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Introduction by the Organisers

The miniworkshop was attended by fourteen participants of whom twelve gave
presentations. Additionally Kolumban Hutter from the University of Darmstadt,
then at the research institute as a research-in-pairs fellow, agreed to give a talk
on “Granular flows and avalanches”. There was one discussion session chaired by
Stefan Müller, during which the most important problems of the field which have
to be addressed in the near future were identified. The individual talks lasted for
one and a half hours in the average and were interlaced with lively discussions.

The main theme in the workshop was the variational formulation of crystal
plasticity, in a rate-independent setting. For small time-intervals, this leads to
a single variational problem, which is often referred to as the “first time step”.
One substantial difficulty arises from the fact that the resulting functional is not
lower semicontinuous, leading to non-existence of minimizers. The corresponding
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theory of relaxation has some analogies to the one developed in nonlinear elastic-
ity. A second issue is the formulation of a theory that goes beyond small time
intervals. In a framework where time is discretized, the functional at each time
step depends on the minimizer at the previous one (assuming it exists). This leads
to a sequence of coupled variational problems, and even the precise definition of
the time-continuous limit is not yet completely understood.

The subjects treated ranged from the mathematical formulation of the varia-
tional problems and existence results for those, to analytical and numerical meth-
ods to determine their relaxation, and applications to various problems in me-
chanics and physics. Research in progress and sometimes of speculative nature
was presented rather then established results. Specifically, the main questions
treated were the following:

• Relaxation. How does one determine the relaxation of the single variational
problem corresponding to the first time step? This links to the issue of
determining, exactly or approximately, the quasiconvex envelope of an
effective energy density. The talks addressed analytical approaches as
well as numerical procedures and results, mainly on the calculation of
laminated microstructures. A particularly complex open problem is that
of physical softening, which in contrast to geometrical softening causes loss
of coercivity of the potentials.

• Time-continuous problem. How can time-continuous evolution of mi-
crostructures and pattern-formation be described in a proper mathemati-
cal context? What is the appropriate concept of relaxation, and how can
the relaxation be determined explicitly? What is a good material model
for testing such formulations?

• Singular perturbations. What are the physically correct nonlocal exten-
sions of the models, i.e., which of the various regularizing terms used are
physically motivated? This class includes most singular perturbations,
such as, e.g., surface-energy terms. In turn, how do these regularizations
modify the structure of the model, and do they permit to explain quanti-
tatively the experimentally observed microstructures, such as the so-called
dislocation-walls?

• Global vs. local optimization. Do there exist more efficient and robust
numerical algorithms than the global optimization procedures which cur-
rently have to be carried out? Is it possible to consider a physically-
motivated local optimization procedure?

• Experiment. Is it possible to devise experimental tests for the theories
developed?

During the miniworkshop progress could be made concerning some of these ques-
tions and interesting ideas where developed for the rest of them.
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Abstracts

Asymptotics of phase-field models of dislocations

Adriana Garroni

Single slip line tension energy: In collaboration with Stefan Müller ([3] and
[4]) we consider a variational model for dislocations in a single slip plane and a
single slip system proposed by Koslowki, Cuitiño and Ortiz [5]. We fix a slip plane
({x3 = 0}) and we assigne the slip on this plane by imposing that the jump of the
displacement must be given by ub, where u is a scalar phase and b is the Burgers
vector of the given system. The total energy can then be expressed in terms of
the phase u and is given by a non local term (the long-range elastic interaction
induced by the slip) and an interfacial potential which penalizes slips which are
not multiples of the Burgers vector, i.e.,

Eε =

∫

Q

∫

Q

K(x− y)|u(x) − u(y)|2dx dy +
1

ε

∫

Q

dist2(u,Z) dx ,

where Q is the unit square in R2, ε is proportional to |b| and the kernel K
satisfies K(t) ≈ |t|−3 as t → 0. In addition we mimic the hardening effect, due to
the interaction of the dislocations with inclusions of other materials or transversal
dislocations, by adding a pinning condition on Nε disks of radius εR. We assume
that these disks are ’uniformely distributed’ and ’well separated’ in an appropriate
sense.

It turns out that in order to get a compactness result the natural scaling for
the energy is given by Eε/(εNε). We then study the asymptotic behaviour of
this energy in terms of Γ-convergence as ε → 0 for all possible regimes for the
number of obstacles Nε. The most interesting regime is given by Nε ≈ | log ε|/ε
for which the effect due to the competition between the multi-well potential and
the non local regularization, and the effect of the obstacles are of the same order.
Specifically we show that the limit of Eε/| log ε| is the so called line-tension limit,
i.e., the limit functional is defined on the space BV (Q;Z), and is given by

∫

Su

γ(νu)|[u]| dH1 +

∫

Q

D(u) dx,

where Su is the jump set of u, with normal νu, |[u]| is the jump of u, γ(νu) is an
(anisotropic) line energy density, and D(u) is a nonlinear potential quadratic at
infinity which represents the limiting contribution of the obstacles.

The line tension energy density γ(n) can be explicitly computed by means of
the kernel K and gives the least energy for a transition from 0 to 1 with a flat
interface orthogonal to n. Due to the logarithmic scale this transition does not
depend on the precise shape of the profile and can be obtained by a mollification
procedure.
Multi-slip line tension energy: In collaboration with S. Cacace ([2]) we con-
sider a multi-phase variational model introduces by Koslowski and Ortiz [6] in



2984 Oberwolfach Report 52/2005

order to deal with the activation of several slip systems in a single slip plane. In
this case the energy is defined on a multi-phase field and it is given by

Fε =

∫

Q

∫

Q

(u(x) − u(y))tJ(x− y)(u(x) − u(y))dx dy +
1

ε

∫

Q

dist2(u,Z2) dx ,

where u : Q→ R2 represents the slip on the plane {x3 = 0} and the matrix J(t) is
positive definite, |J(t)| ≈ |t|−3 as t→ 0, and it depends on the lattice structure of
the crystal. Again, after a logarithmic rescaling, this energy shows a line tension
effect in the limit. Namely we prove that there exist a subsequence εk → 0 and a
function φ : S1 × Z2 → R such that the sequence Fεk

/| log εk| Γ-converges to the
functional defined in BV (Q,Z2) given by

∫

Q

φ(νu, [u]) dH
1 .

In this case the anisotropic line tension energy density can not be computed ex-
plicitly as in the scalar case. Precisely we show, with an example (for the cubic
lattice), that the ’optimal interface’ can develop microstructure and is not obtained
with a one dimensional profile.
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A simple orthotropic finite elasto-plasticity model based on
generalized stress-strain measures

Jörg Schröder

(joint work with F. Gruttmann, J. Löblein)

In this paper we present a formulation of orthotropic elasto-plasticity at finite
strains based on generalized stress-strain measures, which reduces for one special
case to the so-called Green-Naghdi theory. The main goal is the representation
of the governing constitutive equations within the invariant theory. Introducing
additional argument tensors, the so-called structural tensors, the anisotropic con-
stitutive equations, especially the free energy function, the yield criterion, the
stress-response and the flow rule are represented by scalar-valued and tensor-
valued isotropic tensor functions. For an introduction to the invariant formulation
of anisotropic constitutive equations based on the concept of structural tensors
and their representations as isotropic tensor functions see Boehler [1]. The pro-
posed model is formulated in terms of generalized stress-strain measures in order
to maintain the simple additive structure of the infinitesimal elasto-plasticity the-
ory. In this work we formulate a model for anisotropic elasto-plasticity at large
strains following the line of Papadopoulos & Lu [3, 4].

The nonlinear deformation map ϕt : B → S maps points X of the reference con-
figuration B onto points x of the current configuration S. Using the deformation
gradient F := Gradϕt, with detF > 0, we define the generalized measures

E(m) :=
1

2m
(Cm − I) for m 6= 0, E(0) :=

1

2
ln[C] for m = 0 with C := FTF.

The main assumption of this model is the additive split of the generalized measure
into elastic and plastic parts, i.e.

E(m) = Ee(m) + Ep(m) .

Let us assume the existence of a free energy function ψ = ψe(Ee(m))+ψp,i(ep(m)),
where ep(m) is a scalar-valued internal variable associated to the plastic strains.
In the following we focus on the strain measure defined by m = 0.

