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Introduction by the Organisers

Stable homotopy theory started out as the study of generalized cohomology theo-
ries for topological spaces, in the incarnation of the stable homotopy category of
spectra. In recent years, an important new direction became the spectral algebra or
stable homotopical algebra over structured ring spectra. Homotopy theorists have
come up with a whole new world of ‘rings’ which are invisible to the eyes of alge-
braists, since they cannot be defined or constructed without the use of topology;
indeed, in these ‘rings’, the laws of associativity, commutativity or distributivity
only hold up to an infinite sequence of coherence relations. The initial ‘ring’ is
no longer the ring of integers, but the sphere spectrum of algebraic topology; the
‘modules’ over the sphere spectrum define the stable homotopy category. Although
ring spectra go beyond algebra, the classical algebraic world is properly contained
in stable homotopical algebra. Indeed, via Eilenberg-Mac Lane spectra, classical
algebra embeds into stable homotopy theory, and ordinary rings form a full sub-
category of the homotopy category of ring spectra. Topology interpolates algebra
in various ways, and when rationalized, stable homotopy theory tends to become
purely algebraic, but integrally it contains interesting torsion information.

There are plenty of applications of structured ring spectra and spectral alge-
bra within homotopy theory, and in recent years, these concepts have started to
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appear in other areas of mathematics (we will sketch connections to algebraic K-
theory and arithmetic, and to algebraic geometry via motivic homotopy theory
and derived algebraic geometry).

After this general introduction, we now want to give some history and more
background and point out some areas where structured ring spectrum methods
have been used for calculations, theorems or constructions. Several of the following
topics were taken up in the talks of this AG.

Some history. A crucial prerequisite for spectral algebra is an associative
and commutative smash product on a good point-set level category of spectra,
which lifts the well-known smash product pairing on the homotopy category. To
illustrate the drastic simplification that occurred in the foundations in the mid-
90s, let us draw an analogy with the algebraic context. Let R be a commutative
ring and imagine for a moment that the notion of a chain complex (of R-modules)
has not been discovered, but nevertheless various complicated constructions of the
unbounded derived category D(R) of the ring R exist. Moreover, constructions of
the derived tensor product on the derived category exist, but they are complicated
and the proof that the derived tensor product is associative and commutative
occupies 30 pages. In this situation, you could talk about objects A in the derived
category together with morphisms A⊗L

RA→ A, in the derived category, which are
associative and unital, and possibly commutative, again in the derived category.
This notion may be useful for some purposes, but it suffers from many defects
– as one example, the category of modules (under derived tensor product in the
derived category), does not in general form a triangulated category.

Now imagine that someone proposes the definition of a chain complex of R-
modules and shows that by formally inverting the quasi-isomorphisms, one can
construct the derived category. She also defines the tensor product of chain com-
plexes and proves that tensoring with a bounded below (in homological terms)
complex of projective modules preserves quasi-isomorphisms. It immediately fol-
lows that the tensor product descends to an associative and commutative product
on the derived category. What is even better, now one can suddenly consider
differential graded algebras, a ‘rigidified’ version of the crude multiplication ‘up-
to-chain homotopy’. We would quickly discover that this notion is much more
powerful and that differential graded algebras arise all over the place (while chain
complexes with a multiplication which is merely associative up to chain homotopy
seldom come up in nature).

Fortunately, this is not the historical course of development in homological
algebra, but the development in stable homotopy theory was, in several aspects, as
indicated above. The first construction of what is now called ‘the stable homotopy
category’, including its symmetric monoidal smash product, is due to Boardman
(unpublished); accounts of Boardman’s construction appear in [57] and [1, Part III]
(Adams has to devote more than 30 pages to the construction and formal properties
of the smash product). With this category, one could consider ring spectra ‘up to
homotopy’, which are closely related to multiplicative cohomology theories.
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However, the need and usefulness of ring spectra with rigidified multiplications
soon became apparent, and topologists developed different ways of dealing with
them. One line of approach used operads for the bookkeeping of the homotopies
which encode all higher forms of associativity and commutativity, and this led to
the notions of A∞- respectively E∞-ring spectra. Various notions of point-set level
ring spectra had been used (which were only later recognized as the monoids in a
symmetric monoidal model category). For example, the orthogonal ring spectra
had appeared as I∗-prefunctors in [34], the functors with smash product were
introduced in [6] and symmetric ring spectra appeared as strictly associative ring

spectra in [18, Def. 6.1] or as FSPs defined on spheres in [19, 2.7].
At this point it had become clear that many technicalities could be avoided

if one had a smash product on a good point-set category of spectra which was
associative and unital before passage to the homotopy category. For a long time no
such category was known, and there was even evidence that it might not exist [28].
In retrospect, the modern spectra categories could maybe have been found earlier
if Quillen’s formalism of model categories [37, 23] had been taken more seriously;
from the model category perspective, one should not expect an intrinsically ‘left
adjoint’ construction like a smash product to have good homotopical behavior in
general, and along with the search for a smash product, one should look for a
compatible notion of cofibrations.

In the mid-90s, several categories of spectra with nice smash products were dis-
covered, and simultaneously, model categories experienced a major renaissance.
Around 1993, Elmendorf, Kriz, Mandell and May introduced the S-modules [14]
and Jeff Smith gave the first talks about symmetric spectra; the details of the
model structure were later worked out and written up by Hovey, Shipley and
Smith [24]. In 1995, Lydakis [29] independently discovered and studied the smash
product for Γ-spaces (in the sense of Segal [51]), and a little later he developed
model structures and smash product for simplicial functors [30]. Except for the S-
modules of Elmendorf, Kriz, Mandell and May, all other known models for spectra
with nice smash product have a very similar flavor; they all arise as categories of
continuous, space-valued functors from a symmetric monoidal indexing category,
and the smash product is a convolution product (defined as a left Kan extension),
which had much earlier been studied by category theorist Day [9]. This unifying
context was made explicit by Mandell, May, Schwede and Shipley in [33], where an-
other example, the orthogonal spectra was first worked out in detail. The different
approaches to spectra categories with smash product have been generalized and
adapted to equivariant homotopy theory [11, 31, 32] and motivic homotopy the-
ory [12, 25, 26]. In this AG we will present these various setups with an emphasis
on symmetric spectra.

Algebra versus homotopy theory. Many constructions and invariants for
classical rings have counterparts for structured ring spectra. These ring spectra
have well behaved module categories; algebraic K-theory, Hochschild homology
and André-Quillen homology admit refinements; classical constructions such as
localization, group rings, matrix rings, Morita theory and Galois theory carry over,
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suitably adapted. This export of concepts from algebra to topology illuminates
both fields. For example, Dwyer, Greenlees, and Iyengar [13] have shown that
Gorenstein duality, Poincaré duality, and Gross-Hopkins duality become results
of a single point of view. Morita theory for ring spectra [4, 50, 48] gives a new
perspective at tilting theory. The extension of Galois theory to ring spectra [42]
has genuinely new kinds of examples given by classical and higher forms of real
topological K-theory. Certain algebraic extensions of commutative rings can be
lifted to the sphere spectrum; for example, roots of unity can be adjoined to E∞-
ring spectra away from ramification [46]. Some algebraic notions, for example the
units or the center of a ring, are more subtle, and their generalizations to ring
spectra show richer features than the classical counterparts.

Power operations. Recognizing a multiplicative cohomology theory as an
E∞-ring spectrum leads to additional structure which can be a powerful theo-
retical and calculational tool. We want to illustrate this by the example of the
Adams spectral sequence [1, III.15], [35, II.9], [52, Ch. 19], a tool which has been
used extensively for calculations of stable homotopy groups. In its most classi-
cal instance, the Adams spectral sequence converges to the p-completed stable
homotopy groups of spheres and takes the form

Es,t
2 = Exts,t

Ap
(Fp,Fp) =⇒ (πstable

t−s S0)∧p .

The E2-term is given by Ext-groups over the Steenrod algebra Ap of stable mod-p
cohomology operations. This spectral sequence neatly separates the problem of
calculating homotopy groups into an algebraic and a purely homotopy theoretic
part.

The Steenrod algebra has various explicit descriptions and the E2-term can be
calculated mechanically. In fact, computer calculations have been pushed up to the
range t− s ≤ 210 (for p = 2) [8, 36]. The 1-line is given by the primitive elements

in the dual Steenrod algebra, which for p = 2 are classes hi ∈ Ext1,2i

A2
(F2,F2) for

i ≥ 0. The first few classes h0, h1, h2 and h3 are infinite cycles and they detect the
Hopf maps 2ι, η, ν and σ; the Hopf maps arise from the division algebra structures
on R, C, the quaternions and the Cayley numbers.

On the other hand, identifying differentials and extensions in the Adams spec-
tral sequence is a matter of stable homotopy theory. The known differentials
can be derived by exploiting more and more subtle aspects of the homotopy-
commutativity of the stable homotopy groups of spheres (or, in our jargon, the E∞-
structure of the sphere spectrum). The first d2-differential in the mod-2 Adams
spectral sequence is a consequence of the graded-commutativity yx = (−1)|x||y|xy
in the ring of stable homotopy groups of spheres: like any element of odd dimen-
sion, the third Hopf map σ in the stable 7-stem has to satisfy 2σ2 = 0. The class
h0h

2
3 which represents 2σ2 in E3,17

2 is non-zero, so it has to be in the image of some
differential. In these dimensions, the only possible differential is d2(h4) = h0h

2
3,

which simultaneously proves that the class h4 ∈ E
1,16
2 is not an infinite cycle and

thus excludes the existence of a 16-dimensional real division algebra.



