, xi(t)) = d(x) +

∫

X
α(x, y)νt(dy);

• each birth event causes a mutation with probability µ(x), in which case
the new individual has a mutant trait x+ z, where z has law M(x, z)dz.

Hence the process (νt, t ≥ 0) is a Markov process on the set MF of finite measures
on X , with generator

Lφ(ν) =

∫

X

[φ(ν + δx) − φ(ν)](1 − µ(x))b(x)ν(dx)

+

∫

X

∫

Rd

[φ(ν + δx+z) − φ(ν)]µ(x)b(x)M(x, z)dz ν(dx)

+

∫

X

[φ(ν − δx) − φ(ν)]

(

d(x) +

∫

X

α(x, y)ν(dy)

)

ν(dx).

The function α governs the interaction between individuals in the population,
which is the origin of selection. Note that there is no pre-defined fitness: a proper
notion of fitness should (and will) be defined in terms of the individual parameters.

The following asumption ensures the existence of the process ν [7]:
(H) 0 ≤ b(x) ≤ d̄, 0 ≤ d(x) ≤ d̄, b(x) − d(x) > 0, 0 ≤ α ≤ α(x, y) ≤ ᾱ and
M(x, z) ≤ CM̄(z) for some constant C and probability density M̄ .

2. Large population scalings

We introduce a scaling parameterK (linked to the biological notion of “carrying
capacity”), and we make all the parameters depend onK: bK , dK , αK , µK ,MK and
we assume that αK(x, y) = α(x, y)/K. We will see that K scales the population
size: we introduce

XK
t =

1

K

N(t)
∑

i=1

δxi(t) =
1

K
νKt .
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The first large population limit corresponds to the simplest case where bK =
b, dK = d, µK = µ and MK = M :

Theorem 1. Assume (H), XK
0 ⇒ ξ0 deterministic, supK E[〈XK

0 ,1〉3] < +∞
and that b, d, α and µ are continuous. Then, on D(R+,MF ), XK ⇒ ξ ∈
C([0, T ],MF (X )) determiniustic such that ξ(0) = ξ0 and

〈ξt, f〉 = 〈ξ0, f〉 +

∫ t

0

∫

X

{

[

(1 − µ(x))b(x) − d(x) −
∫

X

α(x, y)ξs(dy)
]

f(x)(1)

+ b(x)µ(x)

∫

f(x+ z)M(x, z)dz
}

ξs(dx)ds.

This result re-establishes Kimura’s equation [8]. The proofs of the results of
this section [3] are based on tightness, martingale problems and weak convergence
techniques.

The second large population limit corresponds to an acceleration of births and
deaths where bK(x) = Kηr(x) + b(x), dK(x) = Kηr(x) + d(x), µK(x) = µ(x) and
MK(x, z)dz = N (0, σ2(x)Id/Kη).

Theorem 2. Under the same assumptions as in Theorem 1, in the case where
η = 1, XK ⇒ Z ∈ C([0, T ],MF ) where the stochastic process Z is defined by:
supt≤T E[〈Zt,1〉3] <∞,

〈Zt, f〉 = 〈ξ0, f〉 +

∫ t

0

∫

Rd

{

(b(x) − d(x) −
∫

X

α(x, y)Zs(dy))f(x)(2)

+
1

2
r(x)µ(x)σ2(x)∆f(x)

}

Zs(dx)ds +Mf
t

where Mf
t is a continuous martingale such that

〈Mf 〉t = 2

∫ t

0

∫

Rd

r(x)f2(x)Zs(dx)ds.

In the case where η = 1, XK converges to the deterministic process obtained by
taking Mf ≡ 0 in (2).

The case η < 1 re-establishes Fisher’s reaction-diffusion equation [8] and the
superprocess limit of the case η = 1 generalizes Etheridge’s [6] model for spatially
structured populations. It is possible to obtain a similar result by taking MK = M
and rescaling µK accordingly [3].

3. Convergence to the trait substitution sequence

The TSS model is based on a biological heuristic of time scale separation be-
tween the birth and death events and the mutation events (see [9]): the selection
process has sufficient time between two mutations to eliminate the disadvantaged
traits. Therefore, we scale the parameters of the microscopic model as for the large
population limit of Theorem 1, except for the mutation probability: µK = ukµ,
where uK → 0 when K → +∞.



2256 Oberwolfach Report 40/2005

Observe that, in the case where µ ≡ 0 and XK
0 = nK0 δx (monomorphic popu-

lation), (1) rewrites ξt = n(t)δx where ṅ = (b(x) − d(x) − α(x, x)n)n. This well-
known logistic equation has a unique stable equilibrium n̄x = (b(x)−d(x))/α(x, x).
Similarly, in the dimorphic case, ξt = n(t)δx +m(t)δy, where

{

ṅ = (b(x) − d(x) − α(x, x)n − α(x, y)m)n
ṁ = (b(y) − d(y) − α(y, x)n− α(y, y)m)m.

Let us assume that this system of equations has no equilibrium except the trivial
ones (0, 0), (n̄x, 0) and (0, n̄y), which writes:
(H’) For any x 6= y ∈ X , f(x, y)f(y, x) < 0, where f(y, x) = b(y)−d(y)−α(y, x)n̄x.

Theorem 3. Assume (H), (H’), XK
0 = γKδx with γK → γ > 0 and

(3) ∀C > 0, logK ≪ 1

KuK
≪ exp(CK),

then the process (XK
t/KuK

, t ≥ 0) converges to

Zt =

{

γδx si t = 0
n̄YtδYt si t > 0

for finite dimensional distributions, where the Markov jump process (Yt, t ≥ 0) on
X satisfies Y0 = x and has as infinitesimal generator:

Aϕ(x)=

∫

Rd

(ϕ(x + z)−ϕ(x))µ(x)b(x)n̄x
[f(x+ z, x)]+
b(x+ z)

M(x, dz).

Condition (3) gives the proper scaling of the mutation probability ensuring the
required time scale separation (t/KuK corresponds to the time scale of mutations).
The function f(y, x) corresponds to the notion of fitness of a mutant trait y in
a monomorphic population with trait x. The proof of this result [2] makes use
of the problem of exit from a domain (large deviations) and of comparisons with
branching processes.
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Genetic Hitchhiking

Alison Etheridge

(joint work with Peter Pfaffelhuber, Anton Wakolbinger)

Suppose that a favourable mutation arises at a particular genetic locus and that
the mutant allele rapidly sweeps to fixation (that is increases in frequency until
everyone in the population carries it). Then the genetic variability at a linked
neutral locus will be reduced during the sweep as the neutral allele that happened
to be associated with the new favoured mutation will increase in frequency, a
process known as hitchhiking. This suggests that one might be able to detect
selection acting on a locus from its indirect effect on linked neutral loci. A difficulty
with this approach is that we must distinguish the effects of selection from other
possible causes of reduced diversity. The first step is to understand the nature of
the effect of selection on a linked neutral locus and in particular in which ways it
will be apparent from a sample.

Let us suppose then that a sweep originates at a time that we label zero and
is completed at time T . We ignore the effect of mutation which would, in reality,
‘blur’ the signal. We are going to look for the signature of the sweep at a linked
neutral locus precisely at time T . In this way we are maximising our chances
of finding a pattern that characterises the sweep, since after time T the pattern
of variation at the neutral locus would be broken down by (neutral) resampling.
The variation in a sample will be described in terms of ‘families’ determined by
common ancestry at the neutral locus at the time of the origin of the sweep (zero
in our notation). Our aim is to approximate the family size distribution.

This problem was first considered by Maynard Smith and Haigh, [5], who also
coined the term hitchhiking. In their approximation, the frequency at the selected
locus increases deterministically and the sample has at most one non-singleton
family, corresponding to individuals whose ancestor at the time of origin of the
sweep was lucky enough to be on the same genome as the favourable mutation.
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The rest of the sample form singletons, corresponding to individuals whose an-
cestral lineages experienced a recombination event during the time course of the
sweep. However, work of Barton, [1], revealed that ignoring the stochastic changes
in allele frequency close to the beginning of the sweep could lead to substantial
errors and, in particular, as a result of recombination events occurring during this
early stochastic pahse, there could be more than one non-singleton family. More
recently, Durrett and Schweinsberg, [2], [6], examined the family size distribution
arising in a Moran model of a population of N diploid individuals undergoing a
selective sweep. They show that up to an error of O(1/(logN)2) the family size
distribution can be approximated by sampling from a ‘paintbox’, obtained by a
stick-breaking regime based on Beta random variables. This compares with an
error of O(1/ logN) in the Maynard Smith and Haigh approximation.

The Moran model studied by Durrett and Schweinsberg is as follows. We model
the population of N diploids as 2N haploids. Label the individuals that carry the
favoured allele at the selective locus B and the rest of the population b. Each
individual lives for an (independent) exponentially distributed amount of time,
with parameter one, at the end of which it dies and is replaced by a copy of an
individual chosen at random from the 2N members of the population (including the
one that died). To incorporate selection, each substitution of a type b individual for
a type B individual is rejected with probability s. This determines the dynamics
at the selected locus. We now incorporate the neutral locus. Let us write r for the
probability of a recombination event between the neutral and selected loci in each
generation. When a new individual is born, with probability 1−r it inherits alleles
at both the neutral locus and the selected locus from the same parent, but with
probability r the new individual inherits the two alleles from two different parents
with the second parent also chosen (independently) at random (with replacement)
from the 2N individuals in the population. We suppose that there are 2N labels
at the neutral locus, one for each individual alive at the beginning of the sweep,
and these labels are passed on unchanged from parent to child. Individuals with
the same label at time T are then in the same family.

In the work of Durrett and Schweinsberg, the selective advantage s is held
fixed and large but finite populations are considered. In [4] we take a different
approach. Rather than considering large N with s held fixed, we measure time
in units of size 2N , and let N tend to infinity with α = 2Ns and ρ = 2Nr held
fixed, in other words we take a diffusion approximation. We then let α tend to
infinity. Now in the Moran model, the duration of the sweep is O(logNs) and so
in order to see a non-trivial family distribution at the neutral locus we must take
r to be O(1/ logN). Correspondingly, in the diffusion timescale (where time is
measured in units of 2N generations) the sweep has duration O(logα/α) and so
we must take ρ to be O(α/ logα). In this diffusion setting we are able to produce
an approximate sampling formula, accurate up to an error of order O(1/(logα)2),
which on setting α = 2Ns and ρ = 2Nr also provides an approximate sampling
formula for the Durrett-Schweinsberg paintbox.
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At first sight this approach should not work. Diffusion approximations are
appropriate if one is considering weak selection, but for strong selection details of
the reproduction mechanism in the Moran model will persist in the diffusion limit.
However, the sampling formula and the Durrett-Schweinsberg paintbox are based
on two key approximations. To describe them it is convenient to think of lineages
ancestral to a sample from the neutral locus migrating (as we trace backwards in
time from T to 0) between the two genetic backgrounds determined by their type at
the selected locus. Through recombination a neutral allele can find itself associated
with a different type at the selected locus before and after a reproduction event.
Notice that the migration rate will depend on the proportions of the population
in each of the two backgrounds. For example, if the current frequency of favoured
alleles is X , then a neutral lineage in the favoured background will migrate at rate
ρ(1 −X) (as a proportion X of the recombination events that it experiences are
with parents of the same type at the selected locus and therefore do not result in a
change in background). The two underlying approximations can then be described
as follows. First, the probability that a lineage ancestral to our sample recombines
out of the favoured background and then back in again (tracing backwards in time
from T to 0) is negligible and second, the chance that a pair of ancestral lineages
coalesces in the less favoured background b is negligible. This allows one to reduce
the analysis of the family size distribution to the study of marked genealogical trees
at the selected locus, with marks representing recombination events through which
a neutral lineage migrates from the favoured to the less favoured background. Via
a timechange, this reduces to the study of a sample from a marked Yule tree. The
Yule tree is the same whether we consider the Moran model or the diffusion limit
(although the way that marks appear is slightly different) and indeed is insensitive
to changes in the Moran model provided that the growth rate in the diffusion
limit is unchanged. As a result, the diffusion approach exhibits an unexpected
robustness.

The beauty of our approach is that everything is absolutely explicit. The dis-
advantage is that depending on the population size N , there is a limit on the size
of sample that we can consider. Our approximation allows for at most two non-
singleton families in our sample, but simulations in [1] reveal several non-singleton
families. The reason for this apparent inconsistency is that for a sample of size
n the error in our approximation actually scales with (n/ logα)2 and so we need
very large populations or small samples for this to be controlled. In more recent
work (to be reported in [3]) we see a resolution of this difficulty which allows us to
increase the sample size at the expense of not being able to approximate the full
distribution of family sizes, but instead treating certain partitions of our sample
into families as indistinguishable.
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Mutation-selection balance and models of aging

Steven N. Evans

(joint work with David Steinsaltz, Ken Wachter)

Brian Charlesworth issued the following challenge in 2001.

