
Mathematisches Forschungsinstitut Oberwolfach

Report No. 47/2005

Statistische und Probabilistische Methoden der Modellwahl

Organised by
James O. Berger (Durham)

Holger Dette (Bochum)
Gabor Lugosi (Barcelona)

Axel Munk (Göttingen)

October 16th – October 22nd, 2005

Abstract. Aim of this conference with more than 50 participants, was to
bring together leading researchers from roughly three different scientific com-
munities who work on the same issue, data based model selection. Their
different methodological approaches can be roughly classified into
(1) Frequentist model selection and testing
(2) Statistical learning theory and machine learning
(3) Bayesian model selection

The key task in model selection is to select a proper mathematical model

based on information generated by data and/or by prior knowledge. Proper
might mean a model with minimal prediction error, a model which describes
the main qualitative data features, such as bumps and modes, or a model
of low computational complexity. Mathematical techniques and concepts
encountered with this workshop are wide spread, ranging from concentration
and oracle inequalities, asymptotic analysis and distribution theory to testing
theory, information measures and nonconvex optimization.

Mathematics Subject Classification (2000): 62G05, 62G10, 62G20, 62F15, 62H30, 62G99, 62C12,

60F15, 62N03, 62B10, 62F40.

Introduction by the Organisers

In order to achieve our goal to enhance discussion between these communities,
every day the conference was opened by a survey talk. Friday afternoon the con-
ference has been closed by a discussion session.
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1. Frequentist model selection and testing

Nils Hjort introduced in his talk the fundamental concept of a focused informa-
tion criterion for model selction, which does not propagate a model per se, rather
it reflects the more realistic situation, that specific aspects of a model should drive
the model selction process. He adressed various questions related to this, e.g. ro-
bustness issues, or how do classical information criteria such as AIC or BIC behave
from this perspectice. He gives strong evidenve by various examples that different
models may result when focussing on different parameters of primary interest.

The issue of testing a model was adressed by various talks, N. Neumeyer used
bootstrap techniques applied to residual processes whereas L. Györfy’s criterion
is based on the L1 distance between densities. J. M. Loubes and N. Bissantz
were concerned with model selection in inverse problems, i.e. for noisy integral
operator equations. J.M. Loubes considers nonlinear operators which are locally
linear and investigates convergence rates of penalized M-estimators. N. Bissantz
focuses on L2 distance based model testing and selection methods and discusses
various applications in astrophysics. To this end, a general analyisis of numerical
and statistical regularisation methods is given. Finally, he constructed uniform
confidence bands in deconvolution problems which allow graphically to select a
proper model. The problem of deconvolution was also highlighted by J. P Kreiss
in the context of time series analysis. Conceptually related to N. Hjorts talk, J.K.
Ghosh discussed different roles of different penalties in penalized likelihood model
selection rules, making the case that the penalty used should depend on the goal
(typically either prediction or selection of the best model) and that it is important
to incorporate practical features such as growing model dimension in choosing
penalties. L. Dümbgen was concerned with prediction regions in gaussian shift
models. He suggested a solution but also pointed out that adaptive construction
of prediction regions via a sequence of nested models is limited in various ways.
This is in contrast to adaptive estimation. He discussed a ’no go’ result on the
asymptotic diameter of the confidence ball in the spirit of Li (1989).
Other talks included topics on Empirical process techniques for locally stationary
processes by Rainer Dahlhaus and Universal principles, approximation and model
choice by Patrick Laurie Davies and Local Parametric Methods in Nonparametric
Regression by Vladimir Spokoiny.

2. Statistical learning theory and machine learning

Research on statistical learning theory and nonparametric classification has also
been strongly represented by several attendants who partly or completely focus
their research on these topics. Several talks have been given in these fields, offering
a nice overview on some of the most active areas of investigation, such as ora-
cle inequalities for penalized model selection, margin-based performance bounds,
empirically calibrated penalties, model selection focusing on sparse solutions of
corresponding optimization problems, convex aggregation of estimators, as well as
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some closely related issues emerging in density estimation, microarray analysis,
etc.

Peter Bartlett (UC Berkeley) gave a survey talk on nonparametric classification
based on empirical minimization of convex cost functionals, a subject that offers
a theoretical framework for many successful classification algorithms, including
boosting and support vector machines. Marten Wegkamp’s talk (Florida State
University) discussed a closely related problem of classification with a reject option.
Another survey talk on a closely related subject was delivered by Sara van de
Geer (ETH Zürich) who showed why empirical process theory and concentration
inequalities play a crucial role in model selection problems for classification and
nonparametric regression. Similarly to Prof. van de Geer, Vladimir Koltchinskii
(Georgia Tech) also considered L1-type penalties that lead to sparse models and
derived sharp oracle inequalities.

Both Alexandre Tsybakov (University of Paris 7) and Florentina Bunea (Florida
State University) considered methods for convex aggregation of certain estimates
for regression, and proved close-to-optimal performance bounds. László Györfi
(Technical University of Budapest) presented a model selection method and a
corresponding L1 performance bound for density estimation when the unknown
density is assumed to be in one of an infinite sequence of ”parametric” classes of
densities.

Andrew Nobel (University of North Carolina) discussed algorithmic and prob-
abilistic problems arising in some problems of data mining that can be modeled
as searching for large homogeneous blocks in random matrices.

3. Bayesian model selection

In Bayesian model selection and BART, E. George and R. McCulloch gave a
survey of the Bayesian approach to model selection, while giving an illustration
(BART) that seems to have remarkable predictive properties in function estima-
tion and variable selection. This was followed by Merlise Clyde, giving a talk on
Bayesian nonparametric function estimation using overcomplete representations
and Lévy random field priors. This focused on the novel notion in Bayesian analy-
sis that simultaneous use of multiple bases for functions (leasing to overcomplete-
ness) can be quite valuable in practice, because it can allow for extremely sparse
representations of functions. The final Bayesian talk on Monday was by Christian
Robert, on Prior choice and model selection. This highlighted the key issue faced
by Bayesians in model choice, namely the choice of the prior distribution. Modern
approaches to this issue were reviewed, and a new approach (based on a criterion
of ‘matching’ between models) was introduced.

Later talks included A synthesis and unification of Bayes factors for model se-
lection and hypothesis testing, by Luis Pericchi. This talk discussed the prominent
role of training samples (or bootstrapping), in many modern model selection sce-
narios. Valen Johnson, in A note on the consistency and interpretation of Bayes
factors based on test statistics considered the problem of developing easy to use
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Bayesian procedures as replacements for standard statistical procedures, such as
chi-squared tests, t-tests, etc. He demonstrated how many Bayesian testing prob-
lems can be reduced to situations with only a one-dimensional unknown, which
lend themselves to graphical description.

On the final day, the issue of multiple testing was addressed. This is one of
the currently hottest areas of statistical and scientific research, and two talks were
presented. M.-J. Bayarri gave a survey talk entitled Multiple testing: the problem
and some solutions, which reviewed the connections between ‘false discovery rate,’
Bayesian posterior probabilities, and utility functions common in multiple test-
ing scenarios. P. Müller followed with elaborations on the utility side, involving
applications to significant problems in bioinformatics and clinical trials.

The final session in the workshop consisted of very short talks to give other
participants (especially newer researchers) a chance to discuss their interests, and
several Bayesian talks were presented. M. Bogdan presented Model selection ap-
proach to the problem of locating genes influencing quantitative traits, presenting
a very nice generalization of BIC for a genetics problem. Katja Ickstadt presented
Comparing classification procedures using misclassification rates, with an interest-
ing application to determining genetic ‘snips.’ Angelika van der Linde spoke on
Posterior predictive model choice, discussing a new asymptotic Bayesian approach
to model choice, requiring a careful decomposition of entropy.

Closing Discussion Session: The workshop ended with a discussion session
designed to identify key problems remaining to be addressed, and to identify key
ways to bridge the gaps between the communities present at the workshop. The
questions – together with short descriptions of the results of the discussion – are
below.

• Do we all mean the same thing by the phrase model selection? Is it selection
of a statistical model for the data, selection of a prediction function, or
some averaged version of either?

– Conclusion: If prediction is the identified goal, then the various com-
munities have the same view of model selection. Otherwise, interest-
ing differences exist.

• Are fundamental problems of statistics and machine learning different? If
they are the same, why are the commonly used techniques so different?

– Conclusion: Machine learning is concerned primarily with action and
associated risk, and is less focused on inference, which is often viewed
as the primarily goal of statistics.

• Discuss the parametric aspects of nonparametric models.
– Conclusion: Any nonparametric procedure is only good in certain

finite dimensional regions of the nonparametric space.
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• Is model selection fundamentally different when the true model is outside
the class of models being considered?

– Conclusion: This is primarily an issue in Bayesian statistics, because
the other viewpoints formulate the model class so that it is supposedly
assured to contain the true model; there was, however dissension as
to whether the latter was actually possible.

• How does information theory contribute to statistics?
– Conclusion: Notions such as ‘minimum description length’ are diffi-

cult to encode, and are arguably as difficult to implement as the more
usual model/prior paradigm.

• Given that regularization is very related to Bayesian analysis,
– Do oracle or risk inequalities tell us about performance of Bayesian

procedures? In practice? For (growing) finite sample size? Asymp-
totically?

– Can regularization results help Bayesians in choosing priors? Do or-
acle based convergence rates relate to optimal objective priors?

– How do oracle inequalities relate to AIC, BIC, . . .?
– Conclusion: AIC and BIC are not derivable as oracle inequalities.

Indeed, only if the constants in oracle inequalities are essentially one
(i.e., the inequalities are exact in some regions), can there be a hope
that oracle inequalities and Bayesian analysis will coincide. The other
questions are fundamentally unknown issues for future study.
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Abstracts

Regression methods for pattern classification: Statistical properties of
large margin classifiers

Peter L. Bartlett

(joint work with Ambuj Tewari, Michael Jordan, and Jon McAuliffe)

In the pattern classification problem, we have independent and identically dis-
tributed random pairs (X,Y ), (X1, Y1), . . . , (Xn, Yn) with distribution P on X×Y,
where the label space Y is finite. The aim is to use the data (X1, Y1), . . . , (Xn, Yn)
to choose a function fn : X → Y with small risk, R(f) = Pr (f(X) 6= Y ) =
Eℓ(Y, f(X)), where we have defined the 0-1 loss ℓ in the obvious way. In a
wide variety of cases, the natural approach of minimizing the empirical risk,

R̂(f) = Ênℓ(Y, f(X)) = n−1
∑n

i=1 ℓ(Yi, f(Xi)), is computationally intractable
(see (8; 1) for a review). For this reason, many of the pattern classification algo-
rithms developed in the machine learning literature, including the support vector
machine (6) and AdaBoost (9), replace the 0-1 loss ℓ with a convex surrogate
φ, and minimize the sample average of this surrogate loss function. Thus, these
methods can be viewed as minimum contrast methods. The convexity makes these
algorithms computationally efficient. The use of a surrogate, however, has statis-
tical consequences that must be balanced against the computational virtues of
convexity. This talk surveyed some recent results in this area.

Most of the talk focused on two-class classification, where Y = {±1} and fn :
X → R. In this case, we can write the risk as R(fn) = Pr (sign(fn(X)) 6= Y ) =
Eℓ(Y, fn(X)), where we have redefined the 0-1 loss in the obvious way. To replace
ℓ with a convex surrogate, we define the φ-risk of a function f : X → R as
Rφ(f) = Eφ(Y f(X)). The methods that we study choose fn from some sequence

of classes Fn, so as to minimize the empirical φ-risk, R̂φ(f) = Ênφ(Y f(X)) =
n−1

∑n
i=1 φ(Yif(Xi)), or a regularized version. For example, AdaBoost chooses fn

from span(G), for a VC-class G, to minimize R̂φ(f) using greedy basis selection,
with φ(α) = exp(−α). Support vector machines (SVMs) choose fn from a ball

in a reproducing kernel Hilbert space H to minimize R̂φ(f) + λn‖f‖2
H, where

φ(α) = max (0, 1 − α) and ‖ · ‖H is the norm in the RKHS H.
There has been a considerable body of work on the statistical consequences of

using a convex surrogate in place of the 0-1 loss. For instance, it is known (19; 22;
15; 10) that AdaBoost (suitably regularized) and SVMs are universally consistent
methods, that is, for suitable choice of the regularization schedule, the risk of fn
converges in probability to the Bayes risk, R∗ = inff R(f), where the infimum is
over all measurable functions.

There is a simple characterization of surrogate loss functions that lead to a
universally consistent method, that is, for which minimization of the risk, as as-
sessed using φ, leads to minimal risk, as assessed using the 0-1 loss. To state
the result, we need some more definitions. The first two are based on two simple
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observations. First, the Bayes risk R∗ is obtained by f∗(x) = sign(2η(x) − 1),
where η(x) = Pr(Y = 1|X = x). Second, we can write the φ-risk as Rφ(f) =
E (η(X)φ(f(X)) + (1 − η(X))φ(−f(X))). Define the optimal conditional φ-risk
for a conditional probability η ∈ [0, 1] as H(η) = infα∈R (ηφ(α) + (1 − η)φ(−α)),
and the corresponding quantity when the argument α is restricted to have a sign
that disagrees with f∗, H−(η) = infα:α(2η−1)≤0 (ηφ(α) + (1 − η)φ(−α)). Define
the optimal φ-risk as R∗

φ = inff Rφ(f), where the infimum is over all measurable

functions. Finally, for convex φ, define ψ(θ) = φ(0)−H ((1 + θ)/2). The following
result (2) gives a characterization of the loss functions that lead to a universally
consistent method, and it also shows how the excess risk is related to the excess
φ-risk. (There is a straightforward generalization to non-convex φ.)

Theorem 1. Consider a convex φ : R → R+.
a. For any probability distribution P and any f ,

ψ(R(f) −R∗) ≤ Rφ(f) −R∗
φ.

b. For |X | ≥ 2, ǫ > 0 and θ ∈ [0, 1], there is a distribution P and a function f
with R(f) −R∗ = θ and ψ(θ) ≤ Rφ(f) −R∗

φ ≤ ψ(θ) + ǫ.
c. The following conditions are equivalent:

(1) φ satisfies H(η) < H−(η) for all η 6= 1/2.
(2) φ is differentiable at zero and its derivative is negative at zero.
(3) ψ(θi) → 0 iff θi → 0.
(4) Rφ(fi) → R∗

φ implies R(fi) → R∗.

Consider a method of sieves approach, in which we choose fn ∈ Fn to minimize
the empirical φ-risk. As an aside, note that a regularization approach, in which
we choose fn ∈ F to minimize a regularized empirical φ-risk functional R̂φ(f) +
λnΩ(f), for some regularization functional Ω, can be viewed as a method of sieves,

with Fn = {f ∈ F : λnΩ(f) ≤ Bn}, where Bn satisfies R̂φ(0) + λnΩ(0) ≤ Bn and
0 denotes the constant zero function. We can decompose the excess risk estimate
as

R(fn) −R∗ ≤ ψ−1
(
Rφ(fn) −R∗

φ

)

= ψ−1

(
Rφ(fn) − inf

f∈Fn

Rφ(f) + inf
f∈Fn

Rφ(f) −R∗
φ

)
.

The first term inside the functional inverse of ψ is the estimation error, and the
second term is the approximation error. Notice that this decomposition is in
terms of the φ-risk, rather than the risk. If the class is suitably rich (so that
inff∈F Rφ(f) = R∗

φ), and the classes Fn get large suitably slowly, Rφ(fn) converges

to R∗
φ in probability. Then universal consistency (convergence of R(fn) to R∗)

follows iff φ satisfies the derivative condition of the theorem above.
The question of rates of convergence is also important. Consider the following

complexity penalized approach. Define f̂k = arg minf∈Fk
R̂φ(f) and fn = f̂k̂ with

k̂ = arg mink

(
R̂φ(f̂k) + pk

)
, for some penalty pk (that depends on n).
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We are interested in oracle inequalities of the form

Rφ(fn) −R∗
φ ≤ inf

k

(
inf
f∈Fk

Rφ(f) −R∗
φ + cpk

)
.

In such an inequality, if the cpk is of the same order of magnitude as the esti-

mation error Rφ(f̂k) − inff∈Fk
Rφ(f), then the inequality shows that our choice

fn has excess risk not much worse than would be obtained if we had the ad-
vice of an oracle who tells us the correct complexity class Fk to choose. Such
inequalities follow easily from uniform convergence results. For example, it is

straightforward to show that supk

(
supf∈Fk

∣∣∣Rφ(f) − R̂φ(f)
∣∣∣ − pk

)
≤ 0 implies

Rφ(fn) ≤ infk inff∈Fk
(Rφ(f) + 2pk). So it suffices to choose the penalty pk as a

high-probability upper bound on the maximal deviation between empirical φ-risks
and φ-risks.

It is sometimes possible to obtain faster rates of convergence (smaller values of
pk as a function of n) as follows.

Theorem 2. Suppose F1 ⊆ F2 ⊆ F3 ⊆ · · · . If

sup
k

sup
f∈Fk

(
Rφ(f) −Rφ(f

∗
k ) − 2

(
R̂φ(f) − R̂φ(f

∗
k )

)
− ǫk

)
≤ 0,

sup
k

sup
f∈Fk

(
R̂φ(f) − R̂φ(f

∗
k ) − 2 (Rφ(f) −Rφ(f

∗
k )) − ǫk

)
≤ 0,

then with pk = 7ǫk/2, we have

Rφ(fn) ≤ inf
k

(Rφ(f
∗
k ) + 9ǫk) .

This approach is useful, for example, if the loss function is strictly convex and
uniformly Lipschitz, or, in classification, if the conditional probability is unlikely
to be close to 1/2. See, for example, (13; 17; 16; 21; 18; 12).

Logistic regression can be viewed as a method that minimizes the sample aver-
age of a convex loss function φ. It can be shown that, for any differentiable loss
φ, minimization of empirical φ-risk corresponds to estimation of the conditional
probability of Y given X (22). Further, the points of non-differentiability corre-
spond to subsets of the interval [0, 1] where the value of the conditional probability
cannot be estimated asymptotically (3).

Finally, the talk discussed the multiclass problem, where Y is a set of cardinality
greater than two. For a family of related methods, which choose a vector-valued
function to minimize a convex criterion Ψ, there is a characterization of the uni-
versal consistency property in terms of geometric properties of the function Ψ (20).
It follows from these results that many loss function that have been proposed in
the literature cannot lead to universally consistent methods.
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Multiple testing: the problem and some solutions

Maŕıa-Jesús Bayarri

(joint work with James O. Berger)

An increasingly common situation in practice is simultaneous screening of many
(hundreds or thousands) of hypotheses to determine whether we have ‘noise’ or
‘signals’. A typical example is in gene expression (microarrays), when many genes
are tested for differential expression among different treatments. Other exam-
ples occur in ‘Anomaly Discovery’; for example, in ‘Syndromic Surveillance’ many
counties perform daily tests on the ‘excess’ of some symptoms, the goal being
early detection of the outbreak of epidemics or of bio-terrorist attacks (Stoto et
al., 2004).

Assume that, based on the observed value of X = (X1, X2, . . . , XM ) (M usu-
ally very large) we wish to perform M tests of hypotheses H0i : Xi ∼ f0i versus
H1i : Xi ∼ f1i. f1i and f0i usually involve unknown parameters.

If the M tests are independent and each is tested at level α, then, even when
all the M nulls are true, we expect αM rejections; In simultaneous testing, this is
perceived as ‘too many’, unduly masking detection of incorrect null. Alternatively,
this is stated as the problem of ‘multiplicity in testing:’ as the number of simul-
taneous tests being conducted increases, the criterion for rejection must become
more strict.

Let γ = (γ1, γ2, . . . , γM ), with γi = 0 if the ith null is true, and γi = 1 if the

ith alternative is true. The multiple testing problem can thus be formulated as a
model selection problem: to choose among the 2M models indexed by the possible
values of the vector γ .

In these massive screenings, there tends to be strong prior probability that
there are few signals, that is, that many of the γi’s are 0. Bayesian as well as
recent frequentist analyses take this into account. For summary and references on
frequentist estimates of the proportion of true nulls, see Langaas et al. (2005).
Note that in Bayesian analysis, estimation of this proportion, if of interest, is a
byproduct of the overall analysis.
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From the frequentist point of view, model selection techniques are rarely used;
instead, generalizations of hypothesis testing ideas to the overall scenario involving
the M tests are used. In particular, ‘global’ error rates are defined, and procedures
that control or evaluate these error rates are developed.

