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Introduction by the Organisers

The workshop Reactive Flow and Transport Through Complex Systems, organized
by Cornelius J. van Duijn (Eindhoven), Andro Mikelić (Lyon) and Christoph
Schwab (Zürich) was held October 30th–November 5th, 2005.

This meeting was attended by over 46 participants with broad geographic rep-
resentation from all continents.

The theme of the conference,

modeling, analysis and numerical simulation of diffusion and transport processes
in complex systems,

is a response to the need for more accurate, quantitative prediction in a growing
number of scientific disciplines, particularly those related to biological applications.
Here, simple mathematical models have been found, in particular due to the vastly
increased available experimental data from these systems, to offer only inadequate
and incomplete understanding of the observed phenomena.

This resulted in increased requirements for quantitative, verified predictions
from sophisticated mathematical as well as computational models. The continu-
ous development of complex mathematical and computational models and their
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verification and validation against available experimental data is a continuous
source of challenges for applied and computational mathematicians.

The complexity of the systems arises from several sources: highly irregular
geometries of membranes and interfaces (as, e.g. in bone marrow, cell membranes,
root systems of plants, membrane structures in human organs), physical or chem-
ical properties of the systems (e.g., models for spread of pollution in underground
medium which has uncertain material properties, where chemical reactions take
place between constituents, and where strong transport effects on a macroscopic
scale coexist with diffusion phenomena at the grain interfaces).

Quantitative mathematical and computational models of such phenomena are
not only essential for a deeper understanding of these systems but, at least equally
importantly, are a keystone in the development of new technologies which increas-
ingly mimic and adapt biological phenomena for industrial purposes (e.g., root-
reactor technology for the efficient production of organic compounds, bioinspired
catalysts for waste processing, to name but a few).

Accordingly, the rather wide scope of the topic of the conference and the blend
of researchers working in several areas of applied mathematics was a necessary
condition to review modelling approaches across a number of application areas as
well as across several mathematical disciplines.

Accordingly, during the meeting, talks were presented on homogenization, a-
nalysis and computation of multiscale problems, models of porous media, biological
flow problems, to name but a few.

In addition to the regular presentations, there were three evening sessions orga-
nized “on the spot” based on the discussions which started in the first half of the
meeting. These were in each case opened by a presentation from a person invited
by the organizers, and were devoted to the topics:

(1) Mathematical Models in Biology – Results and challenges in the mathe-
matical modelling of biological systems, (animated by W. Jäger, Uni and
IWR Heidelberg),

(2) Density driven flows – analytical and computational results and challenges
(animated by C. van Duijn, Einhoven and F. Otto, Bonn),

(3) Numerical Models of PDEs with stochastic coefficients (animated by H.
Matthies, TU Braunschweig and by C. Schwab, ETH)

The presentations of the experts present at the meeting comprised, naturally,
a much wider scope of topics:

• – Flow, transport and reactions in micro-reactors and micro-channels
• – Effective laws for processes on surfaces
• – Effective laws for transports and reactions in membranes
• – Polymer flow through porous media
• – Homogenization of processes in networks (neural networks, vessels ..... )
• – Overall elastic properties of fiber structures and textiles
• – Flow through deformable structures with evolving process depending

geometry
• – Growth of crystals, biological structures like dendrites or vessels.
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• – Flow and transport in bifurcating vessels with rigid and flexible walls
• – Effects of walls
• – Wall laws and interface laws

These talks touched on advanced mathematical methods from dynamical sys-
tems, especially infinite dimensional ones arising with spatially heterogeneous
problems (PDEs), asymptotic analysis, homogenization and averaging methods,
numerical multiscale methods, methods from stochastic analysis and statistics.

Apart from advancing disciplinary mathematical methods in these areas, in
the present meeting also qualitatively new mathematical developments emerged:
for example, mathematical and computational modelling of PDEs with stochastic
data which are spatially inhomogeneous and do not satisfy stationarity or ergodic
hypotheses.

In processing experimental data (which becomes increasingly available at lower
cost and, e.g. through modern scanning techniques, also at high volume and spatial
and temporal resolution) new techniques of image and data processing have to be
developed, and the mathematical models of complex systems have to allow for
incorporation of statistical data extracted from these experiments.

This has repercussions for the mathematical research and implies that novel
algorithms are needed to generate computational grids adapted to voxel data.

In the last five years mathematicians from analysis, stochastics and numerics
started cooperation in this interdisciplinary field of research.

New journals specifically devoted to these issues such as the SIAM Journal of
Multiscale Analysis and Simulation, have been successfully launched.

The previous meeting in Oberwolfach ” Multiple Scale Systems - Modeling,
Analysis and Numerics ” from July 27 to August 2, 2003, gathered 42 scientists,
among them approximately 15 junior scientists, from these areas.

Since multiscale tools are crucial in many of the above themes, in the previous
meeting mainly diffusion problems were treated. Reactive flow and transport,
which were central themes in the present meeting, emerged only recently as key
issues.

The meeting was, exactly because of its wide scope, successful particularly in
cross fertilizing different areas of applied mathematics and also raised a huge num-
ber of questions and challenges to participants documenting that the applications
of mathematics to biological, social and other “complex systems” which has been
emerging in the past years, is in the process of gaining momentum and, more
importantly, stimulates development of new techniques and approaches in applied
and computational mathematics at an increasing rate.
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List of all talks

• Monday, October 31, 2005:
– 9h15–10h: Andrea BRAIDES: A Model for a Weak Membrane with

Defects
– 10h-10h45: Gregory A. CHECHKIN: Prandtl boundary layer equa-

tions in the presence of rough boundaries
– 11h30–12h30: Eduard MARUŠIĆ-PALOKA: Rigorous Justification

of Compressible Reynolds Equation for Gas Lubrication
– 16h-16h45: Maria NEUSS-RADU : Homogenization of thin porous

layers and applications to ion transport through channels of biological
membranes

– 16h45–17h30: Angela STEVENS: Propagation speed in inhomoge-
neous media

– 17h45–18h30: Barbara NIETHAMMER: A statistical mechanics ap-
proach for effective theories of domain coarsening

• Tuesday, November 1, 2005
– 9h00–9h45: Hermann G. MATTHIES: Computational Approaches

for Stochastic Models in Flow Through Stochastic Porous Media
– 9h45-10h30: Assyr ABDULLE: Fully Discrete Heterogeneous Multi-

scale Methods and Application to Transport Problems in Microarrays
– 11h–11h45 Radu A. TODOR: Sparse Perturbation Algorithms for

Elliptic Problems with Stochastic Data
– 15h30–16h15: Guy BOUCHITTÉ: Some asymptotic problems on op-

timal transportation.
– 16h15-17h: Michel LENZINGER: Viscous fluid flow in bifurcating

channels and pipes
– 17h15–18h René de BORST: Stability and Dispersion in Damaging

Multiphase Media
• Wednesday, November 2, 2005

– 9h00–9h45: Michel KERN: Reactive Flow and Transport Through
Complex Systems

– 9h45-10h30: Vincent GIOVANGIGLI: Gaseous flows with multicom-
ponent transport and complex chemistry

– 11h–11h45 Sorin I. POP: Dissolution and Precipitation in Porous Me-
dia

– 11h45 – 12h30: Giovanna GUIDOBONI: Uniqueness of weak solu-
tions for a fluid-structure interaction problem
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• Thursday, November 3, 2005
– 9h00–9h45: Björn ENQUIST: The Heterogeneous Multiscale Method

for Flow in Complex Systems
– 9h45-10h30: Peter KNABNER: Efficient Accurate Simulation of Gen-

eral Reaction Multispecies Transport Processes in Porous Media by
Reduction and Selective Decoupling

– 10h45–11h30 Raúl TEMPONE: Spectral Collocation for Partial Dif-
ferential Equations with Random Coefficients

– 11h30-12h15: Leonid BERLYAND: Two analytical models of random
composites: polydispersity and correlations

– 15h15–16h: Jérome JAFFRÉ: Riemann solvers for flows through
rocks changing type

– 16h00–16h45: Ben SCHWEIZER: Averaging of unsaturated flow in
stochastic porous media

– 16h45-17h30: Rudolf HILFER: Can homogenization solve the upscal-
ing problem for 2 phase flow equations in porous media?

– 17h45–18h30 Alain BOURGEAT: Some Problems in upscaling source
terms in a waste disposal

• Friday, November 4, 2005:
– 9h00–9h45: Jérome POUSIN : Order 2 in time schemes for discon-

tinuous reactive terms operator splitting for reaction diffusion with a
singular reaction term.

– 9h45-10h30: Peter BASTIAN: ADG method for flow in complex do-
mains

– 10h45–11h30 Eric BONNETIER: Can one detect a misplaced inclu-
sion in a periodic composite by boundary measurements ?
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Abstracts

Fully Discrete Heterogeneous Multiscale Methods and Application to
Transport Problems in Microarrays

Assyr Abdulle

Physical systems encompassing a variety of strongly coupled scales pose major
computational challenges in terms of analysis modeling and simulation. In this
report we first discuss a multiscale modeling approach for the transport of par-
ticles such as DNA in heterogeneous devices (microarrays). The model involves
a multiscale elliptic equation coupled with a multiscale advection-diffusion equa-
tion. We introduce a numerical method for the solution of the coupled system of
equations. We first discuss a new multiscale finite element method for the solu-
tion of the elliptic problem. We then explain how it is possible to use an explicit
stabilized method (ROCK) for the numerical solution of the stiff system of ordi-
nary differential equations of large dimension, originating from the method of lines
discretization of the advection-diffusion equation.
DNA separation in microarrays. We consider a (square) device with periodic
asymmetric obstacles and model the transport of injected mixture with concen-
tration c(t, x) as an advection-diffusion equation given by

∂cε

∂t
+ ∇ · (vεcε) = D∆cε,(1)

where vε = −ρkε∇uε is the velocity field, uε is the electrical potential, kε is the
electrical conductivity and ρ is the charge density of the electrical device. We
assume for simplicity that ρ is constant and set it to one. The obstacles of the
microdevice introduce a typical self-similar structure (which will also be called a
“periodic cell”), and we denote by ε the length of these cells. The equation for
the potential uε is given by

−∇ · (kε∇uε) = 0,(2)

with Neumann boundary conditions at the corner of the device and Dirichlet con-
ditions at the charged sites of the boundary. The homogenization problem corre-
sponding to equations (1) and (2), where the heterogeneous fine scale structure is
transferred into a homogeneous large scale model, shows that the heterogeneities
of the device have no impact on the large scale drift [6]. Thus, the large scale
drift does not depend on the diffusion constant or the molecular weight of the
particles. The heterogeneous microarrays have an impact only on the large scale
diffusion. This gives a quantitative explanation of the model proposed in [11],[12]
and explain the experimental results of [10]. In [9] transport problems with com-
pressible flows are studied and it is shown that for such flows, the large scale drift
can depend on the small scale diffusion coefficient. In the sequel we explain how
to solve numerically the coupled equations (1) and (2).
Fully discrete finite element heterogeneous multiscale methods. Apply-
ing a standard finite element method to the variational form of (2) requires usually
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a meshsize h < ε for convergence, i.e., to resolve the small scale of the problem.
This lead to a complexity of O(ε−d), where d is the spatial dimension, which
makes the direct numerical simulation impossible if ε is small. When the data
of the problem are oscillatory with small period, classical two-scale approaches
are well established, and the analytical treatment lead to homogenized equations.
However, the fine scale behavior, i.e. the oscillations of the solution, are lost in
the homogenization process. It can be recovered through the solution of additional
“corrector” problems. But these corrector problems again exhibit rapidly oscillat-
ing coefficients so that their accurate numerical solution is as expensive as solving
the original problem.

In the sequel, we present a new multiscale finite element method for the numer-
ical computation of problems with multiple scales. Define a quasi-uniform macro
triangulation TH of the domain Ω, assumed to be a convex polygon. The finite
element heterogeneous multiscale method (FE-HMM) is based on the following
ideas [13],[3],[14],[4].

(1) Associated to the macro triangulation, we define a macro finite element
space and a modified bilinear form with unknown input data.

(2) Within each macro triangle we define a sampling domain Kε of length
scale comparable to ε, a micro finite element space and a micro bilinear
form based, upon the original multiscale tensor kε, which provides input
data for the macro problem.

The FE-HMM gives a procedure to obtain an approximation uH of the homoge-
nized solution u0, without computing explicitly the homogenized equations. By a
post-processing calculation, it is possible to compute an approximation uε,h of the
fine scale solution uε of (2) at a much lower cost than solving the original fine scale
problem. Indeed, we solve the fine scales only in sampling domains of size εd in
the periodic case, within a macro mesh of Ω. Furthermore, the micro problems are
independent and can be solved in parallel. In the non-periodic case, Kε should be
chosen as to sample enough information of the local variation of kε. Semi-discrete
analysis of the method has been given in [3],[14]. In these works, the fine-scale
problem involving the micro solver was assumed to be computed exactly. In [4],
the first fully discrete analysis of the FE-HMM has been given. This analysis show
that the macro and the micro meshes have to be refined simultaneously. This has
been generalized for elasticity problems in [8].
Solving an advection diffusion problem with ROCK methods. Discretiz-
ing the advection-diffusion equation by the method of lines leads to a stiff system
of ordinary differential equation of large dimension. Such ODEs, originating from
the space discretization of (1) are called stiff in the literature [15]. It is also known
that implicit solver have better stability properties, but at the expense of solving
linear systems of large dimension if the spatial discretization mesh is small.

Chebyshev methods are a class of explicit one step methods with extended
stability domains along the negative real axis. With such methods, large time
steps can be used. This contrasts with the severe time step restriction given by
the CFL condition for standard explicit methods.
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Recently, a new strategy to construct higher order Chebyshev methods with
“quasi” optimal stability polynomials has been proposed [1],[2]. These methods,
called ROCK, together with the FE-HMM have been combined to solve transport
problems described by equations (1) and (2) [5]. The numerical simulation of the
DNA transport problem has been addressed in [7].
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Solving Partial Differential Equations in Complicated Domains

Peter Bastian

(joint work with Christian Engwer)

1. Introduction

Many practical applications require the solution of partial differential equations
(PDEs) in complicated domains. We are especially interested in computing the
flow around root networks of plants or in the pore space of porous media.
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Classical numerical methods require a grid resolving the complicated geometry.
Creating such grids is a highly involved process especially if coarse grids and high
quality are required. Several methods have been developed that circumvent this
problem. They are based on the use of a structured background mesh that encloses
the domain. The Fictitious Domain method [GPP71] discretizes the PDE on the
background mesh and adds the boundary conditions as additional constraints.
This leads in general to a saddle point formulation that might be difficult to solve.
The Composite Finite Element method [HS97] constructs piecewise linear basis
functions on the fine background mesh and truncates them at the true boundary.
Coarse grid basis functions for a geometric multigrid solver are constructed as
combinations of fine grid basis functions. This method has been designed with
emphasis on the fast solution of the arising linear system.

Our new method is based on the observation that in discontinuous Galerkin
finite element methods the form of the element can be quite arbitrary. Thus
the elements can be taken as the intersection of the structured background mesh
with the complicated geometry. Assembling the stiffness matrix then requires
integration over the interior and boundary of those non-standard elements. This
is accomplished by constructing a local triangulation within each element. Note
that the local triangulations of different elements are completely independent.

In the following sections we will describe the discontinuous Galerkin finite ele-
ment method for an elliptic model problem, the construction of the local triangu-
lation and give some numerical results.

2. Discontinuous Galerkin Scheme

Consider the following elliptic model problem in d space dimensions

(1) ∇ · j = f in Ω ⊆ R
d j = −K∇p,

subject to boundary conditions

(2) p = g on ΓD ⊆ ∂Ω, j · n = J on ΓN = ∂Ω \ ΓD.