Senescence of multicellular plants and animals is an almost univer-
sal phenomenon; it needs to be explained both in terms of cellular
and physiological mechanisms, and of evolutionary forces.

The mortality rate of an organism at age t is P{die in [t, t+dt] | live to t}/dt Gom-
pertz discovered in 1837 that mortality for humans is an exponential function of
age. This observation has since been made for many multi-cellular organisms.
Fisher (1930), Haldane (1941), Medawar (1946, 1952), Williams (1957), Hamilton
(1966), and Charlesworth (1994, 2001) proposed models of aging and mortality
involving:

• large numbers of mildly deleterious mutations that meander towards ex-
tinction in the population but are constantly reintroduced,

• effects of mutations are age-specific and may even be positive at early ages
e.g. mutations for efficient fat metabolism and Alzheimer’s disease.

The main idea is that natural selection won’t oppose mutations with deleterious
effects that are felt after the individual has been able to reproduce. As Charleworth
said in 2001,

From the evolutionary perspective · · · senescence is an evolved
response to the greater selective impact of genes which affect sur-
vival or fecundity early in life, relative to genes with act later in
life.

How do we turn this intuitively appealing idea into MATHEMATICS? In our
work, we have a complete, separable metric space M of potential mutations (we
can have a finite or infinite # of loci). The set of possible genotypes is the space G
are integer–valued measures on M that assign finite mass to bounded sets (thus
we have essentially countable (multi-) sets of mutant alleles). The null genotype
has wild-type alleles at every locus and carries none of the mutant alleles and is
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the zero measure. The state of the population at time t is a probability measure
Pt on G, i.e. Pt(dg) = “proportion of the population with genotype g”.

First consider a model without selection in which mutations arise at rates
described by a measure ν on M that assigns finite mass to bounded sets. Write
PtF for

∫

F (g)Pt(dg). Then

d

dt
PtF = Pt

(∫

[F (· + δm) − F (·)] ν(dm)

)

.

Let Π denote the Poisson random measure with intensity measure ν ⊗ Lebesgue
and define a G-valued Lévy process (Xt)t≥0 by

Xt :=

∫

M×[0,t]

δm dΠ(m,u).

Then

PtF = E [F (W +Xt)] ,

where W is a random measure with distribution P0, independent of Π.
Now introduce selection costs by supposing that each genotype g has a pos-

itive selection cost S(g). The cost S vanishes on the null genotype, and vanishes
for no other g. Costs will typically be decrements to the intrinsic rate of natu-
ral increase (so that we are essentially measuring fitness on a logarithmic scale).
When S(g + δm) − S(g) is independent of g, the model is said to be additive or
non-epistatic.

The appropriate non-linear evolution equation is now

d

dt
PtF = Pt

(∫

[F (· + δm) − F (·)] ν(dm)

)

− Pt(F [S − PtS]).

Note that

PtS = average selection cost of population

S(g) − PtS = relative cost of genotype g

If we take M to be a single point, then mutations are identical and a genotype
is specified by a natural number, the number of mutant alleles present in it. Our
model then becomes

dPt(n)

dt
= νPt(n− 1) − νPt(n)

− Pt(n)

(

S(n) −
∑

m

S(m)Pt(m)

)

This model was introduced by Kimura and Maruyama in 1966.
We can solve the model with selection as follows. Define a linear operator

AF :=

∫

[F (· + δm) − F (·)] ν(dm) − S(·)F (·)
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(= generator of Lévy process killed at rate S(g) in state g). By the Feynman-Kac
formula, d

dtΓtF = Γt(AF ), where

ΓtF (g) = E

[

exp

(

−
∫ t

0

S(g +Xu) du

)

F (g +Xt)

]

.

By calculus, a solution is therefore

PtF =
P0ΓtF

P0Γt1
.

Using this representation, it is possible to give necessary and sufficient conditions
for the probability measure Pt to converge in distribution as t goes to infinity

The expectation measure of Pt is the measure Rt on M given by Rt(B) :=
∫

G g(B)dPt(g). If P0 is the law of Poisson random measure with intensity ρ0.

Then (by a Palm-Campbell calculation)

Rt(dm) = ζt(m)ν(dm) + ηt(m)ρ0(dm),

where

ζt(m) :=

E

[

exp
(

−
∫ t

0

S(X̃u)du
)

×
∫ t

0

exp
(

−
∫ t

τ

[S(X̃u + δm) − S(X̃u)]du
)

dτ
]

/

E

[

exp
(

−
∫ t

0

S(X̃u)du
)

]

ηt(m) :=
E

[

exp
(

−
∫ t

0 S(X̃u + δm)du
)

]

E

[

exp
(

−
∫ t

0
S(X̃u)du

)

]

with X̃t = W +Xt.
When mutation rates are low relative to selective pressures, the burden of mu-

tations can explode. More specifically, consider B ⊆ M with ν(B) < ∞ and
suppose

sup{S(g + g′) − S(g) : g′(B) = g′(M)} < ν(B).

Then, for all n,
lim
t→∞

Pt{g : g(B) ≤ n} = 0.

Suppose now that S is non-epistatic. Set S(m) := S(δm), so S(g) =
∫

S(m)
g(dm). Let Mt be a Poisson random measure on M with intensity (1/S(m))(1 −
e−S(m)t)ν(dm) and let Nt be an independent random measure on M with distri-
bution

E[F (Nt)] =

∫

e−S(g)tF (g)P0(dg)
∫

e−S(g)tP0(dg)
.

The distribution of Pt is that of Mt+Nt (proof via Laplace functionals and PDE).
and the random measureMt converges to a Poisson random measure with intensity
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(1/S(m))ν(dm). The random measure Nt becomes concentrated on the genotypes
in the support of P0 that have minimum selection cost (a consequence of Varadhan’s
lemma).

Charlesworth attempted to produce Gompertzian hazards using a special case of
our model. We show that Charlesworth’s results are an artifact of approximations
that he makes. Moreover, the appearance of Gompertz rates in his work is tied
to specifics of the model rather than the general structure – so his approach is not
robust, even though Gompertz mortality is ubiquitous.

The model above is for haploids and does not incorporate recombination i.e.
there is no meiosis (formation of gametes = eggs or sperm) to make mosaics of
different genotypes from the population).

Suppose we assume

(1) Homozygotes for mutant alleles are negligible;
(2) Selection is weak relative to recombination;
(3) Recombination can split all parts of the genome.

Assumption 1 is equivalent to assuming that we have, not a diploid organism,
but a haploid organism that goes through a phase of sexual reproduction and
meiosis with recombination. Selection is active in the haploid phase.

Assumptions 1 and 2 are essentially those that underlie the quasi-linkage equi-
librium (QLE) approximation of Barton and Turelli. Mathematically, we have
a model arising as a Trotter product: i.e., a limit of high frequency oscillations
between a selective phase and a recombinant phase on a faster time scale.

A natural sequence of discrete generation models satisfying the above assump-
tions converges to a model with the following description. For π ∈ H := {finite
measures on M}, let Xπ be a Poisson random measure with intensity measure π.
Define a non-linear operator D : H → H by

(Dπ)(dm) := E[S(Xπ + δm) − S(Xπ)]π(dm).

Suppose that P0 is the distribution of Xρ0 for ρ0 ∈ H. Then Pt is the distribution
of Xρt where

ρt = ρ0 −
∫ t

0

Dρs ds+ tν.

This model is the subject of ongoing work in which are beginning to understand
its long term equilibrium behavior for certain cost functions.

Two variance results in population genetics

Warrren J Ewens

In this talk two variance results in population genetics are discussed. The first
relates to the optimal way of estimating the amount of genetic variation in a pop-
ulation, and the second to assessing the difference that two investigators, sampling
from the same population at the same time, will have between their respective es-
timates of genetic variation.
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This genetic variation is best described by the parameter θ, defined by θ =
4Nu, where N is the (unknown) population size and u the (unknown) mutation
rate to new alleles. Questions about genetic variation in the population are best
approached as questions about the parameter θ, as discussed below.

The first problem can be described as follows. We do not of course have popula-
tion information, and are given instead a sample of n DNA sequences of arbitrary
length L, (possibly corresponding to the DNA for some gene), with no recombina-
tion between the sites in the sequence. Variation in this sample can be measured
in two ways, first “horizontally” and second “vertically”. In the horizontal case,
there will be some number k of different sequences among the n sequences. It is
known that k is a sufficient statistic for the parameter θ, so that any statement
about θ as derived from the sample, and hence about genetic variation as mea-
sured horizontally, is best carried out by using k. The mean square error of the
estimate of θ, using k, is approximately

θ
∑n−1

j=1
j

(j+θ)2

.

The “vertical” estimate of θ is found by using the number of “polymorphic
sites” in the sample of n sequences. A polymorphic site is one where there are two
(or more) nucleotides represented in the sample. If the number of polymorphic

sites is denoted by s, then θ is estimated by s/g1, where g1 =
∑n−1
j=1 j

−1, and the
mean square error of this estimator is given by

θ

g1
+
θ2g2
g2
1

,

where g2 =
∑n−1
j=1 j

−2.
The comparison of the “horizontal” and the “vertical” estimates of genetic vari-

ation reduces to a comparison of this mean square error and the mean square error
of the estimate of θ using k, as given above, the preferred estimating procedure
attaching to that with the smaller mean square error.

It is straightforward to see that the ratio of the two mean square errors ap-
proaches 1 as θ approaches 0. This is as we expect, and forms a check on the
results.

It is found that for some combinations of θ and n the vertical estimate is pre-
ferred and for other combinations the horizontal estimate is to be preferred. The
vertical estimate is to be preferred at least whenever θ ≤ 1 and also whenever
n ≤ 50. When both θ > 1 and also n > 50, however, the horizontal estimate can
be preferred. For example, when θ = 3, n = 500, the mean square error for the
“horizontal” estimate is about 5% lower than that of the “vertical” estimate.

The reason for the fact that sometimes one estimate is preferred and sometimes
the other has to do with the correlation between sites, due to the assumption
that there is no recombination between them. Given the complete coalescent
of sample, all information about where the mutations that caused the different
sequences occurred would be available, and an optimal estimate of θ would then
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be available. Both the “horizontal” and the “vertical” data are incomplete in that
they do not give these data, and in some cases the loss of information is greater
in the “horizontal” case and in other cases it is greater in the “vertical” case.

The second problem has to do with the difference of the estimates of θ found by
two investigators, each taking a sample of n sequences from the same population
at the same time. The “narrow”, or “sampling” variance of the difference |k1 −
k2| between the respective numbers k1 and k2 of sequences found by the two
investigators is 1

2E(k1 − k2)
2. This can be found by imagining a total sample of

2n sequences, of which we think of the first n belonging to the first investigator
and the remaining n to the second.

For small values of n a direct calculation can be made by using the Ewens
sampling formula. The simplest possible case is for n = 2. Here there are five
possible “sequence configurations”, namely {4}, {3,1},{2,2}, {2,1,1} and {1,1,1,1}.
The configuration {2,1,1}, for example, means that of the sample of four sequences,
two are identical and the other two are different from each other and from the two
identical sequences. We can write this alternatively as the partition AABC.

For the configuration {4}, or equivalently the partition AAAA, both investiga-
tors see only one sequence, so that k1 − k2 = 0. At the other extreme, namely the
configuration {1,1,1,1}, or equivalently the partition ABCD, both investigators
see two sequences, so that again k1 − k2 = 0. The configuration {2,2} implies that
both investigators see one allele (if investigator 1 sees AA and investigator 2 sees
BB), or that both investigators see two alleles (both see AB). Again, in all cases,
it is necessarily true that k1 − k2 = 0.

For the configuration {3,1}, it is necessarily the case that one investigator sees
one sequence and the other sees two. Thus for this case, |k1 − k2| = 1. The Ewens
sampling formula shows that the probability of this configuration is

8θ

(1 + θ)(2 + θ)(3 + θ)
,

so that this configuration contributes half this amount to 1
2E(k1 − k2)

2.
There are two possibilities for the configuration {2,1,1}. In the first of these,

investigator 1 sees a configuration of the form AA and investigator 2 sees a config-
uration of the form BC. One third of {2,1,1} configurations are of this type, and
for this type, |k1 − k2| = 1. In the second type, investigator 1 sees a configuration
of the form AB and investigator 2 sees a configuration of the form AC. Thus for
this type |k1 − k2| = 0. The probability of the configuration {2,1,1} is

6θ2

(1 + θ)(2 + θ)(3 + θ)
,

so that this configuration contributes one sixth of this amount to 1
2E(k1 − k2)

2.
All of this implies that the “narrow” variance is

4θ + θ2

(1 + θ)(2 + θ)(3 + θ)
.
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The “total” variance of k is, for the case n = 2, θ/(1 + θ2), and the ratio of the
narrow variance to this is

(1 + θ)(4 + θ)

(2 + θ)(3 + θ)
,

which clearly approaches 2/3 as θ approaches 0, and approaches 1 as θ increases
to large values.

