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Introduction by the Organisers

The workshop Combinatorics organised by László Lovász (Redmond) and Hans
Jürgen Prömel (Berlin) was held January 1st–January 7th, 2006. This meeting was
very well attended with 48 participants from many different countries. The pro-
gramme consisted of 15 plenary lectures, accompanied by 18 shorter contributions
and a vivid problem session led by Vera T. Sós.

The plenary lectures provided a very good overview over the current develop-
ments in several areas of combinatorics and discrete mathematics. We were very
fortunate that some of the speaker reported on essential progress on longstanding
open problems. In particular, Ajtai, Komlós, Simonovits, and Szemerédi solved
the Erdős–T. Sós conjecture on trees (for large trees) and Tao and Vu greatly
improved the asymptotic upper bound on the probability that a Bernoulli ma-
trix is singular. The shorter contributions ranged over many topics. They were
a good platform, especially, for younger researchers to present their results. In
the following we include the extended abstracts of all talks in the order they were
given.
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On behalf of all participants, the organisers would like to thank the staff and
the director of the Mathematisches Forschungsinstitut Oberwolfach for providing
a stimulating and inspiring atmosphere. The organizers also thank the many
participants who traveled on New Year’s Eve and New Year’s Day to arrive on
time for the beginning of the workshop.
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Abstracts

New code bounds with noncommutative algebra

Alexander Schrijver

We present a new upper bound on A(n, d), the maximum size of a binary code of
word length n and minimum distance at least d. The bound is based on block-
diagonalizing the (noncommutative) Terwilliger algebra of the Hamming cube and
on semidefinite programming. The bound refines the Delsarte bound [1], which is
based on diagonalizing the (commutative) Bose-Mesner algebra of the Hamming
cube and on linear programming. The bound is published in [9].

Fix a nonnegative integer n, and let P be the collection of all subsets of
{1, . . . , n}. We identify code words in {0, 1}n with their support. So a code C is
a subset of P . The Hamming distance of X,Y ∈ P is equal to |X△Y |. The mini-
mum distance of a code C is the minimum Hamming distance of distinct elements
of C.

1. The Terwilliger algebra

For nonnegative integers i, j, t, let M t
i,j be the P × P matrix with

(1) (M t
i,j)X,Y :=

{

1 if |X | = i, |Y | = j, |X ∩ Y | = t,

0 otherwise,

for X,Y ∈ P . So (M t
i,j)

T = M t
j,i. Let An be the set of matrices

(2)

n
∑

i,j,t=0

xti,jM
t
i,j

with xti,j ∈ C. It is easy to check that An is a C∗-algebra: it is closed under
addition, scalar and matrix multiplication, and taking the adjoint. This algebra
is called the Terwilliger algebra [10] of the Hamming cube H(n, 2).

Since An is a C∗-algebra and since An contains the identity matrix, there exists
a unitary P×P matrix U (that is, U∗U = I) and positive integers p0, q0, . . . , pm, qm
(for some m) such that U∗AnU is equal to the collection of all block-diagonal
matrices

(3)











C0 0 · · · 0
0 C1 · · · 0
...

...
. . . 0

0 0 · · · Cm











where Ck =











Bk 0 · · · 0
0 Bk · · · 0
...

...
. . . 0

0 0 · · · Bk











.
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Each Ck is a block-diagonal matrix with qk repeated, identical blocks of order pk.
So p2

0 + · · · + p2
m = dim(An) =

(

n+3
3

)

and p0q0 + · · · + pmqm = 2n.
Now the positive semidefiniteness of any matrix in An is equivalent to the

positive semidefiniteness of the corresponding blocks Bk (which are much smaller).
It turns out that U can be taken real, that m = ⌊n2 ⌋, and that, for k =

0, . . . , ⌊n2 ⌋, there is a block Bk of order pk = n − 2k + 1 and multiplicity qk =
(

n
k

)

−
(

n
k−1

)

.

To describe the blocks of (2), define, for i, j, k, t ∈ {0, . . . , n}:

(4) βti,j,k :=

n
∑

u=0

(−1)u−t
(

u
t

)(

n−2k
u−k

)(

n−k−u
i−u

)(

n−k−u
j−u

)

.

Then for k = 0, . . . , ⌊n2 ⌋, the kth block Bk is the following (n−2k+1)×(n−2k+1)
matrix:

(5)

(

∑

t

(

n−2k
i−k

)− 1

2
(

n−2k
j−k

)− 1

2 βti,j,kx
t
i,j

)n−k

i,j=k

.

2. Application to coding

Let C ⊆ P be any code m(assuming ∅ 6= C 6= P). Let Π be the set of (distance-
preserving) automorphisms π of P with ∅ ∈ π(C), and let Π′ be the set of auto-
morphisms π of P with ∅ 6∈ π(C). Let χπ(C) denote the incidence vector of π(C)
in {0, 1}P (taken as column vector). Define the P × P matrices R and R′ by:

(6) R :=
∑

π∈Π

|Π|−1χπ(C)(χπ(C))T and R′ :=
∑

π∈Π′

|Π′|−1χπ(C)(χπ(C))T.

As R and R′ are sums of positive semidefinite matrices, they are positive
semidefinite. Moreover, R and R′ belong to An. To see this, define xti,j to

be the number of triples (X,Y, Z) ∈ C3 with |X△Y | = i, |X△Z| = j, and
|(X△Y ) ∩ (X△Z)| = t. divided by |C|

(

n
i−t,j−t,t

)

. Then

(7) R =
∑

i,j,t

xti,jM
t
i,j and R′ =

|C|
2n − |C|

∑

i,j,t

(x0
i+j−2t,0 − xti,j)M

t
i,j .

The positive semidefiniteness of R and R′ is by (5) equivalent to:
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(8) for each k = 0, . . . , ⌊n2 ⌋, the matrices

(

n
∑

t=0

βti,j,kx
t
i,j

)n−k

i,j=k

and

(

n
∑

t=0

βti,j,k(x0
i+j−2t,0 − xti,j)

)n−k

i,j=k

are positive semidefinite.

The xti,j ’s moreover satisfy the following constraints, where (iv) holds if C has
minimum distance at least d:

(9) (i) x0
0,0 = 1,

(ii) 0 ≤ xti,j ≤ x0
i,0 and x0

i,0 + x0
j,0 ≤ 1 + xti,j for all i, j, t ∈ {0, . . . , n},

(iii) xti,j = xt
′

i′,j′ if (i′, j′, i′ + j′ − 2t′) is a permutation of (i, j, i+ j − 2t),

(iv) xti,j = 0 if {i, j, i+ j − 2t} ∩ {1, . . . , d− 1} 6= ∅.

Moreover, |C| =
∑n
i=0

(

n
i

)

x0
i,0. Hence we obtain an upper bound on A(n, d) by

considering the xti,j as variables, and by maximizing
∑n
i=0

(

n
i

)

x0
i,0 subject to con-

ditions (8) and (9). This is a semidefinite programming problem with O(n3)
variables, and it can be solved in time polynomial in n. The method gives, in the
range n ≤ 28, the new upper bounds on A(n, d) given in the table.

best best upper
lower new bound
bound upper previously Delsarte

n d known bound known bound
19 6 1024 1280 1288 1289
23 6 8192 13766 13774 13775
25 6 16384 47998 48148 48148
19 8 128 142 144 145
20 8 256 274 279 290
25 8 4096 5477 5557 6474
27 8 8192 17768 17804 18189
28 8 16384 32151 32204 32206
22 10 64 87 88 95
25 10 192 503 549 551
26 10 384 886 989 1040

The new bound is stronger than the Delsarte bound, which is equal to the
maximum value of

∑

i

(

n
i

)

x0
i,0 subject to the condition that x0

i,0 ≥ 0 for all i and

x0
i,0 = 0 if 1 ≤ i ≤ d− 1, and to the condition that

∑

i,j,t x
0
i+j−2t,0M

t
i,j is positive

semidefinite.
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3. Concluding remarks

Taking a tensor product of the algebra, this approach also yields a new upper
bound on A(n, d, w), the maximum size of a binary code of word length n, min-
imum distance at least d, and constant weight w. This bound strengthens the
Delsarte bound for constant-weight codes.

The present research roots in two basic papers presenting eigenvalue techniques
to obtain upper bounds: Delsarte [1], giving a bound on codes based on association
schemes, and Lovász [5], giving a bound on the Shannon capacity of a graph. It
was shown by McEliece, Rodemich, and Rumsey [7] and Schrijver [8] that the
Delsarte bound is a special case of (a close variant of) the Lovász bound. (This is
not to say that the Lovász bound supersedes the Delsarte bound: essential in the
latter bound is a reduction of the 2n-vertex graph problem to a linear programming
problem of order n.) An extension of the Lovász bound based on ‘matrix cuts’ was
given by Lovász and Schrijver [6] Applying a variant of matrix cuts to the coding
problem leads to considering the Terwilliger algebra as above.

Frank Vallentin showed that the block-diagonalization of the Terwilliger alge-
bra may also be derived using the representation theory of the symmetric group.
Etienne de Klerk and Dima Pasechnik [3] used the approach to sharpen bounds
on the stability number of orthogonality graphs. Monique Laurent [4] extended
the above methods and found further improvements on the bounds on codes and
the stability number of orthogonality graphs, based on the Lasserre hierarchy of
bounds and using the block-diagonalization of the Terwilliger algebra. With Dion
Gijswijt and Hajime Tanaka [2] we generalized the bound for (nonconstant-weight)
codes to nonbinary codes.
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Disjoint minors in large graphs

Andrew Thomason

The natural measure of the extremal function for a complete minor in a graph was
shown by Mader [5] to be

c(r) = min{ c : e(G) ≥ c|G| implies G ≻ Kr } .
The function c(r) was estimated by Kostochka [4] (see also [8]) and in [9] it was
shown that the asymptotic value is c(r) = (0.319 . . . + o(1))r

√
log r. Random

graphs of appropriately chosen order and density (both Θ(r
√

log r)) provide ex-
amples of extremal graphs, and Myers [6] showed that all extremal graphs are
pseudo-random graphs like these, or essentially disjoint unions of such graphs.

