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Introduction by the Organisers

The miniworkshop Heterotic strings, derived categories, and stacks, organised by
Björn Andreas (Berlin), Emanuel Scheidegger (Vienna) and Eric Sharpe (Utah)
was held November 13th–November 19th, 2005. This meeting was well attended
with 14 participants with broad geographic representation. This workshop was
a nice blend of researchers with various backgrounds in both mathematics and
physics.

The three topics represent areas of mathematics and physics with significant
technical overlap. Heterotic strings are types of string theories whose compacti-
fications involve complex Kähler manifolds with holomorphic vector bundles, and
most of the complications revolve around those vector bundles. Derived categories
(of coherent sheaves) have an obvious mathematical link with holomorphic vector
bundles, and appear physically in studies of D-brane/antibrane systems. Details
of the physical model in which derived categories enter physics are also closely
related to the details of the physical model in which stacks enter physics: in each
case, only a distinguished subclass of presentations can be realized physically, and
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the nonuniqueness of presentations in that subclass is conjectured to be washed
out by a physical process called renormalization group flow.

These topics also form elements of generalizations of a conjectured generaliza-
tion of “mirror symmetry.” Mirror symmetry is a symmetry exchanging pairs of
complex Kähler manifolds with trivial canonical bundle. It has been of interest to
algebraic geometers because it provides a new approach to enumerative geometry:
(usually difficult) curve-counting questions were mapped to comparatively trivial
questions about the mirror manifold. Mirror symmetry was originally developed
for spaces, but recently has been extended to stacks. One of the conjectured gener-
alizations of mirror symmetry, known as “(0,2) mirror symmetry,” exchanges pairs
consisting of complex Kähler manifolds with holomorphic vector bundles, and is
an analogue of ordinary mirror symmetry for heterotic strings. Another general-
ization, known as “homological mirror symmetry,” exchanges derived categories
of coherent sheaves on one of the mirrors with a derived Fukaya category of the
other. As the topics of this miniworkshop show up in these new areas of mirror
symmetry, this miniworkshop could have instead been titled “New developments
in mirror symmetry.”

Since understanding these topics involves an interplay between mathematics
and physics, for this miniworkshop we brought together a collection of both math-
ematicians and physicists.

B. Andreas, V. Braun, and E. Scheidegger spoke specifically on mathemati-
cal aspects of heterotic strings, and E. Sharpe gave an overview of a few current
problems in heterotic strings. A. Tomasiello spoke on mirror symmetry in flux
backgrounds, using ideas recently developed by Hitchin to extend mirror symme-
try for type II strings. (The same ideas can also, it is thought, be used to solve
certain technical problems in understanding heterotic strings in flux backgrounds,
as discussed in E. Sharpe’s talk.) D. Ploog spoke on general aspects of derived cat-
egories and Fourier-Mukai transforms, then U. Bruzzo and D. Hernandez Ruiperez
gave a collection of talks on Fourier-Mukai transforms, relevant to both derived
categories (encoding automorphisms thereof) and heterotic strings (encoding T-
dualities). E. Macri spoke on pi-stability, a physical aspect of derived categories.
K.-G. Schlesinger and C. Lazaroiu spoke on A∞ and L∞ algebras, as relevant to
open and closed string field theory, and which play a role in the physical under-
standing of derived categories. Finally, E. Sharpe and P. Horja gave a collection
of talks on physical aspects of stacks.
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Abstracts

Fourier-Mukai transforms and finite groups

David Ploog

The first part of this talk will recapitulate the use of derived categories and
Fourier-Mukai transforms in algebraic geometry. We put special emphasis on the
notion of D-equivalence: two smooth projective varieties X and Y are D-equivalent
if there is a triangulated equivalence Db(X) ∼= Db(Y ) of their bounded derived
categories. Note that by a result of Verdier (see [5]) the corresponding notion for
the abelian category of coherent sheaves is not interesting: we have Coh(X) ∼=
Coh(Y ) as abelian categories if and only if X ∼= Y .

In order to investigate D-equivalence, the derived analogue of classical corre-
spondences is used: to an object K ∈ Db(X × Y ) we associate the functor

FMK : Db(X)→ Db(Y ), F 7→ RpY ∗(P ⊗L p∗XF ).

FMK is called the Fourier-Mukai transform with kernel K. A theorem of Orlov
[10] states that every fully faithful functor (in particular, every equivalence) F :
Db(X)→ Db(Y ) is of Fourier-Mukai type, i.e. there is an object K ∈ Db(X × Y )
(unique up to isomorphism) such that F ∼= FMK . The following criterion is the
work of many people (cf. [5]) : suppose S ⊂ Db(X) is a spanning class, i.e. S⊥ :=

{F ∈ Db(X) : Hom i(s, F ) = 0∀s ∈ S, i ∈ Z} = 0 and ⊥S = 0, then

F is fully faithful ⇐⇒ F is fully faithful on S, i.e.

Hom i
Db(X)(s, s

′) ∼→ Hom i
Db(Y )(F (s), F (s′)) ∀s, s′ ∈ S

F is an equivalence ⇐⇒ additionally dim(X) = dim(Y ) and

F (s⊗ ωX) ∼= F (s)⊗ ωY ∀s ∈ S

Typical examples of spanning classes are S = {k(x) : x ∈ X} (the set of all
skyscraper sheaves) and S = {L⊗n : n ∈ Z} for an ample line bundle L on X .

As an application, this is enough to conclude that an abelian variety A and its
dual Â are always D-equivalent [9]: an appropriate kernel is given by the Poincaré

bundle P in view of FMP(k(α)) = P|{α}×A = α and Hom A(α, β) = 0 for α, β ∈ Â
with α 6∼= β.

Some wellknown and useful facts about Fourier-Mukai transforms are:

• Due to Grothendieck-Riemann-Roch, FM is compatible with passage to
cohomology [5]:

Db(X)
v

x
//

FMK

��

H∗(X, Q)

FM
H
K

��

Db(Y )
v

Y
// H∗(Y, Q)
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where vX(·) = ch(·)
√

tdX is the Mukai vector and FM
H
K is the corre-

spondence given by the class ch(K)
√

tdX×Y ∈ H∗(X × Y, Q). For ex-
ample, if A is a principally polarised abelian variety, then FMP is an
autoequivalence of Db(A) and FM

H
P =

(
0
1

−1
0

)
since FMP(k(0)) = OA and

FMP(OA) = k(0)[−1].
• Bondal and Orlov proved the following reconstruction theorem [1]: if X

and Y are smooth projective D-equivalent varieties, and if ωX is ample or
anti-ample, then X ∼= Y .
• Orlov has shown a derived analogoue of the Torelli theorem for K3 sur-

faces [10]: two K3 surfaces X and Y are D-equivalent if and only if their
transcendental lattices coincide.
• Two abelian varieties A and B are D-equivalent if and only if A×Â ∼= B×B̂

are symplectically isomorphic (Polichshuk [13], Orlov [11]).

There seems to be a connection between D-equivalence and birational equiv-
alence: Kawamata’s conjecture [6] states in particular, that birational smooth
projective varieties with trivial canonical class should be D-equivalent. Note that
the case of an abelian variety and its dual shows that the reverse implication can-
not hold. As evidenced by a simple blow-up, birational equivalence does in general
not induce D-equivalence. Bridgeland has proved the conjecture for Calabi-Yau
manifolds of dimension 3 [3]. Furthermore, the classification of birational isomor-
phisms of hyperkähler fourfolds implies the conjecture for this class of manifolds
as well.

A famous use of derived categories, which stimulated the current activity of
research quite a lot, is given by Kontsevich’s mirror symmetry conjecture [7].
Since this is not of primary interest in heterotic string compactifications, we men-
tion here another application: the derived McKay correspondence, as proved by
Bridgeland, King and Reid [2]. This can be used to compare the automorphism
group Aut (DG(X)) of equivariant equivalences with the group (Aut (Db(X)))G

of autoequivalences commuting with all g∗ [12]. Using this for the obvious per-
mutation action of Sn on Xn together with DSn(Xn) ∼= D(Sn-Hilb(Xn)) (BKR)
and Sn-Hilb(Xn) ∼= Hilbn(X) (Haiman [4]), we show the following proposition
[12]: D-equivalent K3 (or abelian) surfaces X1 and X2 have D-equivalent Hilbert
schemes of points, i.e. Db(Hilbn(X1)) ∼= Db(Hilbn(X2)). Furthermore, two bi-
rational Hilbert schemes H1, H2 of K3 surfaces X1, X2 must have isomorphic
transcendental lattices TH1

, TH2
. Since THi

= TXi
⊕Z, we deduce that TX1

∼= TX2

and hence Db(X1) ∼= Db(X2) by Orlov’s derived Torelli theorem. Using the above
proposition, H1 and H2 must be D-equivalent, thus giving further evidence for
Kawamata’s conjecture. Note that there are examples by Markman [8] of non-
birational Hilbert schemes with isomorphic transcendental lattices; these are still
D-equivalent using the same arguments.
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Aspects of heterotic string compactifications

Björn Andreas

A compactification of the ten-dimensional heterotic string is given by a holomor-
phic, stable G-bundle V (with G some Lie group specified below) over a Calabi-Yau
manifold X . The Calabi-Yau condition, the holomorphy and stability of V are a
direct consequence of the required supersymmetry in the uncompactified space-
time. We assume that the underlying ten-dimensional space M10 is decomposed
as M10 = M4 × X where M4 (the uncompactified space-time) denotes the four-
dimensional Minkowski space and X a six-dimensional compact space given by a
Calabi-Yau threefold. To be more precise: supersymmetry requires that the con-
nection A on V satisfies: F 2,0

A = F 0,2
A = 0, F 1,1 ∧J2 = 0 (J denotes a Kähler form

of X). It follows that the connection has to be a holomorphic connection on a holo-
morphic vector bundle and in addition to satisfy the Donaldson-Uhlenbeck-Yau
equation that has a unique solution if and only if the vector bundle is polystable.

In addition to X and V we have to specify a B-field on X of field strength
H . In order to get an anomaly free theory, the Lie group G is fixed to be either
E8 × E8 or Spin(32)/Z2 or one of their subgroups (the commutant of G in E8

corresponds to the unbroken gauge-group observed in four dimensions) and H has
to satisfy the identity dH = trR∧R−TrF ∧F where R and F are the associated
curvature forms of the spin connection on X and the gauge connection on V . Also
tr refers to the trace of the composite endomorphism of the tangent bundle to X
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and Tr denotes the trace in the adjoint representation of G. For any closed four-
dimensional submanifold X4 of the ten-dimensional space-time M10, the four form
trR ∧ R − TrF ∧ F must have trivial cohomology. Thus a necessary topological
condition V has to satisfy is ch2(TX) = ch2(V ).