Traditional error rates to control in multiple testing have been the per-compar-
ison error rate, controlled by testing each hypothesis at level α, and family-wise
error rate, the probability of at least one false ‘discovery’ (rejection), controlled
by, among others, the popular Bonferroni method. While the former does not
take multiplicity into account, the latter is very conservative, resulting in tests
with very little power. For reviews and references, see Shaffer(1995); Dudoit et
al.(2003); Yang & Rempala(2004).

A new type of error rate is being increasingly used lately and has become
enormously popular. This is the ‘false discovery rate’ (FDR), first introduced
by Benjamini and Hochberg (1995). They argued that the interesting quantity in
multiple testing is the is the % of false discoveries (erroneous rejections) among the
rejected hypotheses. This gave rise to several related FDR error types to control (or
monitor), and the literature in the area has grown huge. Some procedures fix the
error rate and select a procedure that guarantees that the error rate is bellow that
fixed value for all combination of nulls and alternatives (Benjamini and Hochberg,
1995, 2000; Black, 2004); other procedures are based in errors that can not be
‘controlled’ in this classical sense, and work instead by choosing among all fixed
rejection regions, seeking to ‘control’ an estimate of the error rate (Storey 2002,
2003); a partial comparison of procedures and many asymptotic properties can
be found in Genovese and Wasserman (2002, 2003). In this scenario, a mixture
of frequentist and empirical Bayes analyses can be found in Efron et al. (2001)
and Efron and Tibshirani (2002). Empirical Bayes and full Bayes analyses can be
found in Newton et al. (2001, 2004); Newton and Kendziorski (2003); Gönen et
al. (2003); Müller et al. (2004); Do et al. (2005); House et al. (2006); Scott and
Berger (2006).

A few important remarks:

• The (unknown) proportion p0 of true nulls is a crucial ingredient in both
Bayesian and FDR analyses: in Bayesian analyses to provide the solution
to the multiple comparisons problem; in FDR analyses to increase ‘power.’
Modern analyses incorporate a real or conservative estimate of p0; For
Bayesian analyses, it is a required ingredient; for frequentist analyses, often
a bound (instead of an estimate) is used, which might not be optimal.

• Storey shows that his ‘positive FDR’ can be shown to be equal to the
probability of each null being true conditional on the observation being
in the rejection region. Because of this conditioning on a subset of the
sample space, he (and others) call this a ’Bayesian FDR’. Notice, however,
that this is far from being a Bayesian quantity, since it is not conditional
in the observed data.
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• Because Bayesian decisions rules usually adopt the form of individual cut-
of points for the posterior probabilities of the hypotheses, Bayesian solu-
tions have been wrongly accused of ‘ignoring the multiplicity issue’ (since
the cut-of points do not explicitly depend on the number of hypotheses
being simultaneously tested). However, this is a wrong statement: the
Bayesian machinery implicitly controls for multiplicity; no external adjust-
ments are needed. This is nicely illustrated in Scott and Berger (2006).

In spite of its popularity, some authors (Finner and Roters, 2001) defend control
of properly adjusted Type I errors, since FDR can be used to ‘cheat’ by simply
adding spurious comparisons which are very likely to be rejected. On the other
hand, even if Bayesian analyses do not need to resort to FDR or related quantities
to control for multiplicities, many Bayesian analyses use averaged posterior FDR’s
to choose a cut-of point for the posterior probabilities (Genovese and Waserman,
2002; Newton et al., 2004; Broët et al., 2004; Do et al., 2005; House et al., 2006,
among others).

As Bickel (2004) points out, neither Benjamini and Hochberg FDR, nor Storey
‘positive’ FDR have clear decision theoretical justification, unless, of course, they
are forced as primitives into a ‘global’ loss function. But when this is done, result-
ing decision rules can be shown to have undesirable behavior (Müller et al., 2004).
The loss functions considered are usually variant of the 0 − ki loss; more realistic
loss functions, in which the loss for a false acceptance depends on the strength
of the signal erroneously ‘missed’, are contemplated in the Bayesian analyses of
Duncan (1965), Waller and Duncan (1969), and Scott and Berger (2006).
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Regularized inversion methods and error bounds for general statistical
inverse problems with application to density estimation of young

massive cluster luminosities in the Antennae galaxies

Nicolai Bissantz

(joint work with Lutz Dümbgen, Hajo Holzmann, Axel Munk, Fritz Ruymgaart)

In this paper we are concerned with estimating a function of interest f in a Hilbert
space H1 from indirect noisy measurements

Y = Kf + σε,

related to f by a known operator K : H1 → H2 mapping H1 to another Hilbert
space H2. Here, σ denotes the variance of the random noise, and the stochastic er-
ror ε is a Hilbert space process with ‖Covε‖ ≤ 1. We introduce general regulariza-
tion estimators for the estimation of f . This includes Tikhonov type and spectral
cut-off estimators as well as iterative methods (e.g. Brackhage, 1987, Engl, Hanke
& Neubauer, 1996, and Mair & Ruymgaart, 1996), such as ν-methods and the
Landweber iteration. We analyse their convergence properties in statistical error
models. It turns out that the latter estimators achieve the same (optimal) conver-
gence rates as spectral cut-off, but do not require explicit spectral information on
the operator and are often much faster to compute than Tikhonov regularization
(Bissantz et al., 2005). We demonstrate application of a ν-method to estimation
of the luminosity density of young massive star cluster in the Antennae galaxies
(Anders et al, 2005). Here, the variance of the measurement error depends on
the brightness of the specific cluster under consideration. Therefore, this is not a
density deconvolution problem, and standard methods (e.g. Fourier-domain based
algorithms) cannot be applied.

In the final part of the talk we discuss estimation of confidence bands for the
function of interest f in ordinary smooth deconvolution problems, i.e. K is convo-
lution with an error distribution ψ. To this end we study the study the supremum
of the process

Yn(t) :=
n1/2hβ+1/2

g(t)1/2

(
f̂n(t) − Ef̂n(t)

)
,
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where n is the sample size, h is the bandwidth of the spectral cut-off estimator

f̂n, β ≥ 0 is such Φψ(t)tβ → C, t → ∞ for the characteristic function Φψ of ψ
and some constant C ∈ C, and g = f ∗ ψ. We derive the asymptotic distribution
of Yn(t) and use it to construct asymptotic confidence bands for f (Bissantz, et
al., 2005). Moreover, we establish a bootstrap version of the confidence bands,
and give an application to measurements of the metallicity of local F and G dwarf
stars where we confirm the “G dwarf problem”.
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Bayesian Nonparametric Function Estimation Using Overcomplete
Representations and Lévy Random Field Priors

Merlise A. Clyde

(joint work with Leanna House, Chong Tu, Robert L. Wolpert)

We consider the problem of nonparametric function estimation using overcom-
plete representations. The canonical setup for nonparametric regression problem
consists of having n noisy measurements {Y1, . . . Yn} of an unknown real valued
function f : X → R on some space X,

(1) Yi = f(xi) + ei ei
iid∼ N(0, σ2)

observed at points xi ∈ X. The function f(·) is often regarded as an element of
some separable Hilbert space H of real-valued functions on X, and is expressed as
a linear combination of basis functions φj ∈ H:

(2) f(xi) =
J∑

j=1

φj(xi)βj
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with unique coefficients {βj}. Of interest are bases that lead to sparse represen-
tations, where only a few of the coefficients βj in the expansion are nonzero. In
applications where functions exhibit non-stationarity, no single (especially ortho-
normal) basis will necessarily lead to a sparse representation (4; 13). Overcomplete
dictionaries and frames (3; 10) provide a larger collection of generating elements
{φω}ω∈Ω than with a single basis for H, potentially allowing for more effective
signal extraction and data compression for functions. Because of the redundancy
inherent in the overcomplete representation, coefficients for expansions using the
complete dictionary are no longer unique. This lack of uniqueness is advantageous,
as it is possible to find a more parsimonious representation (by shrinking or forcing
coefficients to zero) than those obtained using any single basis.

We consider dictionaries created from rescaling and translating a single gener-
ating function g, such as a mother wavelet or kernel function,

(3) φω(x) ≡ g(x,ω) ω ∈ Ω

where Ω is a complete separable metric space and g is a Borel measurable function
g : X × Ω → R, such as a kernel function,

(4) g(x,ω) = exp{−ω1||x − ω2||p} where ωT = (ω1,ω
T
2 )

or a wavelet function. The expansion in (2) may be generalized to the overcomplete
representation

(5) f(x) =

J∑

j=1

g(x,ωj)βj ≡
∫

Ω

g(x,ω)L(dω)

where L(dω) =
∑
βjδωj

(dω) is a (possibly signed) Borel measure on Ω.
We describe a Bayesian method for inference regarding the unknown f in the

sparse regression problem using overcomplete dictionaries. To make posterior in-
ference about the unknown function f ∈ H in (1), we must first propose a prior
distribution on H for f . With the representation of f(x) in (5), this is equiv-
alent to specifying a random signed Borel measure L(dω) on Ω. An intuitive
construction of such random measures begins by choosing any positive number
ν+ > 0 and assigning J a Poisson distribution, J ∼ Poisson(ν+). Then, condi-
tionally on J , accord the (βj , ωj) ∈ R × Ω independent identical distributions,

(βj ,ωj)
iid∼ π(dβ, dω), where π is a probability distribution on R × Ω. In that

case, L will assign independent infinitely-divisible random variables L(Ai) to dis-
joint Borel sets Ai ⊂ Ω. Such a random measure L determines naturally a Lévy
random field L[g], a continuous (in probability) linear mapping g → L[g] from
Borel measurable functions g : X × Ω → R to random elements in H,

L[g] ≡
∫

Ω

g(·,ω)L(dω) =

J∑

j=1

g(·,ωj)βj(6)

with Lévy measure ν(dβ, dω) = ν+π(dβ, dω), the product of the Poisson rate ν+
for J and the distribution π(dβ, dω) for {(βj ,ωj)}. Here ν(R × Ω) is finite (by
construction), and L[g] is equivalent to a compound Poisson random field.
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The stochastic expansions in terms of wavelets of (1), which utilize a compound
Poisson random field with normal prior distributions for βj , may be viewed as a
special case of a Lévy random field prior.

More generally, the Lévy measure ν(dβ, dω) need not be finite for the random
field L[g]) to be finite and well-defined with infinite J ; it is sufficient for ν to satisfy
the bound

(7)

∫∫

R×K

(
1 ∧ |β|2

)
ν(dβ, dω) <∞

for every compact K ⊂ Ω. Examples of Lévy random fields with infinite Lévy
measures include the Gamma random field, with Lévy measure

(8) ν(dβ, dω) = λγ(dω)β−1e−ϕβ1{β>0} dβ

for λ > 0 and for some σ-finite measure γ(dω) on Ω, giving

L[A] ∼ Gamma(λγ(A), ϕ)

for A ⊂ Ω of finite γ measure, and the symmetric α-stable (SαS) for 0 < α < 2
(including the Cauchy process with α = 1), with Lévy measure

(9) ν(dβ, dω) = cαλγ(dω)|β|−1−α dβ

for some constant cα > 0, giving L[A] ∼ Stable(α, 0, λγ(A), 0). While such
measures lead to an infinite number of support points J a priori, finite mea-
sures which permit tractable computation may be obtained by the approximation
νǫ(dβ, dω) ≡ ν(dβ, dω)1|β|>ǫ. The Lévy random fields based on such an approx-
imation converge in distribution to L[g] as ǫ → 0. Although we are interested in
sparse representations, and hence finite J (a posteriori), the representation using
infinite measures provides robustness to miss-specification due to a perhaps poor
choice of generating function. For more background on Lévy random fields and
approximations, see (9; 11; 7; 12; 2; 14).

The model may be restated in hierarchical fashion as

Yi | f(xi)
ind∼ N(f(xi), σ

2)

f(xi) =

J∑

j=1

g(xi,ωj)βj

(βj ,ωj) | J iid∼ π(dβj , dωj) ≡
νǫ(dβj , dωj)

νǫ(R,Ω)
for j = 1, . . . , J

J ∼ Poisson(ν+) where ν+ ≡ νǫ(R,Ω)

where J is the random number of terms in the stochastic expansion, (β1, . . . , βJ)
represents the unknown coefficients and (ω1, . . . ,ωJ) represents the collection of
generator specific parameters. We also place a prior distribution on parameters in
the Lévy measure. A Gamma for λ in the ǫ approximation to the Lévy measure for
the Gamma (8) or Stable (9) random field leads to J having a Negative Binomial
distribution, which leads to robustness to a fixed choice of λ. A prior distribution
on σ2 completes the model specification.
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Given observations Y ≡ (Y1, . . . , Yn)T , the log of the (conditional) posterior
distribution is

log π
(
{βj,ωj}Jj=1, J | σ2,Y

)
= constant −





1

2σ2

n∑

i=1

(Yi − f(xi))
2

+ log(J !) −
J∑

j=1

νǫ(dβj , dωj)




(10)

which takes the form of a penalized or regularized likelihood. Model complexity
is penalized directly through the log(J !) term as in a ℓ0 penalty which penalizes
the number of coefficients in the expansion. Model complexity is also indirectly
penalized through the choice of Lévy measure ν.

While expressions for posterior modes or posterior distributions of quantities
of interest do not exist in closed form, the prior construction using Lévy random
fields permits tractable posterior simulation via a reversible jump Markov chain
Monte Carlo algorithm (6). Efficient computation is possible because updates to f
based on adding/deleting or updating single dictionary elements bypass the need
to invert large matrices. Furthermore, because dictionary elements g(x,ω) are
only computed as needed, memory requirements scale linearly with the sample
size.

We compare the performance of estimators using the Levy random field priors
to estimators based on translational invariant wavelets (8) on simulated data us-
ing standard wavelet test functions Blocks, Bumps, Doppler and Heavysine (5).
For the test functions Blocks, Bumps, and Heavisine, we achieve a gain in mean
squared error efficiency of 13.7%− 56.3%.

We explore Lévy random field priors in several challenging applications. In
the first, we use Gamma random field priors to construct models for the latent
relative abundance of proteins as a function of their mass/charge (or equivalently
time of flight) using data from Matrix Assisted Laser Desorption/Ionization Time
of Flight mass spectroscopy. Normalized Gaussian kernels with time varying scale
parameters provide a natural choice of generating functions to capture the varia-
tion in time of flight of proteins of a given mass/charge. Unlike wavelets or spline
models, the parameters in the adaptive kernel model have interesting biological
interpretations: J is the number of unknown proteins in the sample, and βj is the
unknown concentration for a protein with expected time of flight τj and resolution
ρj , here we take ωj ≡ (τj , ρj). This interpretability is a key feature of the Lévy
random field models, as it allows us to incorporate subjective prior information
regarding resolution and time of flight (a transformation of the mass/charge).

The second area of application concerns development of non-stationary tempo-
ral, spatial and spatial-temporal models for concentrations of one or more criteria
pollutants. As expected pollution concentrations are inherently non-negative, the
Lévy random field priors based on a Gamma random field ensure that the expected
functions are non-negative, and are a natural alternative to the commonly adopted
Gaussian random field priors in Bayesian nonparametrics. The spatial-temporal
locations of jumps in the Lévy random field may be interpreted as point sources of
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pollution, with dispersal over time and space controlled by additional parameters
in the kernels. Hierarchical models for parameters in the Lévy measure allow incor-
poration of meteorological variables which influence both the dispersal parameters
and expected concentrations. An interesting extension with the multivariate pol-
lution models is the use of marked random fields that allow common jumps (shared
impulses) between two or more pollutants. In comparison with standard methods,
the Lévy random field priors provide excellent performance in terms of both mean
squared error and coverage for out-of-sample model predictions.

Papers describing the Lévy random field priors and these applications will be
available from the authors’ websites; please visit http://www.isds.duke.edu.
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Empirical process techniques for locally stationary processes

Rainer Dahlhaus

(joint work with Wolfgang Polonik)

We consider inference for locally stationary processes (cf. Dahlhaus, 1997, 2000),
that is for processesXt,n (t = 1, . . . , n) which have a slowly-varying moving average
representation

(1) Xt,n =

∞∑

j=−∞
at,n(j) εt−j .

We assume that the coefficient functions at,n(j) are uniformly decaying to zero

with rate |j|−1 log−(1+κ) |j| and can approximately be rescaled to the unit interval,
that is at,n(j) can be approximated by a( tn , j) with a function a(u, j) of bounded
variation in u. The εt are assumed to be independent and identically distributed
with Eεt ≡ 0, Eε2t ≡ 1 and κ4 := cum4(εt) (for more details on these assumptions
see Dahlhaus and Polonik, 2005). In addition we assume for some results that the
sequence εt and therefore also the process Xt,n is Gaussian. A simple example of a
process which fulfills these assumptions is Xt,n = φ( tn )Yt where Yt = Σj a(j)εt−j
is stationary and φ is of bounded variation. Furthermore time varying ARMA
models whose coefficient functions are of bounded variation are locally stationary
in the above sense.

The function

f(u, λ) =
1

2π
|A(u, λ)|2

with

A(u, λ) =
∞∑

j=−∞
a(u, j) exp(−iλj)

is the time varying spectral density, and

c(u, k) =

∫ π

−π
f(u, λ) exp(iλk)dλ =

∞∑

j=−∞
a(u, k + j)a(u, j)

is the time varying covariance of lag k at rescaled time u.
The goal now is to make statistical inference about the process - for example

to estimate the coefficient functions of a time varying AR-process

Xt,n + a(
t

n
)Xt−1,n = σ(

t

n
) ǫt
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which can be represented in the form (1).
For such problems the so-called empirical spectral process plays a major role.

It is defined by

En(φ) =
√
n

(
Fn(φ) − F (φ)

)

where

F (φ) =

∫ 1

0

∫ π

−π
φ(u, λ) f(u, λ) dλ du

and

Fn(φ) =
1

n

n∑

t=1

∫ π

−π
φ(
t

n
, λ)Jn(

t

n
, λ) dλ

with the pre-periodogram

Jn

( t
n
, λ

)
=

1

2π

∑

k:1≤[t+1/2±k/2]≤n
X[t+1/2+k/2],nX[t+1/2−k/2],n exp(−iλk).

If X[t+1/2+k/2],nX[t+1/2−k/2],n is regarded as a (raw-) estimate of c( tn , k) then

Jn(
t
n , λ) can be regarded as a (raw-) estimate of f( tn , λ) - however, in order to

become consistent Jn(
t
n , λ) needs to be smoothed in time and frequency direction.

The pre-periodogram Jn was first defined by Neumann and von Sachs (1997).
Many important statistics occurring in the analysis of locally stationary proc-

esses can be written as a functional of Fn(φ):

(i) For φ(u, λ) = χ[0,v]×[0,µ](u, λ) one obtains the time-spectral measure.

(ii) For φ(u, λ) = ∂
∂θj

fθ0(u, λ)
−1 one obtains the score function of the generalized

Whittle likelihood for parametric locally stationary models (cf. Dahlhaus, 2000).

(iii) For kernel functions φ(u, λ) = φn(u, λ) we obtain several other applications:
If kn(x) = 1

bn
K( xbn

) is some kernel with bandwidth bn then Fn(φ) occurs as an

estimate of the spectral density in the stationary case where φ(u, λ) = kn(λ −
λ0), as an estimate of f(u, λ) in the nonstationary case where φ(u, λ) = kn(u −
u0) kn(λ− λ0) and as an estimate of the time varying covariance function at time
u0 and of lag k where φ(u, λ) = cos(λk) kn(u− u0).

(iv) For φ( tn , λ) = φ̃(λ) we obtain with the relation

In(λ) :=
1

2πn

∣∣∣
n∑

t=1

Xt,n exp(−iλt)
∣∣∣
2

=
1

n

n∑

t=1

J (hn)
n (

t

n
, λ)

Fn(φ) =

∫ π

−π
φ̃(λ)In(λ) dλ

leading to well known statistics for stationary time series, such as the empirical
covariance function of some lag k where φ̃(λ) = cos(λk), the score function of the

parametric Whittle likelihood where φ̃(λ) = ∂
∂θj

fθ0(λ)
−1 and the empirical spec-

tral measure where φ̃(λ) = χ[0,α](λ).
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The asymptotic properties for the empirical spectral process are derived under
conditions on the richness of the index class Φ measured by metric entropy. For
each ǫ > 0, the covering number of Φ with respect to the metric

ρ2(φ) =
(∫ 1

0

∫ π
−π |φ(u, λ)|2 dλ du

)1/2

is defined as

N(ǫ,Φ, ρ2) = inf {n ≥ 1 : ∃ φ1, . . . , φn ∈ Φ such that

∀ φ ∈ Φ ∃ 1 ≤ i ≤ n with ρ2(φ − φi) < ǫ}.
The quantity H(ǫ,Φ, ρ2) = logN(ǫ,Φ, ρ2) is called the metric entropy of Φ with
respect to ρ2.