A similar, but more complicated, calculation can be done for the case of a sample
of three genes per investigator, and in principle for the case of an arbitrary number
n of genes per investigator. Clearly, however, this approach becomes impractical
for other than a small number of genes per investigator, and in general another
approach is needed. This can be done by using univariate and bivariate frequency
spectra and indicator random variables. It is found, using the frequency spectrum
approach, that the narrow variance is asymptotically

2n−1
∑

j=n

θ

θ + j
+O(n−1),

and is thus approximately θ log 2 for large n. (It is perhaps unexpected that this
variance is asymptotically independent of n, the sample size.) This conclusion
implies that the narrow variance of the estimators of θ is θ log 2/(logn)2.

It is found that the narrow variance of s, the number of segregating sites seen
by the two investigators, is asymptotically θ log 2. This implies that the narrow
variance of the estimate of θ, using the number of segregating sites, is also asymp-
totically θ log 2/(logn)2. This result is perhaps surprising, since there is no a priori
reason why these two narrow variances should be the same.

Behaviour of Poisson-Dirichlet distribution for large mutation rate

Shui Feng

(joint work with Donald A. Dawson)

The talk is based mainly on results in [1]. The large deviation results on age-class
sizes are new.

Large Deviation for Poisson-Dirichlet Distribution. Let U1, U2, ... be i.i.d.
with common density function f(u) = θ(1 − u)θ−1, 0 < u < 1. Set

X1 = U1, Xn = Un(1 − U1) · · · (1 − Un−1), n ≥ 2,

and (P1, P2, ...) be the descending order of (X1, X2, ...). Then the law Πθ of
(P1, P2, ...) on space

∆ = {(p1, p2, ...) : p1 ≥ p2 ≥ · · · ≥ 0,
∞
∑

k=1

pk ≤ 1}

is called the Poisson-Dirichlet distribution with parameter θ. Here ∆ is equipped
with the subspace topology of R∞ and θ is proportional to the effective population
size when individual mutation rate per generation is held constant.
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Let 0 = (0, 0, ...). It is well known that Πθ converges weakly to δ0 when θ
approaches infinity. For each fixed m ≥ 1, let Vm be a continuous random variable
with density function 1

Γ(m) exp[−mv − e−v],−∞ < v < ∞. Then the following

fluctuation theorem was obtained in [4].

Theorem 1. For each m ≥ 1, θ[Pm − log θ
θ − log log θ

θ ] converges weakly to Vm as
θ converges to infinity.

A family of probability measures {Qθ : θ > 0} on a topological space E is said
to satisfy a large deviation principle (LDP) with speed a(θ) and rate function I(·)
if for any closed set F and open set G

lim sup
θ→∞

1

a(θ)
logQθ{F} ≤ − inf

x∈F
I(x),

lim inf
θ→∞

1

a(θ)
logQθ{G} ≥ − inf

x∈G
I(x),

for any c > 0, {x : I(x) ≤ c} is compact.

The following theorem is from [1].

Theorem 2. The family of {Πθ : θ > 0} satisfies a LDP with speed a(θ) = θ and
rate function I(p) = log 1

1−
P

∞
k=1

pk
.

Let Ψ be a bounded continuous function on ∆, σ(θ) > 0. The Poisson-Dirichlet
distribution with selection force Ψ and intensity σ(θ) is a probability measure on
∆ defined as

ΠΨ
σ,θ(dp) =

exp[σ(θ)Ψ(p)]

EΠθ{exp[σ(θ)Ψ(q)]}Πθ(dp).

For any positive number c, set

Ic(p) = supq∈∆[cΨ(q) − I(q)] − [cΨ(p) − I(p)],

I∞(p) =

{

0, p = 0
∞, else.

Then the following result is also obtained in [1].

Theorem 3. The family of {ΠΨ
σ,θ : θ > 0} satisfies a LDP with speed a(θ) = θ

and rate function

IΨ
σ (p) =

{

I(p), if limθ→∞
σ(θ)
θ = 0

Ic(p), if limθ→∞
σ(θ)
θ = c > 0

If Ψ has a unique maximum and limθ→∞
σ(θ)
θ = ∞, then the family of {ΠΨ

σ,θ : θ >

0} satisfies a LDP with speed a(θ) = θ and rate function I∞(p).

Application. For each m ≥ 1, let Hm(p) =
∑∞

i=1 p
m
i be the mth order homozy-

gosity. If the selection force Ψ(p) = −Hm(p), the heterozygote has advantage
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over the homozygote. In [3], simulation was done to study the role of population
size in the infinie-alleles model with heterozygote advantage. It was observed and
conjectured that if the selection intensity σ(θ) is scaled as the mutation rate θ,

then the model looks like the neutral model. Let Φm(p) = exp[−σ(θ)Hm(p)]

EΠθ{exp[−σ(θ)Hm(p)]}

denote the likelihood ratio. The following result was obtained in [5].

Theorem 4. Under Πθ, as θ goes th infinity,

Φm(p) ⇒











1, if limθ→∞
σ(θ)
θ3/2 = 0

exp[cZ2 − c2], if limθ→∞
σ(θ)

θ3/2 = c > 0

0, if limθ→∞
σ(θ)

θ3/2 = ∞,

where Z2 is a normal random variable with mean zero and variance 2. Thus
in terms of the likelihood ratio, the model with heterozygote advantage behaves
like the neutral model for large θ if σ(θ) grows slower than θ3/2, which confirms
Gillespie’s conjecture.

As a special case of Theorm 3, the LDP for the Poisson-Dirichlet distribution
with heterozygote selection advantage holds as follow.

Theorem 5. The family of {Π−Hm

σ,θ : θ > 0} satisfies a LDP with speed a(θ) = θ
and rate function

I−Hm
σ (p) =











I(p), if limθ→∞
σ(θ)
θ = 0

I(p) + cHm(p), if limθ→∞
σ(θ)
θ = c > 0

I∞(p), if limθ→∞
σ(θ)
θ = ∞.

From this theorem, we see that a phase transition occurs for the large devia-
tion rate functions at the critical scale θ. Thus, in terms of large deviation rate
functions, the model with heterozygote advantage behaves like the neutral model
for large θ if σ(θ) grows slower than θ. At the critical scale θ, the selection can
still be detected.

New Results. Consider a sample of size n from a Poisson-Dirichlet distribution
with parameter θ. Let X1,n, ..., Xn,n be the age-class sizes in the sample. Then
from [2], one has

P{X1,n = k} =
θ

n

(

n
k

)

(

θ + n− 1
k

) =
θ

n

n!

(n− k)!

(θ + n− k − 1)!

(θ + n− 1)!
,

and

P{X1,n = k1, ..., Xr,n = kr} =
(θ/n)r

(1 − k1/n) · · · (1 − k1/n− · · · − kr−1/n)

× n!

(n− k1 − · · · − kr)!

(θ + n− k1 − · · · − kr − 1)!

(θ + n− 1)!
.
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Then depending on the ratio between n and θ, the LDP results for each fixed
1 ≤ r ≤ n are summarized in the following table with

S(x1, ..., xr) = (c+ 1) log(c+ 1) + (1 −
r
∑

i=1

xi) log(1 −
r
∑

i=1

xi)

− (c+ 1 −
r
∑

i=1

xi) log(c+ 1 −
r
∑

i=1

xi).

ratio speed aθ rate function
n fixed, θ large log θ (

∑r
i=1 ki − r)

limθ→∞
θ
n = ∞ n log θ

n

∑r
i=1 xi

limθ→∞
θ
n = c > 0 n S(x1, ..., xr)

limθ→∞
θ
n = 0 θ log 1

1−
Pr

i=1
xi
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Ewens’ sampling formula

Bob Griffiths

(joint work with Sabin Lessard)

Ewens’ (1972) sampling formula (ESF) is the probability distribution of a con-
figuration of alleles in a sample of genes under the infinitely-many-alleles-model
of mutation where every mutation is a new type. Warren Ewens is a pioneer in
Mathematical Genetics so it is a pleasure to speak at this meeting on the history
of the ESF and new results.

Ewens’ sampling formula, the probability of a sample of n genes having k types
with bj types represented j times,

∑

jbj = n, and
∑

bj = k, is

n!

1b1 · · ·nbn
· 1

b1! · · · bn!
· θk

θ(θ + 1) · · · (θ + n− 1)
.

The formula is derived by a short combinatorial argument. There are a number of
different stochastic models giving rise to this important formula, particularly an
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urn model of Hoppé (1984), which is related to random partitions in Joyce and
Tavaré (1987). In Hoppé’s urn model initially there is one black ball of mass θ in
the urn. Successively balls are drawn from the urn. If a ball is black it is returned
with a ball of a new colour, if not black a ball of mass 1 of the same colour as the
ball drawn is added to the urn. When there are n non-black balls with k different
colours, the colours are randomly labelled 1, 2, . . . , k. The distribution of the
configuration of balls of different colours is ESF. To obtain a cycle representation
in a random permutation in Hoppé’s urn model, label the balls according to the
order that they enter the urn. New colours start a new cycle, or if ball k’s colour
was determined by choosing ball j insert it in a cycle to the left of j. The cycle
lengths are distributed as in the ESF. Arratia et. al. (2003) use the ESF and
related limit Poisson Dirichlet distribution as n→ ∞ in studying cycle lengths in
random permutations.

In a coalescent model of ancestry (Kingman, 1982) a binary tree is formed back in

time beginning at the leaves of the tree, with coalescence at rate
(

k
2

)

while k edges in
the tree, and mutations occur at rate θ/2 on the edges of the tree. Mutant families
in the leaves of the tree have their type determined by the mutation subtending
the family and mutations above these defining mutations have no effect on the
sample configuration of types. A random forest which determines the sample
configuration is defined by stopping lineages back in time on the tree when a
mutation first occurs. Each tree in the forest then represents the ancestry of a
mutant family. In this reduced process, lineages are lost back in time at rate

(

j
2

)

by
coalescence and jθ/2 by mutation while j edges. The combinatorial derivation of
the ESF is found by considering arrangements of the forest giving rise to families
of sizes n1, n2, . . . , nk. Let Tn, Tn−1, . . . , T1 be times while lineages are lost back in
time by coalescence or mutation. In a variable population size model, let λ(t) be
the relative population size at time t back to the present size. For example with
exponential growth forward in time, λ(t) = exp(−βt), β > 0.

The rate of coalescence at time t when j ancestor lines is
(

j
2

)

λ(t)−1 and the rate of

mutation is jθ
2 . An age-ordered sampling formula when the population size varies

is

n! · θk−1

(

∏k
l=1 nl

)

∑

i

aiE

{

∏k
l=2 λ(Til)

∏n
i=2[θλ(Ti) + i− 1]

}

,

where the constants are

ai =
1

n!
·

k
∏

m=1

nm · (
∑m
ν=1 nν − im)!

(
∑m

ν=1 nν − im+1 + 1)!
.

This reduces to the age-ordered ESF from Donnelly and Tavaré (1986) in the
constant population size case

(n− 1)!

nk · (nk + nk−1) · · · (nk + · · · + n2)
· θk

θ · · · (θ + n− 1)
.
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A connection is explored between the distribution of age-ordered frequencies in a
sample and record values and record indices in a random permutation. The ex-
tension of this to the population as n→ ∞ is to consider record values and record
indices in a sequence of independent uniform [0, 1] random variables. The con-
nection is that age-ordered allele frequencies (from oldest to youngest) n1, . . . , nk,
conditional on mutations arising by mutation from the top of the tree down while
i1(= 1), i2, . . . ik edges in the forest is identical to the conditional ditribution of
the increments s1, s2 − s1, s3 − s2, . . . given record indices i1, i2, . . . , ik. A coales-
cent tree and associated forest is well defined as n → ∞ because of the quadratic
coalescence rate. In this limit the partial sums of age-ordered allele frequencies
{
∑m

ν=1Xν ,m ≥ 1
}

given i1, i2, . . . are distributed as record values in a sequence
of independent uniform random variables {Ul; l ≥ 1} given they occur at record
indices i1, i2, . . .. This leads to a random partition of the population

Xm = ξm−1

∞
∏

l=m

(

1 − ξl
)

, m ≥ 1

where {ξl; l ≥ 1} are independent with ξ0 = 1, and for m ≥ 1, ξm has a density

(im+1 − 1)(1 − z)im+1−2, 0 < z < 1

The indices {ij; j ≥ 1}, where i1 = 1 form a Markov chain with transition proba-
bilities

P
(

ij = b | ij−1 = a
)

=
a

θ + a
· · · b− 2

θ + b− 2
· θ

θ + b− 1
, b > a.

