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Introduction by the Organisers

The workshop Noncommutative Geometry and Quantum Field Theory, organised
by Sergio Doplicher (Rome), Mario Paschke, Rainer Verch and Eberhard Zeidler
(Leipzig) was held Oct. 23rd– Oct 29th, 2005.
There are several motivations to study the interplay of noncommutative geometry
and quantum theory. First of all, it has frequently been argued from very dif-
ferent perspectives that physical spacetime might be noncommutative itself, i.e.
it might best be described by a noncommutative C∗-algebra A. The first day of
the workshop was therefor mainly devoted to pedagogical reviews of these argu-
ments, and in particular the appearance of a noncommutativity of spacetime in
the most prominent approaches to a quantum theory of gravity. As a possible
new research direction the problem was raised to consider the algebra A as part
of the dynamics, that is to say to generalize (the sought for quantum version of)
Einstein’s equations for the metric of spacetime such that they also determine the
(noncommuative) topology of spacetime dynamically via the coupling to matter



2706 Oberwolfach Report 48/2005

fields. It has also been pointed out that such a program would stimulate new
developments in mathematics.

The first and second day also saw reviews on the recent progress in pertuba-
tive constructions of quantum field theory over noncommutative spaces. It has,
however, also been speculated by several speakers, that it might be possible to
rigorously and nonpertubatively construct certain nontrivial interacting quantum
theories over noncommuative spaces, even though this seems impossible for the
corresponding theory on a commutative space.
Closely related important developments were reported, concerning Hopf algebras,
progress in the Algebraic approach to Conformal Field Theory and its possible
relations to a noncommutative index theory, and in the approach to Confinement
and Renormalization Group in AQFT. Recent developments in String Theory, re-
lated to the subject of our meeting, were also reported.
Although quantum field theory can be formulated entirely in the language of op-
erator algebras, geometrical entities play an essential, but not readily understood,
role for the consistency and interpretation therof. Noncommutative Geometry,
which studies the interrelation of operator algebras and geometry might therefor
prove an indespensible tool on the way to a deeper understanding of quantum
physics. A large number of talks in the workshop adressed possible applications
of Noncommuative Geometry, and in particular the local index formula of Connes
and Moscovici, to quantum field theory.
These applications of Noncommuative geometry require generalizations of Connes’
notion of spectral triples, however. The fourth day of the meeting was therefor
mainly devoted to the recent progress concerning the various generalisations re-
quired to study problems in quantum field theory, as well as to noncommutative
formulations of the theory of Gravitation. The fact that the need of qantum physics
will also stimulate new developments in mathematics (here the theory of operator
algebras and Noncommutative Geometry), has been one of the main motivations to
organise this meeting of mathematicians and physicists, which has brought about
many concrete proposals for new research directions, but also accumulated many
open questions. The workshop thus reflected very well the excellent prospects for
progress in mathematics as well as in physics offered by this field of research.
On wednesday, after the excursion, N.P.Landsmann gave an evening talk on the
classical debate between A.Einstein and N.Bohr, leading to very stimulating dis-
cussions on the foundations of quantum theory afterwards.
Discussions of this kind are rendered possible only by the unique atmosphere at
the MFO. It is a pleasure to thank the director G.-M. Greuel, the admistration
staff and the kitchen staff of the MFO for all their efforts to make this workshop so
beneficial. We would also like to thank the state of Baden-Würtemberg, the main
source of funding the MFO, and the European Union, whose support for the MFO
enabled us to invite seven Ph.D. students in addition to the originally intended 26
senior researchers.
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Abstracts

Quantum Field Theory on Quantum Spacetime

Sergio Doplicher

At large scales spacetime is a pseudo Riemaniann manifold locally modelled on
Minkowski space. But the concurrence of the principles of Quantum Mechanics
and of Classical General Relativity renders this picture untenable in the small.
Those theories are often reported as hardly reconcilable, but they do meet at least
in a single principle, the Principle of Gravitational Stability against localization
of events formulated in [1, 2, 3]:
the gravitational field generated by the concentration of energy required by the
Heisenberg Uncertainty Principle to localize an event in spacetime should not be
so strong to hide the event itself to any distant observer - distant compared to the
Planck scale.
Already at a semiclassical level, this Principle leads to Spacetime Uncertainty
Relations, that we proposed and shown to be implemented by Commutation Re-
lations between coordinates, thus turning Spacetime into Quantum Spacetime.
The word ”Quantum” is very appropriate here, to stress that noncommutativity
does not enter just as a formal generalization, but is strongly suggested by a com-
pelling physical reason.
Such an analysis leads to the following conclusions:

(i) There is no a priori lower limit on the precision in the measurement of
any single coordinate (the apparently opposite conclusions often reported in the
literature are drawn under the implicit assumption that all the space ccordinates
of the event are simultaneously sharply measured);

(ii) The Space Time Uncertainty Relations emerging from the Principle of
Gravitational Stability against localization of events, in their weak form and
disregarding the contributions to the source in Einstein Equations due to the
average energy momentum density in generic quantum states, can be implemented
by covariant commutation relations between the coordinates, which define a fully
Poincare’ covariant Basic Model of Quantum Spacetime.

(iii) In the Basic Model of Quantum Spacetime, the Euclidean distance between
two events and the elementary area have both a lower bound of the unit order
in Planck units; this is quite compatible, as shown by the model, with Poincare’
covariance, and not to be confused with the unlimited accuracy which is in principle
allowed in the measurement of a single coordinate.

(iv) The Basic Model replaces the algebra of continuous functions vanishing at
infinity on Minkowsky Space by a noncommutative C* Algebra E , the enveloping
C* Algebra of the Weyl form of the commutation relations between the coordi-
nates, which turns out to be the C* Algebra of continuous functions vanishing at
infinity from Σ to the C* Algebra of compact operators. Here Σ is the union of
two connected components, each omeomorphic to SL(2,C)/C∗ ≃ TS2. This man-
ifold survives the large scale limit; thus QST predicts extradimensions, which
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indeed manifest themself in a compact manifold S2 ×{±1} if QST is probed with
optimally localized states.
Quantum Field Theory on the Basic Model of Quantum Spacetime was first de-
veloped in [1]; while fully Poincare’ Covariant Free Field Theory (as Wightman
Fields on QST, or as Poincare’ Covariant nets of von Neumann Algebras labelled by
projections in the Borel completion of E , which specify ”noncommutative regions”
in QST) can be explicitly costructed, and its violation of causality computed, all
attempts to construct interacting QFT on QST seem to lead sooner or later to
violations of Lorentz invariance, besides the inevitable violations of causality.
In the first approach to QFT on QST in [1], we gave a natural prescription, not
leading to interacting fields, but to a perturbative expansion of the S - Matrix,
without manifest violations of unitarity; but interaction required an integration
over Σ, thus breaking Lorentz invariance (there is no finite invariant measure or
mean Σ).

The approach based on Yang - Feldman Equation defines perturbatively covari-
ant interacting fields, but Lorentz invariance will break a) at the level of renor-
malization b) at the level of asymptotic states [4, 6].
Al level a) a fully covariant procedure replaces Wick Products by Quasiplanar
Wick Products where one subtracts only terms which are local and divergent on
QST [6]; the above problems would riemerge with a further finite renormalization
which ensures to recover the usual renormalized perturbative expansion in the
large scale limit.
A more radical modification of the Wick product is suggested by the very quantum
nature of Spacetime, the Quantum Wick Product; its use to define interactions
regularizes completely QFT in the Ultraviolet; but the Lorenz covariance is
broken here by the Quantum Wick Product itself (while no integration on Σ is
needed), and the Adiabatic Limit poses serious problems [5].
Thus Lorenz breaking appears in all the above attempts through the presence of
a non trivial centre of the (multipliers) Algebra of QST, whose spectrum is Σ: no
finite invariant integration is possible and renormalization introduces a bad de-
pendence on the points of Σ. More in the Reports by D. Bahns, K. Fredenhagen
and G. Piacitelli in this workshop.
A New Scenario. The Principle of Gravitational Stability ought to be fully used in
the very derivation of ST Uncertainty Relations, which would then depend also on
the energy-momentum density of generic background quantum states; this leads to
commutation relations between Spacetime coordinates depending in principle on
the metric tensor, and hence on the interacting fields themselves, thus appearing
as part of the equations of motions along with Einstein and matter field Equa-
tions; this new scenario proposed in [7] appears extremely difficult to formulate,
but promises most interesting developments. Notably it would be related to the
nonvanishing of the Cosmological Constant [7] and would explain Thermodynami-
cal Equilibrium of the early Universe without Inflation; while QST might teach us
something about dark matter if, as expected, it implies a minimal size for black
holes, where Hawking evaporation would stop.
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Noncommutative spectral invariants and black hole entropy

Roberto Longo

(joint work with Y. Kawahigashi)

I have explained how one can use Operator Algebraic methods to define an intrin-
sic entropy associated with a local conformal net A. One considers the coefficients
in the expansion of the logarithm of the Trace of the “heat kernel” semigroup. In
analogy with Weyl theorem on the asymptotic density distribution of the Laplacian
eigenvalues, passing to a quantum system with infinitely many degrees of freedom,
we regard these coefficients as noncommutative geometric invariants. Under a
natural modularity assumption, the leading term of the entropy (noncommutative
area) is proportional to the central charge c, the first order correction (noncom-
mutative Euler characteristic) is proportional to logµA, where µA is the global
index of A, and the second spectral invariant is again proportional to c.
A further general method exists to define a mean entropy by considering confor-
mal symmetries that preserve a discretization of S1 and we get the same value
proportional to c.
One can then make the corresponding analysis with the proper Hamiltonian asso-
ciated to an interval. We find here, in complete generality, a proper mean entropy
proportional to logµA with a first order correction defined by means of the relative
entropy associated with canonical states.
By considering a class of black holes with an associated conformal quantum field
theory on the horizon, and relying on arguments in the literature, I have indicated
a possible way to link the noncommutative area with the Bekenstein-Hawking
classical area description of entropy.
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Nonsmooth Symmetries and the Existence of Diffeomorphism
Covariance in Chiral QFT

Mihály Weiner

(joint work with S. Carpi)

The presented talk concerned chiral components of 1+1 dimensional conformal
Quantum Field Theory in the framework of Haag-Kastler nets. In this setting a
chiral component is described by a net of von Neumann algebras I 7→ A(I) as-
sociating to each open proper interval of S1 a von Neumann algebra of a fixed
Hilbert space, together with a unitary representation U of the group of Möbius
transformations. The pair (A, U) is required to satisfy the natural conditions of
isotony, locality, covariance, positivity of energy, existence, uniqueness and cyclic-
ity of vacuum; see e.g. [3, 4] and [2] for more on axioms, basic consequences and for
an introduction to some models like the ones coming from the so-called loop-group
construction.
Diffeomorphism covariance is a feature specific to 1+1 dimensional conformal QFT
and to one-dimensional chiral components. A higher dimensional field theory —
for simple geometric reasons — can never exhibit such symmetries. To the con-
trary, most (but not all: see [5, 6] for first examples, and the construction that
will be here explained) low dimensional conformal QFT models on the circle are
covariant under a suitable action of Diff+(S1). As it is known, (see e.g. [7]), at the
level of Wightmann-fields, the existence of diffeomorphism symmetry is essentially
equivalent with the existence of a stress-energy tensor, i.e. a local field whose in-
tegral is the total energy.
One may take the existence of a stress-energy tensor as a physically motivated
requirement, and thus exclude from the study all models admitting no diffeomor-
phism symmetry. Nevertheless, there are some reasons — more than just pure
mathematical interest — to find an algebraic characterization of the existence of
Diff+(S1) symmetry.
As an example, consider the following. There are a number of known methods
(using half-sided modular inclusions, or, in case of Wightmann-fields, by restric-
tions) by which, starting from a higher dimensional QFT model, one can obtain a
chiral net. Then, in a particular example, we may find that the chiral net obtained
is diffeomorphism covariant. However, this is not something that we immediately
see: the higher dimensional model was surely not diffeomorphism covariant, so it
is not a property which is “inherited” from the original model. (Note also that the
restriction of the stress-energy tensor of a higher dimensional model, by its scaling
dimension, cannot be the stress-energy tensor of the lower dimensional one.)
In the talk I presented new results pointing towards an (algebraic) characterization
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of the existence of Diff+(S1) symmetry in chiral conformal QFT. In particular, one
can show [9, Chapter 4] that under some algebraic condition (which, for example,
in case of complete rationality, is automatically satisfied), the Möbius symmetry
of the net extends to the larger geometrical group consisting of once differentiable,
piecewise Möbius transformations (PCWM). The main ingredient of the proof is
the modular theory of von Neumann algebras.
This larger group is “almost as big” as Diff+(S1). For example, one can show
that for every γ ∈ Diff+(S1) there exists a sequence of once differentiable PCWM
transformations (γ)(n∈N) converging uniformly to γ. (In fact, this is even true in
a stronger, local sense.) But what is more important, is that this sequence can be
chosen so that for any chiral PCWM covariant net, given that it is also Diff+(S1)
covariant, we have strong convergence of the corresponding (projective) unitary
operators [9, Theorem 6.1.3].
So, even if a priori we do not assume diffeomorphism covariance, starting from
PCWM symmetry, by taking limits one should obtain Diff+(S1) symmetry. Un-
fortunately, this has not been achieved because of technical problems about con-
vergence.
One may also consider the inverse problem: starting from Diff+(S1) covariance,
can we obtain PCWM symmetry? To do so — as such a symmetry is based on
nonsmooth (only once differentiable) transformations, one needs to evaluate the
stress-energy tensor T on nonsmooth functions. In this respect, the following re-
sult is achieved in the joint work [1] with S. Carpi (see also [9, Chapter 5]): if the
continuous real function on the circle f satisfies

‖f‖ 3
2
≡

∑
n∈Z

|f̂n|(1 + |n|
3
2 ) <∞

where f̂n ≡ 1
2π

∫ 2π

0 f(eiθ)e−inθdθ (n ∈ N), then the sum
∑

n∈Z
f̂nLn is essentially

self-adjoint and so T (f) can be defined. Moreover, if fn → f in the sense of the
above defined ‖ · ‖ 3

