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Introduction by the Organisers

For more than 30 years, meetings on Combinatorial Optimization have estab-
lished a long and successful tradition at Oberwolfach. In fact, Combinatorial
Optimization is a particularly active research area with links to many other ar-
eas in mathematics, e.g., to Combinatorics, Graph Theory, Geometry and Integer
Programming. Furthermore, there are important connections to Theoretical Com-
puter Science, Operations Research and many application areas. Therefore, it is
not surprising that each of the meetings had its own format reflecting the most
important recent developments within this scope and focusing on differing topics
chosen by the respective organizers. In order to encourage such changes, a con-
sensus emerged in the community that the organizers should vary from meeting
to meeting.

Conceptually, we followed the outline of the last meeting in 2002, organized by
Tom Liebling, Rolf Möhring and Uwe Zimmermann. Oberwolfach meetings are
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planned a long time ahead and this one was no exception. In six focus talks, the
state of the art in selected areas of high interest was demonstrated. For these
presentations some internationally leading experts were approached about two
months before the meeting. As was our intention, we put together a mix of senior
scientists with broad experience as well as young scientists successfully pushing
lines of core research with fresh ideas. In additional, we organized a series of
sessions containing short talks not exceeding 25 minutes, which presented recent
results. Here, we particularly encouraged young researchers to take advantage of
this opportunity to present and discuss ongoing work with a broad international
audience. Of course, the total number of talks had to be severely limited in order
make room for the many vivid discussions within the sessions and between the
sessions. We are very grateful to those who volunteered to pass on this opportunity
to give a presentation. Their understanding was of great help in organizing the
sessions. Furthermore, everybody had the opportunity to place a current research
abstract at an appropriate message board in order to stimulate discussions.

The extended abstracts included in this report show that many differing research
directions in Combinatorial Optimization, current hot topics as well as classical
streams were present in the talks. In particular, the balanced mixture of basic
theoretical advancements and some selected practical applications was very much
welcomed by the participants.

At this point we wish to emphasize the special value which this meeting has for
the Combinatorial Optimization community. The number of international confer-
ences on Combinatorial Optimization and related topics is growing from year to
year. Very attractive locations all around the world compete for such meetings.
On the other hand, Oberwolfach offers the single and very well known opportunity
to meet at a place optimally prepared for exchange of most recent results, for dis-
cussions of ongoing work and for joint work between the sessions. Combined with
the friendly and relaxed atmosphere, these features are the basis for the success
of the Combinatorial Optimization meetings at Oberwolfach. The long list of par-
ticipants of this meeting and its predecessors reads as a guide to the international
community of researchers in Combinatorial Optimization. Therefore, it is no sur-
prise that many breakthrough results were initially spread at one of these meetings.
Many participants arrive at the meeting well-prepared to discuss important steps
in joint work with other participants. We are convinced that this meeting is one
of the most important international meetings in Combinatorial Optimization.

In particular, for this particular meeting, we had a rather hard time to reduce
the number of participants to the Oberwolfach meeting size. Moreover, there
were surprisingly few rejections of the invitations. Nevertheless, with the help of
Oberwolfach and supported by the European community, we succeeded in inviting
a particularly large number of young researchers.

In our own view, and as expressed by many of the participants, the Oberwolfach
workshop on “Combinatorial Optimization” was indeed a great success. This is
mainly due to the excellent lectures prepared at a very high standard as well as
to the many spontaneous questions and remarks discussed within the sessions. In
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part, this may be seen from the included extended abstracts. We are very happy
that we had the opportunity to organize this workshop at Oberwolfach. We think
that Combinatorial Optimization as a central, lively research area should and will
continue to be present at Oberwolfach.
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On the structure of Lehman matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2876



2838 Oberwolfach Report 50/2005

Michele Conforti (joint with Laurence Wolsey)
Compact formulations of some mixed integer programs . . . . . . . . . . . . . . . . . 2879

David P. Williamson (joint with Mateo Restrepo)
A simple GAP-canceling algorithm for generalized maximum flow . . . . . . . 2882

S. Thomas McCormick (joint with Satoru Fujishige and Maurice Queyranne)
Finding all optimal solutions for submodular function minimization . . . . . 2883

Gérard Cornuéjols
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Abstracts

Exploiting symmetry in optimization

Alexander Schrijver

1. Introduction

We investigate how symmetry can be exploited to reduce the size of optimiza-
tion problems, in particular, semidefinite programming problems. It results in
new bounds for the maximum size of error-correcting codes ([3]) and for the cross-
ing number of complete bipartite graphs (joint work with E. de Klerk and D.V.
Pasechnik [2]).

Consider optimization problems of type

max{tr(CX) | X ∈ F},
where C is some N × N matrix and F is a convex collection of N × N matrices.

Suppose that there is a group G of N × N permutation matrices such that
MCMT = C and MFMT = F for each M ∈ G. Then the maximum is attained
by a matrix in

CG := {X ∈ RN×N | MXMT = X for each M ∈ G},
the centralizer algebra of G.

Often, dim(CG) is much smaller than N2, and we might reduce the dimension
of the search space. The set CG is a matrix ∗-algebra, that is, it is closed under
addition, scalar and matrix multiplication, and taking the conjugate transpose.
We describe two reduction methods: block diagonalization and the regular repre-
sentation. First we give two examples.

2. Coding

Given n and d, the number A(n, d) is defined as the maximum number of words
in {0, 1}n at mutual Hamming distances ≥ d. (The Hamming distance of two
vectors is the number of coordinates in which they differ.)

Then the following holds: A(n, d) ≤ max{tr(JX) | X ∈ R
{0,1}n×{0,1}n

+ , X
positive semidefinite, tr(X) = 1, Xu,v = 0 if 0 < d(u, v) < d for all u, v ∈ {0, 1}n,

Xu,v = Xu,u+v for all u, v ∈ {0, 1}n, X̃ ≥ 0, X̃ PSD}.
Here J denotes the all-1 matrix, and

X̃u,v := Xu+v,u+v − Xu,v.

This bound generalizes the well-known Delsarte linear programming bound,

which is max{tr(JX) | X ∈ R
{0,1}n×{0,1}n

+ , X positive semidefinite, tr(X) =
1, Xu,v = 0 if 0 < d(u, v) < d for all u, v ∈ {0, 1}n}.
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Proof of the bound: If C ⊆ {0, 1}n has minimum distance ≥ d, define

X := |C|−2
∑

u∈C

χu+C
(
χu+C

)T
,

where χC denotes the incidence vector of C in R{0,1}n

, considered as column vector.
Then X is a feasible solution and tr(JX) = |C|.

Group acting on the problem: For each π ∈ Sn, let Mπ be the {0, 1}n ×
{0, 1}n permutation matrix corresponding to the permutation

(u1, . . . , un) 7→ (uπ(1), . . . , uπ(n)).

for (u1, . . . , un) ∈ {0, 1}n. Let G := {Mπ | π ∈ Sn}. Then G satisfies the condi-
tions.

3. Crossing number

Let cr(Km,n) be the crossing number of Km,n (the complete bipartite graph
with colour classes of size m and n). ‘Zarankiewicz conjecture’ asserts:

cr(Km,n) = ⌊ 1
4 (m − 1)2⌋⌊ 1

4 (n − 1)2⌋.
Here ≤ follows by putting ⌊m/2⌋ points on the positive x-axis, ⌈m/2⌉ points on the
negative x-axis, ⌊n/2⌋ points on the positive y-axis, ⌈n/2⌉ points on the negative
y-axis, and next connecting each point on the x-axis with each point on the y-axis
by a straight line segment.

The following upper bound was proved by de Klerk, Maharry, Pasechnik, Richt-
er, and Salazar:

cr(Km,n) ≥ 1
2m2αn − 1

2m⌊ 1
4 (n − 1)2⌋,

where

αn := min{tr(CX) | X ∈ R
Zn×Zn

+ positive semidefinite, tr(JX) = 1}.
and where Zn denotes the collection of cyclic permutations in Sn and where C
denotes the matrix in RZn×Zn with, for σ, τ ∈ Zn: Cσ,τ := the minimum number of
crossings of K2,n such that the edges leaving the two n-degree vertices in clockwise
order go to σ(1), . . . , σ(n) and to (τ(1), . . . , τ(n) respectively. (Here we indicate
the 2-degree vertices by 1, . . . , n.)

Proof of the bound: Let Km,n be embedded with a minimum number of
crossing. For each σ ∈ Zn, let dσ be the number of n-degree vertices such that
the edges leaving it go in clockwise order to σ(1), . . . , σ(n). Then X := m−2ddT

is feasible and

cr(Km,n) ≥ 1
2m2tr(CX) − 1

2m⌊ 1
4 (n − 1)2⌋.

Group acting on the problem: For each π ∈ Sn, let Mπ be the Zn × Zn

permutation matrix corresponding to the permutation

σ 7→ π−1σπ

for σ ∈ Zn. Let

G := {Mπ | π ∈ Sn}.
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4. Block diagonalization

Recall that a complex matrix U is called unitary if U∗U = I.
Theorem (Wedderburn): Let A be a matrix ∗-algebra containing I. Then there

exist a unitary matrix U and integers p1, q1, . . . , pm, qm > 0 such that U∗AU is
equal to the collection of all matrices




B1

B1

B2

B2

Bm

Bm




where Bi is any matrix in Cpi×pi , which is repeated qi times.
So

dim(A) = p2
1 + · · · + p2

m

and
N = p1q1 + · · · + pmqm.

Moreover, A ∈ A is positive semidefinite ⇐⇒ each block Bi of U∗AU is PSD.
In the coding example, CG is the Terwilliger algebra:

Tn := {
∑

k,i,j

xk,i,jEk,i,j | xk,i,j ∈ C},

where

(Ek,i,j)u,v :=

{
1 if d(u, v) = k, |u| = i, |v| = j,
0 else.

Here d(u, v) denotes the Hamming distance of u and v, and |u| denotes the Ham-
ming weight of u O(the number of nonzero entries).

It turns out that Tn has blocks B0, . . . , B⌊ 1
2
n⌋, such that block Bt of

U∗




∑

k,i,j

xk,i,jEk,i,j



U

is:

Bt :=

(
∑

k

γ
(t)
k,i,jxk,i,j

)n−t

i,j=t

where
γ

(t)
k,i,j :=

∑

u

(−1)u− 1
2
(i+j−k)

(
u

1
2
(i+j−k)

)(
n−2t
u−t

)(
n−t−u

i−u

)(
n−t−u

j−u

)
.
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This leads to the following new upper bounds on A(n, d):

best best upper
lower new bound
bound upper previously Delsarte

n d known bound known bound
19 6 1024 1280 1288 1289
23 6 8192 13766 13774 13775
25 6 16384 47998 48148 48148
19 8 128 142 144 145
20 8 256 274 279 290
25 8 4096 5477 5557 6474
27 8 8192 17768 17804 18189
28 8 16384 32151 32204 32206
22 10 64 87 88 95
25 10 192 503 549 551
26 10 384 886 989 1040

In a similar way, new bounds on constant-weight codes and on nonbinary codes
were obtained.

5. The regular ∗-representation

For any group G of N × N permutation matrices, there exist nonzero 0, 1 ma-
trices E1, . . . , Ed such that the centralizer algebra satisfies

CG = {
d∑

i=1

xiEi | x1, . . . , xd ∈ C}

and such that

E1 + · · · + Ed = J (the all-one matrix).

So d = dim(CG). Suppose now that we can identify these matrices, and that we
also can determine the multiplication parameters
µk

i,j (for i, j, k = 1, . . . , k), defined by:

EiEj =

d∑

k=1

µk
i,jEk.

Then define, for k = 1, . . . , d, the d × d matrix Lk by

(Lk)i,j :=
tr(EiE

T
i )1/2

tr(EjET
j )1/2

µi
k,j

for i, j = 1, . . . , d. Let

L := {
d∑

i=1

xiLi | x1, . . . , xd ∈ R}.



Combinatorial Optimization 2845

Then L is a matrix ∗-algebra, and φ : CG → L defined by

φ

(
∑

i

xiEi

)
:=
∑

i

xiLi

is an algebra ∗-isomorphism. That is, φ is a bijection satisfying φ(X + Y ) =
φ(X) + φ(Y ), φ(λX) = λφ(X), φ(XY ) = φ(X)φ(Y ), φ(X∗) = φ(X)∗ for all
X, Y ∈ CG and λ ∈ C.

This implies:
∑

i

xiEi is positive semidefinite, ⇐⇒
∑

i

xiLi is positive semidefinite.

It gives a reduction of the the order of the matrices in the matrix ∗-algebra to
the dimension of the algebra. L corresponds to the regular ∗-representation of CG .

Application to the crossing number gives:

α9 = 7.7352126 . . . .

This implies, for each fixed n ≥ 9:

lim
m→∞

cr(Km,n)

⌊ 1
4 (m − 1)2⌋⌊ 1

4 (n − 1)2⌋ ≥ 0.8303.

References

[1] D.C. Gijswijt, A. Schrijver, H. Tanaka, New upper bounds for nonbinary codes, preprimt.
[2] E. de Klerk, D.V. Pasechnik, A. Schrijver, Reduction of symmetric semidefinite programs

using the regular ∗-representation, Mathematical Programming, to appear.
[3] A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite pro-

gramming, IEEE Transactions on Information Theory 51 (2005) 2859–2866.

Optimizing the algebraic connectivity of a graph

Christoph Helmberg

(joint work with Frank Göring, Markus Wappler)

Let G = (N, E) be an undirected graph with node set N = {1, . . . , n} and edge
set E ⊆ {ij : i, j ∈ N, i 6= j}. The Laplace matrix or Laplacian of the graph is
the matrix L = diag(Ae)−A, where A denotes the (possibly weighted) adjacency
matrix, e the vector of all ones of appropriate dimension and diag(v) the diagonal
matrix having v on its main diagonal. For symmetric matrices H ∈ Rn×n we
order the eigenvalues by λ1(H) ≤ λ2(H) ≤ · · · ≤ λn(H). Because L is positive
semidefinite and Le = 0, we have λ1(L) = 0 with eigenvector e. Fiedler [1]
showed that λ2(L) is tightly related to edge and vertex connectivity of the graph
and called λ2(L) the algebraic connectivity of the graph. In particular, λ2(L) is
positive if and only if G is connected. The problem we study here corresponds
to the “absolute algebraic connectivity” of Fiedler [1] and reads: maximize λ2

over all non negatively weighted adjacency matrices having total weight one. We
formulate this problem as a semidefinite program, then take its dual and interpret
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this, in the style of vector labellings via Gram representations, as the following
embedding problem.

(1)

max
∑

i∈N ‖vi‖2

s.t. (
∑

i∈N vi)
2 = 0

‖vi − vj‖2 ≤ 1 for ij ∈ E
vi ∈ Rn for i ∈ N.

Thus, the (dual) problem is equivalent to finding an embedding of the nodes of
the graph in n−space so that their barycenter is at the origin (we will call this the
equilibrium constraint), the distances of adjacent nodes are bounded by one, and
the sum of their squared norms is maximized ([3] arrive at the same problem in
the search of fastest mixing Markov chains and exhibit connections to a maximum
variance unfolding problem). The figure below shows a random graph and an
optimal embedding with optimal (primal) edge weights displayed in grey scale.
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In 2-space the embedding corresponds physically to centripetal forces in equilib-
rium when rotating a net (connect the nodes by weightless chords of length one)
around the common barycenter of the nodes. As the example suggests, the em-
bedding is tightly linked to the separator structure of the graph. Our main results
read (for proofs and further details see the full version [2])

Theorem 1 (Separator-Shadow). Let vi ∈ Rn for i ∈ N be an optimal solution
of (1) for a connected graph G = (N, E) and let K1∪̇S∪̇K2 be a partition of N
with no node in K1 adjacent to a node in K2. Then, for at least one j ∈ {1, 2},
for every i ∈ Kj the straight line segment [0, vi] intersects the convex hull of the
points in S.

So if S is a separator and zero is not in the convex hull of its embedding, then
all but one of the induced partitions are embedded in the shadow of this convex
hull w.r.t. the origin. If zero is contained in its convex hull, the next result allows
to find an optimal embedding whose dimension is either determined by a unique
“heavy” part or bounded by the size of the separator plus one.

Theorem 2. Let vi ∈ Rn for i ∈ N be an optimal solution of (1) for a connected
graph G = (N, E) and let S ⊂ N with 0 ∈ S = conv{vs : s ∈ S} be a separator in
G inducing a partition (S, K1, . . . , Km) of N so that no node in Kj is adjacent to
a node in Kh for j 6= h, j, h ∈ M = {1, . . . , m}. Set L = spanS and, for j ∈ M ,
βj =

∑
i∈Kj

‖pL⊥(vi)‖.
(i) If β̂ >

∑
j∈M\{̂} βj for one ̂ ∈ M then there exist h ∈ L⊥ and an optimal

embedding v′i ∈ Rn of (1) with v′i = vi for i ∈ S, v′i ∈ L + span {h, vi : i ∈
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K̂} for i ∈ K̂ and v′i ∈ L+{β∑i∈K̂
v′i : β ≥ 0} for i ∈ ⋃j∈M\{̂} Kj. If,

in addition, there exists b̄ ∈ span {vi : i ∈ K̂}, ‖b̄‖ = 1 so that
〈
b̄, vi

〉
≥ 0

for all i ∈ K̂, then such an embedding exists with h = 0.
(ii) If β̂ ≤

∑
j∈M\{̂} βj for all ̂ ∈ M then there exist vectors d1, d2, d3 ∈ L⊥,

‖d1‖ = ‖d2‖ = ‖d3‖ = 1 with dim span {d1, d2, d3} ≤ 2, bj ∈ {d1, d2, d3},
j ∈ M , and an optimal embedding v′i ∈ Rn, i ∈ N , of (1) with v′i = vi

for i ∈ S so that for each j ∈ M we have v′i ∈ L + {βbj : β ≥ 0} for all
i ∈ Kj. One may assume bj = d1 for at most one j ∈ M .

(iii) If, in case (ii), the index ̂ ∈ M is the only j ∈ M satisfying bj = d1 and
at most |S| − 1 nodes of S are adjacent to nodes in K̂, then there is an
optimal embedding of dimension at most |S|.

This leads to a bound on the dimension of an optimal embedding of minimal
dimension.

Theorem 3. Let G = (N, E) be a connected graph, then there exists an optimal
embedding for (1) of dimension at most tree-width of G plus one.

In fact, the proof identifies a certain “central” node in any tree decomposition
and its size gives rise to the bound. Even though we exhibit examples where this
bound is tight, the bound is often too pessimistic. In particular, we have not
yet been able to construct a planar graph whose optimal embedding of minimal
dimension exceeds dimension three. A slightly different formulation leads to a
graph parameter that is closed under taking minors. The latter resembles other
parameters in the style of the Colin de Verdière graph parameter (see the survey
[4]); these connections need to be explored.
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An improved algorithm for computing Steiner minimal trees in ℜd

Kurt M. Anstreicher

(joint work with Marcia Fampa)

The Euclidean Steiner tree problem (ESTP) in ℜd is defined as follows: Given a
set of p points in ℜd, find a tree of minimal Euclidean length that spans these
points but that can also utilize additional points in the construction of the tree.
We refer to the original points as terminal nodes, and any additional nodes in
the spanning tree as Steiner points. The ESTP has been shown to be NP-Hard
[3] and has received considerable attention in the literature. For a comprehensive
survey see [5]. The solution of an ESTP is called a Steiner minimal tree (SMT).
The topology of a Steiner tree corresponds to choosing the number of Steiner points
and the edges between points, but not the geometric position of the Steiner points.
A topology is called a Steiner topology if each Steiner point has degree equal to
three and each terminal node has degree three or less. A Steiner topology with p
terminal nodes is a full Steiner topology if there are p− 2 Steiner points and each
terminal node has degree equal to one. A Steiner tree which corresponds to some
topology, but with certain edges shrunk to zero length, is said to be degenerate.
Any SMT with a nonfull Steiner topology can also be associated with a full Steiner
topology for which the tree is degenerate.

A number of papers have considered the exact solution of the ESTP in ℜ2.
Melzak [6] was the first to present an algorithm to solve the problem, which was
based on the enumeration of all Steiner topologies and on the determination of
the length of the SMT corresponding to each topology. At the present time the
best exact solution algorithm for the ESTP in the plane, the GeoSteiner algorithm
[9], can handle typical problem instances with thousands of terminals. Methods
specialized for ℜ2 cannot be applied to problems in higher dimensions, however,
and very few papers have considered exact methods for d ≥ 3. A polynomial time
approximation scheme (PTAS) is known for the ESTP in ℜd, see [2].

Gilbert and Pollak [4] proposed computing SMTs in ℜd by enumerating all
Steiner topologies and computing the minimal length for the tree associated with
each topology. Unfortunately the number of Steiner topologies having p terminal
nodes grows extremely fast in p, so the enumeration of all topologies is only possible
for very small values of p. Smith [7] proposes an implicit enumeration scheme for all
full Steiner topologies on a given set of p terminals. The root node in the resulting
Branch and Bound (B&B) tree corresponds to the unique full Steiner topology for
three given terminals, and the nodes at depth k in the B&B tree enumerate all
full Steiner topologies having k + 3 terminal nodes. Branching is accomplished by
adding a new terminal node and creating children whose topologies are obtained
by “merging” a given edge in the tree with the new terminal node to create a new
full Steiner topology. The merge operation is illustrated in Figure 1. In the figure
a new terminal node c is merged with an edge l in a tree T having n edges to
produce a new tree T + having n + 2 edges and an additional Steiner node.
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Figure 1. Generating tree T + from T

It is easily shown that the merging operation cannot decrease the minimal length
of the tree, and therefore if the minimal length of a Steiner tree at some node in the
B&B tree is longer than that of a known Steiner tree on all p terminals the given
node may be “fathomed” and its descendents removed from further consideration.
If a node cannot be fathomed, a new terminal is selected to be added to the given
topology and one child node is created for each one of its edges using the merge
operation. Computational results in [7] obtain SMTs for the vertices of regular
d-polytopes with 16 or fewer vertices. Results for the simplex and octahedron
in dimensions 3 ≤ d ≤ 9 are sufficient to disprove a conjecture of Gilbert and
Pollak on the “Steiner ratio” in these dimensions. (The Steiner ratio in ℜd is the
minimal possible ratio between the length of a SMT for a given set of terminals
in ℜd and the length of a minimal spanning tree on the same terminals which is
not permitted to usa any Steiner points.) Additional computations [8] support a
new conjecture on the Steiner ratio in ℜ3.