We approximate the pressure p in the space of discontinuous finite element func-
tions of order k

(3) Vk = {v ∈ L2(Ω) | v|E ∈ Pk, E ∈ T (Ω)}

where T (Ω) = {E1, . . . , En} is a partition of Ω into non-overlapping elements and
Pk is the set of polynomials of at most degree k. By Γint we denote the set of
interior faces of the elements with an arbitrarily chosen normal direction n and
Γext is the set of element faces intersecting with the domain boundary.

The finite element problem then reads: Find p ∈ Vk such that

(4) a(p, v) = l(v) ∀v ∈ Vk
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where the bilinear form is given by

a(p, v) =
∑

E∈T (Ω)

∫

E

(K∇p) · ∇v dV +
∑

γe∈ΓD

∫

γe

(K∇v) · n p − (K∇p) · n v ds

+
∑

γef∈Γint

∫

γef

〈(K∇v) · n〉[p] − 〈(K∇p) · n〉[v] ds

and the right hand side is the linear form

l(v) =
∑

E∈T (Ω)

∫

E

f v dV +
∑

γe∈ΓN

∫

γe

J v ds +
∑

γe∈ΓD

∫

γe

ǫ (K∇v) · n g ds.

Here 〈·〉 denotes the average at the discontinuity and [·] denotes the jump at the
discontinuity. This scheme has been introduced in [OBB98].

3. Local Triangulation Algorithm

The triangulation T (Ω) used in the finite element algorithm is generated by in-
tersecting a structured background mesh with the domain Ω as is indicated in the
following figure:
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The bilinear form and right hand side now require the computation of certain
integrals over the interior and boundary of the non-standard elements. This is
accomplished by constructing a triangulation of each element. This is illustrated
in the following figure:
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Since the we assume that the geometry of the non-standard element is not too com-
plicated and the background mesh is structured we first do an adaptive bisection
and then have a lookup table that generates triangulations for certain standard
situations. Note that curved boundaries are approximated by using parametric
elements of order 2. This can lead to non-standard elements having a cusp. It
turns out that the approximation properties of the DG scheme are not harmed also
for this case. A proof of this is not available yet. In [DFS03] a convergence proof
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for DG is given for star-shaped elements. For further details of the triangulation
algorithm we refer to [EB05].

4. Numerical Results

As an example we solve −∆u = f in Ω with u = g on ∂Ω where Ω ⊂ (0, 1)2

is shown in the figure below. The functions f, g are chosen according to a pre-
scribed solution u ∈ C∞(Ω). The algorithm has been realized within the software
framework Dune [BDE+04]. The table below shows that experimental order of
convergence is optimal when using polynomials of degree k = 3. Note that the
error in the boundary approximation is not included.
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Mesh EOC L2 EOC H1

16×16 3.73 2.90
32×32 3.94 2.95
64×64 3.93 2.96

128×128 3.98 2.98
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Two analytical models of random composites: polydispersity and
correlations

Leonid Berlyand

In this talk we discuss mathematical models of heterogeneous materials with
random microstructure amenable to rigorous mathematical analysis when analyt-
ical solution in some form can be obtained.

We distinguish two classes of such models:
(A) simple (e.g., linear) PDE (constitutive law) with complex geometry (e.g.

disordered arrays of densely packed particles of various sizes and shapes)
(B) complex (e.g. nonlinear) PDE or variational problem with simple geometry

We first present a problem from class (A) which models increase and decrease of
the effective conductivity of two phase random composites due to polydispersity.
Here we present a two–dimensional mathematical model of a composite material
with conducting inclusions (fibers) randomly embedded in a matrix. Our main ob-
jective is to study how polydispersity (two different sizes of particles) affects the
overall conductivity of the composite. If the conductivity of inclusions is higher
than the conductivity of the matrix, then previous studies suggest an increase of
the effective conductivity due to polydispersity. We prove that for high volume
fraction when inclusions are not well–separated and percolation effects play a sig-
nificant role, polydispersity may result in either an increase or decrease of the
effective conductivity. This is a joint work with V. Mityushev [1].

Next we present a model of a laminated random polycrystal with n grains. The
orientation of each grain is given by an uncorrelated random sequence of the orien-
tation angles θi, i = 1, · · · , n. Under the imposed boundary conditions each grain
undergoes a stress free transformation that depends on its orientation angle and
result in transformation strains ǫT

i , i = 1, ·, n. The sequence of random variables
ǫT
i , i = 1, ·, n is obtain as the solution of a nonlinear optimization (variational)

problem.
While the random variables θi, i = 1, · · · , n are uncorrelated, the random vari-

ables ǫT
i , i = 1, ·, n may or may not be correlated – this is the central issue of

our analysis. We investigate this rise of correlations in three different scaling lim-
its. Our proofs use the de Finetti’s Theorem as well as the Riesz rearrangement
inequality. This is a joint work with O. Bruno and A. Novikov [2].
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Asymptotics of the potential in a perturbed periodic composite
medium containing misplaced inclusions

Eric Bonnetier

(joint work with Fehmi Ben Hassen)

We consider a conduction problem for a composite material made of identical
inclusions of conductivity 0 < k < ∞, k 6= 1, embedded in a matrix of conductivity
1. In a reference configuration, the medium lies in a smooth bounded domain Ω ⊂
R3 and the distribution of the inclusions is perfectly periodic. If Y = [0, 1]3 and
D ⊂ Y , the associated conductivity has the form aε(x) = a(x/ε), x ∈ Ω, where
a is the Y –periodic function equal to k in D and to 1 in Y \ D.

Given Neumann boundary data g ∈ L2(∂Ω), such that

∫

∂Ω

g = 0, the potential

uε solves

(1)





div(aε(x)∇uε) = 0 in Ω,
aε(x)∂nuε = g on ∂Ω∫

∂Ω uε = 0.

We compare this reference configuration to a medium where one of the inclusions
has been misplaced: Instead of ωε,1 = ε(p + D), the p–th inclusion occupies the
set ωε,2 = ε(p + δ + D). We assume that |δ| = O(1), that the p–th inclusion is
O(1) away from the boundary ∂Ω, and that, in its modified position, it does not
intersect another inclusion. The conductivity of the perturbed configuration is
denoted by aε,d and we have

aε,d(y) =





aε(y) in Ω \ ωε,
1 in ωε,1 \ ωε,2,
k in ωε,2,

where ωε = ωε,1∪ωε,2. The corresponding potential, uε,d solves (1), with coefficient
aε,d instead of aε.

We view the misplaced inclusion as a defect in the composite, compared to a
perfectly periodic medium. We are interested in comparing the potentials uε,d

and uε, far from ωε, to study if one could detect such periodicity defect using
boundary measurements. To this end, we give an asymptotic expansion for uε,d −
uε, as ε → 0. We present the result in the case of a single misplaced inclusion.
However, our analysis extends to more general situations where the periodicity
defects are localized and of size comparable to the period (for instance inclusions
with conductivities different from k).

Let A∗ denote the matrix of homogenized coefficients, defined by

A =

∫

Y

a(y) (I + ∇χ(y)) dy,
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in terms of the solutions χ ∈ (W 1,2
# (Y ))3 of the cell problems

{
−div(a(y)∇(χ(y) + y)) = 0 in R3
∫

Y
χ(y) dy = 0.

Let u∗ denote the solution to the homogenized equation




div(A∗∇u∗) = 0 in Ω,
A∗∇u∗ · n = g on ∂Ω∫

∂Ω
u∗ = 0,

and let Gε (resp. G∗) be the Green’s functions, vanishing on ∂Ω, of the periodic
(resp. homogenized) medium.

Theorem 1. Assume that D has a smooth boundary (C 1+α for some α > 0) and
that ωε is centered at the origin. Then, for |x| >> ε, we have

uε,d(x) − uε(x) +

∫

∂Ω

∂nGε(x, y) (uε,d(y) − uε(y)) dσ(y)

= ε3 M : ∇u∗(0) ⊗∇G∗(0, x) + o(ε3).(2)

The matrix M in (2) is a polarization tensor, that accounts at first order for
the presence of a defect: for 1 ≤ i, j ≤ 3,

Mij =

∫

∂ω̃

(
a−

a−
d

− 1)(yi + χi(y))

(
a+(y)

∂ϕ+
j

∂νy
+ a−(y)

(
νj +

∂χj(y)

∂νy

))
dσy ,

where ad(y) = aε,d(εy), and where the auxiliary functions ϕj are defined by
{

div(ad(y)∇(ϕj(y) + yj + χj(y))) = 0 in R3,
lim|y|→∞ ϕj(y) = 0.

The expansion (2) has the same structure as that derived in [5] where pertur-
bations of the potential are caused by small inclusions in a smooth background
reference medium (see also [1] and the references therein). In our case, it is the
Green’s function of the homogenized medium that appears on the right–hand side,
its singularity signaling the presence of a periodicity defect. This may prove in-
teresting for detection purposes, using a MUSIC type algorithm, as in the case of
a reference medium with constant coefficients [4].

The proof of (2) relies on pointwise estimates on the periodic potential and on
its gradient, which are independent of ε [3]. The proof uses the ‘3 steps compact-
ness method’ of M. Avellaneda and Fang Hua Lin, who gave such estimates for
elliptic operators with smooth coefficients [2]. The smoothness assumption can
be loosened, as shown by L. Nirenberg and YanYan Li [6], using the fact that, in
a composite medium made with C 1+α inclusions, the gradient of the potential is
bounded, independently of the distance between the inclusions. These results may
be adapted to obtain the following pointwise estimates on the Green’s functions
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Theorem 2. Let ω ⊂⊂ Ω ⊂ R3 and 0 < r < diam(ω)/4. There is a positive
constant C, independent of ε, such that, for all B(y, r) ⊂ ω,

‖Gε(., y) − G∗(., y)‖L∞(ω\B(y,r)) ≤ Cε1/4,

‖∇xGε(., y) − (I + ∇χ(./ε))∇xG∗(., y)‖L∞(ω\B(y,r)) ≤ Cε1/4.
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Some problems in scaling up the source terms in an underground
waste repository model

Alain Bourgeat

(joint work with Eduard Marušić-Paloka, Olivier Gipouloux)

Introduction

We are interested in ρ(x, t)the evolution in time of the density of some quantity,
such as heat or chemical concentration, which is transported by diffusion and
convection from a ”sources site” made of a large number of similar ”local sources”.
This type of modeling could, for instance, describe contaminants transport and
migration in aquifers from a long-lived nuclear waste underground repository.

General Equations. The process is described by a diffusion convection type
equation:

(1) Rω
∂ρ

∂t
−∇ · (A∇ρ) + (V · ∇)ρ + λRωρ = 0

• R the latency retardation factor,
• ω the porosity,
• v the Darcy’s velocity

• λ =
log2

T ; T the element radioactivity half life time.
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There are at least three levels where there is a need for scaling up the above
model , from a detailed description to a global model: - from Waste Packages
to a Storage Unit model (see [1],[2]) - from Storage Units to a Zone model
(see [3]) - from similar Zones to a Repository Site global model.

From the Storage Units to a Zone Global Model

The technique and the results herein after (see [1],[2])would be the same for the
scaling up from “Similar Zones” to a “ Repository Site model” .

The Equations. For seek of simplicity, we will assume R = 1.

ωε ∂ϕε

∂t
− div (Aε∇ϕε) + (vε · ∇ )ϕε + λωε ϕε = 0 in ΩT

ε(2)

ϕε(0, x) = ϕ0(x) x ∈ Ωε(3)

n · σ = n · (Aε∇ϕε − vε ϕε) = Φ(t) on ΓT
ε(4)

ϕε = 0 on S1,(5)

n · (Aε∇ϕε − vε ϕε) = 0 on S2 ;(6)

with

(7) Aε(x2) = A(
x2

ε
); vε(x, t) = v(x,

x2

ε
, t); ωε(x2) = ω(x2/ε).

A priori Energy estimates and Homogenized equation.
The following a priori estimates:

ϕε ⇀ ϕ weak* in L∞(0, T ; L2(Ω))(8)

∇ϕε ⇀ ∇ϕ weakly in L2(0, T ; Lβ∗(Ω))(9)

with

ϕ ∈ L2(0, T ; H1(Ω)) L∞(0, T ; L2(Ω)), and β∗ =
2β

3β − 2
.

And ϕ is then the solution of:

ω2 ∂ϕ

∂t
− div (A2∇ϕ) + (v2 · ∇)ϕ + λω2 ϕ = 0 in Ω̃T(10)

ϕ(x, 0) = ϕ0(x) x ∈ Ω̃ = Ω\Σ(11)

ϕ = 0 on S1(12)

n · (A2∇ϕ − v2 ϕ) = 0 on S2(13)

[ϕ] = 0 ,
[
e2 · (A2∇ϕ − v2 ϕ)

]
= −|M̃ |Φ on Σ ,(14)

where [·] denotes the jump over Σ, and |M̃ | stands for the limit of a storage unit

area; (Mε) area = |M̃ | + O(εβ−1)

Remark 1. We do not need exact periodicity in space, of the units; the same
proof holds whenever each unit is randomly placed in a mesh of an ε– net. The
units do not even need to have the same shape as long as their thickness is small
enough (≪ ε).
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The above result may be extended to a general case where the flux Φ depends also
on the space Φ(x, t) and the units have different shapes Mε(x); then the right hand
side of (14) would have to be replaced by lim

ε→0
|Mε(x)|Φ(x′, t).

Asymptotic expansion and Matching for the Short time.
We define first the Matched Expansion:

(15) Fε =





ϕ0
ε in Ω\Gε ; ( Outer Expansion)

ϕ0
ε + ε

(
χk

ε(
x

ε
)
∂ϕ0

ε

∂xk
+ wε(

x

ε
)Φ − ϕ0

ερ
k
ε(

x

ε
)v1

k

)
in Gε ;

where Gε is the Inner Layer and the functions χk
ε , ρk

ε and wε are 1-periodic solutions
of three auxiliary stationary diffusion type problems posed in an infinite strip.

Theorem 1. For any 0 < τ < 1 there exists a constant Cτ > 0 non dependant on
ε, such that

(16) |ϕε − Fε|L2(0,T ;H1(Bε)) ≤ Cτ ετ ,

where Bε = Ω\∂Gε.
The same estimate holds in L∞(0, T ; L2(Ωε)) norm.

Remark 2. The expansion (15) clearly points out two important terms: the zero
order term ϕ0

ε and the first order term ε wε(
x
ε )Φ .

On one hand the diffusion in the low permeable layer around the units is small
and on the other hand the leaking is intensive during a short time; then during
this short time, the first order term ε wε(

x
ε )Φ will dominate in ϕε; and after

this short time the diffusion will become dominant, i.e. ϕ0
ε will become the most

important term in the expansion.

From Waste Packages to a Storage Unit Global Model, with a

possibly damaged zone

We are now seeking a mathematical model describing the global behavior of one
Storage Unit(see [3]); assuming it is made of a high number of Waste Packages
(or containers sets), lying on a hypersurface Σ and linked by parallel backfilled
drifts ; all the parallel drifts being connected at the top to a main gallery, also
backfilled. (see [3])
All the repository is embedded in a low permeability layer, called host layer . As
in the previous section, for simplicity, we assume the convection field (Hydrology
regime) is given.
Denoting ε the ratio between the width of a unit and the distance between two
drifts; then in the renormalized model there are three scales: O(1) for a disposal
unit scale, O(ε) for both the scale of a containers row and the drifts period, and
O(εγ),γ close to three, for the Waste Packages diameter.
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The Model and Equations. The Darcy’s velocity is:

vε(x) =

{
vh(x) in the host rock Ωε\ Sε

ε−β vd(x′, x2/ε; x3/ε) in the drifts Sε
;

the Diffusion/Dispersion is:

Aε(x) =

{
Ah(x) in the host rock Ωε\Sε

d(x) I + ε−β Ad(x2, x2/ε, x3/ε) in the drifts Sε
.