AG: Modern Foundations for Stable Homotopy Theory 2575

Graded-commutativity of the multiplications is only a faint shadow of the E∞-
structure on the sphere spectrum. A more detailed investigation reveals that an
E∞-structure on a ring spectrum yields power operations [7, Ch. I], [40, Sec. 7].
Various kinds of power operations can be constructed on the homotopy and (gen-
eralized) homology groups of the E∞-ring spectrum and on the E2-term of the
Adams spectral sequence. These operations interact in certain ways with the dif-
ferential, and this interaction is an effective tool for determining such differentials.
For example, the operations propagate the first d2-differential, which proves that
the classes hi for i = 0, 1, 2 and 3 are the only infinite cycles on the 1-line and
excludes the existence of other real division algebras.

Algebraic K-theory. Structured ring spectra and algebraic K-theory are
closely related in many ways, and in both directions. Algebraic K-theory started
out as the Grothendieck group of finitely generated projective modules over a
ring. Quillen introduced the higher algebraic K-groups as the homotopy groups
of a certain topological space, for which he gave two different constructions (the
plus-construction and the Q-construction [38]). Nowadays, algebraicK-theory can
accept various sorts of categorical data as input, and produces spectra as output
(the spaces Quillen constructed are the underlying infinite loop spaces of these
K-theory spectra). For example, the symmetric monoidal category (under direct
sum) of finitely generated projective modules leads to the K-theory spectrum of
a ring, and the category of finite sets (under disjoint union) produces the sphere
spectrum. If the input category has a second symmetric monoidal product which
suitably distributes over the ‘sum’, then algebraicK-theory produces commutative
ring spectra as output.

It was Waldhausen who pioneered the algebraic K-theory of structured ring
spectra, introduced the algebraic K-theory of a topological space X as the algebraic
K-theory of the spherical group ring S[ΩX ] = Σ∞ΩX+ and established close links
to geometric topology, see [58]. Waldhausen could deal with such ring spectra, or
their modules, in an unstable, less technical fashion before the modern categories
of spectra were found: his first definition of the algebraic K-theory of a ring
spectrum mimics Quillen’s plus-construction applied to the classifying space of
the infinite general linear group. Similarly, Bökstedt [6] (in cooperation with
Waldhausen) defined topological Hochschild homology using so-called Functors with

Smash Product, which were only later recognized as the monoids with respect to
the smash product of simplicial functors [30]. In any event, a good bit of the
development of A∞-ring spectra was motivated by the applications in algebraic
K-theory.

Later, Waldhausen developed one of the most flexible and powerful K-theory
machines, the S•-construction [59] which starts with a category with cofibrations

and weak equivalences (nowadays often referred to as a Waldhausen category).
Originally, Waldhausen associated to this data a sequential spectrum and indi-
cated [59, p. 342] how a categorical pairing leads to a smash product pairing on
K-theory spectra. The S•-construction can be applied to a category of cofibrant
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highly structured module spectra. Applying this to Eilenberg-Mac Lane ring spec-
tra gives back Quillen K-theory, and applied to spherical group rings of the form
S[ΩX ] gives an interpretation of Waldhausen’s A(X).

Hesselholt eventually recognized that the iterated S•-construction gives K-
theory as a symmetric spectrum and that it turns good products on the input
category into symmetric ring spectra [16, Prop. 6.1.1]. Elmendorf and Mandell [15]
have a different way of rigidifying the algebraic K-theory of a bipermutative cat-
egory into an E∞-symmetric ring spectrum.

Units of a ring spectrum. One of the more subtle generalizations of a classi-
cal construction is that of the units of a ring spectrum. The units of a structured
ring spectrum form a loop space, and in the presence of enough commutativity (i.e.,
for E∞- or strictly commutative ring spectra), the units even form an infinite loop
space. These observations are due to May and are highly relevant to orientation
theory and bordism. A recent application of these techniques is the construction by
Ando, Hopkins and Rezk, of E∞-maps MO〈8〉 → tmf from the string-cobordism
spectrum to the spectrum of topological modular forms which realize the Witten
genus on homotopy groups [21, Sec. 6] (this refines earlier work of Ando, Hopkins
and Strickland on the MU〈6〉-orientation of elliptic spectra [20, 2, 3]). The details
of this are not yet publicly available, but see [21, Sec. 6], [27], [40].

Waldhausen’s first definition of algebraic K-theory of a ring spectrum is based
on Quillen’s plus-construction and uses the units of matrix ring spectra. While for
a commutative ring in the classical sense, the units are always a direct summand
in the first K-group, Waldhausen showed that the units of the sphere spectrum
do not split off its K-theory spectrum, not even on the level of homotopy groups.
This phenomenon has been studied systematically by Schlichtkrull [45], producing
non-trivial classes in the K-theory of an E∞-ring spectrum from homotopy classes
which are not annihilated by the Hopf map η.

Homotopical algebraic geometry. In this Arbeitsgemeinschaft, we are try-
ing to convey the idea that the foundations of multiplicative stable homotopy
theory are now in good shape, and ready to use. In fact, the machinery allows
to ‘glue’ commutative ring spectra into more general algebro-geometric objects,
making them the affine pieces of ‘schemes’ or even ‘stacks’. This area is becoming
known as homotopical algebraic geometry, and one set of foundations has been
pioneered by Toën and Vezzosi in a series of papers [53, 54, 55, 56].

Another promising line of research is to investigate small (e.g., Deligne-Mum-
ford) stacks which come equipped with a flat morphism to the moduli stack of
formal groups; one might hope to lift the graded structure sheaf of such a stack to
a sheaf of ring spectra and capture a snapshot of stable homotopy theory. In this
context, one may think of the generalized algebro-geometric objects as an ordinary
scheme or stack, together with a sheaf of E∞-ring spectra, which locally looks like
‘Spec’ of an E∞-ring spectrum. The structure sheaf of the underlying ordinary
stack can be recovered by taking π0 of the sheaf of ring spectra. It is essentially
by this program that Hopkins and his coworkers produced topological modular

forms (the ‘universal’ version of elliptic cohomology) and the recent work of Lurie
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shows that these ideas can be extended to almost any situation where the Serre-
Tate theorem on deformations applies. Here the flow of information goes both
ways: the number theory informs homotopy theoretic calculations, but surprising
algebraic phenomena, such as the Borcherds congruence in modular forms, have
natural homotopy theoretic explanations [21, Thm. 5.10].

While this is a ‘hot’ area in algebraic topology, the organizers decided not to
have talks about it in this AG because of the lack of publicly available literature
(but see [5, 17, 20, 21, 22, 27, 39]).

Rigidity theorem. After having discussed various models for the stable homo-
topy category, the last day of the AG will be devoted to its ‘rigidity’ property [49];
this says that the stable homotopy category admits essentially only one model.
More precisely, any model category whose homotopy category is equivalent, as
a triangulated category, to the homotopy category of spectra is already Quillen

equivalent to the model category of spectra. Loosely speaking, this says that all
higher order homotopy theory is determined by the homotopy category, a property
which is very special. Examples of triangulated categories which have inequivalent
models are given in [47, 2.1, 2.2] or [10, Rem. 6.8] (which is based on [44]).

In algebra, a ‘rigidity theorem’ for unbounded derived categories of rings is pro-
vided by tilting theory; it is usually stated in the form that if two rings are derived
equivalent, then, under a flatness assumption, there is a complex of bimodules X
such that derived tensor product with X is an equivalence of triangulated cate-
gories [41] (a reworking of this result in model category terms, which also removes
the flatness assumption, can be found in [10, Thm. 4.2]). Rigidity fails for cate-
gories of dg-modules over differential graded algebras [10, Rem. 6.8]. Incidentally,
neither for derived categories of rings nor for the stable homotopy category is it
known whether every derived equivalence lifts to a Quillen equivalence, or equiva-
lently, whether there are exotic self-equivalences of these triangulated categories.

Questions about rigidity and exotic models are related to the problem of whether
algebraic K-theory is an invariant of triangulated categories. Quillen equivalent
model categories have equivalent K-theory spectra [10, Cor. 3.10], [43], and in
special ‘rigid’ situations, the triangulated category determines the model, and
thus the algebraic K-theory.
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[11] B. Dundas, O. Röndigs, P. A. Østvær, Enriched functors and stable homotopy theory. Doc.
Math. 8 (2003), 409–488.
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Abstracts

Background on Spectra

Dale Husemöller

We study the homotopy category of spectra as some background and motivation
leading up to the study of the Bousfield-Friedlander category of spectra.

The suspension functor Σ : (top/∗)→ (top/∗) is the reduced product given by
ΣX = S1 ∧X . The stable maps {X,Y } from X to Y are given by

{X,Y } = lim
−→

k

[ΣkX,ΣkY ].

In order to study conditions when [X,Y ] → [ΣX,ΣY ] and [X,Y ] → {X,Y } are
bijections, we use the adjoint functor relation Σ ⊣ Ω and the adjunction unit
β : Y → ΩΣ(Y ).