In this work we consider improvements to Smith’s B&B algorithm for comput-
ing Steiner minimal trees in ℜd. We use a conic formulation for the problem of
computing the SMT for a given topology. This formulation permits use of high-
performance software (MOSEK [1]) that obtains a rigorous lower bound on the
minimal length of a SMT, as opposed to the putatively near-optimal values used by
Smith. In addition we use a procedure based on fixing dual variables to estimate
the effect of the merge operation that produces the children of a given node in the
B&B tree. This allows us to eliminate some children without actually computing
the SMTs associated with their topologies and also permits the implementation of
a “strong branching” strategy. In the context of Smith’s enumeration scheme the
branching decision at a node in the tree corresponds to choosing the next terminal
node to add. Using our dual-based estimates we choose the next terminal so as to
minimize the number of children produced, and in the case of a tie to maximize
the sum of the bounds for the child nodes.

In numerical experiments our improvements result in substantial computational
gains compared to Smith’s original algorithm. We have solved a variety of different
problems using the original and improved algorithms. Both algorithms were coded
in C and all runs were performed on a 1.8 GHz Pentium CPU running Linux. To
investigate the effect of d we created problems with p = 10 terminals randomly
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Unfathomed nodes CPU time (seconds)
d Smith Smith+ Smith Smith+
2 5,617.0 55.0 717.8 68.4
3 31,854.4 719.6 2,334.1 753.5
4 296,928.4 5,134.4 16,153.0 5,735.6
5 399,031.8 2,741.0 20,805.6 4,680.5

Table 1. Average performance on instances with 10 terminals

distributed in the unit hypercube in ℜd, d = 2, 3, 4, 5. Average computational
results on these problems are reported in Table 1. In the table we give the average
number of unfathomed nodes in the B&B tree, and the average CPU time, for
five instances with each d using both Smith’s original algorithm and our improved
version (Smith+). The results on these problems show that while problems with
a fixed p are generally more difficult as d increases, our modifications of Smith’s
algorithm can substantially reduce the computational effort to solve problems in
ℜd to optimality.
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Semidefinite versus copositive relaxations for some combinatorial
optimization problems

Franz Rendl

(joint work with I. Dukanovic, J. Povh)

1. Stable sets

Several quadratic problems in 0-1 variables lead in a natural way to relaxations
involving semidefinite matrices. The stable set problem is one of the most promi-
nent examples:

α(G) := max eT x such that xixj = 0 [ij] ∈ E(G), xi ∈ {0, 1}.
Here eT = (1, . . . , 1), J = eeT and α(G) is the stability number of the graph G
with nodes V (G) = {1, . . . , n} and edge set E(G). If x ∈ {0, 1}n we consider

(1) X :=
1

xT x
xxT .

Hence xij = 0 if [ij] ∈ E(G) and eT Xe = eT x. It is not hard to see that

α(G) = max〈J, X〉 such that AG(X) = 0, tr(X) = 1, X � 0, rank(X) = 1.

The vector AG(X) is defined as (AG(X))ij = xij +xji for [ij] ∈ E(G). Leaving out
the rank constraint, we arrive at the semidefinite programming (SDP) relaxation
introduced by Lovász [4].

α(G) ≤ θ(G) := max〈J, X〉 such that AG(X) = 0, tr(X) = 1, X � 0.

Instead of requiring X � 0, we could alternatively have asked that X lies in the
cone C∗ := {∑ yiy

T
i : yi ≥ 0} of completely positive matrices, as can be seen from

(1). DeKlerk and Pasechnik [3] in fact show:

α(G) = max〈J, X〉 such that AG(X) = 0, tr(X) = 1, X ∈ C∗.

Unfortunately, it is NP-hard to optimize over C∗. This suggests however to inves-
tigate tractable cones K which give better approximations to C∗ than P, the cone
of semidefinite matrices:

C∗ ⊆ K ⊆ P.

Before addressing this issue, we consider some more cases similar to the stability
number.

2. Quadratic assignment problem

We denote by Π the set of permutation matrices. The quadratic assignment
problem (QAP) can be defined as follows:

zQAP := min trAXBXT such that X ∈ Π.

Using x = vec(X) and L = B ⊗ A, we can reformulate the problem as follows: If
X = (x1, . . . , xn), we consider

Y = xxT .



2852 Oberwolfach Report 50/2005

We partition the n2 × n2 matrix Y into n × n blocks Y ij by Y ij := xix
T
j . If

X ∈ Π then
∑

i Y ii =
∑

i xix
T
i = I and tr(Y ij) = xT

i xj = δij . Finally, 〈J, Y ij〉 =
(eT xi)(e

T xj) = 1. Let us define

F := {Y ∈ C∗ :
∑

i

Y ii = I, tr(Y ij) = δij , 〈J, Y ij〉 = 1}.

Povh shows the following result.

Theorem 1. [6]

F = conv{xxT : x = vex(X), X ∈ Π}

Hence the copositive problem min{trLY : Y ∈ F} also solves QAP.

3. Graph coloring

Using duality, we can rewrite θ(G) as

θ(G) = min t such that tI + AT
G(y) − J � 0.

The adjoint operator AT
G of AG is given by AT

G(y) =
∑

[ij]∈E yijEij , with Eij =

eie
T
j + eje

T
i . Here I = (e1, . . . , en). Lovász [4] observed that θ(G) is also a lower

bound on the chromatic number χ(Ḡ) of Ḡ, the complement graph of G.
A t-coloring of Ḡ can be viewed as a partition of V into t stable sets Si in Ḡ.

We denote the characteristic vectors of Si by χi and call

M =

t∑

i=1

χiχ
T
i

a coloring matrix. Coloring matrices M of Ḡ can be characterized as follows.

M is t-coloring matrix of Ḡ ⇐⇒

mij ∈ {0, 1}, diag(M) = e, mij = 0 [ij] ∈ Ē, τM − J � 0 ⇐⇒ τ ≥ t.

Lovász ignores mij ∈ {0, 1} and concludes

χ(Ḡ) ≥ min τ such that τI + AG(y) − J � 0 = θ(G).

Since coloring matrices are also in C∗, we can tighten this relaxation by considering

χ(Ḡ) ≥ t∗ = min τ such that τI + AT
G(y) ∈ C∗, τI + AT

G − J � 0.

Dukanovic [1], see also [2], shows that t∗ is in fact bounded from above by the
fractional chromatic number.

Theorem 2. t∗ ≤ χf (Ḡ) with equality holding if G is vertex transitive.
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4. Approximations of C∗

In the previous examples we saw that copositive relaxations sometimes are supe-
rior to SDP relaxations. To overcome the intractability of copositive programming,
Parrilo [5] introduced a family of SDP approximations of C∗ which comes arbi-
trarily close to C∗. The basic idea goes as follows. For a symmetric matrix M , let
pM (x) :=

∑
ij x2

i x
2
jmij and qM,r := (

∑
k x2

k)rpM (x). Then

M ∈ C∗ ⇐⇒ pM (x) ≥ 0 ∀x ⇐⇒ qM,r(x) ≥ 0 ∀x.

A sufficient condition for qM,r(x) ≥ 0 to hold ∀x is that q can be written as
a sum of squares (SOS) of polynomials in x. Parrilo shows that qM,0 is SOS
⇐⇒ M ∈ P + N , where N is the cone of elementwise nonnegative matrices.
Parrilo also shows that qM,1 is SOS if and only if there exist n symmetric matrices
M i such that

M −M i � 0, mi
ii = 0∀i, mj

ii + 2mi
ij = 0 ∀i 6= j, mi

jk + mj
ik + mk

ij ≥ 0∀i < j < k.

This certificate is computationally rather expensive, as it involves n semidefi-
niteness constraints on matrices of order n and O(n3) inequality constraints.
Dukanovic [1] suggests the following simplification in the case that M has the
symmetry of a vertex transitive group.

Theorem 3. Let H be a vertex transitive subgroup of the automorphism group of
a given vertex transitive graph G. Let αi ∈ H be such that αi(i) = 1 ∀i. Let M
possess the symmetry of H. Then qM,1 is SOS if and only if there exists M̄ such
that

M � M̄, m̄11 = 0, m̄ii + 2m1,αi(1) = 0 i > 1

m̄ij + m̄αj(i),αj(1) + m̄αi(j),αi(1) ≥ 0 1 < i < j.

Using this theorem, it is possible to optimize over the r = 1 approximation of
C∗ for rather large vertex transitive graphs. Computational results are given in
[2].
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Reverse median problems on graphs

Johannes Hatzl

(joint work with Rainer E. Burkard, Elisabeth Gassner)

An instance of the reverse p-median problem is given by a graph G = (V, E)
with edge lengths le ∈ R+ for e ∈ E and vertex weights wv ∈ R+ for v ∈ V .
Furthermore, a budget B > 0 and a set Y = {y1, . . . , yp} ⊂ V of prespecified
vertices representing the locations of p facilities are known. The task is to use the
budget in order to change the length of some edges such that the overall sum of
the weighted distance of the vertices to the respective closest facility becomes as
small as possible. Thereby, the distance dl(vi, vj) in G of vertex vi to vertex vj is
the length of a shortest (vi, vj) path in G corresponding to the edge lengths le. In
order to improve the given locations, we are allowed to reduce the edge lengths le.
The cost for reducing the edge e by xe units are given by some function fe(xe) > 0.
Thus, the decision variables are xe, describing the reduction of the edge lengths
l̄e = le − xe. Additionally, upper bounds ue on the maximum allowable edge
reduction are taken into account.
Using the notation introduced above, the problem can formally be stated as follows:

min
∑

v∈V

(
wv min

1≤j≤p
d l̄(v, yj)

)

s.t. l̄e = le − xe ∀e ∈ E
∑

e∈E

fe(xe) ≤ B

0 ≤ xe ≤ ue ∀e ∈ E.

It is known that the reverse median problem is strongly NP-hard.

Theorem 1 ([2]). The reverse 1-median problem on bipartite graphs is strongly
NP-hard even for the unit cost model, i.e., f(xe) = xe. Furthermore, there does
not exist any polynomial time algorithm with constant approximation ratio (unless
P = NP).

In [1] a linear time algorithm for the reverse 1-median problem on a tree is
proposed. Here, we restrict our analysis to the reverse 2-median problem on trees
and the reverse 1-median problem on cacti with one cycle. It turns out that these
problems can be solved in polynomial time. In Burkard, Gassner and Hatzl [3] it
is shown that both problems under consideration can be transformed to an equiv-
alent reverse 2-median problem on a path, which can be stated in the following
form:
Let P = (V, E) be a path, i.e., |V | = |E| + 1 = n and V = {1, 2, . . . , p − 1, p, p +
1, . . . , n} and E = {e1, . . . , en−1} where ei = (i, i + 1) for i = 1, . . . , n − 1. Fur-
thermore, two prespecified vertices 1 and p are given. R2MP is then defined in
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the following way:

min

p∑

j=1

wj min{d l̄(vj , 1), d l̄(vj , p)} +

n∑

j=p+1


wj

j−1∑

i=p

l̄i




s.t. l̄i = li − xi i = 1, . . . , n − 1

0 ≤ xi ≤ ui i = 1, . . . , n − 1

n−1∑

i=1

xi ≤ B.

For R2MP an O(n log n) time algorithm is proposed in [3]. In this paper, we will
only discuss some properties of an optimal solution and some ideas that will finally
lead to this algorithm. For all the details we refer to [3].
An edge e = (k, k + 1) for k = 1, . . . , p − 1 is called critical with respect to the
modified edge lengths l̄ = (l̄1, . . . , l̄n−1) if

d l̄(k, 1) ≤ d l̄(k, p)

and

d l̄
i (k + 1, 1) ≥ d l̄(k + 1, p).

This definition means that a critical edge can be deleted from the path P in order
to get the shortest path tree. Let x∗ = (x∗

1, . . . , x
∗
n−1) be an optimal solution and

k a critical index with respect to l̄ = (l1 − x∗
1, . . . , ln−1 − x∗

n−1). Then x∗ is an
optimal solution of the following linear program LP (k):

min

n−1∑

i=1

(li − xi)W
k
i

s.t. 0 ≤ xi ≤ ui i = 1, . . . , n − 1

n−1∑

i=1

xi = B.

where

W k
i =





∑k
j=i+1 wj i = 1, . . . , k − 1,

0 i = k,∑i
j=k+1 wj i = k + 1, . . . , p − 1,∑n
j=p+1 wj i = p, . . . , n − 1.

Note that LP (k) is a continuous knapsack problem and can therefore be solved in
linear time. This observation immediately leads to an O(n2) algorithm by solving
LP (k) for any k ∈ {1, . . . , p − 1}. It should also be pointed out that the time
complexity of O(n2) can even be achieved for a more general model, namely using
cost functions fi(xi) = Cixi where Ci ∈ R+ for all ei ∈ E.
However, using information from an optimal solution of LP (k) for LP (k+1) yields
a faster algorithm for the unit cost model.
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Using the notations

Lk := {e1, . . . , ek−1};
Rk := {ek, . . . , ep−1}.

it can be shown that if xk
e and xk+1

e are optimal solutions of LP (k) and LP (k+1),
then ∑

e∈Lk

xk
e ≤

∑

e∈Lk+1

xk+1
e

and ∑

e∈Rk

xk
e ≥

∑

e∈Rk+1

xk+1
e .

Using this observation and the fact that

W k
1 > W k

2 > . . . > W k
k−1 > W k

k = 0 < W k
k+1 < . . . < W k

p−1

it can be concluded that if we have xk
e = ue for some e ∈ Lk then xk+1

e = ue

also holds if e ∈ Lk+1. Similarly, we have that xk+1
e = 0 for some edge in Rk+1 if

xk
e = 0. Using this information we do not need to solve LP (k+1) from the scratch

and an O(n log n) time algorithm for R2MP can be achieved. For the reverse 1-
median problem on a cycle an O(n) time algorithm is possible. Concluding we
get
Theorem 2.

(1) The reverse 2-median problem on a tree can be solved in O(n log n).
(2) The reverse 1-median problem on a cactus with one cycle can be solved in

O(n log n).
(3) The reverse 1-median problem on a cycle can be solved in O(n).
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Increasing distances in graphs

Stefan Krause

We discuss a combinatorial problem related to Minimum Multicut; complexity
of various special cases is determined and approximation results are presented.

Given an undirected graph G = (V, E) with edge costs and pairs of vertices
(si, ti) for i = 1, . . . , k we want to find a minimum cost edge set S whose removal
from G increases the distance of si and ti, that is, the number of edges on a
shortest si-ti-paths by at least 1 for each i = 1, . . . , k. In other words, the removal
of S shall block all shortest si-ti-paths for all i = 1, . . . , k. This problem was first
proposed by Bienstock and Diaz in [2] as Blocking Shortest Paths (BSP).
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In [1] Baier discusses a more general problem where edges have arbitrary lengths
and si-ti-paths up to some length are to be blocked. However, we restrict our-
selves to unit length instances and consider shortest paths only in order to achieve
interesting and stronger results.

Instances of BSP with one pair (s, t) can be solved efficiently by constructing
a special digraph D = (V, A) and then determining a minimal s-t-cut in D. This
result can easily be generalized to instances of BSP with pairs (s, ti), i = 1, . . . , k,
that is, one vertex occurs in all pairs.

Solving BSP with two disjoint pairs is NP -complete, even under some assump-
tions about the underlying graph G, namely, if G is a grid graph with maximum
degree ∆(G) = 3 or if G is known to be planar and bipartite with unit costs.

If ∆(G) = 2 then BSP can be solved in polynomial time even for non-unit costs
and non-fixed k. BSP with unit costs and fixed k can be solved in polynomial
time if G is outerplanar or if ∆(G) is bounded.

An open problem that comes to mind at once when characterizing polynomial-
time solvable and NP -hard cases of BSP are the trianlge instances with three pairs
(r, s), (r, t), and (s, t). The corresponding cut problem, Minimum Multiwaycut

with three terminals is NP -hard in general graphs but polynomial-time solvable
in planar graphs. However, for BSP the complexity is unknown.

A straightforward approach to approximate BSP is to separately solve the sub-
problems with one pair each. The union of these solutions is a factor k approxi-
mation, where k is the number of pairs.

To determine approximate solutions for BSP one can also use the well-known
greedy algorithm for Set Cover. Applied to BSP this algorithm iteratively re-
moves an edge e with maximum ratio between the number of considered shortest
paths containing e and its edge cost. The approximation ratio can be shown to
increase at most linear in the number of vertices and logarithmic in the number
of pairs. For k = 1 pair an almost tight bound is known.

Another standard technique for approximation is LP based rounding. For this
purpose one formulates BSP as a mixed integer program and solves its relax-
ation. Then all edges which are selected with a fractional value larger than some
bound are removed. Unfortunately, there are instances for which all edge variables
have the same fractional value ruling out good approximation results and iterative
rounding. The best approximation guarantee one can give is the maximum length
of the considered shortest paths.

An obvious question is whether these results hold for directed graphs as well. In
fact, considering digraphs is a generalization and consequently NP -completeness
of the problem is preserved. Additionally, triangle instances as mentioned before
are NP -hard in the directed case. Other variations of BSP are the problems of
increasing the distances by exactly 1 or of increasing them by at least d ≥ 2. For
the former it is even NP -hard to decide whether a feasible solution exists. The
latter is NP -hard for non-fixed d (see [1]), or for k ≥ 2.

Open problems. Besides some other special cases of BSP the P/NP -status of
the following problems is open.
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(1) Given an undirected graph with or without edge costs, find a minimum
(cost) edge set whose deletion increases the distance of any two of three
given vertices by at least 1.

(2) Given an undirected graph with or without edge costs, find a minimum
(cost) edge set whose deletion increases the distance of two given vertices
by at least some fixed d ≥ 2.
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A new approach to alternating paths

Gyula Pap

Edmonds’ matroid intersection algorithm, and Edmonds’ non-bipartite matching
algorithm are famous applications of so-called alternating paths. In these algo-
rithms we maintain a primal solution, and in each step we try to find a better pri-
mal solution. For this purpose, we build up an augmentation structure which either
helps to find the augmentation, or helps to construct a certificate of optimality. A
great variety of generalizations has been investigated since then. Deep min-max
characterizations were shown for a bunch of problems. Many of these characteriza-
tions are direct extensions, or analogues of those for non-bipartite matching, ma-
troid intersection – let us mention path-matching, even factors, square-free simple
2-matchings in bipartite graphs, Ktt-free simple t-matchings in bipartite graphs,
covering pairs of sets, packing fully node-disjoint A-paths, matroid matching. To
construct algorithms for these problems, a natural approach is to find the ana-
logue of the augmentation structure – the auxiliary digraph in Edmonds’ matroid
intersection algorithm, or the alternating forest in Edmonds’ matching algorithm.
However, these structures are specific – it is not so easy to figure out what should
be their analogue for other problems.

In this talk an interpretation of Edmonds’ algorithms is proposed, which could
be helpful in finding generalizations for other problems. In this interpretation we
replace the augmentation structure by a so-called 3-Way Lemma. This Lemma
either certifies optimality, or finds an augmentation, or finds a “nice configura-
tion”. We have a Reduction Lemma claiming that the reduction of this “nice
configuration” is an equivalent reduction. An algorithm is put together from these
two lemmas, we only use them as black boxes. These two lemmas admit direct,
constructive proofs. The 3-Way Lemma for non-bipartite matching can in fact be
proved using alternating forests; however, there is a direct proof, too.

Lemma 1 (3-Way Lemma for Matching). We are given a matching M in graph
G. Then at least one of the following alternatives holds:
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a) There is a set Z ⊆ V of nodes such that |M | = 1
2 (|V | + |Z| − is(G − Z)),

where is(G′) denotes the number of isolated nodes in G′.
b) There is a matching N with |N | = |M | + 1.
c) There is a matching N with |N | = |M | s.t. there is an N -alternating odd

cycle C in G incident with an N -exposed node.

Edmonds’ matching algorithm can be interpreted as follows. We maintain a pair
G, M where G is a graph, and M is a matching in G. Apply the 3-Way Lemma for
G, M ! In case a) we conclude that M is a maximum matching, the set Z verifies
optimality. In case b) we consider the new pair G, N , that is an augmentation. In
case c) we consider the new pair G/C, N/C, that is a contraction. The algorithm
re-applies the 3-Way Lemma for the new pair. After a sequence of contractions
the algorithm is stuck with either an augmentation, or a verification of optimality.
Both of these cases is easy to expand to the original graph, which is given by the
following lemma:

Lemma 2 (Equivalent Reduction for matching). We are given a matching N
in graph G, and an N -alternating odd cycle C incident with an N -exposed node.
Then both of the following hold:

(1) If N ′ is a matching in G/C with |N ′| > |N/C|, then there is an expansion
N ′′ in G with |N ′′| > |N |.

(2) If |N/C| = 1
2 (|V/C|+|Z|−c(G/C−Z)), then |N | = 1

2 (|V |+|Z|−c(G−Z)),
where c(G′) denotes the number of odd components of G′.

The concept of this version of Edmonds’ algorithm may be called “Relax –
Reduce”. Notice that the condition in a) is equivalent to χM being a maximum
fractional matching – a relaxation of 0-1 matching. Thus the 3-Way Lemma may
be thought of as checking, whether in the χM is a maximum fractional matching.

Let us note in the end that for some of the other problems mentioned above, no
simple concept of alternating paths’, or augmenting structure is known – this is
the case for example for path-matching, Ktt-free simple t-matchings, and packing
fully node-disjoint A-paths. However, a 3-Way Lemma can be formulated, and
proved directly, which provides a combinatorial algorithm in the end. To apply
the “Relax – Reduce” principle for some combinatorial optimization problem, you
have to figure out what should be the relaxation of your problem, and what sort
of reduction you do with the “nice configuration”. Other applications of “Relax
– Reduce” are given for Ktt-free simple t-matchings in bipartite graphs, matroid
intersection, and packing fully node-disjoint A-paths (manuscripts of the author,
to be submitted).
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Sampling-based approximation algorithms for multi-stage stochastic
optimization

Chaitanya Swamy

(joint work with David Shmoys)

Stochastic optimization problems provide a means to model uncertainty in the
input data where the uncertainty is modeled by a probability distribution over
the possible realizations of the data. We consider a broad class of these problems,
called multi-stage stochastic programming problems with recourse, where the un-
certainty evolves through a series of stages and one take decisions in each stage in
response to the new information learned. Multi-stage stochastic programming has
received a great deal of attention within the Operations Research community, both
in terms of asymptotic convergence results, as well as computational work in vari-
ous application domains. These problems are often computationally quite difficult,
both from a practical perspective, as well as from the viewpoint of computational
complexity theory; even very specialized (sub)problems are #P -complete [1].