The form of these extremal graphs prompts two natural questions about graphs
whose order is large with respect to r. First, what is the maximum connectivity if
no Kr minor is allowed — is it only linear in r? And second, what is the maximum
size if a Kr minor is allowed but many disjoint Kr minors are not?

It turns out in both cases that complete bipartite graphs, with one class small,
are blockages. This is illustrated by a recent theorem of Böhme, Kawarabayashi,
Maharry and Mohar [1], that if κ(G) ≥ 16r then G contains s disjoint Kr minors or
it contains a subdivision of Kr,s, provided |G| is large (depending on both r and s).
Their theorem (which is actually stronger than stated here) gives an affirmative
answer to the first question, though the proof relies on the full graph minor theory
of Robertson and Seymour.

As for the second question, an answer was given in principle by Myers and
Thomason [7], who showed that graphsG of size more than approximately sc(r)|G|
contain s disjoint Kr minors. Random graphs of order approximately sr

√
log r

provide extremal graphs. However, it is clearly not possible to take disjoint copies
of these to provide extremal graphs of large order, and so this result gives no
information about the maximum size of graphs of large order having no sKr minor.
We therefore define

c∞(sKr) = lim inf
n

{c : |G| ≥ n, e(G) ≥ c|G| =⇒ G ≻ sKr} .

The parameter c∞(sKr) displays different behaviour according to whether s is
small or large relative to s. In fact, we show that

(a) c∞(r) = (1 + o(1))c(r) for fixed s but r → ∞, whereas
(b) c∞(r) = s(r − 1) − 1 for s ≥ 20c(r).

The implication of case (a) is that if any fixed number of Kr minors is disallowed
then the extremal graphs do not differ much from the extremal graph when just
one Kr minor is forbidden. It is a consequence of a more general result: that,
given r, s and t, the maximum size of a graph of order n having neither sKr nor
Kt,s as a minor is (c(r) + t − 1)n + o(n) as n → ∞. This latter result is best
possible, as is seen by taking the sum of Kt−1 and multiple copies of a graph with
no Kr minor.
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On the other hand, case (b), for larger s, is a consequence of a more exact result,
as follows: let r ≥ 3, s ≥ 20c(r) and m = s(r − 1) − 1. If G is a graph of order
n > 22rsm with e(G) ≥ e(Km +Kn−m) and G 6≻ sKr, then G = Km +Kn−m.

This theorem is a direct generalization of a classical result of Erdős and Pósa [3],
which is the case r = 3.
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Combinatorial and polyhedral surfaces

Günter M. Ziegler

(joint work with Raman Sanyal and Thilo Schröder)

1. What is a surface?

There are several different combinatorial and geometric notions of a “polyhedral
surface.” Topologically, we consider the connected, orientable 2-manifold without
boundary of genus g ≥ 0, denoted Mg.

In the combinatorial version, we look at regular cell decompositions of Mg,
which may be obtained by drawing graphs on the surfaces Mg, or by combinator-
ial prescriptions that tell us how to glue the surface from polygons. The “rotation
schemes” of Heffter [6], see also Ringel [11], fall into this category. In the follow-
ing, we will insist on the intersection condition to hold, according to which the
intersection of any two cells of the surface consists of either one single edge, or one
vertex, or is empty.

In the geometric version, a polyhedral surface is a complex formed by flat convex
polygons, represented without intersections in R3, or in some RN .

See [4] and [13] for more detailed discussions of these models.
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2. f-Vectors

For any (combinatorial or geometric) surface the f -vector (f0, f1, f2) records
the number of vertices, edges, and 2-faces. It thus also measures the topological
complexity of the surface, whose genus is given by

g = 1 + 1
2 (f1 − f0 − f2),

and the combinatorial complexity, via the average vertex degree and the average
face degree, given by

δ = 2f1
f0

and δ∗ = 2f1
f2
.

A key problem asks to characterize the f -vectors of combinatorial resp. geometric
surfaces, and thus distinguish the two models in terms of their combinatorial
characteristics.

For g = 0, a little lemma of Steinitz [12] characterizes the f -vectors by

f0 − f1 + f2 = 2, 2f1 ≥ 3f0, 2f1 ≥ 3f2

for both models. Indeed, these are the f -vectors of convex 3-polytopes.
In contrast, for g > 0 the inequality 2f1 ≥ 3f0 is tight for combinatorial surfaces,

while it is strict for geometric surfaces: A geometric surface satisfying 2f1 = 3f0
is necessarily realized in R3, and convex. Indeed, we have 2f1 − 3f0 ≥ 6 for g > 0;
see Barnette et al. [1].

3. The high genus case

An interesting extremal case to study is when we fix the number n := f0, and
ask for surfaces with the maximal genus, or equivalently, for surfaces with the
maximal number of edges and 2-faces. For this we may assume that the surface is
triangulated, so 2f1 = 3f2, and g = 1 + 1

2 (f13 − n).

In the combinatorial model, the inequality f1 ≤
(

n
2

)

is tight for infinitely many
values of n, for example for n = 4, 7, 12 and for n ≡ 7 mod 12, according to Ringel
et al., see [11].

On the other hand, geometric surfaces with f1 =
(

n
2

)

exist in R3 for n = 4, 7,
but not for n = 12, according to Bokowski & Guedes de Oliveira [2] and Schewe
(personal communication, 2005). It is an open problem whether the upper bound
f1 = O(n2) is tight — the best known lower bound is f1 = Ω(n logn) for surfaces,
and f1 = Ω(n3/2) for the weaker model of “almost disjoint triangles” [7].

4. A combinatorial construction

A combinatorial Ansatz for the construction of extremal surfaces traces back
to Brehm [3], see also Datta [5]: In a (p, q)-surface all vertex degrees are p and all
faces are q-gons. The goal is to construct (p, p)-surfaces with few vertices.

The Ansatz now produces such surfaces on the vertex set ZN , by taking as
the vertex sets of its faces the cyclic translates of a set 0, A1, A2, . . . A2m with
successive differences

a1, a1, a2, a2, . . . , am, am.
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This yields a pseudomanifold (and usually a surface) if the ai are distinct, and the
surface will be orientable if the ai are odd. The key condition to look at is the
intersection property, which mandates that the consecutive partial sums of

N = A2m = a1 + a1 + a2 + a2 + . . .+ am + am

(other than the singleton sums) should be distinct. Datta suggests the choice
ai = 3i, which clearly works, but it is also easy to see that there are choices such
as ai := m2 + i− 1 that yield a sum f0 of order O(m3).

The open problem posed in my talk is whether sum of the ai can be achieved to
be A2m = O(m2), which would clearly be optimal. This asks for a construction of
such numbers ai resp. Ai such that all the differences Ai −Aj are distinct, except
for A2k−1 −A2k−2 = A2k −A2k−1 = ak. This asks for a variant of so-called Sidon
sets. See O’Bryant [10] for a recent survey.

5. A geometric construction

In the last part of the talk, I described a geometric construction that realizes
geometric (p, 2q)-surfaces in the boundary complex of a polytope of dimension
2 + p(q − 1), and hence (after a generic projection) in R5.

For this, we use an iterated wedge polytope, a simple 2 + p(q − 1)-polytope
W := ∆q−1 2 Cp with pq facets. We do not describe this polytope here; it arises
from a p-gon by p generalized wedge operations, as described in McMullen [9].

The dual polytope S := ∆q−1 ≀ Cp is a simplicial 2 + p(q − 1)-polytope that
arises from a p-gon by successively replacing each vertex by q new vertices that
span a (q− 1)-simplex, increasing the dimension by q− 1, with the given vertex in
its barycenter. The wreath product polytopes were described by Joswig & Lutz [8].

The vertices of W , and hence the facets of S, may be indexed by arrays

(k1, k2, . . . , ∗, ∗, . . . , kp),
with ki ∈ [q] and two cyclicly adjacent ∗s. Thus there are f0 = p qp−2 vertices.
The edges of the surface correspond to the arrays of the form

(k1, k2, . . . , ∗, ., . . . , kp),
with only one ∗, which yields f1 = p qp−1 edges. Finally, the faces of the surfaces
are p-gons given by those arrays of the form

(k1, k2, . . . , ., ., . . . , kp),

that additionally satisfy the condition
∑p
i=1 ki ≡ 0 or 1 (mod q). This yields a

count of f2 = 2 qp−1 for the faces of the geometric (p, 2q)-surface in question.
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[7] G. Károlyi and J. Solymosi, Almost disjoint triangles in 3-space, Discrete Comput. Geom-

etry 28 (2002), 577–583.
[8] F. H. Lutz and M. Joswig, One-point suspensions and wreath products of polytopes and

spheres, J. Combinatorial Theory, Ser. A 110 (2005), 193–216.
[9] P. McMullen, Constructions for projectively unique polytopes, Discrete Math. 14 (1976),

347–358.
[10] K. O’Bryant, A complete annotated bibliography of work related to Sidon sets, Electronic J.

Combinatorics (2004), no. DS11, http://www.combinatorics.org/Surveys/ds11.pdf.
[11] G. Ringel, Map Color Theorem, Grundlehren vol. 234, Springer-Verlag, New York, 1974.
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Additive Approximation for Edge-Deletion Problems

Noga Alon

(joint work with Asaf Shapira and Benny Sudakov)

A graph property is monotone if it is closed under removal of vertices and edges. In
this paper we consider the following algorithmic problem, called the edge-deletion
problem; given a monotone property P and a graph G, compute the smallest
number of edge deletions that are needed in order to turn G into a graph satisfying
P . We denote this quantity by E′

P (G). The first result of this paper states that the
edge-deletion problem can be efficiently approximated for any monotone property.