2
norm, then

T (fn) → T (f)

in the strong resolvent sense.
As mentioned, at the moment there is some unresolved technical difficulties in
constructing Diff+(S1) symmetry out of PCWM symmetry. Nevertheless, these
nonsmooth symmetries turned out to be useful in various applications.
In particular such symmetries are directly constructed from the local algebras and
the vacuum vector and so they are unique. This, by what was previously ex-
plained, can be used to show [1] that if the net is diffeomorphism covariant, its
diffeomorphism symmetry is unique. (See also [9, Section 6.1] where the statement
is reproved so that the regularity condition used in [1] can be dropped.) Also, using
similar considerations it is proved [9, Section 6.2] that a (Möbius covariant) subnet
of a diffeomorphism covariant net is automatically diffeomorphism covariant.
By these results, it is further shown that the tensor product of an infinite number
of (nontrivial) nets is never diffeomorphism covariant ([1] and see also [9, Section
6.3] for the general case). Thus one can easily give new examples of nets admitting
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no diffeomorphism symmetry (even strongly additive examples — note that the
examples that were known before and appear in [5, 6], are not strongly additive).
Finally, let us mention, that the recent argument of [8] showing that every lo-
cally normal representation of a diffeomorphism covariant net is automatically of
positive energy, is also based on the use of nonsmooth symmetries.
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Geometric Modular Action in QFT and QFTs from Geometric
Modular Action

Gandalf Lechner

As the title indicates, this talk is divided into two parts. In the first part, we
give a short review of the basic concepts of Tomita-Takesaki modular theory and
recall some of the well-known results on geometric modular action. In particular,
we emphasize the significance of the Bisognano Wichmann theorem [1] and the
theorem of Borchers [2]. These theorems state under quite general assumptions on
the underlying quantum field theory that the modular group of (A,Ω), where A is
the algebra generated by observables localized in a wedge region (i.e. a Poincaré
transform of the right wedge WR := {x ∈ Rd : x1 > |x0|}) and the vacuum vector
Ω, coincides with the group of boosts leaving the wedge invariant. Furthermore,
the corresponding modular conjugation is identified as the TCP operator of the
theory (up to a rotation).
In the second part of the talk, we consider the inverse problem: Instead of dis-
cussing quantum field theories in which certain modular groups act geometrically
as boost transformations, quantum field theories in the sense of Haag-Kastler
are constructed from representations of the Poincaré group by using the afore-
mentioned theorems as an input. Such an approach was followed in [3], where
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Brunetti, Guido and Longo succeeded in constructing free field theories from a
given representation of the proper Poincaré group in a purely quantum physical,
algebraic setting. Because the emerging theories are interaction-free, their con-
struction can essentially be carried out in the one particle space H1 by considering
nets of localized subspaces in H1. Only in the final step of the construction they
pass to the corresponding net of observable algebras with the help of the Weyl
functor.
When trying to transfer this program to the interacting case, one meets two com-
plications. Firstly, the representation of the Poincaré group is not a sufficient
input since the interaction has to be fixed as well. Secondly, it is not possible to
work on the one particle space; one has to carry out the construction on the level
of observable algebras from the outset.
As the “free” and “interacting” TCP operators of a quantum field theory are
related by its S-matrix S, the scattering operator suggests itself as an additional
input to describe the interaction. The intended construction is thus the solution
of the inverse scattering problem in quantum field theory. Schroer and Wiesbrock
discovered that there is a special family of S-matrices in which the two mentioned
problems can be overcome [8], namely the family S of factorizing S-matrices on
two-dimensional Minkowski space. In contrast to the case of a general S-matrix,
the kinematical constraints are in this situation strong enough to fix the most
general form of S, turning it into a useful input for the inverse scattering problem.
The problem of constructing a net of observable algebras associated to a factorizing
S-matrix S ∈ S can be solved as follows: In a first step, a Hilbert space H (depend-
ing on the chosen S) is constructed, on which the Poincaré group and Zamolod-
chikov’s algebra (a kind of S-deformed CCR algebra) are represented. Schroer
realized that these objects allow for the definition of certain wedge-localized,
polarization-free quantum fields, which generate a net W 7→ A(W ) of wedge al-
gebras acting on H, which satisfies the usual axioms of isotony, Haag duality and
covariance, and has the vacuum Ω as a cyclic and seperating vector for each wedge
algebra [8, 5].
Furthermore, this net has the modular data as expected from the Bisognano Wich-
mann theorem, and in particular the modular conjugation of (A(WR),Ω) is SJ0,
where J0 denotes the TCP operator of the free theory. We mention that it is possi-
ble to verify that the observables of this net reproduce the two-particle scattering
behaviour given by the input S-matrix S.
It is an important question within this approach to the inverse scattering problem
whether in the so constructed wedge local theories there also exist observables
localized in bounded regions of Minkowski space, such as double cones O = W ′

1 ∩
W2, where W1 ⊂ W2 is an inclusion of wedge regions. The maximal algebra of
observables localized in O is A(O) := A(W1)

′∩A(W2). Proving that this algebra is
non-trivial, A(O) 6= C·1, amounts to proving the existence of a local quantum field
theory with a prescribed factorizing S-matrix. We report here on recent advances
to this question (for some older partial results, see [6]).
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We recall that the existence problem for local observables has an affirmative answer
if the net of wedge algebras has the split property, and that the split property
is in turn a consequence of the modular nuclearity condition [4]. The modular

nuclearity condition states that the map A(W1) ∋ A 7→ ∆
1/4
W2
AΩ ∈ H is nuclear

(∆W1
denotes the modular operator of (A(W1),Ω)).

As a new result, we announce that there is a subfamily S0 ⊂ S of factorizing
S-matrices, characterized in terms of the distribution of resonances of the two par-
ticle S-matrix, such that the modular nuclearity condition holds for any inclusion
of wedge regions [7]. Consequently, in the corresponding model theories there exist
observables localized in arbitrarily small double cones, and the inverse scattering
problem has a solution for S-matrices S ∈ S0.

We conclude the talk with a more speculative outlook about possible general-
izations of the described construction program to higher dimensional Minkowski
space.
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Aspects of noncommutative geometry in string theory

Stefan Fredenhagen

Noncommutative geometry naturally appears in open string theory. An interac-
tion vertex of open strings cannot be deformed such that two legs are exchanged.
In going to the particle limit of string theory, it is possible to maintain this feature
by a suitable rescaling of background fields. This talk should illustrate the basic
mechanism in two examples.
I discussed the simplest example where a noncommutative field theory emerges
in string theory: an open string moves in a flat space-time with a constant two-
form B-field (see e.g. [1]). The B-field causes the space-time coordinates to satisfy
non-trivial commutation relations. In the particle limit where the string tension
is taken to be very large, one has to rescale the metric and the B-field to obtain a
finite open string metric and a finite matrix θµν that determines the commutation
relations, [xµ, xν ] = iθµν .
This non-commutativity directly affects the correlation functions of vertex opera-
tors and thereby the effective field theory on the brane. The fields are functions on
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the world-volume of the brane where the product is deformed to the Moyal-Weyl
product determined by θ.
A second example was discussed where a non-trivial three-form field is present:
open strings on the group manifold of SU(2). I focussed on maximally symmetric
D-branes on SU(2) which are localised along conjugacy classes, in SU(2) these
are two-spheres (and points). It turns out that, in a particle limit, the fields of
the effective field theory live on a fuzzy sphere [2]. The algebra of functions is
finite-dimensional which is interpreted as a truncation of the spherical harmonics
at a maximal spin determined by the size of the brane. A gauge theory which is
a combination of a Yang-Mills and a Chern-Simons part determines the dynamics
of the brane.
These two examples should only give some impression of how noncommutative
geometry appears in string theory. Further developements and the various appli-
cations e.g. to describe D-brane dynamics unfortunately could not be covered in
this talk.
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Spectral Triples of Holonomy Loops

Jesper M. Grimstrup

(joint work with J. Aastrup)

A noncommutative geometry in the sense of Connes [1] is determined by a spectral
triple (B,D,H) which consist of an C∗-algebra B represented on a hilbert space
H on which a self-adjoint unbounded operator D, the Dirac operator, acts. The
triple is normally required to satisfy a set of seven axioms proposed by Connes
[2]. Ordinary Riemannian spin-geometries form a subset in this framework and
are described by commutative C∗-algebras.
A special class of noncommutative geometries are the almost commutative geome-
tries described by spectral triples characterized by an algebra of the form

B = C∞(M) ⊗BF ,(1)

where BF is a finite dimensional matrix algebra of size n. The almost commutative
geometry given by

(2) BF = C ⊕ H ⊕M3(C) ,

where H denotes quarternions, is the algebra which forms the basis of the formu-
lation of the standard model in terms of noncommutative geometry [2].
The point we wish to stress here is that by using the language of noncommu-
tative geometry the standard model coupled to gravity can be formulated as a
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single, purely gravitational theory. This fact suggests that, within the framework
of noncommutative geometry, it cannot be quantized in any straightforward man-
ner since such a quantization would, accordingly, involve quantum gravity. On
the other hand, this argument implies that the search for a suitable quantization
scheme might pass through quantum gravity. This is the problem which we wish
to address: How principles of noncommutative geometry might be unified with
ideas on quantum gravity.

Intersecting noncommutative geometry and quantum gravity

Consider first Quantum field theory. It involves, via Feynman path integrals,
integration theory over spaces of field configurations. The central object is the
partition function, the generating functional for Greens functions

(3) Z[J ] =

∫
[dΦ] exp(− i

~
S[Φ, J ]) ,

where Φ denotes the field content of the model characterized by the classical action
S[Φ] coupled to external fields J . We now propose the following: Since Connes
formulation of the standard model lacks a clear quantization procedure and since
quantum field theory deals with integration theory over spaces of field configura-
tions, it seems natural to try to apply the machinery of noncommutative geometry
to functional spaces as a possible solution to the problem of unifying principles
of noncommutative geometry with those of quantum field theory. Further, since
Connes formulation of the standard model is essentially a gravitational theory we
suggest to investigate a configuration space related to gravity.
In fact, a configuration space suitable for our purposes has already been investi-
gated in the literature. Loop Quantum Gravity (LQG) [3] is an attempt to quan-
tize general relativity using methods of canonical quantization. The configuration
space relevant for LQG is a space A of SU(2) connections which are interpreted
as certain spin-connections living on a 3-dimensional hyper-surface. This surface
emerges from a foliation of 4-dimensional space-time which is needed for the quan-
tization procedure.
Central to LQG is an algebra of Wilson loops W (L) which form an abelian algebra
of observables on the space of connections

W (L) : A → C ,

∇ → Tr Hol(L,∇) ,(4)

where Hol(L,∇) is the holonomy of the connection ∇ along the loop L and Tr is
the trace with respect to the representation of the group. One of the advantages
of this formulation is that it permits a natural implementation of diffeomorphism
invariance in a way that leads to a countable structure, including a separable
hilbert: Roughly, the set of Wilson loops form certain labeled, oriented graphs of
increasing complexity and, up to diffeomorphisms, only the structure of graphs is
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relevant. This structure is countable [4]1.

We believe that there exist a natural intersection between LQG and noncommu-
tative geometry: Instead of using Wilson loops we suggest to study the noncom-
mutative algebra of holonomy loops themselves. By avoiding the trace the gauge
symmetry of local lorentz transformations is preserved. Further, since the ob-
jective is to apply the machinery of noncommutative geometry to the functional
space, rather than a canonical quantization procedure, we propose to consider
space-time as a whole and avoid a foliation. Thus, we consider an algebra of
space-time holonomy loops

L : A → G ,

∇ → Hol(L,∇) ,(5)

whereG is the symmetry group. Since compactness of the gauge group is at present
needed for the analysis, we are at first forced to consider Euclidean gravity with,
for example,

G = SO(4) .

Finally, rather than postulating constraints on the Hilbert space, such as the
Hamilton constraint in LQG, we suggest to apply the spectral action principle [5]:
To seek physical information in the spectrum of the Dirac operator.
This intersection of LQG and NCG contains all the ingredients we are looking for:
Integration theory over a functional space related to gravity involving a natural
noncommutative algebra.
The holonomy loops are matrix valued and can be heuristically argued to entail
an almost commutative algebra in a classical limit characterized by a single space-
time geometry [6], that is, a single point in A. This is encouraging and provides us
with the hope/vision/fantasy that low energy physics characterized by an almost
commutative algebra may arise as the classical limit of a pure quantum gravity.
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Noncommutative Geometry and Gravity

Paolo Aschieri

The study of the structure of spacetime at Planck scale, where quantum gravity ef-
fects are non-negligible, is one of the main open challenges in fundamental physics.
Since the dynamical variable in Einstein general relativity is spacetime itself (with
its metric structure), and since in quantum mechanics and in quantum field theory
the classical dynamical variables become noncommutative, one is strongly lead to
conclude that noncommutative spacetime is a feature of Planck scale physics.
A first question to be asked in this context is whether one can consistently deform
Riemannian geometry into a noncommutative Riemannian geometry. In [1] we
address this question by considering deformations of the algebra of functions on
a manifold obtained via a quite wide class of ⋆-products. In this framework we
successfully construct a noncommutative version of differential and of Riemannian
geometry, and we obtain the noncommutative version of Einstein equations.
Even without physical motivations, the mathematical structure of deformed spaces
is a challenging and fruitful research arena. It is very surprising how well ⋆-
noncommutative structures can be incorporated in the framework of differential
geometry.