And, because the convection in a storage unit goes mainly in the direction of the
drifts, we assume

Ad(x2, y2, y3) = a(x2, y2, y3) ( e1 ⊗ e1. )

With the above assumptions the ”Microscopic” model of a Storage Unit is:

ωε ∂ϕε

∂t
− div (Aε∇ϕε) + (vε · ∇ )ϕε + λωε ϕε = 0 in ΩT

ε(17)

ϕε(0, x) = ϕ0(x) x ∈ Ωε(18)

n · (Aε∇ϕε − vε ϕε) = Φε(t) on ΓT
ε(19)

n · (Aε∇ϕε − vε ϕε) = κ (ϕε − gε) on KT
ε ∪ HT

ε(20)

ϕε = 0 on ZT
ε .(21)

with HT
ε the drifts Tops surface, ZT

ε the drifts (sealed) Bottoms , KT
ε the rest of

the exterior boundary of Ω, and ΓT
ε the Waste Packages boundary ×(0, T ).

Remark 3. In the above model, gε will measure the concentration entering at the
drifts tops; and ε−β the Darcy’s velocity range inside the drifts.

Results. Depending on β (the Darcy’s velocity range), with a proper rescaling of
the source flux and of the concentration on the shafts tops, we have three different
global behavior :

• With 0 ≤ β < 1 ,

The shafts do not make any contribution, the repository behaves as if they were
not there. Mainly ϕε → ϕ the unique solution of a problem, similar to the Ho-
mogenized equation obtained in the previous section 10- 14, i.e. of same type as
the microscopic problem.

• With β = 1

and a source term, limε→0 Φε(t) = Φ(t) uniformly in t , and some concentration,
gε = ε−1 gd , entering the shafts tops Hε.
This model could be seen as representing connected shafts, galleries and drifts
with damaged sealings. The transport processes, inside and outside the ”damaged”
shafts are comparable and there is a strong interaction between them. The solution
of the Microscopic model ϕε → ϕ weakly in L2(0, T ; W 1,γ∗

(Ω)) and ϕε−→ϕ0 =
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ϕ(x1, x2, 0), dµε(x)2 − scale, [4], where ϕ is the unique solution of a coupled
problem:

ωh ∂ϕ

∂t
− div (Ah ∇ϕ) + (vh · ∇)ϕ + λωh ϕ = 0 in Ω̃T ;(22)

ϕ(0, x) = ϕ0(x)in Ω̃;(23)

n · (Ah ∇ϕ − vh ϕ) = κ(ϕ − gh) on ST(24)

[e3 · (Ah ∇ϕ − vh ϕ)] = −MΦ− ∂

∂x1
(〈a〉∂ϕ0

∂x1
) + 〈vd

1〉
∂ϕ0

∂x1
on ΣT(25)

〈a〉∂ϕ0

∂x1
(t, L, x2, 0) + 〈vd

1〉ϕ0(t, L, x2, 0) = κgd.(26)

• With 2 > β > 1

and a sufficiently strong source and some concentration entering the drifts tops

gε = ε−
β+1

2 gd on Hε; then the transport process in the drifts is dominant and
we do not see anything else in the corresponding global model . We have then:
ε(1−β)/2 ϕε−→φ, dµε(x)2 − scale,[4], to the global concentration ϕ0, the unique
solution of a 1-dimensional problem for any x ∈]0, L[ :

− ∂

∂x1

(
Ad

11

∂ϕ0

∂x1

)
+ vd

1

∂ϕ0

∂x1
= 0 in ]0, L[(27)

ϕ0(0) = 0 , Ad
11

∂ϕ0

∂x1
(L) + (vd

1 + κ)ϕ0(L) = κgd .
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Variational problems involving percolation

Andrea Braides

(joint work with Andrey Piatnitski)

In a recent paper [5] Braides and Piatnitski have studied the problem of describing
the overall properties of a discrete membrane in which a random distribution of
‘defects’ is taken into account. The free energy of this two-dimensional discrete
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membrane with a bounded open set Ω ⊂ R
2 as reference configuration is modelled

by a functional

(1) Eε(u) =
1

2

∑

|i−j|=ε

φε
ij(ui − uj),

where u : εZ2 ∩ Ω → R. The small positive parameter ε is introduced so that
averaged properties of Eε are described by its Γ-limit F (see e.g. [3, 1]).

The functions φε
ij may take two forms:

(1) (strong springs) φε
ij(z) = z2. If only strong springs are present Eε is nothing but

a finite-difference approximation of the Dirichlet integral, and F (u) =
∫
Ω |∇u|2 dx

is defined on H1(Ω);
(1) (weak springs) φε

ij(z) = min{z2, ε}. In terms of the difference quotient we may
write

(2) φε
ij(u

i − uj) = εf
(
ε
(ui − uj

ε

)2)
=

{
(ui − uj)

2 if
ui−uj

ε ≤ 1√
ε

1 otherwise,

where f(w) = min{|w|, 1}.
The case when

(3) φε
ij(z) =

{
εf(εz2) with probability p

z2 with probability 1 − p

is considered. This can be done by introducing suitable i.i.d. random variables
(see [5]) corresponding to a bond-percolation model (see e.g. [6]). With fixed a
realization ω we will write Eω

ε to highlight the fixed choice of φε
ij in terms of ω,

and Fω the corresponding Γ-limit. The case p < 1/2 (subcritical regime) had been
completely solved in [5] by showing that in that case the effect of the weak springs
is almost surely negligible and the Γ-limit is simply the Dirichlet integral. The
following theorem settles the supercritical case, improving the results in [5].

Theorem (Braides and Piatnitski). If p > 1/2 then the limit is finite in
the Ambrosio and De Giorgi’s space of generalized special functions with bounded
variation GSBV (Ω) (see [2]) and there exists gp ≤ c < +∞ such that almost
surely

(4) Fω(u) =

∫

Ω

|∇u|2 dx +

∫

S(u)

gp(ν) dH1

for u ∈ GSBV (Ω). Here, S(u) denotes the set of discontinuity points for u and ν
its measure-theoretical normal.

Remark. (i) the definition of gp is obtained as follows (we sketch the definition):
with fixed a realization ω consider k, k′ in the ‘weak cluster’, and for such pairs
define the distance dω(k, k′) as the minimal path within the weak cluster joining

the two points. Then it can be proved that as k, k′ → +∞ and (k−k′)
|k−k′| → ν the ratio

dω(k, k′)/|k − k′| converges to a limit gp(ν), and gp is almost surely independent
of ω;
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(ii) the main technical point to prove the theorem above is an ‘optimality’
lemma. Again loosely speaking, this asserts that almost surely if we have k − k′

large enough and we have a path joining the two points with length less than
(gp((k − k′)/|k − k′|)− δ)|k − k′| then there exists a fixed proportion Lδ > 0 such
that the number of strong connections within that path exceeds Lδ|k − k′|.

The theorem above was presented as a conjecture in [4], and will be included
in an improved version of [5].
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Dispersion and localization in a damaging multi–phase medium

René de Borst

(joint work with Marie-Angèle Abellan)

For a fluid–saturated, one–dimensional continuum, the balances of momentum
and mass read in an incremental format, e.g. [1] for a complete derivation:

(1)
∂σ̇s

∂x
+ nfK−1(v̇f − v̇s) − ρs

∂v̇s

∂t
− ρf

∂v̇f

∂t
= 0

and

(2) α
∂2v̇s

∂x2
+ nf

(
∂2v̇f

∂x2
− ∂2v̇s

∂x2

)
− nf(KQ)−1

(
∂v̇f

∂t
− ∂v̇s

∂t

)
= 0

They are supplemented by the kinematic relation and the incremental stress–strain
relation, which, after combination, read:

(3) σ̇s = Etan ∂u̇s

∂x

with Etan the tangential stiffness modulus of the solid.
To analyse the characteristics of wave propagation in the two–phase medium

defined in the preceding section, a damped, harmonic wave is considered:

(4)

(
δu̇s

δu̇f

)
=

(
As

Af

)
exp (λrt + i(kx − ωt))

with λr representing the damping and ω the angular frequency. Substitution of
this identity into eqs (1)–(2), using eq. (3), requiring that a non-trivial solution
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can be found for the resulting set of homogeneous equations and decomposing into
real and imaginary parts leads to:

(5) 8λ3
r + 8ak2λ2

r + 2(a2k2 + b)k2λr + (ab − c)k4 = 0

and

(6) ω2 = 3λ2
r + 2ak2λr + bk2

with

(7) a =
KQ(ρs + (nf − α)ρ′f )

ρs + ρf
, b =

Etan + αQ

ρs + ρf
, c =

KQEtan

ρs + ρf

Evidently, wave propagation is dispersive, since eq. (6) is such that the phase
velocity cf = ω/k is dependent on the wave number k, cf. [2, 3]. Taking the long
wave–length limit in eq. (5), i.e. k → 0, yields λr → 0. According to eq. (6)
and after substitution of eq. (7b), we obtain an explicit expression for the phase
velocity:

(8) cf =
ω

k
=

√
Etan + αQ

ρs + ρf

Using Cardano’s formulas, eq. (5) can be solved explicitly. For the short wave-
length limit, i.e. when k → ∞, we obtain that the discriminant D → 0, which
identifies the existence of three real roots for λr in this limiting case, two of them
being equal. For the single root we obtain that λr → 0. This implies that this
solution has no damping properties and, therefore, gives no regularization. For
the double root we find that λr ∼ −k2. From eq. (6) the expression for the phase
velocity then becomes proportional to the wave number, cf ∼ k (please note that
for strain softening cf will normally be imaginary). In view of eq. (4) and in
analogy with a single–phase rate–dependent medium [4], an internal length scale
can be defined as:

(9) ℓ = lim
k→∞

(
− cf

λr

)
∼ lim

k→∞
k−1 = 0

which indicates that the internal length scale ℓ vanishes in the short wave–length
limit.

1. NUMERICAL EXAMPLES

To verify and elucidate the theoretical results of the preceding section, a finite
difference analysis has been carried out. The spatial derivatives in eqs (1) and (2)
have been approximated with a second–order accurate finite difference scheme.
Explicit forward finite differences have been used to approximate the temporal
derivatives, which is first-order accurate. The choice for a fully explicit time inte-
gration scheme was motivated by the analysis of Benallal and Comi [3], in which
they showed that in this case no numerical length scale was introduced in the
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analysis, apart from the grid spacing. As implied in eqs (1) and (2) the veloci-
ties vs and vf of the solid skeleton and the fluid have been taken as fundamental
unknowns and the displacements have been obtained by integration.

σ σ

εε

σ

t

0

u

σy

t0

Figure 1. Applied stress as function of time (left) and local
stress–strain diagram (right)

.

All calculations have been carried out for a bar with a length L = 100 m.
For the solid material, a Young’s modulus E = 20 GPa and an absolute mass
density ρ′s = 2000 kg/m3 have been assumed. For the fluid, an absolute mass
density ρ′f = 1000 kg/m3 was adopted and a compressibility modulus Q = 5 GPa
was assumed. As regards the porosity, a value nf = 0.3 was adopted and in the
reference calculations α = 0.6 and the permeability K = 10−10 m3/Ns. In all
cases, the external compressive stress was applied according to the scheme shown
in Figure 1, with a rise time t0 = 0.05 s to reach the peak level σ0 = 1.5 MPa. A
time step ∆t = 0.5 · 10−3 s was adopted, which is about half the critical time step
for this explicit scheme.

0 10 20 30 40 50 60 70 80 90 100
x [m]

1

2

3

4

5

6

st
ra

in
 [x

 0
.0

00
1]

0 10 20 30 40 50 60 70 80 90 100
x [m]

1

2

3

4

5

6

st
ra

in
 [x

 0
.0

00
1]

Figure 2. Strain profiles along the bar for 101 (left) and 126
(right) grid points and time step ∆t = 0.5 · 10−3 s

.

Upon reflection at the right boundary, the stress intensity doubles and the stress
in the solid exceeds the yield strength σy = 2.5 MPa and enters a linear descending
branch with an ultimate strain ǫu = 1.125·10−3, see Figure 1. Figure 2 (left) shows
that a Dirac–like strain distribution develops immediately upon wave reflection.
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This is logical, since a standard two–phase medium does not have regularizing
properties. To further strengthen this observation the analysis was repeated with
a slightly refined mesh (126 grid points), which resulted in a marked increase of
the localized strain (Figure 2 – right), which has been plotted on the same scale
as the results of the original discretization in Figure 2. In [1] it has been shown
that also the time step strongly influences the results, cf. [3].
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Gaseous Flows with Multicomponent Transport and Complex
Chemistry

Vincent Giovangigli

Multicomponent reactive flows with complex chemistry and detailed transport
phenomena arise in various engineering applications such as combustion, crystal
growth, atmospheric reentry, or chemical reactors. This is a strong motivation for
investigating the corresponding governing equations and analyzing their mathe-
matical structure and properties [7].

We discuss the governing equations for multicomponent reactive flows as ob-
tained from the kinetic theory of gases [4, 7]. These equations can be split into
conservation equations, expressions transport fluxes, transport coefficients, and
thermochemistry. The evaluation of transport coefficients—which are not explic-
itly given by the kinetic theory—requires solving transport linear systems. The
mathematical structure of the transport linear systems has been investigated and
has led to fast and accurate iterative solutions as well as direct inversions [3, 7].
A powerful library of computer programs for evaluating multicomponent trans-
port coefficients is available at the Authors’s web site for academic purposes. The
mathematical properties of the transport coefficients can also be obtained from
that of the transport linear systems [11, 6, 9].

We next investigate the Cauchy problem and obtain global existence theorems
around constant equilibrium states as well as asymptotic stability and decay esti-
mates [13, 11]. The system of partial differential equations is first symmetrized by
using entropic variables and then rewritten in normal form, that is, in the form of
a hyperbolic–parabolic composite system. All normal forms can also be character-
ized when the nullspace naturally associated with dissipation matrices is invariant.
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Global existence in then obtained by using entropic estimates and local dissipa-
tivity properties of linearized equations. In particular, the linearized normal form
is strictly dissipative and the chemistry source terms are locally stable.

On the other hand, traveling waves in inert or reactive flows can be classified into
deflagration and detonation waves [16]. In the context of combustion—which does
not decrease the generality of the problem but makes things more explicit—weak
deflagration corresponds to plane laminar flames. The anchored flame problem has
been investigated with complex chemistry and detailed transport by using entropic
estimates and the Leray–Schauder topological degree theory [6]. A key point is that
entropy production estimates associated with multicomponent diffusion typically
yields estimates of concentration gradients squared divided by concentrations. An
important tool is also the exponential decay of entropy production residuals close
to equilibrium [6].

These reactive flow models can also be used to describe gas mixtures in full
vibrational disequilibrium when each vibrational quantum level is treated as a
separate “chemical species” allowing detailed state-to-state relaxation models [11].
When the vibrational quantum levels are partially at equilibrium between them but
not at equilibrium with the translational/rotational states—allowing the definition
of a vibrational temperature—a different structure is obtained

The case of infinitely fast chemistry, that is, the case of equilibrium flows can
also be embedded in the same framework [7]. In this situation, one has to solve the
momentum and energy equations together with equations expressing the conserva-
tion of atomic elements These results have recently be extended to the situation of
partial chemical equilibrium [12]. Note, however, that the mathematical structure
of numerous simplified chemistry methods is still obscure at variance with partial
equilibrium.

The system of partial differential equations modeling reactive ambipolar plas-
mas can also be embedded in this framework [8]. The ambipolar—or zero current—
model is obtained from general plasmas equations in the limit of vanishing debye
length. In this model, the electric field is expressed as a linear combination of
macroscopic variable gradients and the resulting system can be recast into a sym-
metric hyperbolic-parabolic composite form. Asymptotic stability of equilibrium
states, decay estimates, and continuous dependence of global solutions with respect
to vanishing electron mass are then established [8].