We now can formulate the following functional central limit theorem (for details
about the assumptions see Dahlhaus and Polonik, 2005).

Theorem 1 Suppose that Xt,n is a Gaussian locally stationary process and let Φ
be a class of functions with

∫ 1

0

H(u,Φ, ρ2) du < ∞.

Then the process (En(φ); φ ∈ Φ) converges weakly in ℓ∞(Φ) to a tight mean zero
Gaussian process (E(φ); φ ∈ Φ) with

cov
(
E(φj

)
, E

(
φk)

)
=

2π

∫ 1

0

h4(u)

‖h‖4
2

∫ π

−π
φj(u, λ) [φk(u, λ) + φk(u,−λ)] f2(u, λ) dλ du.

Besides investigating the properties of the empirical process we have looked in
Dahlhaus and Polonik (2005) at the nonparametric MLE (and related sieve esti-
mates) defined by

f̂n = argming∈FLn(g)

where

Ln(g) =
1

n

n∑

t=1

1

4π

∫ π

−π
{log g(

t

n
, λ) +

Jn(
t
n , λ)

g( tn , λ)
} dλ.

and F is a suitable class of spectral densities (e.g. under shape restrictions). A
detailed example is given in Section 3 of Dahlhaus and Polonik (2005) where the
estimation of a monotonic variance function in a time-varying AR-model is studied,
including explicit algorithms involving isotonic regression.

By using again the empirical spectral process consistency and a rate of conver-

gence is derived of f̂n. Furthermore an optimal rate is obtained for sieve estimates.
A key role in the proof (as well as in the proof of the central limit theorem) is

played by the following exponential inequalities (the first being a Bernstein-type
inequality). Let

ρ2,n(φ) :=
( 1

n

n∑

t=1

∫ π

−π
φ(
t

n
, λ)2dλ

)1/2

and ρ∞(φ) :=
∞∑

j=−∞
sup
u

|φ̂(u, j)|.
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where φ̂(u, j) are the Fourier coefficients of φ(u, λ) in frequency direction.

Theorem 2 Suppose that Xt,n is a Gaussian locally stationary process and let
the Fourier coefficients of φ be of uniformly bounded variation. Then we have for
all η > 0

P (|√n(Fn(φ) − EFn(φ))| ≥ η) ≤ c1 exp
(
− c2

η2

ρ2,n(φ)2 + ηρ∞(φ)√
n

)

and

P (|√n(Fn(φ) − EFn(φ))| ≥ η) ≤ c1 exp
(
− c2

η

ρ2,n(φ)

)

with some constants c1, c2 > 0.

We mention that both theorems will we extended to non-Gaussian processes in
Dahlhaus and Polonik (2006). Furthermore the case of φ depending on n shall be
studied in future work.
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Universal principles, approximation and model choice

Patrick Laurie Davies

Given data set xn = (x1, . . . , xn) and a family {Pθ : θ ∈ Θ} of probability models
statisticians have developed different procedures for specifying one or more values
of the parameter space Θ such that Pθ is in some sense an appropriate model for
the data. Many of these procedures are what may be termed universal as the
choice of parameter, in contrast to the choice of model family, is independent of
the subject matter of the data. That is, the same procedure can be applied to data
from physics, literature and sociology. Examples of such universal procedures are
maximum likelihood, Bayes, AIC, BIC, MDL and cross validation. The majority
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of these is likelihood based so we restrict the present discussion to such ones. If
the density of the model Pθ is f(x, θ) then the log-likelihood is

l(θ,xn) = log f(xn, θ).

We consider three applications of likelihood.

Example 1.
The model we use is the i.i.d. Gaussian one whose log-likelihood is

l(µ, σ,xN ) = −n
2

log(2π) − n log(σ) − 1

2

n∑

i=1

(
xi − µ

σ

)2

.

If now the data were i.i.d. Cauchy there is no way we could tell this just given the
likelihood. The conclusion is that likelihood is blind.

Example 2:
The data is a large sample of numbers obeying the binomial distribution with
parameters n = 5000 and p = 1/2. The models we consider are the Poisson model
with parameter λ = 1 and the normal N(2500, 1250) model. The latter is well
supported by the data and the central limit theorem. Nevertheless all likelihood
methods would choose the Poisson model. Likelihood is pathologically discontin-
uous.

Example 3:
A common maximum penalized likelihood estimator is the function f which min-
imizes

n∑

i=1

(yi − fi)
2 + λ

∫ 1

0

f (2)(t)2 dt

where λ is the smoothness parameters. Likelihood provides no help in choosing λ
and indeed, there may well be no acceptable choice of λ. Figures 1 and 2 below
show respectively a large and a small value of λ respectively. In summary

• Likelihood is blind.
• Likelihood reduces the measure of fit of a model to data to a single number.
• Likelihood is pathologically discontinuous.
• Likelihood is only useful when combined with a regularization.

In contrast to likelihood which is closely related to the idea of truth in statistics
we propose to base model choice on a concept of approximation. The idea is that
a model P is an adequate approximation for a data set xn if “typical” samples of
size nXn(P ) generated under P “look like” the real data. The notions of “typical”
and “look like” have to be made precise and this will depend on probabilistic and
subject matter considerations. We expound the approach in the context of non-
parametric regression. Given data (ti, y(ti)), i = 1, . . . , n with the ti ∈ [0, 1] we
look for a function fn such that the data may well be represented by (ti, fn(ti)).
We do this in two steps. We define precisely what is meant by an adequate
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approximation and then we regularize by specifying the simplest function which
is an adequate approximation. We base our considerations on the model

(1) Y (t) = f(t) + σZ(t)

where Z denotes standard Gaussian white noise. If fn is an adequate approxima-
tion to the data then based on(1) the corresponding residuals rn(ti) = y(ti)−fn(ti)
must “look like” white noise with variance σ2. If this is the case then for each in-
terval I ⊂ [0, 1]

(2)
1√
|I|

∑

ti∈I
(y(ti) − fn(ti))

will behave like a N(0, σ2) random variable. Based on the maximum of Gaussian
random variables we are lead to the requirement

(3) max
I

∣∣∣∣∣
1√
|I|

∑

ti∈I
(y(ti) − fn(ti))

∣∣∣∣∣ ≤ σ
√
τ log(n)

which holds asymptotically for any τ > 2. Our default value is 2.3. The value of σ
can usually be obtained with sufficient accuracy from the data. In this sense the
function of Figure 2 is an adequate approximation but not that of Figure 1. The
second step is to define what is meant by a simple function. One useful measure
is the number of local extremes. The problem now is to minimize the number of
local extremes of fn subject to the approximation inequalities (3). The taut string
method to do this was developed in Davies and Kovac (2001). Figure 3 shows the
taut string approximation to the same data. Another possibility is to maximize
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the smoothness of the function. This may be accomplished by minimizing the
total variation of the third derivative of fn subject to the constraints (3). This
leads to the following linear programming problem:

(4) minimize

n−4∑

i=1

|fn(ti+4) − 4fn(ti+3) + 6fn(ti+2) − 4fn(ti+1) + fn(ti))|

subject to (4). If we also incorporate the monotonicity constraints from the taut
string the resulting approximation is shown in Figure 4).

Figure 4.
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Prediction Regions for Nested Model Selection

Lutz Duembgen

(joint work with Angelika Rohde)

This talk is concerned with a new type of prediction regions in connection with
model selection in a gaussian shift model. Before starting with this framework let
us consider an even simpler setting.

A Toy problem. Suppose we observe a stochastic process Y = (Y (t))t∈[0,1],
where

Y (t) = F (t) +W (t), t ∈ [0, 1],
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with a fixed or random continuous function F on [0, 1] and a brownian motion
W = (W (t))t∈[0,1] such that F and W are independent. We are interested in the
set

S(F ) := arg min
t∈[0,1]

F (t).

Precisely, we want to construct a (1 − α)–prediction region Ŝ = Ŝ(Y ) ⊂ [0, 1] for
S(F ), i.e.

(1) P (S(F ) ⊂ Ŝ) ≥ 1 − α,

regardless of (the distribution of) F . A possible solution is as follows: Let κ be
the (1 − α)–quantile of

T (W ) := sup
s,t∈[0,1]

( |W (s) −W (t)|√
|s− t|

− Γ(|s− t|)
)
,

where Γ(δ) :=
√

2 log(e/δ). Then

Ŝ :=
{
s ∈ [0, 1] : Y (s) ≤ Y (t) +

√
|s− t|

(
Γ(|s− t|) + κ

)
for all t ∈ [0, 1]

}

satisfies the constraint (1).
This method is motivated by multiscale methods introduced by Dümbgen and

Spokoiny (2001). In order to understand its power, consider a sequence of fixed
functions F = Fn such that for some parameters tn ∈ [0, 1], δn ∈ (0, 1] and cn > 0,

Fn(tn + h) ≥ cnh
2 whenever |h| ≤ δn,

where cnδ
2
n → ∞. Then

Ŝn ∩ [tn ± δn] ⊂
[
tn ±Op(log(cn)1/3c−2/3

n )
]
.

Nested Models. Now consider a random vector Xn ∼ Nn(θn, σ
2In), where

σ > 0 is assumed to be known (for simplicity), whereas θn is an unknown vector

in some set Θn ⊂ R
n. Given an estimator θ̂n = θ̂n(Xn) for θn, let

L(θ̂n, θn) := ‖θ̂n − θn‖2 and R(θ̂n, θn) := EL(θ̂n, θn)

be its loss and risk, respectively.
Depending on Θn, various adaptivity results are known for point estimators

of θn, many of which have the following form: Let Cn be a family of candi-

date estimators θ̌ = θ̌(Xn) for θn. Then there exist estimators θ̂n and constants
An, Bn = O(log(n)κ) for some κ ≥ 0 such that for arbitrary θn ∈ Θn,

R(θ̂n, θn) ≤ An inf
θ̌∈Cn

R(θ̌, θn) +Bn .

Results of this type are provided, for instance, by Polyak and Tsybakov (1991)
and Donoho and Johnstone (1994).

By way of contrast, when aiming at adaptive confidence sets one faces severe
limitations.
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Here is a result of Li (1989), slightly reformulated: Let Ĉn = Ĉn(Xn) ⊂ R
n be

a (1−α)–confidence set for θn ∈ Θn. Suppose that Θn contains a closed euclidean
ball B(θon, cn

1/4). Then

Pr
θo

n

(
sup
η∈Ĉn

‖η − θon‖ < cn1/4
)

≤ Pr(χ2
n ≤ χ2

n;α(c2n1/2))

= Φ(Φ−1(α) + 2−1/2c2) + o(1)

as n → ∞, uniformly in c ≥ 0. Thus a reasonable confidence set cannot have a
diameter of order op(n

−1/4). Despite these limitations, there is some literature
on confidence sets in the present or similar settings; see for instance Beran and
Dümbgen (1998), Baraud (2004), Genovese and Wassermann (2005), Robins and
van der Vaart (2005), Cai and Low (2005).

The question is, whether one can bridge this gap between confidence sets and
point estimators. More precisely, we would like to understand the possibility
of adaptation for point estimators in terms of some confidence set or prediction
region. To this end we consider the standard nested sequence of approximating
models with candidate estimators

θ̂(k)n := (Xn,1, . . . , Xn,k, 0, . . . , 0)⊤

for k ∈ {0, 1, . . . , n}. The risk of such an estimator is given by

Rn(k) := R(θ̂(k)n , θn) = kσ2 +
∑

i>k

θ2n,i,

while its loss equals

Ln(k) := L(θ̂(k)n , θn) =
∑

i≤k
(Xn,i − θn,i)

2 +
∑

i>k

θ2n,i

= R(k) +
∑

i≤k
(ǫ2n,i − σ2), ǫn := Xn − θn .

Moreover, an unbiased estimator of risk is given by

R̂n(k) := kσ2 +
∑

i>k

(X2
n,i − σ2).

Now our goal is to construct a (1 − α)–prediction region for the random set

Sn := arg min
k∈{0,1,...,n}

Ln(k).

For this purpose we consider the process Wn = (Wn(k))nk=0 with

Wn(k) := R̂n(k) − Ln(k).

Note that for 0 ≤ j < k ≤ n,

Wn(k) −Wn(j) = 2
k∑

i=j+1

(ǫ2n,i − σ2 + θn,iǫn,i).
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Thus Wn −Wn(0) is simply a random walk, but its increments are neither i.i.d.
nor subgaussian. In fact,

Wn(k) −Wn(j) =L 2σ2
(
χ2
n(δ

2
n,j,k) − (k − j) − δ2n,j,k

)

with noncentrality parameter δ2n,j,k :=
∑k
i=j+1 θ

2
n,i/(4σ

2). Nevertheless, by means

of exponential inequalities for noncentral χ2–distributions and recent results of
Dümbgen and Walther (2005), one can show that the distribution of the random
quantity

Tn := max
0≤j<k≤n

( |Wn(k) −Wn(j)|
γn(j, k)

− Γ
(γn(0, n)2

γn(j, k)2
, γn(j, k)

)

is asymptotically less than or equal (w.r.t. stochastic order) to the distribution of
T (W ) introduced earlier. Here

Γ(u, δ) := Γ(u) +
4 log(1/u)

δ2
,

while

γn(k, j) = γn(j, k) := 2

√√√√2|k − j| +
k∑

i=j+1

θ2n,i/σ
2

is the standard deviation of (Wn(k) −Wn(j))/σ2.
In order to construct a confidence set by means of Tn, we are facing the problem

that the numbers γn(j, k) involve the unknown signal θn. Fortunately it suffices
to consider the least favourable case when |θn,i| = σ for all i. In this case,

γn(j, k) =
√

12|k − j|.
Now let κn be the (1 − α)–quantile of Tn in this least favourable case, and let

Ŝn :=
{
j ∈ {0, . . . , n} : for all k ∈ {0, . . . , n},

R̂n(j) ≤ R̂n(k) + σ2
√

12|k − j|
(
Γ
( |k − j|

n

)
+
K log(n/|k − j|)

|k − j| + κn

)}

for some universal constant K. Then for any fixed c > 0 and uniformly in θn ∈
B(0, c

√
n),

Pr
(
Sn ⊂ Ŝn

)
≥ 1 − α+ o(1)

while

max
k∈Ŝn

Ln(k) ≤
(

min
k∈{0,1,...,n}

Ln(k) + σ2
)
Op(logn).
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A survey on penalized empirical risk minimization

Sara A. van de Geer

We address the question how to choose the penalty in empirical risk minimization.
Roughly speaking, this penalty should be a good bound for the estimation error.
Main point is however that the estimation error depends on unknown parameters.
We discuss a nonlocal estimate of the estimation error. Moreover, we show that
the ℓ1 penalty allows one to avoid explicitly estimating the estimation error.

The framework is as follows. Let the data X1, . . . , Xn be i.i.d. copies of a
random variable X ∈ X with distribution P . The empirical distribution is Pn =∑n

i=1 δXi/n. We are interested in the parameter f0 ∈ Λ, (Λ, d) being a metric
space. This parameter f0 is defined as the minimizer of the theoretical loss R(f) :=
Pγf , f ∈ Λ, where γf : X → R is a given loss function. To estimate f0, we replace
R(f) by its empirical counterpart Rn(f) := Pnγf . Next, we choose a model class
F ⊂ Λ, and define the penalized empirical risk minimizer

f̂n = arg min
f∈F

Rn(f).

Generally, it is necessary to choose a model class F which is strictly smaller than
Λ. This is because Λ may be a very rich set, and empirical risk minimization over
Λ may lead to overfitting the data.

Given the model class F, the approximation error is defined as

B2
n = R(f∗) −R(f0),

where

f∗ = argmin
f∈F

R(f)
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is the minimizer over the class F. The estimation error is

Vn = R(f̂n) −R(f∗).

The excess risk of f̂n is

R(f̂n) −R(f0).

Thus we have a “bias-variance” type decomposition for the excess risk:

R(f̂n) − R(f0) = B2
n + Vn.

Note that both the approximation error and the estimation error depend on
F. We express this by writing B2

n = B2
n(F) and Vn = Vn(F). Consider now a

collection of candidate models {F}. The optimal model Foracle is then the one
which optimally trades off approximation error and estimation error, i.e.,

Foracle = arg min
F∈{F}

{
B2
n(F) + Vn(F)

}
.

Our aim is to find an estimator that mimics this trade off.
The following elementary lemma tells us that we can bound the estimation error

by the empirical process νn, defined by νn(f) =
√
n(Rn(f) −R(f)).

Elementary lemma 1. Let f̂n = arg minf∈FRn(f) and f∗ = argminf∈FR(f).

Then we have the following bound for the estimation error Vn := R(f̂n) −R(f∗):

Vn ≤ −[νn(f̂n) − νn(f∗)]/
√
n.

The next lemma indicates that in penalized empirical risk minimization, one should
take the penalty, ˆpen(F), equal to a good bound for the estimation error.

Elementary lemma 2. Let f̂n(F) = argminf∈FRn(f) and

F̂n = argmin
{F}

{
Rn(f̂n(F)) + ˆpen(F)

}
.

Fix some F∗ ∈ {F} and some f∗ ∈ F∗, and define the “approximation error”
B2
n(F∗) = R(f∗) −R(f0) and “estimation error bound”

(1) Vn(F) = −[νn(f̂n(F)) − νn(f∗)]/
√
n.

Suppose that with probability at least 1 − ǫ, we have

ˆpen(F) ≥ Vn(F), ∀ F.

Then with probability at least 1 − ǫ,

R(f̂n(F̂n)) −R(f0) ≤ B2
n(F∗) + ˆpen(F∗).

Concentration inequalities provide exponential probability inequalities for the
concentration of the supremum of the empirical process around its mean (see e.g.
(9)).
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One may now derive a nonlocal bound for Vn(F) defined in (1). Note first that
for a non-random choice of f∗,

EVn(F) = −Eνn(f̂n)]/
√
n ≤ E‖Rn −R‖F,

where we use the notation ‖ · ‖F for the sup-norm of a class of functions on F.
Moreover,

E‖Rn −R‖F ≤ 2E‖Rσn‖F,

with Rσn(f) =
∑n

i=1 σiγf (Xi)/n being the symmetrized version involving the
Rademacher sequence {σi}ni=1. The latter is defined as a sequence of i.i.d. ran-
dom variables, independent of {Xi}ni=1, with P(σi = 1) = P(σi = −1) = 1/2
(i = 1, . . . , n). Finally,

E‖Rσn‖F = EEX1,...,Xn‖Rσn‖F,

where EX1,...,Xn denotes conditional expectation given X1, . . . , Xn. Concentration
inequalities (see (5)) now tell us (under conditions) that, with probability 1 − ǫ,
up to a n−1/2 term involving ǫ, 2EX1,...,Xn‖Rσn‖F is a bound for Vn(F). If we use

this bound, it is rather difficult to get rid of the n−1/2 term and establish rates
faster than n−/12. The reason is that our estimate of the estimation error is a
nonlocal one.

We will now illustrate that generally, the estimation error is smaller than
O(n−1/2). More details are e.g. in (3), (4), (5) and (8). We introduce the fol-
lowing two conditions, which both involve the same parameter 0 < β ≤ 1.

Margin condition. Let G =
∫ ·
0 g(x)dx, with g a strictly increasing function

on the positive halfline, having g(0) = 0. Suppose

R(f) −R(f0) ≥ G(dβ(f, f0)), ∀ f ∈ Λ.

Empirical process condition. Let f∗ = arg minf∈FR(f). Suppose that for
some positive constants dn and Cn, we have with probability at least 1 − ǫ

sup
f∈F

|νn(f) − νn(f∗)|
dβ(f, f̃∗) + dβn

≤ Cn.

Lemma 3. Assume the margin condition and the empirical process condition.