• For any fixed ǫ > 0 and any monotone property P , there is a deterministic
algorithm, which given a graph G = (V,E) of size n, approximates E′

P (G)
in linear time O(|V | + |E|) to within an additive error of ǫn2.

Given the above, a natural question is for which monotone properties one can
obtain better additive approximations of E′

P . Our second main result essentially
resolves this problem by giving a precise characterization of the monotone graph
properties for which such approximations exist.

(1) If there is a bipartite graph that does not satisfy P , then there is a δ > 0
for which it is possible to approximate E′

P to within an additive error of
n2−δ in polynomial time.

(2) On the other hand, if all bipartite graphs satisfy P , then for any δ > 0 it
is NP -hard to approximate E′

P to within an additive error of n2−δ.

While the proof of (1) is relatively simple, the proof of (2) requires several new ideas
and involves tools from Extremal Graph Theory together with spectral techniques.
Interestingly, prior to this work it was not even known that computing E′

P precisely
for the properties in (2) is NP -hard. We thus answer (in a strong form) a question
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of Yannakakis [1], who asked in 1981 if it is possible to find a large and natural
family of graph properties for which computing E′

P is NP -hard.
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On Applications of the Hypergraph Removal Lemma

József Solymosi

A new and powerful tool, an extension of Szemerédi’s Regularity Lemma [8] to
hypergraphs, has recently been proved by Rödl et al. [5]. Similar results with the
same consequences have been obtained independently by Gowers [2]. Inspired by
the method of [4] and [2], very recently Tao has given another proof of the main
results [9]. The following is an important consequence.

Theorem 1 (Removal Lemma [4, 2]). For any ǫ > 0 and k ≥ 2 integer, there is a
δ = δ(ǫ, k) > 0, such that if Hn

k contains at least ǫnk pairwise edge-disjoint cliques
then Hn

k contains at least δnk+1 cliques.

The Removal Lemma has many interesting consequences. Some of them are
straightforward applications like the following exercise.

Claim 2. For every c > 0 there is a number n0 = n0(c), such that if G(A,B) is
a bipartite graph, with minimum degree at least four, and |B| ≥ c|A|3 ≥ n0, then
G contains a K3,3 or a cube, Q3. (Q3 is equivalent to K4,4 −M, where M is a
perfect matching in K4,4.)

Other applications are more involved. Using hyperplane incidences one can define
hypergraphs which lead us to a combinatorial proof of the so called Multidimen-
sional Szemerédi Theorem, which was proved by Furstenberg and Katznelson [1]
using ergodic theory.

Theorem 3 ([1]). For every ǫ > 0, and every finite subset S of the d-dimensional
integer grid there is a positive integer N such that every subset X of the grid [N ]d

of size at least ǫNd has a subset of the form x+ tS for some positive integer t.

Theorem 4 ([7]). The Removal Lemma (Theorem 1) implies Theorem 3.

There are still many open questions, conjectures in extremal graph theory, where,
in its present form, hypergraph regularity is not enough. An interesting family of
problems can be formulated using linear hypergraphs. A hypergraph H is linear if
for any two edges e1, e2 ∈ H |e1 ∩ e2| ≤ 1. The special case, k = 2, of the Removal
Lemma implies the theorem of Ruzsa and Szemerédi [6].

Theorem 5 ([6]). If a 3-uniform linear hypergraph H on n vertices doesn’t contain
three distinct edges e1, e2, e3 forming a triangle, e1 = {a, b, ∗}, e2 = {a, c, ∗},
e3 = {b, c, ∗}, then the number of edges of H is o(n2). (In the positions marked by
∗, any vertex of H can appear.)
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An old conjecture of Frank and Rödl deals with 4-uniform hypergraphs.

Conjecture 6 (Frankl-Rödl, 1985). If a 4-uniform linear hypergraph H on n
vertices doesn’t contain four distinct edges e1, e2, e3, e4, where e1 = {a, b, c, ∗},
e2 = {a, d, ∗, ∗}, e3 = {b, d, ∗, ∗}, e4 = {c, d, ∗, ∗}, then the number of edges of H
is o(n2).

The next conjecture may be easier to prove and still had interesting consequences.

Conjecture 7. If a 4-uniform linear hypergraph H on n vertices doesn’t con-
tain four distinct edges e1, e2, e3, e4, where e1 = {a, b, c, ∗}, e2 = {a, d, e, ∗},
e3 = {b, d, ∗, ∗}, e4 = {c, e, ∗, ∗}, then the number of edges of H is o(n2).

The following is an easy extension of the k = 2 case of the Removal Lemma.

Claim 8. If a 5-uniform linear hypergraph H on n vertices doesn’t contain five
distinct edges e1, e2, e3, e4, e5 where e1 = {a, b, c, ∗, ∗}, e2 = {a, d, ∗, ∗, ∗}, e3 =
{b, d, ∗, ∗, ∗}, e4 = {b, e, ∗, ∗, ∗}, e5 = {c, e, ∗, ∗, ∗}, then the number of edges of H
is o(n2).
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Extremal infinite graph theory? A topological approach.

Reinhard Diestel

Extremal graph theory, understood broadly as the interaction of global graph
invariants such as average degree, connectivity or chromatic number with local
ones, such as the existence of certain substructures, accounts for much of the
research on finite graphs. Interestingly, there is no matching theory for infinite
graphs. We look at some of the reasons of why this is so, and how the relevant
concepts might be adapted to infinite graphs in such a way as to make an extremal-
type theory possible.
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One obvious difference between finite and infinite graphs relevant to the inter-
action of graph invariants as above is that while a large enough minimum degree
can force any desired minor in a finite graph, it forces no interesting substructure
in an infinite graph; indeed, infinite trees can have arbitrarily large degrees at
every vertex. This ‘unchecked spread’ of a locally finite infinite graph, however,
can be prevented: if we compactify it by adding its ends and then prescribe large
‘degrees’ also at the ends, we can wrap up the graph sufficiently to force at least
some structure. For example, if we define the degree of an end as the maximum
number of disjoint rays converging to it, we have the following result of Stein [6]:

Theorem 1. Any locally finite graph in which every vertex has degree at least
6k2 − 4k + 3 and every end has degree at least 6k2 − 9k + 5 has a k-connected
subgraph (finite or infinite).

Another, more subtle, reason why many extremal-type theorems have no infi-
nite counterpart lies in the fact that ordinary paths and cycles in an infinite graph
cannot always fulfil the structural role they play in a finite graph. For example, the
fact that in a finite planar graph 4-connectedness suffices to imply the existence
of a Hamilton cycle (Tutte 1956) says something about the plane; but there are
obviously no Hamilton cycles in an infinite graph that might similarly reflect the
restrictions placed on it by the assumption of planarity. Likewise, the well-known
tree-packing theorem of Nash-Williams and Tutte (1961) that a finite graph con-
tains k edge-disjoint spanning trees if and only if, for every vertex partition into
ℓ sets (say), it has at least k(ℓ − 1) edges joining different partition sets, fails for
infinite graphs. One way to view this is to say that infinite graphs ‘do not have
enough paths’ to form the spanning trees required.

However, if we define paths not combinatorially in a graph G itself but topo-
logically in its Freudenthal compactification |G|, we can use the additional paths
through the ends to form the cycles and trees required for infinite analogues of
those theorems. Call a homeomorphic image of S1 in |G| a circle, and a closed
subspace of |G| a topological spanning tree if it is path-connected and contains
all the vertices of G but no circle. Circles and topological spanning trees can be
characterized in various expected ways; see [2], in particular Lemma 8.5.6 and
Exercises 65 and 71.

For G finite, our new topological notions default to the usual finite cycles and
spanning trees. For infinite G, however, the additional connectivity at infinity
makes the following topological version of the tree-packing theorem possible [2]:

Theorem 2. The following assertions are equivalent for every locally finite multi-
graph G and positive integer k:

• |G| contains k edge-disjoint topological spanning trees.
• For every finite vertex partition, into ℓ sets say, G has at least k (ℓ − 1)

edges joining different partition sets.

Similarly, Tutte’s hamiltonicity theorem for 4-connected planar graphs now has
a meaningful infinite analogue. Call a circle in |G| a Hamilton circle of G if it
contains every vertex of G. Bruhn (see [2, 3]) has conjectured the following:
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Conjecture 3. Every 4-connected planar locally finite graph has a Hamilton circle.

Bruhn and Yu [1] have proved this for 6-connected graphs with finitely many ends.

In a similar vein, Georgakopoulos [5] has announced a proof of the infinite
analogue of Fleischner’s theorem, conjectured in [3, 4]:

Theorem 4. The square of any 2-connected locally finite graph has a Hamilton
circle.

Thomassen [7] had previously proved this for 1-ended graphs.

One would hope that these results are only the beginning of what might once
become a more fully developed topological analogue for infinite graphs of at least
those parts of finite extremal graph theory that deal with structures such as paths,
cycles, topological minors etc.
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The angel and the devil in three dimensions

Imre Leader

(joint work with Béla Bollobás)

The game of Angel and Devil appears in Berlekamp, Conway and Guy [1, 2],
and has been popularized by Conway (see for example [3]). It is played on the
infinite two-dimensional lattice, Z2. Two players alternate moves, the Angel and
the Devil. Initially, the Angel is at some square. On his turn, he may jump to
any square at distance at most c from his current square (it does not really matter
what sort of distance we use, but by convention one uses the ℓ∞ distance – in
other words, the Angel may jump to any square at a distance of c or less king’s
moves from his current square). On the Devil’s turn, he kills some square. The
Angel loses if he moves to a square that has been killed at some previous time by
the Devil, and wins if he can survive forever (without moving to a dead square).