The ⋆-products we consider are associated with a deformation by a twist F of the
Lie algebra of infinitesimal diffeomorphisms on a smooth manifold M . Since F is
an arbitrary twist, we can consider it as the dynamical variable that determines
the possible noncommutative structures of spacetime. Examples of the noncom-
mutative spacetime structures we obtain include the Moyal-Weil (or θ-constant)
noncommutative space and the quantum (hyper)plane xy = qyx.
The twists F is an element F ∈ UΞ ⊗ UΞ, where UΞ is the universal enveloping
algebra of the Lie algebra of vectorfields (infinitesimal diffeomorphisms). Since
vectorfields act on functions, forms and tensorfields, using the twist F we canon-
ically deform these spaces into the ⋆-noncommutative spaces of functions, forms
and tensorfields. The Lie algebra of vectorfields is similarly deformed to a ⋆-Lie
algebra (in the spirit of [2] and [3]). Furthermore we show that this deformed Lie
algebra has a deformed action on the noncommutative spaces of functions, forms
and tensorfields. We have thus constructed a tensor calculus that is covariant under
infinitesimal noncommutative diffeomorphisms. (In the special case of θ-constant
noncommutativity, if we choose the preferred coordinate system [xµ, xν ] = iθµν

we recover the results of [4]).
The ⋆-covariant derivative is then defined in a global coordinate independent way.
Locally the ⋆-covariant derivative is completely determined by its coefficients Γσµν .
Using the deformed Leibniz rule for vectorfields we extend the ⋆-covariant deriva-
tive to all type of tensorfields.
Having the covariant derivative it is easy to guess the expression for the noncom-
mutative curvature and torsion. Then one has to show that these operators are
well defined noncommutative tensors. This is done by showing that they are (left)
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A⋆-linear maps on vectorfields, where A⋆ is the space of noncommutative func-
tions. Also the noncommutative Ricci tensor is singled out by requiring it to be a
(left) A⋆-linear map.
Finally the metric is an arbitrary ⋆-symmetric element in the ⋆-tensorproduct of
1-forms Ω⋆⊗⋆Ω⋆. Using the ⋆-pairing between vectorfields and 1-forms the metric
is equivalently described as an A⋆-linear map on vectorfields, (u, v) 7→ g(u, v). The
scalar curvature can then be defined and Einstein equations on ⋆-noncommutative
space are obtained. The requirement of A⋆-linearity uniquely fixes the possible
ambiguities arising in the noncommutative formulation of Einstein gravity theory.
We have a deformed gravity theory because we can impose reality conditions on
the spaces of noncommutative functions, vectorfields and tensorfields, so that for
example the metric tensor is real.
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Renormalization of Euclidean Quantum Field Theories

Harald Grosse

(joint work with Raimar Wulkenhaar)

The idea that the problems of quantum field theory may be cured by deforming
space-time goes back to Snyder. After Alain Connes developed noncommutative
geometry a new development set in. I personally learnt Fuzzy spaces through
interactions with John Madore and we did formulate simple models on such spaces
already in 1992. Interesting regularizations resulted, we were able to approximate
quantum field theory by finite degrees of freedom preserving symmetries[1]. In such
models like the Fuzzy sphere, Fuzzy CPN , Fuzzy tori etc. an embedded sequence
of matrix algebras is found, such that the action converges in a particular sense
towards the action of a continuum model. This way one introduces a cutoff. We
did extend these ideas to handle nontrivial topological contributions and certain
supersymmetric models without violating supersymmetry.
Removing it again leads back the well-known divergences.
But additional problems may result: The Feynman rules for a field theory on
the canonical deformed Euclidean four dimensional space has been worked out
by Filk in 1995. Feynman diagrams split into planar and nonplanar ones. The
planar diagrams show the same UV-divergences like they occur in the undeformed
theory, but the nonplanar diagrams turn out to be convergent for non-exceptional
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momenta. For exceptional momenta new divergences in the infrared region occur.
This phenomenon is called the IR/UV mixing. No general scheme has been found
to handle these divergences.
In our work we analyzed this problem for a scalar field theory. In a first step we
transformed the model to a matrix base: The interaction term becomes a matrix
product and no oscillations occur anymore. Next we used renormalization ideas of
Wilson and Polchinski and deduced a power counting law for ribbon graphs drawn
on a Riemann surface of a particular genus with marked points. The iterative
solution of the Polchinski equation can now be handled. We realized that the
decay properties of the free propagator are essential for renormalzability. Since
the resulting free Greens function does not have the necessary decay property, we
did put the system into a box through the coupling to an oscillator potential. The
resulting model has now four relevant/marginal operators in the action and we have
been able to show that the model becomes renormalizable. Our proof follows ideas
of Wilson and Polchinski, we proofed first a power counting theorem for general
Ribbongraphs, this allowed us to identify all graphs drawn on a Riemannsurface of
nonzero genus and those with higher boundary components as irrelevant[2]. Only
two and four point functions remained. But there are still infinitely many. Next
we followed the old ideas of Bogoliubov and used a discrete difference procedure to
identify relevant/marginal operators: There remained only four, just those, with
which we started with. This is the only model which shows this nice feature [3].
Calculation of the beta function shows special features of the models at the self-
dual point, particular interactions become integrable [4].
At the workshop various other model calculations were presented, all of them
show the IR/UV mixing problem. Through interactions with Edwin Langmann
we realized that the addition of magnetic fields may work too.
But many problems remain and have been addressed during this workshop: The
transformation to Lorentzian signature is unclear, how to handle other models
especially the formulation of a renormalizable noncommutative gauge model is
not settled. How much we may learn concerning the quantization of gravity is of
course unclear too.
At this workshop all contributions were of great interests for me, the program was
chosen coherently and the atmosphere was great. I enjoyed all contributions.
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Renormalisation of the Noncommutative Gross-Neveu Model

Fabien Vignes-Tourneret

(joint work with Razvan Gurau, Vincent Rivasseau and Raimar Wulkenhaar)

Historically noncommutative spacetimes have been introduced in order to cure the
ultraviolet divergences of quantum field theories. This attempt remained more or
less out of main stream theoretical physics until the discovery that noncommu-
tative quantum field theories (NCQFT) arise in certain compactifications of M-
theory [1] or as limiting cases of string theory [2, 3]. Then these theories became
fashionable and the hope of a completely finite QFT was revived. Unfortunately
NCQFT are not only divergent but also exhibit a new kind of divergences. This
phenomenon called UV/IR mixing makes the theories not renormalisable [4, 5, 6].
Such an entanglement between the ultraviolet and infrared sectors appears in non-
planar graphs. For non exceptionnal incoming momenta, these graphs are UV-
finite. But inserted into a bigger loop they diverge for small momenta (IR). By
inserting enough such dangerous graphs into loops, one can make any amplitude
divergent. This is typically the sign of a non renormalisable theory. Neverthe-
less Harald Grosse and Raimar Wulkenhaar proved recently that there is a way
to define a renormalisable noncommutative field theory. They began by proving
a power-counting theorem for non-local matrix models [7]. Then they were able
to prove the perturbative renormalisability of the φ4-theory on the two and four
dimensionnal Moyal spaces [8, 9] by rewriting the theory in the matrix base [10].
The key-point was to notice that the usual noncommutative extension (1) of the
φ4-theory is not covariant under the Langmann-Szabo duality [11].

(1) S =

∫
dx

1

2
φ

(
−∆ +m2

)
φ+

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

That is the action functional has not the same expression in x- and in p-space. The
vertex φ⋆4 is self-dual but the kinetic term is not. The Laplacian p2 transforms
into x2 which doesn’t belong to the action. It seems that the Langmann-Szabo
duality is related to the renormalisability of the theory. In fact H. Grosse and
R. Wulkenhaar added that harmonic potential term (2) which rendered the theory
renormalisable. The breaking of the translation invariance seems to be the price
to pay for a renormalisable theory.

(2) S =

∫
dx

1

2
φ

(
−∆ + +Ω2x̃2 +m2

)
φ+

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

Actually the original proof of the perturbative renormalisability of this duality-
covariant noncommutative φ4-theory used numerical studies of the propagator.
V. Rivasseau, R. Wulkenhaar and myself proved rigorous bounds on its propagator
[12]. Moreover we performed a multi-scale analysis of this theory and gave a shorter
proof of its power-counting. We used the notion of dual graphs which allowed to
solve in a very simple way the constraints on the indices of the propagator. These
constraints come from the rotational invariance of the theory. The final aim of
that work was to put the renormalisability proof of H. Grosse and R. Wulkenhaar
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in a suitable setting for future constructive purposes [13, 14].
One can now ask how general is the procedure of Grosse and Wulkenhaar? Can
we rely on the Langmann-Szabo duality to build renormalisable noncommutative
field theories? In a first step before a complete answer, we study the Gross-Neveu
model on the Moyal plane (3). Note that we wrote here only one of the four
possible quartic interactions with fixed sign of the coupling constant λ.

(3) S =

∫
dx ψ̄

1

2
(γµp

µ + Ωγµx̃
µ +m)ψ +

λ

4!
ψ̄ ⋆ ψ ⋆ ψ̄ ⋆ ψ

As usual the star-product interaction makes the vertex oscillating. The different
amplitudes are no longer absolutely convergent which is harder to handle. Then we
decided to use again the matrix base. The main advantage of this base is the very
simple form of the vertex which becomes Tr φ4. Its drawback is the complexity of
the propagator. On R2 the power-counting of the Gross-Neveu model is half the
φ4

4’s one and the behaviour of its propagator is approximately the same as in φ4
4.

We found that the propagator of the noncommutative Gross-Neveu model does
not behave as the φ4

4’s one. The bounds we proved in [12] are no longer valid.
For example, there is a region in the indices where the propagator “decreases” in
only two directions in place of three [15]. That means we can only sum over two
indices of the propagator. This fact will modify the proof of the power-counting
but doesn’t modify the power-counting itself [16]. Moreover one and two-loop
computations let us think that the model is renormalisable. The proof to all
orders is in progress [16].
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Locality in Quantum Field Theory on the Noncommutative
Minokwski space

Dorothea Bahns

Starting point of our investigations is the free massive quantum field φ on the non-
commutative Minokowski space φ(q) =

∫
dµ(k)

(
a(k) ⊗ e−ikq + a∗(k) ⊗ eikq

)
with

kq = kµq
µ, k ∈ R

4 as defined in [1]. Here, a(k) and a∗(k) denote the ordinary
annihilation and creation operators, dµ(k) is the invariant measure on the mass
shell, and qµ, µ = 0, 1, 2, 3, denote the quantum coordinates as defined in [1], i.e.
we have [qµ, qν ] = iQµν and the spectrum of the central commutator Q is fixed in
a Lorentz invariant way (though throughout this paper, a point θ is chosen from
this spectrum in order not to obscure the essential point). After evaluation in a
suitable state ω on the algebra generated by the quantum coordinates, we have an
operator φ(ω) on Fock space with φ(ω) = ϕ(ψω), where ϕ is a field on ordinary

Minkowski space, evaluated in a testfunction ψω defined by ψ̂ω(k) := ω(eikq) (the
hat denoting Fourier transform).
Unfortunately, for the same reason as in ordinary field theory, the product of two

such fields is ultraviolet divergent, as the function ψ̂θ,ω(k, p) := ω(eikq eipq) (which
also depends on θ by the appearance of the so-called twisting exp (− i

2kθp) arising
from the Weyl relation) decreases quickly only in k+p. We therefore have to come
up with a good principle to define a sensible renormalization procedure.
In ordinary field theory this is the principle of locality, which on the noncommu-
tative Minkowski space has various generalizations [2, 3]. The one I am concerned
with in this talk is based on the following observation. First we define a regu-
larized field φf (ω) := ϕ(ψω × f), where f is a suitable test function on R4 and
where the × denotes ordinary convolution (choosing the δ-distribution for f , we
recover φ(ω)). Formally, we may then write φf (q) =

∫
dx φ(q + xI) f(x), where

x ∈ R4, and where I denotes the identity in the algebra of quantum coordinates
(the symbol I is dropped in what follows). This definition gives rise to well-defined
products of fields φ⊗nf (q) =

∫
dx1...dxn

∏
φ(q + xi) f(x1, . . . , xn). Now consider
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the Wick product of three such fields,

:
3∏

i=1

φ(q + xi) :=
3∏

i=1

φ(q + xi) − ∆+(x1 − x2)φ(q + x3) − ∆+(x2 − x3)φ(q + x1)

−

∫
dµ(k) e−ik(x1−x3) φ(q + x2 + θk) ,

where ∆+ denotes the ordinary 2-point function. To calculate the above, we have
passed to momentum space and used the ordinary commutation relations of an-
nihilation and creation operators. It is obvious that for coinciding points, i.e.

evaluation of :
∏3
i=1 φ(q + xi) : in f(x1, x2, x3) = g(x1)δ(x2 − x1)δ(x3 − x1), the

first two subtraction terms become ill-defined as usual. However, the third term
yields

∫
dx φ(q + x)

∫
dµ(k) g(x − θk) =: φγ(g)(q) which, after evaluation in a

state ω, is an operator on Fock space1. We therefore do not have to subtract it
in order to give meaning to the left hand side of the equation. The crucial point
now is that this term must not be subtracted since it violates even a minimalistic
locality principle: take g to be a testfunction with compact support, then we find
that supp γ(g) 6⊂ supp g. It was shown in [4], that the supports of g and γ(g) may
even become disjoint.
In [2] we have given a definition of modified Wick products, the so-called quasipla-
nar Wick products, where only counterterms subject to this minimalistic locality
principle of not increasing the support of testfunctions are admitted. Without

quoting the details here, let me point out that such a product `

`

`
∏n
i=1 φ(q + xi) ``

`

is
recursively defined as

φ(q + x1) `

`

`

n∏

i=2

φ(q + xi) ``
`

−

[ n
2
]∑

k=1

C2k(θ;x1, . . . , x2k) `

`

`

n∏

i=2k+1

φ(q + xi) ``
`

where the C2k(θ;x1, . . . , x2k) are numerical distributions (certain vacuum expecta-
tion values of 2k fields) which, apart from the lowest order (k = 1, where C2 = ∆+)
generally depend on θ. Note that in the limit of coinciding points with g = δ, all
counterterms are of the form c φ(q)k with an (as usual infinite) constant c.
The proof that these products remain well-defined in the limit of coinciding points
is quite technical. The idea is to show that all terms which are not subtracted
in a quasiplanar Wick product compared to the respective ordinary Wick product
are finite in the noncommutative setting. This involves an analytic continuation
to handle oscillatory integrals which – as it turns out – renders the Schwartz func-
tions unsuitable as test functions. We are preparing a publication [5], where the
correct domain of definition for the quasiplanar Wick products is given.
Last but not least, I would like to comment on the so-called infrared-ultraviolet
mixing problem. This effect (an ultraviolet finite graph giving rise to serious in-
frared divergences when inserted into a larger graph) has so far been observed
only in field theories on a noncommutative Euclidean flat space, and seems (see,

1This is even true when g = δ, where this contraction yields
R

dp φ̂(p)∆+(θp) e−ipq, since

∆+(θp) is bounded (and even quickly decreasing in some p-directions) for p2 = m2.
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for instance [6, 7, 8]) to be absent in (unitary) approaches on the noncommutative
Minkowski space, such as the Hamiltonian approach. This is not surprising in view
of the fact that the relation between this Euclidean formulation and the Minkowski
version discussed here remains obscure: not only is there no Osterwalder-Schrader
positivity theorem, but the Wick rotation itself has not been defined in a sensible
way – and the Minkowskian version one naively guesses from the Euclidean for-
mulation violates the optical theorem, unless the time variable commutes with all
space variables.
Generally, the Euclidean field theory used in the literature does not seem to be of
much use for understanding the structure of divergences in the noncommutative
Minkowskian regime. A simple example is easily provided: in the ordinary Euclid-
ean formulation, the vacuum expectation value of 4 fields where the 1st and 3rd and
the 2nd and 4th field are contracted (a 2-tadpole),

∫
dkdp 1

p2+m2
1

k2+m2 eikθp, is

finite for a nondegenerate antisymmetric 4×4-matrix θ (to see this, use Schwinger
parameters). But this is not true on the noncommutative Minkowski space, where
in the limit of coinciding points with g = δ, this contraction yields the formal
expression

∫
dµ(p) ∆+(θp) (see discussion above), which is ill-defined as ∆+(θp),

while bounded for p2 = m2, does not decrease quickly in all p-directions.