Let f̂n = arg minf∈FRn(f), and B2
n = R(f∗) − R(f0). Let 0 < δ < 1. With

probability at least 1 − ǫ, we have

R(f̂n) −R(f0) ≤
1 + δ

1 − δ
{B2

n + Vn + n−1/2dβnCn},

where

Vn = 2δH(
Cn
δ
√
n

),

and H =
∫ ·
0 g

−1(x)dx.
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As a typical example, suppose we have β = 1 and that g is the identity. Then
G(x) = H(x) = x2/2, and we find

Vn =
C2
n

nδ
.

the constant C2
n is typically something like “dimension” or a more general measure

of “complexity” of F. If it does not grow too fast in n, and if in addition dn
decreases fast in n, we indeed arrive at estimation error of order smaller than
n−1/2.

It will be clear however that in general it is not obvious to verify the conditions,
as they depend on the underlying distribution. In particular, it is often not clear
what the function g is the margin condition. Thus, we do not know how large Vn

is. However, as is shown in literature (see for example (1), (2), (5), (6), (7), (11)),
there are ways to obtain a good local estimate.

We now turn to ℓ1 penalization, to avoid the problem of unknown margin
behavior. Let γf = γ ◦ f , and suppose γ is convex, and Lipschitz with Lipschitz
constant 1. Suppose Λ ⊂ L2(ν), with ν some measure on X. Let Fm be a convex
subset of {fα =

∑m
k=1 αkψk}, where {ψk}mk=1 ⊂ L2(ν) are given base functions.

We assume that m ≤ nD for some D ≥ 1. Also, we assume

max
k=1,...,m

‖ψk‖∞ ≤
√

n

logn
.

We consider the estimator

f̂n = arg min
fα∈Fm

{Rn(fα) + λ̂n

m∑

k=1

|αk|}.

Here, we take

λ̂n ≥ 864Ψ̂nD

√
logn

n
,

with
Ψ̂2
n = max

k=1,...,n
Pnψ

2
k ∨ 42.

We let
Ψ2

0 = max
k=1,...,m

Pψ2
k ∨ 42,

and let λn be the theoretical counterpart of the smoothing parameter λ̂n, i.e.

λn = λ̂n
Ψ0

Ψ̂n

.

Now, our further conditions depend on the unknown underlying distribution,
so we call them non-verifiable conditions. Note however that our estimation pro-
cedure does not require them to be verifiable.

Non-verifiable conditions.
• The margin condition holds.
• It holds that ‖f − f̃‖2,ν ≤ dβ(f, f̃) for all f, f̃ ∈ Fm. Here β is from the margin
condition, and ‖ · ‖2,ν denotes the L2(ν)-norm.
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• It holds that ‖f − f̃‖∞ ≤ Knd(f, f̃) ∨ 2 for all f, f̃ ∈ F. Here Kn is a sequence
satisfying a growth condition (see Theorem 4).
• For some diagonal matrix W = diag(w1, . . . , wm) of positive weights, the matrix
WΣνW has smallest eigenvalue equal to one. Here Σν =

∫
ψψT dν with ψ =

(ψ1, . . . , ψm)T .

We now define the “estimation error bound” as

Vn(α) = 2δH(18λnC(α)/δ),

with H =
∫ ·
0
g−1(x)dx, and with

C2(α) = D
∑

k:αk 6=0

w2
k.

Let

ǫn =
1 + δ

1 − δ
min
fα∈F

{
R(fα) −R(f0) + Vn(α) + 2λn

√
logn

n

}
.

The following theorem is a generalization of the result in (10).

Theorem 4. Consider the estimator

f̂n = arg min
fα∈Fm

{Rn(fα) + λ̂n

m∑

k=1

|αk|}.

Assume the non-verifiable conditions with growth rate condition Kβ
nG

−1(ǫn) ≤ 1.
Then there is a universal constant c, such that with probability at least 1 − c/n2,
we have

R(f̂n) −R(f0) ≤ ǫn.
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Bayesian Constructions for the General Regression Problem

Edward I. George, Robert E. McCulloch

(joint work with Hugh Chipman)

We describe implementations of the Bayesian approach for model uncertainty prob-
lems where a large number of different models are under consideration for data,
(1) (2), (3). A joint distribution is obtained by introducing prior distributions on
all the unknowns, here the parameters of each model and the models themselves,
and then combining them with the likelihood. Conditioning on the data then in-
duces a posterior distribution of model uncertainty that can be used for model
selection and other inference and decision problems. After laying out the main
details of the general Bayesian approach for model uncertainty, we focus on the
construction of methods for addressing three central regression problems where
one wants to model the relationship between between a variable of interest y, and
a set of potential predictor variables x1, . . . , xp.

We first consider the variable selection problem for the linear model which
arises when one wants to model the linear relationship between y and a subset of
x1, . . . , xp, but there is uncertainty about which subset to use, (4). By embedding
this setup in a hierarchical mixture model on the regression coefficients, promising
subset models are identified with high posterior models, (5), (6). We next turn to
regression tree modeling where the goal is to select a binary tree that partitions
the predictor space into regions where the distribution of y is homogeneous. By
describing tree uncertainty with a tree generating stochastic process, a posterior
distribution is obtained on the set of trees, (7). Posterior computation and explo-
ration in both of these problems can be obtained by MCMC (Markov chain Monte
Carlo) simulation, (8).

Combining and extending these formulations, we propose BART (Bayesian Ad-
ditive Regression Trees), a new approach to discover the form of f(x1, . . . , xp) ≡
E(Y | x1, . . . , xp) and draw inference about it, (9). BART approximates f by a
Bayesian “sum-of-trees” model where each tree is constrained by a prior to be a
weak learner as in boosting. Fitting and inference are accomplished via an itera-
tive backfitting MCMC algorithm. By using a large number of trees, which yields
an overcomplete basis for f , we have found BART to be remarkably effective at
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finding highly nonlinear relationships hidden within a large number of irrelevant
potential predictors.

BART is motivated by ensemble methods in general, and boosting algorithms
in particular. Like boosting, each weak learner (i.e., each weak tree) contributes
a small amount to the overall model, and the training of a weak learner is condi-
tional on the estimates for the other weak learners. The differences from boosting
algorithms are just as striking as the similarities: BART is defined by a statistical
model: a prior and a likelihood, while boosting is defined by an algorithm. MCMC
is used both to fit the model and to quantify inferential uncertainty through the
variation of the posterior draws.

The BART modelling strategy can also be viewed in the context of Bayesian
non-parametrics. The key idea is to use a model which is rich enough to respond
to a variety of signal types, but constrained by the prior from overreacting to weak
signals. The ensemble approach provides for a rich base model form which can
expand as needed via the MCMC mechanism. The priors are formulated so as
to be interpretable, relatively easy to specify, and provide results that are stable
across a wide range of prior hyperparameter values. The MCMC algorithm, which
exhibits fast burn-in and good mixing, can be readily used for model averaging
and for uncertainty assessment.

After introducing BART, we proceed to illustrate how it opens up a new ap-
proach to variable selection when one wants to model the relationship between y
and a subset of x1, . . . , xp, but there is uncertainty about which subset to use. This
selection problem is typically treated by assuming that the relationship between
y and x1, . . . , xp belongs to a parametric family such as the normal linear models.
If incorrect, however, such an assumption can at the outset defeat the ultimate
goal; subsets of x1, . . . , xp may be excluded simply because their relationship to
y is far outside the assumed parametric family. To avoid this limitation, we show
how BART may be used to discover the nature of the relationship between y and
x1, . . . , xp before attempting to find relevant variables and a suitable parametric
form.

To begin with, BART automatically screens for relevant predictors. As the
BART algorithm moves through the model space, different potential predictors
enter the model with different frequencies. Those that enter rarely or not at all
are candidates for elimination, and those that enter frequently are candidates for
inclusion. Based on such information, we consider various strategies for rerunning
BART on subsets of x1, . . . , xp which lead to a stable subset for selection. Note
that BART also provides an omnibus test: the absence of any relationship between
y and any subset of x1, . . . , xp is suggested when BART posterior intervals for f
reveal no signal.

Going further, let f̂ be a BART estimate of f based on the selected subset of

x1, . . . , xp. Intuitively, f̂ may be regarded as a sufficient statistical summary of

the systematic relationship between y and x1, . . . , xp. Thus f̂ and the selected
subset can be used, instead of the raw data, to find a parametric model for this re-
lationship. For example, let M1, . . . ,Mm be m different parametric model classes
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under consideration such as the normal linear models or other exponential family

models. Partial dependence plots applied to f̂ may be useful for suggesting the
form of such model classes as well as useful transformations of the predictors. Ba-
sically, the goal is to find the model within any of these model classes that is “best

supported” by f̂ . For this purpose, we consider the strategy of selecting the model

corresponding to the projection of f̂ onto the nearest model class with respect to
a utility criterion such as the Kullback-Leibler discrepancy. Yet another strategy
is to construct a likelihood over the model space based on the probability distri-

bution of f̂ for each model. This opens the door to f̂ based Bayesian approaches
for model selection and averaging over M1, . . . ,Mm.
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Different Roles of Penalties in Penalized Likelihood Model Selection
Rules

Jayanta Ghosh

Introduction : We argue that each penalty has a specific role in the sense of
addressing a specific problem and attaining optimality there. We illustrate our
thesis through examples and results from Bayesian Analysis, Parametric Empirical
Bayes Analysis (PEB), Machine Leaning and Classical Statistics. In particular, we
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examine in detail the performance of AIC. We also examine BIC to some extent
since the AIC and BIC remain the most popular as well as the most misused.

We begin with Bayesian model selection because basic issues are clearest in this
set up. Bayesian model selection rules do not involve penalties but it is clear that
different objectives as measured by different loss functions lead to different rules.

If the object is to select a correct model the appropriate loss is 0-1. If the object
is to make prediction, squared error seems appropriate. Moreover, the nature of
the model space is relevant for choice of priors - a uniform prior for nested models
and the Binomial prior π(q) = wp(1−w)p−q for all subsets model selection. Here,
0 < w < 1, q = dimension of the model under consideration, p = dimension of the
most complex model.

For a 0-1 loss the Bayes rule selects the posterior mode, i.e., the model with
highest posterior probability. On the other hand, for squared error, the Bayes rule
is to select the posterior median, cf. Barbieri and Berger (2004). The remarks
below address this dichotomy from different points of view.

First, having two optimal rules is quite natural and serves two different basic
purposes. The posterior mode is part of our description of the truth whereas the
posterior median is part of our description of the action we ought to take. So we
need two optimally selected models to satisfy two different needs.

Secondly, it is hard to believe that the 0-1 loss is a good choice when the
cardinality of the model space is large and some models differ by relatively few
parameters. It would be easier to reconcile two optimal models if 0-1 loss is changed
to reflect better the topology of the model space or one changes the first model
selection problem. For example, have a credibility set for the model multi-index.
The median model index would lie in this subset.

Model Selection in Nested PEB Regression with orthogonal design : In a nested
orthogonal version of the problem formulated in George and Foster (2000), Ghosh
and Mukhopadhyay (2003) show through asymptotics and extensive simulation
that an optimal Bayes rule for one loss function will perform poorly when the loss
is changed. In particular it is shown that the AIC is asymptotically optimal in
the sense of attaining an oracle for prediction loss and that AIC does very well
in prediction, in some cases doing substantially better that the (PEB) posterior
median and the (PEB) posterior mode. On the other hand this very fact is related
to its poor performance in situations involving 0-1 loss and in its failure to be
consistent for all values of hyperparameters.

More about AIC and BIC : Schwarz (1978) derived the BIC essentially as an
approximation to the Bayes rule for 0-1 loss in low dimensional problems whereas
AIC was proposed by Akaike (1973) as an appropriate rule in high dimensional
prediction problems when the true model is so complex that it is not in the model
space.

Thus AIC and BIC solve quite different problems. The penalty of BIC arises
from the 0-1 loss and the prior while the penalty of AIC is such that the difference
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of AIC for two models is an unbiased estimate of the difference of the two prediction
risks. One may say the penalty of AIC arises from the squared error loss.

In view of this it is not surprising that performance of AIC and BIC can vary
from “pretty good” to “pretty bad” depending on the context. In Chakrabarti
and Ghosh (2005a) it is shown that AIC attains an oracle and the minimax rate
for nonparametric regression. It also seems to do better than the Cai-Low-Zhao
shrinkage estimate for smooth functions. BIC fails for both squared error and
0-1 loss in high dimensional problems (cf. Berger (2005), Berger, Ghosh and
Mukhopadhyay (2003), Chakrabarti and Ghosh (2005a,b), Ghosh and Mukhopad-
hyay (2003), Mukhopadhyay (2000)). Here we follow Vapnik’s tentative definition
of high dimension as meaning n ≍ p.

Machine Leaning and Classical Statistics : Vapnik (1995) has suggested the princi-
ple of structured risk minimization. This may be interpreted as penalized empirical
risk minimization with the penalty arising from application of the Cervonenkis-
Vapnik Uniform Strong Law of Large Numbers. Vapnik obtains a tight oracle-like
upper bound that proves the optimality of his principle. A more recent similar
example is Lugosi and Vayatis (2004). An interesting new example was presented
at the conference by Kolchinski in the context of a modification of LASSO.

In classical statistics Fan et al. (2001, 2002) discuss three desirable properties
for a penalty and (almost) necessary and sufficient conditions for these properties.
They choose their non-concave penalty on the basis of these considerations and
prove oracle like properties as well indicate advantages over LASSO and Hard
Thresholding.

Given all these examples from different paradigms, it seems one may now look for
a Grand Unifying Theory.
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Testing and model selection for density estimation

László Györfi

(joint work with Gérard Biau, Benôıt Cadre, Luc Devroye)

Consider two mutually independent samples of R
d-valued random vectors X1, . . . ,

Xn and X ′
1, . . . , X

′
n with i.i.d. components defined on the same probability space

and distributed according to unknown probability measures µ and µ′. We are
interested in testing the null hypothesis that the two samples are homogeneous,
that is

H0 : µ = µ′.

Denote by µn and µ′
n the empirical measures associated with the samples

X1, . . . , Xn and X ′
1, . . . , X

′
n, respectively, so that

µn(A) =
#{i : Xi ∈ A, i = 1, . . . , n}

n

for any Borel subset A, and, similarly,

µ′
n(A) =

#{i : X ′
i ∈ A, i = 1, . . . , n}

n
.
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Based on a finite partition Pn = {An1, . . . , Anmn} of R
d (mn ∈ N

∗), we let the
test statistic comparing µn and µ′

n be defined as

Tn =

mn∑

j=1

|µn(Anj) − µ′
n(Anj)|.

Theorem 1. (Biau, Györfi (1)). Assume that

lim
n→∞

mn = ∞, lim
n→∞

mn

n
= 0,

and

lim
n→∞

max
j=1,...,mn

µ(Anj) = 0.

Then, under H0, for all 0 < ε < 2,

lim
n→∞

1

n
lnP{Tn > ε} = −gT (ε),

where

gT (ε) = (1 + ε/2) ln(1 + ε/2) + (1 − ε/2) ln(1 − ε/2).

Consider a model selection problem for density estimation. Let (Fk)k≥1 be a
sequence of nested parametric models of density functions on Rd. Define

F =
⋃

k≥1

Fk .

In the union above, Fk denotes, for each fixed k ≥ 1, a given class of densities such
that Fk ⊂ Fk+1 for all k. The general problem is to estimate a density f which
belongs to F . Formally, we let the complexity associated with f be defined as

k∗ = min{k ≥ 1 : f ∈ Fk}.
Clearly, as it is supposed that f ∈ F , we have k∗ <∞.

We assume that the sample of independent random vectors distributed accord-
ing to the probability measure µ with density f is of even size 2n. Let µ2n be its
empirical measure, i.e., µ2n(A) =

(
1/(2n)

)∑2n
i=1 1{Xi∈A}. Split the sample into

two subsamples: X1, . . . , Xn and {X ′
1, . . . , X

′
n} = {Xn+1, . . . , X2n}, and denote

by µn and µ′
n the respective empirical measures. Let Pn = {An,j, j ≥ 1} be a

cubic partition of Rd with volume hdn. Introduce the statistic

dn,k = inf
g∈Fk

∑

A∈Pn

∣∣∣∣
∫

A

g − µ2n(A)

∣∣∣∣ .

Let the threshold be

Tn =
∑

A∈Pn

|µn(A) − µ′
n(A)|.

Our estimate of k∗ is

Kn = min{k ≥ 1 : dn,k ≤ Tn},
with the convention min{∅} = 1.
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Theorem 2. (Biau, Cadre, Devroye, Györfi (2)) Assume that, for each k ≥ 1,
the set of Fourier transforms of the densities in Fk is closed with respect to the
pointwise convergence. Suppose that limn→∞ hn = 0 and limn→∞ nhdn = ∞. Then
there exists a constant κ > 0, depending only on f , such that, for all n ≥ 1,

P {Kn 6= k∗} ≤ 8 exp
(
−κh−dn

)
.

In particular, if κh−dn ≥ (1 + δ) log n for some δ > 0, then

lim
n→∞

Kn = k∗

almost surely.

Based on the strong consistent model selection Kn, we apply a minimum dis-
tance density estimation. Introduce the class of sets

Ak =
{
{x : g1(x) ≥ g2(x)} : g1, g2 ∈ Fk

}

(Ak is the so-called Yatracos class associated with Fk) and the goodness criterion
for a density g ∈ Fk:

∆k(g) = sup
A∈Ak

∣∣∣∣
∫

A

g − µ2n(A)

∣∣∣∣.

Then the minimum distance estimate f̂k is defined as any density estimate selected
from among those densities fk ∈ Fk with

∆k(fk) < inf
g∈Fk

∆k(g) +
1

n
.

For the model selection Kn, our density estimate is f̂Kn .

Theorem 3. (Biau, Cadre, Devroye, Györfi (2)) Assume that, for each k ≥ 1,
the set of Fourier transforms of the densities in Fk is closed with respect to the
pointwise convergence. Assume that the Vapnik-Chervonenkis dimension of Ak∗ is
finite. Suppose that limn→∞ nhdn = ∞ and κh−dn ≥ (1/2) logn, where κ is defined

in Theorem 2. Then the minimum distance estimate f̂Kn satisfies

E

{∫
|f̂Kn − f |

}
= O

(
1√
n

)
.
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Focussed information criteria and model averaging

Nils Lid Hjort

(joint work with Gerda Claeskens)

1. Background, examples and questions

There is a great variety of model selection criteria and model average techniques,
coming from different brands of motivation and traditions of thought. Often the
underlying aims of methods, whether to be understood implicitly or stated explic-
itly, also differ. To introduce the themes concentrated on in my survey talk I start
with a list of examples, or situations.

Example A. Suppose independent observations Y1, . . . , Yn stem from the para-
metric family with cumulative distribution function

F (y) = Φ((y − ξ)/σ)γ ,

where Φ is the standard normal cumulative. Assume one wishes to estimate e.g. the
upper quartile

µ = ξ + σΦ−1((3/4)1/γ).

Using the simple normal model corresponds to γ = 1, with consequent estimate

µ̂narr = ξ̂narr +0.675 σ̂narr, in terms of the familiar maximum likelihood estimators
of the N(ξ, σ2) model. Using the wider three-parameter model corresponds on the

other hand to using µ̂wide = ξ̂+σ̂Φ−1((3/4)1/bγ), involving the maximum likelihood
estimators in that wider model. Which estimator is best?

Example B. Consider survival regression data of the usual form (ti, xi, δi),
where ti is the possibly censored survival time for an individual with covariate
vector xi = (xi,1, . . . , xi,p)

t and δi is an indicator for non-censoring. The pro-
portional hazards regression model holds that the hazard rates for individuals
i = 1, . . . , n take the form

αi(s) = α0(s) exp(xt
iβ).

Assume one wishes to estimate the median remaining survival time µ = µ(x0, t0)
for a given patient who has already survived up to t0 and who has covariates x0;
one finds

µ = A−1
0

(
A0(t0) + (log 2)/ exp(xt

0β)
)
,

in terms of the cumulative hazard rate A0 for α0. Which among the p covariates
ought to be included in the model?

Example C. I have collected data on 190 football matches from four grand
occasions: the 31 + 31 matches from the European Championships 2004 and 2000
and the 64 + 64 matches from the World Championships 2002 and 1998. In addi-
tion to the match results I have recorded the official FIFA scores for each team,
as of two weeks prior to the championships in question. Various statistical models
may be put up to model probabilistically the result (y, y′) of a football match
between opponents with FIFA scores (x, x′). If I wish to estimate the probability
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µ = µ(x, x′) that Norway beats Belgium in tomorrow’s game, which of the candi-
date models should I employ?