The distribution of the oldest allele frequency X1 can be found from the record
value representation. Conditional on {Tj, j ≥ 2}

− log(X1) =

∞
∑

j=2

γj

where {γj, j > 1} are independent random variables. γj has an atom at zero with
probability (1 + ρj)

−1, and a continuous density of

ρj
1 + ρj

· (j − 1) · e−(j−1)γ , γ > 0

where ρj = θλ(Tj)/(j − 1). The mth oldest allele frequency has a representation

− log(Xm) =

im
∑

k=2

δk +

∞
∑

j=im+1

γj

where {δj, j > 1} are independent exponential random variables such that δj has
rate j − 1.

The research in this talk is published in Griffiths and Lessard (2005).
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Estimating the time to the most recent common ancestor of a sample
of sequences

Richard Hudson

The times to the most recent common ancestor of a sample of DNA sequences
can be estimated by an variety of methods. The estimates are of great interest to
biologists for assessing a range of hypotheses about population genetic processes
and population history, in humans and other organisms. Some methods are based
on specific population genetic models, others are “model-free” at least in terms of
the population genetic ascpects. A new variance result is obtained for a simple
estimate of Thomson et al. (2001):

σ2
t = t− n− 1

n

Eij
2
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Ergodic behaviour of locally regulated branching populations

Martin Hutzenthaler

(joint work with Anton Wakolbinger)

We consider a diffusion limit of a branching coalescing particle system on the
lattice Zd in which

➙ each particle migrates with rates αm†(i, j),
➙ each particle splits with rate β + s into two new particles,
➙ each particle dies with rate β and
➙ each pair of particles on the same site coalesces with rate 2γ.

The model is given by the solution of

dXt(i) = α
∑

j∈Zd

mij

(

Xt(j) −Xt(i)
)

dt

+ γXt(i)
(

K −Xt(i)
)

dt+
√

2βXt(i) dBt(i)

(1)

where the B(i) are independent Brownian motions and α, β, γ,K > 0.
The first of two main results is concerned with a phase transition. Etheridge [1]

proved that there is a critical capacity Kc = Kc(α,m, γ, β) ∈ [0,∞) such that the
process survives for K > Kc and suffers local extinction for K < Kc. Survival
means that Xt(0) does not converge to zero in probability whenever started from a
spatially homogeneous initial state. We complement this result with the following

Theorem 1. Define K > 0 as the unique solution of

(2)

∫ ∞

0

exp
(

Kγy − γβ

2
y2
)

· α exp
(

−αy
)

dy = 1.

Then K ≤ infmKc(m), i.e. for all K ≤ K the process dies out almost surely

(3) ∀|x| <∞ : Px
(

∃t ≥ 0 : |Xt| = 0
)

= 1

and suffers local extinction

(4) L(Xt) =⇒ δ0 as t→ ∞.

whenever started from a spatially homogeneous initial state. Here, 0 denotes the
zero configuration.

The main idea of the proof is a comparison with a mean field model given by
the solution of

(5) dVt = α(EVt − Vt) dt+ γVt(K − Vt) dt+
√

2βVt dBt .

This process is mathematically better tractable. We show that L(Xt(i)), i ∈ Z
d

is dominated by L(Vt) in the Laplace transform order.
More precisely, we prove
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Proposition 2. Let X be a solution of (1) with associated initial distribution µ̄
satisfying L (X0(i)) = L (X0(0)) for all i and EX0(0) < ∞. Denote by V the
solution of (5) with initial distribution µ := L (X0(0)). Then

(6) Eµ̄ exp
(

−λXt(i)
)

≥ Eµ exp
(

−λVt
)

, λ ≥ 0.

The consequence of this proposition is that extinction of the mean field model
implies local extinction of X .

The second main result considers the long term behaviour of the process. There
is at most one non-trivial translation invariant equilibrium. The process converges
to this invariant measure (or to δ0) whenever started from a non-trivial spatially
homogeneous initial state. On an intuitive level, the reason for this is as follows:
There are two forces working against each other: super-critical branching and
individual competition. Super-critical branching increases mass, whereas fighting
amongst the individuals decreases it. If a (local) population size is large then
competition takes more effect, whereas as long as a local population size is small the
competition is negligible in comparison to the mass producing branching. Thus,
there should be some attracting equilibrium state in which the two forces balance
each other.

Theorem 3. There is an invariant measure ν̄: If L (X0) is translation invariant
and does not charge the zero configuration P(X0 = 0) = 0, then

(7) L (Xt) =⇒ ν̄ as t→ ∞

The principal tool for proving ergodic behaviour is a duality.

Proposition 4. Let X† be a solution of (1) with transposed migration kernel m†

given by m†(i, j) = m(j, i). Then we have the following self-duality:

(8) Ex exp (−γ
β
〈Xt, y〉) = Ey exp (−γ

β
〈x,X†

t 〉)

for all suitable x, y.

The main advantage of this self-duality is that instead of starting in infinite
total mass we can analyse the evolution of the process started with finite total
mass. For example, choose y = λδ0 and x(i) ≡ const. Then the self-duality tells
us that it makes no difference whether we study the law of (Xt(0))t≥0 started in

x or whether we study the total mass |X†
t | with X†

t started in λδ0, λ > 0. For
the total mass process one can apply martingale methods to study its long term
behaviour.

References

[1] A. M. Etheridge, Survival and extinction in a locally regulated population,
Ann. Appl. Probab. 14 (2004), 1, 188–214.



Mathematical Population Genetics 2275

Stochastic Demography, Coalescents, and Effective Population Size

Stephen M. Krone

(joint work with Ingemar Kaj, Magnus Nordborg, Martin Lascoux, Per Sjödin)

The notion of “effective population size” has been a fixture in population ge-
netics for a long time. It is, however, a concept that is too often misused and, at
times, serves simply as an informal device for avoiding or ignoring the demographic
complications that invariably arise in real populations.

The classical concepts of effective population size have typically been used when,
in the calculation of a particular quantity (e.g., the probability of identity by de-
scent), a given population model behaves in the same way as the standard neutral,
panmictic Wright–Fisher model with constant population size. Some common ex-
amples are the “inbreeding effective population size,” the “variance effective pop-
ulation size,” and the “eigenvalue effective population size.” Unfortunately, such
quantities sometimes do not exist and, perhaps more importantly, even when they
do, they need not be equal. In [2]–[4], we have proposed the notion of “coalescent
effective population size” which avoids much of the ambiguity of earlier effective
sizes and is much less susceptible to misuse.

By definition, the coalescent effective size exists when the suitably re-scaled an-
cestral process (with one unit of time corresponding to N generations) converges
to a linear time change of Kingman’s coalescent. When this is the case, all poly-
morphism data (from samples that are not of the same order as the population
size) will be indistinguishable from those arising from a standard Wright–Fisher
model. Thus one can use the Wright–Fisher model to calculate all quantities of
interest. In Nordborg and Krone [3], it was shown that a coalescent effective size
exists when demographic events occur on a fast time scale relative to coalescence
events. This condition is more informative than the classical concepts of effective
size, even in a theoretical setting, since the existence of, say, an inbreeding effective
size does not imply that the population behaves like a Wright–Fisher model in any
other respect.

In Kaj and Krone [2] (cf. also Donnelly and Kurtz [1]), it was shown that when a
population model with stochastically fluctuating population size experiences large
size changes on the same time scale as for coalescence events, then there is no
coalescent effective size. In fact, under quite general conditions, the re-scaled
ancestral process will converge weakly to a nonlinear stochastic time change of
Kingman’s coalescent. In particular, if the population size τ generations in past
is a Markov chain given by MN(τ) = NXN (τ), where the relative size process
XN ([Nt]) = N−1MN([Nt]) converges weakly to a continuous-time Markov process
X(t) as N → ∞ (e.g., a diffusion process or a continuous-time jump chain), and
if the probability, cN

(

MN (τ − 1),MN (τ)
)

, that two lineages coalesce when going
from generation τ − 1 to generation τ (in past) satisfies

cN (k,m) =
1

N
HN (

k

N
,
m

N
),
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where HN ( kN ,
m
N ) → H(x, y) as k/N → x and m/N → y, then the time change is

given by
∫ t

0

H(Xs, Xs)ds.

The limiting coalescent is then of form

AN ([Nt]) ⇒ A(

∫ t

0

H(Xs, Xs)ds),

where A(t) denotes Kingman’s coalescent. In such cases, the effects of size fluctu-
ations will show up in polymorphism data. For example, in Cannings-type models
with exchangeable reproduction, one has

HN

( k

N
,
m

N

)

=
( k

N

( k

N
− 1

N

)

)−1md

N
→ yd

x2
≡ H(x, y).

In Sjödin et al. [4], computer simulations of Fu and Li’s F statistic were used to
assess the effects on polymorphism data of deviations from the standard Wright–
Fisher assumptions. In particular, two simple demographic models–one with ran-
domly fluctuating population size, and the other with subdivided populations
linked by migration–were simulated to uncover differences in cases for which there
is a coalescent effective size and cases for which there is not. When size fluctuations
have an effect on F , this effect was seen to be very much dependent on sample size
and initial population size. For example, large negative values of F (which can
be a signature of population expansion forward in time) were exclusively obtained
when the population size at the time of the sample was the larger of two possible
sizes.

In the case of subdivided populations, if migration between subpopulations is
sufficiently fast compared to coalescence events, the effects of subdivision will be
felt in the coalescent only in an average sense. Essentially, the migration process
has time to reach equilibrium between coalescence events. In this case there will be
a coalescent effective population size and the genealogy will be given by Kingman’s
coalescent with a linear time change. If, on the other hand, migration events are
“intermediate” in the sense that they occur on the same time scale as coalescences,
then the resulting genealogical process will be described by a structured coalescent.
In this case, the genealogy cannot be thought of a standard coalescent and there
is no coalescent effective population size. Simulations resulted in positive values
of Fu and Li’s F when migration rates were not sufficiently fast, as expected
when the genealogy is described by a structured coalescent. An interesting feature
of the simulations was that they pointed out how fast the migration had to be
to result in the effects of subdivision being averaged out, and they showed the
effects of subdivision on F when migration was not fast enough. The effects of
subpopulation size were also important.
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A Poisson Model Heuristic for Judging the Significance of Gapped
Local Alignments

Dirk Metzler

1. Introduction

When two DNA or protein sequences differ only by a few mutations, the following
question of significance arises. Could this similarity between the sequences be due
to pure chance or does it indicate a common ancestry or function? The mutations
we consider here are nucleotide or amino acid substitutions in single positions as
well as insertions and deletions of sequence fragments. Similarities and differences
in sequences can be displayed in an alignment, as for example the following one:

AGTC___AGTTC__GTG

ACTCACTAG_TCAAGCG

^ ^

Two positions marked with ˆ in this alignment are mismatches, which indicate
that substitutions have occurred. The three stretches of underscores, so-called
gaps, correspond to fragments that have been inserted or deleted. The similarity
of two sequences can be measured by a score function. For example, we could give
each match a reward of +1, each mismatch a penalty of −µ, each gap a penalty of
−∆ and each position in a gap a penalty of −δ, so that the score of the alignment
above would be 9− 2µ− 3∆− 6δ. (In commonly used scoring schemes the match
rewards and mismatch penalties may depend on the involved nucleotide or amino
acid types.) For a given pair of sequences the algorithm of Smith and Waterman
[9] finds the local alignment of highest score, local means that only parts of the
sequences are related. The BLAST software [1, 2] is suitable for finding high-scored
local alignments between given sequences and sequence databases.

The significance of a local alignment score s can be judged by its E-value,
which is the expected number of non-overlapping local alignments of score ≥ s
under a null hypothesis of unrelated sequences. Dembo et al. [4] consider the null
hypothesis that all positions in both sequences are taken independently from a
distribution on the base types or amino acid types. They showed that (under
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certain conditions on the scoring parameters) the E-value of score ≥ s for gapless
local alignments is for large s asymptotically nmke−λs, where n and m are the
sequence lengths and the constants k and λ can be computed numerically. Altschul
et al. [3] conjectured that also in the case of gapped local alignments the E-value

for score ≥ s is asymptotically of the form nmk′e−λ
′s and estimate k′ and λ′

from simulation studies and data base comparisons. The results are used for
E-value estimations in newer versions of the BLAST program. Siegmund and
Yakir [7, 8] showed that in the asymptotic of large s and ∆ ∼ log s, such that
s · e−λ∆ → β > 0, the E-value is nmce−λs with the same constant λ in the gapped
and in the ungapped case. The constant c can be computed numerically.