Theorem. Let X be a path-connected space with H∗(X, k) flat as a k-module.
Then the morphism of coalgebras

H̃∗(β) : H∗(Y, ∗; k) → H∗(ΩΣ(Y ); k)

induces a morphism of Hopf algebras T (H̃∗(Y ; k)) → H∗(ΩΣ(Y ); k) which is an

isomorphism from the tensor Hopf algebra on the coalgebra H̃∗(Y ; k) onto the
Hopf algebra H∗(ΩΣ(Y ); k).

Theorem. If X is an n-dimensional CW-complex, and if Y is r-connected, then
the maps [X,Y ]→ [ΣX,ΣY ]→ {X,Y } are bijections for n < 2r−2 and surjective
for n < 2r − 1.

Definition. A spectrum X• is a sequence of spaces with a sequence of morphisms
S1 ∧Xn → Xn+1 for all n ∈ N.

Definition. For a space X and a spectrum Y• we define

{X,Y•} = lim
−→

k

[ΣkX,Yk]

with transition morphisms the composition of Σ and the morphism induced by the
spectrum structure morphism

[ΣkX,Yk] → [Σk+1X,S1 ∧ Yk] → [Σk+1X,Yk+1] .

Example. If Y• is the suspension spectrum S• ∧ Y on a space Y , then {X,Y } =
{X,S• ∧ Y }. The sphere S• is a spectrum with the natural folding morphism
S•∧S• → S•. The Eilenberg-Mac Lane sequenceK(π) = K(π, n)n∈N is a spectrum
freely generated by S1 ∧ K(π, n) → K(π, n + 1), the adjoint to the homotopy
equivalence K(π, n)→ ΩK(π, n+ 1).
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With this notion of stable maps into a spectrum we can define generalized
homology and cohomology with values in a spectrum. We introduce a graded
version of {X,Y•} which leads to the grading in cohomology and homology.

For a space X and a spectrum Y• we denote

{X,Y•}n = lim
−→

k

[Σk+nX,Yk] and {X,Y•}
n = lim
−→

k

[Σk−nX,Yk] .

Since the upper and lower indexing are related as usual by a sign {X,Y•}n =
{X,Y•}−n, the graded abelian group {X,Y•} is defined for all n ∈ Z.

Definition. Let E• be a spectrum. The (reduced) cohomology and homology of
X with values in the spectrum E• are Hn(X,E•) = {X,E•}n and Hn(X,E•) =
{S0, X ∧ E•}n where (X ∧ E•)n = X ∧ En.

Remark. The exact sequence property follows from the two exact sequence prop-
erties of the graded abelian groups {X,Y } and {X,Y•} related to the mapping
sequence

X
f
−→ Y

a
−→ C(f)

b
−→ ΣX.

It has the form of an exact triangle

{X,Z•}
∗

deg+1
''NNNNNNNNNNN

oo {Y, Z•}
∗

{C(f), Z•}∗

88ppppppppppp

for generalized cohomology. For generalized homology, we use

X ∧E• → Y ∧ E• → C(f) ∧ E•

giving an exact triangle

{S0, X ∧E•}∗
hh

deg−1 RRRRRRRRRRRRR

// {S0, Y ∧ E•}∗

vvlllllllllllll

{S0, C(f) ∧ E•}∗ .

Remark. In the case of E• = K(π)• we obtain H∗(X,π) = H∗(X,K(π)•) and
H∗(W,π) = H∗(W,K(π)•) .

While ordinary cohomology and K-theory are basic generalized cohomology
theories which can be studied rather directly, it is bordism homology which made
the study of spectra an urgent matter rather early in the study of generalized
homology, for imbeddings of manifolds in Euclidean space give homotopy elements
in Thom spaces, and the Thom spaces T (Br) are related by a suspension, so:

Theorem. The bordism group of n-dimensional (B•, φ•)-manifolds is isomorphic
to {Sn;T (B•)} = lim

−→
k

πn+r(TBr) .
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Model Categories I

Daniel Müllner

Model categories form the common basis for all kinds of homotopy theories. In fact,
the axioms for a model category are quite restrictive so that strong conclusions can
be drawn and there is much structure to be discovered. Besides, model categories
help to overcome a set-theoretic problem when one wants to localize a category
with respect to a collection of morphisms.

A model structure on a category consists of three specified classes of mor-
phisms—fibrations, cofibrations and weak equivalences—which fulfill certain axi-
oms. I presented topological and algebraic examples of model categories. After
this, I explained all necessary notions for defining the homotopy category Ho(C)
of a model category C: cofibrant and fibrant objects, cylinder object, path object,
left/right homotopy, cofibrant and fibrant replacement functors. One important
slogan to be learned from these constructions is that in general one cannot control
the morphisms HomC(X,Y ) between two arbitrary objects well enough, but if
X and Y are fibrant and cofibrant then the morphisms and homotopy relations
behave conveniently.

There is a functor γ : C → Ho(C) which is the identity on objects but sends every
map to its cofibrant and fibrant replacement map. The main theorem presented
in the talk was the following (see [1, Thm. 4.6], [2, Thm. I.1]):

Theorem. Let C be a model category and W ⊆ C the class of weak equivalences.
Then the functor γ : C → Ho(C) is a localization of C with respect to W . Moreover,
there is an equivalence of categories between Ho(C) and πCcf , the category of both
cofibrant and fibrant objects of C and homotopy classes of maps.

In the last part, I explained Quillen functors and Quillen equivalences. Given
an adjoint pair of functors between model categories

F : C −→←− D : G

The left adjoint F is called a left Quillen functor if it preserves cofibrations and
trivial cofibrations (i. e., maps which are both cofibrations and weak equivalences).
An equivalent condition is that G preserves fibrations and trivial fibrations. G is
then called correspondingly a right Quillen functor. Given this, the total left and
right derived functors exist (see [1, Thm. 9.7.]):

LF : Ho(C) −→←− Ho(D) : RG

If, in addition, a map f : X → G(Y ) is a weak equivalence in C if and only if
its adjoint f ♭ : F (X) → Y is a weak equivalence in D, then LF and RG are
equivalences of categories, inverse to each other. The adjunction between F and
G is then called a Quillen equivalence.
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Model categories II

Thorsten Eppelmann

This talk was a continuation of the previous talk on model categories. The goal
was to learn more examples of model categories and Quillen equivalences.

The first example was a model category structure on the category of simplicial
sets SSet [4, Ch II.3, Thm 3],[3, Ch 3.2]. Therefore, we quickly recalled the
definition of simplicial sets and the geometric realization functor | · | to topological
spaces T op. The latter is used to define weak equivalences of simplical sets.

f : X → Y is a weak equivalence ⇔ |f | : |X | → |Y | is one.

The cofibrations are given by morphisms which are injective in each dimension,
and the fibrations by Kan fibrations.

These three classes then define a model category structure on SSet, and the
geometric realization functor is part of a Quillen equivalence with its right adjoint
being the singular functor which assigns to a topological space the simplicial set
of its singular simplices.

Next, we discussed the small object argument, which in many instances gives a
useful tool to provide the factorizations required in the axioms of a model category
[4, Ch II.3, Lemma 3],[2],[3, Thm 2.1.14].

Given a set of maps F = {fi : Ai → Bi | i ∈ I} with all Ai sequentially small,
any map p : X → Y can be factored as P = s ◦ t such that s : X ′ → Y has the
right lifting property with respect to all maps fi.

Using the characterization of cofibrations in SSet as those maps having the right
lifting property with respect to the maps ∂△n →֒ △n and a similar characterization
of trivial cofibrations, it was indicated how to construct the required factorizations.

Finally, we constructed a model category structure on the category of sequen-
tial spectra introduced in the first talk [1]. We treated the cases of spectra of
topological spaces and of simplicial sets simultaneously. A map f : X → Y of
sequential spectra is a weak equivalence if it induces isomorphisms on the stable
homotopy groups, it is a cofibration if the induced maps

X0 → Y0 and Xn+1 ∐S1∧Xn
S1 ∧ Yn → Yn+1

are cofibrations in T op or SSet respectively. The fibrations are all maps which
have the right lifting property with respect to all trivial cofibrations. We closed
with a more explicit description of fibrations.
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Symmetric spectra

Miguel A. Xicoténcatl

A symmetric spectrum X is a sequence X0, X1, . . . , Xn, . . . ∈ S∗ of pointed sim-
plicial sets, together with structure maps σ : S1 ∧ Xn → Xn+1 and for all n ≥ 0
a basepoint preserving action of the symmetric group Σn on Xn such that the
composition

σ ◦ (S1 ∧ σ) ◦ . . . (Sp−1 ∧ σ) : Sp ∧Xn −→ Xp+n

is Σp×Σn-equivariant. The category SpΣ of symmetric spectra is bicomplete and
simplicial, but the main difference from the category of sequential spectra is the
existence of a nice symmetric monoidal smash product ∧.