Here we use a representation of the free energy function and the flow rule which
fulfill the material symmetry conditions with respect to the reference configuration
a priori. For the orthotropic case we introduce the material symmetry group
Gorth, which elements are denoted by the unimodular tensors iQ|i = 1, ...n. The
concept of material symmetry requires that the response functions have to be
invariant under transformations on the reference configuration with elements of
the symmetry group. In our special case the invariance requirement with respect
to the material symmetry group is given by

(1) ψ̂e(QT Ee(m)Q) = ψ̂e(Ee(m)) ∀ Q ∈ Gorth ⊂ SO(3), Ee(m) ,

where SO(3) characterizes the special orthogonal group; ψ̂ is Gorth-invariant. Sim-
ilar ideas are assumed to be hold for the yield criterion. For the representation
of these anisotropic functions, we have to extend the Gorth-invariant functions to



2986 Oberwolfach Report 52/2005

functions which are invariant under the special orthogonal group. For this purpose
we introduce the so-called structural tensors, which reflect the symmetry group
of the considered material. The symmetry group of a material is defined by (1).
An orthotropic material can be characterized by three symmetry planes, where
the anisotropy can be described by two second-order tensors 1M, 2M (defined with
respect to the reference configuration) satisfying

Gorth = {Q ∈ SO(3), QT 1MQ = 1M,QT 2MQ = 2M} .

For the orthotropic case the structural tensors are given by the dyadic products
of the preferred directions 1a and 2a of the material

1M := 1a ⊗ 1a and 2M := 2a ⊗ 2a .

Introducing the structural tensors as additional arguments in the free energy yields

ψe(Ee(m), iM|i = 1, 2) = ψe(QTEe(m)Q,QT iMQ|i = 1, 2) ∀ Q ∈ SO(3) .

This is the definition of an isotropic scalar-valued tensor function in the argu-
ments (Ee(m), 1M, 2M), thus ψe can be formulated in terms of the basic invari-
ants Ji = tr[(Ee(m))i] for i = 1, 2, 3 and the mixed invariants J4 = tr[1MEe(m)],
J5 = tr[1M(Ee(m))2], J6 = tr[2MEe(m)], J7 = tr[2M(Ee(m))2]. Thus the free energy
and the associated generalized stresses appear in the form

ψ = ψe(J1, ..., J7) + ψp,i(ep(m)) → S(m) := ∂Ee(m)ψe .

Analogously, we formulate the anisotropic yield criterion function Φ̂ in terms of
the deviatoric part of the generalized stresses, the structural tensors and a scalar-
valued isotropic hardening function ξ = ∂ep(m)ψp,i

Φ̂(devS(m), 1M, 2M, ξ) = Φ̂(QT devS(m)Q,QT 1MQ,QT 2MQ, ξ) ∀ Q ∈ SO(3) .

This function is governed by the six invariants

I1 = tr[(devS(m))2], I2 = tr[1M(devS(m))2], I3 = tr[2M(devS(m))2],

I4 = tr[1MdevS(m)], I5 = tr[2MdevS(m)], I6 = tr[(devS(m))3].

In the following we consider a quadratic flow criterion function of the form

Φ(I1, I2, I3, I4, I5, ξ) ≤ 0

and assume an associative flow rule and define the evolution of ep(m)

Ėp(m) = λ∂S(m)Φ and ėp(m) =

√
2

3
||Ėp(m)|| .

An example of the necking of a bar with an isotropic elasticity model and
orthotropic yield function - with the preferred directions 1a = [1 , 0 , 0]T and
2a = [0 , 1 , 0]T lying in the cross-section area of the bar - is depicted in Figure 1.
In this simulation we used the isotropic hardening function

ξ̂(ep(m)) = hep(m) + (Y∞ − Y 0)(1 − exp(−δep(m)))
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Figure 1. Necking of an orthotropic bar: equivalent plastic
strains for different displacements u and load deflection curve [2].

with the hardening parameter h = 0.12924 GPa the yield stresses Y 0 = 0.765 GPa,
Y∞ = 1.03 GPa and δ = 16.93. More details of the orthotropic yield function

Φ = η1 I1 + η2 I2 + η3 I3 + η4 I
2
4 + η5 I

2
5 + η6 I4I5 −

(
1 +

ξ̂(ep(m))

Y 0
11

)2

≤ 0

are discussed in Löblein [2]. A circumstantial derivation of the tensor generators
for the stresses and moduli as well as some representative numerical examples can
be found in Schröder, Gruttmann & Löblein [5].
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Relaxation and evolution of microstructures – some conceptual ideas

Klaus Hackl

We investigate inelastic materials described by so-called internal or history- vari-
ables. Examples include elastoplastic but also damaged materials or those un-
dergoing phase-transformations. By investigating associated potentials in a time-
incremental setting it is possible to model the onset of the formation of microstruc-
tures but not their subsequent evolution, [1, 3, 6, 7, 8]. Here, some general ideas
will be presented on how this problem could be treated.

In an isothermal setting the state of a general inelastic material will be defined
by its deformation gradient F = ∇φ an a collection of internal variables: K.
Denoting the specific Helmholtz free energy by Ψ(F ,K) we introduce thermo-
dynamically conjugate stresses by P = ∂Ψ

∂F
, Q = − ∂Ψ

∂K
. The evolution of K is

then governed either by a so-called inelastic potential J(K,Q) or its Legendre-

transform, the dissipation functional: ∆(K, K̇) = sup
{

K̇ : Q − J(K,Q)
∣∣Q

}
.

The evolution equations are then given in the two equivalent forms

(1) K̇ ∈
∂J

∂Q
, Q ∈

∂∆

∂K̇
.

The entire evolution problen can now be described in terms of two minimum
principles, where we follow ideas presented in [2, 5, 8]. Considering the Gibbs free

energy of the entire body I(t,φ,K) =

∫

Ω

Ψ(∇φ,K)dV − ℓ(t,φ) the deformation

is given by the principle of minimum potential energy:

(2) φ = arg min
{
I(t,φ,K)

∣∣ φ = φ0 on Γϕ

}
.

Here Ω is the material body, Γϕ a subset of its boundary and ℓ(t,φ) the poten-
tial of external forces. On the other hand introducing the Lagrange functional

L(φ,K, K̇) =
d

dt
Ψ(∇φ,K) + ∆(K, K̇) we can write the evolution equation (1)

in the form

(3) K̇ = argmin
{
L(φ,K, K̇)

∣∣ K̇
}
.

For rate-independent materials the principle (3) enables us to account for instan-
tanious change of the value of K, because it can be integrated to yield the balance
law

(4) Ψ(∇φ,K1) − Ψ(∇φ,K0) = −D(K0,K1),

where

(5) D(K0,K1) = inf
{ ∫ 1

0

∆(K(s), K̇(s)) ds
∣∣K(0) = K0,K(1) = K1

}

is called dissipation-distance, [5]. When applied to a finite time-increment [tn, tn+1]
equation (4) gives rise to an approximate formulation, where φn+1 and Kn+1 at
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time tn+1 are determined for given loading at time tn+1 and value of the internal
variables Kn at time tn via the following principle:

(6) {φn+1,Kn+1} =

argmin
{ ∫

Ω

{Ψ(∇φ,K) +D(Kn,K)} dV − ℓ(tn+1,φ)
∣∣ φ,K

}
,

[2, 5]. Carrying out the minimization with respect to K in (6) beforehand gives
the so-called condensed energy Ψcond

Kn
(F ) = inf

{
Ψ(F ,K) + D(Kn,K)

∣∣ K
}

which has been used in the literature to calulate the onset of microstructures,
[1, 3, 6, 7, 8]. This approach, however, is not suitable to describe the evolution of
microstructures, because then the internal variables are already microstructured
at the beginning of the time-increment as a result of a relaxation process in the
preceeding time-increment. Or they are microstructured through the whole course
of continuous evolution. Hence, they have to be given in the form of so-called
Young–measures. We are going to give some concepts now, how such a formulation
might be derived.

Young-measures are probability–distributions λF ≥ 0 given for example for
the deformation-gradient, i.e. on GL(d), and dependent on the material point.
Thus they have the following properties:

∫
λF dF = 1,

∫
λF̄ F̄ dF̄ = F .

Moreover in the case of the deformation-gradient, the probability-distribution
has to be compatible, i.e. realizable by a deformation field φ. This means that

1
Ωrep

∫
Ωrep

Ψ(∇φ) dV =
∫
GL(d) λF̄ Ψ(F̄ ) dF̄ has to hold for all quasiconvex poten-

tials Ψ. In this case we call λF ∈ GYM a gradient Young-measure.
It is now, at least in principle, possible to define a relaxed energy and dissipation

functional via cross-quasiconvexication as

(7) Ψrel(F , λK) = inf
{ ∫

ΛF̄ ,K̄Ψ(F̄ , K̄)dK̄ dF̄
∣∣
∫

ΛF̄ ,K̄ dK̄ dF̄ = 1,

∫
ΛF̄ ,K̄ dK̄ ∈ GYM,

∫
ΛF̄ ,K dF̄ = λK ,

∫
ΛF̄ ,K̄ F̄ dK̄ dF̄ = F

}
,

(8) ∆∗(λ̇K) = inf
{ ∫

ΛK0,K1D(K0,K1)dK0 dK1

∣∣
∫

ΛK0,K1 dK0 dK1 = 1,

∫
ΛK0,K1 dK0 = λ̇K ,

∫
ΛK0,K1 dK1 = −λ̇K

}
.