A physical interpretation of the third Chern-class can be given as a result of
the decomposition of the ten-dimensional space-time into a four-dimensional flat
Minkowski space and X . The decomposition of the corresponding ten-dimensional
Dirac operator with values in V shows that massless four-dimensional fermions are
in one to one correspondence with zero modes of the Dirac operator DV on X .
The index of DV can be effectively computed using the Hirzebruch-Riemann-Roch
theorem and is given by

index(DV ) =

∫

X

Td(X)ch(V ) =
1

2

∫

X

c3(V ) ,

equivalently, we can write the index as index(D) =
∑3

i=0(−1)k dimHk(X, V ).
For stable vector bundles we have H0(X, V ) = H3(X, V ) = 0 and so the index
computes the net-number of fermion generations Ngen in the respective model.

Now it has been observed that the inclusion of background five-branes changes
the anomaly constraint . Various five-brane solutions of the heterotic string
equations of motion have been discussed in: the gauge five-brane, the symmet-
ric five-brane and the neutral five-brane. It has been shown that the gauge
and symmetric five-brane solution involve finite size instantons of an unbroken
non-Abelian gauge group. In contrast, the neutral five-branes can be interpreted
as zero size instantons of the SO(32) heterotic string. The magnetic five-brane
contributes a source term to the Bianchi identity for the three-form H , dH =

trR ∧ R − TrF ∧ F + n5

∑
five−branes δ

(4)
5 and integration over a four-cycle in X

gives the anomaly constraint ch2(TX)− ch2(V ) + [W ] = 0 . The new term δ
(4)
5 is

a current that integrates to one in the direction transverse to a single five-brane
whose class is denoted by [W ]. The class [W ] is the Poincaré dual of an integer
sum of all these sources and thus [W ] should be a integral class, representing a
class in H2(X, Z). [W ] can be further specified taking into account that super-
symmetry requires that five-branes are wrapped on holomorphic curves thus [W ]
must correspond to the homology class of holomorphic curves. This fact constrains
[W ] to be an algebraic class. Further, algebraic classes include negative classes,
however, these lead to negative magnetic charges, which are un-physical, and so
they have to be excluded. This constrains [W ] to be an effective class. Thus for a
given Calabi-Yau threefold X the effectivity of [W ] constrains the choice of vector
bundles V .

Example 1: Let V = TX be the tangent bundle of X . Now, as X has SU(3)
holonomy it follows that the unbroken gauge-group in four dimensions is E6 ×E8

(here the second E8 is often referred to as the “hidden sector”. One problem of
string compactifications based on TX is that they yield a rather large number of
generations (for instance for X being given by the quintic hypersurface in P4, the
index computation gives −100 generations).
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Example 2: Three approaches to construct holomorphic vector bundles, with
structure group the complexification GC of a compact Lie group G, on elliptically
fibered Calabi-Yau threefolds have been introduced in [1]. The parabolic bundle
approach applies for any simple G. One considers deformations of certain mini-
mally unstable G-bundles corresponding to special maximal parabolic subgroups
of G. The spectral cover approach (or relative Fourier-Mukai transform) applies for
SU(n) and Sp(n) bundles and can be essentially understood as a relative Fourier-
Mukai transformation. The case of U(n) bundles has been analyzed in [2]. To
illustrate the idea, let V → X be a holomorphic vector bundle of rank n which is
semistable and of degree zero on each fibre f of X → B, then its Fourier-Mukai
transform FM1(V ) is a torsion sheaf of pure dimension two on X . The support
of FM1(V ) is a surface i : C →֒ X which is finite of degree n over B. Moreover,
FM1(V ) is of rank one on C and if C is smooth, then FM1(V ) = i∗L is just
the extension by zero of some line bundle L ∈ Pic(C). Conversely given a sheaf
G → X of pure dimension two which is flat over B, then FM(G) is a vector bundle
on X of rank equal to the degree of supp(G) over B. This correspondence between
vector bundles on X and sheaves on X supported on finite covers of B is known
as the spectral cover construction. The torsion sheaf G is called the spectral sheaf
(or line bundle) and the surface C = supp(G) is then called the spectral cover.
The third approach is called del Pezzo surface approach and applies for E6, E7

and E8 bundles and uses the relation between subgroups of G and singularities of
del Pezzo surfaces.
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Some open problems in perturbative heterotic string theory

Eric Sharpe

In this talk I outlined several problems or challenges in better understanding per-
turbative heterotic string compactifications.

(1) (0,2) mirror symmetry. One such challenge involves understanding (0,2)
mirror symmetry. This is a conjectured generalization of ordinary mirror symme-
try, in which instead of exchanging pairs of Calabi-Yau’s, one instead exchanges
pairs of Calabi-Yau’s with holomorphic vector bundles. Ordinary mirror symmetry
exchanges Hodge numbers of the Calabi-Yau’s; (0,2) mirror symmetry exchanges
sheaf cohomology. For example, if X1 and X2 are an ordinary mirror pair of
Calabi-Yau threefolds, then h1,1(X1) = h2,1(X2). If (X1, E1), (X2, E2) are a (0,2)
mirror pair, then h1(X1, E1) = h1(X2, E2). At the level of moduli, ordinary mirror
symmetry exchanges complex and Kähler moduli, whereas (0,2) mirror symmetry
mixes complex, Kähler, and bundle moduli.
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In the special case that each Ei ∼= TXi, (0,2) mirror symmetry should reduce
to ordinary mirror symmetry.

Unfortunately relatively little is known about (0,2) mirror symmetry. Analogues
of Greene-Plesser constructions have been worked out [1], numerical calculations
of sheaf cohomology groups in large numbers of examples have been performed to
check whether it is at least plausible [2], and more recently Hori-Vafa-Morrison-
Plesser-type techniques [3, 4] have been applied to (0,2) mirrors [5]; more recently,
heterotic analogues of the A and B model topological field theories (“holomorphic
field theories,” in a sense) have been studied [6] in order to work out the heterotic
analogue of curve-counting. However, that does not actually amount to a lot – for
example, there is currently no known general procedure for constructing heterotic
(0,2) mirrors, unlike ordinary mirror symmetry, not even a meaningful conjecture.

In the special case of elliptically-fibered K3 surfaces, one might wonder whether
(0,2) mirror symmetry could be expressed as some sort of Fourier-Mukai transform.
After this talk was given, David Ploog studied this matter for the special case that
the complex structures on the mirror K3’s can be rotated into one another; his
answer is presented in the appendix.

(2) Gauge bundles with other structure groups. Historically only het-
erotic string compactifications in which the gauge bundle has structure group
(S)U(n) have been considered. However, in principal, any principal G-bundle to-
gether with an embedding G→ E8 could also be considered in an E8 ×E8 string.
In general terms, the resulting worldsheet structure would be very interesting. Re-
call that the E8 is built on the worldsheet from left-movers in NS and R sectors;
more mathematically, the left-moving fermions couple to a Spin(16) bundle, and
the GSO projection on each E8 realizes a projection Spin(16)→ Spin(16)/Z2. The
group Spin(16)/Z2 naturally sits inside E8 (whereas by contrast neither Spin(16)
nor SO(16) do the same).

Put another way, if we start with some principal G-bundle on spacetime to-
gether with an embedding of G into E8, then to realize that on the worldsheet,
we must first reduce the resulting E8 bundle to a Spin(16)/Z2 bundle, then lift
that Spin(16)/Z2 bundle to a Spin(16) bundle, and it is that resulting Spin(16)
bundle to which the left-moving fermions couple. (When this can be done – there
are obstructions. For reducing E8 bundles to Spin(16)/Z2 bundles, there is an
obstruction in degree 10, i.e. on 10-manifolds, but not on lower-dimensional man-
ifolds [7]. Curiously, that same obstruction has appeared previously in the physics
literature in [8], for completely different reasons. There is also an analogue of a
Stiefel-Whitney class describing obstructions to lifting Spin)(16)/Z2 bundles to
Spin(16) bundles.)

For SU(n) bundles, as have been historically considered, this process is all very
trivial, partly because the embedding SU(n)→ SO(2n) factors through Spin(2n).
As a result, for SU(n) bundles, one can identify the gauge bundle on spacetime
with the bundle to which the left-moving fermions couple. More generally, however,
one expects that those bundles will be different, and this story does not seem to
have been explored.
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(3) Sheaves and derived categories. In the paper [9] a few examples
of (0,2) GLSM’s describing non-locally-free (but torsion-free) sheaves on Calabi-
Yau’s. Their models were well-behaved and nonsingular, which begs the question,
under what circumstances can locally-free sheaves be replaced with more gen-
eral sheaves? These likely will occupy boundary components in a moduli space
of heterotic conformal field theories, but it would be desirable to understand the
structure of those boundary components, the rules for which sheaves are physically
relevant to heterotic strings.

Another question one might ask, in the same vein, is whether derived cate-
gories are relevant for heterotic strings. Heterotic T-duality can sometimes be
understood in terms of Fourier-Mukai transforms, which most naturally act on
derived categories. However, unlike type II strings, where there is now a consis-
tent picture of how derived categories enter physics (see e.g. [10]), it is not at all
obvious at present how they could enter into the physics of heterotic strings.

(4) Non-Kähler compactifications and H flux. So far I have listed sev-
eral challenges in understanding traditional heterotic compactifications on Calabi-
Yau’s, in which the H flux vanishes to zeroth order in α′. If one turns one H flux
at leading order, then one works with complex non-Kähler manifolds with trivial
canonical bundle [11].

One of the first questions one can ask is, under what circumstances are these
theories well-defined. There is a no-go result that says the conditions for space-
time supersymmetry are incompatible with having a trivialization of the canonical
bundle and a closed three-form H . One can evade these restrictions in a heterotic
string by working away from large radius, with a gauge bundle distinct from the
tangent bundle, then the anomaly cancellation condition says dH 6= 0. (Of course,
there might still be a stronger version of the no-go theorem that applies in greater
generality.) What happens on the worldsheet is more mysterious. Worldsheet su-
persymmetry is a weaker condition than spacetime supersymmetry; perhaps one
has consistent worldsheet theories but only spacetime supersymmetry for certain
fixed values of the Kähler moduli. Another option, suggested by experience with
WZW models, is that the theories are nonunitary for most Kähler moduli, and
hence not usually well-defined.