Our main result is to give the first fully polynomial randomized approximation
scheme (FPRAS) for a broad class of multi-stage stochastic linear programming
problems with any constant number of stages, without placing any restrictions on
the underlying probability distribution or on the cost structure of the input. For
a rich class of k-stage stochastic linear programs (LPs), where k is assumed to be
constant and not part of the input, we show that, for any probability distribution
over the inputs, for any ε > 0, we can compute, with high probability, a solution
with expected cost at most (1+ε) times the optimal expected cost, in time bounded
by a polynomial in the input size, 1

ε , and a parameter λ that is an upper bound on
the ratio between the cost of the same action over successive stages. The algorithm
accesses the input by means of a “black-box” (simulation) procedure that can
generate, for any node in the scenario tree, a sample of the input according to the
conditional distribution for this node. This is an extremely general model of the
distribution, since it allows for all types of correlated effects within different parts
of the input. We improve upon our earlier work [3], which handles the special case
in which k = 2, in two ways: a) we are now able to handle any fixed number of
stages, and b) whereas the earlier algorithm is based on the ellipsoid method, we
can now show that a simple algorithm that is most commonly used in practice,
the sample average approximation (SAA) method, also yields an approximation
scheme. As a corollary of this FPRAS, we also obtain the first approximation
algorithms for the analogous class of multi-stage stochastic integer programs, which
includes the multi-stage versions of the set cover, vertex cover, multicut on trees,
facility location, and multicommodity flow problems.

Although our results are much more general, to describe our results in a more
meaningful way we shall focus on a canonical example of the class of problems, a
3-stage stochastic variant of the fractional set covering problem. We are given a
family of sets over a ground set and a probability distribution over the subsets that
specifies a target set of ground elements that must be covered. We can view the
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three stages as specified by a scenario tree with 3 levels of nodes: the root, internal
nodes, and leaves. The root corresponds to the initial state, each leaf is labeled
with a target subset of elements that must be covered, and for each internal node
there is a conditional distribution of the target sets at leaves within its subtree
(where we condition on the fact that we have reached that node). One can buy
(fractionally) sets at any node paying a cost that depends both on the set and the
node at which it is bought. We want to be able to compute, given a node in the
tree, the desired action, so as to minimize the expected total cost of fractionally
covering the realized target set. This problem can be modeled as an exponentially
large LP in which there is, for each set S and each node in the tree, a variable that
indicates the fraction of S that is bought at that node. The constraints say that
for each leaf, for each ground element e in its corresponding target set, the total
fraction bought of sets S that contain e along this root-leaf path must be at least
1. If we view the probability of reaching a node as specified, it is straightforward
to express the expected total cost as a linear function of these decision variables.

In the sample average approximation method, we merely sample scenarios a
given (polynomial) number of times N , and by computing the frequencies of oc-
currence in these samples, we derive a new LP that is a polynomial-sized ap-
proximation to the original exponential-sized LP, and then solve this compact LP
explicitly. We first argue that using (approximate) subgradients one can establish
a notion of closeness between two functions so that if two functions are close under
this notion, then minimizing one function is equivalent to approximately minimiz-
ing the other. Next, we show that the objective functions of the “true” problem,
and the sample-average problem constructed with a polynomially bounded sam-
ple size, satisfy this “closeness-in-subgradients” property with high probability.
This shows that minimizing the sample-average problem yields a near-optimal so-
lution to the true problem, and proves the polynomial-time convergence of the
SAA method. Our proof does not rely on anything specific to discrete probability
distributions and thus extends to the case of continuous distributions.

For the class of 2-stage problems considered by Shmoys and Swamy [3], it is rel-
atively easy to show this closeness property and thereby obtain polynomial sample
bounds. For example, for the 2-stage set covering problem, one first reformulates
the exponential size 2-stage LP as a compact convex program that has variables
corresponding only to the decisions made at the root to (fractionally) buy sets.
At any point, each component of the subgradient of this convex objective function
can be estimated by sampling a leaf from the scenario tree and using the optimal
dual solution for the LP that minimizes the cost to cover each element in this leaf’s
target set to the extent it is not already covered by the root variables. Since the
variance in the subgradient components is polynomially bounded (shown in [3]),
one can get a good estimate of the subgradient using polynomially many samples.

Compare now the 3-stage and 2-stage problems. The 3-stage problem can also
be formulated as a compact convex program with variables corresponding only to
the decisions made at the root. But in the 3-stage version, a 2-stage stochastic
LP plays the analogous role of the LP and we need to obtain a near-optimal dual
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solution for this exponentially large mathematical program to show the closeness
property. Moreover, one difficulty that is not encountered in the 2-stage case,
is that now this 2-stage recourse LP is different in the sample average and the
“true” problems, since the conditional distribution of scenarios given a second-stage
outcome is only approximated in the sample average problem. Thus to show the
closeness property one has to argue that solving the dual of the sample average 2-
stage recourse LP yields a near-optimal dual solution to the “true” 2-stage recourse
LP. We introduce a novel compact non-linear formulation of this dual, for which
we can prove such a statement for the duals, and thereby obtain the “closeness-
in-subgradients” property for the 3-stage problem. In fact, this formulation yields
a new means to provide lower bounds on 2-stage stochastic LPs, which might be
of interest in its own right. The analogous idea can be applied inductively to
obtain the FPRAS for any fixed number of stages. We believe that our proof
is of independent interest and that our approach of using subgradients will find
applications in proving convergence results in other stochastic models as well.

Due to its simplicity and its use in practice, the SAA method has been studied
extensively in the stochastic programming literature. However, for multi-stage
problems with arbitrary (correlated) distributions, to the best of our knowledge,
there are no results known about the rate of convergence of the SAA solution to
the true optimal solution (with high probability). In fact, we are not aware of any
work (even outside of the sample average approach) that proves worst-case bounds
on the sample size required for solving multi-stage stochastic linear programs with
arbitrary distributions in the black-box model. Very recently, Shapiro [2] proved
bounds on the sample size required in the SAA method for multi-stage problems
when the distributions in the different stages are independent. Moreover, even for
a fixed number of stages, these bounds are not polynomial in the input size or λ.

An immediate consequence of our FPRAS for multi-stage stochastic linear pro-
grams is that we obtain approximation algorithms for several natural multi-stage
stochastic integer programming problems, by extending the rounding approach of
[3]. In the black-box model without any cost restrictions, we obtain performance
guarantees of k log n for k-stage set cover, 2k for k-stage vertex cover and k-stage
multicut on trees, and a performance guarantee of O(k) for the k-stage facility
location problem. Finally, we obtain a FPRAS for the k-stage multicommodity
flow problem as a direct consequence of our stochastic linear programming result.
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Using inverse optimization and flow techniques for group decision
making, rank aggregation, clustering and data mining

Dorit Hochbaum

We introduce models for problems of group decision making, aggregate ranking
and clustering techniques for data mining. The problems are modeled as graph
problems. One of these problems we call the equal paths problem. This problem
as well as all problems studied here have convex objective function representing
penalties for deviating from specified a-priori comparison/ranking beliefs. These
problems are shown to be solvable in polynomial time using network flow tech-
niques such as parametric cut and fractional multicommodity linear programming.

One application of the aggregate ranking problem is to determine the ranking
of sports teams based on the outcomes of games played. Current techniques are
based on finding a maximum eigenvector. Our alternative model has a number
of advantages including the ability to differentiate between games based on some
measure of significance. Further, the problem is stated as a combinatorial graph
problem. This problem is shown to be solved in polynomial time even with a
convex objective function, using flow techniques.

We point out several problems relating to the robustness of a set of evaluations
(game outcomes) with respect to generating a ranking. These problems appear to
be new and are shown to be NP-hard.

Another area that addresses various forms of rankings has to do with data min-
ing with applications to customer segmentation, patient diagnosis and assessment
of bankruptcy risk. We demonstrate new models for these problems and how to
solve them with flow techniques.

Problems of group decision making and of multi-criteria decision making are
closely related to the problems above. We demonstrate that the dominant prob-
lems in these areas can also be modeled and solved with flow related techniques.

The link of all the models to inverse optimization will be described. Specifically
it is shown that the inverse shortest paths problems with known paths is solved in
polynomial time with flow techniques for any convex penalty function, and that
the case with multiple sources and destination is solved in polynomial time using
the dual of multicommodity flow problem.

Approximation algorithms for facility location

Jens Vygen

(joint work with Jens Maßberg)

We present new approximation algorithms for two facility location problems [9].
The first one is the Universal Facility Location Problem, where we im-
prove the approximation ratio to 6.702. The second one is a problem with service
capacities that occurs in VLSI design. Here we give, among other results, a fast
5-approximation algorithm and a polynomial-time 4.1-approximation algorithm.
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1. Improved local search for universal facility location [8]

An instance of the Universal Facility Location Problem consists of:

• a finite set D of customers (or clients);
• a finite set F of potential facilities;
• a metric c on V := D ∪ F , i.e. distances cij ≥ 0 (i, j ∈ V ) with cij = cji

and cij + cjk ≥ cik for all i, j, k ∈ V ;
• a demand dj ≥ 0 for each j ∈ D;
• and for each i ∈ F a cost function fi : R+ → R+ ∪ {∞}, which is left-

continuous and non-decreasing.

We look for:

• a function x : F ×D → R+ with
∑

i∈F xij = dj for all j ∈ D
such that c(x) := cF (x) + cS(x) is minimum, where

cF (x) :=
∑

i∈F

fi

(
∑

j∈D

xij

)
and cS(x) :=

∑

i∈F

∑

j∈D

cijxij .

fi(z) is interpreted to be the cost to install capacity z at facility i. These functions
are given by an oracle that, for each i ∈ F , u, c ∈ R+ and t ∈ R, computes fi(u)
and max{δ ∈ R : u + δ ≥ 0, fi(u + δ) − fi(u) + c|δ| ≤ t}. This oracle can be
implemented trivially for all special cases of the Universal Facility Location

Problem considered before (for example the Capacitated Facility Location

Problem).
The first approximation algorithm for the Capacitated Facility Location

Problem (with performance ratio 8.53) was due to Pál, Tardos and Wexler [7],
extending an earlier result for uniform capacities by Korupolu, Plaxton and Ra-
jamaran [4]. Mahdian and Pál [5] generalized this to the Universal Facility

Location Problem and improved the approximation ratio to 7.88. Their main
local search operation is called Pivot and moves demand from/to a certain facility
to/from other facilities.

The approximation guarantee for the Capacitated Facility Location Prob-

lem was then improved to 5.83 by Zhang, Chen and Ye [10], using a more general
operation which Garg, Khandekar and Pandit [2] call DoublePivot. However,
it is not known whether DoublePivot can be implemented in polynomial time
for the Universal Facility Location Problem. Zhang, Chen and Ye [10]
remarked that they can improve the approximation ratio for the Universal Fa-

cility Location Problem to 7 + ε for any positive ε without DoublePivot.
Very recently, Garg, Khandekar and Pandit [2] announced an approximation ratio
of 5.83 for the Universal Facility Location Problem, but they withdrew
this claim after seeing that they could not show how to implement DoublePivot

in polynomial time [V. Pandit, personal communication 2005].
We introduce a new operation that allows us to improve the approximation

ratio for the Universal Facility Location Problem to 6.702. This is the
best approximation ratio known today. The operation is a generalization of the
Pivot operation but can deal with general forests on the set of facilities rather
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than stars. We use it for comets only, graphs that result from a star by appending
one edge.

Note that in all above-mentioned results the demand of a customer can be
split, i.e. served by more than one facility. Unless P = NP, no approximation
algorithms exist for the variant where each customer must be served by a single
facility, even for the Capacitated Facility Location Problem, as the NP-
complete Partition problem polynomially transforms to the decision whether a
solution of finite cost exists.

2. Network design and facility location with service capacities [6]

We present the first constant-factor approximation algorithms for the following
problem: Given

• a metric space (V, c),
• a set D ⊆ V of terminals/customers,
• demands d : D → R+,
• a facility opening cost f ∈ R+, and
• a capacity u ∈ R+,

find

• a partition D = D1∪̇ · · · ∪̇Dk and
• Steiner trees Ti for Di (i = 1, . . . , k)

with

c(E(Ti)) + d(Di) ≤ u

for i = 1, . . . , k, such that
k∑

i=1

c(E(Ti)) + kf

is minimum.
This problem arises in VLSI design. It generalizes the bin-packing problem and

the Steiner tree problem. In contrast to other network design and facility location
problems, it has the additional feature of upper bounds on the service cost that
each facility can handle.

Among other results, we obtain a 4.1-approximation in polynomial time, a
4.5-approximation in cubic time and a 5-approximation as fast as computing a
minimum spanning tree on (D, c).

The algorithms start by constructing a tree connecting all terminals. In the first
algorithm, this is a minimum spanning tree, in the second one it is an approximate
Steiner tree (with respect to a slightly different metric), and in the third one it
results from an approximate tour by deleting an edge. The second step deletes
expensive edges. The third step splits connected components whose load exceeds
the capacity u.

In the rectilinear plane (V, c) = (R2, ℓ1), the most relevant case for VLSI design,
we have a 4-approximation algorithm running in O(n log n) time, where n = |D|.
Even in this case there is no (2 − ε)-approximation algorithm unless P = NP.
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This algorithm is already used for two applications in VLSI design. One consists
of constructing efficient repeater trees [1]. The other application, in which the
problem arises naturally, and which was the motivation to study the problem, is
clocktree design [3]. Here the customers are storage elements which have to be
served by a periodic clock signal, generated (or distributed) by special objects,
the facilities that are to be placed. Exchanging a previously used greedy heuristic
by the new approximation algorithm led to 10% less power consumption on many
complex chips.

References

[1] C. Bartoschek, S. Held, D. Rautenbach, J. Vygen, Efficient generation of short and fast
repeater tree topologies, accepted for publication in the Proceedings of the International
Symposium on Physical Design (2006).

[2] N. Garg, R. Khandekar, V. Pandit, Improved approximation for universal facility location,
Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (2005), 959–960.

[3] S. Held, B. Korte, J. Maßberg, M. Ringe, J. Vygen, Clock scheduling and clocktree con-
struction for high performance ASICs, Proceedings of the IEEE International Conference
on Computer-Aided Design (2003), 232–239.

[4] M.R. Korupolu, C.G. Plaxton, R. Rajaraman, Analysis of a local search heuristic for facility
location problems, Journal of Algorithms 37 (2000), 146–188.

[5] M. Mahdian, M. Pál, Universal facility location, in: Algorithms - ESA 2003, Proceedings
of the 11th ESA Conference; LNCS 2832 G. di Battista, U. Zwick, eds.), Springer, Berlin
2003, pp. 409–421.

[6] J. Maßberg, J. Vygen, Approximation algorithms for network design and facility location
with service capacities, in: Approximation, Randomization and Combinatorial Optimiza-
tion; Proceedings of the 8th International Workshop on Approximation Algorithms for Com-
binatorial Optimization Problems (APPROX 2005); LNCS 3624 (C. Chekuri, K. Jansen,
J.D.P. Rolim, L. Trevisan, eds). Springer, Berlin 2005, pp. 158–169.
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Covering bi-set functions by digraphs

András Frank

In several applications in the area of connectivity augmentation, it proves useful to
work with functions defined on pairs of sets rather than sets. Given a ground-set
V , by a bi-set X = (XO, XI) we mean a pair of subsets XO, XI of V for which
∅ ⊆ XI ⊆ XO ⊆ V . XO is the outer member of X while XI is the inner member.
Let P2 = P2(V ) denote the set of all bi-sets of V . The subset of P2 consisting of
all bi-sets for which XI = XO may be identified with the set of all subsets of V
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and therefore all results concerning bi-sets may be specialized to those on sets. A
function on P2(V ) will be called a bi-set function on V .

A directed edge a = uv enters or covers a bi-set X = (XO, XI) if a enters
both XO and XI . a leaves X if it leaves both XO and XI . For a directed graph
D = (V, A), ̺(X) := ̺D(X) := ̺A(X) denotes the number of edges entering
(covering) X while δ(X) := δD(X) := δA(X) denotes the number of edges leaving
X . For a vector z : A → R, let ̺z(X) :=

∑
[z(a) : a ∈ A, a covers X ]. δz(X) is

defined analogously. Let D = (V, A∗) denote the the complete directed graph on
node set V in which ordered pair of nodes {u, v} defines an edge uv.

Let p be a bi-set function on V . A digraph D = (V, A) covers p if ̺D(X) ≥
p(X) for every X ∈ P2(V ). A function z : A → R covers p if ̺z(X) ≥ p(X) for
every X ∈ P2(V ). Two bi-sets are independent (with respect to D) if no directed
edge of D can cover both. For the complete digraph D = (V, A∗), this is equivalent
to requiring that their inner sets are disjoint or their outer sets are co-disjoint. A
family of bi-sets is independent if their members are pairwise independent.

The intersection ∩ and the union ∪ of bi-sets is defined in a staightforward
manner: for X, Y ∈ P2 let X∩Y := (XO∩YO, XI∩YI), X∪Y := (XO∪YO, XI∪YI).
We write X ⊆ Y if XO ⊆ YO, XI ⊆ YI . When X ⊆ Y or Y ⊆ X , then we call
X and Y comparable. Two bi-sets are intersecting if they are not comparable
and XI ∩ YI 6= ∅. Two bi-sets are crossing if they are intersecting and the union
of their outer members are not V .

A family of bi-sets is called laminar (cross-free) if it has no two intersecting
(crossing) members. A family F of bi-sets is intersecting (crossing) if both the
union and the intersection of any two intersecting (respectively, crossing) members
of F belong to F .

A nonnegative integer-valued set-function p : P2 → Z+ is said to satisfy the
supermodular inequality on X, Y ∈ P2 if

(1) p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ).

If the reverse inequality holds, we speak of the submodular inequality. p is
said to be fully supermodular or supermodular if it satisfies the supermodular
inequality for every pair of bi-sets X, Y . If (1) holds for intersecting (crossing)
pairs, we speak of interecting (crossing) supermodular functions. Analogous
notions can be introduced for submodular functions.

Sometimes (1) is required for those intersecting (crossing) pairs for p(X) > 0
and p(Y ) > 0. In this case p is called positively intersecting (resp., positively
crossing) supermodular.

Theorem 1 (Frank and Jordán, 1995). Let p : P2(V ) → Z+ be an integer-valued
positively crossing supermodular function on bi-sets and let D = (V, A∗) be the
complete digraph on V . Then
(2)
min{x(A∗) : x : A∗ → Z+ covers p} = max{∑X∈I p(X) : I ⊆ P2(V ) cross-free}.

This result (with slightly different wording) was used to solve the directed node-
conenctivity augmentation problem. It also implies the directed edge-connectivity
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augmentation theorem from [4], an extension of Győri’s theorem on interval [6],
and a theorem on restricted matchings in bipartite graphs [3].

Theorem 2. Let p : P2(V ) → Z+ be an integer-valued positively intersecting
supermodular function on bi-sets. Let D = (V, A) be a digraph so that p(Z) > 0
implies ̺(Z) > 0 for every bi-set Z and let g : A → Z+ be a function. Then the
system

{̺x(Z) ≥ p(Z) : for every Z ∈ P2(V ), 0 ≤ x ≤ g}(3)

is totally dual integral.

This is an extension of a result of [2] concerning set-functions. Its proof relies
on the standard uncrossing technique. It can be used to describe the convex hull
of the rooted k-node-connected subgraphs of a digraph.

Theorem 3. For i = 1, 2 let pi : P2(V ) → Z+ be an integer-valued fully super-
modular function on bi-sets. Then

min{x(A∗) : x : A∗ → Z+ covers p1, p2} =

= max{p1(X1) + p2(X2) : X1, X2 ∈ P2 independent}.

This theorem may be considered as an extension of Edmonds’ (poly)matroid
intersection theorem [1]. It is also used to derive a min-max result for the minimum
number of new edges whose addition to an initial digraph results in a digraph in
which there are ki internally node-disjoint paths from si to ti (i = 1, 2). In a third
application, we determine the minimum number of new edges whose addition to
an initial bipartite graph results in an elementary bipartite graph.
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Computing earliest arrival flows with multiple sources

Martin Skutella

(joint work with Nadine Baumann)

Earliest arrival flows are motivated by applications related to evacuation. In typ-
ical evacuation situations, the most important task is to get people out of an
endangered building or area as fast as possible. Since it is usually not known how
long a building can withstand a fire before it collapses or how long a dam can
resist a flood before it breaks, it is advisable to organize an evacuation such that
as much as possible is saved no matter when the inferno will actually happen.
In the more abstract setting of network flows over time, the latter requirement is
captured by so-called earliest arrival flows. Before we discuss this in more detail,
we first give a short and descriptive introduction into flows over time.

Flows over time. We consider a network N = (V, A) with capacities ue ≥ 0
and transit times τe ≥ 0 on the arcs e ∈ A. The capacity of an arc bounds the
flow rate (i.e., flow per time) at which flow can enter the arc. The transit time of
an arc specifies the amount of time it takes for flow to travel from the tail to the
head of the arc. Moreover, there is a set of source nodes S+ ⊆ V and a set of sink
nodes S− ⊆ V \S+. Each source s ∈ S+ has a supply v(s) > 0 and each sink t ∈ S−

a demand −v(t) > 0 such that
∑

w∈S+∪S− v(w) = 0. A flow over time specifies for
each arc e and each point in time the flow rate at which flow enters the arc (and
leaves the arc again τe time units later). Flow conservation constraints require
that at every point in time and for every intermediate node w ∈ V \ (S+ ∪ S−)
the flow entering and leaving node w must cancel out each other.

Flows over time have been introduced by Ford and Fulkerson [6]. Given a
network with a single source node s, a single sink node t, and a time horizon θ ≥ 0,
they consider the problem of sending as much flow as possible from s to t within
time θ. It turns out that a maximal s-t-flow over time can be determined by a
static min-cost flow computation where transit times of arcs are interpreted as
cost coefficients.

Ford and Fulkerson [6] also introduce the concept of time-expanded networks
that consist of one copy of the node set of the given network for each time unit
(we call such a copy a time layer). For each arc e of the original network with
transit time τe the time-expanded network contains copies connecting any two
time layers at distance τe. On the positive side, most flow over time problems can
be solved by static flow computations in time-expanded networks. On the negative
side, time-expanded networks are huge in theory and in practice. In particular, the
size of a time expanded network is linear in the given time horizon θ and therefore
exponential (but still pseudopolynomial) in the input size.