Related concepts have already been introduced in somewhat different settings in
[6]. With these definitions we recover the original principles (2) and (3), with the
only difference that the internal variables K have been replaced by the Young-
measures λK . However, we have to take care of the facts that λK ≥ 0 and∫
λK dK = 1. Introducing this constraints via Langrange- and Kuhn-Tucker-

multipliers, respectively, the Lagrange functional in (3) assumes the form

(9) L(φ, λK , λ̇K) =
d

dt
Ψrel(∇φ, λK) + ∆∗(λ̇K) + α

∫
λ̇K dK −

∫
βK λ̇K dK,
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and we get the Kuhn-Tucker conditions

(10) λ̇K ≥ 0, βK ≥ 0, λ̇KβK = 0.

One main advantage of the present formulation is the fact, that it is possible to
arrive at evolution equations for λK . Thus we can avoid the solution of global
minimization problems, as was required when calculating the onset of microstruc-
tions via the condensed energy, [1]. For this purpose we define thermodynamically

conjugate forces: qK = −∂Ψrel

∂λK

. Because of the two constraints mentioned above
the evolution problem inherits an active set structure and a deviatoric structure.
Therefore we introduce the active set A =

{
K
∣∣ λK > 0

}
and the active deviator

devA xK = xK −
(∫

A
xK dK

)
1 as well as the restriction: xA = (xK)K∈A. We

can once again define an inelastic potential via Legendre-tranform by

(11) J∗(qK) = inf
{ ∫

λ̇KqK dK − ∆∗(λ̇K)
∣∣ λ̇K

}
= χ(Φ(qK)),

which because of the rate-independence of the problem can be written in terms of
the characteristic function χ of a yield-function Φ. With this notation we obtain
the desired evolution equation

(12) λ̇A ∈ devA

∂Φ

∂qK

∣∣∣∣
A

along with the consistency condition

(13)
∂∆∗

∂λ̇K

− devA qK ≥ 0 for K 6∈ A.

Here the inequality (13) plays the role of a switch determining when an inactive
constraint becomes active again. An evolution equation of the type presented in
(12) is applied to polycrystalline shape-memory-alloys in [4].
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Some existence results in finite-strain plasticity

Alexander Mielke

Most theories of finite-strain elastoplasticity are based on Kröner and Lee’s as-
sumption of the multiplicative decomposition F = FelastP, where F = Dϕ is the
gradient of the deformation ϕ : Ω → R

d. The plastic tensor P and additional
hardening variables p ∈ Π are taken to be internal parameters. Moreover, the
modeling is usually done in the rate-independent setting. This note concerns the
implications of these two basic axioms.

Right from the beginning we emphasize that F and P should not be considered
as elements of the linear space R

d×d but rather as elements of Lie groups, namely

F ∈ GL+(d) = {A ∈ R
d×d | detA > 0} and P ∈ SL(d) = {A ∈ R

d×d | detA = 1}.

Thus, the geometric nonlinearities of finite-strain plasticity can be understood in
the sense of Lie groups.

The constitutive laws of associate plasticity are given in terms of a stored energy
density W (x,F,P, p) and a dissipation potential R(P, p, Ṗ, ṗ). The basic axioms
of multiplicative plasticity (cf. [Mie02, Mie03, GA04]) lead to the following special
form of the constitutive laws

W (x,F,P, p) = W̃ (x,Felast, p) with Felast = FP−1 ∈ GL+(d) and

R(P, p, Ṗ, ṗ) = R̃(x, p, ξ, ṗ) with ξ = ṖP−1 ∈ sl(d) = T1SL(d).

Rate-independence means 1-homogeneity of R in the rates, i.e., R̃(x, p, γξ, γṗ) =

γR̃(x, p, ξ, ṗ) for γ ≥ 0. The dissipation potential R is in one-to-one correspon-
dence with the elastic domains E(x, p) (whose boundary is the yields surface) via

Legendre-Fenchel transform in (ξ, ṗ), namely χE(x,p) = LR̃(x, p, ·).
The classical plasticity equations consist of the elastic equilibrium problem and

the flow rule 0 ∈ ∂
Ṗ,ṗR + DP,pW . A weaker form of these differential form is the

energetic formulation which is solely base on the energy functional

E(t,ϕ,P, p) =

∫

Ω

W̃ (x,Felast, p)dx − 〈ℓ(t),ϕ〉

and the dissipation distance D((P0, p0), (P1, p1)) =
∫
ΩD(x, (P0, p0), (P1, p1))dx,

where D : Ω×(SL(d)×Π)2 → [0,∞] is defined via

D(x, (P0, p0), (P1, p1)) = inf
{ 1∫

s=0

R(x, p, ṖP−1, ṗ)ds
∣∣∣ (P(0), p(0)) = (P0, p0),

(P(1), p(1)) = (P1, p1), (P, p) ∈ C1([0, 1]; SL(d)×Π),
}

The calculation ofD is a difficult task as it involves the geodesic curves on SL(d)×Π
with respect to the Riemannian or Finslerian metric R. For some special cases,
like von Mises plasticity this can be done, see [Mie02, HMM03].

By F ⊂ W1,p(Ω; Rd) we denote the set of kinematically admissible deformation
and by Z the set of all internal states (P, p) : Ω → SL(d)×Π. A function (ϕ,P, p) :
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[0, T ] → F×Z is called energetic solution for the above problem, if for all t ∈ [0, T ]
the global stability condition (S) and the energy balance (E) hold:

(S) ∀ (ϕ̃, P̃, p̃) ∈ F×Z: E(t,ϕ(t),P(t), p(t)) ≤ E(t, ϕ̃, P̃, p̃)+D(P(t), p(t), P̃, p̃),

(E) E(t,ϕ(t),P(t), p(t)) + DissD((P, p), [0, T ])

= E(0,ϕ(0),P(0), p(0)) +
∫ t

0
∂sE(s,ϕ(s),P(s), p(s))ds

The solvability of this weak formulation is still an open problem, except for a few
special cases in space dimension 1, see [Mie04b].

However, it is quite natural to consider a fully implicit time incremental problem
(IP) and for some simpler material models the convergence of solutions of (IP)
for step size going to 0 to solutions of (S) & (E) is established, see [MTL02,
Mie05b, FM05]. For finite-strain plasticity already the solvability for (IP) is a
major problem under current investigation, since formation of microstructure is to
be expected in many cases, see [OR99, ORS00, CHM02].

(IP) (ϕk,Pk, pk) ∈ Argmin
(eϕ,eP,ep)∈F×Z

E(tk, ϕ̃, P̃, p̃) + D(Pk, pk, P̃, p̃).

The major observation is that the incremental problem consists of k successive
minimization steps, which was first observed in [OR99].

In [Mie04b] an existence result is established under the assumption that the
so-called condensed potential

W cond
p (F) = min

eP,ep
W (FP̃−1, p̃)+D(1, p, P̃, p̃)

is polyconvex. This assumption is very hard to check but an example for dimension
d = 2 was established with the help of [Mie05a]. Imposing suitable coercivity
assumptions, which show that exponential hardening is needed, it is then shown
that (IP) has solutions.

To avoid the difficult assumptions on W cond it is possible to introduce regular-
izing terms into E via Ereg = E +

∫
Ω
κ|(curlP)PT|qC dx. This case is analyzed in

[MM05] via A–quasiconvexity and a special identity for the minors of the product
DϕP−1. Assuming that the semicondensed potential

(Felast,P) 7→ min
ep
W (Felast, p̃) +D(P0, p0,P, p̃)

is polyconvex and coercive with suitable exponents, it is possible to show that (IP)
is solvable.

In many situations without regularization (IP) does not have solutions. In these
situations one needs to relax the problem to find effective equations or one needs
to find evolution equations for the associated microstructure, which often can be
described by (sequential) laminates. In the mechanics literature this is described,
e.g., in [AMO03, ML03, BCHH04]. For an attempt to provide a mathematical un-
derpinning to these procedures we refer to [Mie04a, KMR05] and for the complete
analysis in a very special case see [CT05].
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Constitutive parameters for a nonlinear Cosserat model. A numerical
study.

Patrizio Neff

(joint work with I. Münch, W.Wagner)

The presented nonlinear Cosserat model is an elastic two-field minimization prob-
lem with respect to the deformation ϕ : Ω 7→ R

3 and independent rotations
R : Ω 7→ SO(3,R), subject to boundary conditions. More precisely, one mini-
mizes

I(ϕ,R) =

∫

Ω

W (∇ϕ,R) + µL2
c ‖∇R‖

2 dV 7→ min .(ϕ,R) .(1)

Frame-indifference of the strain energy implies the representation W (F,R) =

Ŵ (FTR). The most simple quadratic, isotropic representation of Ŵ is given by

Ŵ (U) = µ‖ symU‖2 + µc‖ skew(U)‖2 +
λ

2
tr
[
U − 11

]2
.(2)

Here, µ, λ are the usual Lamé constants of isotropic elasticity, while µc ≥ 0 is an
additional parameter, called the Cosserat couple modulus. Lc > 0 introduces a
length scale into the model to the effect that smaller structures behave compara-
tively stiffer than larger structures.