Example D. Consider temperature time series data y1, . . . , yn at Oberwolfach,
and suppose one needs to estimate the probability that tomorrow’s temperature
yn+1 falls below zero. Again, which of the many time series models should be
used?

Natural questions emerging from these and similar situations and examples
would include the following:

(i) For cases where a narrow model (with say p parameters) is extended to a
suitable richer model (with say p+q parameters), how much can the simpler model
tolerate, in order for the narrow based estimators to still be more precise than the
wide model based estimators?

(ii) Each of the examples have a well-defined ‘focus parameter’ µ. For different
estimators µ̂S , with S indexing which of the full set of parameters to include
in the model, what is the (approximate) mean squared error, or somewhat more
ambitiously the (approximate) distribution? Answers to this and similar questions
ought to depend on the location in the parameter space as well as on the sample
size n.

(iii) Which of the various µ̂S will actually be best, as measured e.g. by mean
squared error?

(iv) How well can we estimate these theoretical mean squared errors, and can
we use such estimates to select the tentatively best estimator?

(v) For model selection methods like the AIC, what are the model choice prob-
abilities, say pn(S) for the different submodels indexed by S?

(vi) Can anything be won by averaging estimates across submodels, perhaps
using data-dependent weights, compared to using the best submodel?

(vii) In statistical practice, one tends to gloss over the elaborations of the model
selection step, and to more simply report both estimates, confidence intervals and
p-values computed under the finally selected model. This ‘hides uncertainty’, and
yields too optimistic confidence intervals and p-values. What would be the real
coverage probability of a confidence interval with claimed level 95%, if that interval
has been constructed using say the AIC or the FIC strategy to arrive at a model?

(viii) Are there ways of ‘repairing’ the implicit over-optimism in confidence and
p-value statements alluded to in the previous point?

(ix) The last decade has seen several hundred technical and applied papers
on ‘Bayesian model averaging’, but these have mainly focussed on computation,
algorithms, specification of models and priors, and interpretation. Very few have
dealt with the actual distributional aspects of the model average estimators. What
are the limit distributions involved in Bayesian model average procedures?

(x) How does standard theory about e.g. the AIC and BIC stand up to challenges
that involve an increasing number of parameters as a function of sample size?
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2. Discussion

My survey talk did perhaps not manage to cover the full convex hull spanned by
these ten questions, but did provide methods and results of relevance for each of
them. The talk was primarily based on Hjort and Claeskens (2003a,b, 2006) and
Claeskens and Hjort (2003), but did also touch on work of a different nature from
Hjort, Dahl and Steinbakk (2006).

I would stress that a common thread in our approaches is ‘the focus’; we care-
fully distance ourselves from the perhaps too commonly found viewpoint, whether
made implicitly or explicitly, that ‘one good model’ should be selected to cater for
all needs of analysis, interpretation and prediction. In our work, three different foci
parameters µ1, µ2, µ3, corresponding to three different questions of interest, might
call for three different models. Thus good statistical decisions in a complicated
regression setup might depend on where one is in the covariate space, so to speak.
In a study of survival of Danish melanoma patients we found that ‘the best model’,
as measured by accuracy of the median remaining survival time as in Example B,
is different for men and for women. We do not view this as a paradox. Similarly,
a good model for understanding and analysing the mean structure might not be
a good model for understanding and analysing the variance of skewness structure
in a model for life quality responses to socio-economic background factors. And
for the football prediction game of Example C, I find different optimal models for
different prospective matches: one could be good for estimating the Norway beats
Belgium probability, but not as good as another one for estimating the winning
odds for Germany against Brazil.

As Longford (2005) opines in his Editorial, the ‘which model?’ question might
not always be the right question; and any answer needs to take on board aspects
not only of ‘for what purpose?’ but also the component ‘followed by which analyses
and techniques?’. This might appear obvious to most statisticians, when phrased in
such ways, but one needs to realise that big chunks of even the modern statistical
literature have been concerned with properties of the more ‘automatic’ overall
selection criteria like the AIC and the BIC.

Inside a precise local asymptotic framework, covering in essence all regular
parametric families, we have reached relevant answers to each of the ten questions
posed above. For this framework, see Hjort and Claeskens (2003a), Claeskens and
Hjort (2003) and the ensuing discussion contributions and rejoinder. The model
bias inherent in choosing amongst models that are not entirely perfect is explicitly
taken into account. Our techniques involve limit distributions of submodel-based
estimators as well as of convex data-based averages of such.
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A Note on the Consistency and Interpretation of Bayes Factors Based
on Test Statistics

Valen E. Johnson

A method for defining Bayes factors based on the sampling distributions of test
statistics was proposed in Johnson (2005). Although distributions of test statistics
are completely specified under a null model, the use of my method also requires
specification of the distribution of test statistics under alternative hypotheses. For
Bayes factors based on χ2 and F statistics, these distributions can be naturally
defined as noncentral versions of the null distribution. In this talk, I describe
criteria for setting hyperparameters that determine these noncentral distributions
so that the resulting Bayes factors are consistent.

Let BF (1|2) denote the Bayes factors between models 1 and 2, i.e. the ratio of
the marginal density of the data under model 1 to the marginal density of the data

under model 2. Then BF (1|2) is consistent if (a) BF (1|2)
p→ ∞ as the sample size

n → ∞ when model 1 is true, and (b) BF (1|2)
p→ 0 as n → ∞ when model 2 is

true.
For the remainder of this note, ‘J5” refers to Johnson (2005) and, unless other-

wise stated, notation and regularity conditions stated in J5 apply here also.

χ2 tests for multinomial data. Let p denote a multinomial probability vector
which satisfies a given null hypothesis, and suppose that under the alternative
hypothesis the multinomial probability vector q is drawn from a Dirichlet distri-
bution with parameter cp. Letting K − s − 1 denote the degrees of freedom of
the χ2 statistic xn (as defined in Sec. 2 of J5), the logarithm of the Bayes factor
between the alternative hypothesis (model 2) and null hypothesis (model 1) may
be written

(1)

[
nxn

2(1 + c+ n)

]
+

(
K − s− 1

2

)
log

(
1 + c

1 + c+ n

)
.
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Under the null model, the distribution of xn is χ2
K−s−1. For fixed c > 0, the first

term of (1) is bounded in probability, while the second tends to −∞ as n → ∞.

Thus, BF (2|1)
p→ −∞ under the null model.

Under the alternative hypothesis, the distribution of xn is approximately non-
central χ2

K−s−1(λ) with noncentrality parameter λ = nκ′κ, κ = {(qi − pi)/
√
pi}.

If this hypothesis pertains, the first term in (1) dominates and BF (2|1)
p→ ∞

as n → ∞. It follows that the Bayes factor is consistent for constant c. Note
that if marginal maximum likelihood estimation (MMLE) is used to estimate
α = (c + 1)/n, the resulting Bayes factor tends to ∞ under the alternative hy-
pothesis, but remains bounded under the null hypothesis and so is not consistent.

F tests for linear models. Suppose that

y |β, σ2 ∼ Nn(Xβ, σ2I),

where y is an n × 1 observation vector, β is an r × 1 regression parameter, X is
an n× r matrix of rank r, and σ2 is a scalar variance parameter. Assume further
that under the null hypothesis, H′β = ξ, where H is an r × k matrix of rank k
whose range space is contained in the range space of X′, and let fn denote the
standard F statistic for testing the null hypothesis against the alternative that β

does not satisfy this constraint. Under the alternative hypothesis, if β is drawn
from an r-variate normal distribution centered on a value that does satisfy the
null constraint and having covariance matrix τσ2(X′X)−1, then the logarithm of
the Bayes factor in favor of the alternative, say log(BF (2|1)), can be written

(2) −k
2

log(1 + nτ∗) +
k +m

2
log

(
1 +

kfn
m

)
− k +m

2
log

(
1 +

kfn
m(1 + nτ∗)

)

where m = n− r and nτ∗ = τ .
Under the null hypothesis, fn = Op(1). This implies that the first term in (2)

dominates the sum, so that BF (2|1)
p→ −∞ as n→ ∞.

Under the alternative hypothesis, fn/(1 + nτ∗) has a Fk,m distribution. Con-
sequently, f/m = Op(1) and f/m > 0 with probability 1. The second term in
(2) is thus linear in m; the remaining terms are Op(log(n)) or less. It follows that

BF (2|1)
p→ ∞ under the alternative hypothesis. Therefore, the Bayes factor based

on the F statistic is consistent for fixed values of τ∗ (but not for fixed values of
τ).

Stomach cancer data revisited. White and Eisenberg (1959) provided a cross-
classification of stomach cancer site with blood type for 707 cancer patients (Table
1). The purpose of their study was to determine whether there was an association
between blood type and cancer site. The χ2 test for independence for these data
is 12.65 on 6 degrees of freedom.

Because White and Eisenberg did not specify an alternative hypothesis, it is
not clear what value of c should be used to define the distribution of the χ2 test
statistic under the alternative model. This difficulty can be partially circumvented
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Blood Group
Site O A B or AB
Pylorus and antrum 104 140 52
Body and fundus 116 117 52
Cardia 28 39 11
Extensive 28 12 8

Table 1. White and Eisenberg’s classification of cancer patients

by reporting test results for a range of alternative models corresponding to differ-
ent values of c. This strategy is particularly appealing if the “weight of evidence”
criteria suggested in Kass and Raftery (1995) are used. According to their scheme
(which represents a variation on criteria proposed by Jeffreys (1961)), relative ev-
idence in favor of one of the tested hypotheses is classified according to the value
of twice the natural logarithm of Bayes factors. Based on this value, experimen-
tal evidence can be classified as “not worth more than a bare mention” (0-2),
“positive”’ (2-6), “strong ” (6-10) or “very strong” (> 10).

Figure 1 illustrates the relative weight of evidence in favor of the independence
versus dependence models for White and Eisenberg’s data using these classifi-
cations. Using these classifications, the Bayes factor based on the χ2 statistic
suggests that White and Eisenberg’s data provide (a) very strong evidence against
alternative hypotheses generated from values of c in (0,16.5); (b) strong evidence
against alternatives generated from values of c in (16.5,35.9); (c) positive evidence
against alternatives generated from values of c in (35.9,86.0); and (d) evidence not
worth mentioning for alternative models generated from values of c in (86,412) or
values of c > 1050. There is positive evidence for alternative models generated
with c in the range (412,1050), and The maximum evidence in favor of the alter-
native hypothesis occurs when c=636, and evidence favors the alternative model
(though often in a way barely worth mentioning!) for c > 150.

When c = 636, the Bayes factor in favor of the alternative hypothesis is slightly
less than 3 (twice the log of the Bayes factor is 2.17). Prior standard deviations
of cell probabilities generated from this alternative hypothesis are approximately√
pi(1 − pi)/25, where {pi} denotes a probability vector satisfying the indepen-

dence assumption. Such deviations (≈ 4%) may or may not be regarded as sub-
stantively important.
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Model selection and aggregation in sparse classification problems

Vladimir Koltchinskii

Let (X,Y ) be a random couple in S × {−1, 1}, the first component X being
an observable instance in some space S and the second component Y being an
unobservable label. The goal of binary classification is to predict the label based
on the observation of the instance in the cases when the joint distribution P of
(X,Y ) is unknown, but a sample (X1, Y1), . . . (Xn, Yn) of i.i.d. copies of (X,Y ) is
available. Given a classifier g : S 7→ {−1, 1}, its generalization error is defined as

P{Y 6= g(X)} = P{(x, y) : y 6= g(x)}
and it can be estimated by the corresponding training error

n−1
n∑

j=1

I(Yj 6= g(Xj)) = Pn{(x, y) : y 6= g(x)},

where Pn denotes the empirical measure based on the data. In principle, one
would like to find a classifier with a small (ideally, minimal) generalization error
and a naive approach to this would be to minimize the training error (which is
the empirical risk with respect to the binary loss) over a suitable (not too large
and not too small) class of functions g. However, modern theory (and practice) of
classification is based on replacing the binary loss by its smooth and most often
convex approximation. Classification algorithms then are looking for classifiers
that minimize the penalized empirical risk with such a convex loss and with a
properly chosen complexity penalty.

We will be looking at the following version of this problem. Let h1, . . . , hN :
S 7→ [−1, 1] be given functions. They can be viewed as features, base classifiers,
previously trained classifiers in aggregation problems, etc. Functions

fλ :=

N∑

j=1

λjhj , λ ∈ R
N

will be viewed as real valued classifiers, the corresponding binary classifier being
S ∋ x 7→ sign(fλ(x)) ∈ {−1, 1}.

Let ℓ : R 7→ R+ be a decreasing convex loss function such that ℓ(u) → 0 as
u → +∞, ℓ(u) → +∞ as u → −∞ and ℓ ≥ I(−∞,0]. In addition to this, we will
be assuming (and these assumptions are restrictive) that ℓ is twice continuously
differentiable, ℓ′ and ℓ′′ are uniformly bounded in R and ℓ′′(u) > 0 for all u ∈ R.
The so called logit loss ℓ(u) = log2(1 + e−u) is a typical example of such a loss
function.
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Denote (ℓ • f)(x, y) := ℓ(yf(x)) and define the ℓ-risk of a real valued classifier
f :

P (ℓ • f) =

∫
(ℓ • f)dP = Eℓ(Y f(X))

Its empirical version (the empirical ℓ-risk) is:

Pn(ℓ • f) =

∫
(ℓ • f)dPn = n−1

n∑

j=1

ℓ(Yjf(Xj))

Suppose ε ≥ 0 and p ≥ 1.

λε := argminλ∈RN

[
P (ℓ • fλ) + ε

N∑

j=1

|λj |p
]

and

λ̂ε := argminλ∈RN

[
Pn(ℓ • fλ) + ε

N∑

j=1

|λj |p
]
.

In particular,

λ0 := argminλ∈RNP (ℓ • fλ).
We assume in what follows that λ0 exists (which is the case if P{Y fλ(X)} > 0 for
all λ ∈ R

N ).
This can be viewed as an approach to optimal linear aggregation of given base

classifiers h1, . . . , hN in spirit of Nemirovski (2000) or Tsybakov (2003) who dealt
mostly with aggregation of regression estimates (see also more recent work of
Bunea, Tsybakov and Wegkamp (2004) who obtained a number of results on ag-
gregation in regression context that are close to what we are trying to do here in
the case of classification). The problems of this nature have been often looked at
in the case of ℓ1-penalty, i.e. for p = 1 (in regression, such a penalization is often
called LASSO, see Tibshirani (1996)). We will consider the case when p > 1, but
it is close enough to 1, so that p−1 is of the order 1/ logN. To be specific, suppose
that 1

p + 1
q = 1 and take q such that N1/q = 2. Under this assumption

‖λ‖ℓp ≤ ‖λ‖ℓ1 ≤ 2‖λ‖ℓp.
Our goal is to provide (partial) answers to the following questions:

• suppose λε is ”sparse”. Is λ̂ε ”sparse”?
• what impact does ”sparsity” of λε have on the size of the excess ℓ-risk

P (ℓ • fλ̂ε) − P (ℓ • fλ0)

and of

‖λ̂ε − λ0‖ℓ1 =

N∑

j=1

|λ̂εj − λ0
j |?

• how the ”sparsity bounds” depend on ε and how to choose ε?
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Note that sparsity of the solution λε of the ”true” problem might occur natu-
rally, for instance, in the following situation. Suppose there exists a small subset
J ⊂ {1, 2, . . . , N} such that the sets of random variables

{Y, hj(X), j ∈ J} and {hj(X), j 6∈ J}
are independent. In other words, {hj, j ∈ J} are ”relevant features” for classifi-
cation whereas {hj, j 6∈ J} are ”irrelevant.” In addition, suppose that Ehj(X) =
0, j 6∈ J. Then, using Jensen’s inequality, it is easy to check that for all ε ≥ 0
λεj = 0, j 6∈ J (so, λε is ”sparse”).

In what follows, we will use the following definition of a ”sparsity function” of
vector λ ∈ RN : for d = 0, 1, . . . , N, let

γd(λ) := min

{∑

j 6∈J
|λj | : #(J) = d, J ⊂ {1, 2, . . . , N}

}
=

N∑

j=d+1

|λ[j]|,

where

|λ[1]| ≥ |λ[2]| ≥ · · · ≥ |λ[N ]|
is a nonincreasing rearrangement of the coefficients.

Clearly, γd(λ) is a nonincreasing function of d and, if γd(λ) = 0, then there are
at most d nonzero coordinates of vector λ ∈ R

N .

Theorem 1. There exist constants c, C > 0 depending only on ℓ such that for all
A > 0 and for all

ε ≥ c

√
A logN

n
,

the following inequalities hold:

P

{
‖λ̂ε‖ℓ1 ≥ C(‖λ0‖ℓ1 + 1)

}
≤ N−A

and also with probability ≥ 1 −N−A

C−1(‖λ2ε‖ℓ1 −N−1) ≤ ‖λ̂ε‖ℓ1 ≤ C‖λε/2‖ℓ1 +N−1.

Theorem 2. There exist constants c > 0 depending only on ℓ and K > 0 depend-

ing on ℓ and on ‖λ0‖ℓ1 such that for all ε ≥ c
√

d+A logN
n , we have with probability

≥ 1 −N−A

γd(λ̂
ε) ≤ min

0≤m≤d

[
2γm(λε) +K logN

√
m+ A logN

n

]

and

γd(λ
ε) ≤ min

0≤m≤d

[
2γm(λ̂ε) +K logN

√
m+A logN

n

]
.

Moreover, if γd(λ
ε) = 0, then

P

{
γd(λ̂

ε) ≥ K

√
d+A logN

n

}
≤ N−A.
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In what follows we assume (the sparsity assumption) that there exists J∗ ⊂
{1, 2, . . . , N} with #(J∗) = d∗ such that, for all ε ≥ 0, λεj = 0, j 6∈ J∗. This

implies that γd∗(λ
ε) = 0 for all ε ≥ 0. In addition, assume that {hj : j ∈ J∗} are

linearly independent functions in L2(Π) (Π is the distribution of X).

Theorem 3. Under the sparsity assumption, there exists a constant c > 0 de-
pending only on ℓ such that, for all A > 0 and for

ε = εd = c

√
d+A logN

n
,

with probability ≥ 1 −N−A

‖λ̂ε − λ0‖ℓ1 ≤ K

[
γd(λ

ε) + logN

√
d+A logN

n

]

and

P (ℓ • fλ̂ε) − P (ℓ • fλ0) ≤ K

[
γd(λ

ε)

√
d+A logN

n
+ logN

d+A logN

n

]

with a constant K > 0 depending on ℓ, ‖λ0‖ℓ1 and {hj : j ∈ J∗}.
Building upon the above results, we now suggest adaptive choices of regulariza-

tion parameter ε > 0. Define for a fixed A > 0

d̂ := argmin0≤d≤N

[
γd(λ̂

εd)

√
d+A logN

n
+
d+A logN

n

]
,

ď := argmin0≤d≤N

[
γd(λ̂

εd) +

√
d+A logN

n

]

and
λ̂ := λ̂εd̂ , λ̌ := λ̂εď .

Theorem 4. With probability ≥ 1 −N−A

‖λ̌− λ0‖ℓ1 ≤ K logN

√
d∗ +A logN

n

and

P (ℓ • fλ̂) − P (ℓ • fλ0) ≤ K logN
d∗ +A logN

n
with a constant K > 0 depending on ℓ, ‖λ0‖ℓ1 and {hj : j ∈ J∗}.
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Nonparametric Estimation in a Stochastic Volatility Model

Jens-Peter Kreiss

(joint work with Andreas Dürkes)

The talk started with a discussion of the possible nonparametric extension of
the GARCH-model for log-returns Xt = logSt, of an financial asset price St.
Bühlmann and McNeil (2002) proposed an algorithmic approach in order to es-
timate the nonparametric GARCH-function. Their result, which more or less is
related to a non-stochastic situation, could be regarded as a kind of a fixed-point
theorem. However, estimation in nonparametric GARCH-models has to face an
errors-in-variables situation.