2. A Poisson Model for Gapped Local Alignments

In [5] we suggest a heuristic Poisson model for gapped local alignment. We replace
the set of sequence pairs {1, . . . , n} × {1, . . . ,m} by a continuous rectangle R =
[0, n]×[0,m]. Inspired by the results of Dembo et al. [4] we assume that high-scored
gapless local alignments are thrown into R according to a Poisson point process
of intensity k and that their scores are independently exponentially distributed
with parameter λ. A high-scored gapped alignment in the Poisson model is a
sequence of high-scored ungapped alignments following each other closely. Given
an ungapped alignment at x ∈ R we assume that the range Ux(g) ⊂ R of points
that we could reach for a gap penalty of ∆ + g scales in g like a 2-dimensional
shape, i.e. there is a constant ω such that the area of Ux(g) is ωg/2.

In [6] a formula for computing E-values of high-scored local alignments from
given parameters k, λ, and ω is derived. In [5] we show that the asymptotic E-
value for high scores s and s · e−λ∆ → β > 0 is k · e−λs · eωkβ/λ, which coincides
with Siegmund and Yakir’s result if we set ω appropriately. In simulation studies
in [5] it turned out that this value of ω fits well with the heuristic motivation of ω
given above.

The Poisson model also gives a heuristic explanation why the asymptotic s,∆ →
∞ with s · e−λ∆ → β > 0 is tractable. Under this assumption, the number of
gaps in the best local alignment in the Poisson model is asymptotically Poisson
distributed with a finite, positive expectation value. We conjecture that the same
is true in the sequence-based model in [7, 8].

3. Applications

Former approaches for assigning an E-value to local-alignment scores are based
on the assumption that all positions of each DNA or protein sequence are i.i.d.,
cf. [4, 7, 8], or that all protein sequences are similarly composed, cf. [3]. Both
assumptions are uncertain, and also not necessary when the E-values are based
on the Poisson model. Given a pair of sequences, we first estimate k, λ and
ω for this particular pair of sequences from their configuration of high-scored
ungapped local alignments. Then we can use these values to compute the E-value
of the best gapped local alignment. Simulation studies in [6] give evidence that
this works well, especially when the asymptotic formula is used. In simulations



Mathematical Population Genetics 2279

with slightly untypical amino acids compositions or with correlations between
neighboring sequence positions, the E-values based on the Poisson model were
much more reliable than the E-values given by BLAST.
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Coalescent theory – simultaneous multiple collisions and sampling
distributions

Martin Möhle

1. Coalescent processes with multiple collisions

Let Λ be a finite measure on [0, 1]. The Λ-coalescent (Pitman [16], Sagitov [17]) is
a time-continuous Markovian process R = (Rt)t≥0 with state space E , the set of
all equivalence relations on N := {1, 2, . . .}, and infinitesimal rates

(1) qξη =























∫

[0,1]

1 − (1 − x)b−1(1 − x+ bx)

x2
Λ(dx) if ξ = η,

∫

[0,1]

xb−a−1(1 − x)a−1 Λ(dx) if ξ ≺ η,

0 otherwise,

where a := |η| and b := |ξ| are the number of blocks (equivalence classes) of
the equivalence relations η and ξ, and ξ ≺ η means (by definition) that exactly
b−a+1 (≥ 2) blocks of ξ merge together to form one block of η, while all the other
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a− 1 blocks of ξ remain unchanged. If Λ = δ0 is the Dirac measure concentrated
in 0, then the Λ-coalescent is Kingman’s coalescent [10, 11] with binary mergers
of ancestral lineages. If Λ = U is uniformly distributed on [0, 1], then R is the
Bolthausen-Sznitman coalescent [1]. If Λ is concentrated in 1, then the process
R is called a star-shaped coalescent. From (1) it follows that the block counting
process D = (Dt)t≥0 := (|Rt|)t≥0 is a Markovian death process with rates

(2) gnk =
n!

(k − 1)!(n− k + 1)!

∫

[0,1]

xn−k−1(1 − x)k−1 Λ(dx), n, k ∈ N, k < n

and total rates gn =
∑n−1
k=1 gnk =

∫

[0,1]
(1 − (1 − x)n−1(1 − x + nx))x−2Λ(dx),

n ∈ N. For example, for the Bolthausen-Sznitman coalescent we have gn = n− 1
and gnk = n/((n− k)(n− k + 1)).

2. Sampling distributions

In population genetics the ancestry of a sample of n genes is often modelled by the
process (̺nRt)t≥0, where ̺n : E → En, ̺n(ξ) := {(i, j) | 1 ≤ i, j ≤ n, (i, j) ∈ ξ},
denotes the natural projection to the (finite) set En of all equivalence relations on
{1, . . . , n}. By definition, two individuals i and j of the sample have the same
ancestor at time t in the past if and only if (i, j) ∈ ̺nRt. Assume now that each
individuals is of a certain type. Mutations are superimposed on the genealogical
tree (̺nRt)t≥0 as follows: Conditional on the tree, mutations occur independently
of the tree at the points of a homogeneous Poisson process with rate r > 0 on each
branch of the tree. Usually, the infinitely-many-alleles model is assumed, i.e. each
mutation leads to a new type (allele) never seen before.

Fix n ∈ N and sample n individuals from the population. For i ∈ N, let ai denote
the number of types in the sample which appear i times. Note that n =

∑∞
i=1 iai,

i.e. a := (a1, a2, . . .) ∈ N
∞
0 := {0, 1, 2, . . .}∞ is a partition of n. In particular, ai =

0 for i > n. Of fundamental interest in population genetics is the probability q(a)
that we have sampled a specific partition a of types. The sampling probabilities
q(a) satisfy the following recursion on n (Möhle [12]): q(1, 0, 0, . . .) = 1 and

(3) q(a) =
nr

gn + nr
q(a − e1) +

n−1
∑

i=1

gn,n−i
gn + nr

n−i
∑

j=1

j(aj + 1)

n− i
q(a + ej − ei+j)

for any partition a = (a1, a2, . . .) ∈ N
∞
0 with n =

∑

i iai ≥ 2, where ej denotes the
jth unit vector in R

∞ and the convention q(a) := 0 is used whenever some of the
entries of a are negative. Define the probability generating function fn(s

(n)) :=
∑

a q(a)sa1

1 · · · san
n , s(n) := (s1, . . . , sn) ∈ R

n, where the sum extends over all
partitions a of n. In terms of fn, the recursion (3) is equivalent to

(4) (gn + nr)fn(s(n)) = nrs1fn−1(s
(n−1)) +

n−1
∑

i=1

gni
i

i
∑

j=1

jsn−i+j
∂

∂sj
fi(s

(i)),

i.e. f1(s1) = s1, f2(s1, s2) = (2rs21 + g2s2)/(g2 + 2r) and so on. Solutions of
the recursion (3), or equivalently (4), are only known for special cases. For the
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Kingman coalescent (Λ = δ0), the solution of the recursion (3) is the celebrated
Ewens sampling formula (Ewens and Tavaré [2])

(5) q(a) =
n!

[θ]n

n
∏

i=1

(

θ

i

)ai 1

ai!
,

where [θ]n := θ(θ + 1) · · · (θ + n − 1). For the star-shaped coalescent (Λ = δ1),
the solution q (Möhle [12, Section 4]) corresponds to a hook composition structure
(Gnedin and Pitman [6, Section 6]). For general finite measure Λ, the recursion
(3) seems to be difficult to solve for arbitrary partitions a. However, for certain
partitions a of n, solutions can be derived easily. For example, q(n, 0, 0, . . .) =
∏n
i=2(ir/(gi + ir)).
Only a few explicit examples for sampling distributions are known from the

literature (Gnedin [3, 4]). Pitman [15] studied a family of sampling distributions
depending on two parameters α, θ ∈ R such that either 0 ≤ α < 1 and θ ≥ −α or
α < 0 and θ = −mα for some fixed m ∈ N. The case α < 0 goes at least back to
Keener et al. [9]. The corresponding sampling distributions have the form

(6) qα,θ(a) =
n! [θ + α]k−1,α

[θ + 1]n−1

n
∏

i=1

(

[1 − α]i−1

i!

)ai 1

ai!
,

where n =
∑

i iai is the (given) sample size, k :=
∑

i ai is the number of types
and the notation [θ]0,α := 1 and [θ]k,α := θ(θ + α) · · · (θ + (k − 1)α), k ∈ N, is
used. For α = 0, equation (6) reduces to the Ewens sampling formula (5). For the
sub-range of parameters 0 ≤ α < 1 and θ ≥ 0, the composition structure which
corresponds to Pitman’s sampling distributions (6) is regenerative (Gnedin and
Pitman [5, Section 8]). For more information on regenerative composition struc-
tures, in particular on their asymptotics for large n, we refer to Gnedin, Pitman
and Yor [7, 8]. In contrast (Möhle [13]), the composition structure which corre-
sponds to the sampling distributions (3) induced by a Λ-coalescent with mutation
rate r > 0 is regenerative if and only if the measure Λ is either concentrated in
0 (Kingman case) or concentrated in 1 (star-shaped case). The Ewens sampling
formula (α = 0) is the only case in which Pitman’s two parameter sampling distri-
bution coincides with a sampling formula induced by a Λ-coalescent, namely the
Kingman coalescent (Möhle [13]).

3. Extensions to processes with simultaneous multiple collisions

There exists a wider class of sampling distributions (Möhle [12, Section 5]), in
which the underlying coalescent process allows for simultaneous multiple collisions
of ancestral lineages. These coalescent processes are characterized in terms of a
sequence of measures Λj on the simplex ∆j := {x = (x1, . . . , xj) ∈ [0, 1]j |x1+· · ·+
xj ≤ 1}, j ∈ N (Möhle and Sagitov [14], Schweinsberg [18]). We conjecture that
all the corresponding composition structures are non-regenerative, except for the
case when Λj is the zero-measure for all j ≥ 2 and Λ := Λ1 is either concentrated
in 0 or concentrated in 1.



2282 Oberwolfach Report 40/2005

References

[1] E. Bolthausen and A.-S. Sznitman, On Ruelle’s probability cascades and an
abstract cavity method, Comm. Math. Phys. 197 (2) (1998), 247–276.

[2] W.J. Ewens and S. Tavaré The Ewens sampling formula, In Multivariate Dis-
crete Distributions (N. S. Johnson, et al., eds), (1995) Wiley, New York.

[3] A. Gnedin, Three sampling formulas, Combin. Probab. Comput. 13 (2004),
185–193.

[4] A. Gnedin, The Bernoulli sieve, Bernoulli 10 (2004), 79–96.
[5] A. Gnedin and J. Pitman, Regenerative composition structures, Ann. Probab.

33 (2005), 445–479.
[6] A. Gnedin and J, Pitman, Regenerative partition structures, The Electronic

Journal of Combinatorics 11 (2) #R12 (2004/2005), 1–21.
[7] A. Gnedin, J. Pitman and M. Yor, Asymptotic laws for regenerative compo-

sitions: gamma subordinators and the like, (2004) Preprint.
[8] A. Gnedin, J. Pitman and M. Yor, Asymptotic laws for compositions derived

from transformed subordinators, (2005) Preprint.
[9] R. Keener, E. Rothman and N. Starr, Distributions on partitions, Ann. Stat.

15 (1987), 1466–1481.
[10] J.F.C. Kingman, The coalescent, Stoch. Process. Appl. 13 (1982), 235–248.
[11] J.F.C. Kingman, Origins of the coalescent: 1974-1982, Genetics 156 (2000),

1461–1463.
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[14] M. Möhle and S. Sagitov, A classification of coalescent processes for haploid

exchangeable population models, Ann. Probab. 29 (2001), 1547–1562.
[15] J. Pitman, Exchangeable and partially exchangeable random partitions,

Probab. Theory Relat. Fields 102 (1995), 145–158.
[16] J. Pitman, Coalescents with multiple collisions, Ann. Probab. 27 (1999),

1870–1902.
[17] S. Sagitov, The general coalescent with asynchronous mergers of ancestral

lines, J. Appl. Probab. 36 (1999), 1116–1125.
[18] J. Schweinsberg, Coalescents with simultaneous multiple collisions, Electron.

J. Probab. 5 (2000), 1–50.



Mathematical Population Genetics 2283

All about Eve. On the evolution of the time since the last MRCA

Peter Pfaffelhuber

(joint work with Anton Wakolbinger)

In a continuum population whose forward evolution follows a standard Wright-
Fisher diffusion, the time span back from time 0 to the most recent common
ancestor (MRCA) is distributed like S∞

1 , where S∞
i =

∑∞
j=i+1 Tj , with Tj inde-

pendent and exp
(

(

j
2

)

)

-distributed; this is the time Kingman’s coalescent needs to

come down from infinitely many to j lines (see [Lit75], [Gri80]. [Kin82]). When
the population evolves, the current MRCA (of all those that live at time 0) will
remain in business up to a random time E when the next MRCA’s offspring takes
over; let us denote the time when the new MRCA lived by B. (B stands for begin
and E for end, since during the time interval (B,E) the frequency of the new
MRCA’s offspring develops from 0 to 1.) We compute the joint distribution of the
random pair (E,B) given that the current MRCA lived at time −d < 0, and we
investigate the dynamics of the time stationary process F =

(

(En, Bn)
)

n∈Z
. This

is summarized in Figure 1.