The main question is: if c is large enough, does the Angel escape? Conway
offers $100 for a proof that the Angel escapes for large enough c, and $1000 for a
proof that the Devil always wins, whatever the value of c.
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Not much is known about this problem. It is known that for a very small speed,
like c = 1, the Devil wins. It is also known that if the Angel always moves upwards
(in other words, if each move is to a square with greater y-coordinate than the
current square) then the Devil wins. For these results, and related background
information, see Conway [3]. Most of the complexity of the problem seems to be
summarized by the observation that it seems that any particular strategy one tries
for the Angel can easily be defeated by the Devil, while any particular strategy
one tries for the Devil can easily be defeated by the Angel.

In this talk we shall consider what happens in more than two dimensions. Of
course, there is now ‘more space’ – for example, the set of points at distance n,
while only linear in n in Z2, grows faster in higher dimensions. It is reported
in [1, 2] that Körner (unpublished) has shown that, in very high dimension, the
Angel wins.

Our aim is to show that, in three dimensions, the Angel wins (if c is large
enough). There is a sense in which this result is best possible: it turns out that
there is a natural notion of ‘Angel and Infinitely Many Devils’, for which the Angel
still wins in three dimensions but cannot win in two dimensions.

We also make some stronger conjectures about three dimensions, that we have
been unable to prove. Interestingly, this work is linked with the two-dimensional
case. One conjecture in particular, the ‘Time-Bomb conjecture’ seems very central.

The fact that the Angel can escape in three dimensions has recently also been
proved, independently, by Martin Kutz [4].

For completeness, we state here the Time-Bomb Conjecture. Suppose we con-
sider (in Z3) the z-axis as a time axis. Then the three-dimensional game, with
the Angel moving up by one unit on each move, is exactly the same as the two-
dimensional game, in which at each move the Devil does not kill a square but just
announces that at one certain time that square will be dead. (The square is dead
for just that one unit of time. The Devil may make more that one such announce-
ment concerning any given square.) We call this the Time-Bomb game (in Z2).
To be more precise, on each turn the Angel moves to some square at distance at
most c from his current position, and the Devil announces a pair (p, t), where p is
a position and t is a positive integer. The Angel loses if, for some t, his tth move
is to a position p such that the pair (p, t) has already been named by the Devil.
This leads us to the following, which we call the Time-Bomb conjecture.

Conjecture 1. An Angel of speed 1 wins the Time-Bomb game in Z2.
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Random planar graphs

Stefanie Gerke

(joint work with Colin McDiarmid, Angelika Steger, and Andreas Weißl)

Planar graphs are well-known and well-studied combinatorial objects in graph
theory. Roughly speaking, a graph is planar if it can be drawn in the plane in
such a way that no two edges cross. A random planar graph Rn is a simple planar
graph that is drawn uniformly at random from the set P(n) of all simple planar
graphs on the node set {1, . . . , n}.

In order to investigate properties of random planar graphs, one has to cope with
the difficulty of the dependence of the edges: whether a particular edge can be
added, depends on the presence of other edges. This is a fundamental difference
to the well-known random graph model Gn,p, where each edge is present with
probability p independently of the presence or absence of all other edges.

The key step in investigating the behaviour of the random planar graph Rn is to
estimate the number of planar graphs. McDiarmid, Steger, and Welsh [5] showed
that

( |P(n)|
n!

)
1

n

→ γ as n→ ∞.

Giménez and Noy showed using generating functions and singularity analysis that
γ satisfies γ ≈ 27.2269 to four decimal places. More recently they give an explicit
analytic expression for γ, and show that

(1) |P(n)| ∼ g · n− 7

2 γn n!

where the constant g has an explicit analytic expression and is about 4.97 · 10−6

[4]. A corresponding expression for the number of 2-connected planar graphs was
given in [1]. This was a major step towards establishing (1).

To deduce certain properties of the random planar graph McDiarmid, Steger,
and Welsh [5] only needed that there exists such a planar graph growth constant
and not its exact value. In particular, they were able to show, among other results,
that a random planar graph Rn with high probability (w.h.p., that is, with prob-
ability tending to 1 as n tends to infinity) contains linearly many nodes of each
given degree, has linearly many faces of each given size in any embedding, and
contains linearly many node disjoint copies of any given fixed connected planar
graph. Additionally, and perhaps most surprisingly, they showed that the proba-
bility that Rn is connected is bounded away from zero and from one by non-zero
constants.

In [4] it is shown that the number of edges |E(Rn)| is asymptotically normally
distributed, with mean ∼ κn and variance ∼ λn, where the constants κ and λ
have explicit analytic expressions and κ ≈ 2.213 and λ ≈ 0.4303. In particular
this means that the expected number of edges of a random planar graph on n
nodes is approximately 2.213n, which was an open problem for quite some time.
Thus the average degree in Rn is about 4.416 w.h.p.. Lower and upper bounds
on the maximum degree are known (see [5]), but the asymptotic behaviour is not
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known. Furthermore, Giménez and Noy show in [4] additional limit laws for the
random planar graph, for instance that the number of 2-connected components
in a random connected planar graph and the number of appearances of a fixed
connected planar graph in a random planar graph are asymptotically normally
distributed.

We are interested in the class P(n,m) of (simple) labelled planar graphs on
n nodes with m edges, and in particular in P(n, ⌊qn⌋), where the average degree
is about 2q. As was shown in [2], for all 1 < q < 3 the random planar graph
Rn,q, which is drawn uniformly at random from the set P(n, ⌊qn⌋), has properties
similar to those of a random planar graph Rn. It is known [2] that for 0 ≤ q ≤ 3
there is a constant γ(q) such that

(2)

( |P(n, ⌊qn⌋)|
n!

)
1

n

→ γ(q) as n→ ∞.

(For q = 3, we interpret P(n, ⌊qn⌋) as the set P(n, 3n − 6) of triangulations.)
The limiting result (2) also holds with the same limiting value γ(q) if we replace
|P(n, ⌊qn⌋)| by |Pc(n, ⌊qn⌋)|, the set of connected graphs in P(n,m).

Let us first consider properties of the function γ(q), and then look more closely
at the limiting result. Recall that κ is the parameter for the mean of the number of
edges of the random planar graph Rn, and γ is the planar graph growth constant.

The function γ(q) on [0, 3] satisfies

(i) γ(q) = 0 for 0 ≤ q < 1, γ(1) = e, γ(κ) = γ, and γ(3) = 256/27.
(ii) γ(q) is continuous and log-concave on [1, 3], and it is strictly increasing on

[1, κ] and strictly decreasing on [κ, 3].
(iii) γ(q) is computable, and analytic on (1, 3).

Now let us look more closely at the limiting result (2), and give two directions
in which it can be strengthened, one allowing more freedom in the number of
edges and one being far more precise. First, if 1 ≤ q ≤ 3 and m = m(n) satisfies
n ≤ m ≤ 3n− 6 and m/n→ q as n→ ∞, then

(3)

( |P(n,m)|
n!

)
1

n

→ γ(q).

This result holds also if we replace P by Pc. These results follow from the proof
of Lemma 2.9 in [2], using also the fact that γ(q) is continuous on the right at 1.

Secondly, using analytic methods, Giménez and Noy [4] give rather precise
asymptotic expressions for |P(n, ⌊qn⌋)| and |Pc(n, ⌊qn⌋)|, for q ∈ (1, 3), which we
may write as:

(4) |P(n, ⌊qn⌋)| ∼ α(q) n−4γ(q)nn!

and similarly

(5) |Pc(n, ⌊qn⌋)| ∼ αc(q) n
−4γ(q)nn!,

where α(q) and αc(q) are constants.
As γ(q) = 0 for q < 1 and γ(1) = e, we know that γ(q) is discontinuous at 1

from the left. We can ‘explain’ this discontinuity as we approach 1 from below,
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by changing scale appropriately. More precisely, let β ≥ 0 be a constant. If
m = m(n) = n− (β + o(1))(n/ lnn) then

( |P(n,m)|
n!

)
1

n

→ e1−β as n→ ∞.

The main feature now left open about γ(q) is whether the slope stays finite as
q approaches 1 from above, and approaches 3 from below. This is not the case.
More precisely, since the function λ(q) = ln γ(q) is concave and finite on [1, 3], its
left and right derivatives exist in (1, 3) and are finite and non-increasing. Moreover
they tend to ∞ as q ↓ 1 and to −∞ as q ↑ 3.

Finally, since we know the approximate number of planar graphs we can deduce
the following property of Rn,q. Let 1 ≤ q < 3 and let H be a fixed connected planar
graph, where H must be a tree if q = 1, and for a graph G let f∗

H(G) denote the
maximum number of pairwise node disjoint copies of H contained in G. Then
there exists a constant α = α(H, q) > 0 such that

Pr[f∗
H(Rn,q) < αn] = e−Ω(n).

If we let H be a star on the nodes 1, . . . , k+1 with centre at node k+1 and look
a bit more careful at the proof we in fact obtain the following result. Let 1 ≤ q < 3,
let k be a positive integer, and for a graph G let dk(G) denote the number of nodes
with degree equal to k. Then there exists a constant αk = αk(q) > 0 such that

Pr[dk(Rn,q) < αkn] = e−Ω(n).

If we let H be a k-cycle on the nodes 1, . . . , k and use some connectivity results
[3] we obtain the following consequence. Let 1 < q < 3, let k ≥ 3 be an integer,
and for a planar graph G let fk(G) denote the number of faces of size k minimised
over all plane embeddings of G. Then there exists a constant βk = βk(q) > 0 such
that

Pr[fk(Rn,q) < βkn] = e−Ω(n).