Hoppe and Tardos [11] consider the quickest transshipment problem which is
defined as follows. Given a network with several source and sink nodes with given
supplies and demands, find a flow over time with minimal time horizon θ that
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satisfies all supplies and demands. Hoppe and Tardos give a strongly polyno-
mial algorithm for this problem which, however, relies on submodular function
minimization and is highly nontrivial.

Earliest arrival flows. Shortly after Ford and Fulkerson introduced flows over
time, the more elaborate s-t-earliest arrival flow problem was studied by Gale [7].
Here the goal is to find a single s-t-flow over time that simultaneously maximizes
the amount of flow reaching the sink t up to any time θ ≥ 0. A flow over time
fulfilling this requirement is said to have the earliest arrival property and is called
earliest arrival flow. Gale [7] showed that s-t-earliest arrival flows always exist.
Minieka [14] and Wilkinson [17] both gave pseudopolynomial-time algorithms for
computing earliest arrival flows based on the Successive Shortest Path Algorithm.
Hoppe and Tardos [10] present a fully polynomial time approximation scheme for
the earliest arrival flow problem that is based on a clever scaling trick.

In a network with several sources and sinks with given supplies and demands,
flows over time having the earliest arrival property do not necessarily exist [3]. We
give a simple counterexample with one source and two sinks. For the case of sev-
eral sources with given supplies and a single sink, however, earliest arrival flows do
always exist [15]. This follows, for example, from the existence of lexicographically
maximal flows in time-expanded networks; see, e.g., [14]. We refer to this problem
as the earliest arrival transshipment problem. Hajek and Ogier [8] give the first
polynomial time algorithm for the earliest arrival transshipment problem with zero
transit times. Fleischer [3] gives an algorithm with improved running time. Fleis-
cher and Skutella [5] use condensed time-expanded networks to approximate the
earliest arrival transshipment problem for the case of arbitrary transit times. They
give an FPTAS that approximates the time delay as follows: For every time θ ≥ 0
the amount of flow that should have reached the sink in an earliest arrival trans-
shipment by time θ, reaches the sink at latest at time (1+ε)θ. Tjandra [16] shows
how to compute earliest arrival transshipments in networks with time dependent
supplies and capacities in time polynomial in the time horizon and the total supply
at sources. The resulting running time is thus only pseudopolynomial in the input
size.

Earliest arrival flows are motivated by applications related to evacuation. In the
context of emergency evacuation from buildings, Berlin [1] and Chalmet et al. [2]
study the quickest transshipment problem in networks with multiple sources and
a single sink. Jarvis and Ratliff [12] show that three different objectives of this
optimization problem can be achieved simultaneously: (1) Minimizing the total
time needed to send the supplies of all sources to the sink, (2) fulfilling the earliest
arrival property, and (3) minimizing the average time for all flow needed to reach
the sink. Hamacher and Tufecki [9] study an evacuation problem and propose
solutions which further prevents unnecessary movement within a building.

Our contribution. While it has previously been observed that earliest arrival
transshipments exist in the general multiple-source single-sink setting, the problem
of computing one efficiently has been open. All previous algorithms rely on time
expansion of the network into exponentially many time layers. We solve this open
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problem and present an efficient algorithm which, in particular, does not rely on
time expansion.

Using a necessary and sufficient criterion for the feasibility of transshipment
over time problems given by Klinz [13], we first recursively construct the earliest
arrival pattern, that is, the piece-wise linear function that describes the time-
dependent maximum flow value. As a by-product, we present a new proof for
the existence of earliest arrival flows that does not rely on time expansion. We
finally show how to turn the earliest arrival pattern into an earliest arrival flow by
slightly extending the network and applying the quickest transshipment algorithm
of Hoppe and Tardos [11].

The running time of our algorithm is polynomial in the input size plus the num-
ber of breakpoints of the earliest arrival pattern. Since the earliest arrival pattern is
more or less explicitly part of the output of the earliest arrival transshipment prob-
lem, we can say that the running time of our algorithm is polynomially bounded
in the input plus output size.
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[11] B. Hoppe and É. Tardos. The quickest transshipment problem. Mathematics of Operations
Research, 25:36–62, 2000.

[12] J.J. Jarvis and H.D. Ratliff. Some equivalent objectives for dynamic network flow problems.
Management Science, 28:106–108, 1982.

[13] B. Klinz. Cited as personal communication (1994) in [11].
[14] E. Minieka. Maximal, lexicographic, and dynamic network flows. Operations Research,

21:517–527, 1973.
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Provably near-optimal dual-balancing policies for stochastic inventory
control models

Retsef Levi

(joint work with Robin Roundy, Martin Pál, David Shmoys, Van Anh Truong)

In this talk we address the long-standing problem of finding computationally effi-
cient and provably good inventory control policies in supply chains with correlated,
non-stationary (time-dependent) and evolving stochastic demands. This problem
arises in many domains and has many practical applications such as dynamic fore-
cast updates. We consider a broad class of fundamental inventory models and
provide what we believe to be the first computationally efficient policies with con-
stant worst-case performance guarantees; that is, there exists a constant C such
that, for any given joint distribution of the demands, the expected cost of the
policy is guaranteed to be within C times the expected cost of an optimal policy.
More specifically, we provide a worst-case performance guarantee of 2 for these
large class of models.
The models. In this talk we focus on the periodic-review stochastic inventory con-
trol problem. A sequence of random demands for a single commodity at a single
location occurs over a finite planning horizon of T discrete periods. The random
demands over the T periods can be non-stationary, correlated and evolve over time.
The goal is to coordinate a sequence of orders over the planning horizon aiming
to satisfy these demands with minimum expected cost. In each period s, we can
order a number of units up to a given capacity us. These units are assumed to
arrive only after a lead time of L periods. We consider a traditional cost structure
with per unit ordering, holding and backlogging penalty costs that are incurred
at the end of each period. The cost parameters are time-dependent and the only
assumption is that we do not have a speculative motivation to hold inventory or
have shortages. The goal is to find a policy of orders with minimum expected
overall discounted cost over the given planning horizon.

The assumptions that we make on the demand distributions are very mild and
generalize all of the currently known approaches in the literature to model corre-
lation and non-stationarity of demands over time (for details about the different
approaches we refer the reader to Iida and Zipkin 2001 and Lingxiu and Lee 2003
[3, 1]). As part of the model, we will assume that at the beginning of each period,
we are given what we call an information set that contains all of the information
that is available at the beginning of the time period (e.g., the realized demands
so far and external information that becomes available). In addition, we assume
that in each period there is a known conditional joint distribution of the future
demands that is a function of the observed information set at the beginning of the
period (but is independent of the specific inventory policy). The only assumption
on the demands is that in each period and for each observed information set, all
the future demands are well-defined and have finite mean. We consider only poli-
cies that are non-anticipatory, i.e., in each period they can use only the current
information set.
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Related Literature. These models have attracted the attention of many researchers
over the years and there exists a huge body of related literature. The dominant
paradigm in almost all of the existing literature has been to formulate these models
using a dynamic programming framework. This framework has turned out to be
very effective in characterizing the optimal policy of the overall system. Surpris-
ingly, the optimal policies for these rather complex models follow simple forms,
known as state-dependent base-stock policies (see [3, 1, 14] for details). In each pe-
riod, there exists an optimal target base-stock level that is determined only by the
given (observed) information set. The optimal policy aims to keep the inventory
level at each period as close as possible to the target base-stock level. That is, it
orders up to the target level (or up to capacity) whenever the inventory level at
the beginning of the period is below that level, and orders nothing otherwise.

Unfortunately, these rather simple forms of policies do not always lead to effi-
cient algorithms for computing the optimal policies. This is especially true in the
presence of correlated and non-stationary demands, which cause the state space
of the relevant dynamic programs to grow exponentially and explode very fast.
This phenomena is known as the curse of dimensionality. Moreover, because of
this phenomenon, it seems unlikely that there exists an efficient algorithm to solve
these huge dynamic programs.

Muharremoglu and Tsitsiklis (see [9]) have proposed an alternative approach
to the dynamic programming framework. They have observed that this problem
can be decoupled into a series of unit supply-demand subproblems, where each sub-
problem corresponds to a single unit of supply and a single unit of demand that
are matched together. This novel approach enabled them to substantially simplify
some of the dynamic programming based proofs on the structure of optimal poli-
cies, as well as to prove several important new structural results. However, their
computational methods are essentially dynamic programming approach applied to
the unit subproblems, and hence they suffer from similar problems in the presence
of correlated and non-stationary demand.

As a result of this apparent computational intractability, many researchers have
attempted to construct computationally efficient (but suboptimal) heuristics for
these problems. However, we are aware of no computationally efficient policies
for which there exist constant performance guarantees. For details on some of
the proposed heuristics and a discussion of others see [3, 1]. one specific class
of suboptimal policies that has attracted a lot of attention is the class of myopic
policies. In a myopic policy, in each period we attempt to minimize the expected
cost for that period, ignoring the impact on the cost in future periods. The myopic
policy is attractive since it yields a base-stock policy that is easy to compute on-
line, that is, it does not require information on the control policy in future periods.
In many cases, the myopic policy seems to perform well (see for example [13, 2, 3]).
However, in many other cases, especially when the demand can drop significantly
from period to period, the myopic policy performs poorly and even arbitrarily bad
(see [6]).



2874 Oberwolfach Report 50/2005

Our work. is distinct from the existing literature in several significant ways, and
is based on three novel ideas:

Marginal cost accounting scheme. We introduce a novel approach for cost account-
ing in stochastic inventory control problems. The standard dynamic programming
approach directly assigns to the decision of how many units to order in each period
only the expected holding and backlogging costs incurred in that period although
this decision might effect the costs in future periods. Instead, our new cost ac-
counting scheme assigns to the decision in each period all the expected costs that,
once this decision is made, become independent of any decision made in future
periods, and are dependent only on the future demands. The marginal holding
cost accounting approach is based on the key observation that once we place an
order for a certain number of units in some period, then the expected ordering
and holding cost that these units are going to incur over the rest of the planning
horizon is a function only of the realized demands over the rest of the horizon, not
of future orders. Hence, with each period, we can associate the overall expected
ordering and holding cost that is incurred by the units ordered in this period, over
the entire horizon. We note that similar ideas of holding cost accounting were pre-
viously used in the context of models with continuous time, infinite horizon and
stationary (Poisson distributed) demand (see, for example, the work of Axsäter
and Lundell [11] and Axsäter [10]). In an uncapacitated model the decision of how
many units to order in each period effect the expected backlogging cost in only a
single future period, namely, a lead time ahead. However, this is not necessarily
true in a capacitated model, where this decision might effect the expected back-
logging cost in several periods into the future. Thus, for capacitated models we
introduce a marginal backlogging cost accounting approach. Suppose that in the
current period the order placed was not up to capacity, we wish to account for
the potential backlogging cost in future periods incurred directly by the decision
not to use the full available capacity. Assume temporarily that we order up to
capacity in each one of the periods. Suppose now that in the current period we
do not order up to capacity. Then expected marginal backlogging cost associated
with the current period is the overall increase in the expected backlogging cost
over the entire horizon resulting from this decision. The marginal backlogging
cost accounting scheme for the capacitated model is in fact a generalization of the
traditional period backlogging cost accounting scheme. As we will show it turns
out that both the expected marginal holding and backlogging costs are straightfor-
ward to compute in most common scenarios. We believe that this new approach
will have more applications in the future in analyzing stochastic inventory control
problems.

Cost balancing. The idea of cost balancing was used in the past to construct
heuristics with constant performance guarantees for deterministic inventory prob-
lems. The most well-known examples are the Silver-Meal Part-Period balancing
heuristic for the lot-sizing problem (see [12]) and the Cost-Covering heuristic of
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Joneja for the joint-replenishment problem [4]. We are not aware of any applica-
tion of these ideas to stochastic inventory control problems. The key observation is
that any policy in any period incurs potential expected costs due to overordering
(namely, expected holding costs) and underordering (namely, expected backlog-
ging costs). For the periodic-review stochastic inventory control problem (both
uncapacitated and capacitated variants), we use the marginal cost accounting ap-
proach to construct policies that, in each period, balance the expected (marginal)
ordering and holding cost against the expected (marginal) backlogging cost.

Using these ideas we provide what is called a 2-approximation algorithm for the
uncapacitated and capacitated variants of the periodic-review stochastic inventory
control problem; that is, the expected cost of our policies is no more than twice
the expected cost of an optimal policy [6, 8]. Moreover, these ideas have been
extended in subsequent work and have been used to provide 2-approximation for
multi-echelon inventory models [7] and for models with lost-sales [5].
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On the structure of Lehman matrices

Bertrand Guenin

(joint work with Gérard Cornuéjols, Levent Tuncel)

1. Introduction

One of the best studied [3] integer programming model is the set covering prob-
lem. Given a 0, 1 matrix M and a non-negative cost vector c, we wish to solve,

(IP) min{cT x : Mx ≥ 1, x ≥ 0, x integer}.
Unfortunately, the set covering problem is NP-Complete. There are however, many
instances where the natural linear programming relaxation always has an integer
solution among the optimal solutions. In theses cases linear programming can be
used to solve the set covering problem. The integer program (IP) has this property
exactly when the polyhedron Q := {Mx ≥ 1, x ≥ 0} is integral. The matrix M
is said to be Ideal in this case. Hence, a fundamental question is whether it is
possible to characterize Ideal matrices.

We say that a 0, 1 matrix M is Minimally Non Ideal (MNI) if Q = {Mx ≥
1, x ≥ 0} has a fractional extreme point but all polyhedra obtained by setting
any of the variables xj to either 0 or 1 are integral. The problem of finding an
explicit characterization of all MNI matrices has a counterpart for the set packing
problem, namely the Strong Perfect Graph Theorem [7]. Cornuéjols and Novick [4]
conjectured that a similar result exists in this case as well.

A first step towards a characterization of MNI matrices is given by a beautiful
theorem of Lehman [5]. We state this result next. Given a MNI matrix M , the
polyhedron Q = {Mx ≥ 1, x ≥ 0} has a unique fractional point x̄ and that point
is non-degenerate. It follows that we can define two square, 0, 1 matrices A and B
as follows: the rows of A are the rows of M corresponding to constraints satisfied
at equality for x̄ and the rows of B correspond to each of the extreme points of
Q which are adjacent to x̄. Then (except for one exception) after permutation of
the rows of A the following linear equation holds:

(1) ABT = E + kI,

where E is the matrix of all ones, and k some positive integer. We call matrices
which satisfy the previous relation Lehman matrices. Luetolf and Margot [6] enu-
merated, all (up to isomorphism) Lehman matrices of small sizes. At first sight
these matrices seem to be of a bewildering complexity. However, these matrices
are endowed with very strong structural properties.

Lehman matrices A, B appear to fall into two families depending on whether
k = 1 or k > 1 in equation (1). We call matrices in these families respectively thin
and thick. When A = B then A is the point-line incidence matrix of a projective
plane. The only known examples of thick matrices where A 6= B are when one
of A, B corresponds to the incidence matrix of a (3, 5)-cage (the Petersen graph)
or of a (3, 7)-cage [1]. This leads to the following natural question: except for a
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number of sporadic examples, do all thick Lehman matrices arise from projective
planes ? We are interested here, however, in finding a structural characterization
of thin Lehman matrices. We present a first step in that direction.

2. The result

A square 0, 1 matrix is circulant if each row is shifted (cyclically) one element to
the right relative to the preceding row. The matrix Cn

r is the n×n circulant matrix
where the non-zero entries of the first row are the first r entries. For integers r, s
such that rs = n+1, the matrix Dn

s is the 0, 1 matrix such that Cn
r (Dn

s )T = E+I.
Thus Cn

r , Dn
s form a pair of thin Lehman matrices.

Two matrices X, Y are isomorphic if Y can be obtained from X by permuting
the columns and rows of X . A square 0, 1 matrix is r-regular if Xe = XT e = re
for some integer r where e denotes the vector of all ones. It is known that Lehman
matrices are regular [2]. Hence, for a Lehman matrix A which is r-regular, A =
Cn

r + ΣA where ΣA is a 0,±1 matrix which is 0-regular. We define the C-rank
of a thin r-regular Lehman matrix A to be the minimum, over all matrices A′

isomorphic to A, of rank(ΣA′) where Cn
r + ΣA′ = A′. Thus the C-rank is a

measure of the complexity of thin Lehman matrices. Matrices with zero C-rank
are isomorphic to a circulant matrix Cn

r . A basic Lehman matrix is a thin Lehman
matrix A for which C-crank(A) = 1. Our main result is a complete characterization
of basic Lehman matrices.

Consider a positive integer n and integers i ∈ [n] and j such that −n ≤ j ≤ n.
We define,

i ⊕ j =





i + j − n if i + j > n
i + j + n if i + j < 1
i + j otherwise.

Consider a positive integer n and i0, i1, i2 ∈ [n]. If there exists t, t′ ∈ [n − 1] such
that i0 ⊕ t = i1 and i1 ⊕ t′ = i2 then we write i0 ≤[i1] i2. It means that following
the cyclical ordering and starting from i0 we visit i1 before i2. Consider a positive
integer n and i0, j0 ∈ [n], nR, nC ∈ [n−1]. A block B(i0, j0, nR, nC) is a 0, 1 matrix
such that its entry (i, j) is 1 if and only if i0 ≤[i] i0⊕nR−1 and j0 ≤[j] j0⊕nC −1.

A configuration C(i, j, nR, nC , ρ, σ) consists of four blocks B1, B2, B3, B4 where
B1 is a block B(i, j, nR, nC), B2 is a block B(i⊕ρ, j, nR, nC), B3 is a block B(i, j⊕
σ, nR, nC), and B4 is a block B(i ⊕ ρ, j ⊕ σ, nR, nC). We define, Σ(C) := −B1 +
B2 +B3−B4. A rectangular configuration is the configuration C(a, a⊕nR, nR, r−
nR, tr, tr−1) where a ∈ [n], nR ∈ [r−1], t ∈ [s−1], and Cn

r +Σ(C) is a rectangular
perturbation. Our main result is as follows,

Theorem 1. Let A, B be a a pair of basic Lehman matrices. Then up to isomor-
phism, both A and B are rectangular perturbations.
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As an example consider the following matrices,

A =




1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1




B′ =




1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1
1 1 1




Matrix B′ is isomorphic to a matrix B such that ABT = E+I, i.e. A, B are a pair
of thin Lehman matrices. The configuration corresponding to A is C(1, 3, 2, 3, 5, 4)
(a rectangular configuration for a = 1, nR = 2, and t = 1). The configuration
corresponding to B′ is C(5, 7, 2, 1, 9, 8) (a rectangular configuration for a = 5,
nR = 2, and t = 3).

We also showed that we can construct matrices with arbitrary high C-rank by
combining matrices with lower C-rank and that under certain conditions, we can
decompose matrices with high C-rank into matrices with lower C-rank.

References

[1] R. R. Singleton A. J. Hoffman. On moore graphs with diameters 2, 3. IBM Journal Res.
Dev., 4:497–504, 1960.

[2] W. G. Bridges and H. J. Ryser. Combinatorial designs and related systems. J. Algebra,
13:432–446, 1969.
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Compact formulations of some mixed integer programs

Michele Conforti

(joint work with Laurence Wolsey)

Given a set of the form P = {(x, y) : Ax + By ≤ d}, we address the question
of finding a formulation for the mixed-integer set ZMIP = {(x, y) ∈ P, y integer}
associated with P .

For us, a formulation in the (x, y)-space is a polyhedral description of
conv(ZMIP ) in the original space. It consists of a finite set of inequalities such
that conv(ZMIP ) = {(x, y) : A′x + B′y ≤ d′}. A formulation of ZMIP is ex-
tended whenever it gives a polyhedral description of conv(ZMIP ) in a space that
uses variables (x, y, w) and includes the original space, so that conv(ZMIP ) is the
projection of this polyhedral description onto w = 0. An extended formulation is
compact if the size of its polyhedral description is polynomial in the size of the
description of P .

Finding an extended formulation for a mixed-integer set ZMIP which is compact
is important. For instance, tight formulations for relaxations allow us to strengthen
the linear programming representations of hard MIPs, and theoretically a proof
that a problem has a compact extended formulation implies that one can optimize
a linear objective over ZMIP using linear programming, and thus demonstrates
that this problem is in P .

We find extended formulations that are compact for generalizations of certain
mixed-integer sets that arise as relaxations of lot-sizing and network design prob-
lems and have been studied in the last decade. For multi-item production planning
problems in which these sets typically arise as single-item relaxations, these com-
pact formulations provide an a priori strengthening of the original representation.
For the mixed-integer sets that we study, the formulations in their original space
are known to have exponential size, and they have only been partially charac-
terized so far. Furthermore the convex hulls of these mixed-integer sets have an
exponential number of vertices.

Given a mixed-integer set ZMIP , the approach that we use here to compute
an extended formulation for conv(ZMIP ) is as follows. We study the sets VZMIP ,
RZMIP of vertices and extreme rays of conv(ZMIP ). We then find a small num-
ber of subsets V i ⊆ conv(ZMIP ) and Ri ⊆ RZMIP whose union contains VZMIP

and RZMIP respectively. For each of the pairs (V i, Ri) we compute a compact
formulation for conv(V i) + cone(Ri). This compact formulation will typically be
an extended formulation. The last step is to derive a compact formulation which
is extended for the convex hull of the union of these polyhedra. For this we use a
classical result of Balas [2].

The idea of breaking the set VZMIP ∪RZMIP into a small number of subsets has
been used before: one approach found in Pochet and Wolsey [5] and developed
systematically in the thesis of Van Vyve [6] is to develop an extended MIP repre-
sentation for such problems explicitly including all the extreme points, and then
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tighten with valid inequalities until a extended formulation is obtained; another is
to generate an extended formulation based on an explicit or implicit representation
of all the extreme points and rays as in Miller and Wolsey [4]. A simple example
of the approach studied here has appeared very recently in Atamturk [1].