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

...

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

...

...................
...................

...................
..................

...................
...................

...................
...................

...................
.........

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

. . . . . . . . . . . . . . t = 0

E

next MRCA B

•

•

MRCA at t = 0

(a)
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
...

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

...

......................
.......................

......................
......................

......................
.......................

......................
....................

•
•

Bn−1

En−1
...............................

...............................
................................

...............................
................................

.................

•
•

Bn

En.............
..............

..............
.............
..............

..............
..............

.............
..............

..............
..............

.............
..............

..........

•

•

Bn+1

En+1

(b)

..............

..............

..............

Figure 1. Times when the MRCA changes (E-axis) and when
the new ancestor will have lived (B-axis) (a) as seen from t = 0,
(b) as a stationary process

1. From today’s MRCA to the next MRCA

In a time-stationary Wright-Fisher population, the time E has an exponential
distribution with mean 1, see e.g. [Wat82]. A quick argument is that the split
induced by the sizes of the two oldest families at time 0 is uniformly distributed,
and remains also at time t > 0 given no one of the two families has fixated up to
time t. Let us name the two oldest families at time 0 by the S- and the H-family.

To study the joint distribution of E and B we make use of two random variables
L and I defined as follows. L is the number of individuals living at time 0 that
still have offspring at the time E. In case L > 1 we let I denote the number of
lines in the full coalescent back from time 0 at the time B, and in case L = 1 we
put I = ∞.
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To calculate the distribution of L we use deFinetti’s Theorem to see that, given
the split of the whole population into the H- and the S-family is (p, 1 − p), a
randomly sampled individual is in the H-family with probability p and in the
S-family with probability 1 − p, independent of all others. This also applies to
that individual among all those living at time t whose offspring lives longest,
second longest etc. We call these these individuals the most persistent, second
most persistent individual etc.

We have L = ℓ exactly when the most persistent, . . ., ℓth most persistent
individual are altogether either in the H- or the S family and the (ℓ+ 1)st most
persistent individual is in the other family. This gives

P[L = ℓ] = 2

∫

pℓ(1 − p)dp =
2

(ℓ+ 1)(ℓ+ 2)
.

From this equation we can calculate the probability that the next MRCA will
live after time 0, i.e. in the future of time 0. This is the case iff L = 1, and
consequently

P[next MRCA lives after time 0] = P[B > 0] = P[L = 1] = 1
3 .(1)

The L individuals that still have offspring up to time E form a subsample of all
those alive at time 0. Their ancestral lines can be traced back in the full coalescent
and using Pólya urns one can prove that the joint distribution of the two is

P[L = ℓ, I = i] =











ℓ!(ℓ− 1)

3

1
(

i+ℓ
i

) , ℓ ≥ 2, i ≥ 3

1
3 , ℓ = 1, i = ∞.

(2)

To find the joint distribution of (E,B) we have to find, given L and I, the distri-
bution of the times when the (L+ 1)st most persistent line disappears and when
there are I lineages in the full coalescent back from time 0, which represent the
times E and B, respectively. The latter is given by a random split of the coales-
cence time S∞

1 , i.e. when the current time to the MRCA is d > 0 this is given by
Ri,d which is distributed as S∞

i given Si1 + S∞
i = d. The time when the (L+ 1)st

most persistent lineage disappears can be studied using the (modified) look-down
process which was introduced in [DK99]. In this process every individual has a
label and every individual looks down to any other individual with a smaller label
at rate 1. When a look-down event occurs from individual j to individual i the
individual i has one offspring with label j. All individuals with label j or more
increase their label by 1.

In this process individuals disappear as soon as their label has been increased
infinitely often. Given L = ℓ the label of individual ℓ + 1 is increased infinitely
often after a time which is distributed as S∞

ℓ . All this gives the following Theorem.

Theorem. Let (L, I) be as in (2). Given, the time of the MRCA at time 0 is time
−d, the next MRCA will be at time E and it will have lived at time B, where the
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joint distribution of (E,B) is represented by

(E,B) =







(S2
1 + S∞

2 , S2
1) if L = 1,

(S∞
L ,−RI,d) if L > 1.

2. The process of MRCAs

Let us now turn to the point process F :=
(

(En, Bn)
)

n∈Z
of consecutive pairs

of times when a MRCA enters the population and when it is found. It turns out
that the look-down process is very helpful in this respect.

Consider the look-down process at a time when individual 2 looks down to
individual 1. This is at a time Bn since there will be a time when the first three,
four, five,. . . individuals in the look-down will be descendants of these two at time
Bn. Ultimately (that is at time En) all individuals will have the individuals 1 and
2 from time Bn as ancestors. Thus, it turns out that times Bn and En are linked
by a line through the look-down process which we call a fixation line.

Closely attached to this fixation line is the coalescent of the whole population
back from time En, a process which occurs also in [Taj90]. Unlike Kingman’s

coalescent, when there are n lines, the coalescence rate for this coalescent is
(

n+1
2

)

.
Using the look-down picture we can describe also the interaction of fixation

lines, and obtain a complete description of the process F . Indeed, the fixation
lines interact since it is possible that a future MRCA is born in the population
still before an older one has fixed.

The interaction of the fixation causes the process F to be non-Markov. Nev-
ertheless a measure for the memory of the process F is the number Z of fixation
lines to come that overlap with the one between B0 and E0. The distribution of
Z can be given explicitly, some values are

P[Z = 0] = 1
3 , P[Z = 1] = 11

27 , E[Z] = 1.

The 1
3 already appeared in (1)., the connection being that Z = 0 corresponds

to the case, seen from time En, that no fixation line overlaps with the nth, or,
equivalently, all MRCAs to come will live in the future of En.

More details and proofs can be found in [PW05]. We are grateful to John
Wakely and Dick Hudson who pointed out the connections to Watterson’s and
Tajima’s work [Wat82] and [Taj90] during the meeting.
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A coalescent model for the effect of advantageous mutations on the
genealogy of a population

Jason Schweinsberg

(joint work with Rick Durrett)

When an advantageous mutation occurs in a population, the favorable allele may
spread to the entire population in a short time, an event known as a selective
sweep. To model a selective sweep, we consider a population of size 2N , which
represents the 2N chromosomes of N diploid individuals. We consider two sites
on the chromosomes. At one site, there are two possible alleles, denoted by B
and b, and B is advantageous. At the other site, all possible alleles are neutral.
We assume that at time zero, 2N − 1 chromosomes have the b allele, while one
chromosome, which has just had a beneficial mutation, has the B allele. We assume
that each individual independently lives for an exponential time with mean 1 and
then is replaced by a new individual whose parent is chosen at random from the
population, except we disregard disadvantageous replacements of a B chromosome
by a b chromosome with probability s. We assume that the new individual inherits
its alleles at both sites from the same chromosome with probability 1 − r. With
probability r, because of recombination, the new individual inherits its alleles
at the two sites from two ancestors chosen independently at random from the
population. We then condition the number of B chromosomes to reach 2N before
0, which is the event that a selective sweep occurs.

A selective sweep affects the genealogy not only of the site at which the mutation
occurred but also of the neutral site. When the recombination probability r is
small, the allele at the neutral site on the chromosome that had the beneficial
mutation will increase in frequency as a result of a selective sweep, a process
known as “hitchhiking”. At the neutral site, most likely many of the lineages will
be traced back to the individual that had the beneficial mutation at the beginning
of the selective sweep. However, others will “escape” the selective sweep because
of recombination and be traced back to different ancestors. We focus on the case
of strong selection, where the selective advantage s is O(1) and the recombination
probability r is O(1/(logN)).

Define a random partition Θ of {1, . . . , n}, obtained by sampling n individuals
from the population at the end of the selective sweep and declaring i and j to be in
the same block of Θ if and only if the ith and jth individuals in the sample inherited
their allele at the neutral site from the same ancestor at the beginning of the



Mathematical Population Genetics 2287

sweep. To get a simple approximation to the distribution of Θ, first approximate
the probability that a lineage fails to escape the selective sweep by p = (2N)−r/s.
Then define a random partition Θp as follows. Flip n independent coins which
come up heads with probability p. One block of Θp consists of all of the integers
whose coins come up heads (corresponding to lineages that do not experience
recombination), while all of the other integers are in blocks by themselves. We
show [11] that there is a constant C such that for all partitions π of {1, . . . , n},

|P (Θ = π) − P (Θp = π)| ≤ C

logN
.

Thus, the distribution of Θ converges to that of Θp as N → ∞. However, as noted
by Barton, approximating Θ by Θp does not work well in practice. Typically not
all lineages that escape the selective sweep get traced back to different ancestors,
which means that Θ has more than one non-singleton block. This happens because,
when we trace the lineages backwards in time, some groups of lineages will coalesce
and then escape the sweep together, usually near the beginning of the sweep.

To obtain a more accurate approximation, we take advantage of the fact that
near the beginning of the selective sweep, the number of individuals with the B
allele can be approximated by a continuous-time branching process in which each
individual gives birth at rate 1 and dies at rate 1 − s. The individuals in such
a branching process who have an infinite line of descent form another branching
process in which there are no deaths and each individual gives birth at rate s. For
the purposes of considering the genealogy of a sample taken a long time into the
future, it is a good approximation to consider only individuals with an infinite line
of descent.

Let τk be the first time at which there are k individuals with an infinite line
of descent. The probability of a recombination along one of the k lineages with
an infinite line of descent between times τk and τk+1 is approximately r/s. If
such a recombination occurs, then the fraction of the population, a long time into
the future, descended from the lineage with the recombination has approximately
the beta distribution with parameters 1 and k − 1. Therefore, we can define a
random partition Π, which approximates the distribution of Θ, as follows. Let
M = ⌊2Ns⌋. Let (Wk)

M
k=2 be independent random variables such that Wk has a

Beta distribution with parameters 1 and k − 1.
Let (ζk)

M
k=2 be a sequence of independent random variables, also independent

of the Wk, such that P (ζk = 1) = r/s and P (ζk = 0) = 1 − r/s for all k. The
event that ζk = 1 corresponds to a recombination between times τk and τk+1.

For k = 2, 3, . . . ,M , let Vk = ζkWk, and let Yk = Vk
∏L
j=k+1(1 − Vj), which

approximates the fraction of lineages that escape between times τk and τk+1. Let

Y1 =
∏L
j=2(1 − Vj).

Finally, define random variables Z1, . . . , Zn to be conditionally independent
given (Yk)

M
k=1 such that for i = 1, . . . , n and j = 1, . . . ,M , we have P (Zi =

j|(Yk)Mk=1) = Yj . Here the integers i such that Zi = k correspond to lineages that
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recombine when there are k members of the B population with an infinite line of
descent.

Then define Π such that i and j are in the same block if and only if Zi = Zj .
It is shown in [11] that for all partitions π of {1, . . . , n}, we have

|P (Θ = π) − P (Π = π)| ≤ C

(logN)2
.

Simulation results in [3] show that this approximation is very accurate. Recently,
Etheridge, Pfaffelhuber, and Wakolbinger [5] have shown that many aspects of this
analysis carry over to the case of weak selection, where s and r are both O(1/N)
and the process can be described by a diffusion limit.

We also consider in [4] how the genealogy is affected by recurrent selective
sweeps. Because, under strong selection, the duration of a selective sweep is short,
many ancestral lines can coalesce almost instantaneously at the time of the selec-
tive sweep. If selective sweeps happen at times of a Poisson process, as proposed by
Gillespie [8], then as N → ∞ the genealogy converges, under suitable conditions,
to a coalescent process called a coalescent with multiple collisions. Coalescents
with multiple collisions, introduced in [9, 10], are coalescent processes such that
whenever there are b clusters, each possible merger of k clusters into one happens

at rate λb,k, where λb,k =
∫ 1

0
xk−2(1 − x)b−k Λ(dx) for some finite measure Λ on

[0, 1]. Kingman’s coalescent, which describes the genealogy of the sample in the
absence of selective sweeps, is the special case in which Λ is a unit mass at zero.