The value of the Cosserat couple modulus in applications to solid material is
controversial. More about the modelling, application and mathematical treatment
can be found in [2, 1], where a more general approach, the so called micromorphic
model, is dealt with at length.

The author has investigated this minimization problem from an analytical point
of view. These investigations suggest that the couple modulus µc should be zero -
contrary to what is usually assumed. Here I present numerical calculations which
show the influence of µc and the internal length scale Lc on the stress-strain re-
sponse. These numerical results suggest as well that taking µc > 0 is inconsistent
with any observed real material behaviour since it would lead to unbounded tan-
gent stiffness for arbitrarily small material samples.

In the case of µc = 0 and Lc = 0 an analytical development shows the existence
of a lamination microstructure solution with arbitrary many sharp interfaces in
the simple glide problem. This shows that for µc = 0 the role of the rotationfield
R is to relax the material response.

For µc = 0 and Lc > 0 the compression test on a rectangular specimen shows
a nonclassical response: it is energetically favourable to twist the specimen in the
middle of the height.
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Applied relaxations in rank connected systems

Sanjay Govindjee

Many materials admit morphological (phase) transformations under mechani-
cal/electrical/thermal loadings. In certain cases, these phenomena are attractive
for designing novel engineering systems. One impediment, however, to effective
design with such materials is the lack of a general purpose (constitutive) model
suitable for use in solving boundary value problems using analysis software such
as finite element programs. Recently, however, there has been a concerted effort in
the development of such models for macro-scale modeling. Most approaches have
been moving toward a common generalized thermodynamic framework employing
varying degrees of internal variables. In shape memory alloys, for example, several
promising models utilizing internal variables to describe single martensitic vari-
ants and some with multiple variants have appeared. In this work we exploit some
recent results in quasi-convexity theory in a general multivariant framework for
single crystals that is based upon lattice correspondence variants. These results
are based upon some simple energy bounds which we are able to show are quite
tight under certain common circumstances. Example computations are shown and
are correlated to detailed theoretical results and non-trivial experimental data on
single crystal Copper based alloys with orthorhombic and monoclinic martensitic
structures.

At a mesoscopic scale the phenomena we wish to describe is geometrically enor-
mously complex. At the macroscopic scale we likewise observe a very rich variety
of phenomena. However at the microscale, the phenomena we are interested in
is very elementary. It is a diffusionless phase transformation from one crystalline
lattice symmetry to another. Given to considerations of group algebra, we note
that the number of allowed transformation is finite and of order 3 to 12. Our
desire is to base our model on only the simple microscopic symmetry changes.
If we account properly for the energetics of these microscopic symmetry changes
it is our hope that we can produce a model that self-assembles in a natural way
to produce the rich variety of phenomena seen at the macroscopic scales. The
essence of our modeling approach is to construct a model from a few very basic
physical observations/mechanisms combined with a generic seemingly “universal”
thermodynamic structure. Our tool of choice to transition from the microscale to
the macroscale is quasi-convex relaxation.

The model framework employed is a classical thermodynamically mediated gra-
dient decent framework (with a maximum entropy production character) as de-
scribed in [5] or its zero dissipation limiting case as described in [8]. Central to this
framework is the need for an explicit or efficient to evaluate implicit expression
for the free energy of the material. The simplest and most natural choice for this
(omitting for simplicity thermal terms) is [9, 2, 10, 3]W (U) = minα=1,··· ,N Wα(U) ,
where U is the right stretch tensor and α indexes through the different symme-
try variants. Wα(·) is the appropriately centered variant (free) energy. Such an
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energy density is well-known not to be quasi-convex and thus will lead to an over-
all system of equations ill-suited for our objectives. Following along the lines of
[10, 12] in [6, 7] we replace this energy density by its partial quasiconvexification.
This produces a model that accurately models the physics of the actual material
response and in particular naturally respects the need for the rank connected lam-
inated microstructures as has been recognized for some time (see e.g. [14]). This
relaxation, however, does lead to issues of efficiency and thus there is some need
for the use of approximations to the relaxation. In particular, one can employ
lamination upper bounds combined with efficient search algorithms [1] or one can
utilize lower bounds as developed in [6, 7]. One advantage of the lower bounds is
that they are in closed algebraic form and are thus very efficient. Second, these
bounds are provably exact for a wide range of actual physical systems. In cases
where they are not exact their error is computably reasonable from an engineering
perspective.

This modeling framework has been tested on a number of copper based alloys
and shown to be physically accurate for both macroscopic system response as well
as various secondary and tertiary experimental features. For tetragonal Nickel-
Aluminum alloys it has been shown that our approximate lower bound relaxed
energy matches very closely to the approximate upper bound relaxed energy and
that it is exact for a wide spectrum of physically relevant situations. The ap-
proximate lower bound has similarly been computed to be very accurate for a
monoclinic Copper-Aluminum-Nickel based alloy. The overall framework has been
tested on the polycrystalline estimate of [4] and shown to be accurate for Nickel-
Aluminum. The framework has been further tested against the orthorhombic ten-
sion loading/unloading test data of [11]. It has reproduced well the overall system
response, the variant production, and tertiary features of the displacement map-
ping observed. Lastly, we have tested out framework against the tension/torsion
monoclinic test data of [13]. The model while failing to reproduce the actual in-
duced response of these multiaxial tests does accurately reproduced the driving
forces when driven with the experimentally measured displacement field.
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Single-slip elastoplastic microstructures

Florian Theil

(joint work with Sergio Conti)

1. Introduction

We study rate-independent evolution of elastoplastic bodies. We consider the sim-
plest case where the kinematics is maximally restricted in the sense that only
one slip system is active and the only allowed elastic deformations are rigid body
rotations, within the standard framework of crystal plasticity. Approximate solu-
tions are constructed by considering sequences that minimize the sum of elastic
energy and dissipated energy in the limit, the only source of dissipation being
plastic deformation. The corresponding variational problems are denoted incre-
mental problems. Due to the interplay of the directional dependence of the plastic
deformation with the rotational invariance of the elastic part a minimizer does
not, in general, exist. Minimizing sequences develop fine scale oscillations, which
are analogous to microstructures found in models for solid-solid phase-transitions.
Regular lamellar structures between phases with a different plastic deformation
have been observed at large strains in a wide variety of metals, see e.g. [1, 2] and
references therein.

The lack of minimizers for the incremental problems leads to instabilities in
numerical algorithms that attempt to follow the time-continuous evolution of the
elastoplastic deformation. A standard approach to overcome this difficulty is to
consider a relaxed evolution problem where the original incremental problem is
replaced by the lower semicontinuous envelope, see e.g. [1, 3, 4, 5].
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The main objectives of this paper are (i) to demonstrate rigorously that a simple
multi-dimensional model predicts the formation of a single-laminate microstruc-
ture; and (ii) to give a partial justification of numerical methods that are based
on the computation of the relaxation of the incremental problems.

The first objective is achieved by determining an explicit formula for the qua-
siconvex envelope of the first incremental problem in the case where only one slip
system is active (in two directions) and the elastic strains are negligible. The
latter corresponds to the assumption that the elastic energy is infinite whenever
the elastic part of the deformation gradient (in a multiplicative decomposition) is
not a rotation. We show that microstructure states can approximate a variety of
affine deformations of the type y(x) = Fx. In particular, in two dimensions this
is possible for F in a relatively open subset of the volume-preserving affine maps
{F : detF = 1}. We show that the relaxation is achieved by first-order laminates
(Theorem 1).

The second objective is achieved by considering the evolution problem that is
associated to the relaxed incremental problem. We construct explicit solutions
for the relaxed evolution problem that can not be interpreted as simple single-
slip motions. These solutions correspond to time-evolving microstructure. In
addition we prove that there exist sequences of approximate solutions for the
original single-slip model that not only converge weakly to the relaxed solution, but
also have the property that the associated plasticity-induced dissipation converges
to the dissipation predicted by the relaxed system. The analysis is based on the
construction of Lipschitz maps that form a perfect laminate except on a compact
set with arbitrarily small measure.

Our analysis has nontrivial implications also for crystals with several slip sys-
tems. In particular, one can see that in two dimensions, three slip systems generate
an effective response which is identical to Tresca plasticity (i.e. to the response
obtained by assuming infinitely many slip systems).

2. Main results

We work within the framework of perfectly rigid, multiplicative crystal plasticity
theory without hardening. More precisely, we assume that for deformations y :
Ω → R

d the deformation gradient F = ∇y admits a multiplicative decomposition
F = FeFp where Fe, Fp ∈ R

d×d are the elastic and the plastic strain tensor. The
total elastic energy is given by

∫
Ω
We(Fe) dx where

We(Fe) =

{
0 if Fe ∈ SO(d)

∞ else.