However, we do find unusual infrared effects also on the noncommutative Min-
kowski space: employing the quasiplanar Wick products in the framework of the
Yang-Feldman equation in massive scalar interacting theories, the asymptotic be-
haviour is seriously modified. In fact, the asymptotic fields have a mass which
depends on the momentum and the modification of the dispersion relation is larger
at smaller momenta (see [2] and J. Zahn’s contribution).
Moreover, the infrared behaviour of massless fields is such that they cannot be
renormalized using quasiplanar Wick products. To see this, consider again the
Wick product of 3 fields. Analogously to the above discussion we find 2 ordinary
contractions D+(x1 − x2)φ(q+ x3) and D+(x2 − x3)φ(q+ x1), while the third one
yields

∫
dp δ(p2)θ(p0) D+(θp) ϕ̂(p) eipq

with the Heaviside function θ(p0). Now, by the same argument as used above, this
term does not fulfill our minimalistic locality requirement, but contrary to the

massive case, it is no longer finite. In fact, D+(ξ) = 1

|~ξ|
(δ(ξ0 + |~ξ|) − δ(ξ0 + |~ξ|))

and for ξ = θp, p2 = 0, the term above contains a product of δ-distributions. The
ill-definedness occuring at p = 0, it is an infrared effect.

This does of course not at all put an end to the programme! Our hope still is
that in massive scalar theories, all divergences (in the Hamiltonian or the Yang-
Feldman approach) may be absorbed using quasiplanar counterterms only.
However, the strange infrared effects indicate that we should investigate models
of noncommutativity other than those with central commutator – which is also
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quite necessary if one wishes to incorporate gravity at some point. One investiga-
tion along these lines, where the effects of noncommutativity become smaller at
larger distances has been pursued in the context of star products and deformation
quantization [9].
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Perturbative QFT on DFR quantum spacetime

Gherardo Piacitelli

In a seminal paper [1], Doplicher, Fredenhagen and Roberts (DFR) laid down
their basic model for a fully covariant, flat quantum spacetime, where the com-
mutation relations among the coordinates qµ are suggested by a stability con-
dition of spacetime under localization alone (see also the report of S. Doplicher
in this same workshop). By mimicking in a covariant way the Weyl–von Neu-
mann quantization f 7→ f(q), a covariant twisted product ⋆Q of symbols (defined
by (f ⋆Q g)(q) = f(q)g(q)) was there proposed for the first time as a nonlocal
replacement of the usual pointwise product of functions. A few years later, a
reduced (non covariant) component ⋆σ of the DFR covariant twisted product be-
came widely used1 in the literature concerning noncommutative geometry, under
the name of “Moyal product” (often the notation θµν is preferred to the original
σµν).
In that paper, an approach to the perturbation theory of quantum (neutral, Klein–
Gordon) fields was also proposed. The recipe was based on three ingredients:

(1) An ordinary local quantum field φ(x) (A “second quantized” field) is re-
placed by its DFR quantization (“third quantization”) φ(q) =

∫
dkφ̌(k)⊗

eikµq
µ

understood as a formal element of F⊗E , where E is the localization
C*-algebra generated by the coordinates, and F is the field algebra.

1This is actually the same product only if the integral form is taken, or if its formal differential
expansion is restricted to real–analytic functions.
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(2) The interaction Hamiltonian density is then replaced by : φ(q)n : =
: φn⋆(q) :. Since the commutation relations allow for sharp localization in
time, at the cost of total delocalization in space, it makes sense to integrate
the Hamiltonian density over {t=0}, and to define an effective, perturba-
tive, non local theory on Minkowski spacetime which, in the interaction
representation, amounts to take an interaction Hamiltonian of the form

(1) HI(t) = g

∫
dx1 · · · dxn Kt(x1, . . . , xn): φ(x1) · · ·φ(xn) :,

for a suitable kernel Kt (note that, by a suitable choice of the kernel, we
might recover the usual local theory).

(3) Then define the perturbative solution in terms of the Dyson series (alone
or inserted into the Gell–Mann & Low formula).

See the report of S. Doplicher in this same workshop for the sequel of this story.
Here, we concern ourselves with the use of diagrams.
The basic problem is that, as in the local case, the time ordering of the Hamil-
tonians is taken according to the evolution parameter t, which however, contrary
to the local case, is not the same as time components xj

0 of the argument of each
field φ(xj) (see equation (1)). This apparently prevents the possibility of absorb-
ing the time ordering into a suitable propagator, and seems to force us to consider
different diagrams for different arrangements of times. A considerable effort has
been devoted by many authors to this problem; they developed a complicate di-
agrammatic language to cope with this (apparent) obstruction. The unfortunate
fact was that (apparently) the Wick theorems for the reduction of time ordered
and mixed products of fields were lost, and all one was left with was the Wick
reduction of ordinary Wick products.
Quite surprisingly, Denk and Schweda [2] were able to absorb the time ordering
in the definition of a non local propagator. Not only the result was surprising,
but the method they used, too. Actually, this was obtained by a complicate alge-
braic game of ad hoc manipulations of the two-points functions arising in the Wick
reduction of ordinary Wick products, while adding together all similar diagrams
corresponding to different orderings of the time parameters.
The reason why those authors did not recognize the very simple reason why this
was possible may be that they did not consider Wick ordered Lagrangeans, so
loosing the total symmetry, together with the possibility of further simplifying the
expressions. But in my opinion, there was a psychological obstruction; I myself
found it truly by chance, and many other authors missed it as well; this simple
remark could have been done already ten years ago. The cause should be searched
for in the tendency to overlook the role of locality, which is deeply rooted in the
soul of any physicist working with quantum field theories.
The very simple underlying reason why one may incorporate the time ordering in
the choice of a (non local) propagator is that the Wick theorem for the reduction
of time ordered products has nothing to do with locality; the original proof [3] of
Wick does not rely on locality, and its method can be used in the nonlocal setting
considered here as well, with minor changes [4, 5].
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As a consequence, Feynman and Dyson diagrams can be reobtained with no dif-
ficulties; exactly the same diagrams that are so efficient in the local case to label
the various contribution to the S-matrix can be used in the present case.
Indeed, this should raise some (more) concerns about the current interpretation of
Feynman diagrams as pictorial representations of local processes; it seems instead
that diagrams only represent the interplay between time dependent perturbation
theory and the CCR algebra, and none of these concepts has anything to do with
locality.
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Dispersion relations in Noncommutative Quantum Field Theory

Jochen Zahn

We study Quantum Field Theory on the Noncommutative Minkowski space intro-
duced by Doplicher, Fredenhagen and Roberts [1]. In the Yang-Feldman approach
to Noncommutative Quantum Field Theory (NCQFT) [2, 4], the so-called UV/IR-
mixing [3] shows up as a distortion of the dispersion relation in the infrared [5].
In the case of the φ4 model this effect has been shown to be quite strong. The
aim of this work is to study this phenomenon in other models in order to arrive
at testable predictions. We present (partial) results for the φ3 and Wess-Zumino
model and Quantum Electrodynamics (QED).
We extract dispersion relations from the two-point function of the, perturbatively
defined, interacting field, 〈φint(f)φint(h)〉. For a localized mass term as interac-
tion, Sint = MTr(gφ2), this can be done rigorously. In the adiabatic limit g → 1
one finds, at first order in M , the expected result [6],

∫
d4k f̂(−k)ĥ(k)θ(k0)Mδ′(k2 −m2).

In the interacting case, one finds, at 1-loop order, a similar expression, but with
M replaced by a formal expression Σ(k2, (kσ)2). Here σ is an element of the joint
spectrum of the commutator of the coordinates qµ. Such two-point functions may
be described with nonlocal, i.e. momentum dependent, mass and field strength
terms M((σk)2) = −Σ(m2, (σk)2), Z((σk)2) = ∂

∂k2 Σ(m2, (σk)2). It is also possi-
ble to extract the group velocity.
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The φ3-model is only logarithmically divergent on the ordinary Minkowski space.
Thus, one may hope that the distortion of the dispersion relation in the noncom-
mutative case is much weaker than for the φ4 model. This expectation is verified
by our calculation: For realistic values of the mass and coupling constant, the
group velocity is only slightly altered, by a distortion of the order 10−6 [7].
In the Feyman-graph approach to NCQFT, supersymmetric theories have a much
better UV/IR-behavior [8]. It is natural to ask if this is still true in the Yang-
Feldman approach. It turns out that this is indeed the case for the Wess-Zumino
model. There is no momentum dependent mass and thus also no change in the
group velocity. Only the field strength normalization becomes momentum depen-
dent. However, it is not clear how this might show up in experiments.
Since the dispersion relations for the photon can be measured very precisely, QED
is the ideal testbed for Lorentz violating effects. We start a study of the dispersion
relations in NCQED. Since Electrodynamics on the Noncommutative Minkowski
space is an interacting theory, already pure electrodynamics is interesting. For the
Yang-Feldman formalism one needs equations of motion, so we have to break gauge
invariance. Since the theory is nonlinear, we have to use the BRST-formalism to
do this consistently.
When quantizing the theory a subtlety arises. As interaction term, there will be
commutators like [Aµ, ∂µA

ν ] in the equation of motion. If the usual quantization
procedure is used, such terms do not have the right commutative limit, i.e. they
do not vanish in this limit. The term mentioned above will even diverge badly.
This problem can be cured by a redefinition of the product of quantum fields on
the Noncommutative Minkowski space. It will lead to a nonassociative structure,
but it can be shown that no ambiguities arise.
Unfortunately, due to the vanishing mass, the photon 2-point function 〈AµAν〉
at 1-loop order is hard to compute. Preliminary calculations indicate that the
nonplanar part of Σµν contains terms proportional to σµλkλσ

µρkρ and that the
effects are huge, since the underlying UV-divergence is quadratic.
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Computer-friendly presentation of the combinatorics of
renormalization in QFT

José M. Gracia-Bond́ıa

Combinatorics of renormalization in perturbative quantum field theory is anti-
represented in terms of infinite matrices, that can be truncated at convenience.
The prescription is derived from an algebraic form of the “Birkhoff decomposition”
in the Hopf-wise description of renormalization by Connes and Kreimer; and so
gives a partial answer to the question of practical usefulness of Hopf algebra for
computations in quantum field theories. Our approach helps to resolve the tension
between the “additive” and “multiplicative” sides of renormalization: the recur-
sive diagrammatic subtraction of subdivergences is the outcome of a multiplicative
process indeed; the latter, however, because of triangularity of the representation,
recursively calls additions over. For more details than given here and pertinent
references, look over the article [1].
In the Connes-Kreimer formalism, Feynman diagrams are organized in a Hopf
algebra HF of graphs. The linear space HF is the algebra of polynomials with
connected Feynman graphs as indeterminates, multiplication being simple juxta-
position of graphs. On HF there is a coproduct ∆ : HF → HF ⊗HF , serving to
encode the superficially divergent subgraphs, by setting ∆(Γ) :=

∑
Γ′ Γ′⊗Γ/Γ′, in

the standard notation for graphs, subgraphs and cographs. Now, Feynman rules
are understood as linear and multiplicative maps of HF into a Rota–Baxter alge-
bra V (commutative, with unit) of quantum amplitudes; and, as advertised, the
disentangling of subdivergences is formulated as a factorization problem.
Let us ponder the paradigmatic example. Consider Laurent series

S(ǫ) =
a−n
ǫn

+
a−n+1

ǫn−1
+ · · · +

a−1

ǫ
+ a0 + a1ǫ+ · · · .

With the ordinary multiplication, they form a commutative algebra V with unit.
Consider further the operation K− ≡ K that picks out the pure pole part

K[S](ǫ) =
a−n
ǫn

+
a−n+1

ǫn−1
+ · · · +

a−1

ǫ
,

and the operation K+ := id−K keeping the finite part,

K+[S](ǫ) = a0 + a1ǫ+ · · · .