Assuming that the worldsheet theory is well-defined, one can ask what the
massless spectrum should be. In heterotic compactifications with H 6= 0 at leading
order, the BRST operator acts like ∂, and the massless spectrum is given by
sheaf cohomology. Naively, if I make H nonzero, the BRST operator is deformed
to something of the form ∂ + H∧, which only appears to have a Z2 grading.
Worldsheet chiral primary fields should be (bi)integrally graded, however. This
problem has been considered in the context of type II string worldsheets (formally,
ignoring the no-go results mentioned above), and there it was discovered that an
alternate (“Clifford”) grading [12] yielded cohomology of the BRST operator that
was integrally-graded, as should be the case physically. Presumably there is an
extension to the heterotic case, though this is not yet understood by the author.
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Appendix A. By D. Ploog

E. Sharpe posed the question whether there is a functorial way to map vec-
tor bundles V 7→ ϕ(V ) on a (elliptic) K3 surface, fixing ranks and such that
H1(X, V ) ∼= H1(X, ϕ(V )∨). (More generally (0,2) mirror symmetry need not
map the K3’s in such a way that their complex structures can be related via hy-
perKähler transform, but, only the special case in which that assumption is made
is analysed here.) An obvious answer would be ϕ(V ) = V ∨. However, this is
contravariant. If we look for covariant mappings (i.e. Fourier-Mukai transforms)
which are involutive, chances are slim: an equivalence FMK : Db(X) ∼= Db(X)

yields a Hodge isometry FM
H
K : H∗(X) ∼= H∗(X). By assumption we know that

FM
H
K =




1 0 0
0 A 0
0 0 1




where A : H2(X) ∼= H2(X) is an isometry of the second cohomology. Now by the
involutive property of ϕ all eigenvalues of A are 1 or −1. On general K3 surfaces,
only the obvious matrices




1 0 0
0 id 0
0 0 1


 ι :=




1 0 0
0 −id 0
0 0 1




are isometries. Excluding the identity, ι seems to deserve special attention. It has
occured to several people, that the image of the group homomorphism
Aut(Db(X)) → Aut(H̃(X)) (the latter denoting the group of all integral Hodge
isometries of H∗(X)) has index at most 2, see [15], [17], [18]. While it is not known
at present whether ι actually is in the image, popular belief indicates that it is
not.

Evidence for this is given by rephrasing the question in terms of orientation,
where ι generates the subgroup of orientation reversing isometries (see [16], and [14]
for a related effect on the real 4-fold underlying K3 surfaces). Coming from another
angle, Bridgeland has used stability conditions on Db(X) to put the conjecture in
a natural setting [13].
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A heterotic standard model

Volker Braun

For many years physicists have been trying to understand how string theory can
give rise to realistic low-energy physics. While string theory itself is basically
unique, there is a wide range of possible compactifications, which almost always
yield vastly different 4-dimensional physics than our universe. Recently, we have
discovered [1, 2, 3] a compactification of the E8 × E8 heterotic string with 3
generations of quarks and leptons, 0 anti-generations, and no color triplets. The
only difference of our matter spectrum to the minimal supersymmetric Standard
Model (MSSM) is the existence of a second pair of Higgs–Higgs conjugate particles.

Since then, we managed to refine our construction and found a model that yields
the precise MSSM matter content (that is, with a single Higgs–Higgs conjugate
pair). There are no anti-generations or vector-like pairs. Moreover, Yukawa cou-
plings are allowed by the elliptic fibrations, in contrast to our previous model [4].
Finally, there are 3 complex structure moduli, 3 Kähler moduli, and 13 vector
bundle moduli.

A nice way to embed the Standard Model gauge group with an additional
U(1)B−L into the E8 of the heterotic string is by first picking a maximal regular
SU(4)× Spin(10) subgroup, and second a Z3 × Z3 subgroup inside the Spin(10).
If one turns on the corresponding SU(4) instanton and Z3 × Z3 Wilson line, then
the effect is to break the gauge group to the commutant of SU(4)×Z3×Z3 inside
E8, which is precisely

(1) SU(3)C × SU(2)L × U(1)Y × U(1)B−L.

Moreover, the matter content of the Standard Model fits nicely into the fermions of
the heterotic string, which transform in the 248 of E8. Viewed as SU(4)×Spin(10)
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representation, it branches as

(2) 248→
(
1,45

)
⊕
(
15,1

)
⊕
(
4,16

)
⊕
(
4̄, 1̄6

)
⊕
(
6,10

)
.

The first two summands are Spin(10) gauginos and vector bundle moduli, and
the last three are matter fields. The latter three representations of Spin(10) split
further under the Z3 × Z3 Wilson line as

16 =χ1χ
2
2

(
3,2, 1, 1

)
⊕ χ2

2

(
1,1, 6, 3

)
⊕ χ2

1χ
2
2

(
3̄,1,−4,−1

)
⊕ χ2

1

(
3̄,1, 2,−1

)
⊕

⊕
(
1, 2̄,−3,−3

)
⊕ χ2

(
1,1, 0, 3

)
,

10 =χ2

(
1,2, 3, 0

)
⊕ χ1χ2

(
3,1,−2,−2

)
⊕ χ2

2

(
1, 2̄,−3, 0

)
⊕ χ2

1χ
2
2

(
3̄,1, 2, 2

)
,

(3)

where χ1, χ2 are the two basic characters of Z3 × Z3. While every summand in
the decomposition of the 16 corresponds to one of the quarks and leptons that
actually occur in nature, the decomposition of the 10 yields Higgs fields and color
triplets. The latter simply do not exist. The need to project them out while
retaining Higgs fields is known as the doublet-triplet splitting problem.

These group theory considerations suggest the following. First, recall that to
specify a geometric compactification of heterotic string theory one has to specify
a Calabi-Yau threefold together with a stable, holomorphic vector bundle on it.
Since we require Z3 × Z3 Wilson lines, we need a Calabi-Yau manifold with

(4) π1

(
X
)

= Z3 × Z3.

We constructed [6] such a manifold using a fiber product X̃ = B1 ×P1 B2 of two
dP9 surfaces B1 and B2. For special dP9 surfaces, the fiber product allows for a
free Z3 × Z3 group action. The quotient

(5) X = X̃
/
(Z3 × Z3)

is then the requisite Calabi-Yau manifold. Furthermore, we found an equivariant1

vector bundle Ṽ on X̃ with cohomology groups

Hi
(
X̃, Ṽ

)
=





0 i = 3
0 i = 2

3R[Z3 × Z3] i = 1
0 i = 0

,

Hi
(
X̃,∧2Ṽ

)
=






0 i = 3
χ2 ⊕ χ2

2 ⊕ χ1χ
2
2 ⊕ χ2

1χ2 i = 2
χ2 ⊕ χ2

2 ⊕ χ1χ
2
2 ⊕ χ2

1χ2 i = 1
0 i = 0

.

(6)

The low-energy spectrum of heterotic string theory compactified on
(
X̃, Ṽ

)
is

determined by the invariant cohomology after tensoring with the extra character
coming from the Wilson line.

1The category of vector bundles on X is identical to the category of equivariant vector bundles

on eX. For technical reasons we work in the latter context.
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This solve the doublet-triplet splitting problem as follows. The relevant dimen-
sions are

# of Higgs = dimC

[
χ1

2H
1
(
X̃,∧2Ṽ

)]Z3×Z3

= 1

# of triplets = dimC

[
χ2

1χ
2
2H

1
(
X̃,∧2Ṽ

)]Z3×Z3

= 0.

(7)

and the same for the conjugate Higgs and conjugate color triplets. Hence, there
is precisely one Higgs–Higgs conjugate pair, and zero color triplets. Furthermore,

H1
(
X̃, Ṽ

)
is three times the sum of all Z3 × Z3 representations, yielding three

whole families of quarks and leptons. Finally, H1
(
X̃, Ṽ ∨

)
= 0 tells us that there

are no anti-generations.
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Fourier-Mukai transforms on singular varieties

Daniel Hernández Ruipérez

(joint work with A.C. López Mart́ın, F. Sancho de Salas)

In the last years derived categories and their equivalences have been of great im-
portant in physics and in birational geometry. On the one hand, they have been
used in string theory because homological mirror symmetry predicted that objects
in the derived category of a Calabi-Yau threefold can be taught as D-branes of
B-type and equivalences of derived categories (which are integral functors in the
smooth case by Orlov reconstruction theorem [15]) should mirror monodromies on
the special Lagrangian side. Participants of this mini-workshop have contributed
to give evidences of this conjecture [2, 9], recent surveys of the subject are [1, 3].
On the other side, there are many results supporting the belief that derived cate-
gories are important invariants of algebraic varieties and that both them and their
equivalences are most suitable in birational geometry, particularly the minimal
program model in higher dimensions. One can mention a result due to Bondal
and Orlov [5] which says that if X is a smooth projective variety whose canonical
divisor is either ample or anti-ample (X is of general type or Fano), then X can
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be reconstructed out of its derived category. It is known however that there ex-
ist non-isomorphic (even non-birational) smooth varieties with equivalent derived
categories, they are called Mukai partners, and examples for abelian varieties and
K3 surfaces were provided by Mukai [14] and Orlov [15]. After them, the study of
Mukai partners has been contemplated by many people [7] [10]. Kawamata [10]
proved that if X and Y are smooth projective varieties with equivalent derived
categories and X is of general type, then X and Y are K-equivalent, i.e., there
exist birational morphisms f : Z → X , g : Z → Y such that f∗KX ∼ g∗KY . Other
important contributions are owed to Bridgeland [6], who proved that two crepant
resolutions of a projective threefold with terminal singularities have equivalent de-
rived categories; therefore, two birational Calabi-Yau threefolds have equivalent
derived categories. This has been conjectured to hold true in higher dimensions
by Kawamata.

However, very little attention has been paid so far to singular varieties in the
Fourier-Mukai literature, probably because the fundamental results about integral
functors do not easily generalise to the singular situation. We would like to mention
two of the most important.

One is the aforementioned Orlov’s reconstruction theorem which has been gen-
eralised by Kawamata [12] to the smooth stack associated to a normal projective
variety with only quotient singularities; therefore D-equivalence also implies K-
equivalence for those varieties. Bridgeland result about flopping contractions [6]
has been generalised by to quasi-projective varieties with only Gorenstein ter-
minal singularities by Van de Bergh [16] and Chen [8]. Finally, Kawamata [11]
has obtained analogous results for some Q-Gorenstein threefolds using algebraic
stacks.