Using properties of coalescents with multiple collisions, we obtain approxima-
tions for how recurrent selective sweeps would affect test statistics that are used
to detect departures from Kingman’s coalescent. These statistics include Tajima’s
D-statistic [12], which compares the number of “segregating sites” at which not all
n sequences in the sample agree to the average number of pairwise differences over
the

(

n
2

)

pairs of sequences in the sample, and Fu and Li’s D-statistic [7], which
considers the number of mutations that affect just a single lineage. One can show
[4] that for large samples, Tajima’s D-statistic should be negative when there are
recurrent selective sweeps, as has been observed repeatedly in simulations (see
e.g. [2]), and that Tajima’s D-statistic should have more power to detect selective
sweeps than Fu and Li’s D-statistic. However, much work remains in this area. In
particular, it is an open problem to get a handle on how multiple mergers of an-
cestral lines affect the full site frequency spectrum, that is, for each k, the number
of mutations that affect exactly k lineages. Such information would be needed to
analyze, for example, the H-statistic of Fay and Wu [6].
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On transition functions with Dirichlet and Poisson-Dirichlet
stationary distributions

Dario Spanò

(joint work with Robert C. Griffiths)

The dynamic of the allele frequencies in a neutral, d-allele model with infinite
population size and 2 ≤ d ≤ ∞, is described by a Markov process in (d − 1)-
dimensional simplex with transition density given by

(1) p
(θ)
t (x, dy) = dπθ(y){1 +

∞
∑

n=1

ρ(|θ|)
n (t)Q(θ)

n (x, y)}, (t ≥ 0)

where for θ ∈ R
d
+: (i) dπθ(y) is the stationary measure of the process i.e.

the Dirichlet distribution on the or its Poisson-Dirichlet limit if d = ∞; (ii)

Q
(θ)
n (x, y) =

∑

|n|=n P
θ
n(x)P θn(y) is determined by any choice of (non-unique) mul-

tivariate polynomials {P θn(x)} orthonormal with respect to dπθ, and (iii)

(2) ρ|θ|n (t) = e−
1
2
tn(n+|θ|−1)

is the only quantity depending on the time-parameter t (see Griffiths (1979)).
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A natural question to ask is whether {ρ(|θ|)
n }n≥1(t) is the only possible choice of

coefficients making the expansion (1) the transition function of a Markov process
with Dirichlet or Poisson-Dirichlet stationary measure. A crucial, preliminary step
in this direction is to characterize all possible nonzero sequences an(θ) which, if

replaced to ρ
|θ|
n (t) in (1), make the function p

(θ)
t (x, dy) non-negative. This is the

topic of the present discussion.
Bochner (1954) provides an answer to the problem for d = 2 and θ = (α, α)

with α > 1/2. In this case, Qθn(x, y) = Pαn (x)Pαn (y), where Pαn (x) are modified
Gegenbauer Polynomials, orthonormal with respect to the beta(α, α) distribution.

The function p
(θ)
t (x, dy) turns out to be non-negative if and only if

(3) an(θ) =

∫ 1

0

Pαn (x)

Pαn (1)
dH(x)

for a positive, sigma-finite measure dH . Such result is extended by Gasper
(1972) to all θ ∈ Θ∗ := {(α1α2) : 1/2 < α1 ≤ α2 or α1 + α2 > 2}: a necessary
and sufficient condition is an analogue of (3) with {Pαn (x)} now replaced by a

system {P (α1,α2)
n (x)} of modified Jacobi polynomials, orthonormal with respect to

the beta(α1, α2) distribution. The proof of Bochner-Gasper’s result relies on the
following key property of Jacobi Polynomials for θ = (α1, α2) ∈ Θ∗:

(4)
P θn(x)P θn(y)

P θn(1)P θn(1)
=

∫ 1

0

P θn(z)

P θn(1)
dm(θ;x,y)(z),

where

(5) dm(θ;x,y)(z) =





∑

n≥0

[P θn(1)]−1P θn(x)P θn(y)P θn(z)



 dπθ(z)

is a probability measure. No results are known for more general θ ∈ R
2 as the

property (4) holds if and only if θ ∈ Θ∗.
We provide an extension of Bochner-Gasper’s characterization for d ≥ 2. Let

Θ∗
d = {θ = (α1 ≤ . . . ≤ αd) ∈ R

d : α1 ≥ 1/2 or 2 ≤ αj + αj+1, j = 1, . . . , d− 1}.

Theorem. For θ ∈ Θ∗
d,

{1 +

∞
∑

n=1

an(θ)Q
(θ)
n (x, y)} ≥ 0

if and only if

(6) an(θ) =

∫

P
(α1,|θ|−α1)
n (z)

P
(α1,|θ|−α1)
n (1)

dH(z)

for some positive measure dH on [0, 1].
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We also show that condition (6) also implies

an(θ) =

∫

P
(αi+ν,|θ|−αi−ν)
n (z)

P
(αi+ν,|θ|−αi−ν)
n (1)

dH ′(z)

for i = 1, . . . , d and 0 ≤ ν ≤ |θ| − αi.

The key for the proof of the theorem is a surprising extension of the product
formula (4) to the d-dimensional kernel Qθn(x, y): for θ ∈ Θ∗

d,

(7) Q(θ)
n (x, y) =

[

P (α1,|θ|−α1)
n

]2
∫ 1

0

P
(α1,|θ|−α1)
n (z)

P
(α1,|θ|−α1)
n (1)

dw(x,y;θ)

with

dw(x,y;θ) =

d−1
∏

j=1

dm(φi(x),φi(y);(αi,αi+1)),

where dm(z,w;(αi,αi+1)) is defined by (5) and the functions φi(x) ∈ [0, 1] have an
explicit, constructive representation.

Unfortunately the restriction to θ ∈ Θ∗
d is not irrelevant, as it forces the total

mass |θ| of the parameter of dπθ to be proportional to the dimension d of the type
space. Therefore the property (7) is not helpful to characterize “good” sequences
an(θ) in the infinitely-many-types case (apart from those limit processes with
Poisson-Dirichlet stationary measure with parameter θ = ∞). It is still unclear
whether the condition (6) is necessary and sufficient for the positivity of pt(x, y)
even when θ ∈ R

d \ Θ∗
d. We finally show that, besides ρθn(t) as in (2), a nontrivial

example of positivity, holding for general θ, is given when

an(θ) = rn |r| < 1.

However this result cannot be applied to prove (6) for general θ, as long as one
cannot prove that it is valid even for r = a+ ib.
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On stability of the optimal filter for nonergodic signals

Wilhelm Stannat

A simple nonlinear problem in stochastic filtering theory in continuous time can be
formulated as follows. Consider a system of two stochastic differential equations

dXt = B(Xt)dt+ dWt(1)

dYt = GXtdt+ dW̃t, Y0 = 0 .(2)

Here, (Wt)t≥0 and (W̃t)t≥0 are independent Brownian motions on R
d and on R

p,
B : R

d → R
d is a vector field and G is a p× d−matrix.

Equation (1) models a stochastic signal process describing the state of a system,
for example the position of some airplane. The state of the system cannot be
observed directly but only through some measurement procedure that adds an
additional error to the final observation Y·. Equation (2) is a simple model for this
measurement process in the case where the measurement error is independent of
the signal process.

In stochastic filtering one is now interested in calculating the optimal filter, that
is, the conditional distribution

ηt(A) := E [1A(Xt)|Yt] , A ∈ B(Rd) ,

of the signal Xt given the information

Yt := σ (Ys|s ∈ [0, t])

provided by the observation up to time t. Note that ηt depends on the initial
distribution of the signal, that is, on the distribution of X0 (in the following
denoted by µ0), which is unknown, since we do not observe the signal directly. We
are therefore interested in the dependence of ηt w.r.t. µ0 and we will use in the
following the notation

ηt,µ0
and Eµ0

[1A(Xt)|Yt]
to indicate explicitely the dependence on µ0.

It is widely believed that if the signal process is ergodic, so that Xt forgets µ0 for
large t, the same is true for ηt,µ0

. Corresponding results have been obtained, in
cases where the state space of the signal process is compact, by Kunita, Stettner,
Ocone, Pardoux, da Prato, Malliavin, Fuhrmann, Zeitouni, Atar, Del Moral and
Miclo (see [4] for references). However, it is already known from the linear case
(Kalman-Bucy Filter) that ηt,µ0

may become independent of µ0 also for nonergodic
signals.

In the papers [2], [3], [4] a variational approach is introduced to study the long-
time behaviour of ηt,µ0

and a clear explanation is given, why ηt,µ0
may become

independent of µ0 also for nonergodic signals. Moreover, explicit lower bounds on
the rate of stability of ηt,µ0

w.r.t. its initial condition µ0 are obtained.
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The main tool is the analysis of the associated pathwise filter equation

µ̇yt = Âyt µ
y
t + σyt µ

y
t −

∫

σyt dµ
y
t · µyt .(3)

Here, y ∈ C([0,∞[; Rp) is a parameter, Âyt denotes the dual of the differential
operator

Ayt f = Af −GT yt · ∇f ,
where

Af =
1

2
∆f +B · ∇f

is the generator of the signal process, and

σyt (x) = −GT yt · B(x) +
1

2
‖GT yt‖2 − 1

2
‖Gx‖2 .

For the notion of a classical solution of equation (3) we refer to [4].

The solution of the pathwise filter equation provides - up to some density - a
regular conditional probability of Xt given Yt. More precisely, in good cases (see
[2], [3], [4] for precise statements) it follows that

(4) ηt,µ0
(A) =

∫

1A(Xt)e
GT

t Yt·x µYt (dx)
∫

eG
T
t Yt·x µYt (dx)

a.s.

where µYt is the solution of (3) with initial condition µY0 = µ0.

From now on suppose thatB = ∇ϕ
ϕ for some strictly positive differentiable function

ϕ. To state our main results we make the following assumptions:

Assumption 1 The potential

W (x) := ‖Gx‖2 +
∆ϕ

ϕ
(x)

is in C2
p (R

d) and uniformly strictly convex:

∃κ∗ > 0 such that Wxx ≥ κ2
∗ · I .

Assumption 2 ϕ ∈ C2
p(R

d), ϕ bounded, and there exists a log-concave function

ϕ0 ∈ C2(Rd) and some finite constant M such that

M−1ϕ0 ≤ ϕ ≤Mϕ0 .

Fix a uniformly strictly log-concave function m0 ∈ C2
p(R

d) such that

−(logm0)xx ≥ κ∗ · I and

∫ |∇m0|2
m0

dx <∞

and define the probability measure

ν(dx) :=

(∫

m0ϕdx

)−1

m0(x)ϕ(x) dx .
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Theorem 1. Let y ∈ C([0,∞[,Rp) and suppose that Assumptions 1& 2 hold. Let
g ∈ C2

b (R
d) be log-concave and µi0 ≪ ν, i = 1, 2, with densities hi ∈ C2

p(R
d)

bounded from below and from above satisfying
∫ |∇hi|

2

hi
m0 dx < ∞. Let δ > 0 be

such that δ < hi < δ−1. Then there exist unique classical solutions µi,yt , t ≥ 0, of
(3) with initial condition µi0, and

(5)

∥

∥

∥

∥

∥

g dµ1,y
t

∫

g dµ1,y
t

− g dµ2,y
t

∫

g dµ2,y
t

∥

∥

∥

∥

∥

var

≤ 2

δ2
e−

κ∗

2M4 t

for any t > 0. In particular,

lim sup
t→∞

e
κ∗

2M4 t ‖µ1,y
t − µ2,y

t ‖var <∞ .

The proof of the theorem, as well as comparison with existing results, can be found
in [4]. Time-dependent generalizations of the result can be found in [2] and [3].
For a discussion of the measure-valued semilinear equation (3) in the context of
genetic algorithms, including nonlinear generalizations, see [1].

Corollary 2. Let µi0 and µi,yt , i = 1, 2, be as in the theorem. Assume that

ηy
t,µi

0

(A) :=

∫

1A(Xt)e
GT

t yt·x µi,yt (dx)
∫

eG
T
t yt·x µi,yt (dx)

, y ∈ C([0,∞[,Rp) ,

is a regular conditional distribution of Xt given Yt w.r.t. Pµi
0
. Then

lim sup
t→∞

e
κ∗

2M4 t
∥

∥

∥ηYt,µ1
0

− ηYt,µ2
0

∥

∥

∥

var
<∞ almost surely.

The corollary provides a simple sufficient criterion for stability of the optimal filter
w.r.t. its initial condition. Moreover, a lower bound on the exponential rate of
stability is determined that mainly depends on the lowest eigenvalue of the Hessian
of the potential W (x) = ‖Gx‖2 + ∆ϕ

ϕ (x). The more convex W , the higher the rate

of stability. Note that W consists of two parts: the second part ∆ϕ
ϕ depends on the

signal, whereas the first part ‖Gx‖2 depends on our choice G how to measure the
signal. The more precise our measurement, the more convex ‖Gx‖2. Conversely,
our criterion provides a priori lower bounds on our choice G to reach a certain
exponential rate κ∗. Also note that ergodic and non-ergodic directions of the
signal process can be “separated” in the criterion.
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Genetic hitchhiking and linkage disequilibrium

Wolfgang Stephan

1. Introduction

During the past 15 years, studies of genetic variation in Drosophila and several
other genetically well-characterized species, including humans and mice, have fo-
cused on the detection of natural selection at the DNA sequence level by analyzing
the relationship between patterns of variation and recombination rates. Most of
these studies have found a strong positive correlation between the local recombina-
tion rate experienced by a gene and its level of nucleotide polymorphism (Aguadé
et al. 1989, Stephan and Langley 1989), whereas divergence (to closely related
species) was not correlated with recombination (Begun and Aquadro 1992). This
observation was not consistent with the standard neutral model (i.e. constant mu-
tation rate, constant population size; Kimura 1983). It led to an intensive search
for alternative models invoking natural selection and/or demography. In partic-
ular, the so-called hitchhiking model (proposed by Maynard-Smith and Haigh in
1974) re-surfaced and played an important role in the following years until today.