Every symmetric spectrum has an underlying sequence X0, X1, . . . of pointed
simplicial sets with a basepoint preserving action of Σn on Xn; these are called
symmetric sequences and with the obvious maps they also form a category SΣ

∗ .
For X,Y ∈ SΣ

∗ define their tensor product X ⊗ Y by

(X ⊗ Y )n :=
∨

p+q=n

(Σn)+ ∧Σp×Σq
(Xp ∧ Yq)

This is a symmetric monoidal product in SΣ
∗ , having as unit the sequence e =

(S0, ∗, ∗, . . . ) and an appropriate twist isomorphism τ : X ⊗ Y → Y ⊗X (see [1]).
If S = (S0, S1, . . . ) is the underlying symmetric sequence of the sphere spectrum,
then: (i) S is a commutative monoid on SΣ

∗ and (ii) the category SpΣ is naturally
isomorphic to the category of left S-modules. Now, for X,Y ∈ SpΣ define X ∧ Y
as the coequalizer in symmetric sequences of the natural maps

X ⊗ S⊗ Y
1⊗m
−−−−→
−−−−→

mτ⊗1

X ⊗ Y

The main result here is that ∧ is a closed symmetric monoidal product on the
category SpΣ. Finally, a symmetric ring spectrum is a symmetric spectrum R
together with morphisms η : S → R and µ : R ∧ R → R , called the unit
and multiplication map, which satisfy the usual associativity and unit conditions.
Some examples of symmetric ring spectra are: the Eilenberg–Mac Lane spectrum
HZ, monoid ring spectra, the cobordism spectrum MO (see [3]) and topological
KO-theory (see [2]).
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The model structure on symmetric spectra

Philipp Reinhard

We describe here the stable model structure on the category SpΣ of symmetric
spectra following [1]. There are many model category structures on SpΣ, all with
their own properties, advantages and disadvantages, but we will only discuss the
stable model structure.

Its main properties are the following points:

Theorem. It is a model structure such that:

• SpΣ is Quillen-equivalent to the category of Bousfield-Friedlander-spectra,
where the right adjoint is given by the forgetful functor. In particular, the
homotopy category of SpΣ is equivalent to the stable homotopy category,
which has been discussed in the first talk.
• All suspension spectra, in particular the sphere spectrum S, are cofibrant.
• There are compatibility properties with the symmetric monoidal smash

product ∧ on SpΣ, so that for a cofibrant spectrum X the functor X ∧ −
respects stable equivalences and the model structure gives rise to model
structures on the category of R-modules and R-algebras for R a symmetric
ring spectrum, which will be discussed in the next talk.

The exact definition of the stable model structure is given in [1], sections 3.1 and
3.4. The stable equivalences are not the π∗-isomorphisms as in the usual model
structure on the category of Bousfield-Friedlander-spectra, but are the maps which
induce isomorphisms on cohomology theories (see below for a precise statement),
which includes the π∗-isomorphisms. The stable cofibrations are then defined to
be the maps with the left lifting property with respect to the maps which are both
levelwise Kan-fibrations (called level fibrations) and levelwise weak equivalences
(called level weak equivalences), whereas the stable fibrations are defined to be
the maps with the right lifting property with respect to the maps that are stable
cofibrations and stable equivalences.

Proposition. We have the following characterisations:

• The stably fibrant objects are exactly the Ω-spectra.
• The stable fibrations which are stable equivalences are the maps which are

level fibrations and level weak equivalences.
• Denote by S = {∗, S1, S2, . . .} the spectrum which equals the sphere

spectrum in positive degree and is a single point on level zero. A sym-
metric spectrum X is stably cofibrant if and only if for all n the map
LnX = (S ∧X)n −→ Xn is a monomorphism such that Σn acts freely on
the simplices not in the image.
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• A stable equivalence is a map f : X → Y so that for any Ω-spectrum E,
the map

E0(f) : E0(Y cof) −→ E0(Xcof)

is an isomorphism, where (−)cof is a cofibrant replacement functor and
E0 denotes homotopy classes of morphisms of symmetric spectra. Equiv-
alently, it is a map so that E0(Y ) −→ E0(X) is an isomorphism for any
injective Ω-spectrum E. Or equivalently it is a map so that the induced
map of simplicial sets MapSpΣ(Y,E) −→ MapSpΣ(X,E) is an isomorphism
for any injective Ω-spectrum E.
• The weak equivalences between Ω-spectra are the π∗-isomorphisms.

References
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Symmetric ring and module spectra

Nathalie Wahl

Let C be a monoidal model category satisfying the monoid axiom. Examples of
such categories are the category of simplicial sets (SSets,×), the category of chain
complexes over a commutative ring (Ch,⊗), the category of symmetric spectra
(SpΣ,∧).

Given a monoid R in C, model structures for the categories of R-modules and R-
algebras (when R is commutative) are directly inherited from the model structure
of C ([3, Cor. 5.4.2, 5.4.3] and [6, Thm. 4.1]). The weak equivalences and fibrations
are defined to be the weak equivalences and fibrations of the underlying objects
in C and the cofibrations are then defined to be the maps having the left lifting
property with respect to the acyclic fibrations. Note that the category of monoids
in C is the category of S-algebras, where S is the unit of C.

The above procedure does not work to produce a model structure on the cat-
egory of commutative monoids. Indeed, in the case of symmetric spectra, the
existence of a lift of the stable model structure to commutative ring spectra using
the stable fibrations and weak equivalences of the underlying spectra would imply
that QS0 is homotopy equivalent to a product of Eilenberg-Mac Lane spaces, and
this is known not to be the case. This is a reincarnation in model category terms
of Lewis’ observation [4].

To obtain a model structure on the category of commutative symmetric ring
spectra, we modify the stable model structure on SpΣ. The positive stable model
structure on SpΣ has cofibrations the stable cofibrations which are moreover iso-
morphisms in level 0. The weak equivalences are the stable equivalences and the
fibrations are defined via the right lifting property. The fibrant objects in the
positive stable structure are the Ω-spectra “from level 1 onwards”. (See [5, Sec.
15].)

The positive stable model structure lifts to the category of commutative sym-
metric ring spectra using the fibrations and weak equivalences of the underlying
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spectra [5, Thm. 15.1]. More generally, let P be an operad in the category of
simplicial sets and consider the category of P-algebras in SpΣ, where P acts on a
spectrum by taking the smash product of simplicial sets levelwise [2, Thm. 1.2.3].
As for commutative rings, the positive stable model structure lifts to the category
of P-algebras. If P is an E∞-operad, or actually any operad such that P(n) is
contractible for each n, then the category of P-algebras in SpΣ is Quillen equiva-
lent to the category of commutative symmetric ring spectra ([2, Thm. 1.2.4] or [1,
Thm. 1.4]). This contrast with the situation for topological spaces is explained by
the following fact: for a cofibrant object X in SpΣ, the action of the symmetric
group Σn on X∧n = X ∧ · · · ∧X is free.
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S-modules

Markus Spitzweck

The theory of S-modules developed in [1] is a vast improvement of the theory of
coordinate-free spectra used in [3] as a model for stable homotopy theory. Most
importantly it has a point-set level symmetric monoidal smash product which can
be used to develop a homotopically well behaved theory of modules, algebras and
commutative algebras.

Fix a universe U , i. e., a topological real inner product space isomorphic to
R∞ with the standard scalar product and the union topology. A coordinate-free
spectrum E indexed on U in the sense of [3, I. Definition 2.1] is an assignment
V 7→ EV , where V runs through all finite dimensional subspaces of U , together

with homeomorphisms σV,W : EV
∼=
→ ΩW−V EW for V ⊂ W which satisfy a

transitivity condition for V ⊂ W ⊂ Z. Here W − V denotes the orthogonal
complement of V in W .

The category of spectra S enjoys many nice properties, in particular it is a
topologically enriched model category, with weak equivalences the levelwise weak
equivalences, whose homotopy category is the stable homotopy category. It has the
disadvantage that there is no point-set level symmetric monoidal smash product
which lifts the smash product on the homotopy category.
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For i ∈ N let L(i) be the space of isometric embeddings of U i into U endowed
with the function space topology. Together these spaces form a topological operad
L. The notion of an L-spectrum uses the twisted half-smash product defined in [1,
Appendix A.], which assigns to any spectrum E indexed on U i and map A→ L(i)
a spectrum A⋉ E indexed on U .

The endofunctor E 7→ LE := L(1) ⋉ E of S has naturally the structure of a
monad.

Definition. [1, I. Definition 4.2 and Definition 5.1]

• An L-spectrum is defined to be an L-algebra.
• The smash product of two L-spectra M and N is

M ∧L N := L(2) ⋉L(1)2 (M ∧N),

where M ∧N is the external smash product.

The special properties of the linear isometries operad imply that the smash
product of L-spectra is commutative and associative [1, I. Proposition 5.2 and
Theorem 5.5]. Moreover there is always a natural map S∧LM →M [1, Proposition
8.3].

Definition. [1, II. Definition 1.1] An S-module is an L-spectrum M such that the
map S ∧L M →M is an isomorphism.

The smash product ∧L defines a closed symmetric monoidal structure on the
category of S-modules [1, II. Theorem 1.6].

One of the main results of the theory of S-modules is the following

Theorem. [1, Chapter VII.] The category MS of S-modules is a finitely gener-
ated symmetric monoidal topological model category with generating cofibrations
and trivial cofibrations those induced from the standard ones on spaces (see [2,
Definition 2.4.3 and Theorem 2.4.25]) by applying the functors S ∧L LΣ∞

V where
the right adjoint of the evaluation at V functor is denoted by Σ∞

V .
For a fixed commutative S-algebra R the model structure on MS generates

topological model structures on the categories of R-algebras, commutative R-
algebras and R-modules, the latter one is symmetric monoidal. For an R-algebra
A the category of A-modules is a model category enriched over R-modules. Maps
of (commutative) algebras define Quillen adjunctions, and these are Quillen equiv-
alences for weak equivalences.