The projector condition K2 = K ensures that the intersection between K(V ) and
K+(V ) is zero. The product of two elements of K(V ) remains in K(V ) —and
likewise for K+(V ). The key property

K[S1]K[S2] = K
[
K[S1]S2 + S1K[S2] − S1S2

]
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is easy to check. It makes K a Rota–Baxter operator; also K+ is a Rota–Baxter
operator. All this applies in particular to series corresponding to dimensionally
regularized Feynman integrals in the MS-scheme (as our arguments are purely
combinatorial, we need not worry about the precise form of the ai coefficients),
with K+ the subtraction map.
Let then (V,K) be a commutative Rota–Baxter algebra, and consider the space
Hom(H,V ) of linear maps from H to V ; this is an algebra with the convolu-
tion operation, given (in Sweedler’s notation) by f ⋆ g =

∑
f(a(1)) g(a(2)). The

multiplicative (that is, product-respecting) elements of Hom(HF , V ), with V the
algebra of Feynman amplitudes, are of particular interest. Clearly they are deter-
mined by their action on the subspace F of connected graphs. We construct an
antirepresentation Ψ of Hom(HF , V ) by infinite triangular matrices with entries
in V by taking the composition

Ψ[f ] : V ⊗ F
idV ⊗∆
−−−−→ V ⊗HF ⊗ F

idV ⊗f⊗idF
−−−−−−−→ V ⊗ V ⊗ F

mV ⊗idF−−−−−−→ V ⊗ F,

where mV is just multiplication on V . The plot works because the external struc-
ture of the cographs Γ/Γ′ is the same as that of Γ, so ∆ actually sends F into
HF ⊗ F . Thus for any f ∈ Hom(HF , V ) a connected graph is sent by Ψ[f ] into
a linear combination of connected graphs with coefficients in V , corresponding to
the same n-point function. One easily verifies Ψ[f ⋆ g] = Ψ[g]Ψ[f ]. With the
operator K given by K[f ](a) := K[f(a)], the space Hom(HF , V ) in turn becomes
a (noncommutative) Rota–Baxter algebra; then Ψ[K[f ]] = K[Ψ[f ]], with K the
matrix Rota–Baxter map.
Let finally ϕ̃ ∈ Hom(HF , V ) be the Feynman rule, which is multiplicative. Denote
ϕ := Ψ[ϕ̃]. This will be a unipotent matrix. The practical construction of ϕ goes
as follows. Recall that if Γi ⊆ Γj is a superficially divergent subgraph of Γj , the
cograph Γj/Γi is obtained by shrinking Γi to a vertex within Γj . Chosen an n-
point function, the spaces of vectors on which the matrices act are spanned by the
corresponding (superficially divergent, connected, amputated) Feynman graphs. A
basis Γ1,Γ2,Γ3, . . . for such a space can be ordered in many ways, the only condi-
tions being that Γ1 = ∅ —the empty diagram— and that each cograph of any Γl
occurs in the basis as some Γm with m < l. It is then convenient to order by
number of loops —or vertices, if we work on coordinate space. The order within a
given loop-number sector is immaterial. Once the external structure and the basis
are fixed, we fill up the entries of a matrix by the rule: for i 6= j,

ϕij =
∑

Γ′

(unrenormalized) amplitude of Γ′ if Γi ≃ Γj/Γ
′ ,

otherwise ϕij = 0. Upper triangularity is clear, since ϕij = 0 if i > j. We set
ϕii = 1 for all i. Note that Γ′ need not belong to the basis list (it might be
disconnected, for one thing). Let ϕ̃(Γ′) be the unrenormalized amplitude of Γ′.
We just said that the coefficient of Γi in ϕ(Γj) is

∑
Γ′ ϕ̃(Γ′) for Γi ≃ Γj/Γ

′.
Now, the Rota–Baxter property ensures there is a factorization

(1) ϕ = ϕ+ ϕ
−1
− ,
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where the factors ϕ− ∈ 1 +K[M(V )], ϕ+ ∈ K+[M(V )] (with an obvious notation
for matrices with entries in V ) are also unipotent, multiplicative and unique. This
may be called a matrix Birkhoff decomposition. The formula for the matrix of
renormalized amplitudes ϕ+ is

ϕ+ = 1 − K+

[
(ϕ−1 − 1)ϕ+

]
;

the recursive series solving this equation terminates. With the help of some sym-
bolic programming, it can be obtained at one stroke; note that Bogoliubov’s ‘prepa-
ration’ map is not invoked explicitly here.
As a consequence of the above, the renormalization of the Lagrangian’s parameters
by counterterms must take place by composition of series. This calls for rewriting
the whole renormalization process in terms of Faà di Bruno algebras and Lagrange
reversion. Some other open problems in the framework presented here concern the
adaptation of the entire formalism to regularization-free schemes like BPHZ and
Epstein–Glaser renormalization. The massive BPHZ scheme rather obviously pos-
sess a Rota–Baxter property. For Epstein-Glaser renormalization, one apparently
requires an associate module structure. The massless models pose the puzzling
problem of reconciling manifest Lorentz invariance of the renormalization map
with the multiplicative property.
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Matrix Quantum Mechanics and Soliton Regularization of
Noncommutative Field Theory

Fedele Lizzi

There are several good reasons for which physicists often approximate spaces, or
rather functions on a space, with matrices. The most obvious one is the possibility
to solve problems numerically, but equally important is the fact that a theory may
simply loose its meaning at very short distances (effective theories). The straight-
forward lattice approximation, approximating a space with a set of topologically
disconnected points, and functions with arrays of numbers multiplied componen-
twise, looses totally the information of the underlying space, and in particular
nearly totally destroys the of the problem. And of course a lattice approximation
for noncomutative spaces does not make any sense.
In my talk I discussed how to approximate field theories on the noncommuta-
tive torus, the archetypical noncommutative (compact) geometry. It is the alge-
bra of elements a =

∑
n,m anmU

n
1 U

m
2 generated by two unitary generators with

the relation: U1U2 = e2πiθU2U1. It is possible to study field theories on a NC-
Torus with the use an integral (trace) defined as

∫
a := a0,0, and two derivatives

∂iUj = 2πiδijUi No sum on i.
The first approximation discussed is based on work by Pimsner and Voiculescu [1]
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and has been reported in [2]. I described how and to what extent the noncom-
mutative two-torus can be approximated by a tower of finite-dimensional matrix
geometries. The approximation is carried out for both irrational and rational de-
formation parameters by embedding the C∗-algebra of the noncommutative torus
into an approximately finite algebra. The construction is a rigorous derivation of
the recent discretizations of noncommutative gauge theories using finite dimen-
sional matrix models, and it shows precisely how the continuum limits of these
models must be taken. We clarify various aspects of Morita equivalence using this
formalism and describe some applications to noncommutative Yang-Mills theory.
Recall that the noncommutative torus, as well as the ordinary torus, cannot be
the inductive limit of a finite dimensional algebra (for example because it has non
trivial K1 group). It is however possible to embed the algebra in a larger approx-
imately finite algebra.
With Landi and Szabo we have proven that while that the limit of all matrix ele-
ments of the elements of the approximating algebra converge (in the weak sense)
to the matrix elements of the full algebra. This also provides a sense for which
physical expectation values have a meaning regardless of the fact that θ is rational
or irrational. We have also shown that all Morita equivalent noncommutative tori
are subalgebras of the same approximatively finite algebra. One of the drawbacks
of the approximation is however the fact that there are no version of the two deriv-
atives, and only translation operators can be approximated.
In the second part of the talk, based again on work with Landi and Szabo [3, 4], I
used an approximation of the noncommutative torus due to Elliott and Evans [5].
This is based on projectors and partial isometries of the algebra and approximates
the noncommutative torus with a sequence of subalgebras isometric to the alge-
bra of matrix valued functions on two circles. Even if the matrices are finite, the
algebra is not finite dimensional, hence the limit can be inductive.
After a description of the matrix approximation, illustrated by the pictures of the
Wigner tranforms of the projectors and partial isometries, I built and integral and
two approximate derivations which approximate the derivations of the full alge-
bra. They are approximate in the sense that they close the Leibnitz rule only in
the limit, but can be expressed solely in terms of the matrix algebra. Thus we
approximate field theories with a matrix quantum mechanics. This is applied to
the perturbative dynamics of scalar field theory, to tachyon dynamics in string
field theory, and to the Hamiltonian dynamics of noncommutative gauge theory
in two dimensions. We also described the adiabatic dynamics of solitons on the
noncommutative torus and compare various classes of noncommutative solitons on
the torus and the plane.
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θ-deformations and UV/IR mixing

Victor Gayral

The aim of this talk is to study the manifestations of the ultra-violet/infra-red en-
tanglement phenomenon for (Euclidean) scalar QFT on a class noncommutative
manifolds, the θ- or isospectral deformations. They are curved-space generaliza-
tions of Moyal planes and noncommutative tori, introduced in [1, 2] in the periodic
case and generalized for non-periodic actions in [3, 4] using a Rieffel’s twisted prod-
uct approach [5].
The construction of isospectral deformations goes as follow. Let (M, g) be an
n-dimensional Riemannian manifold (non-compact a priori) endowed with an iso-
metric action α : Rl → Isom(M, g). There is basically two distinct situations to
consider. When the action is effective (kerα = {0}), we assume the action to be
proper. In this case, it will imply that the action is also free. For periodic action
(kerα ≃ Zl), α factorizes through a torus and the factorized action is automati-
cally proper but no longer free.
Given now Θ a real l×l skew-symmetric matrix, one can define the twisted product
⋆Θ as a bilinear map on C∞

c (M) with value on C∞(M) ∩ L∞(M,µg):

(
f ⋆Θ g

)
(p) := (2π)−l

∫

R2l

dly dlz e−iy.z f(α− 1
2
Θy(p)) g(αz(p)).

To properly define algebras from this product in the non-periodic case, one has
to move to bigger function spaces since this product is non-local on the orbits of
the action (non-preservation of supports). This noncommutative product inherits
of all the properties of the Moyal one, in particular the ordinary integral with
Riemannian volume form µg is a trace.
We can then define generically a classical functional action for a real scalar field
ϕ ∈ C∞

c (M), by

S[ϕ] :=
1

2

∫

M

µgϕ(p) (△ +m2)ϕ(p) +
λ

k!
ϕ⋆Θk(p),

where △ denotes the scalar Laplacian. The one-loop regularized effective action
(sums of one-loop 1PI Feynman diagrams in external field) can be written as

Γǫ1l[ϕ] = −
1

2

∫ ∞

ǫ

dt

t
Tr

(
e−tH − e−tH0

)
,

where H is the effective potential (i.e. the operator on L2(M,µg) whose distribu-
tional kernel is given by the second functional derivative of the classical action) and
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H0 = △+m2. In dimension four with a quartic interaction term (n = 4 = k), one
gets H = △+m2 + λ

3! (Lϕ⋆Θϕ +Rϕ⋆Θϕ+LϕRϕ), where Lf (resp. Rf ) denotes the
operator of left (resp. right) twisted multiplication by f . Using then a (modified)
heat kernel expansion, one obtains two types of contribution with highly different
behavior. The first one invokes traces of the form Tr(Lfe

−tH0) or Tr(Rfe
−tH0). It

corresponds to the planar sector of the theory and gives ordinary UV divergences.
The non-planar sector is understood here in term of contributions of traces with
mixed left and right twisted multiplication operators Tr(LfRge

−tH0). The latter
traces have a nicer behavior for t→ 0. This is due to the presence of off-diagonal
heat kernel in the Feynman integrals. However, this sector exhibits a UV/IR mix-
ing. In particular, the regularizing character of the product of left and right twisted
multiplication operators depends highly on the geometrical data. For non-periodic
deformations, when the rank of the deformation matrix is lower than the dimen-
sion of the manifold (thus for all examples expect non-degenerate Moyal planes),
the non-planar sector remains divergent but with non-local divergences. This im-
plies that the theory is not renormalizable in the ordinary sense. For periodic
deformations, using a Peter-Weyl decomposition of the field (induced by the torus
action), we first see that only the (total) zero mode is affected by the mixing if the
deformation parameters are irrational and satisfy a Diophantine condition (mean-
ing that ‖kθ‖−1

T
is a temperate sequence for k ∈ N\ {0}). There is another type of

mixing, due to the possible existence of fixed points for the action. Indeed, if the
function d−2

g (., αz(.)) (where dg is the Riemannian distance function) is not locally
integrable for some non-trivial group element z, then there is a new non-local sin-
gularity. In such a case, the theory turns out also to be non renormalizable. If the
two previous conditions are satisfied, the UV/IR singularities are proportional to∫
M
µgϕ

∫
M
µgϕ,

∫
M
µgϕ ⋆Θ ϕ

∫
M
µgϕ ⋆Θ ϕ and

∫
M
µgϕ ⋆Θ ϕ ⋆Θ ϕ

∫
M
µgϕ. Thus

the quantum model is not stable with respect to the renormalization.
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Remarks on the Relation between Spin and Statistics

Florian Scheck

(joint work with Mario Paschke, Nikolaos Papadopoulos, Andrès Reyes)

The famous spin-statistics theorem of Fierz and Pauli [1] states that identical par-
ticles with integer spin obey Bose-Einstein statistics, particles with half-integer
spin obey Fermi-Dirac statistics. This quantum statistics manifests itself in many
domains of physics, from exchange interactions in atoms and nuclei, condensed
matter phenomena, astrophysics, to Bose-Einstein condensation. The simple ex-
ample of two particles with spin s and orbital angular momentum ℓ = 0 or ℓ = 1
shows that the statistics is determined by (−)2s, a phase that comes from the
symmetry relation

(
sm2, sm1|JM

)
= (−)2s−J

(
sm1, sm2|JM

)

of SU(2) Clebsch-Gordan coefficients and, hence stems from the rotation group
SO(3) over R3. Yet, the field theoretic proof of the theorem makes essential use
of Lorentz–covariance and of micro–causality.
The essential phase being due solely to the rotation group, and stimulated by
a controversial work by M. Berry and J.M. Robbins [2] we address the question
under which conditions the theorem could be proven in nonrelativistic quantum
mechanics. Exchanging two or more identical particles with all their attributes
immediately leads to questions of topology of the configuration space [3]. For
example, for n identical particles in d-dimensional space-time one defines the space

Q̃ :=
(
R
d−1

)n
\∆ , with ∆ =

{
(x1, . . . , xn)|xi = xj for at least one pair

}

Since the particles are indistinguishable all permutations are equivalent. Therefore,
the true configuration space is

Q := Q̃/Sn , with Sn the symmetric group.