We can also consider graph H which are growing with n and we obtain that
the maximum degree of a graph Rn,q is w.h.p. at most (1 + o(1)) logn/ log logn.
For more details see [3].
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An Exact Result for the Generalized Triangle

Oleg Pikhurko

The Turán function ex(n, F ) of a k-graph F is the maximum size of an F -free
k-graph H on n vertices. The Turán density of F is

π(F ) = lim
n→∞

ex(n, F )
(

n
k

) .

Determining ex(n, F ) for hypergraphs F is in general a very difficult problem.
For example, the $1000 prize of Erdős for computing the Turán function of the
complete 3-graph of order 4 is still unclaimed. Last decade saw a surge of activity
in this field, with the discovery of a variety of new results and methods.

Let us call a k-graph F stable if for any ε > 0 there are δ > 0 and n0 such that
any F -free k-graph of order n ≥ n0 and size at least ex(n, F ) − δnk can be made
into a maximum F -free k-graph by changing (removing or adding) at most εnk

edges. Any 2-graph is stable (Erdős [2], Simonovits [11]). Stability is useful for
the hypergraph Turán problem as it often helps in proving exact results (Füredi
and Simonovits [5], Keevash and Sudakov [7, 8], and other).

For example, using the stability approach Keevash and Mubayi [6] gave another
proof for the exact value of ex(n, T3) for n ≥ 33, where the generalized triangle Tk
is the k-graph with edges

{1, . . . , k}, {1, 2, . . . , k − 1, k + 1}, and {k, k + 1, . . . , 2k − 1}.

(The asymptotic result for ex(n, T3) follows from a paper of Bollobás [1] while the
exact result (for n ≥ 3000) was first obtained by Frankl and Füredi [3].)

Sidorenko [10] determined π(T4) while Frankl and Füredi [4] determined π(T5)
and π(T6). Both these papers use the so-call Lagrange polynomial of a hyper-
graph H ,

λH(y1, . . . , ym) =
∑

D∈H

∏

i∈D
yi,

and the the Lagrangian of H

ΛH = max{λH(y1, . . . , ym) | yi ∈ R, yi ≥ 0, y1 + · · · + ym = 1}
For example, Sidorenko proved that any T4-free 4-graph H satisfies

ΛH ≤ 1/44

which implies that π(T4) ≤ 4!/44 in view of inequality |H | ≤ n4λH where n is the
number of vertices of H . Since it is easy to show that π(T4) ≥ 4!/44 (just take the
maximum complete 4-partite 4-graph on n vertices), we have π(T4) = 4!/44.

In [9] we determine ex(n, T4) exactly.

Theorem. There is an n0 such that for all n ≥ n0 we have

ex(n, T4) =
⌊n

4

⌋

×
⌊n+ 1

4

⌋

×
⌊n+ 2

4

⌋

×
⌊n+ 3

4

⌋

,

and, moreover, the complete balanced 4-partite 4-graph is the unique extremal con-
figuration.
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Our proof goes by showing that T4 is stable. This in turn requires to establish
the appropriately defined stability property for the problem of maximizing λH
given that H is T4-free.

We still do not have the exact result for ex(n, Ti) for i ≥ 5. Our method seems
promising in attacking the cases k = 5, 6, given the results of Frankl and Füredi [4].
One of the difficult steps here is to prove that T5 and T6 are stable.

Also, this approach may be useful for other instances of the hypergraph Turán
problem where the asymptotic result can be obtained via Lagrangian.
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Erdős-Ko-Rado type theorems proven by analytical methods

Ehud Friedgut

(joint work with Irit Dinur)

By using discrete Fourier analysis one can prove several uniqueness and robust-
ness theorems concerning intersecting families. Here are some selected ones that I
mentioned in my talk.

Theorem 1 ([1]). Let 0 < ζ, let ζn < k < (1/2 − ζ)n and let A ⊂
(

[n]
k

)

be an

intersecting family. If |A| ≥ (1− ε)
(

n−1
k−1

)

then there exists a dictatorship B ⊂
(

[n]
k

)

such that

|A \ B| < cε

(

n− 1

k − 1

)

where c = c(ζ).
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Theorem 2 ([1]). Let t ≥ 1 be an integer, let 0 < ζ, let ζn < k < ( 1
t+1 − ζ)n and

let A ⊂
(

[n]
k

)

be a t-intersecting family.

If |A| ≥ (1 − ε)
(

n−t
k−t
)

. Then there exists a t-umvirate B ⊂
(

[n]
k

)

such that

|A \ B| < cε

(

n− t

k − t

)

where c = c(ζ).

It turns out that when k = o(n) every intersecting family is essentially contained
in a maximal one.

Theorem 3 ([2]). Let A ⊆
(

[n]
k

)

be an intersecting family. Then there exists a

dictatorship B such that |A \ B| = O
(

(

n
k−2

)

)

. (Note that in this range
(

n
k−2

)

=

o(
(

n
k−2

)

).)

This holds for finer precision too: Let r ≥ 2 be an integer and let A ⊆
(

[n]
k

)

be
an intersecting family. Then there exists an intersecting family B defined by at
most 2r − 3 elements such that

|A \ B| = O

((

n

k − r

))

.

This is easily seen to be tight.
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On a Geometric Generalization of McMullen’s Upper Bound Theorem

Uli Wagner

We consider the following generalization of McMullen’s Upper Bound Theorem
that was proposed by Eckhoff, Linhart, and Welzl [4, 5, 7]:

Conjecture 1. If A is an arrangement of n great hemispheres in Sd and 0 ≤ ℓ <
(n− d)/2, then the number of vertices of A at level at most ℓ is at most v(ℓ, n, d),
the corresponding number for an arrangement that arises by polar duality from the
vertex set of a cyclic d-polytope on n vertices. (The level of a vertex is the number
of hemispheres that it is not contained in.)

This has been verified for d = 2 [1], and for d = 3 if the intersection of the
hemispheres is nonempty [7]. Sharpening previous asymptotic bounds [3], we
show that for an arrangement of n affine halfspaces in Rd, the number of vertices
at level at most ℓ is at most 2v(ℓ, n, d). Our bound implies the conjecture up to a
factor of 4, and for ℓ < n/(d+ 1), it is tight up to a factor of 2. (The tight bound
for halfspaces is known for d ≤ 4 [5].)
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Our proof is based on the h-matrix of a linear program [6], a generalization
of the h-vector of a convex polytope: Given a arrangement A = {H1, . . . , Hn} of
halfspaces in general position in Rd and a generic linear functional ϕ, orient the
edges according to increasing ϕ-value. Out of the 2d edges incident to a vertex

v =
⋂

i∈B ∂Hi with basis B ∈
(

[n]
d

)

, consider the d edges that span the orthant
⋂

i∈B Hi. The out-degree of v is defined with respect to these edges, and we define
hj,ℓ(A, ϕ) as the number of vertices at level ℓ with out-degree j. (If the ℓ-level is
unbounded, then hj,ℓ may depend on ϕ.)

It suffices to bound the numbers h≤j,≤ℓ of vertices of level at most ℓ and out-
degree at most j, which reduces to a problem in extremal set theory. Let v1, . . . , vt
be these vertices, in order of increasing ϕ-value. With each vr, we associate the
following subsets of [n]: Let Br be the corresponding basis, let Ar be the set of
“labels” of outgoing edges at vr (each of these is determined by dropping one
element from Br), let Cr = {i : vr 6∈ Hi}, and let Dr = [n] \ Br. The quadrupels
(Ar, Br, Cr, Dr)

t
r=1 satisfy:

(1) For 1 ≤ r ≤ t, |Ar| ≤ j, Cr ≤ ℓ, |Br| = d, |Dr| = n−d, Ar ⊆ Br, Cr ⊆ Dr,
and Br ∩ Dr = ∅.

(2) For 1 ≤ r < s ≤ t, (Ar ∩ (Ds \ Cs) ∪ ((Br \Ar) ∩ Cs) 6= ∅.
Theorem 2. Any ordered sequence of quadrupels (Ar , Br, Cr, Dr)

t
r=1 with prop-

erties (1) and (2) satisfies

t ≤ 2

j
∑

i=1

(

n− d− ℓ+ j

i

)(

d− j + ℓ

d− i

)

= 2|B(n, d, j, ℓ)|,

where B(n, d, j, ℓ) = {B ∈
(

[n]
d

)

: |B ∩ [n − d − ℓ + j]| ≤ j}. Up to the factor of
2, this family provides an extremal example, by defining A = B ∩ [n− d− ℓ+ j],
D = [n] \B, and C = D ∩ [n− d− ℓ+ 1, . . . , n] and using any linear ordering.

The proof of this theorem uses exterior algebra and extends an earlier approach
by Alon and Kalai [2] for the classic Upper Bound Theorem (the case ℓ = 0, in
which case the bound in Theorem 2, without the factor of 2, is known as the Skew
Bollobás Theorem.)
Open Questions.

(1) Get rid of the factor of 2, which is an artefact of the proof.
(2) Prove lower bounds for halfspaces for n/(d + 1) ≤ j < (n − d)/2. These

would follow, for instance, from the existence of neighborly polytopes that
are perfectly balanced about the origin o, i.e., such that every hyperplane
through o has at least ⌊(n− d)/2⌋ vertices on either side.

(3) Define a good generalization of the h-matrix to spherical arrangements.
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Many Hamiltonian cycles

Jeff Kahn

(joint work with Bill Cuckler)

We discuss two theorems giving lower bounds on Hamiltonian cycle (HC) counts,
the first in Dirac graphs and the second in regular tournaments.