Extended formulations and the union of polyhedra

A polyhedron P is the intersection of a finite number of half-spaces. Equiva-
lently, P = {x ∈ Rn : Ax ≥ b}. We use Minkowski-Weyl’s theorem which asserts
that a pointed polyhedron P has a finite set of vertices VP and a finite set of
extreme rays RP and P = conv(VP ) + cone(RP ). Conversely, for every pair of
finite families V and R, there is a matrix [A|b] such that {x ∈ Rn : Ax ≥ b} =
conv(V ) + cone(R). We also use the fact that cone(R) = {x ∈ Rn : Ax ≥ 0}.
Lemma 1. (Balas [2]) Assume P i = {x ∈ Rn : Qix ≥ qi} are m polyhedra.
For 1 ≤ i ≤ m, let V i, Ri be the sets of vertices and extreme rays of P i, so
P i = conv(V i) + cone(Ri). Let

P = conv(∪m
i=1V

i) + cone(∪m
i=1R

i).

Then the following set of inequalities provides an extended description of P :

x =
∑m

i=1 xi

Qixi ≥ qiδi, 1 ≤ i ≤ m
∑m

i=1 δi = 1

δi ≥ 0, 1 ≤ i ≤ m.

Lemma 2. The polyhedron P defined in Lemma 1 is the closure of the set
conv(∪m

i=1P
i). If all the polyhedra P i have the same recession cone, i.e. Ri = Rj

for i, j ∈ {1, . . . , m}, then conv(∪m
i=1P

i) is a closed set and P = conv(∪m
i=1P

i).

We will need the following straightforward “extended” version of Lemma 1:

Remark 1. If an extended formulation {(x, w) ∈ Rn+p : Aix + Biw ≥ di}
is given for each of the polyhedra P i = conv(V i) + cone(Ri), then the follow-
ing set of inequalities provides an extended formulation of the polyhedron P =
conv(∪m

i=1V
i) + cone(∪m

i=1R
i):

x =
∑m

i=1 xi

Aix + Biw ≥ diδi, 1 ≤ i ≤ m
∑m

i=1 δi = 1

δi ≥ 0, 1 ≤ i ≤ m.

Given a set P = {(x, y) : Ax + By ≤ d}, we use the above results to obtain
an (extended) formulation for the polyhedron PI = conv((x, y) ∈ P, y integer).
Specifically we study the sets VPI

, RPI
of vertices and extreme rays of PI . We

then find subsets V 1, . . . , V m of PI such that VPI
⊆ ∪m

i=1V
i. We also find sets
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R1, . . . , Rm such that RPI
= ∪m

i=1R
i and we compute a formulation for each of

the m polyhedra P i = conv(V i) + cone(Ri).
The formulations of the polyhedra P i in their natural space typically involve an

exponential number of inequalities: For each of the polyhedra P i, we increase the
dimension of the space by adding extra variables and find an extended formulation,
which is compact. We finally use Remark 1 to obtain an extended formulation
for the polyhedron PI . The number m will be small, and thus the extended
formulation will be compact.

Three examples

We apply the approach to derive compact extended formulations for three sets.
The first set studied is the continuous mixing set with upper bound:

XCMIXUB =

{(s, r, y) ∈ R1
+ × Rm

+ × Zm
+ : s ≤ u ; s + rt + yt ≥ bt for t = 1, . . . , m}.

This set provides a relaxation motivated by the problem of treating upper
bounds on stocks in lot-sizing models.

The second set we consider is the mixing set with two divisible capacities:

X2DIV = {(s, y, z) ∈ R1
+ × Zm

+ × Zm
+ : s + yt + Czt ≥ bt, t = 1, . . . , m}

where C ∈ Z1 with C ≥ 2. This set is a relaxation for lot-sizing problems in which
two machines with different capacities can produce the same item, and is close
to a model treating lower bounds on production studied recently by Constantino,
Miller and Van Vyve [3] and Van Vyve [6].

The last set we consider is the divisible capacity single node flow model:

XFDIV = {(s, x, y) ∈ R1
+ × Rn

+ × Zn
+ : s +

n∑

j=1

xj ≥ b, xj ≤ Cjyj for j = 1, . . . , n}.
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A simple GAP-canceling algorithm for generalized maximum flow

David P. Williamson

(joint work with Mateo Restrepo)

We give a simple primal algorithm for the generalized maximum flow problem
that repeatedly finds and cancels generalized augmenting paths (GAPs). We use
ideas of Wallacher [8] to find GAPs that have a good trade-off between the gain
of the GAP and the residual capacity of its arcs; our algorithm may be viewed as
a special case of Wayne’s algorithm for the generalized minimum-cost circulation
problem [9].

Most previous algorithms for the generalized maximum flow problem are dual-
based; previous primal algorithms of Cohen and Megiddo [3] and Wayne [9] require
subroutines to test the feasibility of linear programs with two variables per inequal-
ity (TVPIs). Drawing on work of Aspvall [1], we give an O(mn) time and O(n)
space algorithm for finding negative-cost GAPs which can be used in place of
the TVPI tester. This algorithm is analogous to the negative-cost cycle detection
algorithm used for many minimum-cost flow routines with some interesting and
important differences.

Let m denote the number of arcs in the graph, and let n the number of nodes.
Let the capacity of the arcs be integers bounded by B, and let the gains be ratios
of integers, where the integers are also bounded by B. Our approach yields an
overall algorithm for the generalized maximum flow problem with O(m log(mB/ε))
iterations of O(mn) time to compute an flow with value at least (1− ε) times the
optimal, or O(m2 log(mB)) iterations to compute an optimal flow, for an overall
running time of O(m3n log(mB)).

The first polynomial-time combinatorial algorithms for the problem are due
to Goldberg, Plotkin, and Tardos [4]. The fastest known running time for this

problem is Õ(m2n log B), and is due to Radzik [7], building on earlier work of
Goldfarb, Jin, and Orlin [5].

We have also performed a preliminary implementation of this algorithm, using
some ideas of Cherkassky and Goldberg [2] for negative-cost cycle detection. How-
ever, our tests show that it is not currently competitive with good linear program
solvers such as CPLEX [6].
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Finding all optimal solutions for submodular function minimization

S. Thomas McCormick

(joint work with Satoru Fujishige and Maurice Queyranne)

Given a submodular function f : 2E → R on a finite ground set E, we consider the
problem of finding all optimal solutions to the Submodular Function Minimization
(SFM) problem:

min
S⊆E

f(S).

Solving SFM was an important open problem in combinatorial optimization
until Grötschel, Lovász, and Schrijver [8, 9] solved it in 1981 using the Ellipsoid
Algorithm. Because Ellipsoid is impractical, it remained an open problem to find a
combinatorial (non-Ellipsoid) SFM algorithm until two nearly simultaneous papers
in 1999 by Schrijver [15] (formally published in 2000) and Iwata, Fleischer, and
Fujishige (IFF) [11] (formally published in 2001).

Both of these results were based on a framework set up by Cunningham [4],
which was in turn based on an LP duality for SFM by Edmonds [5]. A useful way
to view Cunningham’s framework is that it makes SFM look like a generalization
of Min Cut (which is a special case of SFM) with a corresponding primal problem
that looks like Max Flow.

For Min Cut, Picard and Queyranne [14] showed that the submodularity of the
s–t cut function implies that the set of all min cuts is closed under union and
intersection, and hence forms a lattice, or ring family. They further showed how
to use any primal optimal solution (max flow) to compute a directed graph on
the nodes such that a node subset S is a min cut if and only if it corresponds to
an ideal of the partial order formed by the strongly connected components of the
directed graph. This is quite nice as this partial order can be computed in only
O(m) time from a max flow, and it represents the family of all min cuts (which
can be exponentially large) in O(m) space.

There are many practical applications where having access to all min cuts is
helpful; Picard and Queyranne survey many of these. There are similarly many
applications of SFM where having access to all optimal solutions would be helpful.
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For example, Martin Cooper [3] considers the problem from an Artificial Intel-
ligence perspective (and [12, Theorem 3.5] shows that O(n2) SFM calls suffice
to compute all SFM solutions); Shen, Coullard and Daskin [17] consider a facil-
ity location problem where knowing all SFM solutions would help in satisfying
real-world constraints; Huh and Roundy [10] use parametric SFM to determine
an optimal replacement sequence for semiconductor fabrication tools, and again
having all SFM solutions would help in satisfying real-world constraints; and Bau-
mann and Skutella [1] also use parametric SFM to compute flows over time. See
Fleischer [6], Fujishige [7, Chapter VI], McCormick [13], or Schrijver [16, Chapter
45] for surveys of SFM containing other applications.

It is well-known that the property that the set of optimal solutions forming a
ring family extends from Min Cut to SFM. We extend Picard and Queyranne’s
result from Min Cut to SFM using three tools: (1) Edmonds’ duality result for
SFM, and its associated complementary slackness; (2) the fact that the combina-
torial SFM algorithms represent their primal solution as a convex combination of
greedy vertices; and (3) an algorithm of Bixby, Cunningham, and Topkis (BCT)
[2] for finding the tight sets for a greedy vertex.

Define the base polyhedron of f as B(f) = {y ∈ RE | y(S) ≤ f(S) ∀S ⊂ E and
y(E) = f(E)}, and y−

e = min(ye, 0). Then the gist of Edmonds’ duality result
is the min-max relation that minS⊆E f(S) = maxy∈B(f) y−(E). The combinator-

ial SFM algorithms maintain a primal y ∈ B(f), represented as y =
∑

i λiv
i for∑

i λi = 1 and λi ≥ 0, where each vi is a vertex generated by the Greedy Algo-
rithm. By Carathéodory’s Theorem the SFM algorithms are able to update this
representation such that it has only O(n) terms.

Weak duality for Edmonds’ LP says that for any primal y ∈ B(f) and any dual
S ⊆ E, y−(E) ≤ y−(S) ≤ y(S) ≤ f(S). Complementary slackness says that y and
S are jointly optimal if and only if (1) ye < 0 =⇒ e ∈ S ( ⇐⇒ y−(E) = y−(S));
(2) e ∈ S =⇒ ye ≤ 0 ( ⇐⇒ y−(S) = y(S)); and (3) S is tight ( ⇐⇒ y(S) =
f(S)). Given a primal optimal y, define index sets M = {e ∈ E | ye < 0} and
Z = {e ∈ E | ye = 0}. Then to find all optimal SFM solutions, all we need to do
is to find all tight sets for y, and then all tight sets T such that M ⊆ T ⊆ M ∪ Z
are precisely all optimal SFM solutions.

Given the representation y =
∑

i λiv
i, note that T is tight for y ⇐⇒ T is tight

for each vi. BCT [2] give an algorithm for finding the lattice of tight sets for a
vertex vi that requires O(n2) function evaluations, and which produces a directed
graph Di such that T is tight if and only if it corresponds to an ideal of the partial
order induced by the strongly connected components of Di.

Therefore, if we take the graph D whose arc set is the union of the O(n) arc
sets of the Di, then the tight sets for y are precisely the ideals of the partial
order induced by the strongly connected components of D. Computing D takes
only O(n3) extra function evaluations. The material up to this point is already
contained in the Remark at the end of [7, Section 14.2].

Schrijver’s Algorithm produces an exact optimal primal point y, but the various
IFF Algorithms do not. It is possible to use O(n) calls to an IFF algorithm to
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find an exact primal optimal point, though it is not clear how to also produce its
required representation as a convex combination of vertices.

However, we note that the strongly polynomial IFF algorithms do carry enough
information to get all optimal solutions. As they proceed, they use some variation
of a “proximity lemma” to develop sets In and Out such that e ∈ In =⇒ e
belongs to every SFM optimal solution, and e ∈ Out =⇒ e belongs to no SFM
optimal solution, and they work on the reduced ground set R ≡ E − In − Out.
They use a scale factor δ and recognize optimality when δ ≤ 0, and which point
they know that their current primal y ∈ RR satisfies y ≤ 0. This implies that
y−(R) = y(R) = f̃(R), where f̃ is the appropriately modified f on R (note that
this also implies that R is the unique largest SFM solution). They also have
a convex combination representation of y. Therefore we can apply the above
algorithm to find all tight sets w.r.t. y, which then gives us all SFM solutions to
the original problem.

This leaves an open problem. It is easy to see that in fact there always exists
an integral primal optimal solution y, but apparently none of the existing SFM
algorithms can directly find one. It is possible to use O(n) calls to SFM to find
an integral optimal primal point, but it is not clear how to keep the required
convex combination representation of it. Thus it would be interesting to find an
SFM algorithm that can find an integral primal optimal point together with a
representation of it as a convex combination of vertices.
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Valid inequalities for mixed integer linear programs

Gérard Cornuéjols

Consider first a mixed 0,1 linear program in the form

min cx
Ax ≥ b
xj = 0, 1 for j = 1, . . . , n
xj ≥ 0 for j = n + 1, . . . , n + p,

where the matrix A ∈ Qm×(n+p), the row vector c ∈ Qn+p and the column vector
b ∈ Qm are data, and x ∈ Qn+p is a column vector of variables. We assume
that the constraints Ax ≥ b include xj ≥ 0 for j = 1, . . . , n + p, and xj ≤ 1 for
j = 1, . . . , n.

Consider the polyhedron P := {x ∈ R
n+p
+ : Ax ≥ b} and the mixed 0,1 linear

set S := {x ∈ {0, 1}n × R
p
+ : Ax ≥ b}. The set conv(S) is a polyhedron and,

ideally, we would like to have its linear description in the form conv(S) = Dx ≥ d.
Constructing the description Dx ≥ d would reduce the solution of a mixed 0,1
linear program to that of a linear program. But this goal is too ambitious in
general as the number of inequalities needed in the description Dx ≥ d is typically
enormous. This is not surprising considering that mixed 0,1 linear programming
is NP-hard! A more reasonable goal is to obtain an intermediate set between P
and conv(S) over which one can optimize a linear function in polynomial time,
and then to use recursion to get tighter approximations of conv(S).

Sherali and Adams [8], Lovász and Schrijver [7] and Balas, Ceria and Cornuéjols
[2] propose an approach for doing this which generates intermediate sets Q between
P and conv(S) as projections of higher dimensional sets that have a polynomial
description. The polyhedron P ⊆ Rn+p is first lifted into a higher dimensional
space Rn+p+q where the formulation is strengthened. This strengthened formula-
tion is then projected back onto the original space Rn+p, thus defining Q. In this
process the constraints of the higher dimensional formulation are defined explicitly
whereas those of Q are only known implicitly through projection, thus allowing Q
to have a nonpolynomial number of constraints. This approach is known under the
name of lift-and-project. The version of the lift-and-project procedure proposed
by Balas, Ceria and Cornuéjols [2] is as follows:
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Step 0: Select j ∈ {1, . . . , n}.
Step 1: Generate the nonlinear system xj(Ax− b) ≥ 0 and (1− xj)(Ax− b) ≥ 0.
Step 2: Linearize the system by substituting yi for xixj , i 6= j, and xj for x2

j .
Call this polyhedron Mj.
Step 3: Project Mj onto the x-space. Let Pj be the resulting polyhedron.

The set ∩n
j=1Pj is called the lift-and-project closure of P . The lift-and-project

closure is a better approximation of conv(S) than P :

conv(S) ⊆ ∩n
j=1Pj ⊆ P.

How much better is it in practice? Bonami and Minoux [5] performed such an
experiment. On instances from the MIPLIB library [4], they found that the lift-
and-project closure reduces the integrality gap by 37% on average ( the integrality
gap is the difference between the objective value optimized over conv(S) and the
relaxation P ).

One can obtain a stronger relaxation (Sherali-Adams [8]) by skipping Step 0
and considering the nonlinear constraints xj(Ax− b) ≥ 0 and (1−xj)(Ax− b) ≥ 0
for all j = 1, . . . , n in Step 1. Then, in Step 2, variables yij are introduced for all
i = 1, . . . , n+p and j = 1, . . . , n with i > j. Note that the size of the linear system

generated in Step 2 is much larger than in the previous procedure ( n(n−1)
2 + np

new variables and 2nm constraints, instead of just n + p − 1 new variables and
2m constraints before). The Sherali-Adams relaxation is at least as strong as
the lift-and-project closure defined above, and it can be strictly stronger since
the Sherali-Adams procedure takes advantage of the fact that yij = yji whereas
this is not the case for the lift-and-project closure ∩n

j=1Pj . How much better is
the Sherali-Adams relaxation in practice? Surprisingly, on the MIPLIB instances,
Bonami and Minoux [5] found that it only provides a marginal improvement over
the lift-and-project bound (38.5 % versus 37 %). Lovász and Schrijver [7] proposed
an even stronger version of the lift-and-project procedure. It would be interesting
to investigate its strength on the MIPLIB instances.

Next we consider mixed integer linear sets where the variables xj can take
general nonnegative integer values, instead of just 0 or 1. Let

S = {x ∈ Zn
+, y ∈ R

p
+ :

n∑

j=1

ajxj +

p∑

j=1

gjyj = b}

Let b = ⌊b⌋ + f0 where 0 < f0 < 1.
Let aj = ⌊aj⌋ + fj where 0 ≤ fj < 1.
Gomory showed that the following inequality (called Gomory mixed integer cut or
GMI cut) is valid for S.

(1)
∑

fj≤f0

fj

f0
xj +

∑

fj>f0

1 − fj

1 − f0
xj +

∑

gj>0

gj

f0
yj −

∑

gj<0

gj

1 − f0
yj ≥ 1.
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Gomory suggest to generate GMI cuts (1) from equations arising in the opti-
mal tableau of the linear programming relaxation. Observe that, if we multiply∑n

j=1 ajxj +
∑p

j=1 gjyj = b by an integer k, the coefficients of the xj variables in

(1) remain between 0 and 1, but the coefficients of the yj variables are multiplied
by the factor k, which makes the cut weaker. This suggests the following idea (An-
dersen, Cornuéjols and Li [1]): Take linear combinations of the constraints in order
to produce equations

∑n
j=1 ajxj +

∑p
j=1 gjyj = b where the norm of the vector g

is small. And generate (1) from these “reduced” equations. These cuts are called
reduce-and-split cuts. Computational experiments show that the reduce-and-split
cuts are usually very different from the GMI cuts generated from the rows of the
optimal tableau and that, in some cases, they can be significantly stronger. To
illustrate this, we present a few instances of the MIPLIB where the improvement
was particularly striking. The gap closed is reported after 20 rounds of cuts. The
last two columns give the number of nodes in a branch-and-bound algorithm using
these cuts in the formulation. In other instances, the reduce-and-split cuts did
not improve on the GMI cuts from the optimal tableau. Therefore it seems that
a hybrid approach that uses both types of cuts is a reasonable strategy.

Name GMI gap R&S gap GMI nodes R&S nodes
flugpl 14% 100% 184 0
gesa2 46% 97% 743 116
gesa2o 92% 98% 9145 75
mod008 47% 88% 1409 82
pp08a 83% 92% 7467 745
rgn 15% 100% 874 0
vpm1 44% 98% 7132 1
vpm2 41% 61% 38946 4254
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Geometry and expansion: A survey of recent results

Sanjeev Arora

Graph expansion occurs as a unifying concept across several areas of theoretical
computer science, including theory of communication networks, theory of error-
correcting codes, theory of approximation algorithms, and theory of computational
pseudo-randomness. This brief survey concerns new, geometric ways of looking at
expansion that have engendered new breakthroughs in approximation algorithms,
geometric embeddings of metric spaces, and probabilistically checkable proofs.

In approximation algorithms the breakthrough is new O(
√

log n)-approximation
algorithms for a host of NP-hard optimization problems, starting with the discov-
ery of such an algorithm for sparsest cut in [ARV]. These new algorithms rely
on a new analysis of a family of semidefinite programs.

In geometric embeddings new results include an almost-tight embedding of ℓ1-
spaces into ℓ2 with distortion O(

√
log n log log n). There have also been a spate of

results ruling out certain types of embeddings, most notably a paper of Khot and
Vishnoi which rules out O(1)-distortion embedding of ℓ2

2 into ℓ1.
Constructions of PCPs in recent years have relied upon theorems in Fourier

Analysis which are also geometric in nature, and this has also become clearer
thanks to the results on embeddings.

Yet another connection between geometry and expansion is that the above re-
sults rely upon a geometric analog of the study of expansion, namely, isoperimetric
problems. The simplest is the classical result that every closed set in ℜ2 whose
area is A has perimeter at least 2

√
πA, the perimeter of the circle of area A. One

can in fact prove the stronger statement that if this set has perimeter ”close to”
2
√

πA, then it ”looks like” a circle of area A. The latter type of theorems we be
referred to as Strong Isoperimetric Theorems. Isoperimetric theorems about the
n-dimensional sphere and the boolean hypercube play an important role in the
above results.
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Rearrangeably nonblocking multicast switching networks

Alexander Martin

(joint work with Peter Lietz)

Switching networks are directed acyclic graphs with specified disjoint sets of input
and output nodes. A connection request is a partial function from the set of output
nodes to the set of input nodes specifying which input node needs to be routed to
which output nodes. A switching network is called rearrangeably nonblocking with
respect to multicast traffic if all connection requests are routable, that is, if for
each request there exists a set of mutually vertex-disjoint directed trees connecting
each input node to its designated output nodes. A switching network is called
rearrangeably nonblocking with respect to unicast traffic if all one-one connection
requests are routable, that is, if for each such request there exists a set of mutually
vertex-disjoint directed paths connecting each input node to its designated output
node. In the following, we will use the shorthand terms multicast-rearrangeable
and unicast-rearrangeable.

Clos networks have been introduced by Charles Clos in [1] in order to reduce
network size and cost. A Clos network is composed from switches, which are
arranged in three stages: the input stage, the center stage and the output stage.
The switches within each stage have the same dimension. Every pair of switches
in consecutive stages is connected via exactly one link. See [3] for an exhaustive
treatment of Clos networks.

A Clos network is completely described by the following set of parameters.
We denote by n1 the number of inputs of each input stage switch and by r1 the
number of input stage switches. By m we denote the number of center stage
switches. Lastly, by n2 we denote the number of outputs of each output stage
switch and by r2 the number of output stage switches. A Clos network is called
symmetric if n1 = n2 and r1 = r2. In this case we denote these parameters by n
and r. Finally, the number of inputs is denoted by N1 = n1 · r1 and the number
of outputs is denoted by N2 = n2 · r2. Figure 1 shows a symmetric Clos network
with n = 4, r = 4 and m = 6.

The Slepian-Duguid Theorem states that a symmetric Clos network is unicast-
rearrangeable if and only if m ≥ n. While the Slepian-Duguid theorem is a
straightforward application of König’s edge coloring theorem, matters become
much more involved in the multicast case. The problem of characterizing multicast-
rearrangeable Clos networks has been partially addressed in [2, 6], however, as
stated in [4], no necessary and sufficient conditions on n, r and m are known such
that the associated Clos network is multicast-rearrangeable. As for fixed n and r,
the number of crosspoints of a Clos network grows linearly with m, and as appli-
cations of multicast connection networks abound, we consider it crucial to work
towards filling this gap.