The paper then lead the focus to a nonparametric extension of a simple stochas-
tic volatility model (the so-called lagged autoregressive variance model) introduced
by Taylor (1994) for log-returns Xt of the following type

Xt = µ+ σt−1 · et ,
where ξt := log σt is assumed to satisfy a first order nonparametric autoregressive
scheme

ξt = m(ξt−1) + τ · ηt .
Both ηt and et are assumed to be (possibly correlated) random variables with
zero mean and unit variance. Typically the so-called volatility process ξt is not
observable. The assumption of a strictly positive Lebesgue density of η1 and

lim sup
|x|→∞

∣∣∣∣
m(x)

x

∣∣∣∣ | < 1

ensures geometric ergodicity of the volatility and the return process.
Concerning nonparametric estimation of the function m on the basis of the

log-returns Xt Franke et al. (2003), after a logarithmic transformation of the re-
turns, successfully applied so-called nonparametric deconvolution kernel smoothers
known from nonparametric regression models with errors-in-variables (cf. Fan
(1991) and Fan et al. (1993)). For the case where (ηt, et) possesses a bivariate
normal distribution it is obtained that we are in the so-called super-smooth case
which leads to relatively poor logarithmic rates of convergence for this deconvo-
lution kernel estimator (cf. Franke et. al (2003)). A further drawback of this
nonparametric deconvolution estimator is, that it has to be assumed that the den-
sity of the convoluting random variable, which is et, is known. To overcome this
latter drawback one may follow a suggestion of Horowitz (1998) for panel data in
order to estimate the distribution of the convoluting random variables. Following
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this idea one obtains for a specific situation in which at least two returns with ex-
actly the same volatility can be observed that we are able to consistently estimate
the wanted distribution (cf. Dürkes and Kreiss (2005)). However, the rather poor
logarithimic rate of convergence of the estimator is still there.

A more promising proposal is to make use of the so-called realized volatility
(cf. Andersen et al. (2001), Barndorff-Nielsen et al. (2002) or Ait-Sahalia et al.
(2004)) calculated from intraday returns in order to estimate the wanted daily
volatility. In other words the idea is to try to estimate the daily volatility from
higher (higher than daily) frequency returns. If we, for example, are able to
observe an increasing (with the sample size n) number of intraday returns, e.g.
hourly or 30 minutes returns and so on, then we receive an approximation of the
daily volatility which is precise enough in order to overcome the deconvolution
dilemma. Such a situation is comparable to a deconvolution problem in which
the variance of the convoluting random variable converges to zero with increasing
sample size. Under specific assumptions it is shown that we may end up with the
same asymptotic results (asymptotic normality) as if the volatility process itself
would be observable.

A drawback of this proposal is that we definitely need to assume that the
increasing number of intraday returns converges to infinity with growing sample
size. Since it is known that so-called microstructure noise appears for returns
beyond a certain time grid of 15 to 30 minutes, say, and that this microstructure
noise leads to inconsistent estimates of the integrated volatility (as is shown in
Ait-Sahalia et al. (2004)) we have to use in real applications intraday returns
for computing the realized volatility, which are not sampled more frequently than
every 15 or 30 minutes. Another possibility is to follow a proposal by Ait-Sahalia
et al. (2004) which overcomes the problem of inconcistency of realized volatility
due to microstructure noise.
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Model selection for ill-posed inverse problems

Jean-Michel Loubes

(joint work with Ana Karina Fermin, Carenne Ludeña)

We are interested in recovering an unobservable signal x0 based on observations

(1) y(ti) = F (x0)(ti) + εi,

where F : X → Y is a regular functional, with X, Y Hilbert spaces and ti, i =
1, . . . , n is a fixed observation scheme. x0 : R → R is the unknown function to
be recovered from the data y(ti), i = 1, . . . , n. The regularity condition over the
unknown parameter of interest is expressed through the assumption x0 ∈ X . We
assume that the observations y(ti) ∈ R and that the observation noise εi are i.i.d.
realizations of a certain random variable ε. Throughout the paper, we shall denote
y = (y(ti))

n
i=1. We assume F is Fréchet differentiable and ill posed in the sense

that our noise corrupted observations might lead to large deviations when trying
to estimate x0. In a deterministic framework, the statistical model is formulated
as the problem of approximating the solution of F (x) = y, when y is not known,
and is only available through an approximation yδ,

‖y − yδ‖ ≤ δ.

It is important to remark that whereas in this case consistency of the estimators
depends on the approximation parameter δ, which depends on the number of
observations n.

In the linear case, the best L2 approximation of x0 is x+ = F+y, where F+ is
the Moore-Penrose (generalized) inverse of F . We will say the problem is ill-posed
if F+ is unbounded. This might entail, and is generally the case, that F+(yδ) is not
close to x+. Hence, the inverse operator needs to be, in some sense, regularized.
In the nonlinear case, by ill-posedness we will always mean that the solutions do
not depend continuously on the data. If F is a compact operator, local injectivity
around x+ a solution of F (x+) = y, implies ill-posedness of the problem.

Regularization methods replace an ill-posed problem by a family of well-posed
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problems. Their solution, called regularized solutions, are used as approximations
of the desired solution of the inverse problem. These methods always involve some
parameter measuring the closeness of the regularized and the original (unregular-
ized) inverse problem. Rules (and algorithms) for the choice of these regularization
parameters as well as convergence properties of the regularized solutions are cen-
tral points in the theory of these methods, since they allow to find the right balance
between stability and accuracy.

Our goal in this article is to develop algorithms providing estimators that
achieve optimal rates of convergence when the smoothness of the true solution
is not known a priori. We will assume operator F can be linear or non linear, but
in the latter case we will assume it satisfies a local linear invariance condition.

For this we consider penalized M-estimators minimizing quantities of the form

(2) x̂n = arg min
αn∈Θ

arg min
x∈X

(γ(y − F (x)(t)) + αnpen(x,X ) + pen(αn)) ,

where X is a specific set, γ(.) is a loss-function, pen(., .) is a penalty over x and/or
X , and αn ∈ Θ is a decreasing sequence all of which will be defined precisely later.
The idea of penalized M-estimators is to find an estimator close enough to the
data, close in the sense defined by γ and with a regularity property induced by
the choice of the penalty pen. Adaptivity means here, that the construction of the
estimator does not require knowing beforehand the regularity of the function of
interest to be recovered x0. In the inverse problems literature this is known as a
posteriori methods. But, we do assume that the inverse operator is known as well
as some assumptions, such as its degree of ill-posedness.

When F is linear, the statistical problem has been extensively studied, although
in general efficient adaptive regularization-parameter choice is still under active re-
search. Two main kinds of estimators have been considered. First regularized esti-
mators such as Tikhonov type estimators, then non linear thresholded estimators.
We refer to (5), (6), (2) or (1) for more references.

1. Definitions and notations

We introduce certain standard assumptions on the observation noise

AN moment condition for the errors: ε is a centered random variable
satisfying the moment condition E(|ε|p/σp) ≤ p!/2 and E(ε2) = σ2.

The smoothness of the function is expressed through the following assumption.

SC source condition: There exists 0 < ν ≤ 1/2 such that

x0 ∈ Range((T ∗T )ν) = R((T ∗T )ν).

We assume the regularity of the problem is defined by that of F ′(x0). In the linear
case we will write F = T . This linear operator acts with a degree of ill-posedness
defined by an index p. This is generally expressed by the fact that T maps L2 into
some Sobolev space Hp, or by assuming that T acts along a Hilbert scale Hs.
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IP ill posedness of the operator: There exists p > 0 such that
F ′(x0)(Hs) = Hs+p.

Now consider approximation subsets, namely ∀m ∈ Mn, Ym ⊂ Y with dm =
dim(Ym). We start out with a big enough subspace Ym0 and in order to deal with
the ill posedness of (T ∗Πn

Ym
)+ use Tikhonov-like regularization methods. Consider

the corresponding sets in space X , defined by Xm = (Πn
Ym
T )+X. To begin assume

that m0 is such that

‖(I − ΠXm0
)x0‖ ≤ inf

m
[‖(I − ΠXm)x0‖ +

√
dm
n

1

γm
].

This quantity can be chosen so as not to depend on the unknown regularity
of the solution x0. Under assumption SC the above inequality is satisfied if the
dimension of the set is such that

d2νp
m0

≥ n
2νp

4νp+2p+1 .

Thus it is enough to choose m0 such that dm0 ≥ n1/(2p+1).

2. Estimation procedure

Next consider for a given k ∈ K a sequence of (diagonal) matrixes Ak(n) ∈
Mm0×m0(R) as and define the following penalized estimator:

(3) x̂Ak(n) = arg min
x∈Xm

[
‖ΠYm0

(y − F (x))‖2
n + ‖Ak(n)x‖2

]
.

The behaviour of this general estimator depends on the choice of the smoothing
matrixes Ak(n). For particular choices of the penalty, this estimator can be seen
as a Tikhonov regularized estimator or a projection estimator. We would like
to choose Ak(n), among all the Ak(n), k ∈ K based on the data in such a way
that optimal rates are maintained. This choice must also not depend on a priori
regularity assumptions.

First we note that, for each fixed Ak(n), the expression (3) can be written in
the following way:

(4) x̂Ak(n) = arg min
x∈Xm0

‖(T tΠYm0
T +Ak(n)tAk(n))−1T tΠYm0

(y − T (x))‖2.

In practice the second one is more complicated (the matrix to inverse might be
big), but it is simpler to deal with in order to show our results concerning the
selection of Ak. With this notation set

RAk(n) = (T tΠYm0
T +Ak(n)tAk(n)Im0 )

−1T tΠYm0
.

Now set γ(x, αk) = ‖RAk
(y − F (x))‖2 and

pen(Ak) = rσ2(1 + Lk)[Tr(R
t
Ak
RAk

) + ρ2(RAk
)],

with r > 2. We choose x̂Ak̂
such that

x̂Ak̂
= arg min

k∈K,x∈Xm0

(γ(x,Ak(n)) + pen(Ak(n))) .
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Let xAk
= RAk

Tx0. Set

Σ(d) =
∑

k

2




√
dTr(RtAk

RAk
)

ρ2(RAk
)

+ 1



 d

ρ2(nRAk
)
e
−

s
dLk

Tr(Rt
Ak

RAk
)+ρ2(RAk

)

ρ2(RAk
)

,

for d. We have the following result.
Theorem. There exists a constant C which depends on r and on T , such that
the following inequality holds true

(5) E‖x̂Ak̂
−x0‖2 ≤ 2‖(I−ΠXm0

)x0‖2+C inf
k∈K

[
‖xAk

− x0‖2 + 2pen(Ak)
]
+

Σ(d)

n
.

Hence, the estimator is optimal in the sense that the adaptive estimator achieves
the best rate of convergence among all the regularized estimators.

Proof. In the linear case F = T , for any xAk
and any k ∈ N

‖RAk̂
(y − T x̂Ak̂

)‖2 + pen(Ak̂) ≤ ‖RAk
(y − TxAk

)‖2 + pen(Ak)

and

‖RAk
(y − TxAk

)‖2 = ‖RAk
T (x0 − xAk

)‖2 + 2〈RAk
T (x0 − xAk

), RAk
ε〉+ ‖RAk

ε‖2

Thus, following standard arguments we have

‖RAk̂
T (x0 − x̂Ak̂

)‖2 ≤ ‖RAk
T (x0 − xAk

)‖2

− 2 < RAk̂
T (x0 − x̂Ak̂

), RAk̂
ε > +2 < RAk

T (x0 − xAk
), RAk

ε >

− ‖RAk̂
ε‖2 + ‖RAk

ε‖2 + pen(Ak) − pen(Ak̂).

Let 0 < κ < 1. Since 2ab ≤ κa2+ 1
κb

2, for any a, b we have for any k and xAk
∈ Xm

(1 − κ)‖RAk̂
T (x0 − x̂Ak̂

)‖2 ≤ (1 + κ)‖RAk
T (x0 − xAk

)‖2

+ (2 +
1

κ
)pen(Ak) + 2 sup

k
{(1 +

1

κ
)‖RAk

ε‖2 − pen(Ak)},

On the other hand, using that is 1 ≤ RAk
T ≤ C, we have that for any xAk

∈ Xm0

and any k ∈ N,

(1 − κ)‖x0 − x̂Ak̂
‖2 ≤ C(1 − κ)‖x0 − xAk

‖2

+ (2 +
1

κ
) pen(Ak) + 2C1 sup

k
{‖RAk

ε‖2 − (1 +
1

κ
)−1pen(Ak)}.

As above, the proof then follows directly from the concentration of the supremum
of the empirical process under the linear application as defined by the regulariza-
tion family, see (4). The choice of κ will depend on r in the penalty. �

Particular choises of penalty enable to handle nonlinear operatores, see (4) and
iterative methods, see (3).
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FDR and Bayesian Multiple Comparison Rules

Peter Müller

(joint work with Giovanni Parmigiani)

We discuss a Bayesian decision theoretic approach to multiple comparison prob-
lems for a large number of comparisons, and the relationship with the false discov-
ery rate (FDR). The motivating example is inference in group comparison microar-
ray experiments. Among genes, i = 1, . . . , n, for large n, we need to identify those
that are differentially expressed across two biologic conditions of interest. It can be
argued that Bayesian posterior inference already accounts for multiplicities, and
no further adjustment is required (Scott and Berger, 2006). The argument is valid
with respect to the evaluation of posterior probabilities of differential expresison.
But this only solves half the problem. We still need to address the second step of
the inference problem, namely the identification of differentially expressed genes.
Berry and Hochberg (1999) discuss this perspective. This identification is most
naturally discussed as a decision problem. Let δi ∈ {0, 1} denote the decision for
gene i, with δi = 1 indicating that the gene is flagged as differentially expressed.
Let ri ∈ {0, 1} denote an indicator for the (unknown) truth, i.e., a parameter.
The following discussion is valid for any probability model that includes parame-
ters ri with positive prior probabilty, 0 < p(ri = 1) < 1. In a decision theoretic
approach, a loss function L(δ, r) is used to formalize the relative preference for
a possible decisions δ, for assumed hypothetical true values r. The loss function
is implicitely a function of the data through δ. We write δ(y) when we want to
highlight the nature of δ as a function of the data. In the context of a decision
problem with a probability model on the random varibles (r, y) and a loss function
L(δ(y), r), the optimal decision is the rule δ(y) that maximizes L in expectation.
The relevant expectation is the probability model on r conditional on the observed
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data, leading to the optimal rule

δ∗(y) = arg min
δ

∫
L(δ(y), r) p(r | y) dr.

Usually, the probability model includes additional parameters besides r. We there-
fore interpret the probability model p(r | y) as the marginal posterior distribution
of the indicators r given the observed data.

Let vi = E(ri | y) denote the marginal posterior probability of gene i being
differentially expressed. The assumption of non-zero prior probabilities, 0 < p(ri =
1) < 1, ensures non-trivial posterior probabilities. In Müller et al. (2004) we show
that for several reasonable choices of L(δ(y), r) the optimal rule is of the form

(1) δ∗i (y) = I(vi > t).

In words, the optimal decision is to mark all those genes as differentially expressed
that have marginal posterior probability vi beyond a certain threshold t. The
value of the threshold depends on the specific loss function. The optimal rule (1)
is valid for several loss functions defined in Müller et al. (2004). Essentially, all are
variations of basic 0-1 loss functions. Let FD =

∑
δi (1−ri) and FN =

∑
(1−δi) ri

denote false discovery and negative counts, and let FDR = FD/
∑
δi and FNR =

FN/
∑

(1 − δi) denote false discovery and false negative rates. The definitions
FD(R) and FN(R) are summaries of parameters, r, and data, δ(y). Taking an
expectation with respect to y and conditioning on r one would arrive at the usual
definition of false discovery rates, as used, among many others, in Benjamini and
Hochberg (1995), Efron and Tibshirani (2002), Storey (2002, 2003), and Storey
et al. (2004). Instead we use posterior expectations, defining FD = E(FD |
y), etc. See, Genovese and Wasserman (2002,2003) for a discussion of posterior
expected FDR. Using these posterior summaries we define the following losses:
LN(δ, z) = cFD + FN, and LR(δ, z) = cFDR + FNR. The loss function LN
is a natural extension of (0, 1, c) loss functions for traditional hypothesis testing
problems (Lindely 1971). Alternatively, we consider bivariate loss functions
that explicitly acknowledge the two competing goals: L2R(δ, z) = FNR, subject
to FDR < αR, and L2N(δ, z) = FN, subject to FD < αN . Under all four loss
functions, LN , LR, L2R and L2N , the nature of the optimal rule is (1). See Müller
et al. (2004) for the definition of the thresholds.

One can argue that not all false negatives and all discoveries are equally im-
portant. False negatives of genes that are massively differentially expressed are
more serious than only marginally differentially expressed genes. To formalize this
notion we need to assume that the probability model includes parameters that can
be interpreted as extent of differential expression, or strength of the signal. As-
sume that the model includes paramters ρi, i = 1, . . . , n, with ρi > 0 if ri = 1 and
ρi = 0 if ri = 0. For example, a popular class of sampling models for microarray
data assumes that recorded gene expressions for gene i under the two conditions of
interest are Gamma distributed with equal shape parameters, and scale parame-
ters θi0 and θi1 (Newton et al. 2001, 2004). In this model a reasonable definition
would use ρi = log(θi1/θi0). Assuming parameters ρi that can be interpreted as
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level of differential expression for gene i, we define

Lρ(ρ, δ, z) = −
∑

δi ρi + k
∑

(1 − δi)ρi + c
∑

δi.

The definition includes rewards for correct discoveries and penalties for false neg-
atives that are proportional to the size of the signal. Without including the last
term, c

∑
δi, the loss function would lead to the trivial solution δi = 1 for all i.

For c > 0 the optimal solution is easily found as δ∗i = I{ρ̄i ≥ c/(1 + k)}.
Additional assumptions on the probability model allow to further generalize

the loss function. For example, if we assume that the sampling model for the
observed gene expressions include parameters for the dependence structure, one
could include terms related to the dependence.
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Bootstrap versions for tests based on residual empirical processes in
nonparametric regression models

Natalie Neumeyer

Since a few decades in statistical research nonparametric regression models with
independent observations,

Yi = m(Xi) + σ(Xi)εi (i = 1, . . . , n)(1)

have been investigated intensively (here we assume Xi and εi to be independent
and E[εi] = 0, E[ε2i ] = 1 for the iid errors). Research focused mainly on non-
parametric estimation of the regression function m and variance function σ2 and
corresponding hypotheses tests. Since a few years only there exist results on es-
timation of the smooth distribution F of the unobserved errors ε1, . . . , εn. Weak
convergence of the empirical process

√
n(F̂n − F ) based on nonparametrically es-

timated residuals

ε̂i =
Yi − m̂(Xi)

σ̂(Xi)
(2)

was shown by Akritas and Van Keilegom (1). Further, the empirical distribution

function F̂n of estimated errors ε̂1, . . . , ε̂n recently turned out to be valuable for
goodness-of-fit tests concerning the regression or variance function, see for instance
(2), (9), (10). In all mentioned problems the asymptotic distribution of estimators
and test statistics depends heavily on unknown features of the data generating
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process such as the error density. In situations like these to circumvent problems
with accuracy of the critical values resampling procedures such as bootstrap are
applied. The presented work deals with different bootstrap approaches that can
be used in the context of empirical processes based on nonparametric residuals.
Based on a sample (1) bootstrap observations in residual bootstrap procedures are
built as

Y ∗
i = m̂(Xi) + σ̂(Xi)ε

∗
i (i = 1, . . . , n).(3)

It turns out that when using the empirical process based on residuals the classical
residual bootstrap (i. e. to draw ε∗i with replacement from standardized residuals)
as often used in (homoscedastic) nonparametric regression (see, e. .g., Härdle and
Bowman (3)) is not suitable because, given the original sample, then the bootstrap
errors have a discrete distribution. However, in theory in our context the smooth-
ness of the error distribution is crucial and the classical residual bootstrap leads
to problems in theory and also does not work well in simulations. In heteroscedas-
tic nonparametric regression models often wild bootstrap (see, e. .g., Härdle and
Mammen (4)) is used. Here bootstrap errors ε∗i are built by multiplying the resid-
ual ε̂i by a bounded and centered random variable vi, independent of the sample.
But in the context of residual based empirical processes this wild bootstrap is not
suitable in most problems because it changes the error distribution even asymp-
totically (in general viεi has a different distribution than εi). We suggest to use
a smooth residual boootstrap in the context of residual based empirical processes.
To this end we build bootstrap observations as in (3), where the ε∗1, . . . , ε

∗
n are,

given the sample (1), independent with a density fn. Here fn denotes a kernel
density estimator of standardized versions of the residuals ε̂1, . . . , ε̂n given by (2).
In the context of homoscedastic linear models with fixed design a similar smooth
residual bootstrap was considered by Koul and Lahiri (5).