A graph is said to be Dirac if its minimum degree is at least n/2. Write Ψ(G)
for the number of HC’s in a graph G, and Ψ(n) for the minimum of Ψ(G) over
n-vertex Dirac graphs G. Nash-Williams [10] proved in 1971 that any Dirac graph
has at least ⌊ 5

224n⌋ edge-disjoint Hamiltonian cycles, so in particular this number is
a lower bound on Ψ(n). Bondy [4], on page 79 of the Handbook of Combinatorics,
and, according to [12], at several conferences, and also Bollobás [3] (p.1260 of
the same book), asked for estimates of Ψ(n). Sárkőzy et al. [12] proved, using
the regularity lemma, that Ψ(n) ≥ cnn! for some (small) constant c > 0, and
conjectured the following stronger statement.

Theorem 1 (B.C.-J.K.). For any n-vertex Dirac graph G, Ψ(G) ≥ n!/(2+o(1))n.

This is easily seen to be best possible (up to a factor (1 + o(1))n). In fact it
is best possible in a strong sense: Brégman’s Theorem ([5], formerly the Minc
Conjecture) on permanents of {0, 1}-matrices implies that for any (n/2)-regular
G one has Ψ(G) ≤ ((n/2)!)2 = O(

√
n2−nn!). More generally the following lower

bound matches the Brégman upper bound when G is regular of degree at least
n/2.

Theorem 2 (B.C. and J.K.). For d ≥ n/2, any n-vertex G of minimum degree at
least d satisfies Ψ(G) ≥ (d/(e+ o(1))n.

We again use Ψ(T ) for the number of HC’s in a tournament T , and recall that
a tournament is regular if each of its vertices has outdegree (n − 1)/2 (so n is
necessarily odd).

Theorem 3 (B.C.). For any regular, n-vertex tournament T , Ψ(T ) ≥ n!/(2 +
o(1))n.

This was proved in response to a question of Friedgut and Kahn [7], who asked
for a lower bound of the form nn−o(n), but turns out to also provide a strong
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answer to a much earlier question of C. Thomassen [14], who gave a lower bound
of about nn/3 and asked whether one could prove cnn! for some positive constant
c. (The analogous question for Hamiltonian paths was suggested in [15], where it
was attributed to C. Grinstead.)

By contrast, as more or less observed by Szele [13] (he considered paths rather
than cycles), the expected number of HC’s in a random (not necessarily regular)
tournament is ϕ(n) := 2−n(n − 1)!, and, as observed by Alon [2], Brégman’s
Theorem gives Ψ(T ) ≤ O(n3/2ϕ(n)) for any T . This upper bound was improved
slightly by Friedgut and Kahn [7], who speculated that the truth might actually
be O(ϕ(n)) (the analogous and equivalent possibility for paths was suggested by
Adler et. al. [1]), and that perhaps Ω(ϕ(n)) is a lower bound on Ψ(T ) for regular T .
In fact it could even be that this is true without the “Ω,” a possibility somewhat
supported by Wormald [16] (see also [1]), who gives asymptotic values for the
expected numbers of HC’s in several classes of random regular tournaments.

Our approach to Theorems 1-3 involves analysis of an appropriate self-avoiding
random walk, say X = (X1, . . . , Xl), on the graph or tournament in question. We
show that for some l = n − o(n/ logn) the number of possibilities for X is large
(at least as large as whatever lower bound we are aiming for) and that most of
these possibilities extend to HC’s.

For Theorem 3 the walk is just the natural one: the next vertex is chosen
uniformly from the as yet unvisited outneighbors of the current vertex. For The-
orems (1 and) 2 the walk is taken according to a weighting x : E → [0, 1] (i.e. the
next vertex is chosen from the as yet unseen neighbors of the current vertex with
probabilities proportional to the edge weights), which is required to be proper,
meaning

∑

e∋v xe = 1 for each v ∈ V . The key quantity associated with x is
its “entropy” (not really entropy since

∑

xe 6= 1), h(x) :=
∑

e xe log(1/xe). Our
main inequality says that, except in some fairly pathological situations, which are
handled by more conventional graph-theoretic arguments, the (ordinary) entropy
H(X) satisfies

H(X) ≥ 2h(x) − n log e− o(n).

This gives the desired lower bound on the number of possibilities for X when
combined with

Lemma 4. Any graph of minimum degree at least d ≥ n/2 admits a proper edge-
weighting x with h(x) ≥ (n/2) log d.

Most of our work involves showing, very roughly, that for each k, {X1 . . . Xk}
resembles a random k-subset of V . The proof of this is similar in spirit to the
celebrated “nibble” method (e.g. [11] or [9]), and involves, inter alia, (a) some
(easy) assertions about rapid mixing of the ordinary random walk corresponding
to X , and (b) use of Azuma’s inequality to show that various quantities associated
with X are well predicted by their expectations, where, fairly atypically, these
expectations are not fixed in advance, but are themselves functions of the evolving
sequence X . (This use of martingales was inspired by [8].)
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[12] G. Sárkőzy, S. Selkow, and E. Szemerédi, On the number of Hamiltonian cycles in Dirac

graphs, Discrete Mathematics 265 (2003), 237-250.
[13] T. Szele, Kombinatorikai vizsgalatok az iranyitott teljes graffal, kapcsolatban, Mt. Fiz.

Lapok 50 (1943), 223-256.
[14] C. Thomassen, Hamilton circuits in regular tournaments, Annals of Discrete Math. 27

(1985) 159-162.
[15] D. West, Open Problem Column 3, SIAM Activity Group Newsletter in Discrete Mathe-

matics (Summer 1991).
[16] N. Wormald, Tournaments with many Hamiltonian cycles, preprint.

Positional games

Michael Krivelevich

A positional game is a played on a finite board V , where a family of subsets (a
hypergraph) H , whose members are usually called winning sets, is specified. The
game is played by two players, taking turns in claiming previously unoccupied
elements of V , and ends whenever there are no unoccupied elements. In general,
there are two additional parameters, p and q, the first player takes p elements in
his turn, while the second one claims q elements.

There are several types of positional games. In the so called Strong Game, a
player completing a winning set A ∈ H first wins, otherwise the game ends in a
draw. In a Weak Game, the first player (Maker) wins if he completes a winning set
by the end of the game, otherwise the game is won by the second player (Breaker).
In the Avoider-Enforcer version, the first player (Avoider) aims to avoid occupying
a winning set completely, while the second player (Enforcer) tries to force Avoider
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to do just so. There are also hybrid versions, where, for example, the first player
acts both as Breaker and Avoider.

There is an amazing variety of recreational and mathematical games that can
be casted into the above described framework. Examples include Tic-Tac-Toe and
its multi-dimensional generalizations, the game of Hex played and studied by John
Nash, and various achievement games played on the edges of the complete graph
Kn, where for example Maker tries to create a Hamilton cycle, while Breaker aims
to prevent Maker from fulfilling his goal.

The mathematical origins of positional games can be traced back to two seminal
papers: that of Hales and Jewett from 1963 [5] (who studied multi-dimensional
Tic-Tac-Toe), and of Erdős and Selfridge from 1973 [4] (who obtained an ex-
tremely useful criterion for Breaker’s win in Maker-Breaker games). It was József
Beck though whose many papers on the subject, written during the last quarter
century, turned this fascinating subject into a mathematical discipline; his book
“Combinatorial games”, providing a thorough treatment of the subject, is about
to be published by Cambridge University Press [3].

In this survey-type talk we will introduce the subject of positional games, and
will define and discuss a variety of types of positional games. We will indicate
some typical approaches and tools available. Some recent results will be discussed
too. We will stress a perhaps surprising yet quite ubiquitous role of probabilistic
intuition in analyzing these deterministic games.
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Harmonic Analysis of Boolean Functions

Gil Kalai

Introduction. Harmonic analysis turned out to be a powerful tool in combina-
torics and especially so in combinatorial number theory and in extremal and prob-
abilistic combinatorics. To the already classical connections of Harmonic analysis
with additive number theory and with discrepancy theory, a surprising connection
to the study of Boolean functions was developed in the last two decades. Much
of the motivation and application came from questions in theoretical computer
science. I will briefly discuss the basic connection in this abstract.
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A Boolean function is a function f(x1, x2, . . . , xn) where each variable xi is
a Boolean variable, taking the value 0 or 1. The value of f is also 0 or 1.
A Boolean function f is monotone if f(y1, y2, . . . , yn) ≥ f(x1, x2, . . . , xn) when
yi ≥ xi for every i. Some basic examples of Boolean functions are named after
the voting method they describe. For an odd integer n, the majority function
M(x1, x2, . . . , xn) equals 1 if and only if x1 +x2 + · · ·+xn > n/2. The dictatorship
function is f(x1, x2, . . . , xn) = xi. Juntas refer to the class of Boolean functions
that depend on a bounded number of variables, namely functions that disregard
the value of almost all variables except for a few, whose number is independent
of n.

Harmonic analysis of Boolean functions can also be regarded as a fine study
of spectral properties of the graph of the discrete cube, and thus is related to
spectral graph theory. It is also connected to the field of discrete isoperimetric
inequalities, and related notions of concentration of measure (see [19]). Finally, in
the last few decades it turned out that very abstract general properties of Boolean
functions (and more general objects) are vary useful to study concrete problems in
probability and combinatorics. The FKG-inequality and the Shearer Lemma are
examples. The subject we describe can be regarded as another (related) example.

The basic definition. Let Ωn denote the set of 0-1 vectors (x1, . . . , xn) of length
n. Let L2(Ωn) denote the space of real functions on Ωn, endowed with the inner
product

(1) 〈f, g〉 =
∑

(x1,x2,...,xn)∈Ωn

2−nf(x1, . . . , xn)g(x1, . . . , xn).

The inner product space L2(Ωn) is 2n-dimensional. The L2-norm of f is defined
by

(2) ‖f‖2
2 = 〈f, f〉 =

∑

(x1,x2,...,xn)∈Ωn

2−nf2(x1, x2, . . . , xn).