Other is Bondal and Orlov’s characterisation of those integral functors between
the derived categories of two smooth varieties that are fully faithful [4]. We present
here a generalisation to projective Gorenstein singularities of any kind [13]. The
precise statement is this:

Theorem Let X and Y be projective Gorenstein schemes over an algebraically
closed field of characteristic zero, and let K• be an object in Db(X × Y ) of finite
projective dimension over X and over Y . Assume also that X is integral. Then
the integral functor ΦK•

: Db(X)→ Db(Y ) is fully faithful if and only if the kernel
K• is strongly simple over X.

It is important to notice that we first had to adapt to the singular case the usual
definition of strong simplicity. The role played in the definition by the structure
sheaves Ox of the points is now played by the structure sheaves of the zero-cycles
of finite homological dimension supported on points (if x is a singular point Ox has
not finite homological dimension) and this implies a lot of technical complications.
Bridgeland’s criterion that characterizes when a fully faithful integral functor is an
equivalence is also valid in the Gorenstein case. Moreover, since for a Gorenstein
variety one has a more natural spanning class given by the structure sheaves of
zero cycles of finite homological dimension supported on points, one also proves
the following alternative result.
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Theorem Let X, Y and K• be as in the previous theorem with Y connected. A
fully faithful integral functor ΦK•

: Db(X)→ Db(Y ) is an equivalence of categories
if and only if for every point x ∈ X there exists a zero cycle Zx of finite homological
dimension supported on x such that ΦK•

(OZx
) ≃ ΦK•

(OZx
)⊗ ωY .

We can the extend to the Gorenstein case some geometric consequences of the
existence of Fourier-Mukai functors which are analogous to certain well-known
properties of smooth schemes.

We also prove a new result that characterises when a relative integral functor is
fully faithful or an equivalence, and generalises [8, Prop. 6.2]. This result, together
with the characterisation of Fourier-Mukai functors in the absolute Gorenstein case
gives a criterion to ascertain when a relative integral functor between the derived
categories of the total spaces of two Gorenstein fibrations is an equivalence. We
expect that this theorem could be applied to very general situations. As a first
application we give here a very simple and short proof of the (known) invertibility
result for elliptic fibrations:

Theorem Let S be an algebraic scheme over an algebraically closed field of
characteristic zero, X → S an elliptic fibration with integral fibres and a section,
X̂ → S the dual fibration and P the relative Poincaré sheaf on X ×S X̂. The
relative integral functor

ΦP : Db(X)→ Db(X̂

is an equivalence of categories.
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String compactifications on stacks

Eric Sharpe

(joint work with T. Pantev)

In this talk I outlined some recent work on understanding string compactifica-
tions on stacks. Stacks have much of the basic structure that one ordinarily needs
to make sense of string compactifications, e.g. metrics, spinors, etc. So, can one
make sense of strings propagating on stacks? On all stacks, or only some? Are
there new conformal field theories?

The basic idea described in [1, 2] is that every1 (smooth Deligne-Mumford) stack
has a presentation of the form [X/G] for G some group, not necessarily finite, and
not necessarily effectively-acting. To such a presentation, one can associate a “G-
gauged sigma model on X ,” which is the technical physical description of a physical
theory describing a string propagating G-equivariantly on X . Unfortunately, such
presentations are not unique, and the physical theories one associates to different
presentations of the same stack can be very different. For example, [C2/Z2] (where
the Z2 acts by flipping signs of coordinates, leaving the origin as a fixed point) is
the same stack as [X/C×], where

X =
C2 ×C×

Z2

In X , the Z2 acts on the C2 as in [C2/Z2], and simultaneously on the C× as
a rotation, so that the action on the product is free. If we follow the procedure
above, then to [C2/Z2] we associate a Z2 gauged sigma model on C2, i.e. a Z2

string orbifold, which turns out to be a special kind of quantum field theory which
possesses a conformal invariance property. To the presentation [X/C×], on the
other hand, we associate a U(1)-gauged2 nonlinear sigma model on X . This theory
is not conformally invariant, unlike the physical theory we associated to [C2/Z2].

On the face of it, we have a contradiction: different presentations of the same
stack define different physical theories, so our assignment of physical theories to
stacks does not seem to be well-defined. However, there is a workaround, involving

1There are some pathological exceptions to this rule. By ‘every’, we really mean, every stack

that is likely to be relevant for physics.
2In a supersymmetric theory, gauging a reductive algebraic group is realized by gauging a

compact Lie group; the noncompact directions in the group are taken care of by “D-terms,”
which break conformal invariance classically.
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a physical process called “renormalization group flow.” Given one physical theory,
the renormalization group (actually a semigroup) constructs other theories.

In particular, we conjecture that after applying the renormalization group, the
different physical theories associated to different presentations of a single stack,
all evolve to the same physical theory. Unfortunately, there is no known way to
directly verify such a claim; no one knows how to explicitly follow renormalization
group flow in nontrivial examples.

This general setup is closely analogous to the manner in which derived cate-
gories enter physics (see e.g. [3]). Given a single isomorphism class of objects
in a derived category, there will be many presentations, but only some of those
presentations can be associated to physical D-brane/antibrane systems (just as
for stacks, it is only known how to associate presentations of the form [X/G] to
physics). However, the class of physically-realizable presentations is sufficiently
broad that every isomorphism class of objects has a physically-realizable presenta-
tion. For derived categories, physically-realizable presentations include complexes
of locally-free sheaves, and every bounded complex of coherent sheaves is quasi-
isomorphic to at least one complex of locally-free sheaves. (Similarly, in stacks,
(almost) every stack admits at least one presentation of the form [X/G].) How-
ever, physically-realizable presentations are not unique, and the different physical
theories one gets are very different. One conjectures that under renormalization
group flow, that potential presentation-dependence washes away, but as it is im-
possible to explicitly follow renormalization group flow, one must perform indirect
tests, preferably as many as possible.

In the case of stacks, unfortunately, the obvious indirect tests tend to fail, which
makes one worry that perhaps the renormalization group does not respect stacks,
and sends different presentations of the same stack to different theories. One of the
first things to check is whether the mathematical deformations of a stack match
the physical deformations of the corresponding theory. For strings on spaces, these
match, so one would expect a matching for stacks also. Unfortunately, they do not
match, even in very simple cases. For example, the stack [C2/Z2] is rigid, whereas
the corresponding physical theory admits deformations.

How should such a result be interpreted? Perhaps there is an alternate notion
of deformation theory for stacks, in which a matching is restored, or perhaps
physics depends upon the choice of presentation and the conjectured behavior of
the renormalization group is wrong, in which case stacks are simply not a useful
concept for physics. Understanding this problem, in one form or another, has been
one of the driving forces for several years now behind our efforts to understand
whether the notion of strings on stacks can be made consistent.

Other problems arise elsewhere, for example in massless spectra. The math-
ematically natural manner to define a cohomology theory of stacks is in terms
of the associated inertia stack. Physically, that would mean that the massless
spectrum of a theory on a stack should be calculated by cohomology of the inertia
stack. However, in the physics community, the only cases in which massless spectra
have previously been calculated are for global quotients by finite effectively-acting
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groups. For global quotients by finite noneffectively-acting groups, the calculation
is doable but subtle and was not thought through in the physics community prior
to [1, 2]. For global quotients by nonfinite groups, as appear in e.g. the alternate
presentation of [C2/Z2], there is no known explicit calculation of the massless
spectrum, and moreover, because the theories are not conformally invariant, one
can argue that an explicit calculation may be impossible.

In particular, we have a physics prediction: if the massless spectrum of a string
on a stack is given by a cohomology of the inertia stack, then we have implicitly
made a prediction for massless spectra of gauged sigma models in cases where no
physical calculation existed previously.

On the other hand, this is another place where the general procedure described
above could fail, and indeed that is what seems to happen. For gerbes, i.e. gaug-
ings by noneffectively-acting groups, the massless spectrum predicted by the in-
ertia stack contains multiple dimension zero operators, a violation of “cluster de-
composition,” one of the fundamental axioms upon which quantum field theory is
based. Perhaps the notion of strings on stacks is flawed, or perhaps strings can
only be sensibly compactified on some stacks, but not others.

These issues formed the basis for the work in [1, 2], and we now believe we
understand how these issues are resolved. For example, for banded abelian G-
gerbes, we believe that a string propagating on the gerbe is indistinguishable
from a string propagating on copies of the underlying space, together with flat
B fields. In particular, for strings propagating on disconnected target spaces,
cluster decomposition also breaks, but in the mildest possible way, so that the
physical theory is still well-defined. (This is very nearly the only mechanism by
which violating cluster decomposition is acceptable, however.) Mathematically,
this makes a prediction for Gromov-Witten invariants of gerbes, namely that they
are computable in terms of Gromov-Witten invariants of the underlying space.

Understanding physically how and when it is consistent to compactify strings
on stacks also gives rise to physical calculations of quantum cohomology rings,
through one-loop effective actions and other gauge-theoretic methods, as well as
through Toda duals.

Much of [1, 2] is also devoted to understanding mirror symmetry for stacks. The
mirrors turn out to possess some slightly exotic features – for example, Landau-
Ginzburg-point mirrors to stacks often feature discrete-valued physical fields, a
characteristic which plays an important role in understanding how to generalize
Batyrev’s old prescription for mirrors of hypersurfaces in toric varieties, to toric
stacks. As an easy special case, consider Toda duals. The Toda dual (a Landau-
Ginzburg) model to a projective space PN−1 is described by a “superpotential”

W = exp(−Y1) + · · · + exp(−YN−1) + exp(Y1 + · · · + YN−1)

The Toda dual to a Zk gerbe over PN−1 with characteristic class −n mod k is
given by

W = exp(−Y1) + · · · + exp(−YN−1) + Υn exp(Y1 + · · · + YN−1)



Heterotic Strings, Derived Categories, and Stacks 3039

where Υ is a discrete-valued field, taking values in kth roots of unity. Mirror
symmetry has taken the noneffective gauging, which appears physically through
nonperturbative effects, and turned those nonperturbative effects into a purely
perturbative phenomenon, namely a discrete-valued field.
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Mirror symmetry and generalized complex geometry

Alessandro Tomasiello

(joint work with W.–y. Chuang, S. Fidanza, M. Graña, S. Kachru, R. Minasian,
M. Petrini)

Mirror symmetry is a stunning phenomenon arising in string theory compactifi-
cations on Calabi–Yau manifolds. In this talk I want to propose evidence that it
might also hold in a more general context. It will consists of three parts, loosely
based respectively on [1, 2, 3].