One shows: If Q is the manifold corresponding to a classical configuration space
of a given system then the inequivalent scalar quantizations of this system are in
bijective correspondence with the characters of the fundamental group of Q. This
relationship implies that in d = 4, i.e. in the case we study and where π1(Q) ≃ Sn,
there is only the Fermi–Dirac or Bose–Einstein alternative. This is not so in lower
dimensions where the braid group is relevant and where the topology allows for
anyon statistics.
Once the Fermi–Dirac or Bose–Einstein alternative is decided for spin s = 0, the
theorem is established for all spins. In the light of these remarks one is lead to ask
the following questions: Is there a geometric proof of the spin–statistics theorem?
And is it true that the theorem holds under less restrictive assumptions? [4]

In the case n = 2, i.e. of two identical particles with spin s, Q̃ = R3×R+ ×S2, by
dropping the center-of-mass motion and using polar coordinates, may be reduced
to S2 so that the true configuration space reduces to RP 2. By pull-back from
RP 2 to S2 the sections describing spin states may equivalently be studied over the
sphere. Concentrating on the two particle case we reformulate the Berry–Robbins
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approach in a model independent manner by studying the action of SU(2) on S2,
making use of the algebras A+ and A− of symmetric and antisymmetric functions
on S2, respectively, and of projective modules [5], [6]. We show, in particular, that
Berry and Robbins’ uniqueness condition for the wave “function” is problematic
and should rather be replaced by requiring the relevant sections to be well-defined.
Using a basis where the angular momenta of the two particles are coupled to J ,
and yielding a phase (−)2s−J+K upon interchange, with K the spin-statistics sign,

a trivial vector bundle ηBR over S2 can be defined. The physical vector bundle

lives on RP 2, however. The action of Z2 on ηBR

σ ∈ Z2 : τ(σ)
(
r, |JM(r)〉

)
:=

(
σ · r, (sign σ)2s−J+K̃ |JM(σr)〉

)

contains the term K̃ which must be chosen even or odd integer. One then sees
that a section over RP 2 can be physical only if K = K̃ is chosen. This shows
that deciding the Fermi–Dirac or Bose–Einstein alternative at the level of scalar
quantum mechanics fixes spin and statistics for all s > 0.
The spin-statistics relation rest to a large extent on the topology of the physical
manifold, perhaps more than on locality and covariance. However, in order to
prove the theorem in the nonrelativistic context one needs one more physically
motivated input. What that could be is not clear at this time.
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Quantum coordinates of an event

Klaus Fredenhagen

What is the physical motivation for the description of spacetime by noncommu-
tative spaces? The oldest arguments, going back to Heisenberg and Snyder, were
motivated by the desire to avoid the divergences of quantum field theory, a hope
which has not been fulfilled in most examples. Another motivation came from
the fact that the noncommutative framework allows a geometric interpretation of
the Higgs field as a component of a gauge field. This observation is at the roots
of the work of Connes et al.. A different motivation came from the analysis of
the expected uncertainties of localization measurements due to the simultaneous
validity of the principles of quantum physics and general relativity, and the fact
that these uncertainties can be derived from a suitable noncommutative structure.
Further motivations came from string theory and also from magnetic systems in
solid state physics, but also from the wish to broaden the framework for possi-
ble physical theories. The strongest argument for noncommutativity of spacetime
might be that spacetime is an observable object which should be governed by the
principles of quantum physics. It is, however, not obvious how quantum observ-
ables can be associated to spacetime itself.
In the following note, I will describe an idea which works at least in some simple
examples. The idea is a generalization of the idea for the description of time ob-
servables in quantum mechanics [2]. There a positive operator A is chosen which
marks the effect whose time of occurence is to be determined. If α describes the
action of the time translation group by automorphisms of the algebra of bounded
Hilbert space operators, assumed to be pointwise strongly continuous, we may
define the total duration of the event by the integral

B =

∫
dtαt(A).

The Hilbert space decomposes into a direct sum of three subspaces, one on which
B vanishes (hence the effect does never happen), one in which the effect takes
infinitely long time (formally B = ∞) and a third subspace on which B is a
positive selfadjoint unbounded operator with zero kernel. On the latter subspace
a meaningful time observable can be constructed in terms of a positive operator
valued measure P , where we asoociate to the interval I the operator

P (I) = B− 1
2

∫

I

dtαt(A)B− 1
2

If the time translations are implemented by a selfadjoint Hamiltonian with ab-
solutely continuous nondegenerated spectrum S ⊂ R, we may give an explicit
formula for P in terms of the integral kernel a(E,E′) (assumed to be smooth) of
A with respect to the realization of the Hilbert space as the space of L2 functions
on S,

(P (I)f)(E) = (2π)−1

∫
dE′a(E,E)−

1
2 a(E,E′)a(E′, E′)−

1
2 f(E′)

∫

I

dteit(E−E′).
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The first moment of the measure P takes the familiar form

T =
1

i

d

dE
+ gA

where the derivative operator is to be chosen with Dirichlet boundary conditions
and gA is the multiplication operator with a function depending on the chosen
effect A which can be computed from its integral kernel a. Note that, contrary to
projection valued measures, positive operator valued measures are not completely
determined by their first moments.
The idea above can immediately be generalized to describe the spacetime localiza-
tion of events in Minkowski space. We only have to replace the time translation
group by the translation group of Minkowski space. The crucial ingredient is the
choice of a suitable positive operator A which marks an event in spacetime.
We consider a free scalar field. As our event we take the collision of 2 particles,
represented by the positive sesquilinear form

αx(A) = a∗(x)2a(x)2

where a(x) is the annihilation operator for a particle at the point x. We restrict
our considerations to the 2-particle space. There such a collission occurs only
in the s-channel, i.e. when the relative angular momentum vanishes. Therefore
the subspace on which the localization of the event can be defined consists of
states which are completely characterized by their total momentum. We may
thus identify this space with the space of L2 functions on the spectrum of the
momentum opertor on the 2 particle subspace, i.e. the set

H+
>2m = {p ∈ R

4, p2 ≥ 4m2, p0 > 0} .

The arising operator valued measure P has the density

(P (x)Φ)(p) = (2π)−4

∫

H+
>2m

d4kei(k−p)xΦ(k).

The first moments are the maximally symmetric operators

1

i

∂

∂pµ

with Dirichlet boundary conditions.
We see that in this example the quantized spacetime is obtained by a completely
positive map from Minkowski space. The arising noncommutative space may be
called the Töplitz quantization of Minkowski space. (In a similar way, the quan-
tized time axis is the Töplitz quantization of the real axis, if the energy spectrum
is the positive half axis.)
We now want to repeat the same operation for the free scalar field on the noncom-
mutative Minkowski space characterized by a symplectic form σ. Formally, the
operator characterizing the event is

A(q) = a∗(q)2a(q)2
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where q = (qµ) denote the noncommutative coordinates with commutation rela-
tions

[qµ, qν ] = iσµν

and where

a(q) =

∫
dµ(k)a(k)eikq

with the standard annihilation operators a(k) for a particle with momentum k and
the Lorentz invariant measure µ on the mass shell. As in [1] the noncommutative
Minkowski space is defined as the Weyl algebra associated to the symplectic form
σ.
We may define for every positive functional ω on this algebra the operator

B(ω) =

∫
dµ(k1)dµ(k2)dµ(k3)dµ(k4) . . .

. . . a∗(k1)a
∗(k2)a(k3)a(k4)ω(e−iqk1e−iqk2eiqk3eiqk4 ) .

We restrict as before the operators to a subspace of the 2 particle space. On
the orthogonal complement of this subspace all the operators B(ω) vanish. The
subspace may again be identified (as a representation space of the translation
group) with L2(H+

>2m). The integral kernel bω(k, p) of B(ω) on this space is

bω(k, p) = c(k)c(p)ω(e−ikqeikp)

with a positive function c. Let now tr denote the trace on the Weyl algebra. Every
positive element T of the Weyl algebra induces a positive functional by

ωT (C) = trCT .

We obtain a completely positive map P from the Weyl algebra into the operators
on our Hilbert space by

P (T ) := B(tr)−
1
2B(ωT )B(tr)−

1
2

P is unit preserving. If T arises by Weyl quantization from a function f on
Minkowski space, we obtain

(P (T )Φ)(p) =

∫

H+
>2m

dkeiσ(k,p)f̂(p− k)Φ(k)

The selfadjoint generators qµ of the Weyl algebra are mapped onto the symmetric
operators

P (qµ) =
1

i

∂

∂pµ
+ σµνpν

with Dirichlet boundary conditions. On a dense domain, these operators have the
same commutation relations as the generators qµ, but these relations cannot be
exponentiated to yield the Weyl relations. Instead the quantized noncommutative
Minkowski space is the image of the noncommutative Minkowski space under a
completely positive map.
One may compose the map P with a positive map Q from the algebra of functions
on Minkowski space into the Weyl algebra and thus obtain a localization observable
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associated to Minkowski space. A convenient choice of such a map arises from an
optimally localized state on the noncommutative Minkowski space. Such a state
is of the form

ωx(e
ikq) = e−||k||2e−ikx

with a quadratic form ||k||2 on Minkowski space which is minimal with respect to
the inequality

σ(k, p)2 ≤ 4||k||2||p||2 .

The positive map is then obtained by

Q(f) = (2π)−4

∫
dxf(x)

∫
dke−||k||2eik(q−x)
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Exact solution of quantum field theory models on noncommutative
phase spaces

Edwin Langmann

Two years ago we (together we R. Szabo and K. Zarembo) studied a quantum
field theory model of bosons in an external field Bµν and with a 4-point interac-
tion defined with the Moyal ∗ product such that [xµ, xν ]∗ = 2iθµν . We showed,
in particular, that the model is exactly solvable at the special point where the
matrices (Bµν) and (θµν) are inverse to each other. The exact definition of this
model requires a regularization (cut-off), and it therefore nicely illustrates inter-
esting non-trivial features of the quantum field theory limits where the cut-off is
removed.
In my talk I gave an overview of our previous work [1,2,3], and I described some
interesting issue concerning the QFT limit which we did not resolve in our work at
that time [1]: the limit which we studied breaks certain symmetries of the model,
and there seems to exist another limit which respects all symmetries. Related
work of Grosse and Wulkenhaar [4] on a closely related models suggests that the
limit of main interest for this model is indeed this latter limit. The solution of the
model in this latter limit is a technical challenge since it seems no longer possible
to use the matrix model techniques which were the key to our solution in [1]. The
talks of Grosse and F. Vignes-Tourneret at this meeting made clear to me that it
would be very interesting to find the explicit solution of the model in this latter
limit, and I now plan to return to this question in the near future.
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(Modular) Index Theory of Cuntz Algebras

Adam Rennie

(joint work with Alan Carey, John Phillips)

This work shows how the Fredholm index can be computed for algebras without
trace.
The theory of Fredholm operators in type II von Neumann algebras was initiated
by Breuer, [1, 2], and extended in [7, 4, 5]. Furthermore, [4, 5] extended the local
index theorem of Connes-Moscovici, [6], to the general semifinite setting.
When one does not have a trace, the problems become similar to those one en-
counters in type III von Neumann algebra theory. There are many C∗-algebras
without trace for which the general modular theory does not immediately apply,
but for which our methods work perfectly well.
Whilst we phrase the brief description below in terms of the Cuntz algebras, the
results are true in much greater generality.
To begin, we let On be the Cuntz algebra generated by n ≥ 2 isometries such
that

∑n
j=1 SjS

∗
j = 1, where 1 is the identity. The algebra On has a unique KMS

state φ, with associated flow given by Sj → n−itSj . We let L2(On, φ) be the GNS
Hilbert space, and so obtain the unbounded operator ∆ such that ∆ita∆−it is
the flow for the KMS state. Since this flow is an action of S1, which is compact,
we obtain a faithful positive expectation Φ : On → F where F is the fixed point
algebra for the KMS flow. Observe that φ is a trace on F , and φ = φ ◦ Φ.
Now use the expectation to define an F -valued inner product on On by (a|b) :=
Φ(a∗b). This makes On a right F -inner product module, and we let X be the C∗-
module completion. Let EndF (X) be the algebra of adjointable endomorphisms
of the right F -module X , and observe that they act on L2(On, φ). Then

Proposition 1. Let N = (EndF (X))′′ be the weak closure of the endomorphisms
acting on L2(On, φ). Then there exists a faithful normal semifinite trace τ : N →
C such that

τ(Θx,y) = φ((y|x)) for all x, y ∈ X,

where Θx,yz := x(y|z). Moreover, the operator D = log ∆ is affiliated with N .

Writing D = logn
∑

k∈Z
kΦk, we have τ(Φk) = nk for all k ∈ Z. This is

terrible, and does not even allow θ-summability hypotheses. However if we define,
for T ∈ N , τ∆(T ) := τ(∆T ) then we have τ∆(Φk) = 1 for all k ∈ Z. Now we
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have reasonable summability, but have lost the trace property. Nevertheless, on
the algebra M ⊂ N generated by the Φk and the left action of F , τ∆ is trace.
Thus we can apply the Carey-Phillips spectral flow formula, [3], to compute the
spectral flow between D and D +M where M is any self-adjoint element of M.
In the tracial setting we would expect to pair with unitaries, but here we have an
additionl requirement on the unitaries, namely that they map L∞(D) into M.

Definition 1. Let u be a unitary over On. We say that u satisfies the modular
condition with respect to ∆ if both the operators

u∆−1u∗∆, u∗∆−1u∆

are in (a matrix algebra over) the algebra F . We denote by U∆ the set of modular
invertibles. Two modular unitaries are modular homotopic if they are connected
by a continuous path of modular unitaries.