The hitchhiking model considers the effect of rare, strongly advantageous sub-
stitutions on linked, neutral (or weakly selected) polymorphisms. It predicts a
reduction of genetic variation near the target site of selection, an excess of rare
polymorphisms, and high-frequency derived alleles. These properties can be used
to detect ”footprints” of selection in scans of variation along the genome described
next.

2. Results

Genome scan: We measured nucleotide sequence polymorphism along the X
and third chromosomes in two Drosophila melanogaster populations, an ancestral
population from Africa and a derived population from Europe (Glinka et al. 2003,
Ometto et al. 2005). This comparison allowed us to test whether frequent selec-
tive events occurred during the colonization of Europe after the last ice age (about
10,000 years ago), as would be expected if adaptation of fruit flies to novel envi-
ronments leaves footprints of selection in the genome. Indeed, about 10% of the
genomic regions surveyed in the European population showed a severe reduction
of variation, as predicted by the hitchhiking model, whereas little evidence for
selection was found in the African sample.

Distinguishing selection and demography: Patterns of variation caused by ge-
netic hitchhiking, such as the reduction of variation, look similar to those caused
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by demographic processes (particularly population size bottlenecks). We have
therefore developed statistical techniques to distinguish between them, using the
coalescent and maximum likelihood approaches (Kim and Stephan 2002, Li and
Stephan 2005, Ometto et al. 2005). This work is based on the idea that demogra-
phy (such as bottlenecks) affects the entire genome, while selection acts locally on
individual genes (see above). Using this strategy, we were able to identify candi-
date regions in the genome where selection is likely to have occurred in the recent
past. Furthermore, we have begun to study these regions in detail to localize
the targets of selection and find the genes and associated phenotypes involved in
adaptation (Beisswanger et al. 2005).

The effects of hitchhiking on linkage disequilibrium (LD): We have analyzed
the effect of hitchhiking on LD (nonrandom association between polymorphisms)
using a three-locus model with two neutral sites and one selected one (Stephan et
al. 2005). LD is measured between the neutral sites. Employing similar analytical
approximations as Maynard-Smith and Haigh (1974), we found that hitchhiking
increases LD in the first half of the selected phase; i.e., shortly after the occur-
rence of the advantageous mutation. However, LD is destroyed quickly before the
selected mutation reaches fixation. As a consequence, LD around the target sites
of selection in the genome should be reduced (even though variation may not be
very low). We expect that this property may also be a useful signature of selection
in the genome, similar to the footprint of reduced variation described above.

3. Acknowledgements

I am grateful to many colleagues who have contributed to this project, in par-
ticular S. Beisswanger, D. De Lorenzo, S. Glinka, J. Hermisson, S. Hutter, Y. Kim,
C. Langley, H. Li, S. Mousset, L. Ometto, P. Pennings, P. Pfaffelhuber, Y. Song,
and N. Svetec. This research was funded by the VolkswagenStiftung and the DFG.

References
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Branching-coalescing particle systems

Jan Swart

(joint work with Siva R. Athreya)

Let Λ be a finite or countable set and let G be a group of bijections g : Λ → Λ
that is transitive, i.e., ∀i, j ∈ Λ ∃g ∈ G s.t. gi = j. Examples are Λ = Z

d or Td
(a regular tree), and G the group of translations on Z

d or automorphisms of the
tree.

Consider a system of particles on Λ evolving according to the following laws. 1◦

Particles jump from i to j with rate a(i, j). 2◦ Each particle splits with rate b > 0
into two new particles at the same site. 3◦ Each pair of particles on the same site
coalesces with rate 2c > 0 to one particle. 4◦ Each particle dies with rate d ≥ 0.
We make the following assumptions.

(1) The transition rates a(i, j) are irreducible.
(2)

∑

j a(i, j) =
∑

j a(j, i) <∞.

(3) a(i, j) = a(gi, gj) ∀g ∈ G.

Let Xt(i) be the number of particles present at site i ∈ Λ and time t ≥ 0. We
call X = (Xt)t≥0 the (a, b, c, d)-braco-process.

Consider moreover a process where at each site i ∈ Λ there lives a large fixed
number of organisms, which can be of two genetic types: healthy and defective.
Assume that: 1◦ With rate a(i, j), an organism at site i migrates to site j. 2◦

Healthy organisms with rate b choose another organism, living on the same site,
and replace it by a healthy organism. 3◦ Each pair of organisms living at the same
site is resampled with rate 2c, i.e., a random member of the pair is replaced by an
organism with the type of the other member. 4◦ With rate d, a healthy organism
mutates into a defective one. Then, in the limit that the number of organisms at
each site is large, the frequencies Xt(i) of healthy organisms at site i and time t
are described by the following system of SDE’s:

(1)
dXt(i)=

∑

j

a(j, i)(Xt(j) −Xt(i)) dt+ bXt(i)(1 −Xt(i)) dt− dXt(i) dt

+
√

2cXt(i)(1 −Xt(i)) dBt(i).

We call X = (Xt)t≥0 the (a, b, c, d)-resem-process.
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For any φ ∈ [0, 1]Λ and x ∈ N
Λ, let Thinφ(x) denote a thinning of x with φ,

i.e., for each i, the x(i) particles at site i are independently kept with probabil-
ity φ(i) and thrown away otherwise. Let Pois(ρ) denote a Poisson point mea-
sure with local intensity ρ ∈ [0,∞)Λ. The next theorem describes some impor-
tant relations between braco-processes and resem-processes. Here, X† and X †

denote the (a†, b, c, d)-braco-process and (a†, b, c, d)-resem-process, respectively,
where a†(i, j) := a(j, i) are the reversed jump rates.

Theorem 1. (Dualities and Poissonization)

(a) (Duality) P x[Thinφ(Xt) = 0] = Pφ[ThinX †
t
(x) = 0].

(b) (Self-duality) Pφ[Pois( bcXtψ) = 0] = Pψ[Pois( bcφX
†
t ) = 0].

(c) (Poissonization) L(X0) = L(Pois( bcX0)) implies L(Xt) = L(Pois( bcXt)).
The duality (a) goes back to [5]. It has an interpretation in terms of potential

healthy ancestors which is due to [4].
It has been shown in [2] that branching-coalescing particle systems can be

started in infinity. In fact:

Theorem 2. Let X
(n)
0 = x(n) with x(n)(i) ↑ ∞ ∀i ∈ Λ. Then

(a) The processes X(n) may be coupled such that X
(n)
t ↑ X(∞)

t for all t > 0.

(b)

E[X
(∞)
t (i)] ≤

{

r
c(1−e−rt) if r 6= 0,

1
ct if r = 0

wherer := b− d+ c.

(c) The law of X(∞) decreases stochastically to a limit

L(X
(∞)
t ) ↓ L(X(∞)

∞ ) =: ν as t ↑ ∞,

called the upper invariant law.

(d) ν is uniquely characterised by

P [Thinφ(X
(∞)
∞ ) = 0] = Pφ[X †

t = 0 for some t ≥ 0].

The explicit bound in part (b) is new compared to [2]. Resampling-selection
processes have an upper invariant law too:

Theorem 3. If X 1
0 = 1, then:

(a) X 1
t decreases stochastically to a limit

(2) L(X 1
t ) ↓ L(X 1

∞) =: µ as t ↑ ∞
called the upper invariant law.

(b) µ is uniquely characterised by

(3) P [ThinX 1
∞

(x) = 0] = P x[X†
t = 0 for some t ≥ 0].

(c) If Λ is infinite, then L(X
(∞)
∞ ) = L(Pois( bcX 1

∞)).
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Theorem 3 (c) says that ν is a Poissonization of µ. We mention the following
open problem: is each invariant law of X the Poissonization of an invariant law of
X ? On certain lattices, such as trees, there is probably a multitude of invariant
laws, so this question is nontrivial.

Say that the (a, b, c, d)-braco-process survives if P [Xt 6= 0 ∀t ≥ 0] > 0 for some
finite nonzero initial state X0. Survival of (a, b, c, d)-resem-processes is defined
similarly. It has been shown in [5] that (a, b, c, d)-braco-processes on Z

d survive if
b is sufficiently large. By comparison with critical branching, it is easy to see that
(a, b, c, d)-braco-processes die out if b ≤ d.

Say that a probability law is homogeneous if it is invariant under translations
with the group G, and nontrivial if it gives zero probability to the zero configura-
tion. Since the transition laws are invariant under G, the upper invariant measures
are obviously homogeneous. By Theorem 2 (d) and Theorem 3 (b) and (c), it is
easy to prove that the following statements are equivalent:

• The (a, b, c, d)-braco-process survives.
• The (a, b, c, d)-resem-process survives.
• The (a†, b, c, d)-braco-process has a nontrivial invariant law.
• The (a†, b, c, d)-resem-process has a nontrivial invariant law.

But here is an open question: does survival of the (a, b, c, d)-braco-process imply
survival of the (a†, b, c, d)-braco-process? This is obvious if a and a† are isomorphic,
as is the case if the lattice is an abelian group such as Z

d, but in general the question
is nontrivial.

Using duality, one can prove the following result about convergence to the upper
invariant law.

Theorem 4.

(a) If L(X0) is homogeneous and nontrivial, then L(Xt) =⇒
t→∞

ν.

(b) If L(X0) is homogeneous and nontrivial, then L(Xt) =⇒
t→∞

µ.

Part (b) has been proved before in [5]. Once can show that part (a) implies
part (b) by Poissonization, but not vice versa. The analogue of Theorem 4 for
the contact process has been proved long ago by Harris in [3]. All these proofs
follow the same scheme. The main ingredient in the proof of Theorem 4 (a) is the
next lemma, that says that the dual (a†, b, c, d)-resem-process exhibits ‘extinction
versus unbounded growth’. Here, for any φ ∈ [0, 1]Λ, we write |φ| :=

∑

i φ(i).

Lemma 5. If |X †
0 | <∞, then

P
[

X †
t = 0 for some t ≥ 0 or lim

t→∞
|X †
t | = ∞

]

= 1.

In fact, it turns out that e−
b
c |Xt| is a submartingale, so |Xt| has a random limit

by submartingale convergence. All the hard work is in showing that the limit is
{0,∞}-valued, and that if the limit is zero, then |Xt| becomes zero in finite time.

One moreover needs the following somewhat technical fact.
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Lemma 6. Let L(X0) be homogeneous and nonrivial, and t > 0. Then

lim
n→∞

P
[

Thinφn(Xt) = 0
]

= 0

for all φn ∈ [0, 1]Λ satisfying |φn| → ∞.

Using these lemmas and Theorem 2 (d), Theorem 4 (a) can be proved in one
line. One has

(4)
lim
t→∞

P [Thinφ(Xt) = 0] = lim
t→∞

P [ThinX †
t−1

(X1) = 0]

= P [∃t ≥ 0 such that X †
t = 0] = P [Thinφ(X

(∞)
∞ ) = 0].

Since this holds for all φ ∈ [0, 1]Λ, it follows that L(Xt) ⇒ ν.
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Gene genealogy when the distribution of offspring number among
individuals is highly skewed

John Wakeley

(joint work with Bjarki Eldon)

We consider a continous-time limit process for the ancestry of a sample of genetic
data in the case where the variance of offspring number is very large. The limit
process is a special case of the general coalescent with multiple mergers intro-
duced by Sagitov and Pitman. The process differs from the usual coalescent of
Kingman in which only binary mergers can occur. The appearance of multiple
mergers dramatically changes the predictions of the model regarding patterns of
genetic variation, relative to the predictions of Kingman’s coalescent. For exam-
ple, as multiple mergers become more frequent, a greater fraction of the genealogy
is in the external branches of the tree. The coalescent with multiple mergers also
occurs on a faster time scale than Kingman’s coalescent, the result being, that the
mutation parameter scales differently with the population size than in Kingman’s
coalescent, where it scales linearly with the population size. We use the fact that
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the model predicts an excess of singleton polymorphisms (again relative to King-
man’s coalescent) to make inferences about the distribution of offspring number
from genetic data from the Pacific oyster.

Reporter: Ellen Baake
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