For the sake of simplicity we assume that only one slip system is active, character-
ized by the vectors s,m ∈ R

d, the slip direction and the slip-plane normal which
form a pair of orthogonal unit vectors. The plastic dissipation which occurs when
the plastic strain tensor changes from F0 to Fp is given by

∫
ΩWp(Fp, Fp0) dx,
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where

Wp(Fp, Fp0) =





|γ2 − γ1| if there exists γ1, γ2 ∈ R such that

Fp = Id + γ2s⊗m and Fp0 = Id + γ1s⊗m,

∞ else.

After discretizing the rate-independent evolution problem in time one is confronted
with the task to solve the incremental problems which consist in minimizing the
energy

(1)

∫

Ω

Wep(∇y;∇y(tk)) dx ,

where y(tk) is the deformation at time tk and

Wep(F, F0) =

{
|s · Fp(F )F−1

p (F0)m| if Fp(F ) and Fp(F0) are defined,

∞ else.

We used the convention

Fp(F ) =





RTF if there exists R ∈ SO(d), γ ∈ R

such that F = R(Id + γs⊗m),

undefined, else.

It can be checked that γ1 and γ2 are uniquely determined by F and F0, hence Wep

is well defined.

Theorem 1. In two dimensions, the quasiconvex envelope of Wep(·, F0) is given
by

(2) W qc(F, F0) =

{
λmax(FF

−1
p (F0)) − λmin(FF

−1
p (F0)) if F, F0 ∈ N (2)

∞, else

where λmax and λmin are the maximal and minimal singular values of FF−1
p (F0),

and

N (2) = {F ∈ R
2×2 | detF = 1, |Fs| ≤ 1}.

The rank-one convex and the polyconvex envelopes, W rc and W pc, also agree with
W qc.

Note that N (2) is a three-dimensional set whereas the set where Wep assumes
finite values is two-dimensional, hence the the quasiconvexification leads to a non-
trivial extension of the kinematics.

SinceWep is strongly singular (the set where it assumes finite values has measure
0) the quasiconvex envelope increases if we go from two to three dimensions. In
particular the formation of three-dimensional elastoplastic microstructures cannot
be described within the framework of the single slip model.
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Theorem 2. In three dimensions, the function Wep(·, F0) is quasiconvex. Its
rank-one convex and polyconvex envelopes are given by

W pc(F, F0) = W rc(F, F0) =

{
λmax(FF

−1
p0 ) − λmin(FF

−1
p0 ) if F, F0 ∈ N (3)

∞, else

where Fp0 = Fp(F0), λmax and λmin are the maximal and minimal nonnegative

singular values of FF−1
p0 , and

N (3) = {F ∈ R
3×3 | detF = |F (s ∧m)| = | cof F (s ∧m)| = 1, |Fs| ≤ 1}.
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Microstructure and relaxation in single-crystal plasticity

Sergio Conti

We consider single-crystal plasticity in the limiting case of infinite latent hardening,
which signifies that the crystal must deform in single slip at all material points.
This requirement introduces a nonconvex constraint, leading to the formation of
fine-scale structures. We restrict attention throughout to the deformation theory of
plasticity, which is appropriate for monotonic proportional loading and confers the
boundary value problem of plasticity a well-defined variational structure analogous
to elasticity.

We first study a scale-invariant (local) problem, within a linearized framework.
Precisely, let {si ⊗ mi}i=1,...N be a set of slip systems, each (si,mi) being an
orthormal pair in R

3. Let u : Ω ⊂ R
3 → R

3 be the deformation, γ : Ω → R
N

be the set of internal variables. We consider single-slip, i.e. assume that at each
material only one of the γi is nonzero. Precisely, γ takes values in the set

(1) Γs =
{
γ ∈ R

N : ∃j, γi = 0 ∀i 6= j
}
.

We focus on the condensed energy

(2) Wcond(ǫ) = min
γ∈Γs

{
1

2
(C(ǫ− ǫp(γ)), ǫ− ǫp(γ) + τ |γ|

}
,
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where the plastic strain takes the form

(3) ǫp(γ) =

N∑

i=1

γi
si ⊗mi +mi ⊗ si

2

(at this stage, only one term in the sum is nonzero). The variational problem
amounts at minimizing

(4) E[u] =

∫

Ω

Wcond

(
∇uT + ∇u

2

)
dx

subject to appropriate boundary conditions. We show that the quasiconvex enve-
lope of Wcond equals its convex envelope. This determines also the relaxation of
E[u].

Theorem 1 (joint work with M. Ortiz, see [5]). The quasiconvex envelope of the
function Wcond equals its convex envelope

(5) W ∗∗
cond(ǫ) = min

γ∈RN

{
1

2
(C(ǫ− ǫp(γ)), ǫ− ǫp(γ) + τ

N∑

i=1

|γi|

}

(both functions of strain are understood to be composed with projection onto sym-
metric matrices).

We remark that W ∗∗
cond(ǫ) corresponds to the case of zero latent hardening. This

means that, by developing microstructures in the form of sequential laminates of
finite depth, crystals can beat the single-slip constraint, i. e., the relaxed constitu-
tive behavior is indistinguishable from multislip ideal plasticity.

In a second step, we include dislocation line energies into the model. This
introduces a length scale into the problem, and different regimes lead to distinct
types of microstructure patterns. For simplicity, we focus on the case of antiplane
shear, with two slip systems, and consider a cubic grain ΩL = (0, L)3 contained
in an infinite polycrystal (matrix material). Precisely, we seek a deformation
u : ΩL → R and a plastic strain F p : ΩL → R

3 which minimize the free energy

(6) E(u, F p) =

∫

ΩL

|∇u− F p|2dx+ σ

∫

ΩL

|∇ × F p| + µ ‖u− γx1‖
2
H1/2(∂ΩL)

subject to the side conditions F p
1 = ±F p

2 and F p
3 = 0 a.e.. We remark that here

u is a scalar and F p a vector. The three terms in the energy represent the elastic
energy, the energy of the dislocation cores, and the elastic energy of the matrix.
The qualitative material behavior can be understood determining the scaling of
the infimum energy.
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Theorem 2 (joint work with M. Ortiz, see [5]). There are universal constants c,
c′ such that

cE0 (σ̃, µ) ≤
1

L3γ2
inf E(u, F p) ≤ c′E0(σ̃, µ)

where the infimum is taken among all u and F p which obey the side condition,
σ̃ = σ/γL, and

E0(σ̃, µ) = min
(
1, µ, µ1/2σ̃1/2, σ̃2/3

)
.

The four regimes correspond to different macroscopic material behavior. In
particular, the first one corresponds to elastic response, and the third one to onset
of plastic response, characterized by the formation of a laminar structure. The
yield stress scales as L−1/2, in agreement with the experimentally known Hall-
Petch scaling law in polycrystals.

The third part of this talk was devoted to the relaxation of a geometrically
nonlinear problem with linear hardening. We consider the single-slip model from
[3, 1], which takes the form

(7) WBCHH(F ) = min
γ∈R,F=Fe(Id+γs⊗m)

Ue(detFe) +
µ

2
|Fe|

2 + τ |γ| +
h

2
γ2

Here s and m are a fixed pair of orthonormal vectors in R
2, F ∈ R

2×2, Ue is a
convex function with minimum at 1, and the plastic strain takes the single-slip
form Id + γs⊗m.

First, we consider a corresponding elastically rigid problem, i.e., assume that
the elastic part of the deformation is a rotation, and neglect dissipation. For this
case, the quasiconvexification of the energy density can be determined in closed
form. Precisely,

Theorem 3. The quasiconvex envelope of the function

(8) Wr(F ) =

{
γ2 if F = Q(Id + γs⊗m) for some Q ∈ SO(2) , γ ∈ R ,

∞ else.

is given by

(9) W qc
r (F ) =

{
|Fm|2 − 1 if detF = 1 and |Fs| ≤ 1 ,

∞ else.

The corresponding result for the case without hardening (i.e., with |γ| instead
of γ2 in (8)) had been previously treated in [4, 6].