For a fixed Clos network, we represent each multicast connection request as a
binary r2× r1 ·n1 matrix such that the sum of each row is at most n2. The matrix
entry (i, j) is set to one if and only if input j is requested by output switch i.
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Figure 1. Clos network

The routability of a connection request translates into the following property of
the associated matrix. A request is routable if and only if one can assign to each
nonzero in the associated matrix a number out of {0, . . . , m − 1} such that

(1) each number is used at most once in each row,
(2) within each block, each number is used in at most one column,

where by the k-th block we mean the submatrix consisting of the columns k · n1

up to (k + 1) · n1 − 1, for k = 0, . . . , r1 − 1.
The above described property can be naturally presented as a vertex-coloring

or higher dimensional matching problem. We will henceforth identify a multicast
request with its associated matrix. In order to verify that some given Clos network
is multicast-rearrangeable, we have to verify that each request has the above prop-
erty. As the number of possible requests is prohibitively large, we have to single
out a smaller class of requests such that the routability of this class of requests
guarantees the routability of all possible requests. We will do so using essentially
three ideas.

(1) We do not consider requests whose routability can be established by some
known theorem.

(2) We do not consider requests whose routability can be reduced to the
routability of some request which is strictly harder to satisfy.

(3) Out of each symmetry class of requests, we only consider one representa-
tive.

As an example for (1), if each block and each row contains at most m nonzeros,
then the routability follows from König’s edge coloring theorem. As for (2), if the
columns of two different blocks can be merged into one block in such a way that
the nonzeros do not collide, we can discard the verification of the request, as the
transformed request is provably harder to satisfy. Finally, if two requests are equal
up to permutation of rows, permutation of columns within a block and permutation
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of entire blocks, then the routability of one request entails the routability of the
other, hence we will only consider the lexicographically minimal representative of
each symmetry class.

By efficiently enumerating and solving a moderately sized class of requests, we
were able to establish the fact that the symmetric Clos network with n = 8 and
r = 4 is multicast-rearrangeable if and only if m ≥ 11, see [5]. The resulting
Clos network has 880 crosspoints. In comparison, the trivial 32 × 32 switching
network has 1024 crosspoints. We are optimistic that our method is applicable
to networks with considerably larger dimensions as well, in which case we would
expect proportionally even larger savings than in the 32× 32 case.
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An exact approach to crossing minimization

Petra Mutzel

(joint work with Christoph Buchheim, Markus Chimani, Dietmar Ebner, Carsten
Gutwenger, Michael Jünger, Gunnar Klau, René Weiskircher)

Crossing minimization is among the oldest and most fundamental problems in the
areas of automatic graph drawing and VLSIdesign. At the same time, it is very
easy to formulate: “Given a graph G = (V, E), draw it in the plane with a minimum
number of edge crossings”. A drawing of G is a mapping of each vertex v ∈ V to
a distinct point and each edge e = (v, w) ∈ E to a curve connecting the incident
vertices v and w without passing through any other vertex. Common points of two
edges that are not incident vertices are called crossings. The minimum number of
crossings among all drawings of G is denoted by cr(G).

It is well known that the general crossing minimization problem is NP-hard [5].
The problem has been studied extensively in the literature from a theoretic point
of view and many bounds exist for a variety of graph classes (see, e.g., [7, 10, 1,
9, 2, 6]. However, so far no practical algorithm which is able to solve even small
instances to provable optimality has been known. Recently, we have presented
the first algorithm that is able to compute the crossing number of general sparse
graphs of moderate size [3]. The approach is based on integer linear programming
techniques.



Combinatorial Optimization 2893

The natural ILP-approach would be to introduce a 0/1-variable for each edge
pair e, f ∈ E which is one if the two edges cross in a crossing minimal drawing and
zero otherwise. We could obtain inequalities arising from Kuratowski’s theorem
that force the crossing of at least two edges in every Kuratowski subdivision, i.e., a
subdivision of K5 or K3,3. Unfortunately, even deciding whether there is a drawing
for a given set of edge crossings is NP-complete [8]. This problem is known as the
realizability problem and can be stated as follows: “Given a set of edge pairs D,
does there exist a drawing of G such that two edges e, f ∈ E cross each other if
and only if {e, f} ∈ D?

One way to work around the realizability problem is the reduction to simple
drawings. A drawing is called simple if each edge crosses at most one other edge.
Not surprisingly, there are graphs that do not admit any simple drawing, e.g.,
graphs with more than 4|V | − 6 edges. Furthermore, Bodlaender and Grigoriev
proved that it is NP-complete to determine whether there is a simple drawing for
a given graph G [2]. If there is such a drawing, we denote the minimum number
of crossings among all simple drawings of G by crs(G).

Even if there is a simple drawing for G, its crossing number crs(G) does not
necessarily coincide with cr(G). However, given a graph G = (V, E) we can create
a graph G∗ = (V ∗, E∗) by replacing every edge e ∈ E with a path of length |E|.
It is easy to show that for any non-negative number K the graph G can be drawn
with K crossings if and only if there is a simple drawing of G∗ with K crossings.

Therefore, it is “sufficient” to solve the crossing minimization problem re-
stricted to simple drawings in order to solve the general crossing minimization
problem. Since the transformation can obviously be done in polynomial time,
the NP-completeness of the corresponding decision problem for simple drawings
follows immediately from the NP-completeness for the general crossing number
problem [5].

We present an integer linear programming formulation for the crossing mini-
mization problem restricted to simple drawings. Let G = (V, E) be a graph and
let D be a set of unordered pairs of edges of G. We call D simple if for every
e ∈ E there is at most one f ∈ E such that (e, f) ∈ D. Furthermore, D is called
realizable if there is a drawing of G such that there is a crossing between edges e
and f if and only if (e, f) ∈ D.

For every graph G and every simple D, we denote by GD the graph that is
obtained by introducing a dummy node de,f for each pair of edges (e, f) ∈ D.
More precisely, we introduce dummy nodes on both e and f and identify them.
Notice that GD is only well-defined if D is simple, as otherwise it would not be
clear where to place the dummy nodes. For both edges e1 and e2 resulting from
splitting e, we set ê1 = ê2 = e, analogously for f . It is not hard to see that if
D is simple, then D is realizable if and only if GD is planar. Using a linear time
planarity testing and embedding algorithm, we can thus test in time O(|V |+ |D|)
whether D is realizable, and compute a realizing drawing in the affirmative case.
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For a set of pairs of edges D ⊆ E2 we define

xD
e,f =

{
1 if (e, f) ∈ D

0 otherwise .

Next, for every subgraph H = (V ′, E′) of GD, let Ĥ = {ê | e ∈ E′} ⊆ E. Less

formally, Ĥ contains all edges of G involved in the subgraph H of GD.
We can show that the following ILP-formulation is correct. We use x(F ) as an

abbreviation for the term
∑

(e,f)∈F xe,f :

min x(E2)
s.t.

∑
f∈E xe,f ≤ 1 ∀e ∈ E

x(Ĥ2 \ D) − x(Ĥ2 ∩ D) ≥ 1 − |Ĥ2 ∩ D| for every simple D
and every Kuratowski
subgraph H in GD

xe,f ∈ {0, 1} ∀ e, f ∈ E

It is clearly impractical to generate all “Kuratowski” constraints in advance
and solve the ILP in a single step. Instead, we embed the given formulation into
a branch-and-cut framework, separating violated inequalities dynamically during
runtime.

A crucial factor in this approach is the separation problem: “Given a class of
valid inequalities and a vector y ∈ Rn, either prove that y satisfies all inequalities
in the class, or find an inequality which is violated by y.”. Although we can
easily separate violated inequalities for integral solution vectors (based on planarity
testing), the problem is more complex within the branch-and-cut framework since
we have to deal with fractional values. So far, no polynomial time algorithm for
the separation problem is known.

We have implemented a branch-and-cut algorithm based on our new ILP-
formulation using CPLEX combined with column generation, new preprocessing
techniques, and heuristics for the separation problem and upper bounds. We used
a common benchmark set in graph drawing consisting of 11, 389 graphs with 10 to
100 vertices and 9 to 158 edges (collected by the University of Rome III, see [4].)
We have been able to compute the exact crossing number for about 90 percent
of all graphs on up to 50 vertices in the benchmark set within a time limit of 30
minutes per graph. We have also been able to solve the crossing number for the
complete graph on 8 vertices K8 to provable optimality.

This is ongoing work. Our future plans are to study the polyhedron defined by
the set of realizable crossing vectors. We expect to be able to solve larger instances
by tightening the ILP-formulation using additional constraints. One possibility to
get such constraints could be to study k-crossing critical graphs.
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Exact solution of combinatorial optimization problems without known
decent ILP formulations

Alberto Caprara

We illustrate our experience on some NP-hard combinatorial optimization prob-
lems that share the following characteristics: (1) they arise in real-world applica-
tions, (2) they are very simple to state, (3) they do not seem to admit any decent
ILP formulation, i.e., all the formulations that were tried do not allow the solu-
tion of toy instances by modern, general-purpose ILP solvers. The list of prob-
lems includes Sorting by Reversals [1], Reversal Median [2], Bandwidth [3], Linear
Arrangement [5], Bidimensional Bin Packing [4], Protein Folding in the H-P Model
[6].

Focusing attention on the optimal solution of (real-world) medium-size in-
stances, we briefly illustrate what could be achieved for each of these problems,
ranging from basically nothing to effective solution by strong ILP formulations of
suitable relaxations, which are defined after a careful analysis of the combinatorial
structure of the problem.

Specifically, for Sorting by Reversals the most effective approach is based on
the definition of a non-trivial combinatorial relaxation, for which a natural ILP
formulation can be derived, and the solution of this ILP. For Reversal Median, an
analogous combinatorial relaxation and associated ILP formulation lead to an LP
relaxation that is too cumbersome to be solved in practice, and the best thing is to
resort to a combinatorial branch-and-bound algorithm based on the combinatorial
relaxation. For Bandwidth, the best approach computes bounds by solving suitable
(easy) ILP relaxations, keeping the integrality constraints (whose removal would
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lead to extremely poor bounds). For Linear Arrangement, most of the work is
in progress, but an approach based on an LP relaxation in which variables are
associated with edge lengths, not necessarily associated with an ILP formulation
of the problem, appears to be promising. For Bidimensional Bin Packing, the best
way to derive bounds appears to be the solution of a suitable Bilinear Program,
which is not directly connected to any ILP formulation of the problem. Finally,
for Protein Folding in the H-P Model, there seems to be no reasonable known
approach at all.
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Towards industrial railroad optimization: Switching, routing, and
scheduling

Marco Lübbecke

(joint work with Alberto Ceselli and Ines Spenke)

We discuss most recent and preliminary work on a large-scale combinatorial opti-
mization problem arising in industrial practice.

Industrial switching involves moving materials on rail cars within or between
industrial complexes and connecting with other rail carriers. Planning tasks in-
clude the making up of trains with a minimum shunting effort, the feasible and
timely routing through an in-plant rail network on short paths, and assigning and
scheduling of locomotives under safety and network capacity aspects. A human
planner must resort to routine and simple heuristics, not least for the reason of
unavailability of computer aided suggestions.



Combinatorial Optimization 2897

For the routing/scheduling problem, our set covering formulation with packing
constraints

minimize
∑

k∈K

∑

p∈Pk

cp
kλp

k

subject to
∑

k∈K

∑

p∈Pk

dp
i λ

p
k ≥ 1 ∀ requests i

∑

k∈K

∑

p∈Pk

ap
e,tλ

p
k ≤ 1 ∀ tracks e, at time t

∑

p∈Pk

λp
k ≤ 1 ∀ locomotives k

λp
k ∈ {0, 1}

cp
k cost of path/schedule p, including setup cost for locomotive k

dp
i = 1 iff request i is served on path p

ap
e,t = 1 iff path p visits track b at time t

λp
k = 1 iff locomotive k executes path/schedule p

is a natural modeling choice. A feasible schedule (route and time) for locomotive
k ∈ K is encoded by a (particular) path p ∈ Pk in our network. The packing
constraints inhibit two different locomotives to visit the same track at the same
time. These constraints are dynamically generated as well as the (exponentially
many) variables of this model; that is, we propose a branch-and-cut-and-price
(BCP) algorithm to solve this problem. The so-called pricing subproblem is a
tailored resource constrained shortest path problem. We discuss some generic
issues of th increasingly popular BCP technique for solving large-scale integer
programs and particularities of our approach like special branching rules.

The switching/shunting problem can be described as follows. Given a set of
stacks of a given maximum depth (“tracks”); an ordered list of items (“cars”), one
for each stack; a set of sets of items, each set of items is identified by its color
(“requests”), some items may/will remain uncolored (“not requested”); and one
dedicated stack, called the train. Allowed moves are to move (groups of) items
from the top of a stack to the top of the train, or from the top of the train to
the top of a stack (preserving orderings). No stack may contain more items than
allowed by the maximum depth. The problem is to finally have some stack which
contains all colored items, consecutively, separated by color, and on the top of that
stack (that is, no uncolored items “block” the access to the colored items). The
objective is to minimize the number of moves. We think that this is an interesting
combinatorial optimization problem, and may spawn a number of variants. We
report on preliminary experience with a mixed integer programming formulation
of a simplified version of this problem.

Our conclusion is that mixed integer programming is not only a universal mod-
eling tool but became a more and more effective solution framework for all sorts
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of practical (and of course, also mathematical) problem settings. We support this
conclusion by the fact that within a rather short time period we were able to set
up a rather involved implementation of our proposed algorithms. This brings us in
a position to have a proof-of-concept after only a few months, even if our models
are able to solve only small instances at the moment.

Our work is based on recent practical data from a German in-plant railroad.

On a problem by Fourier

Gerhard J. Woeginger

John Herivel relates the following story in his biography of the mathematical
physicist Joseph Fourier (1768–1830). In 1788, Fourier corresponded with his
friend and teacher C.L. Bonard, a professor of mathematics at Auxerre. In one
of his letters Fourier posed the following problem: “Here is a little problem of
rather singular nature. It occurred to me in connection with certain propositions
in Euclid we discussed on several occasions. Arrange 17 lines in the same plane so
that they give 101 points of intersection. It is to be assumed that the lines extend
to infinity, and that no point of intersection belongs to more than two lines.” One
solution to Fourier’s problem is to use four families of parallel lines with 2, 3, 4,
and 8 lines, respectively.

The more general problem of deciding whether for given numbers n and m
there exist n lines in the Euclidean plane with exactly m points of intersection
is equivalent to the following question: Given two positive integers S and Q,

decide whether there exist positive integers x1, . . . , xk with
∑k

i=1 xi = S and∑k
i=1 x2

i = Q. The talk shows that this problem can be solved in time polynomially
bounded in the logarithms of S and Q.
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Secure network coding via filtered secret sharing

Cliff Stein

(joint work with Jon Feldman, Tal Malkin, Rocco Servedio)

Networks that carry information are now ubiquitous, and so the problem of using
them efficiently is critical. One of the most exciting new ideas of the last few
years in the theoretical study of information networks is network coding. This
line of research (e.g., [14, 8, 16, 17, 6], see also [15]), introduced by Ahlswede
et. al. [1], differs from traditional work on routing in networks in the following
way. A packet sent through a network consists of routing information and data.
Traditionally, routers manipulate the routing information, and just pass along the
data. In network coding, we allow the routers to manipulate the data, i.e. we allow
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the network to do computation on the data. It has been shown [1, 17, 8] that by
doing so, we can increase the effective capacity of the network. Network coding
has been suggested as a practical tool for use in content distribution networks over
the Internet [7, 18], as well as for wireless networks [3, 19].

In a traditional multicast situation with a single source and multiple destina-
tions, the amount of information that can be transmitted from the source s to a
particular destination ti is equal to the minimum cut κi between the source and
destination. If we allow coding at the routers, we obtain the surprising result
that we can simultaneously transmit n = mini κi symbols of information to every
destination [17]. Furthermore, given a network, we can construct such a network
code in polynomial time [12]. In contrast, there are simple examples of networks
in which this is not possible with traditional routing [9].

As any user of the Internet is painfully aware, it is imperative to consider
security issues in any network scenario. To that end, several researchers have
considered security issues in network coding. The problem of making a linear
network code secure was first studied by Cai & Yeung [2], who considered a “wire-
tap” adversary that can look at a bounded number of network edges. Jain [13] also
considers this model, and gives more precise security conditions in certain cases.
Ho et. al.[10] consider the related problem of network coding in the presence of a
Byzantine attacker who can modify data sent from a node in the network.

In this paper we study secure multicast network coding against a wire-tap ad-
versary where perfect (information-theoretic) security is required. We abstract
away the network topology and reduce the problem of information-theoretically
secure linear network coding to a new variant of secret sharing, which we call fil-
tered secret sharing and believe to be of independent interest. Informally, while in
classical threshold secret sharing security is maintained against an adversary who
receives at most k of the n shares, in filtered secret sharing the adversary receives
at most k among a set of N ≥ n fixed linear combinations of all n shares. In
other words, the shares of the secret are passed through some fixed n-by-N linear
filter, and then k out of N of these combinations are given to the adversary. This
filtered secret sharing problem is investigated using techniques from secret sharing
and from classical coding theory.

1. Motivation For Our Work

Making a system secure always comes at a cost. For example, if one uses
cryptography, one pays a cost in computation time. In network coding, the cost
is that less information can be transmitted in each time step. More precisely we
will study trade-offs between security, bandwidth and capacity in linear multicast
network coding schemes. We will later define each of these terms more precisely,
but give an informal definition here. Security is characterized by how many edges
an adversary can observe without obtaining any information about the message
in the network. Information is transmitted as elements of a finite field Fq. The
logarithm of the field size is the edge bandwidth, or how much information (in bits)
needs to travel through an edge in one step. In many applications, an edge will



2900 Oberwolfach Report 50/2005

have a physical upper limit on bandwidth; this will force us to make the bandwidth
of our code small. For security, random symbols will be transmitted along with the
information symbols; we measure the capacity of the network code as the number
of information symbols transmitted in each step. The overall goal is to operate at
a capacity close to the minimum cut value n = mini κi and be secure against an
adversary who can view many edges, under possibly limited edge bandwidth.

Cai & Yeung [2] considered one particular setting of security, bandwidth and
capacity. Specifically, if n is the minimum cut value in the underlying network of
N edges, and k < n is the bound on the number of edges available to the adversary,
they demonstrate the existence of a scheme with capacity n−k as long as the edge
bandwidth is greater than log

(
N
k

)
. This result has two main drawbacks: (i) the

construction of the scheme takes
(
N
k

)
steps, and (ii) the bandwidth requirement

is prohibitive for large k. Note that in the absence of security considerations the
bandwidth requirement is at most the logarithm of the number of terminals in the
network, and hence is at most log N [17, 12].

2. Our Results

We exhibit new trade-offs between security, bandwidth and capacity of secure
linear network coding schemes. We give positive results on achievable parameters
that are more powerful than those previously known. We also give new negative
results showing that filtered secret sharing is unsolvable in certain cases.

We first show that by giving up a little bit of capacity (namely, sending n−Θ(k)
symbols instead of n−k), we can efficiently construct a scheme that is secure with
high probability, where the required bandwidth is only Θ(log N), independent of

k. This bound is superior to the bound of log
(
N
k

)
in most cases, and allows a

trade-off between capacity and field size. For very large k = Θ(N), our bandwidth
requirement becomes Θ(1), independent of both N and k.

Our negative result gives further support to our approach of giving up capacity
in order to achieve security with a small bandwidth. We show that if one insists
upon sending n − k message symbols, then there are cases where the bandwidth
must be almost as large as Θ(

√
k log N). (We give more precise statements of both

our positive and negative results later in the paper.)

3. Techniques

As mentioned above, we reduce the secure network coding problem to a variant
of secret sharing, which we call filtered secret sharing. We then show that filtered
secret sharing is actually equivalent to a certain generalized (classical) code con-
struction problem. More precisely, we study the problem of designing a code that
has large distance from a given code. Within this framework, we derive positive
results using methods similar to those used in a proof of the Gilbert-Varshamov
bound (see [11]), and negative results using a bound [5] on the covering radius [4]
that linear codes can achieve.

Our method for constructing a secure network code has a nice feature that
makes it more useful when the network code is fixed (in hardware, say). If we
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are given a network and a network code, we can make this code secure without
changing the network code, but only by applying a linear transformation to the
input. Our ability to do this follows from a linear algebraic approach to network
coding which actually abstracts away the network topology, along the lines of [14].
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Collective decisions for tours

Ulrich Pferschy

(joint work with Christian Klamler)

Recently, there emerged a tendency of combining concepts from Social Choice
Theory, Computer Science and Mathematical Optimization leading to a series of
workshops devoted to the interaction of these traditionally separate fields, e.g. at
Oberwolfach in March 2004. Within this trend we investigate the application of
social choice concepts, such as preference relations and voting rules, to classical
problems of Combinatorial Optimization. This opens up an interesting new way
to look at well-studied problems and should lead to fruitful cooperations between
two separate scientific communities joined by their common usage of mathematical
language.

Following earlier related works on graph problems [3], [6], and scheduling prob-
lems [4], we concentrate our investigations on the most classical Combinatorial
Optimization problem, the Traveling Salesman/person Problem (TSP) and con-
tinue with the Minimum Spanning Tree Problem (MST).

1. General Framework

The general idea of our approach is the following: Instead of assigning cost
coefficients to edges and performing arithmetic operations on them to find a unique
optimal solution value, we consider the assessment of every edge by a group of n
individuals. Each of them expresses his/her preferences as a ranking, i.e. a total
ordering of all alternatives (of all edges, in our case). The collection of these
n rankings is called a preference profile. It is the central task of Social Choice
Theory to determine a social preference by aggregating individual preferences (see
e.g. Sen [7]). The resulting area of research is strongly axiomatic and focuses on
characterizations and impossibility results instead of algorithmic concepts (see e.g.
Nurmi [5]). We distinguish between a social welfare function, which aggregates the
n orderings into a single total order, and a social choice function, which is applied
on a subset of alternatives and selects a subset of alternatives taking into account
the n orderings.

Among the most widely studied aggregation rules are the Borda Count, where
the ranking by every individual is represented by a numerical score and the aggre-
gation follows from summing up the scores, and the Approval Vote, where every
individual gives a consistent bipartitioning of every subset of alternatives into ap-
proved and non-approved options. In the latter case aggregation is achieved by
counting for every alternative the number of individuals by which it is approved.