Note that if f is a Boolean function, then f2(x) is either 0 or 1 and therefore
‖f‖2

2 =
∑

(x1,...,xn)∈Ωn
2−nf2(x) is simply the probability µ(f) that f = 1 (with

respect to the uniform probability distribution on Ωn).
For a subset S of [n] consider the function

(3) uS(x1, x2, . . . , xn) = (−1)
P

i∈S
xi .

It is not difficult to verify that the 2n functions uS for all subsets S form an
orthonormal basis for the space of real functions on Ωn.

For a function f ∈ L2(Ωn), the Fourier-Walsh coefficient f̂(S) of f is

(4) f̂(S) = 〈f, uS〉.

Since the functions uS form an orthogonal basis, we have 〈f, g〉 =
∑

S⊂[n] f̂(S)ĝ(S).

In particular, ‖f‖2
2 =

∑

S⊂[n] f̂
2(S). This relation is called Parseval’s formula.
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Example 1. Let M3 represents the majority function on three variables. The
Fourier coefficients of M3 are easy to compute: M̂3(∅) =

∑

(1/8)M3(x) = 1/2. In

general, if f is a Boolean function then f̂(∅) is the probability that f(x) = 1 and

when f is an odd Boolean function, f̂(∅) = 1/2. Next, M̂3({1}) = 1/8(M3(0, 1, 1)−
M3(1, 0, 1)−M3(1, 1, 0)−M3(1, 1, 1)) = (1−3)/8 and thus M̂3({j}) = −1/4, for j =

1, 2, 3. Next, M̂3(S) = 0 when |S| = 2 and finally M̂3({1, 2, 3}) = 1/8(M3(1, 1, 0)+
M3(1, 0, 1) +M3(0, 1, 1) − f(1, 1, 1)) = 1/4.

Connection with edge-expansion. Consider a Boolean function f(x1, . . . , xn)
and the associated event A ⊂ Ωn, such that f = χA, namely that f is the indicator
function of A. For x = (x1, x2, . . . , xn) ∈ Ωn we say that the kth variable is pivotal
if flipping the value of xk changes the value of f . Formally, let

(5) σk(x1, . . . , xk−1, xk, xk+1, . . . , xn) = (x1, . . . , xk−1, 1 − xk, xk+1, . . . , xn)

and define the kth variable to be pivotal at x if

(6) f(σk(x)) 6= f(x).

The influence of the kth variable on a Boolean function f , denoted by Ik(f), is
the probability that the kth variable is pivotal, i.e.,

(7) Ik(f) = µ({x : f(σk(x)) 6= f(x)})

The influence of a variable in a Boolean function and more general notions of
influences were introduced by Ben-Or and Linial [2] in the context of “collective
coin-flipping”.

The total influence I(f) is the sum of the individual influences.

(8) I(f) =

n
∑

k=1

Ik(f).

The relation between influences and Fourier coefficients is given by the following
expressions, whose proof is elementary:

(9) Ik(f) = 4
∑

S:k∈S
f̂2(S).

(10) I(f) = 4
∑

S⊂[n]

f̂2(S)|S|.

If f is monotone we also have Ik(f) = −2f̂({k}).

Hypercontractivity. It is surprising how far one can get with the simple base-
change of the Fourier-Walsh transform and Parseval’s formula. In addition there is
a certain hypercontractive (log-Sobolev) inequality by Bonami, Gross and Beckner
which played an important role.
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For a real function f : Ωn → R, f =
∑

f̂(S)uS , define the Lw-norm of a
function f to be

(11) ‖f‖w =

(

∑

x∈Ωn

2−n|f(x)|w
)1/w

.

Note that, due to the normalization coefficient 2−n in the definition, if 1 ≤ v < w
then ‖f‖v ≤ ‖f‖w.

Next define the operator

(12) Tρ(f) =
∑

S⊂[n]

f̂(S)ρ|S|uS ,

so that ‖Tρ(f)‖2
2 =

∑

S⊂[n] f̂
2(S)ρ2|S|. The Bonamie-Gross-Beckner (BGB) in-

equality asserts that for every real function f on Ωn,

(13) ‖Tρ(f)‖2 ≤ ‖f‖1+ρ2 .

Because this inequality involves two different norms, it is referred to as “hy-
percontractive”. The inequality can be regarded as an extension of the Khint-
chine inequality, which states that the different Lw-norms of functions of the form
∑

k αku{k} differ only by absolute multiplicative constants.
Here is a quick argument giving a flavor of the use of the Bonamie-Gross-Beckner

inequality. Note that for a Boolean function f and every w ≥ 1,

(14) ‖f‖ww = µ(f).

Let 0 < ρ < 1. Now, if a large portion of the L2-norm of f is concentrated
at “low frequencies” |S|, then ‖Tρ(f)‖2 will not be too much smaller than ‖f‖2.
The BGB inequality implies that in this case, ‖f‖1+ρ2 cannot be too much smaller
than ‖f‖2 either. This fact, however, cannot coexist with relation (14) if µ(f) is
sufficiently small.

More formally, suppose that µ(f) = s ≤ 1/2, and we will try to give lower
bounds for I(f). Parseval’s formula and relation 8 imply that I(f) ≥ 4(s − s2).
The classical edge-isoperimetric inequality asserts that I(f) ≥ 2s log2(1/s). Let
us try to understand the appearance of log(1/s).

Take ρ = 1/2 and thus 1 + ρ2 = 5/4. The BGB inequality and equation (14)
give

∑ f̂2(S)

22|S| ≤ ‖f‖2
5/4 = s1+3/5.

Noting that 22|S| < 1/
√

(s) for 0 < |S| < log2(1/s)/4,
∑

0<|S|<log(1/s)/4

f̂2(S) ≤ √
s · s3/5 ≤ K

√

s(1 − s)

for some constant K < 1, since s ≤ 1/2. This implies that a finite fraction of the

L2 norm of f is concentrated at Fourier coefficients f̂(S) where |S| ≥ K ′ log(1/s).
It then follows from relation (8) that I(f) ≥ K ′′(µ(f)(1 − µ(f)) log(1/µ(f)).
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Up to a multiplicative constant this gives the fundamental edge-isoperimetric
relation, but the information on Fourier coefficients, is even stronger.

Some applications. I will mention briefly a few developments and applications:

(1) A variable with a large influence. One of the earliest applications of these
ideas is [16] to show that every balanced Boolean function f on n variables
has a variable with influence at least C logn/n. This result is sharp up to
a multiplicative constant.

(2) First passage percolation: A similar argument [5] gives an improvement
for Kesten’s and Talagrand’s estimates for the variance and tail behavior
of ”First Passage Percolation”.

(3) Quantitative FKG: A beautiful application found by Talagrand gives a
quantitative version of the FKG inequality, see [21]

(4) Threshold phenomena refer to settings in which the probability for an event
to occur changes rapidly as some underlying parameter varies. A funda-
mental result by Russo connects this with influences. Some highlights in
developing this line of study are [9, 12, 7], for a recent applications where
this is one of several ingredients in the arguments see [6, 14, 1]. See also
the surveys [17, 13].

(5) Noise sensitivity: a notion considered in [4] with several applications and
nice connections. A recent highlight is [20].

(6) PCP, hardness of approximation and decay. Let me mention the works
of H̊astad [15], and Dinur and Safra [11] which gives important applica-
tions to the area of hardness of approximation for optimization problems.
Questions on the decay of Fourier coefficients comes naturally in this area
and some recent developments are in [8, 10].

(7) Khot and Vishnoi [18] used results on analysis of Boolean functions to
solve an old standing problem on embeddability of metric spaces.

(8) Erdős-Ko-Rado type theorems. A connection to this classical area of com-
binatorics was found by Friedgut, see his abstract in this collection.
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On the Erdős–T. Sós conjecture on trees

Miklós Simonovits

(joint work with Miklós Ajtai, János Komlós, and Endre Szemerédi)

We proved the famous Erdős–T. Sós conjecture on the extremal number of trees,
at least for large trees. The conjecture is motivated by the

Theorem 1 (P. Erdős and T. Gallai, [2], 1959).

ext(n, Pk) ≤ 1

2
(k − 2)n.

Here Pk is a k-vertex path, and ext(n,L) denotes the maximum number of edges
a graph Gn on n vertices can have without containing the “sample graph” L. This
is sharp, at least if n is divisible by k − 1, as shown by the union of n/(k − 1)
complete graphs Kk−1. Observe that for the star Sk (i.e., for a vertex x joined to
k − 1 other vertices) the same estimate holds (is trivial):

ext(n, Sk) ≤ (k − 2)n

2
.
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The tree and the star are two “extreme” trees. This motivates the Erdős–T. Sós
conjecture, according to which

ext(n, Tk) ≤ (k − 2)n

2

holds for any k-vertex tree Tk. Again, if true, this is sharp.
Our main result states that this conjecture holds if k > k0.

Theorem 2 (Main Theorem, Sharp). There exists an integer k0 such that if
k > k0 and for an arbitrarily fixed Tk, a graph Gn on n vertices contains no Tk
then

(1) e(Gn) ≤ 1

2
(k − 2)n.

The proof is rather involved, uses the regularity lemma, [3] a version of Tutte’s
theorem and a technique to be seen in the paper of Ajtai, Komlós and Szemerédi
on the Loebl’s conjecture [1] strongly related to the Erdős–Sós conjecture. (That
proof is much simpler!) First we prove a weaker theorem.

Theorem 3 (Main Theorem, Approximative). For every η > 0 there exists an

integer n0(η) such that if n, k > n0(η) and for an arbitrarily fixed tree Tk, a graph

Gn on n vertices contains no Tk, then

(2) e(Gn) ≤ 1

2
(k − 2)n+ ηn.

Then we apply stability arguments to get the sharp result. In the proof we
distinguish two cases: for a fixed but very large constant Ω either n ≤ Ωk (the
“bounded case”) or n > Ωk (the “unbounded case”).