The simplest such a generalization, the one we will consider for most of the talk,
consists of pairs of a complex manifold and a symplectic manifold. This was first
suggested years ago in [4]. In the last part of this talk I will indeed show mirror
pairs of string theory vacua of this type. (These examples are not yet enough by
themselves to prove a general phenomenon, and for this reason we will present
different evidence in the first two parts.) In a looser sense, this mirror symmetry
might also be valid more generally for manifolds whose direct sum of the tangent
and cotangent bundle, T ⊕T ∗, admits a reduction to SU(3)×SU(3) (this condition
is also necessary, but not sufficient, for the existence of N = 1 vacua, as we will
see below). This is clearly only a topological condition; clearly such manifolds will
not in general be vacua, and hence they can constitute mirror pairs only in the
sense that they give rise to equal four–dimensional effective theories.

1. The first piece of evidence comes from the classification of N = 1 vacua of
type II supergravity [1]. By vacua we mean solutions of the form Minkowski3,1 (or
AdS3,1) × a six dimensional manifold M6. We allow a priori all the supergravity
fields: φ (the dilaton), H (the curvature of the B–field) and Fk (the RR curvatures;
k is even for the IIA theory, and odd for the IIB theory), besides of course the
metric g.

There are two types of conditions that the manifold and the fields on it have to
satisfy: algebraic and differential. The algebraic conditions are topological, and
say that M6 needs to have an SU(3)×SU(3) reduction on T⊕T ∗. This is equivalent
to the existence of a pair (Φ+, Φ−) ∈ ΛevenT ∗, ΛoddT ∗ with special properties: i)
each Φ has to be a pure spinor when viewed as a spinor for the Clifford algebra
built on T ⊕ T ∗; ii) Φ± have to satisfy a certain compatibility condition.
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It can be shown that such a pair (Φ+, Φ−) determines a metric g. The second
set of conditions, the differential one, is actually expressed more conveniently in
terms of this pair, rather than in terms of g. Schematically, the conditions read
(d+H∧)Φ+ = 0, (d+H∧)Φ− = F for IIA, and (d+H∧)Φ+ = F , (d+H∧)Φ− = 0
for IIB. Here F is a formal sum of all Fk, that hence ∈ ΛevenT ∗ for IIA, and
∈ ΛoddT ∗ for IIB.

One sees that the equations are symmetric under an exchange Φ+ ↔ Φ−. This
feature was far from obvious from the formulation of the IIA and IIB theories, and
it already seems to suggest a mirror pairing. The conditions can be interpreted in
terms of the generalized complex geometry of Hitchin [5]; for example, they imply
that the manifold is, in his notation, generalized Calabi–Yau. One important
particular case is when the SU(3)×SU(3) structure on T ⊕ T ∗ comes from an
SU(3) structure on T . In that case, the two pure spinors have the form Φ+ = eiJ ,
Φ− = Ω. It follows that supersymmetric vacua are symplectic in IIA, and complex
in IIB.

2. We can also forget temporarily about the condition that M6 support a
supersymmetric vacuum, and ask how T–duality acts (when it makes sense to
apply it), in a SYZ–like approach, on the Φ’s; even more importantly, on their
exterior derivatives dΦ±. So far, to classify the differential type of a manifold of
SU(3) structure, the exterior derivatives dΩ and dJ have been used, appropriately
decomposed in SU(3) representations. For example, one function one gets this way
is ΩxdJ . Collectively, such quantities are known as intrinsic torsion.

The original computations are performed in [2]; it turns out that they can be
cast in a neater form using again generalized complex geometry. One can define a
new set of intrinsic torsions, which transform under three T–dualities with some
simple exchanges. Or, more insightfully, the transformation can be viewed as a
rotation of a modified Hodge diamond. One of these improved functions reads
(Φ− ∧ (d + H∧)Φ+)top.

As a particular consequence of these exchanges, we find again that complex and
symplectic manifolds should be mirror.

3. We have seen how the conditions for supersymmetric vacua in type II super-
gravity lead to elegant mathematical conditions. Unfortunately, explicit examples
are hard to come by so far, for a variety of reasons, among which the need of in-
troducing negative sources, for example orientifolds. Supergravity is however only
an approximation to string theory. There are corrections signaling the stringy
nature of gravity; these can help avoiding orientifolds, but are not described (so
far) by equations as elegant as the ones for supergravity. In [3], we work around
this problem by considering extremal transitions. There exist indeed transitions
from Calabi–Yau manifolds to manifolds which are only complex, or only sym-
plectic. We are able to show that some of these provide vacua for IIB or IIA
respectively. These also come in mirror pairs. For example, one such pair has
(b2, b3/2) = (243, 3) or (2, 244) respectively.
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Toric stacks and mirror symmetry

R. Paul Horja

(joint work with Lev A. Borisov)

Toric varieties have traditionally provided an indispensable testing ground for
many of the predictions made in the field of mirror symmetry. Recently, Borisov,
Chen and Smith [BCS] gave a combinatorial definition of toric smooth Deligne–
Mumford (DM) stacks and computed their orbifold (Chen–Ruan) cohomology.

In the first part of this talk, I present some of the technical aspects of the defin-
ition of reduced toric DM stacks as quotient stacks PΣ = [Z/G]. The construction
is similar in spirit with the one given by Cox and Katz for simplicial toric varieties.
It uses the combinatorics of the stacky fan (Σ, {vi}1≤i≤n), where Σ is a usual sim-
plicial fan in the lattice N ∼= Zd and vi are vectors generating the one dimensional
cones of the fan Σ, one for each cone. The vectors vi are not necessarily the min-
imal integer generators of the one dimensional cones. Moreover, according to a
result of Vistoli, the category of coherent sheaves on [Z/G] is equivalent to that of
G-linearized coherent sheaves on Z, see [V, Example 7.21]. Using this description,
in the paper [BH1], we gave a description of the Grothendieck group of a smooth
toric Deligne-Mumford stack PΣ. In the reduced case, K0(PΣ) is generated by the
classes Ri of the invertible sheaves Li which correspond to the one-dimensional
cones of the fan Σ. These sheaves generalize the sheaves O(Di) for codimension
one strata Di in a smooth toric variety.

Theorem [BH1]. Let B be the quotient of the ring Z[x1, x
−1
1 , . . . , xn, x−1

n ] by
the ideal generated by the relations

• ∏n
i=1 x

f(vi)
i = 1 for any linear function f : N → Z,

• ∏i∈I(1 − xi) = 0 for any set I ⊆ [1, . . . , n] such that vi, i ∈ I are not
contained in any cone of Σ.

Then the map ρ : B → K0(PΣ) which sends xi to Ri is an isomorphism.
In the second part of the talk, I briefly describe some applications of the con-

struction of toric stacks to homological mirror symmetry, following our work [BH2].
To a set of vectors A := {v1, . . . , vn} contained in an affine hyperplane in N lo-
cated at unit distance from the origin, Gelfand, Kapranov and Zelevinski [GKZ]
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associated a holonomic system of partial differential equations which turned out
to be of crucial importance in mirror symmetry.

For each stacky fan Σ supported on the cone R≥0∆ and induced by a regular
triangulation of the polytope ∆, we construct a mirror symmetry map defined on
the dual of the Grothendieck ring of the toric DM stack PΣ

MSΣ : (K0(PΣ, C))∨ → Sol(UΣ)

that produces GKZ solutions (periods) which are analytic in the complex domain
UΣ in Cn associated to the fan Σ. Moreover, if Σ+ and Σ− are two fan structures
induced by two regular triangulations of the polytope ∆ that correspond to two
vertices joined by an edge of the secondary polytope determined by A, the asso-
ciated toric DM stacks PΣ+

and PΣ−
are birationally equivalent, and, according

to Bondal and Orlov [BO] and Kawamata [K], their bounded derived categories
of coherent sheaves are equivalent. The equivalence is given by a Fourier-Mukai
functor FM : Db(PΣ−

)→ Db(PΣ+
).

The main result of [BH2, theorem 5.4] shows that the mirror symmetry maps
MSΣ±

corresponding to the two birationally equivalent DM stacks are compatible
with the K-theoretic action of the Fourier-Mukai functor FM∨ : (K0(PΣ+

, C))∨ →
(K0(PΣ−

, C))∨, and to the mirror analytic continuation procedure. Namely, we
have that

MB ◦MSΣ+
= MSΣ−

◦ FM∨,

where MB is the analytic continuation operator whose definition involves Mellin-
Barnes integrals. At the end of the talk, I outline further applications of our results
and some related speculations in the field of mirror symmetry.
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Topological strings on K3 fibrations

Emanuel Scheidegger

In this talk we considered the problem of computing part of the holomorphic
free energy of the topological string for a particular class of K3 fibrations. For a
previous presentation of related results, see [1].

We recall that given a holomorphic map φ : Σg → X , from a Riemann surface
Σg into a smooth Calabi–Yau threefold X , the Gromov–Witten invariant of the
class β = [φ(Σg)] ∈ H2(X, Z) is defined as

(1) N
(g)
β =

∫

[Mg(β,X)]
virt

1.

Since the virtual fundamental class of the moduli space of stable mapsMg(β, X)
is a stack, this invariant is a rational number. In counting problems we would
prefer to have integer invariants, in particular the integer instanton numbers in
physics in general do not agree with the Gromov–Witten invariants.

There are integer invariants which contain the same information as the Gromow–
Witten invariants, though they are difficult to define. We start by reexpanding
the generating function for the Gromow–Witten invariants, i.e. the holomorphic
free energy of the topological string [2], as follows:

F(t, λ) =

∞∑

g=0

∑

β∈H2(X,Z)

N
(g)
β qβλ2g−2

=
c(t)

λ2
+ l(t) +

∞∑

g=0

∑

β∈H2(X,Z)

∞∑

m=1

n
(g)
β

1

m

(
2 sin

mλ

2

)2g−2

qβm,(2)

with qβ = exp(i〈β, ω(t)〉) and t are coordinates on the Kähler moduli space
M(X, ω). The equality of these two expansions relies on a physics argument by
Gopakumar and Vafa [3] and and has not been proven mathematically. Therefore
this expansion should be viewed as an indirect definition of the Gopakumar–Vafa

invariants n
(g)
β . A physicist’s way of defining these invariants directly is to say that

they are the number of BPS states with right spin r of an M2–brane wrapping a

curve C ∈ X such that [C] = β. From this, it is clear that n
(g)
β ∈ Z. This can

be reexpressed in mathematical terms as follows. Consider the moduli spaceMC

of complex structure deformations of embeddings of the curve C into X . Next,

consider the space M̂C which is a fibration overMC with fibers J(C), the Jaco-
bian of the curve C. Note that since we also deform the complex structure of C,
the curve can become singular, and the fibration is non–trivial. For bothMC and

M̂C a mathematical definition is in general an open problem. Nevertheless, we

further assume that there exists an SU(2)L×SU(2)R Lefshetz action on H∗(M̂C)
such that SU(2)L acts on the fiber, H∗(J(C)), and SU(2)R acts on the base,

H∗(MC). The claim is then that H∗(M̂C) =
⊕

r≥0

((
1
2

)
L
⊕ 2(0)L

)r ⊗ Rr(β),

where Rr(β) is the SU(2)R representation on H∗(MC). Using this decomposition,
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the Gopakumar–Vafa invariants could be defined as n
(r)
β = trRr(β)(−1)2HR , where

HR is the Casimir operator of SU(2)R. Using
∑∞

r=0 Cg(r)λ
2r =

(
sin(λ/2)

λ/2

)2g−2

we

can relate the Gromov–Witten invariants to the Gopakumar–Vafa invariants as

follows: N
(g)
β =

∑g
r=0 Cr(g − r)n

(r)
β . Finally, we again emphasize that all these

statements are conjectures based on physics arguments and impressive enumera-
tive evidence.