We then refine the analysis, by means of a coupled analytical-numerical method
(joint work with C. Carstensen and A. Orlando, see [2]). This permits to deter-
mine analytically a second laminate which has “good” energy, and furnishes an
upper bound on the relaxed energy. Subsequent numerical optimization of the
laminate results in very good quantitative agreement with previous work by Bar-
tels, Carstensen, Hackl and Hoppe [1], which had required a significantly higher
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numerical effort. The main advantage of the present approach is that the analyt-
ical step gives a good starting condition for the numerical relaxation, permitting
to limit numerical analysis to a low-dimensional, local minimization.
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Minimizing paths and incremental minimum problems for inelastic
solids

Michael Ortiz

The classical theory of continuum thermodynamics and constitutive relations pro-
vides a useful framework for the formulation of the initial boundary value problem
for general inelastic solids. The motions of the body are described by a time-
dependent deformation mapping ϕ : B×[a, b] → R

3, where B ⊂ R
3 is the reference

configuration and [a, b] is the time interval elapsed during the motion; and obey
conservation laws and the first and second laws of thermodynamics, namely:

Ṙ = 0 , in B ,(1a)

RV̇ = DivP +RB , in B ,(1b)

PN = T̄ , on ∂TB ,(1c)

PFT = FPT , in B ,(1d)

Ė = P · Ḟ +RQ− DivH , in B ,(1e)

H ·N = H̄ , on ∂NB ,(1f)

Γ̇ ≡ Ṅ −
RQ

Θ
+ Div

H

Θ
≥ 0 , in B ,(1g)

where R is the mass density per unit undeformed volume; V = ϕ̇ is the material
velocity; B is the body force density per unit mass; N is the unit outward normal;
P is the first Piola-Kirchhoff stress tensor; T̄ are the applied tractions over the
traction boundary ∂TB; E is the internal energy per unit undeformed volume; N
is the entropy per unit undeformed volume; Θ is the absolute temperature; Q is
the distributed heat source per unit mass; and H is the outward heat flux; H̄ is
the prescribed outward heat flux over the Neumann boundary ∂NB; F = ∇ϕ is
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the deformation gradient and Γ̇ is the internal entropy production rate per unit
undeformed volume.

In addition, we suppose that the local thermodynamic state of an infinitesi-
mal material neighborhood is defined by: the local deformation gradient F ∈
GL+(3,R) ≡ the Lie group of invertible and orientation-preserving linear trans-
formations in R

3; the local entropy density per unit undeformed volume N ∈ R;
and a collection Z ∈M of additional or internal variables. The set M in which Z
take values varies depending on the material class and cannot be specified univer-
sally for all solids. Depending on the nature of the internal variables, M may be:
a vector space; a manifold, e.g., if the internal processes are subject to holonomic
constraints; or a Lie group, e. g., if the internal variables are naturally composed
by multiplication. The internal energy density and the absolute temperature are
functions of the local state, i.e.,

E = E(F,N,Z) ,(2a)

Θ = Θ(F,N,Z) .(2b)

The equilibrium stresses and the thermodynamic driving forces conjugate to the
internal variables are, by definition,

P e ≡ ∂FE(F,N,Z) ,(3a)

Y ≡ −∂ZE(F,N,Z) .(3b)

The viscous or non-equilibrium stress is then

(4) P v ≡ P − P e .

A theorem of Coleman and Noll [2] then shows that (2b) is necessarily of the form

(5) Θ = ∂NE(F,N,Z) ,

and that all processes must comply with the dissipation inequality

(6) ΘΓ̇ = Y · Ż + P v · Ḟ −
1

Θ
H · ∇Θ ≥ 0 .

Alternatively, we may introduce the Helmholtz free energy by applying the Le-
gendre transformation

(7) A(F,Θ, Z) = inf
N

{E(F,N,Z) − ΘN} ,

in terms of which the equilibrium relations take the form

N = −
∂A

∂Θ
(F,Θ, Z) ,(8a)

P e =
∂A

∂F
(F,Θ, Z) ,(8b)

Y = −
∂A

∂Z
(F,Θ, Z) .(8c)

In order to obtain a closed set of governing equations defining well-posed initial
boundary-value problems the equilibrium relations summarized above need to be
supplemented with appropriate kinetic relations enabling the determination of P v,
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Ż and H . A special form of the kinetic relations is obtained by postulating the
existence of a kinetic potential ∆(Ḟ , Ż, G;F,N,Z) such that

P v = ∂Ḟ ∆(Ḟ , Ż, G;F,N,Z) ,(9a)

Y = ∂Ż∆(Ḟ , Ż, G;F,N,Z) ,(9b)

−H = ∂G∆(Ḟ , Ż, G;F,N,Z) ,(9c)

i.e., a function that acts as joint potential for the viscosity law, rate-sensitivity
and the heat conduction law.

Formally, a time-discretized incremental problem having a variational structure
can be derived by recourse to minimizing paths, in the vein of deformation theories
of plasticity [4, 3, 7, 1]. In particular, we envision a sequence of times t0, . . . , tn,
tn+1, . . . , and seek to characterize the state (ϕ,Θ, N, Z) of the solid at those
times. For simplicity, here we confine our attention to the quasistatic, isothermal
case. The general case including heat conduction is treated in [8]. Assume that
the state (ϕn,Θn, Nn, Zn) is known, and that the temperature Θ and the entropy
N are given in the interval (tn, tn+1). We wish to consistently approximate the
state (ϕn+1, Zn+1) at time tn+1 as the solution of an extremum problem. By
a consistent approximation we mean that the limits of the divided differences
{(ϕn+1 − ϕn)/∆t, (Zn+1 − Zn)/∆t)} as ∆t = tn+1 − tn tends to zero satisfy the
rate field equations at tn. To this end, introduce the incremental functional

(10) Φn[ϕn+1, Zn+1] = inf
paths

∫ tn+1

tn

{∫

B

(Ȧ+ ∆) dV +G(ϕ̇,Θ)

}
dt

where the subscript n signifies that Φn[ϕn+1, Zn+1] depends parametrically on the
initial conditions, the functional
(11)

G(ϕ̇,Θ) ≡ −

∫

B

RB · ϕ̇ dV −

∫

∂T B

T̄ · ϕ̇ dS +

∫

B

RQ log
Θ

Θ0
dV −

∫

∂N B

H̄ log
Θ

Θ0
dS

collects the power of the forcing terms, and the minimum is taken over all ad-
missible paths joining (ϕn, Zn) at time tn to (ϕn+1, Zn+1) at time tn+1. The
fundamental properties of the incremental potential Φn may be ascertained as
follows. Integration of the perfect differential Ȧ gives
(12)

Φn[ϕn+1, Zn+1] =

∫

B

(An+1 −An) dV + inf
paths

∫ tn+1

tn

{∫

B

∆ dV +G(ϕ̇,Θ)

}
dt .
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Taking variations with respect to the independent variables and enforcing station-
arity gives

∫

B

P e
n+1 · δFn+1 dV +

∫ tn+1

tn

∫

B

[
∂Ḟ ∆ · δḞ + ∂F ∆ · δF

]
dV dt

+

∫ tn+1

tn

[∫

B

RB · δϕ̇ dV +

∫

∂T B

T̄ · δϕ̇ dS

]
dt = 0 ,

(13a)

−

∫

B

Yn+1 · δZn+1 dV +

∫ tn+1

tn

∫

B

(
∂Ż∆ · δŻ + ∂Z∆ · δZ

)
dV dt = 0 .(13b)

Integration by parts with respect to time and localization of the result gives

Div

[
−
d

dt
(∂Ḟ ∆) + ∂F ∆

]
+RḂ = 0 , in B ,(14a)

[
−
d

dt
(∂Ḟ ∆) + ∂F ∆

]
·N = ˙̄T , on ∂TB ,(14b)

−
d

dt
(∂Ż∆) + ∂Z∆ = 0 , in B ,(14c)

in the interval t ∈ (tn, tn+1), and

Div(P e
n+1 + ∂Ḟn+1

∆n+1) +RBn+1 = 0 , in B ,(15a)

(P e
n+1 + ∂Ḟn+1

∆n+1) ·N = T̄n+1 , on ∂TB ,(15b)

Yn+1 = ∂Żn+1
∆n+1 , in B ,(15c)

at time tn+1. Eqs. (14a – 14c) determine the minimizing paths. The remaining
eqs. (15a – 15c) are the Euler-Lagrange equations of the functional Φn. Evidently,
eqs. (15a – 15c) are the rate field equations expressed at time tn+1. Therefore,
the critical points of Φn satisfy the rate field equations at time tn+1 with rates
computed from the corresponding minimizing paths.

An additional requirement of stability leads to the incremental minimum prob-
lem

(16) inf
ϕn+1,Zn+1

Φn[ϕn+1, Zn+1] ,

whereby the stable states at time tn+1 are identified with the minimizers of Φn.
As noted by Ortiz et al. [5, 6], minimization with respect to the internal state
Zn+1 yields a reduced potential Φn[ϕn+1], and the subsequent minimum problem is
indistinguishable from that of an elastic material. However, it should be carefully
noted that the incremental functional Φn reflects both the energetics as well as
the kinetics of the material. A manifestation of the kinetic character of Φn is
its parametric dependence on the initial conditions at time tn. Alternatively, we
may regard the incremental functional Φn as changing between time steps. This
incremental nature of Φn allows for irreversible behavior, path dependency and
hysteresis, as required.
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Challenges in the computation of rank-one convex envelopes

Georg Dolzmann

The characterization of the relaxed functional

Fqc(u) =

∫

Ω

W qc(Du) dx

requires the knowledge of the quasiconvex envelope of the free energy density W
given by

W qc = sup{g ≤W : g quasiconvex}.