We have further studied a system of partial differential equations modeling
ionized magnetized reactive gas mixtures. In this model, dissipative fluxes are
anisotropic linear combinations of fluid variable gradients and also include zeroth
order contributions modeling the direct effect of electromagnetic forces. There are
also gradient dependent source terms like the conduction current in the Maxwell-
Ampere equation. We have introduced the notion of partial symmetrizability and
that of entropy for such systems of partial differential equations and recast the
systems into a partially normal form, that is, in the form of a quasilinear partially
symmetric hyperbolic-parabolic system. Using a result of Vol’Pert and Hudjaev,
we have proved local existence and uniqueness of a bounded smooth solution [9].
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Global existence of solutions and asymptotic stability is an open problem for such
nonisotropic systems.

Finally, numerical simulation of compressible flows is a very difficult task that
has been the subject of numerous textbooks and requires a solid background in
fluid mechanics and numerical analysis. The nature of compressible flows may
be very complex, with features such as shock fronts, boundary layers, turbulence,
acoustic waves, or instabilities. Taking into account chemical reactions dramat-
ically increases the difficulties, especially when detailed chemical and transport
models are considered. Interactions between chemistry and fluid mechanics are es-
pecially complex in reentry problems, combustion phenomena, or chemical vapor
deposition reactors.

An important aspect of complex chemistry flows is the presence of multiple
time scales. Indeed, chemical characteristic times can range typically from 10−8

seconds up to several second and there are also acoustic waves. In the presence of
multiple time scales, implicit methods are advantageous, since otherwise explicit
schemes would be limited by the smallest time scale [1, 2, 5, 7, 14, 15]. A second
potential difficulty associated with the multicomponent aspect is the presence of
multiple space scales. In combustion applications, for instance, the flame fronts
are very thin and typically require space steps of 10−3 cm whereas typical flow
scales may be of 10 cm. The multiple scales can only be solved by using adaptive
grids obtained by successive refinements or by moving grids for unsteady problems
[1, 2, 15]. Nonlinear discrete equations can be solved by using Newton’s method or
any generalization. The resulting large sparse linear systems must then be solved
by using a Krylov-type method, such as GMRES and More sophisticated meth-
ods involve coupled Newton–Krylov techniques. Evaluating aerothermochemistry
quantities is computationally expensive since they involve multiple sums and prod-
ucts. Optimal evaluation requires a low-level parallelization, e.g., by using vector
capabilities of computers, depending on the problem granularity.
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[8] V. Giovangigli and B. Graille, Asymptotic Stability of Equilibrium States for Ambipolar

Plasmas, Math. Mod. Meth. Appl. Sci., 14 (2004), 1361–1399.
[9] V. Giovangigli and B. Graille, The Local Cauchy Problem for Ionized Magnetized Reactive

Gas Mixtures, Math. Meth. Appl. Sci., 28 (2005), 1647–1672.



2790 Oberwolfach Report 49/2005

[10] V. Giovangigli and M. Massot, Asymptotic Stability of Equilibrium States for Multicompo-
nent Reactive Flows, Math. Mod. Meth. Appl. Sci., 8 (1998), 251–297.

[11] V. Giovangigli and M. Massot, The Local Cauchy Problem for Multicomponent Reactive
Flows in Full Vibrational Nonequilibrium, Math. Meth. Appl. Sci., 21 (1998), 1415–1439.

[12] V. Giovangigli and M. Massot, Entropic Structure of Multicomponent Reactive Flows with
Partial Equilibrium Reduced Chemistry, Math. Meth. Appl. Sci., 27 (2004), 739–768.

[13] S. Kawashima, Systems of hyperbolic-parabolic composite type, with application to the equa-
tions of magnetohydrodynamics, Doctoral Thesis, Kyoto University, 1984.

[14] B. Lucquin and O. Pironneau, Introduction to Scientific Computing, Wiley, Chichester,
(1998).

[15] E. Oran and J. P. Boris, Numerical Simulation of Reactive Flows, Elsevier, New York, 1987.
[16] F. A. Williams, Combustion Theory, Second ed., The Benjamin/Cummings Pub. Co. Inc.,

Melo park, 1985.

Uniqueness of weak solutions for a fluid-structure interaction problem

Giovanna Guidoboni

(joint work with Mariarosaria Padula)

Fluid-structure interaction problems arise in many fields of science, such as
aeroelasticity problems, fluttering of wings, dynamics of offshore structures sub-
jected to the cyclic sea currents and fluid flow in compliant conduits. The main
difficulty in the mathematical theory of fluid-structure interaction problems is asso-
ciated to the control of the regularity of the deformable boundary whose evolution
is an unknown of the problem. Few results are available in literature concerning
the existence of solutions to fluid-structure interaction problems [1, 2, 3, 4, 5].

The goal of the present work is to prove uniqueness of weak solutions for a
two-dimensional problem, where a layer of viscous incompressible fluid is confined
between a rigid plane and a deformable structure. Periodicity is assumed in the
horizontal direction and the structure is described as a linear viscoelastic beam.
Existence of weak solutions for this problem was proved in [5].

The classical proof of uniqueness starts by assuming that there exists two differ-
ent solutions corresponding to the same initial data. Then, energy estimates are
derived for the difference between these two solutions and uniqueness follows from
Gronwall’s lemma. In fluid-structure interaction problems, the two solutions are
defined in different domains which are unknowns of the problem as well. Therefore
the classical steps of the proof need to be modified in order to give meaning to the
difference between the two solutions.

Let S1 = (u1, η1) and S2 = (u2, η2) be two solutions corresponding to the same
initial data, where u is the velocity field of the fluid and η is the curve describing
the deformable boundary. The domains in which S1 and S2 are defined are

Ωη1
(t) = {Z = (X, Y ) ∈ R

2 |X ∈ Σ, 0 < Y < η1(x, t)},

Ωη2
(t) = {z = (x, y) ∈ R

2 |x ∈ Σ, 0 < y < η2(x, t)},
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respectively, where Σ is the horizontal periodicity cell. A time-dependent change
of coordinates is introduced to map Ωη1

(t) onto Ωη2
(t):

φt : Ωη1
(t) → Ωη2

(t)

Z → z =

{
x = X
y = Y η2

η1
.

Therefore, every function f(x, Y, t) defined on Ωη1
(t) is transformed in the function

f̂(x, Y, t) = f(x, η1

η2
y, t) defined on Ωη2

(t). The transformed velocity field is not

solenoidal, but the vector field v1 = JJ−1û1, where J is the Jacobian matrix of
the transformation and J its determinant, is divergence free.

Now the difference between S1 and S2 can be defined on the same domain Ωη2
(t)

and the difference in the velocity fields will be taken as u2 − JJ−1û1 to preserve
solenoidality. The regularity of the change of coordinates allows to obtain the
energy estimates for the difference and uniqueness follows from Gronwall’s lemma.

By introducing a slight modification in the definition of the change of coordi-
nates, this result, as well as the existence theorem in [5], can be proved also in the
case of a fluid layer contained between two deformable boundaries. This project is
strongly motivated by the modeling of blood flow in large arteries, and therefore
the next step is the study of existence and uniqueness of weak solutions when a
time-dependent pressure drop is present.
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Laboratory scale capillarity without capillary pressure

R. Hilfer

The accepted mathematical model for simultaneous flow of two immiscible New-
tonian fluids inside a rigid porous medium has serious shortcomings concerning
the correct incorporation of capillary forces, hysteresis and residual saturations.
Mathematicians in applied analysis have attempted to overcome this problem us-
ing homogenization of pore scale equations [1]. Here, an alternative formulation
is given that is based on the distinction between percolating and nonpercolating
fluid regions [2, 3]. The formulation does not require capillary pressure as an input
function thereby challenging the physical basis of the traditional model [4, 5].
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The equations in the residual decoupling approximation read

∂S1

∂t
− ∇

[
R−1

1 φS2
1

(
Πb∇S−β

3 + δP ∗
4 ∇Sδ−1

4 + (ρo − ρw)g
)]

= η2φρw

(
S2 − S∗

2 (∂Sw/∂t)

S∗
w(∂Sw/∂t) − Sw

)
∂Sw

∂t

∂S2

∂t
= −η2φρw

(
S2 − S∗

2 (∂Sw/∂t)

S∗
w(∂Sw/∂t) − Sw

)
∂Sw

∂t

∂S3

∂t
− ∇

[
R−1

3 φS2
3

(
Πa∇S−α

1 + γP ∗
2 ∇Sγ−1

2 + (ρw − ρo)g
)]

= η4φρo

(
S4 − S∗

4 (∂Sw/∂t)

1 − S∗
w(∂Sw/∂t) − So

)
∂Sw

∂t

∂S4

∂t
= −η4φρo

(
S4 − S∗

4 (∂Sw/∂t)

1 − S∗
w(∂Sw/∂t) − So

)
∂Sw

∂t

for the unknown saturations 0 ≤ S1(x, t), S2(x, t), S3(x, t), S4(x, t) ≤ 1 of the per-
colating (resp. nonpercolating) wetting (resp. nonwetting) fluids, and x ∈ S ⊂ R3,

t ∈ R+. The saturations fulfill
∑4

i=1 Si = 1 and Sw = S1 +S2 (resp. So = S3 +S4)
are the wetting (resp. nonwetting) saturation. In these equations φ denotes poro-
sity, R−1

1 , R−1
3 are the inverses of viscous resistance coefficient matrices. The scalar

parameters Πa, Πb, α, β, γ, η2, η4 can be determined from experiment. The fluid
densities are ρo for the nonwetting fluid and ρw for the wetting fluid. The non-
linear functionals S∗

2 (∂Sw/∂t), S∗
4 (∂Sw/∂t) and S∗

w(∂Sw/∂t) describe the breakup
and coalescence of fluids analogous to a chemical reaction. A preliminary analysis
of these equations indicates that, under certain conditions, their solutions can re-
produce all quasistatic phenomena of capillary hysteresis observed in experiment.
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Riemann solvers for two-phase flow through a change in rock type

Jérôme Jaffré

(joint work with Adimurthi, Siddhartha, Veerappa Gowda)

The purpose of this communication is to show how to extend the Godunov nu-
merical flux to the case with a change of rock type which results in a discontinuity
in space for the flux function of the phase conservation law. In addition we claim
that in this case cell-centered finite volume schemes using the upstream mobility
flux do not converge to the entropy satisfying solution.

Homogeneous two-phase flow

Under the assumptions that capillary effects are neglected, two-phase flow in a
porous medium is modeled by a nonlinear hyperbolic equation:

φ
∂S

∂t
+

∂f

∂x
= 0

where φ is the porosity of the rock, S = S1 is the saturation of phase 1 which
lies in a bounded interval [0, 1]. The flux function f is the Darcy velocity ϕ1 of
phase 1 and has the form

(1) f = ϕ1 =
λ1

λ1 + λ2
[q + (g1 − g2)λ2].

Here q = ϕ1 + ϕ2 denotes the total Darcy velocity where ϕℓ, ℓ = 1, 2, denotes the
Darcy velocity of phase ℓ with, for the second phase,

ϕ2 =
λ2

λ1 + λ2
[q + (g2 − g1)λ1].

Since the flow is assumed to be incompressible, the total Darcy velocity q is inde-
pendent of the space variable x.

The quantities λℓ, ℓ = 1, 2 are the effective mobilities. They are products of the
absolute permeability K by the mobilities kℓ : λℓ = Kkℓ, ℓ = 1, 2. The absolute
permeability K may depend on x and the quantities kℓ and λℓ are functions of S
which satisfy the following properties :

k1 andλ1 are increasing functions ofS, k1(0) = λ1(0) = 0,
k2 andλ2 are decreasing functions ofS, k2(1) = λ2(1) = 0.

We also shall assume that these functions are smooth functions of the saturation
S and so is the flux function f .

The gravity constants gℓ, ℓ = 1, 2 of the phases are gℓ = gρℓ
dx

dz
, ℓ = 1, 2 , with

g the acceleration due to gravity, ρℓ the density of phase ℓ and z is the vertical
position of the point of abscissa x.

Observe that with the above hypothesis, f is a function with at most one
maxima and no minima in [0, 1] with f(0) = 0 and f(1) = q respectively.
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We restrict ourselves to one-dimensional finite volume methods and we focus
on the flux calculation which must be done at the intercell interfaces. In the
multidimensional case, most numerical methods still use the one-dimensional flux
calculation in the direction normal to the boundaries of the discretization cells.

Two numerical flux calculations are under consideration, the Godunov flux
and the upstream mobility numerical flux, the latter being widely used among
hydrogeologists and petroleum reservoir engineers.

For the Godunov flux, taking into account the particular shape of the two-phase
flow flux function (1)– it has just one global and local extremum –,a new formula
was recently introduced:

(2) FG(a, b) = min{f(min{a, θ}), f(max{θ, b})},
where a and b are the left and right values of the saturation and θ is the point
where f reaches its maximum. The advantage of this formula, compared to the
standard one, is that it can be readily extended to the case with a change of rock
type, that is when the flux function is changing because of a rock heterogeneity.

The upstream mobility flux is defined by the formulas

(3)
FUM (a, b) = ϕ1 =

λ∗
1

λ∗
1 + λ∗

2

[q + (g1 − g2)λ
∗
2],

ϕ2 =
λ∗

2

λ∗
1 + λ∗

2

[q + (g2 − g1)λ
∗
1],

with the phase mobilities λ∗ calculated with the values which are upstream with
respect to the corresponding phase flow:

λ∗
ℓ =

{
λℓ(a) if ϕℓ > 0,
λℓ(b) if ϕℓ ≤ 0.

This numerical flux is the favorite flux calculation among hydrogeologists and
petroleum reservoir engineers.

Cell-centered finite volume methods using either the Godunov flux or the up-
stream mobility flux are proven to calculate a solution converging to the entropy
satisfying solution in the homogeneous case [1].

The case with a change of rock type

In many applications, the porous medium is not homogenous. Let us consider a
point where the rock type is changing. At this point the porosity and the mobilities
are changing, and so does the flux function f , and the question is now to define a
suitable numerical flux calculation.

To distinguish the rock types, we introduce the upper indices I and II respec-
tively for the left and right rock types.

Using formula (2) the Godunov flux can be easily extended to this case as

F
G

(a, b) = min{f I(min{a, θI}), f II(max{θII, b})}.
A complete analysis of the associated finite volume scheme is carried out in [2].
This includes definition of an entropy condition and proof of convergence to the
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entropy satisfying solution. It also includes existence and uniqueness of the con-
tinuous problem.

To extend the upstream mobility flux is also straightforward:

F
UM

(a, b) = ϕ1 =
λ∗

1

λ∗
1 + λ∗

2

[q + (g1 − g2)λ
∗
2],

ϕ2 =
λ∗

2

λ∗
1 + λ∗

2

[q + (g2 − g1)λ
∗
1]

with λ∗
ℓ =

{
λI

ℓ(a) if ϕℓ > 0,

λII
ℓ (b) if ϕℓ ≤ 0.

For this numerical flux it is only possible to prove convergence to a weak solu-
tion, and in [3] one can see examples where the method does not find the entropy
solution. Therefore it si not possible to prove convergence to the entropy satisfying
solution.

This was not observed before by engineers because completely wrong solution

are calculated with the upstream mobility flux only in certain configurations of f I

and f II.
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[3] M. Siddhartha and J. Jaffré, On the upstream mobility scheme for two-phase flow in porous
media, submitted.

Numerical Methods for Chemistry and for Coupling Transport with
Chemistry in Porous Media

Michel Kern

(joint work with Jocelyne Erhel)

The simulation of multispecies reacting systems in porous media is of impor-
tance in several different fields: for computing the near field in nuclear waste
simulations, in the treatment of bio-remediation, and in the evaluation of under-
ground water quality.