In the case where X admits a K3 fibration π : X → B with generic fiber
Y ∼= K3, a subset of these invariants can be computed explicitly as we will show
in the remainder of the text. We restrict the classes β to the fiber, i.e. we define
FK3(t, λ) as in (2), but the sum now runs only over β ∈ H2(Y, Z). Consider first
the trivial fibration, X = K3 × T 2. For C a curve in the class β in the K3 with

C2 = 2g−2 a formula for FK3(t, λ) was given in [4]. It is based on the model M̂C

of the moduli space of M2–branes, which leads to the Hilbert scheme of points on
K3 [5]

H(λ, t) =
(

1
2 sin(λ

2 )
)2 ∏

n≥1

1

(1 − eiλqn)2(1− qn)20(1− e−iλqn)2
.

We have extended this argument to regular K3 fibrations in [6] and found that the
topological free energy for the fiber classes can be expressed as

(3) FK3(λ, t) =
Θ(q)

q
H(λ, t)

where Θ(q) is a modular form determined from the topological properties of both
the fiber and the fibration. This formula is clearly inspired by the results of
heterotic–type II duality [7], [8]. Θ(q) is related to an automorphic form of the
classical duality group SO(2, h1,1(X)− 1, Z) by the Borcherds lifting.

In the last part we explain how the modular form Θ(q) can explicitly be deter-
mined in a particular class of K3 fibrations [9]. For this purpose, we first review
some general facts about the topology of K3 fibrations. For simplicity, we assume
that H2(X, Z) = i∗Pic(Y )⊕C · [B], where Pic(Y ) is the Picard lattice of the fiber
and [B] is the class of the base. First, consider the properties of the fiber only. One
topological invariant is the Picard lattice Pic(Y ), its rank ρ and its intersection
form I which is always even. Later, we will only be interested in the simple situ-
ation with ρ = 1. Note that then I = 〈2n〉 = {e ∈ Z|e2 = 2n}, and furthermore
h1,1(X) = 2. Next, we look at the global properties of the fibration. Again, an im-
portant topological characteristic is its intersection form. If we take h ∈ i∗Pic(Y )
and its dual H ∈ H4(X, Z), as well as the class of the fiber L = [i(Y )] ∈ H4(X, Z)
and its dual l = [B] ∈ H2(X, Z), then, since L2 = 0, we have L3 = 0, and
HL2 = 0. Furthermore, H2L = 2n and H3 = p. Finally, a basic invariant is of
course the Euler characteristic χ(X) = χ(Y )χ(B) + χ(singular fibers). For the
singular fibers, a classification similar to the one for singular elliptic fibers would
be helpful. However, there are no results known in the mathematics literature.
Therefore we further restrict ourselves to K3 fibrations obtained as complete inter-
sections in toric varieties. Using the methods described in [6], we find 29 examples
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with h1,1 = 2. The analysis of the singular fibers can be explicitly performed and
yields

n = 1 χ(X) = −28(1 + 2m) 1 ≤ m ≤ 4

n = 2 χ(X) = −28(2 + m) 1 ≤ m ≤ 5

n = 3 χ(X) = −4(23 + m) 1 ≤ m ≤ 14

n = 4 χ(X) = −112(4)

With this result in our hands we proceed to determine the modular form Θ(q).
First, we observe that (3) can be rewritten as

(5) FK3(λ, t) = − Θ(q)

4π2∆(q)

∞∑

g=0

Sg(G2,
1
2G4, . . . ,

1
g G2g)

(
λ

2π

)2g−2

.

where Sg is the Schur function for the unnormalized Eisenstein series G2k(q) and
∆(q) = η(q)24. We notice that the relevant modular form is actually fK3(q) =
Θ(q)
∆(q) . In order to give a modular form, we need to know its weight k and the mod-

ular group under which it transforms. It turns out that the weight of fK3 is related
to ρ by k = −

(
1 + ρ

2

)
, i.e. k = − 3

2 for ρ = 1. Therefore Θ(q) has to be a modular
form of half integral weight which is only defined for the congruence subgroup
Γ0(4N). Due to ∆(q) in the denominator fK3(q) is a nearly holomorphic form of
half integral weight. There exists a particular basis for the space M !

∗+ 1
2

(Γ0(4N) of

such forms. For l = 1, 2, 3, 4, 6, 7 there exists a pair ({fd(q)}, {gD(q)}) of modular
forms of weight (3

2 − l, l + 1
2 ) with the property that fd(q) = q−d + O(q) and

gD(q) = q−D + O(1). Then

{fd(q)| − d = � mod 4N, d ≥ 0} {gD(q)|D = � mod 4N, D > 0}(6)

form two bases of M !
∗+ 1

2

(Γ0(4N)). The final result is that in terms of the basis

fd(q) for l = 3 we can show that

(7) fK3(q) = f4n(q) −mf−n2 mod 4n(q)

where n and m are determined by (4).
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Some problems from the deformation theory of vertex algebras

Karl-Georg Schlesinger

Kodaira-Spencer theory describes the holomorphic deformations of a complex man-
ifold. Concretely, a complex structure on a smooth manifold can be defined by
giving a ∂-operator. A holomorphic deformation then means that we deform ∂
into a new operator

∂ + Ai∂i

which is supposed to act as antiholomorphic derivation, again, on the deformed
manifold. Here, A is a (1, 0)-vector field with values in (0, 1)-forms. The condition
on ∂ +Ai∂i to define a new complex structure translates into the Kodaira-Spencer
equation

∂A +
1

2
[A, A] = 0

where the bracket means the bracket on vector fields and wedging.
In [BCOV] it was shown that the Kodaira-Spencer equation on a complex

Calabi-Yau 3-fold X can be derived from an action principle and that the per-
turbative treatment of the resulting field theory agrees - on a perturbative level
- with the string field theory of the B-model on X . To achieve this result it is
essential that one can find a special gauge fixing - the Tian gauge - for the Kodaira-
Spencer equation which makes the theory calculationally accessible. In tree level
approximation the perturbative treatment of the field theory leads to an iterative
solution of the classical Kodaira-Spencer equation. Including loop corrections,
one finds an anomaly - holomorphic anomaly - which forces one to include fields
of non-classical ghost number. Mathematically speaking this means that one has
to pass from the moduli space of classical Kodaira-Spencer theory, given by the
first sheaf cohomology H1 (TX) of the holomorphic tangent bundle of X , to the
extended moduli space ([Kon], [Wit]) given by the total Hochschild complex of the
structure sheaf of X . The classical moduli space is included since

HHn (O (X)) ≃ ⊕p+q=nHp

(
q∧

TX

)

Extended moduli space is conjectured to be a moduli space of (triangulated) A∞-
categories ([Kon]).

From a more physical perspective, one can understand the appearance of A∞-
structures as arising form the BRST-complex ([HM]): For the open topological
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string the three point correlation functions Cijk can be used as structure constants
to define a product

φi • φj = Cijkφk

on the fields φi. Using the Ward identities, this can be shown to be an A∞-product.
For the closed topological string, one can, in addition, define an L∞-bracket

[φi, φj ] = Fijkφk

where the Fijk are the three point correlation functions with one of the fields re-
placed by its first BRST-descendant. Together the A∞- and L∞-structures com-
bine into a G∞-structure (homotopy Gerstenhaber structure).

For the open topological string, studying the corresponding string field theory
from this perspective means studying the deformation theory of the A∞-structure.
This reproduces the Hochschild complex. For the closed topological string, the cor-
responding deformation theory of the G∞-structure was shown in [HM] to lead to
three different, mutually incompatible, deformation complexes. Only one of them
is related to deformations by the fields of the topological string while the other
two are supposed to be related to turning on background fields. Especially, one of
them is supposed to be related to fivebrane backgrounds. The incompatibility of
the tree complexes shows that an approach modelled after Hochschild cohomology
seems to have limits in the presence of background fields.

This motivates to look for a different approach. Since the structures involved
directly relate to the operator product expansion, we look for a deformation theory
of vertex algebras. Since it is known that background fields need the introduction
of vertex operators with non-integer exponents in the series, we have to allow
for the deformations to be quantum vertex algebras in the sense of [Bor]. We
use the abstract approach to vertex algebras in the sense of the chiral algebras
of [BD] for this. The essential product structures of a chiral algebra are then,
roughly speaking, given by an inner cocommutative Hopf algebra H in a monoidal
category C. We present the deformation theory for this part of the data of a
chiral algebra. In the general deformation theory, we allow the deformation of the
Hopf algebra structure of H , as well, as the tensor product and the composition
of C. Under a physically plausible assumption, we can reformulate this as the
deformation problem of a pair of monoidal categories M and C, together with a
forgetful functor

M→ C
We have shown in [GS] that the deformation theory is described by a system
of coupled differential equations, generalizing the Kodaira-Spencer equation, and
that this system can formally be derived, again, from an action principle.