Other mechanisms of major interest are the Plurality Rule, where alternatives
are ranked according to the number of top positions they achieve in the individual
rankings, and the Simple Majority Rule, where an alternative is socially preferred
to another alternative if a majority of individuals values the former above the
latter. Note that the latter rule does not necessarily induce a total ordering but
might well lead to cycles.
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The aim of our research is to establish and analyze algorithms which determine
solutions that are in some way good or acceptable for a large number of individuals
in the above social choice context.

2. Constructing Tours

We will consider the problem of finding circular tours in a complete graph
G = (V, E) visiting every vertex exactly once (see e.g. [1]). A natural first step is
the analysis and comparison of a global and a local decision approach. The global
tour construction procedure applies a social welfare function and adds edges to
the tour according to the resulting ordering as long as they do not violate the tour
condition. This can be seen as an analogon to the multi-fragment heuristic known
from classical combinatorial optimization. The local tour construction procedure
starts at an arbitrary vertex of the graph and submits all its neighbours to a
decision by a social choice function producing a single winner. This edge is included
in the tour and the procedure is iterated at the new endpoint of this edge with all
its still unvisited neighbours. Obviously, this approach corresponds to the classical
nearest neighbour heuristic.

To compare tours with each other, we use the following pairwise dominance
criterion:

Tour T pairwise dominates tour T ′ if and only if for all individuals
i ∈ {1, . . . , n}, there exists a bijection gi : T → T ′ such that for
all a ∈ T , a is ranked higher than gi(a) by individual i.

3. Results

The flavour of our results is negative in the following sense: Both construction
rules can be pairwise dominated by each other. For the case of |V | = 5, i.e.
|E| = 10, this means that the edge set computed by one of the two construction
rules can be pairwise dominated by its complement, which is computed by the
other rule. Hence, all n individuals would have preferred the use of a different
tour construction.

More formally, we have the following statement:

Theorem 1. Using the Borda Rule, for any complete graph with |V | ≥ 5, there
exist preference profiles such that:
(i) the result of the local tour construction is pairwise dominated by the global tour
construction.
(ii) the result of the global tour construction is pairwise dominated by the local tour
construction.

Constructions with these properties can also be given for the Approval Vote.
Note that for Approval Vote the dominance of the global tour can only be attained
by a suitable utilization of tie-breaking, which consists of approving all but the
lowest ranked option.
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For the Plurality Rule it is easy to see that the globally constructed tour can
never be pairwise dominated by any other tour. However, the above property holds
for the local tour construction. The Simple Majority Rule does not necessarily
produce a total ordering and thus requires some mechanism to deal with cycles
such as assigning equal rank to the transitive closure of the elements in such a
cycle. It can be shown that for the Simple Majority Rule the tours derived by
local and global tour constructions can never be disjoint and hence can not pairwise
dominate each other.

While these results are in line with the intuitive expectation from a classical
optimization point of view, a study of the MST shows a more significant deviation
of the social choice approach. Both the local construction (equivalent to Prim’s
algorithm) and the global construction (known as Kruskal’s algorithm) are exact
algorithms for the numerical problem. However, for the Borda Rule, the local
construction can be pairwise dominated by the global construction which remains
undominated.

For more details we point to our recent paper [2]. Extensions of these results
to other classical combinatorial optimization problems and an integration into the
properties and issues studied in social choice theory are under way. In particular,
the comparison of different social choice/welfare functions and the development of
algorithms that permit also positive results are points of major interest.
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Selfish routing and the price of anarchy: A look forward, and a look
back

Andreas S. Schulz

Nash equilibria and related game-theoretic concepts have lately received increasing
attention in the theoretical computer science and combinatorial optimization com-
munities. The “price of anarchy,” put forward by Koutsoupias and Papadimitriou
([14], see also [17]) has emerged as the perhaps most prominent notion. It measures
the worst-case efficiency loss of a system that is left to independent, selfishly acting
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agents if compared to coordination by some central authority. While this view is
now used in a variety of settings including location analysis, pricing, supply chain
coordination, and system design, it was originally developed in the context of net-
work routing. In this talk, we present a short geometric proof (taken from [9]) for
several price-of-anarchy results that were recently established in a series of papers
on selfish routing in multicommodity flow networks (including [4, 8, 18, 19, 20]).
This novel proof also facilitates two new types of results (described in [9]). On
the one hand, it leads to pseudo-approximation results that depend on the class
of allowable cost functions. On the other hand, one can derive improved bounds
on the inefficiency of Nash equilibria for situations in which there are either no
fixed costs, or when fixed costs represent a nonnegligible fraction of the total cost.
These tighter bounds help to explain empirical observations, e.g., in vehicular traf-
fic networks [13]. Our analysis holds in the more general framework of (nonatomic)
congestion games, and we also discuss the differences to atomic congestion games,
which only have finitely many players. In particular, we address the existence
and the complexity of computing pure Nash equilibria (as detailed in [10, 11, 15],
among others), as well as the price of anarchy in the case of unsplittable flows
[3, 5], splittable flows [7], and k-splittable flows [15]. We conclude by mentioning
some other interesting directions in this context, including the price of anarchy for
mixed Nash equilibria [6], the price of stability [1, 6, 21], the value of mediation
[2, 6], and the attempt to obtain bounds on the value of states to which selfish
play could lead [12, 16].
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Intermediate integer programming representations using value
disjunctions

Robert Weismantel

(joint work with Matthias Köppe, Quentin Louveaux)

Extreme representations of the feasible points of a mixed-integer linear opti-
mization problem are either given by means of the facet defining inequalities in
the original space or by a set of feasible mixed integer points whose convex hull
contains the feasible region. It is well known that in principle one such extreme
representation can be transformed into the other extreme representation. However
from an algorithmic point of view both extreme representations are very hard to
achieve. This suggests to search for other, “intermediate” representations that are
algorithmically more tractable, in the sense that they

• require less variables than the extreme representation by the vertices,
• require less constraints compared to the total number of facets of the

convex hull,
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• have a simpler combinatorial constraint structure than the facets of the
convex hull in the original space and hence, the separation problem in the
extended space is easier to solve.

In the literature, there are a couple of interesting examples of this type. Chopra
and Rao [5, 6] introduced a directed formulation for the Steiner tree problem and
showed that exponentially many inequalities in the undirected formulation are pro-
jections of a small number of directed inequalities. R. K. Martin [9] reports on the
minimum spanning tree problem, which has as an inequality formulation of size
O(2n). It can, however, alternatively be described as the projection of an extended
formulation which requires O(n3) variables and O(n2) constraints. Moreover, there
are many further compact extended formulations for specific combinatorial opti-
mization problems, in particular for a variety of fixed-charge network problems.

For general binary mixed integer models extended formulations can be obtained
from the so-called Lift-and-Project approach. This approach has its roots in the
work of Egon Balas on disjunctive optimization [1, 2]. It was further refined in
[10, 8, 3, 4] by introducing hierarchies of extended formulations whose variables
represent more general subsets of original variables. The disadvantage of this ap-
proach is that the number of variables grows exponentially with the size of the
subsets for which we introduce new variables. The tool that we propose in this
paper to generate an extended formulation is the value-disjunction procedure. Re-
sorting to this tool one can describe the convex hull of the given mixed-integer set
as the intersection of several simpler polyhedra using the variables of an extended
space. This is the structure theorem for the value disjunction procedure that we
explain more formally below.

Let us partition the set N = {1, . . . , n} into subsets N1, . . . , NK . For each
of the sets Ni, we determine all the possible vectors (“values”) generated by the
columns Aj belonging to the variables indexed by Ni:

Ai =

{ ∑

j∈Ni

Ajxj : xj ∈ {0, . . . , uj} for j ∈ Ni

}
.

Since the integer variables are assumed to be bounded, the set Ai is finite; its
cardinality ni = |Ai| is at most

∏
j∈Ni

(1+uj). Let the elements of Ai be numbered,

Ai = {fNi

1 , . . . , fNi
ni

}. We shall associate with fNi

k a new binary variable yNi

k . In
order to simplify the subsequent expositions, we shall also use the abbreviating
notations A(xNi) =

∑
j∈Ni

Aj , and moreover A(yNi) =
∑ni

k=1 yNi

k fNi

k and A(y) =
∑K

i=1 A(yNi).
We come to two major definitions that we make use of in this paper.
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Definition 1. For a given subset Ni, we define the linking polyhedron as

Vi = conv

{
(xNi ,yNi) ∈ Z

|Ni|
+ × {0, 1}ni :

∑

j∈Ni

Ajxj =

ni∑

k=1

fNi

k yNi

k

ni∑

k=1

yNi

k = 1

0 ≤ xi ≤ ui, i = 1, . . . , n

}
.(1)

Furthermore we define the aggregated polyhedron as

Q = conv

{
(y,w) ∈ {0, 1}n1+···+nK × Rd

+ :

K∑

i=1

ni∑

k=1

fNi

k yNi

k +

d∑

j=1

Gjwj ≤ b

ni∑

k=1

yNi

k ≤ 1 for all i = 1, . . . , K

}
.(2)

Theorem 1 (Structure Theorem for Value Disjunction).

(3)
P =

{
(x,w) ∈ Rn × Rd : there exists y ∈ [0, 1]n1+···+nK with

(y,w) ∈ Q and (xNi ,yNi) ∈ Vi for all i
}
.

Next we introduce the family of linking polyhedra. In the special but important
case that such a linking polyhedron comes from the unweighted sum of a set of
variables, we completely describe the polyhedron by means of linear inequalities
and equations.

We show that the value disjunction procedure is a tool to compute complete
descriptions in an extended space. As an example we consider the 0/1 knapsack
problem with three distinct coefficients:

(4)
∑

j∈N1

µxj +
∑

j∈N2

λxj +
∑

j∈N3

σxj ≤ β,

where N1, N2, N3 are pairwise disjoint index sets.
Finally, we investigate one way of making computational use of value disjunc-

tions: By branching also on the new binary variables of the extended formulation
instead of only on the original variables, it is possible to take more flexible branch-
ing decisions. In fact, we propose such a branching scheme for situations where
none of the usual LP-based variable selection criteria provides a solid basis for
taking a branching decision. Such situations frequently occur in very hard integer
programs like the market-split instances [7]. We investigate the effect of branching
simplifying the facet description: A branching decision is considered good if the
facet descriptions of the generated subproblems are significantly simpler than the
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original facet description. Using experiments with randomly generated problem
instances, we show that it is possible to make a branching decision based on the
structure of the problem which is better than branching on the original variables.
Finally we report on simple computational experiments with a few hard integer
programs, where we branch explicitly on the new binary variables and then solve
the subproblems with the branch-and-cut system CPLEX. We obtain a significant
reduction in both the number of nodes and the computation time.
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Algorithmic aspects of large sensor networks

Sándor P. Fekete

(joint work with Stefan Fischer, Alexander Kröller, Dennis Pfisterer)

The study of wireless sensor networks (WSN) has become a rapidly developing
research area. Typical scenarios involve a large swarm of small and inexpensive
processor nodes, each with limited computing and communication resources, that
are distributed in some geometric region; communication is performed by wireless
radio with limited range. Upon start-up, the swarm forms a decentralized and
self-organizing network that surveys the region.

From an algorithmic point of view, these characteristics imply absence of a cen-
tral control unit, limited capabilities of nodes, and limited communication between
nodes. This requires developing new algorithmic ideas that combine methods of
distributed computing and network protocols with traditional centralized network
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(a) Sensor nodes in a
polygonal region.

(b) Zoom into (a)
reveals communication
graph.

(c) Further zoom shows communication ranges.

Figure 1. Scenario of a sensor network in the streets around
Braunschweig University of Technology.

algorithms. In other words: How can we use a limited amount of strictly local in-
formation in order to achieve distributed knowledge of global network properties?

We propose two procedures for dealing with this challenge. One identifies the
boundaries of the network, the other constructs a clustering that describes the
network topology. Most details are omitted in this extended abstract, see our
upcoming SODA paper [2].

1. Model

A Sensor Network G = (V, E) is a graph G = (V, E), with an edge between
any two nodes that can communicate with each other. The network is embedded
in the plane by the mapping p : V → R2, but positions are not available to the
nodes. We assume that (G, p) is a d-Quasi Unit Disk Graph for parameter d ≤ 1,
i.e., neighbors in the graph are at most 1 apart and non-neighbors at least d. This
model for radio networks is used often because it is both realistic and theoretically
tractable [1]. Notice that every graph is a 0-QUDG. Here, we assume d ≥ 1

2

√
2.

We denote by N1(U) the set of nodes that are neighbor of any u ∈ U , and
define Nk(U) = N1(Nk−1(U)) for k > 1. ∆k = maxv∈V |Nk({v})| is the size
of a largest k-neighborhood in G. Notice that for practical geometric networks,
∆k = O(k2∆1) is a realistic assumption. For our analysis of algorithms, we use the
well-established synchronized CONGEST model [3] with simultaneous wakeup.

2. Boundary Recognition

Our procedure to detect boundaries is based on structures where a certain set of
nodes is provably on the inside of a cycle in the network. This is based on the fact
that in a 1

2

√
2-QUDG, a path crossing a cycle is always witnessed by some cycle

node. Because non-neighboring nodes have minimum distance d, an independent
node set requires a certain amount of space in the embedding. On the other hand,
the space that can be surrounded by a cycle is limited due to the upper bound on
the edge lengths. Now a packing argument serves as proof that a connected set of
nodes containing some independent nodes is on the outside of a cycle. Based on
this, we identify a structure for which we can even prove insideness: An m-flower
is an induced subgraph whose node set consists of a seed f0 ∈ V , independent
nodes f1,1, . . . , f1,m ∈ V , bridges f2,1, . . . , f2,m ∈ V , hooks f3,1, . . . , f3,m ∈ V ,
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Figure 2. A 5-flower. Figure 3. Result of
the flower procedure.

Figure 4. Snapshots and final state of the Augmenting Cycle algorithm.

and chordless paths W1, . . . , Wm. The edges are shown in Figure 2. A flower is
feasible, if m and |W1|, . . . , |Wm| fulfill some constraints not shown here due to
space limitations. Flowers are useful due to the following fact:

Theorem 1. In every d-QUDG embedding of a feasible m-flower, the independent
nodes are placed on the inside of the cycle formed by C := {f3,1, . . . , f3,m} ∪⋃m

j=1 Wj. Moreover, every network with a (3
2 −

√
2)-dense populated disk of radius

3 contains a feasible 4-flower in that disk.

We say G is ε-dense in a region A, if every ε-ball in A contains at least one
node. Because flowers are strictly local structures, they can be easily identified by
local algorithms in time O(∆1) and message complexity O(∆1∆8). In an example
network of 60,000 sparsely connected nodes, our procedure identified 138 disjoint
flowers (Figure 3); a single suffices for the second stage of our algorithm.

In a second stage, we augment the flowers by adding extensions to their outer
cycles, such that insideness can still be proven for all contained nodes. By repeat-
ing a local search procedure, the flowers grow to enclose more and more nodes,
begin to merge together, leading to a single structure that contains most of the
network. Our extension algorithm can be implemented locally, leading to runtime
O(∆K

K∆1 + |V |) and message complexity O(∆K
K |V |) per extension step, where K

is a parameter between 10 and 20. See Figure 4 for a visualization.
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Figure 5. 2- and 3-Voronoi nodes; Final clustering.

We use the identified boundaries to construct our topological clustering. Nodes
that have the same shortest path distance to k different boundaries are called
k-Voronoi nodes, where distant parts of a single boundary are also considered as
different. The 3-Voronois are small groups in the center of intersections, and the
2-Voronois form strips between them (Figure 5). Hence, we build intersection
clusters around the 3-Voronois and street clusters along the 2-Voronois, leading
to a clustering that reflects the network topology closely. We developed a local
algorithm to perform the clustering. It has an initial synchronization step with
runtime and message complexity O(|V |3) that can run parallel to the boundary
detection, and a clustering step with complexities O(|V | log |V |).
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Mixed integer cuts from two constraints and two integer variables

Laurence Wolsey

This is joint work with Kent Andersen. We consider the generation of mixed
integer cuts from two rows of an optimal LP tableau in which the two basic vari-
ables are required to be integer. More specifically we consider the Gomory corner
polyhedron arising by dropping the nonnegativity constraints on these two integer
variables.

Now distinguishing two of the continuous non-basic variables s1, s2, the set of
interest can be represented in two different ways:

Xp
q = {(x, s, y, z) ∈ Z2 × R2

+ × R
p
+ × Z

q
+ : Ix + As + By + Cz = f}
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where I is a 2× 2 identity matrix, A is a 2× 2 nonsingular matrix, B, C are 2× p

and 2 × q matrices respectively and f =
( f1

f2

)
with 0 < fi < 1 for i = 1, 2, or

alternatively as

Zp
q = {(x, y, z) ∈ Z2 × R

p
+ × Z

q
+ : Rx + RBy + RCz ≥ Rf}.

where R = −det(A)A−1.
Our main result is to derive strong valid inequalities for this set when A has

a certain structure. Specifically we require that A is of the form
( −a1 ω

1 −a2

)

with ai > 0 for i = 1, 2 and a1a2 > ω.
First we consider what happens when p = q = 0. Z0

0 is the set

a2x1 + ωx2 ≥ δ2

x1 + a1x2 ≥ δ1

x ∈ Z2,

where
( δ2

δ1

)
= Rf =

( a2f1 + ωf2

f1 + a1f2

)
.

First we derive necessary and sufficient conditions for the inequality

x1 + (⌈δ1⌉ − 1)x2 ≥ ⌈δ1⌉
to be valid for Z0

0 . Then we consider how to lift in the continuous variables so as to
obtain a tight valid inequality for Zp

0 . We take both an intersection cut viewpoint
based on a lattice-free triangle in the (x1, x2) space, and a disjunctive viewpoint
in which we split the (x1, x2) space into two, derive a mixed integer rounding
inequality for each part and then combine them to obtain a valid inequality for
the union. Both approaches lead to the same inequality which, when the integer
variables are included can be written as

x1 + (⌈δ1⌉ − 1)x2 +

p∑

j=1

H̄

(
βj

1

βj
2

)
yj +

q∑

j=1

H

(
γj
1

γj
2

)
zj ≥ ⌈δ1⌉(1)

where H

(
d1

d2

)
= max[G δ2−ω

a2

( d1

a2
), Gf(δ1)(d2)] and H̄

(
d1

d2

)
= max[

d+

1

δ2−ω ,
d+

2

f̄(δ1)
],

where Gα(d) = ⌊d⌋+ min[f(d),α]
α is the subadditive function associated to the mixed

integer rounding inequality, and f̄(δ) = δ − ⌈δ⌉ + 1. Precise conditions are given
for when this inequality is facet-defining.

It is also shown, using an example of Schrijver, that the inequality produced
is one that cannot always be obtained by finitely generated split or mixed integer
rounding inequalities.

Finally various other inequalities are derived in a similar way.

Open Questions
Is it true that in general the inequality (1) cannot be finitely generated using MIGs
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or split cuts?
Given that the split cut is an intersection cut consisting of a cylindrical 1-simplex,
and the inequality (1) is an intersection cut based on a cylindrical 2-simplex, is
there some valid inequality for k > 2 rows that is easy to calculate based on a
k-simplex?
Johnson [1] studies the minimal sets of points that are necessary to give a descrip-
tion of the polar of sets such as Xp

q using extrapolation of subadditive functions

on [0, 1]2. Is it feasible to calculate conv(Xp
q ) for instances with small values of p

and q.
Finally there are the obvious computational questions of whether the inequali-
ties proposed here are effective either in place of, or in combination with Gomory
mixed integer cuts?
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On a convex optimization model for the consolidation of farmland

Peter Gritzmann

(joint work with Andreas Brieden, Christoph Metzger)

In many regions farmers cultivate a number of small lots that are distributed
over a wider area. This leads to high overhead costs and economically prohibits
use of high tech machinery hence results in a non-favorable cost-structure of pro-
duction. The classical form of land consolidation is typically too expensive and too
rigid, whence consolidation based on lend-lease agreements has been suggested. Of
course, the underlying mathematical clustering problem is NP-hard even in the
most simple cases.

We give and analyze a new approximate 0-1-convex optimization algorithm,
where in effect the centers of gravity of the clusters are pushed apart. The core of
the method is based on the use of Minkowski spaces whose unit balls stems from
the dual of a cartesian products of permutahedra. It is shown how these unit balls
themselves can be tightly approximated by Hardamard matrix based polytopes
with only linearly many facets. The facet normals are then used as objective func-
tion vectors for a polynomial-time linear programming approximation algorithm.
We derive a worst case bound for the approximation error but also report on the
practical performance of this method for land consolidation in Northern Bavaria,
Germany.
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Max-algebra and combinatorial optimisation: Connections and open
problems

Peter Butkovic

Let a ⊕ b = max(a, b) and a ⊗ b = a + b for a, b ∈ R := R ∪ {−∞}. By max-
algebra we understand the analogue of linear algebra developed for the pair of
operations (⊕,⊗), extended to matrices and vectors in the same way as in linear
algebra, that is if A = (aij), B = (bij) and C = (cij) are matrices with entries

from R of compatible sizes, we write C = A ⊕ B if cij = aij ⊕ bij for all i, j and

C = A ⊗ B if cij =
∑⊕

k aik ⊗ bkj = maxk(aik + bkj) for all i, j. The iterated
product A ⊗ A ⊗ ... ⊗ A in which the symbol A appears k-times will be denoted
by A(k).

Let A = (aij) ∈ R
n×n

. We denote N = {1, ..., n}. The complete arc-weighted
digraph associated with A is DA = (N, N × N, aij), the finiteness digraph is
FA = (N, {(i, j); aij > −∞}), the zero digraph is ZA = (N, {(i, j); aij = 0}).

1. Links between max-algebraic problems and combinatorial or com-
binatorial optimisation problems: The set covering - solvability of max-
algebraic linear systems, the minimal set covering - unique solvability of a lin-
ear system, existence of a directed cycle - strong regularity of a matrix, sign-
nonsingularity or existence of an even directed cycle - regularity of a matrix, max-
imum cycle mean - eigenvalue, longest-distances vectors - eigenvectors, best prin-
cipal submatrices - coefficients of a characteristic polynomial, linear assignment
problem - permanent of a matrix.