There are very few examples with physical relevance where the relaxed energy
density has been obtained explicitly. One therefore needs to resort to an approx-
imation of the quasiconvex envelope by the rank-one convex envelope W rc of the
energy density defined by

W rc = sup{g ≤W : g rank-one convex}.(1)

Here a function g : M
m×n → R from the space of all real m× n matrices into the

real numbers is said to be rank-one convex if g is convex on all rank-one lines of
the form t 7→ F + tR with F, R ∈ M

m×n and rank(R) = 1. Equivalently, W rc can
be defined as an infimum over all finite laminates,

W rc(F ) = inf
{ N∑

i=1

λiW (Fi) : (λi, Fi) satisfies HN

}
,(2)

see [2] for more information.
The following paragraphs discuss important open problems related to analytical

and numerical questions in this context.
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1. How to compute W rc? There are two fundamentally different strategies
based on the two representations of W rc.

(a) If one is interested in the values of the energy density W rc in a small set of
matrices, then one can use an on the fly algorithm where one optimizes (2) over a
special class of laminates, typically first or second order laminates.

(b) If one needs the values of W rc on a large set of matrices, for example if one
combines the computation of the relaxed energy with a finite element discretization
in space, then a more systematic approach based on (1) following the ideas in [7]
may be advantageous.

The implementation proposed in [3, 6] uses an equidistant mesh Gh = hZ
m×n

in the space of all matrices and restricts the computation to a finite box QM =
[−M,M ]m×n ∩ Gh. The idea is to compute an approximation W rc

h that is convex
on a set of rank-one directions Rh that correspond to vectors of rank-one in the
cube QM . The advantage of this approach is that the approximation is an upper
bound for W rc and that one can obtain an explicit error estimate [6]. Let

Rh =
{
ha⊗ b : a ∈ Z

m, b ∈ Z
n, ‖a‖∞, ‖b‖∞ ≤ h−1/3

}
.

If the infimum in (2) is attained for a finite N and if there exists a rank-one convex
function g such that W ≥ g and W = g on M

m×n \QM/2, then

‖W rc −W rc
h ‖∞;QM ≤ Ch1/3.

A recent modification of the algorithm [1] provides an error estimate of order
O(h). The extension of the algorithm described in [4] computes simultaneously a
microstructure that leads to the relaxed energy.

2. Find sufficient conditions such that W rc can be computed with a
laminate of finite order. There is no condition known that allows one to esti-
mate the number N in the definition (2) of W rc in terms of properties of W that
are easy to check. A related difficulty is that there is no criterion known that
ensures that the matrices needed in the computation of W rc by (2) lie in a ball
with a given finite radius. The examples in [5] show that there exist minimizers u
of functionals with quasiconvex energy densities which have unbounded gradients.

3. Use frame indifference and/or material symmetry in an efficient
way. Most examples of physical importance lead to stored energy densities which
satisfy the fundamental principle of material frame indifference, W (F ) = W (RF )
with R ∈ SO(n) where SO(n) is the group of all proper rotations. From an
algorithmic point of view one can reduce the amount of storage needed since the
energy depends only on the symmetric part of the deformation gradient. However,
the implementation of the approach in [3, 6] is not straight-forward since rank-one
lines in the space of all matrices do not correspond to straight lines in the space
of symmetric parts in the polar decomposition F = RU . It seems to be an open
problem to describe an efficient algorithm that computes an interpolation with
suitable convexity properties of a function given on Gh
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4. Combine numerical relaxation with a finite element minimization of
the total energy in the system. The ultimate challenge is to determine the
effective energy of the variational problem: Minimize

F(u) =

∫

Ω

W (Du) dx

from a joint relaxation and minimization in the sense that one minimizes

Fh(u) =

∫

Ω

W rc
h (DU) dx

where U ∈ S1 is a finite element function (e.g. continuous and affine on the
elements of a regular triangulation).

References

[1] S. Bartels, Linear convergence in the approximation of rank-one convex envelopes, M2AN
Math. Model. Numer. Anal. 38 (2004), 811-820.

[2] B. Dacorogna, Direct methods in the calculus of variations, Springer, Berlin, 1989.
[3] G. Dolzmann, Numerical computation of rank-one convex envelopes, SIAM J. Numer. Anal.

36 (1999), 1621-1635.
[4] G. Dolzmann, Variational methods for crystalline microstructure—analysis and computa-

tion, Lecture Notes in Mathematics 1803, Springer, 2003.
[5] G. Dolzmann, J. Kristensen, K. Zhang, manuscript.
[6] G. Dolzmann, N. J. Walkington, Estimates for numerical approximations of rank one convex

envelopes, Numer. Math. 85 (2000), 647-663.
[7] R. V. Kohn, G. Strang, Optimal design and relaxation of a variational problems, I-III.

Comm. Pure Appl. Math. 39 (1986), 113-137, 139-182, 353-377.

Rate-independent damage at large strains

Tomáš Roub́ıček

(joint work with A. Mielke)

We consider damage in the context of nonlinear elasticity at large strains, which
is certainly a relevant concept especially because damaged materials may allow
indeed for very large deformations. On the other hand, only materials with quasi-
convex stored energy of a polynomial growth p > 3, as Ogden’s type materials,
are analyzed. Moreover, we consider damage as a rate-independent process, as
standardly applied to concrete, filled polymers, or filled rubbers. Being rate-
independent, it is necessarily an activated process, i.e. to trigger a damage the
mechanical stress must achieve a certain activation threshold. We consider the
isotropic damage that can be described by a scalar parameter z ∈ [0, 1] and neglect
any other rate dependent processes like viscosity and inertia. In accord to some
engineering literature and for mathematical reasons, our model involves also the
gradient of damage, expressing certain nonlocality in the sense that damage of a
particular spot is to some extent influenced by its surrounding.

At a fixed time, the state of the system is considered as q = (u, ζ) where
u : Ω → R

3 is the deformation considered on the reference body configuration
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Ω ⊂ R
3, and ζ : Ω → [0, 1] is a distribution of damage; ζ(x) = 1 means 100%

quality of the material, 0 means that the material is completely damaged at the
current point x ∈ Ω, and 0 < ζ(x) < 1 means that some portion of material is
already damaged due to, e.g., microcracks or microvoids.

The stored energy density ϕ(x, F, z) is then a function of deformation gradient
F = ∇u and the damage variable z:

ϕ(F, z) := ϕ0(F ) + zϕ1(F ).(1)

Dissipative mechanisms are routinely described by a (pseudo)potential of dissipa-
tive forces, here denoted by R, as a function of the rate of q = q(t). The only
dissipation of energy we consider is due to the damage and, on the microscopical
level, it is related with irreversible structural changes of the material starting with
microcracks and ending by its complete disintegration. We describe it by a single
phenomenological parameter d > 0 having the meaning of a specific energy (per
volume, i.e. in physical units Jm−3 =Pa) needed for complete damage of the unit
volume of the material, i.e. the energy needed to switch ζ(x) from 1 to 0.

The classical formulation of the quasi-static problem consists in the balance
of Piola-Kirchoff stress and the activated evolution of the damage parameter de-
scribed by a complementarity problem:

−div
(
ϕ′

0(∇u) + ζϕ′
1(∇u)

)
= 0,(2a)

∂ζ

∂t
≤ 0,(2b)

ζϕ1(∇u) − rζ ≤ d+ κ div
(
|∇ζ|r−2∇ζ

)
,(2c)

∂ζ

∂t

(
d− ζϕ1(∇u) + κ div

(
|∇ζ|r−2∇ζ

)
+ rζ

)
= 0(2d)

on the reference domain Ω, here κ > 0 is a so-called factor of influence of damage
and r > 3, and rζ ∈ ∂χ[0,+∞)(ζ) is an additional force balancing the natural
constraint ζ ≥ 0; the notation χ[0,+∞) stands for the indicator function of [0,+∞).

This system is completed by time-dependent hard-device loading, i.e. time-
dependent Dirichlet boundary conditions u|Γ = wD(t) are prescribed on some part
Γ of the boundary ∂Ω while zero normal stress is considered on the rest. Due to
the damage gradient term, some boundary conditions (here of Neumann’s type)
should be considered also for ζ.