The main result (see (6)) presented in the talk is the following. The empirical
distribution function of residuals estimated from the smooth residual bootstrap
sample centered by Fn (the bootstrap error distribution corresponding to density
fn) and multiplied by

√
n converges weakly, given the original sample, to a centered

Gaussian process, in probability, with the same covariance as given by the limit
distribution of the residual empirical process built from the original sample.

The results about the smooth residual bootstrap version of the residual based
empirical process have plenty of applications in model tests for nonparametric
regression models.

In detail a test for equality of regression functions in two regression models is
discussed that is based on a Wilcoxon rank statistic of residuals. The asymp-
totic distribution is presented (joint work with Holger Dette (8)) and the smooth
residual bootstrap is applied and shown to be consistent. Some more applications
of the smooth residual bootstrap in this context of regression model tests based
on the residual empirical process are mentioned. In particular we show that the
smooth residual bootstrap versions of the goodness-of-fit tests by Van Keilegom,
Gonzalez Manteiga and Sanchez Sellero (10), Pardo Fernandez, Van Keilegom and
Gonzalez Manteiga (9) and Dette and Van Keilegom (2) are consistent (as shown
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in simulation studies but not in asymptotic theory by these authors). In more
detail we consider the problem of testing the symmetry of the error distribution
in a nonparametric regression model. We propose as a test statistic the difference
between the two empirical distribution functions of estimated residuals and their
counterparts with opposite signs. In this context the performance of a symmetric
version of the smooth residual boostrap is discussed in asymptotic theory.

We also consider a symmetric wild bootstrap procedure. Here the bootstrap
errors are defined as ε∗i = viε̂i where the vi are independent Rademacher variables.
Then, viεi always has a symmetric distribution. This symmetric wild bootstrap is
consistent in testing symmetry of the error distibution as described above (joint
work with Holger Dette (7)). In general, even when the error distribution is
symmetric (such that εi and viεi have the same distribution) the wild bootstrap
version of the residual empirical process has a different limit distribution than the
original version of this process. Therefore, it is not applicable in general in this
context. However, for very specific testing problems and specific test statistics,
the symmetric wild bootstrap can be used. This is the case for the Wilcoxon rank
statistic for equality of regression functions as described above when the error
distribution is known to be symmetric (see (7)).
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Significance and Recovery of Block Structures in Binary Matrices
with Noise

Andrew Nobel

(joint work with Xing Sun)

1. Introduction

A number of common and well-studied data mining problems can be viewed
as special cases of a more general problem, namely that of finding distinguished
submatrices in a rectangular data matrix. These include frequent itemset and
market basket analyses and bi-clustering (also known as subspace clustering). In
the frequent itemset problem (cf. (4) (5)), the available data is described by a
collection S = {s1, . . . , sn} of items and a set T = {t1, . . . , tm} of transactions.
Each transaction ti is associated with a subset of S, which can be thought of as
a shopping list without multiplicity. The transaction database can naturally be
expressed as an m × n binary matrix Y = {yi,j} with yi,j = 1 if transaction ti
contains item sj and yi,j = 0 otherwise. Frequent itemset mining (FIM) algorithms
identify every submatrix of 1s in X having a minimum number of rows. (The set
of items associated with the columns of the submatrix is then said to be frequent).

Here we consider a number of statistical issues related to frequent itemset min-
ing, including (i) the significance of the submatrices found by FIM, (ii) the effects
of noise on standard FIM algorithms, and (iii) the ability of noise tolerant algo-
rithms to recover frequent itemsets in presence of noise.

2. Significance of Bi-clusters

Let {zi,j : i, j ≥ 1} be an infinite array of independent Bernoulli random vari-
ables, P (zi,j = 1) = p = 1 − P (zi,j = 0). For each n ≥ 1, let Zn = {zi,j : 1 ≤
i, j ≤ n} be the n × n upper left corner of the infinite array, which we will write
as Zn ∼ Bern(p). Let M(Zn) be the largest k such that Zn contains a k × k sub-
matrix of 1’s. The stochastic behavior of M(Zn) enables us to study FIM under
the null hypothesis that the available data is random, and does not contain any
structure. To this end, define s0(n) to be any solution of the equation

(1) 1 = φn(s) = (2π)−
1
2 nn+ 1

2 s−s−
1
2 (n− s)−(n−s)− 1

2 p
s2

2
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over s ∈ R
+. Routine but involved calculations show that, when n is sufficiently

large, s0(n) is uniquely defined and that

(2) s(n) = 2 logb n − 2 logb logb n+ C + o(1),

where C is a positive constant and b = p−1. For positive integer k, φn(k) is the
Stirling approximation to EUk, where Uk is the number of k × k submatrices of
ones in Zn. Define k(n) = ⌈s(n)⌉. An application of the first moment method
yields a useful deviation inequality for M(Zn). Related work can be found in
Tanay et al. (13) and Koyutürk et al. (10).

Proposition 1. Fix 0 < γ < 1. When n is sufficiently large, P{M(Zn) ≥
k(n) + k} ≤ 2n−2k (logb n)3k for any 1 ≤ k ≤ γ n and k ∈ Z

+.

One may readily generalize Proposition 1 to obtain similar results for non-square
submatrices and non-square matrices. Viewing Zn as the adjacency matrix of a
bi-partite graph G, it can readily be seen that M(Zn) is the size of the largest
bi-clique in G. Following the work of Bollobás and Erdős (7) and Matula (12)
on the size of maximal cliques in random graphs, one may establish a three point
concentration result for the asymptotic behavior of M(Zn).

Theorem 1. With probability one, |M(Zn) − k(n)| < 3
2 when n is sufficiently

large.

Theorem 1 extends earlier work of Dawande et al. (8), who showed that
P (logb n ≤M(Zn) ≤ 2 logb n) → 1.

3. Recoverability

Standard frequent itemset algorithms do not explicitly account for random noise
in their search for submatrices of 1s. In order to study the potential effects of noise
on FIM, we consider the simple statistical model

(3) Y = X⊕ Z

under which the observed n × n data matrix Y is equal to the modulo 2 sum
of an unobserved “true” data matrix X, plus random noise Z ∼ Bern(p) with
0 < p < 1/2. Under the model (3), each entry yi,j is the modulo 2 sum of xi,j
and zi,j The next result follows readily from Proposition 1 and a simple coupling
argument.

Proposition 2. Let b′ = (1 − p)−1. With probability one, when n is sufficiently
large, M(Y) ≤ 2 logb′ n regardless of the values in X.

In particular, even if the unobserved matrix X contains interesting structure
(e.g., a large submatrix of 1s), frequent itemset mining algorithms which look
for submatrices of 1s in Y will not detect this structure. It is natural then to
consider noise tolerant criteria for frequent itemsets that may be more successful
at recovering structure in (3) and related models. A number of noise tolerant
criteria and related algorithms have been proposed in the data mining literature
(1; 2; 3). Here we consider the approximate frequent itemset (AFI) criterion
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proposed in (11). Let 0 < τ < 1. A submatrix C of Y is a τ -AFI, denoted
C ∈ AFIτ (X), if every row and column of C has at least 100 τ% ones.

Suppose that X is n×n and consists of an l× l submatrix C of 1s, with all other
entries equal to 0. (The rows and columns of C need not be contiguous.) Suppose
that we observe Y in (3), and wish to accurately recover C. Let p0 be any number
such that p < p0 < 1/2, and let τ = 1 − p0 be an associated error threshold. Let
C be the family of all square submatrices C′ of X such that C′ ∈ AFIτ (X), and
define

Ĉ = argmaxC′∈C |C′|
to be any maximal sized submatrix in C. Note that Ĉ depends only on the observed
matrix Y. Let

Λ = |Ĉ ∩ C|/|Ĉ ∪ C|
measure the overlap between the estimated index set Ĉ and the true index set C.
Then 0 ≤ Λ ≤ 1, and values of Λ close to one indicate better overlap.

Theorem 2. When n is sufficiently large, for any α > 0 such that 16α−1(logb n+
2) < l we have

P

(
Λ ≤ 1 − α

1 + α

)
≤ 2 exp

{
−3l(p− p0)

2

4

}
+ 2n− l

4αl−4 logb n,

where the logarithms are to the base b = exp{3(1 − 2 p0)
2/8p}.

The conditions of Theorem 2 require that the noise level p < 1/2 and that the
user-specified parameter p0 satisfy p < p0 < 1/2. In advance, one only needs to
know an upper bound on the noise level p.
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A Synthesis and Unification of (Objective) Bayes Factors for Model
Selection and Hypothesis Testing

Luis Raúl Pericchi

The basics of the Bayesian approach to model selection are presented and com-
pared in Pericchi (2005). Eight objective methods of developing default Bayesian
approaches that have undergone considerable recent development are reviewed and
analyzed in a general framework:

• Well Calibrated Priors (WCP)
• Conventional Priors (CP)
• Intrinsic Bayes Factor (IBF)
• Intrinsic Priors (IPR)
• Expected Posterior Priors (EP)
• Fractional Bayes Factor (FBF)
• asymptotic methods and the Bayesian Information Criterion (BIC)
• Lower Bounds (LB) on Bayes Factors.

These approaches are illustrated and commented on how to use and how not to
use them. Despite the apparent inordinate multiplicity of methods, there are
important connections and similarities among different Bayesian methods. Most
important, typically the results obtained by any of the methods, are closer among
themselves than to results from non-Bayesian methods, and this is typically more
so as the information accumulates.

1 Overview

The unifying concepts for Bayes Factors are mainly the following:

1. Training Samples: Real, simulated or imaginary
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2. Predictively Matched Priors
3. Intrinsic Priors
4. Bayesian Principle: ”Correspondance of Methods with Sensible Priors”.
5. Asymptotics and Consistencies of Bayes Factors:

(Large Sample) Consistency as the sample size accumulates for fixed num-
ber parameters.
(Finite Sample) Consistency unter fixed sample size and fixed number of
parameters as increases the distance of the sampling model to a candidate
model.

2 Conclusions

• Here 8 methods are analyzed for calculation or approximation of Bayes
Factors. These may be taken as a proof of widespread disagreement. How-
ever, there is deep source of agreements: often these methods share the
same asymptotics and give results which are close to each other, apart
from deep theoretical connections among them. On the other hand, fre-
quentist methods, like p-values or significance testing with fixed type I
errors, have different asymptotics, and thus are increasingly at odds with
Bayesian methods, by an increasing amount as the data accumulates.

• There are general concepts which offer a unifying framework:
i) Principle 1: Testing and model selection methods should correspond,
in some sense, to actual Bayes factors, arising from reasonable default
prior distributions, and Theorem 1 in Berger and Pericchi (1996), stating
that the Intrinsic Prior arising from the Arithmetic IBF, is proper or
conditionally proper under absolutely continuous distributions and mild
conditions. ii) The different kinds of well calibrated priors. iii) The so
called Assumption 0 in Berger and Pericchi (2004), i.e. for all models
and all parameter values the probability of the set of training samples
under consideration should be unity. iv) The concept of Intrinsic Priors for
different methods. v) The concept of training sample, real and imaginary;
deterministic and aleatory.

• It should be remembered that a unifying view is that Bayes Factors can be
seen as ”Un-Normalized Bayes Factors × Correction Factors”. The meth-
ods discussed here are mostly about the second right hand term which is
not the dominant asymptotic factor, but that should be given careful
consideration. Still all methods considered here have the first (or an ap-
proximation of it) factor embedded in their formulae. So the methods
discussed here, evolving around the Un-Normalized Bayes Factor share a
dominant (asymptotically) common term.

Bayes Factor is a powerful probabilistic tool, which is here to stay. We rather
learn how to use it at its best. It is time to emphasize the agreements among the
Bayesian approaches to form and approximate Bayes Factors. The 8 approaches
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visited here are most of the time able to give sensible results if we avoid potentially
harmful priors, like vague proper priors. Specially in new problems, it is advisable
to compare several of them to check the reassuring agreement, a sort of robustness
with respect to the method.
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Prior selection and model choice

Christian P. Robert

(joint work with J.A. Cano, J.M. Marin and D. Salmeró)

1. Priors for Bayesian testing and model selection

The selection of prior distributions is always an issue in Bayesian Statistics but
it gets particularly crucial when dealing with model choice, because of a variety
of sensitive issues that are detailed in Robert (6). One of these issues is that the
central tool of Bayesian model choice, the Bayes factors

B12 =
Pr(M1|x)
Pr(M2|x)

/
Pr(M1)

Pr(M2)

=

∫
f1(x|θ1)π1(θ1)dθ1

∫
f2(x|θ2)π2(θ2)dθ2

that are used to compare models M1 vs. M2, is not compatible with improper
priors π1(θ1) or π2(θ2). This difficulty is most troublesome in that reference (or
noninformative) priors are usually improper. Moreover, using vague proper priors,
that is, proper priors with large variances, is not an acceptable solution in that
the dependence on the variance most often does not vanish as the variance goes to
infinity or leads to 0, 1 solutions because of Lindley’s paradox Robert (6, Chapter
5).
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There have been many attempts in the Bayesian literature to overcome this
difficulty, most of those proposing a particular protocol to transform improper
priors into proper priors. A first solution is to use training samples, that is, a part
x[i] of the data x to make the prior proper in the sense that πi(·|x[i]) is proper and
thus ∫

fi(x[n/i]|θi) πi(θi|x[i])dθi∫
fj(x[n/i]|θj) πj(θj |x[i])dθj

is independent of normalizing constants, where x[n/i] denotes the remaining part
of the data. This defines a new Bayes factor

B12(x[n/i]) =

∫
f1
[n/i](x[n/i]|θ1)π1(θ1|x[i])dθ1

∫
f2
[n/i](x[n/i]|θ2)π2(θ2|x[i])dθ2

=

∫
f1(x|θ1)π1(θ1)dθ1

∫
f2(x|θ2)π2(θ2)dθ2

∫
π2(θ2)f

2
[i](x[i]|θ2)dθ2

∫
π1(θ1)f

1
[i](x[i]|θ1)dθ1

= BN12(x)B21(x[i])

that is more appropriately called pseudo-Bayes factor because of the replacement
of the prior π with the posterior πi(·|x[i]). Since this pseudo-factor depends on x[i],
several ways of combining the quantities B12(x[n/i]) have been proposed, including
for instance the arithmetic intrinsic Bayes factor of Berger and Pericchi (1; 2).
However, these solutions are often lacking a true Bayesian nature in that the
corresponding quantities usually are not Bayes factors for any prior pair (π1, π2).

2. Expected posterior priors

A solution found in Berger and Perez (5) is to avoid using real observations by
relying instead on imaginary observations that are integrated against a reference
measure. Starting with an improper prior π1 of interest, the expected posterior
prior is defined as

π∗
1(θ) =

∫
π1(θ|x)m(x) dx ,

where m(x) is the reference measure, often derived from a reference model M0

and a reference prior as

m(x) =

∫
f0(x|θ)π0(θ)dθ .

Obviously, the selection of this reference measure is central to the construction
of the expected posterior prior and it is often the case that there is neither reference
measure nor reference model M0 that everyone would agree on. In that setting,
we may thus have two models Mi (i = 1, 2) that are equally valid and equiped
with ideal reference priors πNi . In that case, we can either consider solving the
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equation

π1(θ1) =

∫

X

πN1 (θ1 | x)m2(x)dx

where m2 is the marginal associated with πN2 , or solving

π2(θ2) =

∫

X

πN2 (θ2 | x)m1(x)dx,

where m − 1 is the marginal associated with πN1 . Since neither model is to be
prefered, we propose in Cano, Robert and Salmeron (3) to iterate the process,
namely to solve the system of integral equations

π1(θ1) =

∫

X

πN1 (θ1 | x)m2(x)dx

and

π2(θ2) =

∫

X

πN2 (θ2 | x)m1(x)dx,

where x is an imaginary minimal training sample and m1, m2 are the marginals
associated with π1 and π2 respectively. that yield “true” marginals balancing each
model wrt the other.

A sufficient condition for the existence of these symmetrised expected posterior
priors is as follows: when both the observations and the parameters in both models
are continuous, if the Markov chain with transition

Q (θ′1 | θ1) =

∫
g (θ1, θ

′
1, θ2, x, x

′) dxdx′dθ2

where

g (θ1, θ
′
1, θ2, x, x

′) = πN1 (θ′1 | x) f2 (x | θ2) πN2 (θ2 | x′) f1 (x′ | θ1) ,
is recurrent, then there exists a solution to the integral equations, unique up to a
multiplicative constant.

This result is interesting both from a theoretical point of view and from a
computational point of view since, when the symmetrised expected posterior priors
cannot be found, the Bayes factor can be approximated by MCMC simulation
Casella and Robert (7).

3. Compatible prior

From another perspective, when dealing with multiple models Mi (i ∈ I), it is
fairly unrealistic to expect the priors on all models to be determined simultaneously
from a subjective point of view. Rather, a single prior on an encompassing model
should be enough to derive the other priors from a coherence principle as in, for
instance Dawid and Lauritzen (4).

A rudimentary version of this coherence principle is to select the (sub)prior of
a (sub)model M2, given a prior π1 on a model M1, is as follows: we look for a
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prior π2 on M2 which achieves the minimum Kullback divergence between the
corresponding marginals:

m1(x;π1) =

∫

Θ1

f1(x|θ)π1(θ)dθ

and

m2(x);π2 =

∫

Θ2

f2(x|θ)π2(θ)dθ ,

that is,

π2 = argmin
π2

∫
log

(
m1(x;π1)

m2(x;π2)

)
m1(x;π1) dx .

Obviously, this principle also has its limitations, in that for instance it cannot
be applied to improper priors π1 and, more importantly, ends up in a Dirac mass
if no restriction is put on π2. But it can be of use in setups where conjugate priors
are relevant. For instance, if both M1 and M2 are two nested Gaussian linear
regression models with the same variance σ2 ∼ π(σ2), a conjugate prior on M1

y|β1, σ
2 ∼ N (X1β1, σ

2)

where X1 is a (n× k1) matrix of rank k1 ≤ n, is Zellner’s g-prior (8),

β1|σ2 ∼ N
(
s1, σ

2n1(X
T
1 X1)

−1
)
.

If we restrict π2 to be also a conjugate prior on the subvector β2, i.e.

β2|σ2 ∼ N
(
s2, σ

2n2(X
T
2 X2)

−1
)
,

where X2 is a (n × k2) submatrix of X1, the prior that minimize the Kullback-
Leibler divergence between the two marginal distributions conditional on σ2 is

β2|X2, σ
2 ∼ N

(
s∗2, σ

2n∗
2(X

T
2 X2)

−1
)

with

s∗2 = (XT
2 X2)

−1XT
2 X1s1

n∗
2 = n1 .

In the particular case of variable selection, when dealing with a set {x1, . . . , xp}
of p potential explanatory regressors (plus intercept), there are 2p submodels Mγ ,
where γ ∈ Γ = {0, 1}p indicates inclusion/exclusion of those variables by a binary
representation. Then, if qγ is the number of variables that are included in Mγ ,
if t1(γ) = {t1,1(γ), . . . , t1,qγ (γ)} are the indices of those variables and t0(γ) the
indices of the variables not included, Mγ can be represented as

y|β, γ, σ2 ∼ N
(
Xt1(γ)βt1(γ), σ

2In
)
.

Therefore, if we use Zellner’s g-prior, i.e. a normal prior for β conditional on σ2,

β|σ2 ∼ N (β̃, cσ2(XTX)−1)

and a Jeffreys prior for σ2,

π(σ2) ∝ σ−2 ,
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for the full model, the compatible prior is

N
((

XT
t1(γ)Xt1(γ)

)−1

XT
t1(γ)Xβ̃, cσ

2
(
XT
t1(γ)Xt1(γ)

)−1
)
.
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Local Parametric Methods in Nonparametric Regression

Vladimir Spokoiny

A new approach to nonparametric estimation is discussed. The method is based
on the extension of the parametric maximum likelihood principle to the nonpara-
metric situation. The method leads to the ”oracle” estimation quality and includes
the parametric situation as a special case.

Mirror averaging, aggregation and model selection

Alexandre Tsybakov

(joint work with Anatoli Juditsky, Philippe Rigollet)

Several problems in statistics and machine learning can be stated as follows:
given a collection of M different estimators (classifiers), construct a new estimator
(classifier) which is nearly as good as the best among them with respect to a given
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risk criterion. This target is called model selection (MS) type aggregation, and it
can be described in terms of the following stochastic optimization problem.