We finish by some open questions: Can one find an analogue of the Tian gauge?
This would allow for a perturbative treatment of the deformation theory of vertex
algebras. What are the physical degrees of freedom behind the action we have
found (the analogue of the B-model in Kodaira-Spencer theory)? On the defor-
mation complex, there is additional structure beyond a (homotopy) Gerstenhaber
algebra given by three ingredients: A second differential, a curvature tensor, and
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a representation of a vertex algebra. We explain that this is a first indication that
the deformation theory might, indeed, be related to the degrees of freedom of a
fivebrane.
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Heisenberg-Clifford superalgebra and instantons

U. Bruzzo

Instanton moduli spaces. LetMreg
0 (r, n) be the moduli space of framed instan-

tons on R4 of rank r and instanton charge n (taken modulo gauge transformations
fixing the framing). It is a smooth complex affine variety of complex dimension
2rn. It is not compact. A “partial compactification” is obtained by adding the so-
called ideal instantons. An ideal instanton may regarded as a collection of m points
xi in R4 (with 0 < m ≤ k) and a framed instanton (∇, φ) on R4−{x1, . . . , xm} of
instanton charge k−m, such that the measure associated with the curvature of the
ASD connection ∇ approaches the Dirac delta concentrated at xi when x → xi.
In this way one gets a moduli space M0(r, n) which is singular at the points cor-
responding to the ideal instantons. Resolving the singularities one obtains a space
M(r, n) which is a quasi-projective smooth variety, and may be regarded as a mod-
uli space parametrizing geometric objects, namely, torsion-free coherent sheaves E
on the complex projective plane P2, which are locally free in a neighbourhood of
a fixed line ℓ∞ ⊂ P2, and are equipped with an isomorphism Φ: E|ℓ∞

∼−→ O⊕r
ℓ∞

.

Heisenberg-Clifford superalgebra. We want to define operators qi[u], where
i is an integer, and u is a homology class (with compact support) in R4. This will
act as a linear map

qi[u] : H•(M(r, n), Q)→ H•(M(r, n + i), Q)

(the integer r will be kept fixed during the whole treatment). When i ≥ 0 we
consider the cartesian productM(r, n)×M(r, n + i)×X with projections

X
p1←−M(r, n)×M(r, n + 1)×X

p2−→M(r, n)×M(r, n + i) .
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We define the closed subschemeM[n,i]
r ofM(r, n)×M(r, n+i)×X whose elements

are the triples (E , E ′, x) such that the sheaves E , E ′ fit into an exact sequence
0→ E → E ′ → Ax → 0, where Ax is a skyscraper sheaf concentrated at the point x.

We define ω(u) ∈ H•(M(r, n)×M(r, n+i), Q) by letting ω(u) = p2∗

(
p∗1u∩[M[n,i]

r ]
)
,

and define the linear map qi[u] by letting

qi[u](α) = π2∗

(
π∗

1α ∩ ω(u)
)

where π1, π2 are the projections ofM(r, n)×M(r, n+i) onto the factors. When i is
negative, the operator qi[u] is defined by replacing the productM(r, n)×M(r, n+i)
with the productM(r, n + i)×M(r, n) and proceeding as above.

We define among these operators the graded commutator
[
qi[u], qj [v]

]
= qi[u] ◦ qj [v]− (−1)deg(u)·deg(v)qj [v] ◦ qi[u] .

Theorem. The operators qi[u] verify the commutation relations

(1)
[
qi[u], qj [v]

]
= (−1)ri−1ri 〈u, v〉 δi+j,0 · Id ,

where 〈u, v〉 is the intersection product of the homology classes u, v.

This result has been proved in the case r = 1 by Nakajima [6] and Grojnowski
[5].

The case r = 1. In this case the moduli spaceM(1, n) reduces to the Hilbert
scheme Hn = (C2)[n] parametrizing 0-dimensional subschemes of length n of the
space C2. The commutation relations (1) may be proved as follows. Define the
closed subschemesMn and Mn(p) of Hn (where p is a point in C2) as follows:

Mn = {Z ∈ Hn/ Z is topologically supported at one point },
Mn(p) = {Z ∈ Hn/ Z is topologically supported at p}.

Briançon has shown [2] thatMn andMn(p) are irreducible projective varieties,
with dim(Mn) = n+1 and dimMn(p) = n−1. Moreover, Ellingsrud and Strømme
[4] have computed the intersection product of these subschemes of Hn, obtaining

[Mn] ∩ [Mn(p)] = (−1)n−1n .

This computes the constants in the commutation relations (1), since qn[pt]I =
[Mn(p)] and qn[X ]I = [Mn], where I is the generator of H•(∅), and X is the
fundamental class in the homology of R4 with compact support.

The constants may also be computed by noting that

[Mn] ∩ [Mn(p)] = sn−1(Mn(p))

where sn−1(Mn(p)) is the top Segre class of the scheme Mn(p) [7].
The instanton case. For r > 1 one introduces the subschemes ofM(r, n)

Quot(r, n) =
{
O⊕r

X → A→ 0}, Quotp(r, n) =
{
O⊕r

X → Ap → 0} ,

where A is a rank zero sheaf whose topological support is a point, and Ap is a
rank zero sheaf whose topological support is a fixed point p. The sets Quot(r, n)
and Quotp(r, n) are irreducible projective varieties of dimension rn + 1 and rn −
1, respectively [1, 3]. Again the intersection product [Quot(r, n)] · Quotp[(r, n)]
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computes the constants in the commutation relations (1). Moreover, also in this
case the one has the identification

[Quot(r, n)] ·Quotp[(r, n)] = s2n−1(Quotp(r, n))

The idea is to compute this Segre classe using a Bott formula for the equivariant
cohomology of the moduli spaceM(r, n) with respect to a naturally defined action
of C∗ [8].
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Nahm vs. Fourier-Mukai

U. Bruzzo

Other talks in this workshop have dealt with the Fourier-Mukai transform in a
very general setting, i.e., as a functor

ΦK•

X→Y : D−(X)→ D−(Y )

where X and Y are smooth projective varieties, D− denotes the derived category
of complexes of coherent sheaves bounded from the right, and K• is a complex in
D−(X × Y ). The functor ΦK•

X→Y is defined as

ΦK•

X→Y (E•) = RπY ∗(π
∗
X(E•)

L

⊗ K•)

where πX , πY are the projections onto the components of X × Y .
Under suitable conditions, the Fourier-Mukai transform may be recast into a

differential-geometric setting, and then it may be shown to coincide, in a proper
sense, with a generalization of the so-called Nahm transform, introduced by Nahm
in 1983 [9] (see also [6, 10]). This correspondence was noted for the first time in
[7] in the case of Abelian surfaces.

Let X , Y be compact Kähler manifolds, E a holomorphic vector bundle on X
and Q a holomorphic vector bundle on X × Y . Let us denote by E and Q the
sheaves of holomorphic sections of the corresponding bundles. One can define the
Fourier-Mukai transform of the sheaf E as the sheaf on Y

(1) Ê = ΦQ
X→Y (E) .
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Let us see how one defines the Nahm transform in this setting. We assume
that X has trivial canonical bundle. One considers the relative Dolbeault complex
Ω0,•

X×Y/Y of the projection πY : X × Y → Y . Moreover, after equipping E and Q

with hermitian metrics, and introducing the corresponding Chern connections on
both bundles, one twists the Dirac operator obtained from the complex Ω0,•

X×Y/Y

with the Chern connection on π∗
XE⊗Q. In this way one gets a family of (twisted)

Dirac operators D = {Dy}y∈Y .

Theorem. Assume that ker(D) = 0. Then the index vector bundle Ê = ind(D)

has a holomorphic structure such that the sheaf of holomorphic sections of Ê is
isomorphic to the Fourier-Mukai transform (1).

For a proof of this result the reader may refer to [1, 4, 5].

The bundle Ê carries a naturally defined hermitian metric ĥ since the fibre Êy

at a point y ∈ Y is the kernel of the map

D∗
y : Γ(E ⊗ S− ⊗Qy)→ Γ(E ⊗ S+ ⊗Qy)

where Qy = QX×{y} and

S+ =
⊕

k even

Ω0,k
X , S− =

⊕

k odd

Ω0,k
X .

Let h be the hermitian metric on E.

Definition. The pair (Ê, ĥ) is the generalized Nahm transform of the pair (E, h).

Let ∇̂ be the Chern connection induced by the hermitian metric ĥ and by the
holomorphic structure of Ê. In his paper [9] Nahm deals with the case when X is
a complex torus (of complex dimension 2), Y the dual torus, and Q the Poincaré
bundle on X × Y . Nahm shows that whenever the connection ∇ is an instanton,
then the transformed connection ∇̂ is an instanton as well. This result may be
generalized as follows.

Definition. Let Z be a hyperkähler manifold, and F a vector bundle on Z. A
connection on F is said to be a quaternionic instanton if its curvature is of type
(1,1) with respect to every complex structure in the hyperkähler structure of Z.

With reference to the previous construction, assume that both X and Y are hy-
perkähler manifolds, and that the Chern connections on E and Q are quaternionic
instantons.

Theorem. The Chern connection ∇̂ on Ê is a quaternionic instanton on Y .

This result parallels the fact that under suitable conditions the Fourier-Mukai
transform preserves the condition of stability [8, 2, 3].
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Non-commutative geometry and D-Brane systems

Calin Lazaroiu

I present a noncommutative-geometric description of the semiclassical dynamics
of finite topological D-brane systems. Starting from the formulation in terms of
A∞ categories, I show that such systems can be described by the noncommutative
symplectic supergeometry of Z2-graded quivers, and give a synthetic formulation
of the boundary part of the generalized WDVV equations. In particular, a faithful
generating function for integrated correlators on the disk can be constructed as
a linear combination of quiver necklaces, i.e. a function on the noncommutative
symplectic superspace defined by the quiver’s path algebra. This point of view
allows one to construct extended moduli spaces of topological D-brane systems
as non-commutative algebraic ‘superschemes’. They arise by imposing further
relations on a Z2-graded version of the quiver’s preprojective algebra, and passing
to the subalgebra preserved by a natural group of symmetries.

Stability conditions on non-compact Calabi-Yau varieties

Emanuele Macri

1. Stability conditions on triangulated categories

Stability conditions were introduced by Bridgeland ([8, 9]) in 2003, relying on
physical ideas due to Douglas ([14]), Aspinwall and others in the context of the
study of D-branes in string theory (a nice review can be found in [2]). A stability
condition on a triangulated category T is given by abstracting the usual properties
of µ-stability for sheaves on projective varieties; more precisely, one introduces
the notion of slope, using a group homomorphism from the Grothendieck group
K(T ) to C (called central charge), and of semistable object and then requires
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that a stability condition is compatible with the shift functor and has the Harder-
Narasimhan property (i.e., every nonzero object has a filtration in semistable ones).