It turns out that the modular homotopy classes of modular unitaries form an
abelian semigroup, which is ordinary K1 when ∆ = Id. We call this semigroup
modular K1. If u is a modular unitary then uDu∗ is affiliated to M, and we can
prove an index theorem. First observe that if v ∈ On is a partial isometry with
range and source projections in F , then

uv =

(
1 − v∗v v∗

v 1 − vv∗

)

is a modular unitary. Now On is generated by partial isometries SµS
∗
ν , where

Sµ = Sµ1
· · ·Sµm

and Sν = Sν1 · · ·Sνk
. Then

Theorem 1. If u is a modular unitary then the spectral flow from D to uDu∗

depends only on the modular K1 class of u. For v = SµS
∗
ν , the spectral flow from

D to uvDuv is given by

sf(D,uvDuv) = ress=0τ∆(uv[D,uv](1 +D2)−1/2−s)(1)

= (m− k)

(
1

nk
−

1

nm

)
≥ 0(2)

The 2-linear functional

(a0, a1) → ress=0τ∆(a0[D, a1](1 +D2)−1/2−s)

is a twisted (b, B) cocycle for On.
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The geometry of gauge fields on toric noncommutative manifolds

Walter van Suijlekom

(joint work with Giovanni Landi)

We develop Yang-Mills theory on toric noncommutative manifolds which were
introduced in [3] (see also [2]) . These noncommutative spaces Mθ are defined as
deformations of a Riemannian manifold M carrying an action of Tn: this torus
is deformed to a noncommutative torus Tnθ [5] with θ a matrix of deformation
parameters. We start by recalling their construction and derive a simplified form
of the Connes-Moscovici local index formula [4] on these noncommutative spaces.
We then focus on two such noncommutative manifolds and construct a noncommu-
tative principal Hopf fibration S7

θ′ → S4
θ with structure group SU(2), starting with

the algebras A(S4
θ ),A(S7

θ′) of polynomials on them. The algebra A(S7
θ′) carries

an action of SU(2) by automorphisms and we identify the subalgebra consisting
of invariants under this action with A(S4

θ ). This gives a one-parameter family of
Hopf fibrations, where θ′ is expressed in terms of θ.
We construct the A(S4

θ )-bimodules associated to all finite-dimensional represen-
tations V of SU(2) as the collection of “equivariant maps from S7

θ′ to V ” with
respect to the action of SU(2), and define connections on them. We prove that
these modules are finite projective by explicit construction of projections. This
allows for a computation of the indices of Dirac operators having coefficients in
these noncommutative vector bundles.
We develop Yang-Mills theory on S4

θ by defining a Yang-Mills action functional
in terms of the curvature of a connection and derive that the connections with
(anti-)selfdual curvature are minima of this action: such connections are called
instantons. Starting with the basic instanton given in [3], gauge non-equivalent
instantons are obtained by acting on it by twisted infinitesimal conformal transfor-
mations, encoded in the Hopf algebra Uθ(so(5, 1)). The Hopf subalgebra Uθ(so(5))
is made of twisted infinitesimal symmetries under which the basic instanton is in-
variant. This leads to a five-parameter family of (infinitesimal) instantons. Finally
we prove, by using an index theoretical argument as in [1], that this family is in
fact the complete set of (infinitesimal) charge 1 instantons.
Finally, we sketch how to generalize Yang-Mills theory from S4

θ to any four-
dimensional toric noncommutative manifold Mθ. Let P → M be a G-principal
bundle, where G is a semisimple Lie group. We assume that the action of the torus
T2 onM can be lifted to P , in such a way that this lifted action commutes with the
action of G on P . This allows for the definition of the two algebras C∞(Mθ) and
C∞(Pθ) as toric noncommutative manifolds. The inclusion C∞(Mθ) ⊂ C∞(Pθ)
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can be understood as a noncommutative principal bundle: C∞(Pθ) carries an ac-
tion of G by automorphisms in such a way that C∞(Mθ) forms the subalgebra
consisting of elements in C∞(Pθ) that are invariant under the action of G.
We define the associated vector bundles Pθ ×G V for all finite-dimensional rep-
resentations V of G as C∞(Mθ)-bimodules of G-equivariant maps from Pθ to V ;
these modules are again finite projective. Finally, we define a Yang-Mills action
functional and find that instantons, i.e. connections with selfdual or anti-selfdual
curvature, are minima of this action.
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Noncommutative Geometry of Quantum Spaces

Andrzej Sitarz

1. Introduction

Noncommutative geometry offers a remarkable possibility to enhance the mean-
ing of geometry beyond the standard classical setup of spaces and manifolds.
Therefore, it appears to be an attractive tool in the quest for a better under-
standing of space-time structure at very small scale, in the hope to find a good
unified description of gravitation and quantum field theory. However, despite the
fact that one can consistently introduce geometry without points we are still very
far from understanding the crucial notions like noncommutative manifolds, for ex-
ample. So far, we are learning by examples, trying to figure out how the relevant
constructions should look like. The most important problems, which cannot be
neglected in the physical approach, are, for instance, the choice of the differential
calculus (which is by no means canonical in the case of noncommutative algebras)
or the definition of metric.
The approach of spectral triples proposed by Alain Connes [1, 2] proposes a solu-
tion to the problem by setting a definition of noncommutative manifold described
in terms of a suitable Hilbert space representation of an algebra together with the
Dirac operator, which encompasses both the differential data and the metric as-
pects. The spectral triple data, which is based on the classical formulation of Dirac
operator in the geometry of spin manifolds, has been applied to noncommutative
tori, isospectral deformations and finite matrix algebras. The task to include also



2748 Oberwolfach Report 48/2005

the examples of quantum geometry, noncommutative q-deformations of manifolds,
has been completed only recently [4, 3, 5].

2. Towards the q-geometry: main result

Leaving aside the task of a detailed discussion of the foundations of spectral
triples and referring the reader to the textbook [7], let us briefly present the result,
which could be stated as the following existence theorem:

Theorem 2. (see [5])
There exists an equivariant (algebraic) spectral triple on the algebra A(SUq(2))
such that all algebraic axioms are satisfied with the exception of the commutant
axiom and the order-one condition, which are satisfied up to compact operators.
The Dirac operator is unique up to rescaling and shift by a constant and has the
same spectrum as in the classical case (q = 1).

Instead of going into the technical details, let me explain the phrasing of the
above statement. First of all, we have obtained only a first step, which is the
construction of the Dirac operator. We call this algebraic spectral triple as it
involves basically relations within the operator algebra. The task of pursuing the
analytical aspects of the spectral geometry of quantum spaces still lies ahead. The
constructed spectral geometry is the equivariant case[10], as we were using the
immense Uq(su(2)) × Uq(su(2)) symmetry of the A(SUq(2)) algebra. This made
the task possible but restricts us only to the ”round” Dirac operator (corresponding
to the spherically symmetric metric). Finally, in the course of the construction,
we had to overcome a significant problem, which resulted in changing of some of
the axioms - we no longer require them to be exact but only satisfied up to certain
ideal of compact operators.
Thus, our data of q-spectral geometry involves the polynomial algebra A(SUq(2)),
which is Uq(su(2))×Uq(su(2)) module algebra and the equivariant representation
π of A(SUq(2)) on a Hilbert space H. If ρ is the representation of the Uq(su(2))×
Uq(su(2)) Hopf algebra, then the equivariance means that on a dense subspace the
following holds for all a ∈ A(SUq(2)) and h ∈ Uq(su(2)) × Uq(su(2))

ρ(h)π(a) = π(h(1)) ⊲ a)ρ(h(2)).

Finally, an equivariant unbounded Dirac operator D (that Dρ(h) = ρ(h)D holds)
and the equivariant reality structure J (which is the polar part of an operator
satisfying Tρ(h) = ρ(Sh)∗T complete the data in the odd case.
The most significant deviation from the so far accepted axioms was that the reality
operator J no longer maps the algebra to the its commutant, but rather to its
Paschke dual [9]:

∀a, b ∈ A(SUq(2)) : [π(a), (Jπ(b)J)] ∈ Kq,

where Kq is a certain ideal of compact operators (generated by operators with
spectrum of exponential decay).
The order-one condition holds also only up to this ideal:

∀a, b ∈ A(SUq(2)) : [[D,π(a)], (Jπ(b)J)] ∈ Kq.
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3. Open problems

As mentioned before, the results achieved so far appear to be a part of the
bigger puzzle, which is still to be studied. Some of the challenges, still lying ahead
are crucial if we want tu fulfil the dream of understanding the quantum geometry.
Let me list some of them:

• C∞ algebra. Working with the polynomial algebra is sufficient to get
the spectral data, however, to complete the project it is necessary to get
a good insight into the C∞ algebra. In particular, it would be interesting
to calculate its cyclic homology.

• Paschke duality. The apparently ad hoc introduced Paschke duality is
a notion used in K-homology. What is its geometric role in the case of
studied q-geometry? What is the role of the geometric ideal Kq ?

• Hochschild cycle. One of the standard requirements of the spectral
geometry axioms is the existence of Hochschild cycle, whose image plays
the role of the volume form. So far, this axiom has not been fulfilled here.
Could it be satisfied or modified?

• Local index. The local index calculations have been successfully per-
formed in the SUq(2) case [6]. The obtained cyclic cocycle, is, however,
only an image of a one-cyclic cocycle. On the other hand, the twisted
cyclic cohomology [8] gives a possibility of a nontrivial three-cyclic cocycle
of the algebra. Is there a canonical way to obtain it from the the spectral
data?

• Differential calculi and the metric. What is the differential calculus
obtained from the spectral data? What freedom do we have in the choice
of the Dirac operator (no longer equivariant) so that a different metric can
be obtained?

• Equivariant cyclic homology. Having an equivariant spectral triple we
would expect that it corresponds via certain index formula to an equivari-
ant cyclic cocycle. What is the correct framework of the equivariant cyclic
theory and how can this be calculated?

These are just few mathematical problems related to the issue of q-deformed geom-
etry. Learning the answers shall bring closer the possibility of understanding what
noncommutative quantum space-time might be.
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Noncommutative spacetimes and their Ghyst

Mario Paschke

(joint work with Rainer Verch)

A.Connes’ notion of spectral triples describes the noncommutative generalisation
of compact Riemannian Spin manifolds (without boundary). However, relativis-
tic quantum field theory resides on globally hyperbolic, and thus in particular
noncompact and Lorentzian manifolds.

As had first been observed in [1], the only additional ingredient needed for a
description of Lorentzian metrics and spin strucures analogously to the language
of spectral triples is a “fundamental symmetry” β. Indeed, using ideas from [1]
and results given in [3], A.Strohmaier was able to give a description of “Lorentzian
spectral triples” (Losts). Such a Lorentzian spectral triple is then given by data
L = (A,H, D, β), where the operator β on the Hilbert space H is in the commu-
tant of the unital pre-C∗-algebra A ⊂ B(H) and obeys β∗ = −β, β2 = −1. The
Dirac-operator is β-symmetric, i.e. D∗ = βDβ on the domain of D, while the
other axioms are essentially the same as those of spectral triples, but with |D|
replaced by 〈D〉 :== 1

2 (DD∗ +D∗D).
It is very important to note that two such Losts L1,L2 are equivalent, and in
particular describe the same Lorentzian Spin manifold if A is commutative if
and only if there exists a unitary V : H1 → H2 such that X2 = VX1V

∗ for
Xk ∈ {βk,Ak, [D,Ak]}. Strohmeier missed this observation, and hence was not
able to state the analogue of Connes’ reconstruction theorem. Moreover, he had to
assume that A is unital, which is the case only for very few Lorentzian manifolds.
However, in [4, 5] a significant progress concerning the generalisation of spectral
triples to apply also for nonunital algebras (corresponding to noncompact man-
ifolds) has been achieved. Based on these spadeworks, we first presented in the
talk our definition of Losts for nonunital algebras and the analogue of Connes’ re-
construction theorem for time-orientable noncompact Lorentzian Spin manifolds
(without boundary).
A Lost is called timelike foliated if there exists a strongly continuos one-parameter
group ατ of automorphisms of A, represented by unitaries Uτ on H,i.e. ατ (a) =
UτaU

∗
τ for all a ∈ A and if there exists a strongly continuos group of unitaries

ur, r ∈ R in a (pregiven) unitalization Ã of A such that ατ (u
r) = eiτrur. It is

additionally required that β = u−1[D,u].
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If A = C∞
0 (M) then one may use the pair (Uτ , u

r) to reconstruct a global time
coordinate x0 , such that ur = eix0 , and a foliation of M = Σ × R along x0. Of
course, such a foliation, if it exists, is never unique. We denote by TL the set of
all admissable pairs (Uτ , u

r) for a given Lost L.
Even if A is noncommutative, the set TL can then be used to construct the ana-
logue H∞

0 of the space of spinors of compact support, essentially by making use of
the observation that for ψ, ϕ ∈ H∞

0 the support in τ of fψ,ϕ,U(τ) := 〈ψ,Uτϕ〉 is
compact for all Uτ out of TL.
Moreover, using similar observations, we also gave completely algebraic conditions
under which the “support” of a distribution ξ on H∞

0 is contained in the causal
future (respectively past) of the supprt of another distribution η ∈ (H∞

0 )
′
.

This then immediately leads to the definition of advanced, respectively retarded
propagators E± : H∞

0 → (H∞
0 )′ for the Dirac-Operator D of the given Lost, i.e.