The theory of S-modules compares nicely to the theory of symmetric spectra
by the following result of S. Schwede:

Theorem. [4, Main Theorem] Any cofibrant replacement S−1
c of S−1 in MS

together with a weak equivalence S−1
c ∧LS

1 → S defines a lax symmetric monoidal
functor from MS to symmetric spectra of spaces whose left adjoint is symmetric
monoidal. This adjoint pair of functors is a Quillen equivalence for the positive
model structure on symmetric spectra. There are induced Quillen equivalences for
model categories of algebras, commutative algebras and modules.



2592 Oberwolfach Report 46/2005

References

[1] A. D. Elmendorf, I. Kriz, M. A. Mandell, J. P. May, Rings, modules, and algebras in stable
homotopy theory. With an appendix by M. Cole, Mathematical Surveys and Monographs,
47, American Mathematical Society, Providence, RI, 1997, xii+249 pp.

[2] M. Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American
Mathematical Society, Providence, RI, 1999, xii+209 pp.

[3] L. G. Lewis, Jr., J. P. May, M. Steinberger, Equivariant stable homotopy theory, Lecture

Notes in Mathematics, 1213, Springer-Verlag, 1986.
[4] S. Schwede, S-modules and symmetric spectra, Math. Ann. 319 (2001), 517-532.

Other types of spectra

Halvard Fausk

To construct the category of symmetric spectra with values in based simplicial
sets one starts out with the diagram category D of finite sets and all bijections
(it is convenient to choose an equivalent small category, for example the one with
objects [n] = {1, 2, . . . , n} for n > 0 and ∅ for n = 0.) The category D has a
symmetric tensor product given by disjoint union. One then considers D-diagrams
in the category of based simplicial sets. The category of such D-spaces is given
the levelwise (projective) model structure; the weak equivalences are the levelwise
weak equivalences and the fibrations are the levelwise fibrations. The category
of D-spaces is a symmetric tensor category [1]. Next one considers a symmetric
monoid S in the category of D-spaces given by sending the set [n] to the smash
product (S1)n, where S1 is the simplicial 1-sphere ∆1/∂∆1. Symmetric monoids
in the category of D-spaces are equivalent to strict tensor functors from D to the
category of based simplicial sets. The symmetric spectra are the modules over
S. One can now form a symmetric closed tensor category of S-modules and give
it a model structure via the forgetful right adjoint functor from the category of
S-modules to the model category of D-spaces.

Sequential spectra (earlier: prespectra) are defined in a similar way using the
subcategory of D consisting of all identity maps. The functor S is not a strict
tensor functor in this case, so the category of sequential spectra is not a symmetric
monoidal category. The insight to make use of a strict monoidal sphere functor S
to construct a symmetric tensor category of spectra is due to Jeff Smith.

So far the framework is formal and can be formulated in a very general setting.
This has been done by O. Renaudin [6]. He considers a symmetric tensor indexing
category D enriched over a symmetric closed tensor model category V , together
with a V-enriched strict tensor functor S from D to V . The spectra are V-enriched
functors D → V that are S-modules. He also considers the process of localizing
the levelwise model category to form a stable model category of diagram spectra.
The passage to a stable model category has also been studied by M. Hovey [3].
The process of forming the local model structure is subtle and often done case by
case.

There is a stable model structure on symmetric spectra so that the stable fibra-
tions are the levelwise fibrations whose levelwise (homotopy) fibers are Ω-spectra,



AG: Modern Foundations for Stable Homotopy Theory 2593

and so that the cofibrations are the same as the cofibrations in the projective
model structure. The weak equivalences in the stable model category are called
stable equivalences. The stable homotopy groups of a spectrum X are defined by
π∗(colimnΩnX([n])). A map between spectra that induces an isomorphism on the
stable homotopy groups is called π∗-isomorphism. All π∗-isomorphisms are stable
equivalences. The converse is not true for symmetric spectra, although it is true
for sequential spectra.

Symmetric spectra are well suited for generalizations by replacing the category
of simplicial sets by some other symmetric closed tensor model category. For
example one can form a category of symmetric spectra by using the (Quillen)
model category of based topological spaces instead of based simplicial sets. The
Quillen equivalence between simplicial sets and topological spaces gives a Quillen
equivalence between these two stable model categories of symmetric spectra.

There is a category of space valued diagram spectra, called orthogonal spectra,
that is often more convenient than the category of space valued symmetric spectra.
Interesting spectra like Thom spectra and K-theory are most naturally given as
orthogonal spectra. The diagram category for orthogonal spectra is the category of
finite dimensional real inner product spaces and linear isometries. This category
has a symmetric tensor product given by direct sum of vector spaces and it is
enriched over based topological spaces (add a disjoint base point). For various
constructions it is necessary to choose an equivalent small diagram category. This
is done by fixing a suitable universe of vector spaces.

There is a full inclusion of the diagram category of symmetric spectra into the
diagram category of orthogonal spectra. It is given by sending [n] to the free
real inner product space generated by [n]. The symmetric group Σn is natu-
rally a subgroup of the orthogonal group O(n). The strict tensor functor S from
the indexing category to the category of based topological spaces is given by the
one-point compactification. One can form a stable model category of orthogonal
spectra in the same way as for symmetric spectra. In this case it turns out that
the π∗-isomorphisms and the stable equivalences coincide. This is a consequence
of the fact that O(N)/O(n) is (n − 1)-connected for N ≥ n. This is in contrast
to the case of symmetric spectra where ΣN/Σn is a discrete space which is not
connected for N > n.

Orthogonal spectra are also well suited for equivariant generalizations [4]. Let
G be a compact Lie group. The diagram category D is the category of finite
dimensional orthogonal G-representations and orthogonal maps. (Variations are
obtained by considering various universes of G-representations). This category is
enriched over based G-spaces. The D-spaces are enriched D-diagrams into the
model category of based topological G-spaces (with weak equivalences the maps
whose H-fixed point maps are weak equivalences for all closed subgroups H of
G). The functor S is formed by the one-point compactification. The orthogonal
G-spectra are the S-modules in the category of D-spaces. There is a stable model
structure on the category of orthogonal G-spectra.
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One can also describe other space valued diagram spectra, for example sequen-
tial spectra and Segal’s Γ-spaces. The Γ-spaces are obtained by letting D be the
category of finite based sets with a symmetric tensor product given by smash
product of based sets. These two classical categories of spectra have serious draw-
backs: The category of sequential spectra is not a symmetric tensor category. The
category of Γ-spaces gives only connective spectra.

Inclusions of diagrams, and restriction of the monoid S, give restriction func-
tors between various categories of (space valued) diagram spectra. There are also
‘prolongation’ functors that are left adjoint functors to these restriction functors.
In particular, the restriction and prolongation functors give a Quillen equivalence
between the stable model structures of both symmetric and sequential spectra and
the stable model structure of orthogonal spectra. Γ-spaces are compared to con-
nective orthogonal spectra via a category of diagram spectra for a suitable diagram
category that contains both the finite based sets and the one-point compactifica-
tions of real vector spaces. These comparisons are discussed in [5].

Diagram spectra in motivic homotopy theory have been given by B. Dundas,
P.A. Østvær, and O. Röndigs [2].
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Algebraic K-theory

Markus Szymik

Waldhausen’s S.-construction associates a space |wS.C| to a category (C, w) with
cofibrations and weak equivalences, the algebraic K-theory space of (C, w), see [4].
He observed that this construction can be iterated in order to define a sequential
spectrum (|wC|, |wS.C|, |wS.S.C|, . . . ). In fact, a multi-simplicial version of the S.-
construction can be used to obtain a symmetric spectrum at one go. This version I
have presented, following [3], with details enough and to spare.

A rich source for categories with cofibrations and weak equivalences are model
categories. (This is so since the cofibrant objects in a model category automati-
cally satisfy the gluing property.) I have explained that Quillen equivalent model
categories have equivalent algebraic K-theory spectra, and gave a proof along the
lines of [1]. First one shows that a Quillen pair of functors induces an equivalence
between the classifying spaces of the categories with the weak equivalences. This
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shows that the zeroth spaces of the algebraic K-theory spectra are equivalent.
Then one shows that the categories of simplices in the S.-construction are equi-
valent to such categories where the previous argument can be applied. Conse-
quently, one obtains an equivalence of realisations, so that the first spaces of the
algebraic K-theory spectra are equivalent. The rest of the equivalence follows
either by iteration or by generalisation of these arguments.