Let (Z,F) be a measurable space and let Θ be the simplex

Θ =




θ ∈ IRM :

M∑

j=1

θ(j) = 1, θ(j) ≥ 0, j = 1, . . . ,M




 .

Here and throughout the paper we suppose that M ≥ 2 and we denote by z(j)

the jth component of a vector z ∈ IRM . We denote by
[
z(j)

]M
j=1

the vector

z = (z(1), . . . , z(M))⊤ ∈ IRM .
Let Z be a random variable with values in Z. The distribution of Z is denoted

by P and the corresponding expectation by E. Suppose that P is unknown and
that we observe n i.i.d. random variables Z1, . . . , Zn with values in Z having the
same distribution as Z. The distribution (respectively, expectation) w.r.t. the
sample Z1, . . . , Zn is denoted by Pn (respectively, by En).

Consider a measurable function Q : Z×Θ → IR and the corresponding average
risk function

A(θ) = EQ(Z, θ) ,

assuming that this expectation exists for all θ ∈ Θ. Stochastic optimization prob-
lems that are usually studied in this context consist in minimization of A on some
subsets of Θ, given the sample Z1, . . . , Zn. Note that since the distribution of Z
is unknown, direct (deterministic) minimization of A is not possible.

For j ∈ {1, . . . ,M}, denote by ej the jth coordinate unit vector in IRM : ej =
(0, . . . , 0, 1, 0, . . . , 0) ∈ IRM , where 1 appears in jth position.

The stochastic optimization problem associated to MS aggregation is

min
θ∈{e1,...,eM}

A(θ).

The aim of MS aggregation is to “mimic the oracle” min
1≤j≤M

A(ej), i.e. , to construct

an estimator θ̃n measurable w.r.t. Z1, . . . , Zn and called aggregate, such that

(1) EnA(θ̃n) ≤ min
1≤j≤M

A(ej) + ∆n,M ,

where ∆n,M > 0 is a remainder term that should be as small as possible. Lower
bounds can be established showing that, under some assumptions, the smallest
possible value of ∆n,M in a minimax sense has the form

(2) ∆n,M =
C logM

n
,

with some constant C > 0 [cf. Tsybakov (2003)].
Besides being in themselves precise finite sample results, oracle inequalities of

the type (1) are very useful in adaptive nonparametric estimation. They allow one

to prove that the aggregate estimator θ̃⊤nH is adaptive in a minimax asymptotic
sense (and even sharp minimax adaptive is several cases: for more discussion see,
e.g., Nemirovski (2000)).
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The aim of this paper is to obtain bounds of the form (1) – (2) under some
general conditions on the loss function Q. For two special cases (density estimation
with the Kullback-Leibler (KL) loss, and regression model with squared loss) such
bounds has been proved earlier in the benchmark works of Catoni (2004) and
Yang (2000). They independently obtained the bound for density estimation with
the KL loss, and Catoni (2004) solved the problem for the regression model with
squared loss. Bunea and Nobel (2005) suggested another proof of the regression
result of Catoni (2004) improving it in the case of bounded response, and obtained
some inequalities with suboptimal remainder terms under weaker conditions.

Here we study the recursive aggregate θ̂n which is defined in the following way.
Set β > 0, define the vector

ui ,

(
Q(Zi, e1), . . . , Q(Zi, eM )

)⊤

and consider the iterations:

• Fix the initial values θ0 ∈ Θ and ζ0 = 0 ∈ IRM .
• For i = 1, . . . , n− 1, do the recursive update

ζi = ζi−1 + ui ,

θi =

[
e−ζ

(j)
i

/β

P
M
k=1 e−ζ

(k)
i

/β

]M

j=1

.
(3)

• Output at iteration n the average

θ̂n =
1

n

n∑

i=1

θi−1 .(4)

Note that θ̂n is measurable w.r.t. the subsample (Z1, . . . , Zn−1). Recursions (3) –
(4) constitute a special case of the mirror averaging algorithm of Juditsky, Nazin,
Tsybakov and Vayatis (2005). For particular choices of β and Q, it yields the
methods described by Catoni (2004) and Yang (2000). We prove the following
results.

Theorem 1. Let B be a measurable subset of Z. Assume that β > 0 is such that
the mapping θ 7→ exp(−Q(z, θ)/β) is concave on the simplex Θ, for all z ∈ B.
Assume also that there exists two functions LQ(·) and RQ(·) on Z \B, with values
in IR such that for all z ∈ Z \ B and all θ ∈ Θ we have LQ(z) ≤ Q(z, θ) ≤
RQ(z). Then the aggregate θ̂n satisfies, for any M ≥ 2, n ≥ 1, the following oracle
inequality

En−1A(θ̂n) ≤ min
1≤j≤M

A(ej) +
β logM

n
+ E

[(
RQ(Z) − LQ(Z)

)
1I{Z/∈B}

]
,

where 1I{·} denotes the indicator function.
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Theorem 2. Let Q1 be the function on Z×Θ×Θ defined by Q1(z, θ, θ
′) = Q(z, θ)−

Q(z, θ′) for all z ∈ Z and all θ, θ′ ∈ Θ. Assume that for some β > 0 there exists a
Borel function Ψβ : Θ × Θ → IR+ such that the mapping θ 7→ Ψβ(θ, θ

′) is concave
on the simplex Θ for any fixed θ′ ∈ Θ, Ψβ(θ, θ) = 1 and E exp(−Q1(Z, θ, θ

′)/β) ≤
Ψβ(θ, θ

′) for all θ, θ′ ∈ Θ. Then the aggregate θ̂n satisfies, for any M ≥ 2, n ≥ 1,
the following oracle inequality

En−1A(θ̂n) ≤ min
1≤j≤M

A(ej) +
β logM

n
.

We show that the assumptions of Theorems 1 and 2 are fulfilled for several
statistical models including regression, classification and density estimation. This
allows one to construct in an easy way sharp adaptive nonparametric estimators
for the above mentioned statistical problems.
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Higher Order Estimating Equations for Causal Inference

Aad van der Vaart

(joint work with Lingling Li, James Robins, Eric Tchetgen)

The general purpose of this talk is to introduce a new type of estimating equa-
tions that can cope with high-dimensional covariates. Based on a random sample
X1, . . . , Xn from a density pη with respect to some measure on a sample space
we wish to estimate a real-valued parameter which can be written as the value
θ = χ(η) of a function η 7→ χ(η) on a given infinite-dimensional parameter space.
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Such a problem has been considered in the 1980/90s within the context of semi-
parametric statistical models, where it was shown that for a variety of functions χ
it is possible to estimate the parameter θ at rate of precision n−1/2 with a normal

limiting distribution for the scaled difference
√
n(θ̂ − θ) of the estimator θ̂ and

estimand θ. (See e.g. Van der Vaart (1998).) One method of estimator construc-
tion is through estimating equations. In the case that the parameter η can be
partitioned as η = (θ, γ) into the parameter of interest and a nuisance parameter,
such estimating equations take the form

n∑

i=1

ψθ,γ̂(Xi) = 0,

for a preliminary estimator γ̂ of the nuisance parameter, and suitable measurable

functions x 7→ ψθ,γ(x). The estimator θ̂ is defined as a (near) solution to this
equation.

The preliminary estimator γ̂ must satisfy certain conditions in order for the

method to work, i.e. to ensure the asymptotic normality of the sequence
√
n(θ̂−θ).

In some models the functions ψθ,γ can be chosen in such a way that some minimal
stability of the estimator γ̂, such as consistency, suffices. In this talk we focus on
the different situations where a minimal rate of convergence for γ̂ is crucial. In

that case the quality of the estimator θ̂ may be improved by replacing the linear
estimating equation by an equation of the type

Unψθ,γ̂ = 0,

where Un denotes a U -statistic “operator” defined by

Unf =
(n− k)!

n!

∑
· · ·

∑

1≤i1 6=···6=ik≤n
f(Xi1 , . . . , Xik),

for each function (x1, . . . , xk) 7→ f(x1, . . . , xk).
Rather than solving an equation of this type it will be convenient to use a

one-step estimator, defined by

χ(η̂) + Unχ̇η̂,

for a given function (x1, . . . , xk) 7→ χ̇η(x1, . . . , xk) called “influence function”. This
can be considered the zero of the linear approximation to the estimating equation
at a given preliminary estimator.

An illuminating example is the missing data problem. A typical observation is a
triple X = (Y A,A,Z), which is a function of a treatment indicator A with value in
{0, 1} of an outcome Y and a covariate Z. The outcome is only observed if A = 1.
Such a situation arises in the study of the causal effect of treatments. If the data
are gathered in an observational study, then the outcome of the treatment Y and
the treatment indicator A are typically dependent. By gathering information Z
on all possible confounding variables it can be ensured that given Z treatment Y
and treatment indicator A are independent. Because typically there is only little
information about which variables could be confounding, the covariate vector Z
must be chosen very high-dimensional. For simplicity we assume that Y also
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takes its values in {0, 1}. Then we can complete the description of the model by
assuming that given Z the treatment outcome Y and treatment indicator A are
independent; that given Z the variables Y and A have Bernoulli distributions with
success probabilities b(Z) and p(Z), respectively; and that Z has a density f . The
parameter is η = (b, p, f) and the parameter of interest is χ(η) =

∫
bf = EY .

We are interested in the situation that Z is very high-dimensional and that the
functions p, b, f are unknown.

We want influence functions χ̇η that work with general purpose η̂. Good influ-
ence functions have “correct” inner products (covariances) with score functions of
the model. For the linear case this idea has been developed in terms of a tangent
space of a model. The tangent space (at η) is the linear span of all score functions
g = d

dt |t=0
log pηt of suitable one-dimensional submodels t 7→ pηt . See Figure 2.

The influence function of η 7→ χ(η) is a map x 7→ χ̇η(x) such that for all submodels
t 7→ pηt

d

dt
χ(ηt)|t=0 = Eηg(X1)χ̇η(X1)

Such an influence function is unique up to the orthocomplement (in L2(η)) of
the tangent space, and it was shown in semiparametric theory that estimators for
χ(η) of minimum asymptotic variance correspond to the unique influence function
inside the closure of the tangent space.

In the missing data problem the likelihood is

pη(X) = f(Z)p(Z)A
(
1 − p(Z)

)1−A
b(Z)Y A

(
1 − b(Z)

)(1−Y )A
.

Submodels indexed by the perturbed parameters pt = p + tπ, bt = b + tβ and
ft = f(1 + tφ) can easily be shown to lead to scores

A− p(Z)

p(Z)(1 − p)(Z)
π(Z) +

A(Y − b(Z))

b(Z)(1 − b)(Z)
β(Z) + φ(Z).
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The influence function of the parameter of interest χ(η) =
∫
bf = EY is given by

χ̇η(X) =
A(Y − b(Z))

p(Z)
+ b(Z) − χ(η).

In semiparametric models with a partitioned parameter η = (θ, γ) the influence

function for χ(h) = θ can be seen to be the scaled efficient score Ĩ−1
θ,γ ℓ̃θ,γ, where

ℓ̃θ,γ is the projection of the θ-score on the orthocomplement of the scores for γ

and Ĩθ,γ is its variance.
The role of the influence function can be seen from the expansion of the one-step

estimator θ̂ = χ(η̂) + Unχ̇η̂

θ̂ − χ(η) = (Un − Eη)χ̇η̂ +
[
χ(η̂) − χ(η) − (Eη̂ − Eη)χ̇η̂(X1)

]

= OP

( 1√
n

)
+OP

(
‖η̂ − η‖2

)
.

The first equality is simple algebra. The second equality is typically true if the
influence function η 7→ χ̇η is continuous and the functional η 7→ χ(η) is twice
differentiable relative to an appropriate norm on the parameter space. The first
term on the right times

√
n is even typically asymptotically normally distributed.

The use of the influence function ensures both that this term has minimal variance
(if the influence function is chosen in the closure of the tangent space) and that
the second term is second order rather than first order OP

(
‖η̂− η‖

)
. Because the

first term gives the optimal behaviour we think of this term as a bias term.
In the missing data problem this second term is equal to

∫ (p
p̂
− 1

)
(b̂− b) dF = OP

(
‖p̂− p‖‖b̂− b‖

)
.

It follows that this bias term is negligible if the product of the convergence rates
of the preliminary estimators of p and b is o(n−1/2). This is only possible under
a-priori assumptions on these parameters. For instance, if they are known to be
α-smooth, then the optimal rate is n−α/(2α+d) for d the the dimension of the
covariate, and it is needed that α > d/2. Existence of at least five derivatives
on a 10-dimensional covariate space would be necessary. If the true parameters
have smaller regularity, then the bias term dominates. We can then improve the
estimation and, in particular the induced confidence sets, by using higher order
estimating equations.

In the higher-order case we look again for an influence function with “cor-
rect” inner products with score functions, this time the influence function being
a function (x1, . . . , xk) 7→ χ̇η(x1, . . . , xk) of k arguments, employing higher-order
derivatives, and scores from a higher-order tangent space. The one-step estimator

θ̂ = χ(η̂) + Unχ̇η̂ ought now satisfy

θ̂ − θ = (Un − Eη)χ̇η̂ +OP
(
‖η̂ − η‖k+1

)
,

as we have matched up more derivatives. Unfortunately, this is too good to be
true. Existence of such influence functions would allow to reduce the bias term
without increasing the variance term. Closer inspection shows that higher order
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influence functions can be defined for finite-dimensional submodels, but not for
the full model. Use of an influence for a submodel, say of dimension m, introduces
an extra error, and the expansion for the one-step estimator takes the form

θ̂ − θ = (Un − Eη)χ̇η̂,m +OP
(
‖η̂ − η‖k+1

)
+ approximation biasm.

Appropriate values of k and m (or a subspace) are obtained by balancing the three
terms on the right.

In the missing data model the second order influence function takes the form

A1(Y1 − b(Z1))

p(Z1)
+ b(Z1) − χ(η)

+
[
−A1(Y1 − b(Z1))

p(Z1)
(A2 − p(Z2)) −

(A1 − p(Z1))

p(Z1)

A2(Y2 − b(Z2))

p(Z2)

]
Kf
m(Z1, Z2),

where Kf
m is the kernel of a projection Kf

m : L2(f) → L onto an appropriate m-
dimensional subspace. There are more complicated expressions for higher-order

kernels. Use of this kernel leads to three terms in the expansion of θ̂ − θ of the
orders

O
(mk−1

nk
∨ 1

n

)
+O

(
‖b̂− b‖‖p̂− p‖‖f̂− f + p̂− p‖k−1

)
+O

(
‖b−Kf

mb‖‖p−Kf
mp‖

)
.

Balancing these terms leads, for d = 10, to the table

α m k
≥ 5 n 1

[2.5, 5) n 2
[· · · , 2.5) n15α/(2α+10) 3

The first column gives a-priori smoothness of the parameters p, b and f , taken
equal for simplicity. The third column gives the optimal value of k and the second
the optimal dimension of the approximating subspace L.

Confidence intervals can be based on (conditional) asymptotic normality of

θ̂ − θ. The U -statistics are asymptotically normal because the kernel shrinks to
the diagonal. Monte Carlo experiments shows that this may work reasonably well.

In further work we hope to show that optimal values of k and m can be chosen
data-dependent through cross-validation. This would lead to estimators that adapt
to the unknown regularity of the parameters. Unfortunately, adaptation in the case
of confidence intervals appears to be impossible. A true confidence interval must
be based on a largest possible model. A statistician could report the results of the
analysis as a sequence of conditional statements of the form: “if the truth can be
assumed to be a-priori regular to this order, then the parameter of interest is in
the interval · · · ”, one statement for each reasonable a-priori assumption.
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Classification with reject option

Marten H. Wegkamp

(joint work with Radu Herbei)

Pattern recognition is about classifying an observation that takes values in some
feature space X as coming from a fixed number of classes, say 0, 1, . . . ,M . The
simplest framework is that of binary classification (M = 1) with X = Rk. It is not
assumed that an observation X = x fully determines the label y; the same x may
give rise to different labels. Based on a collection of labelled observations (xi, yi),
the statistician’s task is to form a classifier f : Rk → {0, 1} which represents
her guess of the label Y of a future observation X . This framework is known as
supervised learning in the literature. The classifier

f(x) =

{
0 if P{Y = 0|X = x} ≥ P{Y = 1|X = x}
1 otherwise

(1)

has the smallest probability of error, see, for example ((5), Theorem 2.1, page
10). We will allow for the classifiers to report “I don’t know” expressing doubt,
if the observation x is too hard to classify. This happens when the conditional
probability η(x) = P{Y = 1|X = x} is close to 1/2. Indeed, if P{Y = 0|X =
x} = P{Y = 1|X = x} = 1/2, then we might just as well toss a coin to make a
decision. The main purpose of supervised pattern recognition or machine learning
is to classify the majority of future observations in an automatic way. However,
allowing for the reject option (“I don’t know”) besides taking a hard decision (0
or 1) is of great importance in practice, for instance, in case of medical diagnoses.
Nevertheless, this option is often ignored in the statistical literature. (13) and
recently (6) are notable exceptions. Some references in the engineering literature
are (4), (9), (7), (8), (11).

We follow the decision theoretic framework of (4), see (13) (Chapter 2) for
a more general overview. Let f : Rk :→ {0, 1, R} be a classifier with a reject
option, where the interpretation of the output R is of being in doubt and taking
no decision. The misclassification probability is P{f(X) 6= Y, f(X) 6= R} and
reject or doubt probability is P{f(X) = R}. Assuming that the cost of making a
wrong decision is 1 and that of utilizing the reject option is d > 0, the appropriate
risk function to employ is

dP{f(X) = R} + P{f(X) 6= Y, f(X) 6= R}.(2)

(4) shows that the optimal rule minimizing the risk (2) is

f∗(x) =






0 if 1 − η(x) > η(x) and 1 − η(x) > 1 − d
1 if η(x) > 1 − η(x) and η(x) > 1 − d
R if max(η(x), 1 − η(x)) ≤ 1 − d

(3)

which we will refer to as the Bayes rule with reject option. According to this rule,
we should never invoke the reject option if d ≥ 1/2 and we should always reject if
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d = 0. For this reason we can restrict ourselves to the cases 0 ≤ d ≤ 1/2 and we
denote the relevant risk function (2) by

Ld(f) = dP{f(X) = R} + P{f(X) 6= Y, f(X) 6= R}.(4)

The Bayes rule (3) simplifies to

f∗(x) =






0 if η(x) < d
1 if η(x) > 1 − d
R otherwise,

(5)

and we denote its risk by

L∗
d = Ld(f

∗) = min
f :Rk→{0,1,R}

Ld(f).(6)

The case d = 1
2 reduces to the classical situation without the reject option and

the Bayes classifier (5) reduces to (1). We will demonstrate that the behavior
of η(x) near the value 1/2 and more generally in the interval (d, 1 − d) is of no
real importance; the classification problem hinges on what happens outside this
interval, especially at the values d and 1 − d.

The talk is based on the technical report (10) and is organized as follows. We
first discuss plug-in rules based on the Bayes rule (5). These rules are called this
way since they replace the regression function η(x) by an estimate η̂(x) in formula
(5). Besides introducing the reject option, we extend the existing theory for plug-in
rules ((5), Theorem 2.2) since our bound depends explicitly on both the difference
|η̂(X) − η(X)| and the behavior of η(X) near the values d and 1 − d. We show
that very fast rates are possible under reasonable margin conditions, extending a
recent result by (1) to our more general framework. We illustrate the theory with
an application to speech recognition.

Next we extend the existing theory of empirical risk minimizers by allowing
for the reject option. Here an estimate is found by minimizing the empirical
counterpart of the risk (4) over an entire class of classifiers F . We demonstrate
that the rates of the risk (4) of the resulting minimizers to the Bayes risk L∗

d

depends on the metric entropy of (a transformed class of) F and on the behavior
of η(X) near the values d and 1 − d. Again our results are in line with the recent
developments of the theory for d = 1/2 (see, for example, (3), (12), (15), (16),
(14)) and extend the theory to the general case 0 ≤ d ≤ 1/2.

We push the theory even further since we differentiate between misclassification
costs of the cases Y = 1 & f(X) = 0 and Y = 0 & f(X) = 1, a situation common
in, for instance, medical studies where misclassifying a sick patient as healthy is
worse than the opposite. The risk function (4) is changed to accommodate for this
differentiation.
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[12] P. Massart and E. Nédélec, Risk bounds for statistical learning, Université
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