2. Examples of combinatorial optimisation results obtained as a con-
sequence of the max-algebraic theory.

2.a) The (assignment problem) normal form of a matrix and the
longest-distances vectors. Let A = (aij) ∈ Rn×n and denote by Pn the
set of all permutations of the set N . Then the (max-algebraic) permanent of

A is maper(A) =
∑

π∈Pn

⊕∏
i∈N

⊗ai,π(i). In the conventional notation this reads

maper(A) = maxπ∈Pn

∑
i∈N ai,π(i) and thus maper(A) is the optimal assignment

problem value for A. For π ∈ Pn we denote w(A, π)=
∏

i∈N
⊗

ai,π(i)=
∑

i∈N ai,π(i).
The set of all optimal permutations will be denoted by ap(A), that is ap(A) =
{π ∈ Pn; maper(A) = w(A, π)}.

A matrix A = (aij) ∈ Rn×n is called normal [strictly normal ] if aij ≤ aii = 0
for all i, j ∈ N [if aij < aii = 0 for all i, j ∈ N, i 6= j]. A normal matrix can be
obtained from any A ∈ Rn×n by adding suitable constants to the rows and columns
and by permuting the columns (or rows), e.g. using the Hungarian method for
solving the assignment problem for A. We say that a matrix A is equivalent to a
matrix B if A can be obtained from B by adding constants to the rows or columns
and by permuting the rows or columns. Thus every matrix is equivalent to a
normal matrix. Not every matrix is equivalent to a strictly normal matrix. Note
that if A is normal then the set of all optimal permutations of the assignment
problem for A can conveniently be described: ap(A) = {π ∈ Pn; ai,π(i) = 0 for
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all i ∈ N}. We say that A is max-algebraically definite (or, shortly, definite) if
aii = 0 for all i ∈ N and DA contains no positive cycles. Clearly id ∈ ap(A) if A
is definite.

Theorem 1. [2] Let A = (aij) ∈ Rn×n be definite. If x = (x1, ..., xn)T ∈ Rn is a
vector of longest distances from all nodes to any fixed node in DA then the matrix
(aij + xj − xi) is normal.

Theorem 2. [2] A ∈ Rn×n is equivalent to a strictly normal matrix if and only if
|ap(A)| = 1.

By V we denote the max-hull of the vectors of longest distances from all nodes
to a fixed node in DA.

Theorem 3. [2] Let A = (aij) ∈ Rn×n be definite. A is equivalent to a strictly
normal matrix if and only if int(V ) 6= ∅. If x = (x1, ..., xn)T ∈ int(V ) then the
matrix (aij + xj − xi) is strictly normal.

2.b) Another link between the assignment problem and the longest-
distances problem. It is easily seen that if id ∈ ap(A) for some matrix A =
(aij) ∈ Rn×n then B = (aij − aii) is definite. We will call B the definite form
of A. If A is a definite matrix then it can be considered as the direct-distances
matrix between all pairs of nodes in DA. Note that the longest-distances matrix
can max-algebraically be expressed as A(n−1).

Theorem 4. [6] Let A ∈ Rn×n and B and C be the definite forms of any two
matrices B′ and C′ arising from A by permuting the columns so that id ∈ ap(B′)∩
ap(C′). Then the longest-distances matrices of B and C coincide.

2.c) The maximum cycle mean. Let A = (aij) ∈ Rn×n. If σ = (i1, ..., ik, i1)
is a cycle in DA then its mean is

µ(σ, A) =
ai1i2 + ai2i3 + ... + aiki1

k
.

The value λ(A) = maxσ µ(σ, A) is called the maximum cycle mean of A. Next
statement is an immediate corollary of the max-algebraic spectral theory.

Theorem 5. λ(A(k)) = (λ(A))(k), for all natural k and any A ∈ R
n×n

.

3. Some open problems.
3.a) Even [odd] parity assignment problem (EPAP [OPAP]): Let P+

n

[P−
n ] be the set of all even [odd] permutations of the set N. Given A ∈ Rn×n,

find a permutation π∗ ∈ P+
n [π∗ ∈ P−

n ] such that w(A, π∗) = maxπ∈P+
n

w(A, π)[
= maxπ∈P−

n
w(A, π)

]
. Obviously one of these two problems is always solved by

solving the assignment problem. No polynomial method is known in general for
solving both problems at the same time. The question whether maxπ∈P+

n
w(A, π)

= maxπ∈P−
n

w(A, π) is equivalent to the even cycle problem [2] and if this equality

holds then optimal solutions to both problems can be found in O(n3) time. Some
polynomially solvable special cases are studied in [3].
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3.b) Strong linear independence. This concept is equivalent to the ques-
tion: Given A ∈ Rm×n, m > n, is there an n × n submatrix B of A such that
|ap(B)| = 1? For m = n it reduces to checking |ap(A)| = 1, which can be done in
O(n2) time after solving the assignment problem. Also, it is polynomially solvable
for m × n 0 − 1 matrices.

3.c) (Max-algebraic) rank. This is a generalisation of the previous problem
important for applications in algebraic geometry [7]: Given A ∈ Rm×n, find the
biggest natural number k for which there is a k × k submatrix B of A such that
|ap(B)| = 1.

3.d) Coefficients of a (max-algebraic) characteristic polynomial. Given

A ∈ R
n×n

and k < n, find a k × k principal submatrix of A whose optimal
assignment problem value is maximal (notation δk). No polynomial algorithm is
known in general. A polynomial randomised algorithm exists [1]. Biggest k for
which δk is finite can be found in O(n3) time [1]. An O(n(m + n log n)) algorithm
for finding all δk corresponding to so called essential terms exists [5] (here m is
the number of finite entries of A). The problem arising after removing ”principal”
is easily solvable in O(n3) time [1].

3.e) Special case of the previous problem for matrices over {0,−∞}.
Given a digraph D with n nodes and k < n, are there pairwise node-disjoint cycles
in D with exactly k nodes in total? No polynomial algorithm is known in general.
Polynomially solvable for a number of special cases, including symmetric matrices
and k even [4].
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Deterministic online optical call admission revisited

Elisabeth Gassner

(joint work with Sven O. Krumke)

An instance of the Online Call Admission Problem in Optical Networks (oca)
consists of an undirected graph G = (V, E) together with a set of χ eligible wave-
lengths W = {1, . . . , χ} and a finite request sequence σ = r1, r2, . . . , rm of calls.
Each of the wavelengths in W is available once per edge. A lightpath is a pair (P, λ),
where P is a path in G and λ is one of the wavelengths in W . In the sequel, we
will use the terms wavelength and color interchangeably.

A call rj = (sj , tj) specifies the nodes sj ∈ V and tj ∈ V to be connected. Upon
arrival of a new request rj = (sj , tj), an algorithm for oca must decide whether
to route or to reject rj . If the call is accepted, the algorithm must provide a
lightpath, thereby obeying the wavelength conflict constraint. Once accepted, a
call can not be preempted: the lightpaths used for the call can not be changed
or removed anymore. Each accepted call rj contributes a benefit of one to the
total profit obtained by an algorithm. The overall goal of oca is to maximize the
overall profit, that is, the total accepted demand.

A deterministic online algorithm alg for oca is c-competitive if for any request
sequence σ the inequality alg(σ) ≥ 1

c · opt(σ) holds.
A result by Awerbuch et al. [1] states that a c-competitive algorithm for oca

with one wavelength, i.e., χ := |W | = 1, implies a (c + 1)-competitive algorithm
for general numbers of wavelengths. We present the first deterministic competitive
algorithms on the (n + 1) node line for oca with χ > 1 wavelengths which beat
the linear competitive ratio that would be obtained by blindly applying the result
by Awerbuch. More specifically, we present a χ( χ

√
n + 2)-competitive algorithm.

For any fixed χ > 1, this bound is sublinear in n.
We complement our results in establishing a lower bound of χ( χ

√
n − 1) on

the competitive ratio of any deterministic algorithm for oca on the line with
(n + 1) nodes and χ wavelengths.

An Algorithm with Sublinear Competitive Ratio:
Let P = (V, E) be the node line with (n + 1) vertices, V = {v0, . . . , vn}, and

edge set E = {[vi, vi+1] : i = 0, . . . , n}. Moreover, let W with |W | = χ be the set
of wavelengths which we assume to be available on each edge of P . Suppose that
σ = r1, r2, . . . , rm is a sequence of requests which are subject to the call-admission
problem. Each request ri = (si, ti) uniquely determines a path in P between si

and ti. We will call the length of this path (measured in the number of edges) the
length of the call length(ri).

Intuitively, a good online algorithm should try to accept and route preferably
“short” calls, since a short call does not block as many potential future calls as a
longer one.

Our algorithm getshortyworks as follows: Let r be a new call.

• If r can not be routed on any wavelength we reject r.
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• Else, determine the smallest wavelength λ ∈ W = {1, . . . , χ} such that r
can be routed on λ.

• If length(r) ≤ ℓ(λ), accept r and route r on wavelength λ, else reject it.

Our main result of this section is the following theorem:

Theorem 1. Algorithm getshortyℓ equipped with threshold function ℓ(λ) :=

n
χ+1−λ

χ achieves a competitive ratio of χ( χ
√

n + 2) for the oca on an (n + 1) node
line with χ wavelengths.

The remainder of this section is dedicated to the proof of Theorem 1.
Fix a request sequence σ = r1, r2, . . . , rm which contains at least one request.

We denote by getshorty[σ] the set of calls routed by algorithm getshortyℓ and
by getshorty(σ) := |getshorty[σ]| its cardinality. Also, let opt be an optimal
offline algorithm for oca.

We say that getshortyℓ uses a wavelength λ on edge e ∈ E, if a call of σ is
routed on e on wavelength λ. For L ⊆ W = {1, . . . , χ} we denote by EL the edges
in E on which exactly the wavelengths in L are used by getshortyℓ, that is,

EL = {e ∈ E : getshortyℓ uses exactly the wavelengths in L on e}.
Let us examine the solution getshorty[σ]. Fix λ. Then, the total length of

calls which are routed by getshortyℓ on wavelength λ is given by
∑

L⊆W :λ∈L

|EL| ≤ n.

The first call r1 in σ can be routed on wavelength 1. For λ = 2, . . . , χ, every call
routed by getshorty on wavelength λ has length at most ℓ(λ) = n(χ+1−λ)/χ,
thus we get that

getshorty(σ) ≥ 1 +
∑

L⊆W

|EL|
∑

λ∈L:λ6=1

1

ℓ(λ)
.

=:
∑

L⊆W

bL

We now consider an optimal solution opt[σ] and partition it into three pairwise
disjoint sets: opt[σ] = X ∪ Y ∪ Z where

• X is the set of calls r ∈ opt[σ]\getshorty[σ] such that r uses only edges
of a single set EL for some L ⊆ W .

• Y is the set of calls r ∈ opt[σ] \ getshorty[σ] such that r uses edges of
at least two sets EL and EL′ for L, L′ ⊆ W .

• Z is the set of calls r ∈ opt[σ] ∩ getshorty[σ].

Lemma 1. Let L ⊆ {2, . . . , χ} be a subset of wavelengths that does not contain
the first wavelength. Then there does not exist any call r ∈ X that uses only edges
of EL.

In order to bound the number of calls in Y ∪ Z we use a charging scheme.
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First consider the requests in the set Y , that is, the set of calls r ∈ opt[σ] \
getshorty[σ] such that r uses edges of at least two sets EL and EL′ for L, L′ ⊆ W .
Since any r ∈ Y uses at least two different kinds of edges, there exists at least one
call r′ ∈ getshorty[σ] such that either the start vertex or the end vertex of r′

and the corresponding start or end edge of r′ is on the path of r. We assign r
to r′.

If r ∈ Z, then r was accepted by getshorty. We assign r to itself, that is, to
r′ := r ∈ getshorty[σ] and, again, either the start vertex or the end vertex of r′

and the corresponding final edge is on the path of r.
Observe, that there are at most 2χ calls r ∈ Y ∪Z that can be assigned to a call

r′ ∈ getshorty[σ] in the above charging scheme, because there are χ wavelengths
and one start- and one end-edge of r′. This allows us to conclude that

|Y | + |Z| ≤ 2χ · getshorty(σ)

holds.
The remainder of this section is dedicated to bounding the term |X|

P

L⊆W bL
ap-

propriately. For L ⊆ W we denote by xL the number of calls r ∈ X that use only
edges of set EL.

For L = {1, . . . , χ} we can bound xL from above by xL ≤ χ|EL|. Now let
L ⊂ W be of the form L = {1, . . . , j} ∪ L′ where L′ ⊆ {j + 2, . . . , χ} for some
j = 1, . . . , χ−1, i. e., all wavelengths λ = 1, . . . , j are used by calls in getshorty[σ]
and j + 1 is the first wavelength that is not used by any call in getshorty[σ].
Hence, wavelength j + 1 is available on every edge in EL.

Let r ∈ X be a call that uses only edges of EL. Notice that r could be routed
by getshorty on wavelength j + 1. The only reason why getshorty rejected r
must be its length. We conclude that length(r) > ℓ(j + 1) holds for every r ∈ X
that uses only edges of EL. This gives us:

xL ≤ χ
|EL|

ℓ(j + 1)
for L = {1, . . . , j} ∪ L′, where L′ ⊆ {j + 2, . . . , χ}.

Some calculations using the bounds on xL and bL yield

opt(σ)

getshorty(σ)
≤ 2χ +

∑
L⊆W xL∑
L⊆W bL

≤ χ( χ
√

n + 2).

This completes the proof of the main theorem.

References

[1] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosen. On-line competitive algorithms
for call admission in optical networks. In: Proceedings of the 4th Annual European Sympo-
sium on Algorithms, volume 1136 (1996), 431–444.



Combinatorial Optimization 2921

Real-time AGV routing

Björn Stenzel

(joint work with Ewgenij Gawrilow, Ekkehard Köhler, Rolf H. Möhring)

Nowadays automation in logistic systems is very popular. In such an automated
logistic system Automated Guided Vehicles (AGVs) are used for transportation
tasks. The control of these AGVs is the key to an efficient transportation system.

We consider the online problem where requests appear sequentially and one
must answer each request without having any information about later arriving
requests. We extend the approaches of Huang, Palekar and Kapoor [2] and Kim
and Tanchoco [3], respectively. In particular, we take physical properties of the
AGVs into consideration in a more exact and flexible way and use an dynamic
routing approach to obtain an efficient algorithm for the underlying problem. The
algorithm avoids collisions, deadlocks and livelocks already at the time of route
computation (conflict-free routing).
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Figure 1. Real-time computation. (a) shows the situation before
the new request arrives. There is a graph with some blockings
(black) and some time-windows (white). The task is to compute
a quickest path that respects the time-windows. This is illustrated
in (b). The chosen path is blocked afterwards (see (c)).

The physical properties, i.e. the possible movements and the dimensions of the
AGVs, are taken into consideration in a preprocessing step.
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Figure 2. Label Expansion. The label intervals are represented
by grey bars (nodes). The blockings are colored black (arcs).
The white intervals between these blockings are the time-windows.
The figures (a) to (d) show the successive expansion of the label
intervals.

For the real-time computation we use a dynamic routing approach. We use
time-windows on arcs to model the time dependencies in the underlying directed
graph. Each time-window represents a free time slot at the corresponding arc
depending on the routes of the AGVs that are already computed (see Fig. 1).
For each request our algorithm computes a shortest path with respect to the
current set of time-windows. In general, the Shortest Path Problem with Time-
Windows [1] is NP-hard, but in our setting we get a polynomial time generalized
dijkstra algorithm by carrying an interval in each label (the expansion of an label
interval is shown in Fig. 2).

Two questions certainly arise concerning the dynamic (conflict-free) routing
approach. Does this approach lead to better results than the approaches currently
used in praxis? Is the algorithm suitable for real-time computation? Fortunately,
we can answer these questions in the affirmative.
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Table 2. Computational times (in sec.).

Scenarios Comp. per request Search Readjustment

maximal ∅ maximal ∅ maximal ∅

25-1G-L (25 AGVs) 0.35 0.10 0.32 0.08 0.04 0.02

25-1G-S (25 AGVs) 0.14 0.06 0.11 0.04 0.03 0.02

25-2G-L (25 AGVs) 0.24 0.06 0.24 0.05 0.03 0.01

25-2G-S (25 AGVs) 0.25 0.06 0.24 0.05 0.02 0.01

25-3G-L (25 AGVs) 0.29 0.06 0.27 0.05 0.04 0.01

25-3G-S (25 AGVs) 0.23 0.06 0.18 0.05 0.04 0.01

25-4G-L (25 AGVs) 0.18 0.04 0.16 0.03 0.03 0.01

25-4G-S (25 AGVs) 0.18 0.05 0.16 0.04 0.02 0.01

50-1G-L (50 AGVs) 0.35 0.10 0.31 0.08 0.04 0.02

50-1G-S (50 AGVs) 0.23 0.07 0.20 0.05 0.04 0.02

50-2G-L (50 AGVs) 0.32 0.06 0.30 0.05 0.04 0.01

50-2G-S (50 AGVs) 0.16 0.06 0.13 0.04 0.04 0.01

100G-L (100 AGVs) 0.26 0.06 0.23 0.05 0.05 0.01

100G-S (100 AGVs) 0.23 0.06 0.20 0.04 0.05 0.01

In order to measure the performance of the computed routes we consider the
sum of all transit times (all requests). We compare these overall transit times with
a static approach used in Container Terminal Altenwerder (CTA) at Hamburg
Harbour. The comparison shows that the conflict-free approach is superior to the
static one in scenarios with heavy traffic (many AGVs) which clearly indicates the
potential of this approach.

Using goal-oriented search the computation of a route in a graph with about
30.000 arcs and up to 100 AGVs take not more than some hundredth of a second
on the average1 (see Tab. 2) which is suitable for real-time computation.
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Scheduling an air-taxi service

George Nemhauser

New developments in avionics and airplane manufacturing have brought about a
new technology called the very light jet (VLJ). Weighing less than 10,000 pounds,
these aircraft can carry 4-5 passengers, fly distances of over a 1,000 miles, reach
altitudes of 19,000-30,000 feet, and travel at speeds between 350-390 nautical miles
per hour (almost twice the altitude and speed of current turbo-prop airplanes).
Priced at approximately 1 million US dollars, these jets cost about one fourth
of the price of the cheapest business jets sold today. Additionally, these jets
can be operated by a single pilot, which means low operational costs. Several
manufacturers are taking orders for VLJs with Eclipse Aviation [7] being the first
with planned deliveries in March of 2006.

The availability of relatively cheap small jet aircrafts suggests a new air trans-
portation business: the air taxi, an on-demand service in which travelers call one
day or a few days in advance to schedule transportation. The advantages of such
a system are obvious. An air-taxi service gives regional travelers the option of
hopping aboard small jets that fly to and from less congested outlying airports,
without packing parking lots, long lines at security checkpoints, flight delays, and
lost luggage, that are closer to where they live and where they want to go. In fact,
VLJs could land at any of 14,000 private and public landing strips in the United
States. By charging a discount fare for sharing cabin space with other passengers,
aggregation can greatly reduce costs while still ensuring a very convenient service.

The idea of an air-taxi service to satisfy regional demand is rapidly becoming
a reality. In fact, even though VLJs are not yet available, air taxi services already
exist today. Since April 2002, SkyTaxi Inc. [12] has been providing on-demand
air transportation in the northwestern United States. Likewise, SATSair [10] pro-
vides such a service in the northeast. And recently, DayJet Corporation [5] has
announced that they will be providing air-taxi services in the southeast starting
in mid-2006 using the Eclipse jet. All of them plan to expand their services to
the entire United States. The air-taxi alternative has generated a lot of public
interest. For example, The New York Times [8] devoted a major article to it this
past July.

To effectively manage day-to-day operations at an air taxi service, several
optimization-based scheduling components need to be employed:

(1) an online scheduling system to quickly inform passengers if their air trans-
portation requests can be serviced and at what price,

(2) an off-line scheduling system to construct minimum cost pilot and jet
itineraries for the next day once the reservation deadline has passed, and

(3) a disruption management system to re-route jets in case of failures, bad
weather, or other unpredictable events.

In this paper, we present an optimization engine that forms a core component
of the off-line scheduling system being developed at the DayJet Corporation. This
system resembles a dial-a-ride [2, 3] or pick-up and delivery system [11] and is
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concerned with the scheduling of a set of requests for air transportation during a
single day. A request specifies an origin airport, an earliest acceptable departure
time at the origin, a destination airport, a latest acceptable arrival time at the
destination, a number of passengers, and a weight. A fleet of jet airplanes, each
operated by a single pilot, is available to provide the requested air transportation.
Each jet has a home base, a seat capacity limiting the number of passengers that
can be accommodated, and a weight capacity limiting the weight that can be
accommodated. Each jet is available for a certain period during the day, and has
to return to its home base at the end of the day. A set of pilots, stationed at the
home bases of the airplanes, is available to fly the jets. A pilot departs from the
home base where he is domiciled at the start of his duty and returns to the home
base where he is domiciled at the end of his duty. A pilot schedule has to satisfy
FAA regulations governing flying hours and duty periods, i.e., a single pilot cannot
fly more than 8 hours in a day and his duty period cannot be more than 14 hours.
To ensure acceptable service an itinerary for a passenger will involve at most two
flights, i.e., only a single intermediate stop is allowed. If there is an intermediate
stop, both flights have to be on the same jet, i.e., no airplane changes are allowed.
A turnaround time at an airport, i.e., the minimum time between an arrival at an
airport and the next departure, is given. The objective is to minimize the costs,
while satisfying all requests and respecting all constraints. A dispatcher has to
decide which jets and pilots to use to satisfy the requests and what the jet and
pilot itineraries will be, i.e., the flight legs and associated departure times.

We describe an integer multi-commodity network flow [1] model for the air taxi
scheduling problem. We present techniques for simplifying the network to ensure
that the resulting network is of manageable size. We give a large neighborhood
search algorithm [9] for extending the methodology to solve problems with up to
300 planes. We also sketch a column generation model [2] that gives a tighter LP
bound than the multi-commodity flow model.
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Prof. Dr. Rüdiger Schultz

schultz@math.uni-duisburg.de

FB Mathematik
Universität Duisburg-Essen
Lotharstr. 65
47057 Duisburg

Prof. Dr. Andreas S. Schulz

schulz@mit.edu

Sloan School of Management
Massachusetts Institute of
Technology
77, Massachusetts Avenue
Cambridge, MA 02139-4307
USA

Michael Schulz

schulz@informatik.uni-koeln.de

Institut für Informatik
Universität zu Köln
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