As pointed out in [2], if E is a ring spectrum, a suitable category of E-module
spectra gives rise to the algebraic K-theory spectrum of E. I have mentioned
two special cases. On the one hand, if R is an ordinary ring, the algebraic K-
theory spectrum of the Eilenberg-Mac Lane spectrumHR is equivalent to Quillen’s
algebraic K-theory of R. (This follows from the fact that the model category
ofHR-module spectra is Quillen equivalent to the model category ofR-complexes.)
On the other hand, ifX is a space, the algebraicK-theory spectrum of the spherical
monoid ring S[ΩX ] is equivalent to the algebraic K-theory of X in the sense
of Waldhausen. Thus, while Quillen’s algebraic K-theory of ordinary rings and
Waldhausen’s algebraic K-theory of spaces have been around before the advent of
modern foundations for categories of module spectra, they now fit into the common
framework of algebraic K-theory of ring spectra.
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Power Operations

Niko Naumann

We started by introducing the Adams-Novikov spectral sequence based on a suit-
able generalized homology theory E

Es,t
2 = Exts,t

E∗E(E∗X,E∗Y ) ⇒ [X,Y ]Et−s

and then had a closer look at the E2-chart for the classical Adams spectral sequence
computing the stable stems at the prime 2

(1) Es,t
2 = ExtA∗

(F2,F2) ⇒ πs
∗ ⊗ Z2,

where A∗ = P (ξi) is the dual mod 2 Steenrod algebra. We then introduced the

elements hi ∈ E1,2i

2 dual to Sq2
i

and discussed the Hopf invariant one problem
and its solution, i. e., hi is a permanent cycle in (1) if and only if i = 0, 1, 2, 3.
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We then introduced power operations in the homotopy of a commutative S-
algebra X following [1]: For n ≥ 1 put

DnX := (EΣn)+ ∧Σn
X∧n,

the extended powers of X , and for i ≥ 0

Di
nX := (EΣn)i

+ ∧Σn
X∧n

where (EΣn)i denotes the i-skeleton. The multiplication of X induces maps

ξ : Di
nX −→ X.

Given α ∈ XN (Di
nS

n) one defines α∗ : πnX −→ πNX as

α∗(Sn f
−→ X) := (SN α

−→ X ∧Di
nS

n X∧Di
nf

−−−−−→ X ∧Di
nX

ξ
−→ X).

Using Milgram’s generalization of the Adams spectral sequence, we discussed
some of these operations and the relations among them, e.g. for n ≡ 1 (4) there is
an operation

h1P
n+1 : πs

n −→ πs
2n+2

such that 2(h1P
n+1)(x) = η2x2 for x ∈ πs

n and with η ∈ πs
1 the Hopf map.
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Units, Thom spectra, and orientation theory

Ulrich Bunke

The goal of this contribution to the Arbeitsgemeinschaft was to review the con-
struction of the spectrum of units of a structured ring spectrum and its applica-
tion to orientation theory. For an illustration we presented the discussion of the
J-homomorphism due to [8] combined with more recent results such as the infinite
loop Adams conjecture [2], [3].

We now describe the contents of the talk in more detail. In the first part we
explained the construction of the units gl1(E) of an E∞-spectrum E following [8].
The multiplicative structure of E gives the zeroth space E0 of E the structure
of an algebra over an E∞-operad. The subspace of invertible components is the
zeroth space GL1(E) := gl1(E)0 of the units. The whole spectrum gl1(E) is then
obtained by an application of a delooping machine, see e.g. [7].

The next topic of the talk were E-orientations of spherical fibrations. We ex-
plained the orientation sequence

Gl1(E)→ B(Gl1(E);G)→ BG
w
→ gl1(E)1,

where G is a classical group (in the sense of [8]) and B(Gl1(E);G) classifies
E-oriented stable spherical fibrations with reduction of the structure group to
G. The universal Stiefel-Whitney class w ∈ H1(BG, gl1(E)) is the universal ob-
struction against E-orientability of a stable spherical fibration with reduction of
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the structure group to G. We explained how this sequence can be viewed as
a fibre sequence of infinite loop spaces. An E-orientation of G is a split map
s : BG→ B(GL1(E);G). It is called good if it is an infinite loop map.

As an illustration we discussed the Atiyah-Bott-Shapiro kO-orientation of Spin.
In order to see that it is good, we first use results of [4], [5], [6] to construct a kO-
orientation of the Spin-bordism theory as a map of E∞-ring spectraMSpin→ kO.
As explained in [8], this leads to a good kO-orientation of Spin.

The last part of the talk was devoted to the J-theory diagram of [8]. The goal
was to understand the splitting (as infinite loop spaces)

J(p)
α
→ sl1(S)(p)

ǫ
→ J(p)

of the units of the sphere spectrum S, where p is an odd prime, J(p) is the fibre
of the (lift of the) Adams operation ψr : BO(p) → BSpin(p), and r generates the

units of Z/p2Z. We explained how the discussion of [8] can be simplified by the
knowledge of the infinite-loop version of the Adams conjecture and the goodness
of the Atiyah-Bott-Shapiro orientation. The result of the calculation ([1] and
follow-ups) of the image of α was stated.
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Complex cobordism, formal groups, and MU-algebras

Jens Hornbostel

In the first part (based on the textbooks of Switzer [7] and Ravenel [5]), we compute
the homology groups and then - using the HFp-based Adams spectral sequence
introduced in a previous lecture - the p-completed homotopy groups of the Thom
spectrum MU . The E2-term is given by Exts,t

A∗
(Fp, H∗(MU,Fp)), where A∗ is

the dual Steenrod algebra. For p 6= 2, there is an isomorphism of graded Hopf
algebras A∗

∼= E ⊗ C, where E is an exterior algebra on generators τ0, τ1, ... with
deg(τi) = 2pi − 1 and C = Fp[ξ1, ξ2, ...] with deg(ξi) = 2(pi − 1). Moreover, the
ring spectrum MU contains a direct summand BP such that H∗(BP,Fp) ∼= C.
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The isomorphism of graded A∗-comodules H∗(MU,Fp) ∼= C ⊗ Fp[ui|i 6= pt − 1]
together with some homological algebra of A∗-comodules computes the E2-term
of the spectral sequence and shows it degenerates, thus yielding the p-completed
homotopy groups of MU . By a theorem of Milnor and Novikov, there is even an
isomorphism of graded rings π∗(MU) ∼= Z[x1, x2, ...] with deg(xi) = 2i.

In the second part, we give the definition of an oriented cohomology theory fol-
lowing Adams [1] and explain how these give rise to one-dimensional commutative
formal group laws. Then we state the theorems of Lazard and Quillen which say
that the universal fromal group law is defined over the coefficient ring MU∗ com-
puted above [1, sections 7 and 8]. We also mention that BP∗ carries the universal
p-typical formal group law. Then we provide some other examples of orientable
theories, including the Johnson-Wilson spectrum E(n) and the Morava-K-theory
spectrum K(n) arising in chromatic homotopy theory.

In the last part, we sketch how inverting and killing elements on coefficient
rings of strictly associative and commutative ring spectra such as MU lifts to the
ring spectrum itself [2, chapter 5]. We conclude by stating some theorems about
the question when the so-obtained spectra are still MU -ring-spectra [2, V.3.2], [6,
Proposition 2.8] and even strictly associative [3, Corollary 5.10],[4]. We refer to
the next lecture for obstruction theories that are used for proving such results.
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Obstruction theories

Kathryn Hess

Let (E, µ) be a homotopy-commutative, homotopy-associative ring spectrum. Let
F (−,−) denote the function spectrum functor. The endomorphism operad of E is
the symmetric sequence of spectra End(E) such that End(E)(n) = F (E∧n, E) for
all n ≥ 0, endowed with the obvious composition operations. An E∞-structure on
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(E, µ) consists of a morphism of operads E → End(E) extending µ, where E is an
E∞-operad, i.e., a cofibrant replacement of the commutative operad.

There are two well-known obstruction theories, due to Goerss and Hopkins [3]
and to Robinson and Whitehouse [9, 10, 11], that can be applied to determining
whether (E, µ) admits an E∞-structure. As established by Basterra and Richter
[2], the two theories lead to isomorphic obstruction groups. Due to time limi-
tations, only the theory of Robinson and Whitehouse was treated in this talk.
Concerning Goerss-Hopkins theory, we mention here only that the essential idea
is to calculate the homotopy type of the moduli space of realizations of E∗E as a
commutative E∗-algebra.

Let Λ denote a commutative ring with unit. Let Ln denote the free Lie algebra
on n generators over Λ, with Lie(n) the submodule spanned by Lie monomials
in which each generator appears exactly once, which admits an obvious action of
Σn on the left. Let Lie(n)∗ denote the Λ-dual of Lie(n), with its inherited right
Σn-action.

Let Γ denote the category of finite, based sets and basepoint-preserving maps.
Let Φ : Γ → ΛMod be any functor, where Λ is a commutative ring. Motivated
by the geometry of their obstruction theory, as outlined below, Robinson and
Whitehouse define a bicomplex Ξ(Φ) of Λ-modules, of which the qth line is

Ξ(Φ)∗,q = B(Lie(q + 1)∗,Λ[Σq+1],Φ[q + 1]),

the two-sided bar construction. The horizontal differential is that of the bar con-
struction, while the vertical differential has an intricate definition in terms of
certain canonical surjections among finite sets. They then define HΞ∗(Φ) to be
the homology of the total complex of Ξ(Φ), which Robinson [9] and Pirashvili and
Richter [6] proved to be isomorphic to the stable homotopy of Φ.