Multi-species chemistry involves the solution of ordinary differential equations
(if the reactions are kinetic) or nonlinear algebraic equations (if we assume local
equilibrium). When simulating a coupled system, these equations have to be solved
at each (grid) point, and at every time (step), leading to a huge coupled non-linear
system. As has been observed several times, it is essential to use efficient numerical
methods so as to be able to handle the size of systems occurring in the applications.
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Methods for solving the chemical system

As we stated above, and assuming local equilibrium, a batch chemical system
is modeled by mass action laws, and mass conservation equations, leading to a set
of non-linear algebraic equations.

A (closed) chemical system involving Nr equilibrium reactions can be rewritten
so that each reaction expresses the formation of a single secondary species in terms
of several component species. Each reaction gives rise to a mass action law

(1) xi = Ki

Nc∏

j=1

x
rij

j , i = 1, . . . , Nr,

where cj (resp. xi) is the concentration of the ith component (resp. secondary
species, mineral species), and where rij and are stoichiometric coefficients.

Precipitation–dissolution reactions introduces additional difficulties, as these
are reactions with a threshold: they only take place if the solubility product reaches
1. For each mineral, the mass action law (1) has to be replaced by

(2)

{
pk = 0 if Πk < 1

Πk = 1 otherwise ,

where the solubility product Πk is defined by

(3) Πk = Kp
k

Nc∏

j=1

c
djk

k , , j = 1, . . . , Np.

We also write a mass conservation equation for each component:

(4) Tj = cj +

Nr∑

i=1

rijxi +

Np∑

k=1

dkjpk, j = 1, . . . , Nc

Equations (4) and (1) together form a system of nonlinear algebraic equations. In
a complex system with several mineral species, it may not be easy to guess which
species will actually precipitate (or dissolve), and the procedure most often used
by practitioners involve a expensive (a non-linear system has to be solved each
time), and potentially hazardous (it might theoretically enter a cycle) combinato-
rial procedure.

We propose to reformulate the problem as a non-linear complementarity prob-
lem, leading to a system similar to the KKT equations in inequality constrained
optimization. A possibility for solving this system is to relax the complementarity
constraint, and to use interior points methods to solve the system. At each itera-
tion, the Newton direction has to be modified to ensure that the iterates remain
“sufficiently positive”, and the relaxation parameters tends to 0. The advantage
of the method is that it converges to the solution of the original problem without
having to specify a priori which minerals will or will not precipitate. The main
drawback is that the system to be solved is larger than the original one, and that
intermediate linear systems may become very ill-conditioned. See [1], [2].
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Figure 1. Equilibrium diagram for iron. For each value of the
pH and pE, an equilibrium system involving 9 aqueous and 4
mineral species is solved using the above method.

Methods for coupling transport with chemistry

When looking at a coupled system, we take into account sorption reactions
between the porous matrix and the species in solution. The role of chemistry is
simply to separate the species into mobile and immobile species (immobile species
come from sorption, and are not subject to transport). In this work, we assume
that the medium is saturated, and that surface reactions do not change the poros-
ity. We have not yet taken into account precipitation dissolution reactions. For
each species, we have to consider both its mobile and fixed concentration.

We formulate the coupled problem keeping as main unknowns both the mobile
and fixed concentrations of all the component species, and also the total concen-
trations. If we again assume local equilibrium, then the coupled system may be
written as a DAE. Since methods and software for solving DAEs have reached a
high level of maturity (at least for small index system, which is the case here), it
is natural to try and use this technology.

An advantage of this formulation, which is closely related to the Direct Substitu-
tion Approach used by the geochemists [3], [4], is that transport and chemistry are
on the same level. At each time step, a single non-linear system has to be solved,
and the Jacobian matrix couples both the transport matrix, and the chemistry
Jacobian matrix.

We have implemented a first version using Matlab, for 1D models. An important
implementation issue was the use of a sparse linear system solver. Comparisons
on a simple model show efficiency gains up to 5 with respect to the usual block
Gauss-Seidel method.
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One important issue for solving more realistic models will the size of the system
to be solved, as all chemical species at all grid points are coupled. For any realistic
configuration, it will not be possible to form, let alone factor, the Jacobian matrix.
A better solution is to use Newton–Krylov methods, where the linear system at
each Newton iteration is solved by an iterative method. We can thus keep the fast
convergence of Newton’s method, while only requiring Jacobian matrix–vector
products, and these can be approximated by finite differences.
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Viscous fluid flow in bifurcating channels and pipes

Michael Lenzinger

The study of fluid flow through branching structures is of special interest in many
applications from different sciences, like e.g. biology, physiology or engineering.
The arterial-venous system in the human body is a typical physiological example.
Often, flux and pressure distributions in such networks are computed using simple
one-dimensional models based on a linear flux-pressure relation and Kirchhoff’s
law of the balancing fluxes in each node point (cf. e.g. [4]). In contrast, our aim is
to establish an effective approximation for the Navier-Stokes flow of a viscous New-
tonian fluid in a bifurcation Ωǫ of thin three-dimensional pipes with a diameter-to-
length ratio of order O(ǫ). Our model is based on the steady-state Navier-Stokes
equations with pressure conditions on the outflow boundaries. Existence and local
uniqueness is proven under the assumption of small data represented by a Reynolds
number Reǫ of order O(ǫ). The presented results are elaborated in [2].
The aim is to construct an asymptotic expansion in powers of ǫ and Reǫ based on
Poiseuille flow for the solution of this Navier-Stokes problem. Our approach ex-
tends the ideas developed in [3], analyzing the influence of the bifurcation geometry
on the fluid flow by introducing local Stokes problems in the junction and estab-
lishing a formal method of computing the pressure drop and the flux in the pipes.
Furthermore, we show that the solution of the Stokes problem in the junction of
diameter O(M) approximates the solution of the corresponding boundary layer
problem in the infinite bifurcation (called ”Leray’s problem” in literature, cf. [1])
up to an error decaying exponentially in M . The construction of the approximation
for the Navier-Stokes solution then is presented and its properties are discussed.
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The approximation is based on the idea of a continuous matching of the Poiseuille
velocity to the solution of the junction problem on each pipe-junction interface.
The main result of our analysis is the derivation of error estimates for the ap-
proximation in powers of ǫ and Reǫ according to the designated approximation
accuracy. The obtained results generalize and improve the existing ones in litera-
ture (cf. [3]). In addition, our results show that Kirchhoff’s law has to be corrected
in O(ǫ) in order to obtain an adequate error estimate for the gradient of velocity
in L2(Ωǫ).
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Rigorous Justification of the Reynolds Equations for Gas Lubrication

Eduard Marušić-Paloka

(joint work with Maja Starčević)

1. Introduction

Fluid film bearings are the machine elements consisting of two (in our case
rigid) surfaces in relative motion and a thin gap between them filled by a fluid
(lubricant).

We are interested in studying the equations governing that thin fluid film. In
our model, one of those surfaces is rough and the shape of its asperities plays an
important role in our study. Another important feature are the physical proper-
ties of the fluid. We are interested in case when the fluid is not a liquid but a
gas, in most applications, a clean dry air. There are several differences in qual-
itative behavior of gases compared to liquids, mainly: compressibility and small
viscosities.

In general, gas bearing operates with higher velocity and smaller clearance ratio
than the liquid one. Although the gas viscosity is small (typically of order 10−5)
we rarely have to consider the turbulence. In fact, due to the small typical length
(gap thickness smaller than 1µm is not uncommon) the Reynolds numbers are
usually smaller than 100 (see e.g. [7]). The most common examples where the gas
lubrication appears are computer hard discs, magnetic tapes and some high preci-
sion measuring devices. To fix the ideas we give some details in case of magnetic
hard disc. The model describing such situation was formally derived in [2]. Two
surfaces, in that case are the disc and the magnetic head. The hard disc surface is
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artificially roughened in order to control the interfacial static force. In order to get
higher recording density and, therefore, improve the performance of the recording
device the gap between two surfaces (flying height) has been very small and for
a present hard-disc the distance between the disc and the head ranges between 5
and 20 nanometers1. The typical speed of such device is between 5000 and 10000
rounds per minute (usually smaller for notebooks then for desktop computers).
With disc radius of 5-10 cm it gives the characteristic velocity between 20 and 100
m/sec. Hard discs have a small pressure-equalization port keeping the internal
pressure equal to the external so the characteristic pressure is between 1000 and
1020 m bar. The typical dry air density is 1.2 [kg/m3]. Dry air viscosity equals
1.8 · 10−5 [kg/m · sec.]. Recommended operating temperature, for most drives
is from 35 to 40 Celsius. In the above situation the Reynolds number2 would be
of order 10−2, i.e., deeply in the laminar regime. In fact, in such circumstances it
would be reasonable to neglect the effects of inertia.
As in the case of incompressible fluids, the lower dimensional model for describing
the process of lubrication by compressible fluid, called the compressible Reynolds
equation, has been first derived in the engineering literature, as for instance [1],
[2], [3], [7].
However, no rigorous results of that kind for compressible fluids are known to us.
The basic difficulty is that the weak convergence method used for compressible
models does not pass directly here due to the nonlinearity of the continuity equa-
tion.
The goal of this paper is to derive the isothermal Reynolds model for gas lubrica-
tion using the rigorous asymptotic analysis.

2. Position of the problem

To derive the model we start from equations of motion governing the compress-
ible, stationary flow through a thin domain with thickness ε described by the shape
function h:

Ωε = {x = (x′, xn) ∈ Rn ; x′ = (x1, · · · , xn−1) ∈ O , 0 < xn < ε h(x′) } ,

where O ⊂ Rn−1 is a bounded smooth domain and h : O → R is a smooth function
such that there exist two constants hM , hm > 0 satisfying hm ≤ h(x′) ≤ hM .

Let Γε = {x = (x′, xn) ∈ Rn ; x′ = (x1, · · · , xn−1) ∈ ∂O , 0 < xn < ε h(x′) }
be the lateral boundary.

We shall also need rescaled domain and it’s lateral boundary

Ω = {(x′, yn) ∈ Rn ; x′ = (x1, · · · , xn−1) ∈ O , 0 < yn < h(x′) } ,

Γ = {(x′, yn) ∈ Rn ; x′ = (x1, · · · , xn−1) ∈ ∂O , 0 < yn < h(x′) }
The unknowns in the model are uε - the velocity , pε - the pressure , ρε − the

density. We suppose that the fluid is viscous and compressible and that the flow is

11000 to 5000 times thinner then a human hair
2the one obtained by taking the flying height as a characteristic distance
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stationary. As usual, we use the ideal gas law ρ = p
R T where T is the temperature

[K] and R is the gas constant [J/kg K] (equals 287.05 for dry air).
Typically, in the engineering literature, the temperature variations in the thin

film are treated as negligible (see e.g. [1], [3], [7]) and the temperature is supposed
to be constant, i.e. equal to the ambiental temperature. Thus, we suppose that
the flow is isothermal and, consequently, verifying the simple pressure-density
relation pε = aε ρε , where aε = Tε R > 0 is a constant. To get the idea, on the
room temperature (between 20 and 25 C0) and the typical atmospheric pressure
between 1000 and 1020 m bar, the value of aε would be of order 10−5. We also
neglect the inertial term, i.e. we assume that the Reynolds number Reε ≪ 1. The
total quantity of the fluid in the domain is prescribed and equal to Mε > 0, i.e.
Mε =

∫
Ωε

ρε(x) dx .

The velocity of the relative motion of two surfaces is denoted by V ∈ H1
0 (O)n.

Of course, we assume that V ⊥ en with en = (0, · · · , 0, 1) . Our system then
reads

−µ∆uε − (λ + µ)∇(div uε ) + ∇pε = 0 , div(ρε uε) = 0 in Ωε(1)

uε = 0 for xn = ε h(x′) , uε = V for xn = 0 , uε = 0 on Γε .(2)

The problem is solvable and admits a solution uε ∈ H1(Ωε)
n , pε , ρε ∈ L2(Ωε)

such that ρε ≥ 0 and
∫
Ωε

ρε = Mε. The existence theorem for (1)-(2) can be

found in [4], section 6.10, page 162 (except for the non-homogeneous bound-
ary condition and the fact that we are dealing with a non-smooth domain but
that can be handled). For our asymptotic analysis we need additional hypothesis
limε→0 ε2aε

Mε

|Ωε| = M .

3. Asymptotic analysis

We first rewrite the problem on the fixed domain Ω by change of variables. We
define

(3) Uε(x′, yn) = uε(x′, ε yn) , P ε(x′, yn) = pε(x′, ε yn) .

We can then write the equation (1) in the form

−µ

(
∂2Uε

α

∂y2
n

+ ε2∆x′Uε
α

)
− (λ + µ)

(
ε

∂2Uε
n

∂yn∂xα
+(4)

ε2 ∂

∂xα
divx′Uε

)
+ ε2 ∂P ε

∂xα
= 0, α = 1, . . . , n − 1

−µ

(
∂2Uε

n

∂y2
n

+ ε2∆x′Uε
n

)
− (λ + µ)

(
∂2Uε

n

∂y2
n

+ ε
∂

∂yn
divx′Uε

)
+ ε

∂P ε

∂yn
= 0(5)

∂(P ε Uε
n)

∂yn
+ ε divx′(P ε Uε) = 0 in Ω ,(6)
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We deduce by standard methods the following estimates for Uε and P ε

(7)

|Uε|L2(Ω) ≤ C ,

∣∣∣∣
∂Uε

∂yn

∣∣∣∣
L2(Ω)

≤ C , |∇x′Uε|L2(Ω) ≤ C ε−1 , ε2 |P ε|L2(Ω) ≤ C .

3.1. Passing to the limit. Using the estimates (7), we conclude that there exist
U ∈ Y (Ω) = {W ∈ L2(Ω) ; ∂W

∂yn
∈ L2(Ω) } and P ∈ L2(O) and a subsequences,

denoted for simplicity by the same symbol {Uε}ε>0 , {P ε}ε>0 such that

(8) Uε ⇀ U ,
∂Uε

∂yn
⇀

∂U

∂yn
, ε2 P ε ⇀ P weakly in L2(Ω) .

Furthermore

(9) U(x′, 0) = V , U(x′, h(x′)) = 0 .

With that we can only prove that the limit functions U and P satisfy the
Reynolds equation

(10) U = − 1

2µ
yn (h − yn) ∇x′ P + (1 − yn

h(x′)
) V .

Furthermore P ∈ H1(O) . However to pass to the limit in the continuity
equation we need a strong convergence either for the pressure or for the velocity. By

decomposing the pressure P ε = 1
h

∫ h

0 P ε(x′, yn) dyn+
(
P ε − 1

h

∫ h

0 P ε(x′, yn) dyn

)

we can prove that indeed

ε2 1

h

∫ h

0

P εdyn → P strongly in L2(O) .

We also get the estimate for the reminder in a norm worst then L2 but better then
H−1 :∣∣∣∣∣ ε2

∫

Ω

(P ε − 1

h

∫ h

0

P εdyn) ϕ

∣∣∣∣∣ ≤ C(ε |ϕ|L2(Ω) + ε3 |∇x′ ϕ|L2(Ω) ) , ϕ ∈ H1
0 (Ω) .

It is sufficient to obtain the main result:

Theorem 2. Let (uε, pε) be the solution of the equations of motion (1)-(2) and
let Uε , P ε be defined from it by change of variables (3). Then

Uε → U weakly in Y (Ω)(11)

ε2P ε → P strongly in L2(Ω)(12)

where (U, P ) is a unique solution of the compressible Reynolds equations

U = − 1

2µ
yn (h − yn) ∇x′ P + (1 − yn

h(x′)
) V(13)

divx′ (P U) = 0 in O , P U · n = 0 on ∂O , P ≥ 0 ,

∫

Ω

P = M |Ω|(14)

and U(x′) =
∫ h(x′)

0 U(x′, ξ) dξ.
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In case n = 2 Reynolds equation is an ODE and it can be solved explicitly.