〈E±ϕ,Dψ〉 = 〈ϕ, ψ〉, ∀ϕ, ψ ∈ H∞
0

and the support of E+ϕ is contained in the causal future (resp. past for E−ϕ) of
that of ϕ (viewed as a distribution).
As our working definition, we call a timelike foliated Lost for which there exist
uniquely determined advanced and retarded propagators , a globally hyperbolic
spectral triple (Ghyst). Ghysts can be thought of as the noncommutative gener-
alization of globally hyperbolic Spin-manifolds. We gave some noncommutative
examples, most notably the Moyal-deformed Minkowski space, as well. In the talk
we then presented our conjecture that a timelike foliated Lost is a Ghyst if and only
if there exists a pair (Ut, u

r) in TL such that the corresponding Dirac-Hamiltonian
H = D − β∂0, where Uτ = ei∂0τ , is essentially selfadjoint.
We also speculated that it may be possible and desirable to give an alternative
definion of Ghysts that only dealss with the space H∞

0 and the maps E± rather
than D and H.
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Quantum Gromov Hausdorff Convergence and Scaling Limit Theories

Daniele Guido

(joint work with Tommaso Isola, Rainer Verch)

In this report I describe how scaling limit theories can be described in terms of
quantum Gromov Hausdorff convergence, and, more precisely, they constitute an
example of a noncommutative Gromov tangent cone.
Let us recall that the Gromov tangent cone of a metric space (X, d) at a point x
consists of the cone of metric spaces obtained as pointed Gromov-Hausdorff limits,
when t → ∞, of the family (X,x, t · d), hence is a sort of replacement, for metric
spaces, of the usual notion of tangent space, one peculiar feature being the non-
uniqueness of the tangent space at a point, due to the possible local non-regularity
of the original space (cf. [3] for examples). Scaling limit theories of a given net of
C∗-algebras describing the local observables of a quantum field theory, have been
introduced in [1] in order to describe the renormalisation group in the algebraic
setting, and possibly to study the phenomenon of confinement. In this case too
uniqueness is not guaranteed in general, due to the possible local non-regularity
of the original theory.
Let us first observe that it is possible to describe any limit space T in the Gro-
mov tangent cone through the C∗-algebra of continuous functions on T , constant
at infinity, which in turn is the inductive limit, for r → ∞, of the C∗-algebras
C(BT (x, r)) of continuous functions which are constant in the complement of the
open ball BT (x, r).
Moreover, C(BT (x, r)) can be obtained as the quantum Gromov-Hausdorff limit
(on a suitable subsequence tn → ∞) of (C(BX(x, r/t)), t−1 · L), where L is the
Lip-seminorm associated with the distance d (cf. [7] for the main definitions and
properties of quantum Gromov-Hausdorff limits). This suggests the following

Definition 2. Given a net B(y, r) → A(B(y, r)) of unital C∗-algebras associated
with the open balls of a metric space (X, d), the net being endowed with a compatible
Lip-seminorm L, a tangent net at x ∈ X (on a tangent set T ) is defined as
follows: the Lip-normed C∗-algebra A(BT (y, r)) associated with the ball of radius
r and center y of the tangent set T is the quantum Gromov-Hausdorff limit (on a
suitable subsequence tn → ∞) of (A(BX(yt, r/t)), t

−1 ·L), where yt ∈ X converges
to y ∈ T in a suitable sense.

Let us remark that, when passing to noncommutative C∗-algebras, quantum Gro-
mov-Hausdorff distance has to be replaced with some stronger distance, such as
the matricial distance introduced by Kerr [5].
When the spaceX has a natural action of dilations, as is the case for the Minkowski
space, we may define, for the tangent net at the origin, the algebra AT (O) associ-
ated with a bounded open region O as the quantum Gromov-Hausdorff limit (on
a suitable subsequence tn → ∞) of (A(t−1O), t−1 · L).
Under a uniform compactness assumption, namely the existence, for any bounded
open region O, of a constant CO such that nr(S(A(rO))) ≤ CO, where nr denotes



Noncommutative Geometry and Quantum Field Theory 2753

the minimum number of balls of radius r which are needed to cover the given set,
and the distance on the state space is the one induced by the Lip-seminorm L, the
local algebras of the tangent net may be identified with the Lip-ultraproducts (on
a suitable ultrafilter) of (A(t−1O), t−1 · L) [4].
Making use of this result, and assuming that the net O → A(O) describing a
quantum field theory satisfies the uniform compactness assumption above, we may
prove that the Scaling Limit Theories described in [1] can be identified with the
vacuum representation of the tangent nets, where the compatible Lip-seminorm
on the original net is given by the norm of the commutator with the generators of
translations.
We observe that, even though a limit of C∗-algebras under the matricial quantum
Gromov-Hausdorff distance is not a C∗-algebra in general, this is the case when the
Lip-seminorm is induced by a commutator (compare with the notion of f -Leibniz
Lip-seminorm in [6]).

Let us remark in conclusion that the validity of the uniform compactness assump-
tion described above has still to be checked in concrete models, and possibly related
with other compactness assumptions, such as Buchholz-Wichmann nuclearity [2].
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Scaling limit of superselection charges: a class of models

Gerardo Morsella

(joint work with Claudio D’Antoni)

Scaling algebras have been introduced in [1] as a version of the Renormalization
Group adapted to the algebraic approach [2] to Quantum Field Theory. As such,
a natural application is the intrinsic characterization of the ultraviolet properties
of QFT, and in particular of the confinement phenomenon: a confined charge of
the theory described by the net O → A(O) of the C∗-algebras of local observables
is a charge of its scaling limit net O → A0(O) which is not also a charge of A.
In order to compare the superselection (i.e. charge) structures of the theories A
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and A0, it is useful to have a criterion of “charge preservation”, identifying those
sectors of A which are also sectors of A0. Such a criterion was formulated in [3]
by first generalizing the scaling algebra construction to the canonical Doplicher-
Roberts field net describing the superselection structure of A [4], and then impos-
ing appropriate, physically motivated phase-space restrictions to the multiplets of
orthogonal isometries implementing the DHR endomorphisms associated to the
preserved charge.
In the seminar I reported about a follow-up work [5], where, with the purpose
of illustrating the general framework of [3], we construct a class of QFT models
possessing both preserved and non-preserved sectors. More in detail, our main
result is the following:

Theorem 3. For each pair (G,N) with G a compact Lie group and N ⊂ G a
closed normal subgroup, there exists a net of local observables A which has DHR
sectors in 1-1 correspondence with classes of irreducible representations of G, and
such that only the sectors corresponding to representations which factor through
G/N are preserved in the scaling limit theory A0.

Such a net is obtained as the fixed point net A = FG of a field net F which is
in turn a tensor product F = F1 ⊗ F2, and the nets Fi are constructed, sim-
ilarly as in [6], as follows. We fix a finite, generating and symmetric set ∆
of irreducible representations of G, and consider for each v ∈ ∆ which is non-
trivial on N a v-multiplet φvk of generalized free scalar fields with mass measure
dρ(m) = dm. We also fix a non-increasing function λ ∈ R+ → n(λ) ∈ N which
diverges as λ → 0. Then F1(O) is the von Neumann algebra generated by φvk(f)

with f ∈ �
n(diamO)D(O), i.e. as O shrinks to a point, the algebra F1(O) contains

only elements with rapidly worsening ultraviolet properties, and it is therefore not
surprising that the corresponding scaling limit theory is trivial: F1,0 = C1. On the
other hand F2(O) is the von Neumann algebra generated by ϕvk(f) with f ∈ D(O),
where ϕvk is a v-multiplet of free scalar fields of mass mv for each v ∈ ∆ which is
trivial on N (i.e. which factors through G/N). Using results in [7], we show that
F2,0 is the net generated by the same multiplets of free fields with zero masses,

and that the corresponding sectors of F
G/N
2 are all preserved in the scaling limit

in the sense of [3].
In order to determine the scaling limit theory F0, we need conditions under

which the operations of scaling limit and of forming the tensor product of two
theories can be interchanged. We obtain sufficient conditions for this in terms of
nuclearity properties of the nets Fi (we refer the reader to [2] for a discussion of

nuclearity properties in QFT). In particular, if Θ
(i)
β,O : Fi(O) → Hi is the map

Θ
(i)
β,O(F ) = e−βHiFΩi, we have the following:

Theorem 4. If the maps Θ
(i)
β,O are p-nuclear for p ∈ (0, 1/6) and the nuclear

p-norms satisfy lim supλ→0 ‖Θ
(i)
λβ,λO‖p < +∞, and if Fi,0 satisfies (twisted) Haag

duality, then F0
∼= F1,0 ⊗F2,0.
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Applying this theorem to the net F = F1 ⊗ F2 above, we get that F0
∼= F2,0,

and therefore the sectors of A associated to G-representations non-trivial on N
are non-preserved in the scaling limit.
Since it is built using generalized free fields, the net A does not satisfy Haag duality,
but only essential Haag duality, and this therefore leaves the possibility open that
requiring Haag duality rules out the appearence of non-preserved sectors.
Another interesting open problem is the one of finding more general conditions
under which the scaling limit and tensor product operations can be interchanged.
Although we don’t have examples of theories which don’t satisfy our hypoteses
and for which the two operations don’t commute, it seems quite natural that some
kind of phase space condition has to play a role, also in view of the fact that, if
a specific such condition holds, scaling limits are limits with respect to a suitable
metric [8], and therefore enjoy good functorial properties.

References

[1] D. Buchholz, R. Verch, Scaling algebras and renormalization group in algebraic quantum field
theory, Rev. Math. Phys. 7 (1995), 1195–1239.

[2] R. Haag, Local quantum physics, IInd ed., Springer, 1996.
[3] C. D’Antoni, G. Morsella, R. Verch, Scaling algebras for charged fields and short-distance

analysis for localizable and topological charges, Ann. Henri Poincaré 5 (2004), 809–871.
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On the local index theorem in noncommutative geometry

Denis Perrot

In [1], Connes and Moscovici give a formula computing the Chern character of a
regular spectral triple (A,H,D) in terms of residues of certain zeta-functions. This
allows to give a local expression for the index map K∗(A) → Z from the K-theory
of the algebra A induced by the K-homology class of the spectral triple, as in the
classical Atiyah-Singer index theorem. In this talk we propose to obtain such a
local index formula by considering the chiral anomaly of an adequate noncommu-
tative quantum field theory. In fact noncommutative index theory and anomalies
are in a sense equivalent, the link being provided by Bott periodicity. The advan-
tage of considering anomalies, however, stems from the fact that the expressions
found are automatically local. We recall that given an associative algebra A, a
spectral triple (A,H,D) is given by:



2756 Oberwolfach Report 48/2005

i) a homomorphism from A to the algebra B(H) of bounded operators on a sepa-
rable Hilbert space H ;
ii) an unbounded selfadjoint operator D with compact resolvent on H ;
iii) the commutator [D, a] extends to a bounded operator on H for any a ∈ A.

In addition, the spectral triple has even degree if there is an involutive operator
γ ∈ B(H), γ2 = 1, which anticommutes with D and commutes with any a ∈ A. It
is p-summable for a real number p ≥ 1 if (1 +D2)−p/2 lies in the Schatten p-class
ℓp(H). We also impose the following regularity condition on (A,H,D):

iv) A and [D,A] belong to the domains of all powers of the derivation δ = [|D|, ];
v) Let Ψ0(A) denote the algebra of operators generated by the derivatives δn(A)
and δn([D,A]). Then for any b ∈ Ψ0(A), the zeta-function

ζb(z) = Tr(b|D|−z) z ∈ C

extends to a meromorphic function with poles contained in a discrete set Sd ⊂ C

(the dimension spectrum).
The local index formula of Connes-Moscovici precisely works for regular p-summ-
able spectral triples. It is interesting to note that the same conditions allow to
build a noncommutative gauge theory of fermions, as follows. From now on we
restrict ourselves to spectral triples of even degree, and assume for simplicity that
the Dirac operator D is invertible. Let ψ ∈ H be in the domain of D and ψ ∈ H∗.
We consider the classical action functional

S(ψ, ψ, V ) = 〈ψ, (D + V )ψ〉

where V is a chiral potential constructed from the elements of A and [D,A]. One

wishes to give a sense to the functional integral (ψ and ψ are treated as fermions)

Z(V ) =

∫
dψ dψ e−S(ψ,ψ,V )

According to the general principles of perturbative quantum field theory, it a-
mounts to compute the free energy W (V ) = lnZ(V ) as a formal power series of
the potential V :

W (V ) = −
∞∑

n=1

(−1)n

n
Tr((D−1V )n)

Actually the first few terms of this series are divergent because the operator
(D−1V )n is not of trace-class when n is less than the summability degree of the
spectral triple. Hence these terms need to be renormalized, for example by re-
placing Tr by any linear extension τ : Ψ(A) → C of the operator trace on a
suitable algebra of operators Ψ(A). For example, one can choose a zeta-function
renormalization

τ(b) = Res
z=0

1

z
Tr(b|D|−z) ∀b ∈ Ψ(A)

The renormalized free energy Wτ (V ) is therefore well-defined as a formal power
series. It can be shown that its variation dWτ (V ) = ∆(ω, V ) under an infinitesimal
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chiral gauge transformation of parameter ω, i.e. the anomaly, is a finite sum
of local terms. The integration of the anomaly along nontrivial loops of gauge
transformations establishes the link with noncommutative index theory:

Theorem 5. Let (A,H,D) be a regular p-summable spectral triple of even degree.
Let Wτ be the free energy of the corresponding fermionic quantum field theory,
renormalized by means of any linear extension τ : Ψ(A) → C of the operator
trace. Let e ∈ A be an idempotent representing an element [e] ∈ K0(A), and
g = 1 + (β − 1)e be the corresponding idempotent loop, with β the Bott generator
of the circle. Then
i) The integral of the anomaly ∆(ω, V ) = dWτ (V ) along this loop is the index of
the Dirac operator D against the K-theory class [e]:

〈[D], [e]〉 =
1

2πi

∮
∆(ω, V )

ii) The anomaly ∆(ω, V ) is cohomologous to the finite sum of residues of zeta-
functions

Res
z=0

1

z
Tr(γω|D|−2z) +

∑

n≥1,k≥0

(−1)n+kc(k)×

×Res
z=0

(
Γ(z + n+ k)

zΓ(z)
Tr((qωV (k1)DV (k2) . . . DV (kn)|D|−2(z+n+k))

)
,

where k = (k1, . . . , kn) is a multi-index, qω = 1+γ
2 [ω,D], V (ki) denotes the ki-th

power of the derivation [D2, ] on V , and

c(k)−1 = (k1! . . . kn!)(k1 + 1)(k1 + k2 + 2) . . . (k1 + . . .+ kn + n) .

In particular all the coefficients involved are rational.

This theorem is an alternative to the local index formula of Connes-Moscovici.
It is worth mentioning also that it admits a generalization to the bivariant case.
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