Let R be a commutative, graded algebra. Let Λ be a commutative R-algebra
and M a Λ-module. The Loday functor L(Λ|R;M) : Γ → ΛMod is specified on
objects by L(Λ|R;M)[n] := Λ⊗n ⊗ M . The gamma homology HΓ∗(Λ|R;M) of
the pair (Λ, R) with coefficients in M is then HΞ∗

(
L(Λ|R;M)

)
, while its gamma

cohomology HΓ∗(Λ|R;M) is defined to be the cohomology of the cochain complex
HomΛ

(
TotΞ

(
L(Λ|R; Λ),M

)
. Note that gamma homology and cohomology inherit

a second, internal grading from the grading on R, Λ and M .
Within the framework of Robinson-Whitehouse obstruction theory, we work

with the following E∞-operad. Let E ′ denote the Barrat-Eccles operad, i.e.,
E ′(n) = EΣn, the free, contractible Σn-space, which admits a natural, increas-
ing filtration by skeleta .. ⊆ F jEΣn ⊆ F j+1EΣn ⊆ . . . . Let T denote the tree

operad, where T (n) is the space of isomorphism classes of labeled n-trees, which is
a contractible, finite, cubical complex. The E∞-operad we need is then E := E ′×T ,
which admits a diagonal filtration, given by

(
∇nE

)
(k) := Fn−kEΣk × T (k). An

n-stage µ(n) for an E∞-structure on (E, µ) consists of a set of appropriately com-

patible maps {µk :
(
∇nE

)
(k)→ End(E)(k) | k ≤ n}, agreeing with µ for k = 2.

Let R = E∗ and Λ = E∗E. The ring spectrum (E, µ) satisfies the perfect

universal coefficient formula if Λ is R-flat, which implies that E∗(E
∧n) ∼= Λ⊗n,
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and if the natural homomorphism E∗(E∧n)→ HomR(Λ⊗n, R) is an isomorphism
for all n.

Theorem (Robinson-Whitehouse [9, 10, 11]). Suppose that (E, µ) satisfies the
perfect universal coefficient formula. Let µ(n) be an n-stage for (E, µ). There is a

canonical cocycle θ(µ(n)) in TotΞn,2−n
(
L(Λ|R;R)

)
such that

• θ(µ(n)) = 0 if and only if there is an (n+ 1)-stage extending µ(n), and
• the cohomology class [θ(µ(n))] = 0 if and only if there is an (n + 1)-stage

extending the (n− 1)-stage underlying µ(n).

Hence, if HΓn,2−n(Λ|R;R) = 0 for all n ≥ 3, then (E, µ) admits at least one E∞-
structure. Furthermore, if HΓn,1−n(Λ|R;R) = 0 for all n ≥ 2, then (E, µ) admits
at most one E∞-structure.

Theorem 1 can be applied to proving that the nth Morava E-theory spectrum,
En, admits an E∞-structure, for all n ≥ 1. We begin by recalling the definition of
En.

Let k be a perfect field of characteristic p > 0, and let G be a formal group law
over k. Let G′ be a formal group law over a complete, local ring B with maximal
ideal m. Let π : B → B/m denote the projection morphism, and let i : k → B/m
be a homomorphism. The pair (G′, i) is a deformation of (k,G) if i∗G = π∗G′.
An isomorphism f : G1 → G2 of formal groups laws over B is a morphism of

deformations from (G1, i) to (G2, i) if π∗f = Idi∗G.

Theorem (Lubin-Tate [5]). For any finite-height, formal group law G over k,
there exists

• a complete, local ring E(k,G) with maximal ideal m,
• an isomorphism i : k → E(k,G)/m, and
• a formal group law F overE(k,G) that is a universal deformation of (k,G),

i.e., for every deformation (G′, i) over B of (k,G), there is a unique ring
homomorphism ϕ : E(k,G) → B such that there is a (unique) morphism
of deformations from (ϕ∗F, i) to (G′, i).

It follows from Theorem 2 that the automorphism group of G acts on E(k,G).
In particular, when G = Fn, the Honda formal group law of height n over Fpn , then
the group Sn of automorphisms of Fn, also known as the nth Morava stabilizer

group, acts on E(Fpn , Fn), as does Gal(Fpn/Fp).
We remark that E(Fpn , Fn) is isomorphic to WFpm [[u1, . . . , un−1]], where WFpm

is the ring of Witt vectors. The ring E(Fpn , Fn) is thus a complete, local ring,
with maximal ideal (p, u1, . . . , un−1).

Recall that MU∗ and its formal group law FMU classify formal group laws of
degree −2 [1]. Given a formal group (k,G), define a functor (Ek,G)∗ from topolog-
ical spaces to graded abelian groups by (Ek,G)∗(X) := (Ek,G)[u±]⊗MU∗

MU∗(X),
where the MU∗-module structure on (Ek,G)[u±] is induced by the map MU∗ →
(Ek,G)[u±] classifying the degree −2 formal group law F (x, y) = u−1F (ux, uy),
where deg u = 2.
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Theorem (Landweber [4]). Let R∗ be an MU∗-module. Let vk be the coefficient

of xpk

in the p-series of FMU . If R is Landweber exact, i.e., if (p, v1, v2, . . . ) is a
regular sequence in R∗ for each prime p, then the functor X 7→ R∗⊗MU∗

MU∗(X)
is a homology theory.

Theorem (Hopkins-Miller-Rezk [7]). The MU∗-module (Ek,G)[u±] is Landweber
exact.

Hopkins and Miller showed that (Ek,G)∗ could be realized naturally as a homo-
topy commutative A∞-ring spectrum, denoted Ek,G. In special case of the Honda
formal group law, we obtain the nth Morava E-theory or the nth Lubin-Tate spec-

trum, En := EFpn ,Fn
. The following deep results in homological algebra, due to

Hopkins and Miller [7], imply that En satisfies the perfect coefficient formula and
that therefore Robinson-Whitehouse obstruction theory applies.

• If E∗ and F∗ are Landweber exact MU∗-modules, then E∗F is flat over
E∗.
• If M is a flat (Ek,G)∗-module, then Exts(Ek,G)∗(M, (Ek,G)∗) = 0 for all
s > 0.
• The natural map E∗

n(En) → Hom(En)∗((En)∗En, (En)∗) is an isomor-
phism.

As proved by Goerss and Hopkins [3] and, later, by Richter and Robinson [8],

HΓ∗
(
(En)∗(En) | (En)∗; (En)∗

)
= 0.

Theorem 1 therefore implies that En admits a unique E∞-structure.
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Galois Theory

Holger Reich

The talk reported on Galois theory of structured ring spectra as developed by John
Rognes in [5]. Let G be a finite group. In elementary topology one has the notion
of a G-covering, or G-principal bundle: let p : X → Y be a map of topological
spaces and suppose G acts on X through maps over Y . Then this situation is
called a G-covering if

(1) The natural map X/G→ Y is a homeomorphism.
(2) The map G×X → X ×Y X , (g, x) 7→ (x, gx) is a homeomorphism.

If one transports this definition to affine algebraic geometry, or equivalently to
commutative ring theory, one is lead to the notion of a G-Galois extension of
commutative rings, compare [3] and [2]. Transported further to the framework of
commutative S-algebras, that was developed during the Arbeitsgemeinschaft, one
obtains the notion of a G-Galois extension of commutative S-algebras:

Let A be an S-algebra, let B be an A-algebra, and suppose G acts on B through
A-algebra maps, then this situation is called a G-Galois extension if

(1) The natural map A→ BhG is a weak equivalence.
(2) The map B ∧A B → F (G+, B), adjoint to the action map of G on the

right smash-factor, is a weak equivalence.

The Eilenberg-McLane functor applied to a Galois extension of commutative
rings yields a Galois extension of commutative S-algebras.

But new examples arise immediately. Taking Fp-cochains, i.e., applying the
contravariant functor F ((−)+, HFp) to a G-covering X → Y of topological spaces,
yields a G-Galois extension of HFp-algebras if the Eilenberg-Moore spectral se-
quence for the computation of H∗(X×Y X ; Fp) converges strongly. If one takes G
as a finite p-group and p : X → Y as the natural quotient map EG → BG, then
one obtains an example of a non-trivial Galois extension A → B. In this special
case B = F (EG+, HFp) ≃ HFp. Note that for commutative rings it would be
completely absurd to have a non-trivial Galois extension A→ B with B = Fp.

The complexification map KO → KU is a C2-Galois extension.
There is an analogue of the Main Theorem of Galois Theory in the new context.

John Rognes proves that the sphere spectrum S admits no non-trivial connected
Galois extension. This uses and is the analogue of the Minkowsky Theorem, which
makes the same statement for Z in the context of commutative rings.

If one works K(n)-locally (here K(n) is Morava K-theory) then the extension
LK(n)S→ En from the K(n)-local sphere to the Lubin-Tate theory En can be in-
terpreted as a profinite Galois extension. The Galois group is the Morava stabilizer
group, compare [4], [1]. A slight variant of En is conjectured to be a “separable
closure” of the K(n)-local sphere.
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Rigidity for the stable homotopy category

Constanze Roitzheim

If two model categories C and D are Quillen equivalent, then their homotopy cat-
egories Ho(C) and Ho(D) are equivalent. But if Ho(C) and Ho(D) are equivalent
categories, can anything be said about the underlying model structures? For the
stable homotopy category Ho(S) (i.e., the homotopy category of spectra) there is
the following result:

Theorem (Rigidity Theorem [2]). Let C be a stable model category and

Φ : Ho(S) −→ Ho(C)

be an equivalence of triangulated categories. Then S and C are Quillen equivalent.

This means that all higher homotopy information in S such as algebraic K-
theory or mapping spaces is already encoded in the triangulated structure of the
stable homotopy category. However, this theorem does not claim that the equiva-
lence Φ is the derived of a Quillen functor.