Assume that V ≥ 0. We define the number d = 6µ
R

1

0
h(t)dt

∫ 1

0 h(t)
∫ t

0
V (s) ds
h2(s) dt .

In case M ≥ d the solution has a form P (x) = 6µ
∫ x

0
V (s) ds
h2(s) + M − d . It is

obviously smooth and strictly positive (except in case M = d, when P (0) = 0).

In case M < d we have a solution P (x) =

{
0 for 0 ≤ x ≤ x

6µ
∫ x

0
V (s) ds
h2(s) + M − d for x ≥ x

where x ∈]0, 1[ is the unique solution to the equation
∫ x

0
V (s) ds
h2(s) = d−M

6µ . It is

not smooth and equals zero on an interval.
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Computational Approaches for Flow through Stochastic Porous Media

Hermann G. Matthies

The flow through a porous medium is considered in a simple but prototypical
setting. Knowledge about the conductivity of the soil, the magnitude of source-
terms, or about the in- and out-flow boundary conditions is often very uncertain.
These uncertainties inherent in the model result in uncertainties in the results of
numerical simulations.

Stochastic methods are one way to model these uncertainties, and in our case we
are concerned with spatially varying randomness, and model this by random fields
[1, 75, 12]. If the physical system is described by a partial differential equation
(PDE), then the combination with the stochastic model results in a stochastic par-
tial differential equation (SPDE) [2]. The solution of the SPDE is again a random
field, describing both the expected response and quantifying its uncertainty.

SPDEs can be interpreted mathematically in several ways. At the moment we
concentrate on randomness in space. If evolution with stochastic input has to be
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considered, one may combine the techniques described here with the already well
established methods in that field [38]; for theoretical results, e.g. see [54].

One may distinguish—as in the case of stochastic ordinary differential equations
(SDEs)—between additive and multiplicative noise. As is well known from SDEs,
in the case of multiplicative noise one has to be more careful. A similar problem
occurs here. Additive noise—particularly for linear problems—is well known and
much simpler to deal with [40], even if the random fields are generalized to sto-
chastic distributions. With multiplicative noise on the other hand the product of
a random coefficient field and the solution may have no meaning [25]. As with
SDEs, it is a modelling decision how this is resolved [38].

Additive noise corresponds to the case where the right hand side—the loading
or the solution independent source term—is random, whereas when the operator is
random, we have multiplicative noise. In the first case it is the external influences
which are uncertain, in the latter it is the system under consideration itself. In
general, both uncertainties are present.

In an engineering setting, these models have been considered in different fields,
see for example [65, 15, 20, 24, 41, 42, 46, 48, 59]. Many different kinds of so-
lution procedures have been tried, but mostly Monte Carlo methods have been
used (e.g. [59, 15]). Alternatives to Monte Carlo methods, which first com-
pute the solution and then the required statistic, have been developed in the
field of stochastic mechanics—cf. [41, 42], for example perturbation methods, e.g.
[37, 65, 46], methods based on Neumann-series, e.g. [3], or the spectral stochastic
finite element-method (SSFEM), first proposed in [21]. The latter expands the
input random fields in eigenfunctions of their covariance kernels, and obtains the
solution by a Galerkin method in a space of stochastic ansatz functions. More
information, references and reviews on stochastic finite elements can be found in
[47, 66, 72, 67, 28, 52]. A somewhat specialized field is the area of structural
reliability, e.g. see [14, 24].

A theory of SPDEs where products between random fields are interpreted as
Wick [26] products was developed in [25]. This allows highly irregular random
fields as coefficients, and obtains the solution as a stochastic Kondratiev distrib-
ution. Its main shortcoming is that—e.g. for linear problems—higher statistical
moments of system parameters do not influence the mean of the solution, a contra-
diction to the results of homogenization theory. Another problem is the required
existence of strong solutions [25] to the PDE. These may be relaxed by a varia-
tional formulation [74, 48, 73], but nonetheless the Wick product seems not to be
the right model for the problems that we aim at.

For products interpreted in the usual sense, stronger regularity is required for
the coefficient random fields [10], still allowing the stochastic part of the solution to
be a Kondratiev distribution. A general variational setting for general randomness
has been given in [33, 53]. More restricted models have been considered in [13, 3,
4, 5].

One direction of numerical investigation focuses on computing the moments
of the solution, e.g. [2, 68, 69]. These are very common, but specific response
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descriptors. Often other functionals of the solution may be desired. Monte Carlo
(MC) methods can be used directly for this, but they require a high computational
effort [11]. Variance reduction techniques are employed to reduce this somewhat.
Quasi Monte Carlo (QMC) methods [11, 55] may reduce the computational effort
considerably without requiring much regularity. But often we have high regularity
in the stochastic variables, and this is not exploited by QMC methods. The
problem of computing such high-dimensional integrals comes up as a subtask also
in the stochastic Galerkin method which we pursue. The integrands are often
very smooth, and MC and QMC methods do not take much advantage out of this,
although some results in that direction are in [6, 7, 8].

For this subtask, we propose sparse grid (Smolyak) quadrature methods as
an efficient alternative. These have first been described in [71], and have found
increasing attention in recent years, e.g. [56, 57, 17, 23, 58, 63, 61, 62, 34].

The stochastic Galerkin methods started from N. Wiener’s polynomial chaos,
a term coined in [76]. This has been used extensively in the theoretical white
noise analysis in stochastics, e.g. [25, 26, 44]. This device may of course also be
used in the simulation of random fields [70, 64]. Methods which are not based on
polynomial chaos but other expansions under additional assumptions are given in
[13, 3, 4, 5], where also convergence is addressed. In [27, 77, 78, 79], different bases
for the random variables are explored.

In general, the stochastic Galerkin methods allow a direct representation of the
solution. Following [21], where they have been proposed as a numerical device,
stochastic Galerkin methods have been applied to various linear problems, e.g.
[22, 18, 19, 60, 49, 50, 51, 29, 16, 27, 77, 78, 79, 31, 32, 35, 36], using a variety
of numerical techniques to accelerate the solution. Recently, nonlinear problems
with stochastic loads have been tackled, e.g. [78], and some first results of both a
theoretical and numerical nature for nonlinear stochastic operators are in [30]. A
convergence theory in has been started in [74, 9, 73], but we are very much at the
beginning.

These Galerkin methods allow us to have an explicit functional relationship
between the independent random variables and the solution—and this is contrast
with usual Monte Carlo approaches, so that subsequent evaluations of functionals—
statistics like the mean, covariance, or probabilities of exceedance—are very cheap.
This may be seen as a way to systematically calculate more and more accurate
“response surfaces” [39].
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Homogenization of thin porous layers and applications to ion
transport through channels of biological membranes

Maria Neuss-Radu

(joint work with Willi Jäger)

Ion transport trough membranes is an important mechanism in regulating the
ion concentrations inside and outside living cells. Mathematical models and simu-
lations have to be used in order to study the ion transport more quantitatively.
However, so far models are formulated mainly phenomenologically and the geome-
tries are simplified, using compartmental (i. e. spatially one-dimensional) concepts
or reducing the processes in 3d to surfaces or curves. Reduction to a lower dimen-
sional geometry may be justified only under special assumptions, which are not
justified for diffusion and transport of ions in living cells, see [3].

In our contribution the macroscopic behavior of membranes including channels
will be derived rigorously from microscale models using the theory of asymptotic
analysis and homogenization. We extend the classic notions of two scale conver-
gence and localization method to sequences of functions defined on thin porous
layers and prove compactness results with respect to the extended notions.

We start with the following microscopic model: consider two domains Ω±
ε ⊂ Rn

modelling the intracellular and extracellular space, separated by the membrane
ΩM

ε ⊂ Rn perforated by channels placed in periodically distributed cells. The
thickness of the membrane and the diameter of the cells are of order ε, see Fig.1.

The transport of ions is modelled by the Nernst-Planck equations, properly
scaled in the channels. Thus the unknowns of our model are the ion concentration
uε and the electric potential φε. In the membrane channels we consider an addi-
tional concentration of charges vε, partially fixed to the channels, which model
the selectivity and gating properties of the channels. The restrictions of functions
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Figure 1. The domain Ωε and the standard cell Z.

defined on Ω to the subdomains Ω+
ε , Ω−

ε , and ΩM
ε are denoted by the superscripts

+, −, and M respectively. The equations modeling the ion transport are the
following:

∂tu
±
ε = div j±ε in (0, T )× Ω±

ε

−div(α±∇Φ±
ε ) = zuu±

ε in (0, T )× Ω±
ε

j±ε · ~ν = 0 on (0, T ) × (∂Ωε \ S±
ε )

u±
ε (0) = u0 on Ω±

ε

Φ±
ε = ΦD on (0, T ) × Γ±

D

∂Φ±
ε

∂~ν = 0 on (0, T ) × (∂Ωε \ (Γ±
D ∪ S±

ε ))

∂tu
M
ε = div jM

ε in (0, T )× ΩM
ε

∂tv
M
ε = div fM

ε in (0, T )× ΩM
ε

−div(εαM∇ΦM
ε ) = 1

ε (zuuM
ε + zvv

M
ε ) in (0, T )× ΩM

ε

jM
ε · ~ν = 0 on (0, T ) × [∂Ωε

M \ (S+
ε ∪ S−

ε )]

uM
ε (0) = u0 on ΩM

ε

∂ΦM
ε

∂~ν = 0 on (0, T ) × [∂Ωε
M \ (S+

ε ∪ S−
ε )]

The fluxes are defined as follows:

j±ε = −D±(∇u±
ε + µzu · u±

ε ∇Φ±
ε )

jM
ε = −εDM (∇uM

ε + µzu · uM
ε ∇ΦM

ε )

fM
ε = −εKM(∇vM

ε + µzv · vM
ε ∇ΦM

ε + vM
ε · ∇γε)

We see that the flux for vε contains an extra term modelling a retractive force (e.g.
Hook-type law). For the ion concentrations uε and the potential Φε we impose
natural transmission conditions on S+

ε and S−
ε .

In the limit ε → 0 the membrane modeled by the thin porous layer ΩM
ε reduces

to the interface Σ between the intracellular and extracellular spaces Ω+ and Ω−
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respectively and the important feature is to determine the appropriate transmis-
sion conditions for the limit concentrations across this interface. The first step in
doing this is to prove a priori estimates of the solutions in properly chosen function
spaces. Based on this a priori estimates and on the extensions of two scale conver-
gence and localization method to thin porous layers, we can proof convergence for
subsequences of uε, φε, vε to limit functions u0, φ0, v0 with respect to the adequate
topology. Finally we can prove the main result of our paper:

Theorem 1. The limit functions φ±
0 , u±

0 satisfy the Nernst-Planck-equations on
the domains Ω± together with the following effective transmission conditions on
the interface Σ

[Φ0]Σ := (Φ+
0 − Φ−

0 )(t, x̄, 0) =

∫

Z∗

v0(t, x̄, y)η(y)dy

+ |Z∗|(α+η+∂3Φ
+
0 (t, x̄, 0) − α−η−∂3Φ

−
0 (t, x̄, 0))

(∂3Φ
+
0 − ∂3Φ

−
0 )(t, x̄, 0) = −

∫

Z∗

v0(t, x̄, y)dy

(j+
0 · ν − j−0 · ν)(t, x̄, 0) = 0 i.e. the normal flux is continuous onΣ

(jM
0 · ν)(t, x̄, y) = cj(j

+
0 · ν)(t, x̄) for y ∈ S+ ∪ S−

The values η+ and η− are the constant values on S+ and S− of the boundary layer
function η ∈ V =

{
ϕ ∈ H1(Z∗), ϕ = const on S+and S−} , with zero mean value

on Z∗, satisfying for all ϕ ∈ V
∫

Z∗

αM∇η(y)∇ϕ(y)dy =
1

|S+|

∫

S+

ϕ(y)ds − 1

|S−|

∫

S−

ϕ(y)ds.

1 y
3

−1

1

η

−1

Figure 2. The boundary layer function η for Z∗ of cylindrical shape.

The limit functions φM
0 , uM

0 and vM
0 which enter the transmission conditions

are the solutions of the following local problems:

−∆yΦM
0 (t, x̄, y) = cM

v vM
0 (t, x̄, y), in [0, T ]× Σ × Z∗

ΦM
0 (t, x̄, y) = Φ+

0 (t, x̄), if y ∈ S+

ΦM
0 (t, x̄, y) = Φ−

0 (t, x̄), if y ∈ S−

(∇ΦM
0 · ν)(t, x̄, y) = 0, on ∂Z∗ \ (S+ ∪ S−)
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∇y(DM
u ∇yuM

0 + KM
u uM

0 ∇yΦM
0 )(t, x̄, y) = 0, in [0, T ]× Σ × Z∗

uM
0 (t, x̄, y) = u+

0 (t, x̄), if y ∈ S+

uM
0 (t, x̄, y) = u−

0 (t, x̄), if y ∈ S−

(∇uM
0 · ν)(t, x̄, y) = 0, on ∂Z∗ \ (S+ ∪ S−)

∇y(DM
v ∇yvM

0 + KM
v vM

0 ∇yΦM
0 + vM

0 ∇yγ) = 0, in [0, T ]× Σ × Z∗

(DM
v ∇yvM

0 + KM
v vM

0 ∇yΦM
0 + vM

0 ∇yγ) · ν = 0, on ∂Z∗
∫

Z∗
vM
0 (y) = c (conservation of charge)
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A non-equilibrium statistical mechanics approach to effective theories
of domain coarsening

Barbara Niethammer

(joint work with A. Hönig, F. Otto, J. Velázquez)

Background. In Ostwald Ripening, a fundamental process in the aging of
materials, many small particles of one phase embedded in another phase interact
by diffusional exchange to reduce the total interfacial area of the particles. Ex-
periments indicate that this process evolves after an initial transient time in a
statistically self-similar universal manner.

In the classical theory by Lifshitz, Slyozov and Wagner (LSW) [2] it is argued
in the regime of low volume fraction that the particles interact only via a spatially
constant mean-field u∞ which is determined by the constraint that the volume
fraction of particles is conserved. This approach yields a nonlocal evolution law
for the particle radius distribution:

∂tf + ∂R

( 1

R2
(Ru∞ − 1) f

)
= 0,

where u∞ is such that
∫

R3f(R) dR = const, that is u∞ =
R

f(R) dR
R

Rf(R) dR
.

Self-similar solutions. The above non-local transport equation has indeed a
one-parameter family of self-similar solutions with compact support. LSW predict
in their classical theory that one particular of those profiles characterizes the large-
time behavior of all solutions.
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Disadvantages of mean-field theory. It has been shown, however, that the
long-time behavior of the LSW-equation is not at all universal but depends very
sensitively on the data [4]. Roughly speaking, the dynamics are determined by
the details of the initial distribution of largest particles. Furthermore, a second
problem within the classical LSW-theory is that all self-similar profiles and the
corresponding coarsening rates do not well agree with experiments.

Higher order corrections. It is common belief that these inconsistencies of
the LSW model can be resolved by taking the finiteness of the volume fraction of
particles into account. In the LSW approach the underlying assumption is that
each particle communicates in the same way with all other particles. This however
neglects screening, which implies that a particle effectively only communicates with
particles in a certain range, the screening length. The correction term due to this
effect is of order φ1/2, the ratio between mean particle size and screening length.
In [1] we develop an efficient method to identify first order corrections and derive
a self-consistent theory in the framework of statistical mechanics which closes at
the level of the two-particle distribution function. This analysis recovers a result
by Marder [3] under natural assumptions on the data, whereas Marder makes an
ad-hoc assumption on the solution of the system itself. However, it is presently
not clear whether the resulting theory overcomes the weak selection problem of
self-similar asymptotic states.