The main result of Bridgeland’s paper [8] is that these stability conditions can
be described via a kind of moduli space of stabilities (it is better to say a parame-
ters space: we will be more clear about this below). This moduli space becomes
a (possibly infinite-dimensional) manifold, which is called stability manifold and
denoted by StabT , if a technical condition (local finiteness) is assumed. This
condition allows our stability conditions to have also finite Jordan-Hölder filtra-
tions in stable objects. For each connected component Σ of Stab (T ) there is a
linear subspace V (Σ) of (K(T )⊗C)∗ (with a well-defined topology) and a natural
local homeomorphism Z from Σ to V (Σ) which identify the tangent spaces to Σ
with V (Σ). In almost all examples we will deal with in the sequel, K(T ) will be
finite dimensional. In general, referring to stability manifolds, one often considers
only finite-dimensional submanifolds of it (for example, one asks factorizations of
the central charge through the Chern character map, but, it is not clear what
is the natural target space onto which this Chern character should map K(T )).
There are no known examples where V (Σ) is different from (K(T )⊗C)∗ or where
Stab (T ) is neither connected nor contractible.

We want to point out some remarks and some mathematical motivations for
this definition. First of all the key point is that, if X is a smooth projective Calabi-
Yau 3-fold, then Stab (X) := StabD(X) (where D(X) := Db(Coh(X))), modulo
the natural action of the exact autoequivalences Aut eq(D(X)), should be thought
as an approximation of the “assumed” stringy Kähler moduli space, or better
some extended version of it ([12]). Understanding the relations between these two
spaces is the main conjecture and one of our goals is to try to study some evidences
for it (for example to find a Frobenius manifold structure on Stab (X), or better
some weaker version, which probably has something to do with the Cecotti-Vafa-
Dubrovin structures described by Hertling in [16]). Unfortunately, up to now, no
example is known of stability conditions on smooth projective Calabi-Yau 3-folds.
But some hints on the validity of this conjecture can be searched in other ways.
One way is to lower dimensions and to see what happens for elliptic curves and K3
and abelian surfaces. In these cases one can get an almost complete description of
the stability manifold which effectively provides some evidences for this conjecture.
Moreover, it is nice to see how stability conditions are related to non-commutative
2-tori (in the example of elliptic curves) or to the conjecture of describing the
group of exact autoequivalences of the derived categories of K3 surfaces1 ([22],
[23], [9]).

Another way is to pass to the local case, which will be our main topic of in-
terest. Before doing so, we will present other remarks on stability conditions. A
further good point about Stab (T ) is that it encodes the notion of “continuous”
family of t-structures on T . Here comes out the problem we observed before: this
notion of continuity does not behave well, at least in the non Calabi-Yau case.

1Note that we always have an action of Aut eq(T ) on Stab (T ). Hence, stability manifolds can
be useful in studying the structure of the autoequivalences group on every triangulated category.
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It is easy to see that, for example, some discrete invariants of the abelian hearts,
which is natural to assume they remain constant in “families” (like Hochschild
cohomology, which has to do with deformations and so with stability conditions),
are not preserved (an easy example is Stab (P1), (3.1)). Probably this kind of
problems boils down to the fact that the definition of stability condition should
be rewritten in the context of DG-categories, which is a very interesting topic for
future investigation.

Another application of stability conditions is to the construction of moduli
spaces of complexes. There are several examples that show that the notion of
moduli spaces of complexes is necessary in birational algebraic geometry (a good
one is Bridgeland’s construction of the flop of a Calabi-Yau threefold as a moduli
space of perverse point sheaves [7]). Hence, stability conditions naturally arise in
this context. For example, it is possible to reinterpret Bridgeland’s construction
for the local model of a flop, the total space of OP1(−1)⊕OP1(−1), in the language
of stability conditions. In general, the notion of moduli spaces of stable complexes
(with respect to a fixed stability condition) is not so precise as a question up to
now, but some work has been done in this direction ([17], [19], [1]).

Finally, we want to notice the connections between stability conditions and
representation theory of finite-dimensional algebras ([10, 11], [3], [20]): in most
known examples where Stab (T ) can be described, this is due to the equivalence of
T with the bounded derived category D(A) of finitely generated (right) modules
over an associative algebra A. Moreover, on D(A), there is a natural open set
of Stab (A) = Stab (D(A)) in which Bridgeland-Douglas stability reduces to King
θ-stability ([18]).

2. Some examples of stability manifolds of non-compact Calabi-Yau

varieties

2.1. Stab (OP1(−2)). A very interesting object to study in the context of stabil-
ity conditions is the stability manifold of a non-compact Calabi-Yau manifold X .
We try to give here and in the subsequent paragraph some hints on how this is
related to other parts of derived category theory, to mirror symmetry and so to the
main conjecture on the relations with the stringy Kähler moduli space. The idea
is to consider non-compact Calabi-Yau varieties which contains a Fano variety S
whose derived category is generated by an exceptional collection of sheaves (for
example, the total space of the canonical bundle ωS on a del Pezzo surface S). In
this case it easy to construct stability conditions on the derived category D0(X) of
complexes with support contained on S. Stability conditions on X are related, up
to autoequivalences of D0(X), to stability conditions on S, and there it is enough
to define the values of the central charge on the simple modules over the algebra
associated to a strong exceptional collection ([6], [20], [10]).2 As we have said in
the previous section, stability conditions do not behave so well for non Calabi-Yau

2The precise relation is that exceptional objects on S correspond to spherical ones on X and
modules over the path-algebra of a quiver correspond to nilpotent modules over the path-algebra
of the completed quiver ([10]).



Heterotic Strings, Derived Categories, and Stacks 3055

manifolds. In this examples this fact becomes evident, since the “degenerate” sta-
bility conditions on S (i.e. stability conditions associated to unfaithful bounded
t-structures) become “non-degenerate” on passing to X .

The first example we encounter is S = P1, X = OP1(−2) ([21], [20], [10, 11]).
We have that D(P1) is generated by O(k)[1] and O(k + 1), for k fixed integer.
Hence, one can get easily hearts of bounded t-structures on D(P1) by considering
the extension-closed subcategories Ak,p generated by O(k)[p + 1] and O(k + 1),
for p ≥ 0. Then Ak,0

∼= mod-A, where A is the path-algebra associated to the
Kronecker quiver (D(P1) ∼= Db(mod-A)) and for p > 0 is V ectC ⊕ V ectC and so it
is unfaithful (i.e. D(P1) ≇ Db(V ectC⊕V ectC)). Using these t-structures one easily
defines stability conditions on D(P1) and proves that the stability conditions that

arise in this way are the only one, up to the action of the universal cover ˜GL+(2, R)
of GL+(2, R). In particular, Stab (P1) ∼= C. Passing to Stab (X) “eliminates” the
degenerate t-structures. It can be proved that D0(X) ∼= Db(A), for every heart
of t-structures associated to stability conditions in the connected component Σ of
Stab (X) containing the stability conditions induced by those of P1.

We now want (in order to relate Stab (X) to the stringy Kähler moduli space)
to construct an associative product on the tangent spaces in the points of Σ. Our
guess is the following. Take a stability condition σ ∈ Σ and let Aσ be the heart
of the t-structure associated to it. First of all there exists a Chern character from
K(D0(X)) ⊗ C with values in the Hochschild homology. In this case this map is
an isomorphism of vector spaces. Since X is Calabi-Yau, HH •(Aσ)∗ ∼= HH •(Aσ).
This identifies in a natural way the tangent space to σ to HH •(Aσ). Now, the
Hochschild cohomology has a natural product. The point is that all the operation
we have made are compatible at the level of DG-categories. Therefore, we get
that the ring structures of the tangent spaces are compatible. This should give
a product structure on TΣ. It seems plausible that this product is related to
Gromov-Witten invariants on X . Probably an argument of Caldararu (see also [5]
for related subject) should imply that Hochschild cohomology, in this non-compact
case, is isomorphic, as a ring, to orbifold cohomology ([13], [24]) of the orbifold
[C2/Z2] whose crepant resolution is X .3

This product should define a sort of weak Frobenius structure on StabX ([16],
[4]). When restricted to an appropriate submanifold Γ of Stab (X) this should
coincide with the picture that Bridgeland argued in [12].

Now, all this structure should generalize to other Calabi-Yau manifolds. In
the next section we will concentrate on Stab (OP2(−3)). Here we still consider
surfaces. Natural examples to consider are all the local crepant resolutions YG of
kleinian singularities C2/G, where GZSL(2, C) is a finite group. In this case again
it is simple to give a precise description of a connected component of Stab (YG)
([11]). But computations with Hochschild (co)homology become more complicated
(one has to compute the Hochschild cohomology of an A∞-algebra, instead of an

3Note that the Hochschild cohomology is also isomorphic to the Hochschild cohomology of
the stack [P1/X∗] (the stack associated to the trivial action of the dual of X on P1) via the
equivalence between the corresponding abelian categories of coherent sheaves.
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algebra, as in the case of X). But the general features should remain the same.
Moreover, restricting as before to a particular submanifold ΓG of Stab (YG), the
product should induce a Frobenius structure. It seems an interesting problem to
see the relations between the Frobenius manifold ΓG and the one associated to G,
arising from Dubrovin’s almost duality ([15]).

2.2. Stab (OP2(−3)). A more interesting and difficult example of non-compact
Calabi-Yau manifold is S = P2, X = OP2(−3). Our hope is that our techniques
of the previous paragraph could be extended to this case. Some problems arise.
First of all the description of Stab (P2) is more complicated ([20]). We have, as
in the case of P1, that, given a complete strong exceptional collection on D(P2),
we can define a stability condition by looking at the t-structure induced by the
equivalence D(P2) ∼= D(mod-A), where A is the path-algebra of the quiver (with
relations) associated to the exceptional collection. But this time the combinatorics
of the intersections of the open subsets of Stab (P2) associated to such t-structures
is more complicated and essentially involves the fact of knowing the action of the
braid group on three generators on exceptional collections. We only have, up to
now, a description of an open subset of a connected component of Stab (P2). It
is probably true that this open subset covers the full connected component. As
before, going to X , eliminates degenerate stabilities and transforms mutations
in functors (in the so called twist functors of [25]). Now, the description of the
tangent spaces in term of Hochschild cohomology probably works the same (up to
technical computations problems). But now the induced product structure should
be related (as Bridgeland conjectured in [12]) to the quantum cohomology of P2,
and this relation has to be clarified.

Similar arguments could be done for S a del Pezzo surface, X the total space
of its canonical bundle. A partial description of Stab (S) is given in [20]. Here
it is worth nothing that in D(S) there are more unfaithful t-structures: the ones
associated to exceptional collections which are not strong. The interesting thing
is that, going to X , these degenerations probably disappear and, like in the case
of OP2(−3), one only has stability conditions associated to algebras.
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