In this talk we will construct the most important category-theoretic tool used
in the proof of the Rigidity Theorem:

Theorem (Universal Property of Spectra [3]). Let C be a stable model category,
X ∈ C a fibrant and cofibrant object. Then there is a Quillen adjoint functor pair

X ∧ : S ⇆ C : Hom(X, )

with X ∧ S0 ≃ X .

Here S is the category of sequential spectra with the stable model structure of
Bousfield and Friedlander [1, Sec. 2].

The right adjoint Hom(X, ) will be constructed in the case that C is a simplicial
model category by using mapping spaces. Then we give the left adjoint and prove
that Hom(X, ) is a right Quillen functor.

In the set-up of the Rigidity Theorem this Quillen pair will provide the desired
Quillen equivalence. More precisely, for X = Φ(S0), the composition

Ho(S)
L(X∧ )
−−−−−→ Ho(C)

Φ−1

−−−→ Ho(S)
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of the left derived Quillen functor and the given equivalence Φ is an endofunctor of
the stable homotopy category sending the sphere to itself. Hence, as the following
talks will show, it must be a self-equivalence of Ho(S). Consequently, the derived
functor of the Quillen functor X ∧ is an equivalence of categories which means
that S and C are Quillen equivalent.
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Reduction to Adams filtration one

Marc A. Nieper-Wißkirchen

Recall the following theorem (see [2] and the previous talk):

Rigidity Theorem (S. Schwede). Let C be a stable model category. If the ho-
motopy category of C and the homotopy category of spectra are equivalent as
triangulated categories, then there exists a Quillen equivalence between C and the
model category of spectra.

We start by showing (following [2]) that the proof of this theorem can be reduced
to the proof of the following proposition by using the “universal property of the
category of Bousfield-Friedlander spectra” as given by the uniqueness theorem
in [3].

Proposition. Let F be an exact endofunctor of the stable homotopy category of
spectra which preserves infinite sums and takes the sphere spectrum S0 to itself, up
to isomorphism. If for every odd prime p the morphism F (α1) : F (S2p−3)→ F (S0)
is non-trivial, then F is a self-equivalence. �

(Here α1 ∈ π2p−3(S
0) ⊗ Zp is a generator of the first non-trivial mod-p stable

homotopy group of the sphere spectrum.)
The proposition itself is proven p-locally, one prime at a time, which is possible

because F as an exact functor commuting with infinite sums also commutes with
p-localisation. The problem is further reduced to the subcategory of finite p-local
spectra, i.e., one has to show that F restricts to an equivalence on these spectra.

By a cell induction argument on finite spectra from [1], this can be broken down
to the statement that the map

F : [S0
p,S

0
p]∗ → [F (S0

p), F (S0
p)]∗

is an isomorphism for all primes p, i.e., we have to check the action of F on all
elements of the stable homotopy of the sphere spectrum.
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We recall the definition of the mod-p Adams filtration of these stable homotopy
groups. It is a leading principle in the study of the stable homotopy groups that
they are generated (in terms of compositions, Toda brackets and higher homotopy
operations) by the elements of Adams filtration one, which we state in a very
precise manner usable for our purposes here, following [1]. The non-trivial elements
of Adams filtration one for p = 2 are the three Hopf maps η, ν, σ and for odd prime
p the “greek letter” map α1 mentioned above. All of them are generators of the
localised stable homotopy groups, in which they live, i.e., it remains to show that
F (γ) is a generator for γ one of the four elements.

For γ = α1, this is the assumption of the proposition above, which is the topic
of the next talk. For γ one of the Hopf maps, we give proofs by studying the
mod-2 Moore spectrum.

Finally, we hint how the existence of α1 can be deducted from the Adams
spectral sequence and how this element is detected by the mod-p Steenrod re-
duced power P 1. For purposes of the next talk, we also define the element
β1 ∈ πp(2p−2)−2(S

0) and show how all of its extensions to the mod-p Moore spec-
trum are detected by P p.
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Proof of the Rigidity Theorem

Anthony D. Elmendorf

We reduced the proof of the rigidity theorem of [1] to the following proposition.

Proposition. Let S be the category of spectra, let C be a stable model category,
and let Φ : Ho(S)→ Ho(C) be an equivalence of triangulated categories. Then for
every prime p, the map

α1 ∧ Φ(S0) : S2p ∧Φ(S0)→ S3 ∧Φ(S0)

is nontrivial.

Here α1 is the first p-torsion element in the homotopy of S3, which also gives,
after suspension, the first p-torsion element in the stable homotopy groups of
spheres. To prove this proposition, we introduced the idea of a k-coherent M -

action, where k is a positive integer and M is the Moore space with bottom cell
in dimension 2. This is a precise way of allowing the extended powers of M to act
on an object of C with k degrees of homotopy associativity; in particular, M acts
on itself via a canonical (p−1)-coherent action. The obstruction to extending this
action to a p-coherent action is precisely the class α1. Proceeding by contradiction,
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we assumed that the map α1∧Φ(S0) was trivial, and then used this to construct a
sequence E0, . . . , Ep−1 of spectra with Ei having cells in precisely dimensions jpq
and jpq+1 for 0 ≤ j ≤ i and where q = 2p−2 as usual. Further, the construction
of the Ei showed that the i’th iterate of the Steenrod power operation P p gave an
isomorphism

(P p)i : H0(Ei)→ Hipq(Ei),

as well as a map ai : S(i+1)pq−1 → Ei detected by P p. Consequently, when

taking the mapping cone Cap−1 of the last map, Sp2q−1 → Ep−1, we obtained a
spectrum with cells only in dimensions ipq and ipq + 1 for which the p’th iterate
of the Steenrod power P p gave an isomorphism

(P p)p : H0(Cap−1)→ Hp2q(Cap−1).

However, for dimensional reasons, the Steenrod power P 1 is trivial on this spec-
trum, but by the Adem relations, (P p)p is in the left ideal generated by P 1, so
must be 0 on this spectrum as well. This contradiction established the proposition.
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muellner@mathi.uni-heidelberg.de

Mathematisches Institut
Universität Heidelberg
Im Neuenheimer Feld 288
69120 Heidelberg

Niko Naumann

niko.naumann@mathematik.uni-regensburg.de

NWF-I Mathematik
Universität Regensburg
93040 Regensburg

Dr. Marc Nieper-Wißkirchen

nieper@mathematik.uni-mainz.de

Fachbereich Mathematik
Johannes Gutenberg Universität
Mainz
Staudingerweg 9
55099 Mainz

Prof. Dr. Ivan Panin

panin@pdmi.ras.ru

panin@math.uni-bielefeld.de

Fakultät für Mathematik
Universität Bielefeld
33501 Bielefeld

Dr. Gereon Quick

gquick@math.uni-muenster.de

Fachbereich Mathematik
Universität Münster
Einsteinstr. 62
48149 Münster

Dr. Holger Reich

reichh@math.uni-muenster.de

Fachbereich Mathematik
Universität Münster
Einsteinstr. 62
48149 Münster

Philipp Reinhard

pmr@maths.gla.ac.uk

Department of Mathematics
University of Glasgow
University Gardens
GB-Glasgow, G12 8QW

Prof. Dr. John Rognes

rognes@math.uio.no

Department of Mathematics
University of Oslo
P. O. Box 1053 - Blindern
N-0316 Oslo

Constanze Roitzheim

cro@math.uni-bonn.de

Mathematisches Institut
Universität Bonn
Beringstr. 1
53115 Bonn

Fridolin Roth

fridolinroth@web.de

roth@math.uni-bonn.de

Mathematisches Institut
Universität Bonn
Beringstr. 1
53115 Bonn

Prof. Dr. Stefan Schwede

schwede@math.uni-bonn.de

Mathematisches Institut der
Universität Bonn
Beringstr. 3
53115 Bonn



2610 Oberwolfach Report 46/2005

Dr. Christian Serpe

serpe@uni-muenster.de

serpe@math.uni-muenster.de

Mathematisches Institut
Universität Münster
Einsteinstr. 62
48149 Münster

Julia Singer

singer@math.uni-bonn.de

Mathematisches Institut
Universität Bonn
Beringstr. 1
53115 Bonn

Markus Spitzweck

spitz@uni-math.gwdg.de

Mathematisches Institut
Georg-August-Universität
Bunsenstr. 3-5
37073 Göttingen

Dr. Markus Szymik

markus.szymik@ruhr-uni-bochum.de

Fakultät für Mathematik
Ruhr-Universität Bochum
44780 Bochum

Christian Valqui

cvalqui@pucp.edu.pe

Seccion Matematica
Pontificia Universidad Catolica
del Peru
Av. Universitaria CDRA. 18 S/N
San Miguel, Lima
PERU

Dr. Nathalie Wahl

wahl@math.uchicago.edu

Department of Mathematics
The University of Chicago
5734 South University Avenue
Chicago, IL 60637-1514
USA

Juan Wang

wang@math.uni-bonn.de

Mathematisches Institut
Universität Bonn
Beringstr. 1
53115 Bonn

Dr. Julia Weber

julia.weber@math.uni-muenster.de

Mathematisches Institut
Universität Münster
Einsteinstr. 62
48149 Münster

Moritz Wiethaup

wiethaup@uni-math.gwdg.de

Mathematisches Institut
Georg-August-Universität
Bunsenstr. 3-5
37073 Göttingen

Dr. Samuel Wüthrich
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