Are collisions relevant? A second mechanism which induces corrections to
the mean-field model are collisions between particles. This effect was already
considered in the original work [2], but a careful analysis of the order of size of the
corresponding corrective terms has not been made. On a first glance, the effect of
particle collisions is smaller than the corrections due to screening since the fraction
of particles involved in collisions is proportional to φ. However, it turns out that
the relative size of the corrective terms are not the same for all particles, but that
they are larger for the largest particles in the system. Since those largest particles
determine the coarsening dynamics for large times, this effect is crucial. In [5] it is
conjectured that the effect of collisions between particles is the dominating effect
which drives the particle system toward a unique self-similar state. This theory is
thus somewhat similar in spirit to the Boltzmann equation for gas dynamics.
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Dissolution and precipitation processes in porous media: a pore scale
model

I. S. Pop

(joint work with C. J. van Duijn, V. M. Devigne)

We discuss a micro–scale model for precipitation and dissolution processes in a
porous medium. The void region is occupied by a fluid in which cations and
anions are dissolved. Under certain conditions, these ions can precipitate and
form a crystalline solid, which is attached to the surface of the grains (the porous
skeleton) and thus is immobile. The reverse reaction of dissolution is also possible.

This model is considered in [1] and represents the pore–scale analogue of the
one proposed in [4]. It builds on several components: the Stokes flow in the
pores, the transport of dissolved ions by convection and diffusion, and dissolu-
tion/precipitation reactions on the surface of the porous skeleton (grains).

General reactive porous media flow models, are surveyed, for example, in [3].
The particularity of the model considered here is in the description of the dissolu-
tion and precipitation processes taking place on the surface of the grains, involving
a multi–valued dissolution rate function. In mathematical terms, this translates
into a graph–type boundary condition that couples the convection–diffusion equa-
tion for the concentration of the ions to an ordinary differential equation defined
only on the grain boundary and describing the concentration of the precipitate.

Our main interest is focused on the chemistry, this being the challenging part
of the model. To be specific, we denote by Ω the void space of the porous medium.
Its boundary has an internal part (ΓG), which is the surface of the porous skeleton
(the grains), and an external part ΓD

⋃
ΓN , which is the outer boundary of the

domain.
Let ~q be the fluid velocity. We assume that the flow geometry, as well as

the fluid properties are not affected by the chemical processes. Then ~q can be
determined by solving the Stokes system, which is completely decoupled from the
other components of the model. Having computed ~q, we can determine c, the
electric charge inside the fluid. This is defined as the linear combination of the
concentrations of the two ions, the valences acting as coefficients. The reason for
doing so is twofold. First, c satisfies a linear convection diffusion equation with
standard boundary conditions. This equation depends only on ~q, and therefore
can be decoupled from the remaining part of the model. Next, once c is known, we
can give up the - say - anion concentration, which can be easily obtained after the
cation concentration u is determined. In this way we can restrict our investigations
to the reduced set of equations modeling the chemistry:





∂tu + ∇ · (~qu − D∇u) = 0, in (0, T )× Ω,
−D~ν · ∇u = εn∂tv, on (0, T ) × ΓG,

u = uD, on (0, T ) × ΓD,
~ν · ∇u = 0, on (0, T ) × ΓN ,

u = uI , in Ω, for t = 0,
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for the ion transport, and




∂tv = Da(r(u, c) − w), on (0, T ) × ΓG,
w ∈ H(v), on (0, T ) × ΓG,
v = vI , on ΓG, for t = 0,

for the precipitation and dissolution. Here v denotes the concentration of the pre-
cipitate, which is defined only on the interior boundary ΓG. The precipitation rate
r is a positive locally Lipschitz continuous function, increasing in u and decrea-
sing in c. By H we mean the Heaviside graph, and w is the actual value of the
dissolution rate.

All the quantities and variables in the above are dimensionless. D denotes
the diffusion coefficient (the same for both ions) and n the cation valence. Da
represents the ratio of the characteristic precipitation/dissolution time scale and
the time scale related to the diffusion - the Damköhler number, which is assumed
to be of moderate order. By ε we mean the ratio of the characteristic pore scale
and the reference (macroscopic) length scale.

A first result is given for general domains. Using regularization techniques
and a fixed point argument, we obtain the existence of a weak solution. This
solution is positive in both components u and v, which are also essentially bounded.
Moreover, assuming that the medium is ε–periodic, the estimates for energy are
also ε independent.

Further results are obtained for a simple geometry, a strip. Assuming a para-
bolic flow profile, with dissolution and precipitation occurring at the lateral boun-
daries, we investigate the formation of dissolution and precipitation fronts. Any of
such fronts is located at a free boundary separating a region where the precipitate
is present from another one where no crystals are encountered. A detailed analy-
sis is carried out for the undersaturated regime, where an initially in equilibrium
system with crystals uniformly distributed on the grain boundary is perturbed by
injecting an undersaturated fluid. Then a dissolution process is initiated, and after
a waiting time t∗ a dissolution front will start moving in the flow direction. The
associated free boundary is continuous and strictly increasing at any time beyond
t∗.

As a first step towards a rigorous justification of a macro–scale model we let
the ratio between the thickness and the length of the strip go to 0. In the limit
we end up with the upscaled transport–reaction model proposed in [4], for which
we can prove the existence and uniqueness of a solution in one spatial dimension.
In the same context we mention the rigorous analysis performed in [5], where
the influence of some simpler chemical processes on the effective parameters is
investigated in the transport dominated flow regime.

In [2] we continue investigating the model from a numerical point of view. To
be specific, we analyze the convergence of a time discretization method for the
coupled system given above. The scheme is of first order, implicit in u and explicit
in v. Moreover, to overcome the difficulties posed by the multi–valued dissolution
rate, we approximate this by a monotone continuous rate Hδ, where δ > 0 is
taken to be of order τ1/2. In this setting, if up and vp are approximating u(pτ),
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respectively v(pτ), and assuming up−1 and vp−1 given, the scheme can be written
formally as




up − up−1 = τD△up − τ∇(~q up) in Ω,
−τ~ν · (D∇up) = ǫn(vp − vp−1) on ΓG,

vp − vp−1 = τDa(r(up) − Hδ(v
p−1)) on ΓG

wp = Hδ(v
p) on ΓG

In [2] we show that the numerical scheme is stable in both the L∞ and the energy
norms. By compactness arguments we obtain convergence to a weak solution of
the model.

Finally, we notice that at each time step we have to solve a nonlinear elliptic
problem in u. In doing so we make use of a fixed point type linear iteration
procedure



up,i − up−1 = τD△up,i − τ∇(~q up,i), in Ω,
−D~ν · ∇up,i + LrεnDa up,i

= εnDa
{
Lru

p,i−1 + r(up,i−1) − Hδ(v
p−1)

}
, on ΓG.

This iteration has a linear convergence rate, but is unconditionally stable. More-
over, as i goes to infinity, up,i approaches up regardless of the initial iteration.
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An efficient numerical scheme for precise time integration of a
dissolution/precipitation chemical system

Jérome Pousin

(joint work with B. Faugeras)

The multi-species diffusion-dissolution/precipitation model takes the form of an
initial-boundary value problem in which partial differential equations (PDEs) and
ordinary differential equations (ODEs) are coupled through nonlinear discontinu-
ous terms. The reader is referred to [6], [5] for the derivation of the model and its
mathematical analysis. The system of equations for Ns species is formulated as
follows. C = (Ci)i=1,...Ns

is the vector of chemical species concentrations in liquid
phase and S = (Si)i=1,...Ns

is the vector of chemical species concentrations in solid
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phase. C∗
i are nonlinear functions of C representing saturation concentrations, αi

and Di are strictly positive constants. The following notations are also used

∀z ∈ IR, z+ = max(z, 0) and z− = z+ − z ≥ 0,

and

sgn+(z) =

{
1 if z > 0,
0 otherwise.

For i = 1 to Ns we have:

(1)





∂tCi = Di∆Ci + sgn+(Si)αi(C
∗
i (C) − Ci)

+

−αi(C
∗
i (C) − Ci)

− in (0, T )× Ω,
∂tSi = −sgn+(Si)αi(C

∗
i (C) − Ci)

+

+αi(C
∗
i (C) − Ci)

− in (0, T )× Ω,
Ci(0, x) = C0

i (x) > 0, Si(0, x) = S0
i (x) > 0 in Ω,

Ci(t, x) = 0 in (0, T )× ∂Ω.

The purpose of this talk is to present an efficient numerical scheme of order 2 in
time to integrate systems such as system (1). We propose a scheme combining an
operator splitting method [8], [7], and an event location algorithm using a dense
output formula [4] which enables us to determine the switching times at which the
discontinuities occur in the reaction terms with a desired accuracy. Throughout
this talk we consider a semi-discretized system of equations. Indeed a difficulty
appears in the fully continuous case, since the switching time, td, is an unknown
function of x, the space variable. We thus consider that the chemical system
is already discretized in space, using, for example, a finite difference or a finite
element method. The system of ODEs we consider then reads

(2)





dC

dt
= AC + F(C,S),

dS

dt
= −F(C,S),

C(0) = C0, S(0) = S0.

C and S are vectors of IRN and A is the N × N matrix resulting from the
spatial discretization of the ∆ operator which is symmetric negative definite. The
nonlinear terms read

F(C,S) = (Fk(C,S))k=0,...N ,

with

(3) Fk(C,S) =

{
G1

k(C), if Sk > 0,

G2
k(C), if Sk ≤ 0.

We describe the scheme we propose, combining an operator splitting method
analyzed in [1] for the following reaction diffusion system

(4)





dC

dt
= AC + G(C), t > 0

C(0) = C0,
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and an adaptation of the event location algorithm. We prove that the scheme is
of order 2, and its effectiveness is illustrated numerically [3]. Let us mention that a
similar case where the chemical reactions are at equilibrium have been considered
in [2].

Let us illustrate our results by a numerical experiment with a simple test case.
We consider the following system of equations :

(5)





∂tC = ∆C +αC(1 − C) if S > Sd

= ∆C +βC if S ≤ Sd

∂tS = −αC(1 − C) if S > Sd

= −βC if S ≤ Sd

where α, β and Sd are constants. Initial and boundary conditions for C are deter-
mined by the exact solution, C = (1/1 + exp(

√
α
6 x − 5

6αt))2 to Fisher’s equation,

∂tC = ∆C + αC(1 − C).

Initial conditions for S are given by S(0, x) = 1+exp(−(x− 1/2)2). The diffusion
operator is discretized using second order finite differences with a step size of 10−2

and its time integration is performed using the unconditionally stable second order
Crank Nicolson scheme. Reaction terms are integrated with a second order explicit
Runge-Kutta scheme. A reference solution is computed for the classical splitting

method and for the method proposed in this paper with a time step href =
0.1

214
.

Solutions are computed using 5 different time steps, h =
0.1

29
,
0.1

210
,
0.1

211
,
0.1

212
and

h =
0.1

213
. For each solution the global errors

EC = ||Ch(T ) − Chref
(T )||, ES = ||Sh(T ) − Shref

(T )||,
are computed at T = 0.1. Figure 1 shows − log(EC) and − log(ES) versus − log(h)
when the classical splitting method is used to compute the solution to problem (5).
The convergence curve is very perturbed and the estimated order of the scheme
is less then 1. This is not surprising since the method is not able to deal with
the discontinuities correctly. On the other hand Figure 2 shows − log(EC) and
− log(ES) versus − log(h) when the method proposed in this paper is used. The
estimated order is about 2, which is in agreement with the theoretical result.
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S estimated order=1.12

Figure 1. −log(E) versus −log(h). Convergence curve for the
classical splitting (left C and right S).
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Figure 2. −log(E) versus −log(h). Convergence curve for the
proposed scheme (left C and right S).
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On capillary hysteresis in porous media and the averaging of a
play-type hysteresis model

Ben Schweizer

1. Physical background on capillary hysteresis

We are interested in the description of partially saturated porous media. For
definiteness, let us consider a medium filled with water and air, and let us assume
that the air has a constant pressure. Our aim is to describe the flow of water in
this medium. We include the well-known effect of capillary hysteresis.

The standard description of the macroscopic properties of the medium uses the
two quantities water pressure and water saturation, p(x, t) and u(x, t). For the
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velocity v(x, t) ∈ R
N one assumes the Darcy law in the form v = −K∇p, here we

assume a linear relation. Conservation of mass then reads

(1) ∂tu = ∇ · (K∇p).

To close the system we need a relation between p and u. Thinking of a porous
medium whose pores are straight cylindrical tubes with different radii, one imposes
a relation p(x, t) = pc(x, u(x, t)) with a given monotone function pc(x, .) : [0, 1] →
R. The physical reasoning is as follows: If an interface water-air is situated in a
pore with radius d, then the interface is a spherical cap with radius R determined
by d and the contact angle, R is increasing with d. The pressure jump between
the two phases (and hence the pressure p) is proportional to the mean curvature
1/R, hence a function of d. At a higher saturation, smaller pores must be filled
(for a non-wetting fluid), hence 1/R increases.

The shortcoming of the above reasoning is the assumption of cylindrical pores.
As soon as one considers e.g. ondulated tubes, the interfaces have different curva-
tures depending on the position in the pore. During imbibition (∂tu(x, t) > 0), the
fronts spend most time at the bottle-necks and the pressure jump is large, instead,
during drainage (∂tu(x, t) < 0), the fronts spend most time at positions of large
diameter and the pressure jump is small. This effect is made precise in [4], [5], it
leads to two distinct curves p±c (x, .) : [0, 1] → R describing the pressure-saturation
relation in the two cases ±∂tu > 0. For ∂tu = 0 and for given u, the pressure
p(x, t) may take any value in the interval [p−c (x, u), p+

c (x, u)]. The simplest model
to describe this behavior is the play-type hysteresis [7], investigated by Beliaev in
[2], [1],

(2) p ∈ au + b + γ sign(∂tu).

Here, the parameters a, b, and γ > 0 are scalars that may depend on the spa-
tial variable x, and sign is the multivalued function sign(ξ) = ±1 for ±ξ > 0,
sign(0) = [−1, 1]. The system must be closed with appropriate initial and bound-
ary conditions.

From a physical point of view and for a constant coefficient γ, the above equa-
tions are not satisfactory since the scanning curves are vertical lines: One can, at
constant saturation, increase or decrease the pressure. The process can be reversed
and leads to identical points in the u-p-plane. We will see that a homogenization of
the equations for highly oscillatory coefficients leads to different and more physical
equations.

2. The averaged play-type hysteresis model

On the coefficients we assume the following: On each cube of the form ε(q +
(0, 1)N) with q ∈ ZN the coefficient functions K, a, b, and γ are constant. The
values on each cube are random variables and we assume for each coefficient that,
on different cubes, the values are independent and identically distributed. We
assume that K has a positive lower bound and, for simplicity, that the values of γ
are uniformly distributed in [0, 1]. For fixed ε, the solution to the above problem
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is denoted by (uε, pε) and we are interested in bulk equations describing a weak
limit (u0, p0).

Let us try to guess a limiting equation. Our first goal is to find non-oscillating
quantities. Since the gradient of the pressures pε is uniformly bounded in an
L2-space, the pressure can be considered as non-oscillating. The other quantities
such as uε, aεuε, or aεuε + bε are all oscillating. Still, the last quantity, we call it
wε := aεuε + bε, has an interesting property. To begin with, assume that ∂tu

ε is
negative all the time. In this case we have wε = pε +γε, and the oscillations of wε

are only due to the oscillations of γε. If we plot the value of wε in a cell against
the value of y = γε in the same cell, we find wε(x, y, t) = pε(x, t) + y.

Let us now assume that the situation is changed to imbibition, that is, to
∂tp

ε > 0. Then, in cells with small value of y = γε, the saturation must follow
the evolution of the pressure. Therefore, in a vicinity of y = 0, the function wε

satisfies wε(x, y, t) = pε(x, t) − y. In cells with values of γε above some threshold
s(t), the pressure increase does not result in an increase of the saturation, hence wε

remains at the previous level. The function w encodes the relevant information on
the history of the process. A curve w as in Figure 1 is generated e.g. by a drainage
process, followed by an imbibition process increasing the pressure by 2s(t).