The energetics involves the overall Gibbs’ stored energy

G(t, u, ζ): =





∫

Ω

ϕ
(
∇u(x), ζ(x)

)
+
κ

r
|∇ζ(x)|r dx if u|Γ =wD(t), ζ ≥ 0 a.e.,

+∞ otherwise,
(3)

and the dissipation rate

R(q̇) :=

∫

Ω

̺(ζ̇(x)
)
dx where ̺(ż) :=

{
−dż if ż ≤ 0,

+∞ otherwise,
(4)
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here q̇ = (ẏ; ζ̇) stands for the rate of q. The energetic solution q : [0, T ] → Q :=
W 1,p(Ω; R3)×L1(Ω) to (2) on a fixed time interval [0, T ] is required to satisfy the
stability condition

∀q̃ ∈ Q : G
(
t, q(t)

)
≤ G(t, q̃) +R

(
q̃ − q(t)

)
,(5)

for all 0 ≤ t ≤ T , and the energy equality

G(t, q(t)) + VarR(q; s, t) = G(s, q(s)) +

∫ t

s

P (θ, q(θ)) dθ(6)

with P (t, q) ≡ P (t, u, ζ) :=

∫

Ω

ϕ′
F

(
∇u(x), ζ(x)

)
:∇

∂u
D

∂t
(t, x) dx.

for any 0 ≤ s < t ≤ T where the total variation VarR(q; s, t) := sup
∑j

i=1R(q(ti)−
q(ti−1)) with the supremum taken over all j ∈ N and over all partitions of [s, t] in
the form s = t0 < t1 < ... < tj−1 < tj = t, and eventually q is required also to
satisfy a prescribed initial condition q(0) = 0.

Main assumptions are p-polynomial coercivity and growth both for ϕ0 and ϕ1

which are to be polyconvex, the p-growth for ϕ′
0 and ϕ′

1, and qualification of the
Dirichlet loading wD ∈ W 1,1(0, T ;W 1,∞(Ω; R3)). The coercivity of ϕ0 means that
only an incomplete damage is considered now.

Existence of an energetic solution q∈B([0, T ];W 1,p(Ω; R3))×(BV([0, T ];L1(Ω))
∩L∞(W 1,r(Ω))) with “B(·)” and “BV(·)”denoting the spaces of bounded and
bounded-variation functions, respectively, is proved by a convergence of approx-
imate solutions qτ with qτ |(τ(k−1),τk] = qk

τ solving the following recursive mini-
mization problem

{
Minimize G(tkτ , q) +R(q − qk−1

τ )

subject to q ≡ (u, ζ)∈Q;
(7)

existence of qk
τ is by the direct method. Of course, we put q0τ = q0 a given

initial condition. This suggests, after a further spatial discretization, a constructive
computational strategy.

A-priori estimates that can be obtained are the following:
∥∥uτ

∥∥
L∞(0,T ;W 1,p(Ω;R3))

≤ C1, and(8a)
∥∥ζτ
∥∥

BV([0,T ];L1(Ω))∩ L∞(0,T ;W 1,r(Ω))
≤ C2,(8b)

∥∥t 7→ Gτ (t, qτ (t))
∥∥

BV([0,T ])
≤ C3.(8c)

with Gτ defined like in (3) but with a piecewise constant approximation of wD.
Moreover, a discrete stability and two-sided energy estimate can be derived.

Convergence can then be shown by the methodology developed in [1, 2], i.e. se-
lecting a subsequence converging weakly* in the topologies indicated in (8) and,
by Banach-space-valued Helly’s selection principle, even pointwise in time for all
quantities under the BV-estimates in (8). Then a limit passage in the discrete
stability and two-sided energy estimate goes through, using various sophisticated
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techniques, e.g. Tikhonov’s (non-sequential) compactness of a product of a count-
able number of copies of a (weakly compact) ball in W 1,p(Ω; R3) or an approxi-
mation of Lebesgue integrals by Riemann’s sums.

The contribution is based on [3] where several generalizations are considered:
ζ may act nonlinearly in (1), beside the hard-loading device also a prescribed-
trajectory impact of an ideally rigid body is considered, and eventually some ideas
are outlined for a complete damage.
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Analysis of damage models

Gilles A. Francfort

Rate independence is a shared feature of many constitutive behaviors for solids,
from brittle fracture, to associated elasto-plasticity, damage or phase transforma-
tion. The material is assumed to be described by a free energy and a dissipation
potential. In the case of brittle damage, the free energy W (F, z) is a function
whose first entry is the gradient of the deformation u, a R

N -valued vector, and
whose second entry is an internal variable (in [0, 1]) that measures the state of
damage in the material, so that W ց with z. The dissipation potential D, associ-
ated to the rate of change of z, is chosen such that D(ż(t)) ≥ 0, D is convex with
D(0) = 0. This ensures the positivity of the mechanical dissipation. In all that
follows we take

D(s) =

{
ks, s ≥ 0

∞, else,

the last condition translating the irreversibility of the process.
Consider a domain Ω ∈ R

N , occupied by such a material, clamped throughout
its boundary, and submitted to, say, time dependent body loads f(t). If we assume
that inertia is negligible, then the material will follow a quasi-static evolution.
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Quasi-static evolution for a damaging material can then be schematically writ-
ten as follows: 




−divDFW (Du(t), z(t)) = f(t)

u(t) = U(x)(given) on ∂Ω

−DzW (Du(t), z(t)) ∈ ∂D(ż(t)) + ∂I[0,1](z(t))

z(0) = z0 (initial condition).

where I[0,1] denotes the indicatrix function of [0, 1].

Defining the potential energy at time t asE(t, v, ζ) :=

∫

Ω

W (Dv, ζ)dx−

∫

Ω

f.vdx

and the dissipation as D(ζ) := k
∫
Ω ζdx. one can show that this problem is equiv-

alent (modulo regularity) to the following variational evolution [1]

• (u(t), z(t)) satisfies a first order necessary condition of local (unilateral)
minimality for the functional

E(t, v, ζ) +D(ζ)

among all v = 0 on ∂Ω and 1 ≥ ζ ≥ z(t) (we do not specify the functional
dependence at this point);

• d
dt

(
E(t, u(t), z(t)) +D(z(t))

)
= −

∫
Ω
ḟ(t).u(t)dx.

The necessary optimality condition is difficult to manipulate, so that, here as
in many related works, it is replaced by a global minimality requirement. This
requirement acts as a (certainly often too drastic) selection principle among po-
tential evolution paths. As such the problem can be viewed as a time-indexed
sequence of constrained minimization problems.

We further simplify the evolution by assuming brutal partial damage, that is
that

• z(t) ≡ χ(t) ∈ {0, 1}, where χ(t) becomes the characteristic function of the
(unique) damaged state;

• W corresponds to a linearized model, i.e. W (e, χ) := 1/2(χAw + (1 −
χ)As)e.e where the symmetric entry e will only see the symmetrized gra-
dient of u and Aw ≤ As are elasticity tensors;

• Aw > 0 (the damage is not total).

The natural way to approach this problem is use a time-stepping method over
the interval of investigation [0, T ]. At the first time step t0, the problem becomes:
minimize, over (v, χ),

∫

Ω

[
1

2
(χAw + (1 − χ)As)e(v).e(v) + kχ

]
dx−

∫

Ω

f0.vdx

with f0 := f(0). It is straightforward to eliminate χ in the minimization process,
and we are thus left with the minimization over v of∫

Ω

W (t0, e(v)) dx−

∫

Ω

f0.vdx,
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where

W (t0, e) := min

{
1

2
Awe.e+ k,

1

2
Ase.e

}
.

strong energy density

weak energy density

k

– Original energy density at first time step –

But the energy density W (t0, ·) is not convex, and the infimum

I(t0) := inf
v

∫

Ω

W (t0, e(v)) dx−

∫

Ω

f0.vdx

is generically not attained. It is by now classical that

I(t0) = min
v

∫

Ω

QW (t0, e(v)) dx−

∫

Ω

f0.vdx

where QW (t0, ·) is the quasi-convex envelope of W (t0, ·). That quasiconvexifica-
tion process produces carefully tailored fine mixtures of the original two phases
throughout the domain (those mixtures vary from point to point).

From the standpoint of the evolution problem, this is a source of trouble be-
cause, in a nutshell, the optimal microstructure for the relaxation process at the
next time step will generically be mutually incompatible with that formed at the
previous step due to the irreversibility constraint which imposes monotonicity of
the associated characteristic function.

In [2], we propose a method which removes this obstacle and permits to pur-
sue the analysis beyond the first time step, thus reconciling the formation of mi-
crostructures (necessary for relaxation) with the irreversible character of their cre-
ation. We then obtain a well-posed time-continuous evolution process for brittle
damage in a linearly elastic material; the internal damage variable is the volume
fraction Θ(t) of the strong (undamaged) material, while the corresponding stiff-
ness A(t) is well-defined as a function of Θ(t) and of the solution u(t) (although
possibly non-unique). In doing so, we have in effect replaced a model of brutal
damage with a richer one of progressive damage.

Finally, we show that the obtained evolution is not too low in the sense that we
can exhibit, for any solution of the relaxed evolution, a sequence of non-relaxed

evolutions (associated to a sequence χn(t)
t

ր of characteristic functions of the
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damaged material) which have asymptotically (as nր ∞) the same volume frac-
tion of damaged material and same elastic stiffness A(t) as the relaxed evolution,
and this for almost all times. In particular, the associated energy sequence is
asymptotically that of the relaxed evolution.
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