Based on these considerations, we guess the averaged system to be as follows.
We seek for functions u(x, t), p(x, t), w(x, y, t) satisfying

u(x, t) =

∫ 1

0

w(x, y, t) − b∗

a∗ dy ∀x ∈ Ω, t ∈ (0, T ),(3)

∂tu = ∇ · (K∗∇p),(4)

p(x, t) ∈ w(x, y, t) + y sign(∂tw(x, y, t)) ∀x ∈ Ω, y ∈ [0, 1], t ∈ (0, T ).(5)

Here, (3) expresses that we can recover the averaged saturation u from the values
of w by averaging, using the expected values

a∗ :=
〈
a−1

〉−1
, b∗ := 〈b〉 .

Equation (4) is the standard homogenization limit of the original conservation
equation where the matrix K∗ can be found by solving a stochastic cell-problem
[3]. Equation (5) expresses the algebraic side condition in the different cells. The
following theorem is made precise and proved in [6].

Theorem. Let a sequence of stochastic geometries be given and let (uε, pε) be
a strong solution of the ε-equations (1)–(2) with appropriate initial and boundary
conditions. Let furthermore (u, p, w) be a strong solution of the limit system (3)–
(5) with appropriate initial and boundary values. Then, for any sequence ε → 0,
almost surely we find

pε ⇀ p in H1((0, T ), H1(Ω)),

uε ∗
⇀ u in L∞((0, T ), L2(Ω)).

The theorem verifies that the oscillations in the parameter γ introduce an ad-
ditional independent and an additional dependent variable in the limit system. In
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some sense, γ is replaced by the independent variable y in the system. In particu-
lar, the scanning curves are qualitatively different in the limit system: Increasing
or decreasing the pressure instantaneously results in an increase or decrease of the
saturation, hence the scanning curves are no longer straight lines. Furthermore,
changing from imbibition to drainage, we never follow the original path. One effect
of the hysteresis in the limit system is the irreversibility.

w(y, t)

s(t) 1 y

p

u

Figure 1. a) The function w(., t) b) scanning curves of
the limit system
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Front Propagation in Heterogeneous Media

Angela Stevens

(joint work with Fathi Dkhil, Steffen Heinze, George Papanicolaou)

In [1] a variational characterization of front speeds for reaction-diffusion-advec-
tion equations in periodically varying heterogeneous media was given. This formu-
lation allows to calculate sharp estimates for the speed explicitly and the method
can be applied to any problem obeying a maximum principle. In examples the ef-
fects of the inhomogeneous medium on the speed can be analyzed in comparison to
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the related homogeneous problem, thus for instance for shear flows in cylinders as
they appear e.g. in the study of premixed flame propagation where an underlying
flow field is given.

As a heuristic rule it is known that turbulence increases the effectiveness of
combustion. In [1] it was rigorously proved that the introduction of a small am-
plitude drift coefficient always enhances the front speed. Also, an explicit speed
estimate could be provided which is accurate in the small amplitude limit and the
rapid oscillation limit.

For the discretized version of the Nagumo equation with an exact cubic reaction
term is can be shown that a weaker coupling of the nerve cells in the model
slows down the propagation of the action potential in comparison to the related
continuous model. The expansion of the speed can be calculated explicitly up to
second order.

Diffusion in heterogeneous media or multiscale problems is very common in
applications and can frequently be described by its effective behavior. During an
averaging or homogenization process the often complicated small scale structure of
the problem is replaced by an asymptotically equivalent homogeneous structure.
In [1] for reaction-diffusion models with general rapidly oscillating diffusion and
drift coefficients the formal asymptotic expansion of the speed could be rigorously
justified in the fast oscillation limit and the deviation of the speed in comparison
to the homogenized problem could be calculated. In [3] a detailed look on specific
problems was taken, since the speed of the wave can often not be clarified by
its first order expansion in terms of space periodicity, especially not when the
diffusion matrix is symmetric. Detailed examples are given where the effects of
the symmetric and antisymmetric part on the wave speed are explored.

In [2] a nonlocal integro-differential equation is considered for which unique
stable traveling waves exist, as well as for the related classical reaction diffusion
model and combinations of both, for certain bistable nonlinearities. It was shown
how small perturbations with a nonlocal term affect the speed of the original
reaction-diffusion problem. By deriving an asymptotic expansion for the wave
speed and calculating the parameters in terms of the non-local part of the equation
a discrimination of its effects on the wave speed becomes possible. For exact
bistable nonlinearities explicit examples are given, which show, that if the non-
local term has small support the absolute value of the wave speed of the mixed
problem is slowed down and thus the non-local term has little effect in comparison
with simple diffusion. On the other hand the wave speed is enhanced for nonlocal
terms with support far away from zero. Thus in this case the effect of the non-local
term is strong in comparison with simple diffusion.

Further important related literature is given in the reference lists of the below
mentioned articles.
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Spectral Collocation for Partial Differential Equations with Random
Coefficients

Raúl Tempone

(joint work with Ivo Babuska and Fabio Nobile )

This work proposes and analyzes a Stochastic-Collocation method to solve elliptic
Partial Differential Equations with random coefficients and forcing terms depend-
ing on a finite number of random variables. The method consists in a Galerkin
approximation in space and a collocation in the zeros of suitable tensor prod-
uct orthogonal polynomials (Gauss points) in the probability space and naturally
leads to the solution of uncoupled deterministic problems as in the Monte Carlo
approach. It can be seen as a generalization of the Stochastic Galerkin method
proposed in [1], yet allows one to treat easily a wider range of situations, such
as: input data that depend non-linearly on the random variables, diffusivity co-
efficients with unbounded second moments, random variables that are correlated
or have unbounded support. In what follows we present briefly the method and
quote the rigorous convergence analysis developed in [2] which gives exponential
convergence of the “probability error” with respect of the number of Gauss points
in each direction in the probability space, under some regularity assumptions on
the random input data.

Problem setting and notation Let D be a convex bounded polygonal domain
in Rd and (Ω,F , P ) a complete probability space. Here Ω is the set of outcomes,
F ⊂ 2Ω is the σ-algebra of events and P : F → [0, 1] is a probability measure.
Consider the stochastic linear elliptic boundary value problem: find a random
function, u : Ω × D → R, such that P -almost everywhere in Ω, or in other words
almost surely (a.s.), the following equation holds:

(1)
−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) on D,

u(ω, ·) = 0 on ∂D.

Here and in what follows the gradient notation ∇ always means differentiation
with respect to x ∈ D, unless otherwise stated.

Then, equation (1) can be written in weak form as

(2)

∫

D

E[a∇u · ∇v] dx =

∫

D

E[fv]dx, ∀ v ∈ L2
P (Ω) ⊗ H1

0 (D).

To guarantee existence and uniqueness for the solution of (2) we assume that the
diffusion coefficient a is uniformly coercive and that the load f is in L2

P (Ω, L2(D)).
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Finite Dimensional Noise Assumption. In many problems the source of
the randomness can be approximated using just a small number of uncorrelated,
sometimes independent, random variables.

This motivates us to assume that
a(ω, x) = a(Y1(ω), . . . , YN (ω), x) and f(ω, x) = f(Y1(ω), . . . , YN (ω), x) on Ω×D,
where {Yn}N

n=1 are real valued random variables with mean value zero and unit
variance. Moreover, for n = 1, . . . , N , we denote by Γn the image of Yn and with ρ
the (known) joint probability density for the random vector Y = [Y1, . . . , YN ]; ρ :
Γ → R

+ with ρ ∈ L∞(Γ). Observe that Γ ≡ ΠN
n=1Γn ⊂ R

N contains the support
of such probability density. A possible way to build a stochastic filed a(ω, ·) which
depends nonlinearly only on a finite number of uncorrelated random variables
and is coercive consists in performing a truncated Karhunen-Loève expansion of
log(a − amin):

(3) log(a − amin) = b0(x) +
∑

1≤n≤N

bn(x)Yn.

After assuming that the coefficients depend on a finite number of random vari-
ables the solution u of the stochastic elliptic boundary value problem (2) can be
described as a function of the same random variables, i.e. u(ω, x) = u(Y1(ω), . . . ,
YN (ω), x). Observe that the stochastic variational formulation (2) has a “deter-
ministic” equivalent which is the following: find u : Γ → H1

0 (D) such that

(4)

∫

D

a(y)∇u(y) · ∇φdx =

∫

D

f(y)φdx, ∀φ ∈ H1
0 (D), ρ-a.e. in Γ.

Spectral collocation approximation.

When the diffusion coefficient a(x, Y ) is not linear with respect to Y the system
of linear equations that defines the stochastic Galerkin approximate solution can-
not be decoupled by means of double orthogonal polynomials [1]. It is clear that
nonlinear Y -dependence offers good control over the coercivity of a(x, Y ) and at
the same time,we would like to avoid solving large coupled systems as much as pos-
sible. This motivates us to consider stochastic collocation. To this end, consider a
tensor product space Vp,h = Pp(Γ)⊗Hh(D) approximating L2

ρ(Γ)⊗H1
0 (D), where

Hh(D) ⊂ H1
0 (D) is a standard finite element space with mesh spacing parameter

h > 0, Pp(Γ) ⊂ L2(Γ) is spanned by tensor product polynomials with degree at

most p = (p1, . . . , pN ) i.e. Pp(Γ) =
⊗N

n=1 Ppn
(Γn), with Ppn

(Γn) being spanned
by one variable polynomials with degree at most pn.

Obtain the semi-discrete approximation, uh : Γ → Hh(D), by projecting equa-
tion (4) onto the subspace Hh(D), for each y ∈ Γ, i.e.

(5)

∫

D

a(y)∇uh(y) · ∇φh dx =

∫

D

f(y)φh dx, ∀φh ∈ Hh(D), for a.e. y ∈ Γ.

The next step consists in collocating equation (5) on the zeros of orthogonal
polynomials and build the discrete solution uh,p ∈ Pp(Γ) ⊗ Hh(D) by interpo-
lating in y the collocated solutions. To this end, we first introduce an auxiliary



2826 Oberwolfach Report 49/2005

probability density function ρ̂ : Γ → R
+ that can be seen as the joint probability

of N independent random variables, i.e. it factorizes as ρ̂(y) =
∏N

n=1 ρ̂n(yn),

∀y ∈ Γ, and is such that
∥∥∥ ρ

ρ̂

∥∥∥
L∞(Γ)

< ∞. For each dimension n = 1, . . . , N let

yn,kn
, 1 ≤ kn ≤ pn + 1 be the pn + 1 roots of the orthogonal polynomial qpn+1

with respect to the weight ρ̂n, which satisfies then
∫
Γn

qpn+1(y)v(y)ρ̂n(y)dy =

0, ∀v ∈ Ppn
(Γn). Standard choices for ρ̂, such as constant, Gaussian, etc., lead

to well known roots of the polynomial qpn+1, which are tabulated to full accu-
racy and do not need to be computed. To any vector of indexes [k1, . . . , kN ] we
associate the global index k = k1 + p1(k2 − 1) + p1p2(k3 − 1) + . . . and we de-
note by yk the point yk = [y1,k1

, y2,k2
, . . . , yN,kN

] ∈ Γ. We also introduce, for

each n = 1, 2, . . . , N , the Lagrange basis {ln,j}pn+1
j=1 of the space Ppn

: ln,j ∈
Ppn

(Γn); ln,j(yn,k) = δjk, j, k = 1, . . . , pn + 1 where δjk is the Kronecker

symbol, and we set lk(y) =
∏N

n=1 ln,kn
(yn). Thus, the collocation approximation

is uh,p(y, x) =
∑Np

k=1 uh(yk, x)lk(y), where uh(yk, x) solves (5) with y = yk. Equiv-
alently, if we introduce the Lagrange interpolant operator Ip : C0(Γ; H1

0 (D)) →
Pp(Γ) ⊗ H1

0 (D), such that Ipv(y) =
∑N

n=1 v(yk)lk(y), ∀v ∈ C0(Γ; H1
0 (D)). Then

we have uh,p = Ipuh and under mild regularity assumptions (see Section 3 of [2])
the main convergence result is

Theorem 1. There exist positive constants rn, n = 1, . . . , N , and C, independent
of h and p, such that

(6)

‖u − uh,p‖L2
ρ⊗H1

0
≤ 1√

amin
inf

v∈L2
ρ⊗Hh

(∫

Γ×D

ρa|∇(u − v)|2
) 1

2

+ C

N∑

n=1

βn(pn) exp{−rn(pθn
n )}

with θn = βn = 1 for Γn bounded and θn = 1/2, βn = O(
√

pn) for Γn un-
bounded. The constants rn do not depend on h and p and are defined rigorously
in [2].

In particular, the convergence result given in Theorem 1 applies to the case of a
stochastic diffusivity coefficient of the form (3).

Conclusions. This work [2] proposed a Collocation method for the solution of
elliptic partial differential equations with random coefficients and forcing terms.
This method has the advantages of leading to uncoupled deterministic problems
–also in case of input data which depend non-linearly on the random variables–;
treating efficiently the case of non independent random variables with the introduc-
tion of an auxiliary density ρ̂; dealing easily with random variables with unbounded
support – such as Gaussian or exponential ones–, dealing with no difficulty with a
diffusivity coefficient a with unbounded second moment. The main result (expo-
nential convergence) is given in Theorem 1 . See [2] for details. Numerical tests
presented in [2] are in agreement with the theory. The method is both versatile
and accurate for the class of problems considered (as accurate as the Stochastic
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Galerkin approach). The extension of the analysis to other classes of linear and
non-linear problems is an ongoing research. Besides, the use of tensor product
polynomials suffers from the curse of dimensionality and it is efficient only for a
small number of random variables. For a moderate or large dimensionality of the
probability space one should use sparse tensor product spaces. This aspect will be
investigated in a future work.
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Sparse Perturbation Algorithms for Elliptic Problems with Stochastic
Data

Radu Alexandru Todor

We consider the moment problem for stochastic diffusion in a bounded physical
domain D ⊂ R

d,

(1) −div(a(·, ω)∇u(·, ω)) = f(·, ω) in H−1(D), P -a.e. ω ∈ Ω,

with homogeneous boundary conditions. Here (Ω, Σ, P ) is a probability space
modelling the data uncertainty.
For k ∈ N+ the moment of order k of u solution to (1) is defined on the kd-
dimensional domain Dk := D × D × · · · × D (k times) by

(2) Mk(u)(x1, x2, · · · , xk) =

∫

Ω

u(x1, ω)u(x2, ω) · · ·u(xk, ω) dP (ω).

For the moment computation of the stochastic solution u to (1) we develop
perturbation algorithms which combine classical ideas with modern techniques
for efficient data representation and complexity reduction: sparse tensor product
spaces, wavelet preconditioning and best N -term approximation.

For example, if ε > 0 denotes the accuracy to be achieved in the moment
computation using one of the three well-established methods (MC, PA, SG), the
corresponding standard complexity estimates are expressed in the table below in
terms of the number N(ε) of deterministic model problems to be solved - intu-
itively, N(ε) denotes the number of samples.
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Method N(ε) as ε ց 0

Monte-Carlo Simulation Quadratic: N(ε) ∼ ε−2)

Perturbation Algorithms Superalgebraic: N(ε) > O(ε−n) ∀n

Stochastic Galerkin Method Superalgebraic: N(ε) > O(ε−n) ∀n

We prove that the new algorithms (which are of perturbation type), have nearly
optimal complexity, that is

(3) N(ε) ≤ O(ε−o(1)) as ε ց 0,

under the assumption that the fluctuation in the stochastic diffusion coefficient a
is piecewise analytic in the physical domain D. The central idea is a best N -term
approximation of higher order moments (2) based on the Legendre/Karhunen-
Loève expansion of the random fluctuation in the stochastic coefficient a. We
conclude that the moment problem can be solved for the stochastic equation (1) in
essentially the same complexity as one deterministic diffusion problem, as ε ց 0
(the number of needed samples is negligible compared to the effort needed to
compute one sample).
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