Using the Regularity Lemma – at least in the “bounded case” – means that
we define the “Reduced Graph”, check if it contains a 1-factor, or an almost 1-
factor. If YES, then we use a “modified greedy” algorithm to embed Tk into Gn.
If NOT, then the “reduced graph” has a very special structure, because of the
Tutte theorem, or the Gallai-Edmonds theorem, and using this special structure,
we distinguish several cases which either reduce to the previous 1-factor case or
where we introduce two more “modified greedy algorithms”. (To be more precise,
when we reduce a non-1-factor case to the previous case, we do not get a 1-factor
in the “reduced graph”, only a so called “generalized 1-factor” and the proof of
the earlier case works also for this case.)

To embed the tree Tk into Gn, we partition Tk into small subtrees and embed
these small parts one by one into Gn, mostly into small randomlike bipartite
subgraphs of Gn provided by the Regularity Lemma.

In the “unbounded case” we partition the edges into two categories: BLACK
and GREY edges. The BLACK edges are covered by small dense random-looking
bipartite graphs. Then we classify the vertices of Gn basically in two three classes:
A,B,C, where C contains the large degrees, B the small degrees not covered by
our dense pairs, and A contains the vertices of low degrees, covered by our dense
pairs. Depending on, where are many edges in this partition we have to use two
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further embedding algorithms. In one of the critical cases we have to embed Tk
into Gn[A] (i.e. the subgraph spanned by A) and this case is somewhat similar to
the “bounded case”, but much more involved.
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Sparse ε-regular graphs

Angelika Steger

(joint work with Stefanie Gerke, Yoshiharu Kohayakawa, Martin Marciniszyn,
and Vojtěch Rödl)

Over the last decades Szemerédi’s regularity lemma [8] has proven to be a very
powerful tool in modern graph theory. Unfortunately, in its original setting it
only gives nontrivial results for dense graphs, that is graphs with Θ(n2) edges. In
1996 Kohayakawa [4] and independently Rödl introduced a variant which holds for
sparse graphs, provided they satisfy some additional structural conditions (which
essentially mean that the graph does not contain too dense spots). However,
using this sparse regularity lemma to prove e.g. extremal and Ramsey type results
similar to the known results in the dense case, requires as an additional step the
existence of appropriate embedding or counting lemmas. For the sparse case this
missing step has been formulated as a conjecture by Kohayakawa,  Luczak and
Rödl [5]. For a graph H , let G(H,n,m) be the family of graphs on vertex set
V =

⋃

x∈V (H) Vx, where the sets Vx are pairwise disjoint sets of vertices of size

n, and edge set E =
⋃

{x,y}∈E(H)Exy, where Exy ⊆ Vx × Vy and |Exy| = m.

Let G(H,n,m, ε) ⊆ G(H,n,m) denote the set of graphs in G(H,n,m) satisfying
that each (Vx ∪ Vy , Exy) is an (ε)-regular graph.

Conjecture 1 (K LR-Conjecture [5]). Let H be a fixed graph and

F(H,n,m) = {G ∈ G(H,n,m) : H is not a subgraph of G}.
For any β > 0, there exist constants ε0 > 0, C > 0, n0 > 0 such that for all
m ≥ Cn2−1/d2(H), n ≥ n0, and 0 < ε ≤ ε0,

|F(H,n,m) ∩ G(H,n,m, ε)| ≤ βm
(

n2

m

)|E(H)|
,

where d2(H) = max
{

|E(F )|−1
|V (F )|−2 : F ⊆ H, |V (F )| ≥ 3

}

.
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One of the key difficulties in the proof of the K LR-conjecture is the fact that
for m = o(n2) the size of a neighbourhood of a vertex is on average o(n). The
definition of regularity, however, only deals with linear sized subsets and thus
regularity seem to be not inherited by subgraphs induced on the neighborhoods
of some vertices. In a joint paper [1] with Gerke, Kohayakawa, and Rödl we were
recently able to prove that nevertheless in the sparse case a hereditary version
holds as well, at least in a probabilistic setting. This result readily implies much
shorter and elegant proofs of the results known so far, namely the case of cycles
Ck for all k ≥ 3 and for H = K4 and K5. In this talk we show that in fact
a much stronger property holds. Namely, small sets not only inherit with high
probability the regularity property, but they also satisfy with high probability all
properties that regular tuples satisfy with high probability. Among other things
this allows us to show that the KLR-conjecture holds for all complete graphs for
slightly larger number of edges than the conjectured value. In return, we can show
the existence of many copies instead of just one copy. That is, we get a so called
counting lemma.

Theorem 2 ([2]). For all ℓ ≥ 3, δ > 0, and β > 0, there exist constants n0 ∈ N,
C > 0, and ε > 0 such that

(1) |F(Kℓ, n,m, δ) ∩ G(Kℓ, n,m, ε)| ≤ βm ·
(

n2

m

)(ℓ

2)

provided that m ≥ Cn2−1/(ℓ−1), n ≥ n0, and 0 < ε ≤ ε0 and where F(Kℓ, n,m, δ)

denotes the family of graphs in G(Kℓ, n,m) that contain less than (1− δ)nℓ(mn2 )(
ℓ

2)

copies of Kℓ.

In the last part of the talk we also indicate that our results about inheritance
of ε-regularity can also be used to analyse online and semi-online Ramsey games
on random graphs [6, 7].
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Minors and Bounded expansion

Jaroslav Nešetřil

(joint work with Patrice Ossona de Mendez)

The concept of tree-width [12],[15] is central to the analysis of graphs with
forbidden minors of Robertson and Seymour. This concept gained much algorith-
mic attention thanks to the general complexity result of Courcelle about monadic
second-order logic graph properties decidability for graphs with bounded tree-
width [2],[3]. It appeared that many NP-complete problems may be solved in
polynomial time when restricted to a class with bounded tree-width. However,
bounded tree-width is quite a strong restriction, as planar graphs for instance do
not have bounded tree-width.

An alternative approach consists in the partition of graphs, such that p parts
induce a subgraph of tree-width at most (p− 1). Answering a question of Thomas
[14], DeVos et al. [4] proved that for any proper minor closed class of graphs C –
that is: any minor closed class C excluding at least one graph — and any integer p
there exists a constant N(C, p) such that the vertex set of any graph G ∈ C may be
partitioned into at most N(C, p) parts in such a way that any j ≤ p parts induce
a subgraph of tree-width at most (j − 1), what the authors call a low tree-width
partition of G. This proof, which relies on the Structural Theorem of Robertson
and Seymour [13] fails to be effective from a computational point of view.

It appears that low tree-width decomposition may be established in a more
general setting for classes with bounded expansion [9][6]. These results are re-
ported here together with the algorithmic analysis. The definition of bounded
expansion classes is based on a new graph invariant, the greatest reduced aver-
age degree (grad) with rank r of a graph G, ∇r(G). This invariant is defined by

∇r(G) = max |E(H)|
|V (H)| , where the maximum is taken over all the minors H of G

obtained by contracting a set of vertex-disjoint subgraphs with radius at most
r and then deleting any number of edges and vertices. A class of graphs C has
bounded expansion if supG∈C ∇r(G) <∞ for any integer r. Not only proper minor
closed classes of graphs have bounded expansion (as then ∇r is uniformly bounded
independently of r), but so are classes with bounded degree or some usual classes
arising from finite element meshes (as skeletons of d-dimensional simplicial com-
plexes with bounded aspect ratio [5]).

Theorem 1. For any class with bounded expansion C and any integer p there exists
a constant N(C, p) so that the vertex set of any graph G ∈ C may be partitioned
into at most N(C, p), any i ≤ p parts of them induce a subgraph of tree-width at
most (i− 1) [6] (actually, of tree-depth [10] at most i, what is sensibly stronger).
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Such decompositions are central to the resolution of homomorphism problems
like restricted homomorphism dualities [8] which provided the original motivation
for our research.

We gave a simple algorithm to compute such decompositions and prove that
if we restrict the input graph to some fixed class C with bounded expansion, the
running time of the algorithm may be bounded by a linear function of the order
of the graph (i.e. belongs to O(F (C, p)n)).

This result is applied to get a linear time algorithm for the subgraph isomor-
phism problem with fixed pattern and input graphs in a fixed class with bounded
expansion.

More generally, let φ be a first order logic sentence. We prove that graph
properties of type ∃X : (|X | ≤ p) ∧ (G[X ] � φ) may be decided in linear time for
input graphs in a fixed class with bounded expansion.

We also show that classes with sub-exponential expansion (which properly in-
cludes proper minor closed classes) have sub-linear vertex separators(see e.g. [1]).
This allows classic related approaches to solve reputed hard problems.
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The structure of bull-free graphs

Maria Chudnovsky

The bull is a graph with vertex set {x1, x2, x3, y, z} and edge set

{x1x2, x2x3, x1x3, x1y, x2z}.

Let G be a graph. We say that G is bull-free if no induced subgraph of G is
isomorphic to the bull. The complement of G is the graph with the same vertex
set as G, and two vertices are adjacent in the complement of G if and only if they
are non-adjacent in G. A clique in G is a set of vertices, all pairwise adjacent. A
stable set in G is a clique in the complement of G. We call a clique of size three
a triangle, and a stable set of size three a triad. Let A,B be two disjoint subsets
of V (G). We say that A is complete to B if every vertex of A is adjacent to every
vertex of B.

An obvious example of a bull free graph is a graph with no triangle, or a graph
with no triad; but there are others. Let us call a graph G an ordered split graph
if there exists an integer n such that the vertex set of G is the union of a clique
{k1, . . . , kn} and a stable set {s1, . . . , sn}, and si is adjacent to kj if and only if
i+ j ≤ n+ 1. It is easy to see that every ordered split graph is bull-free. A large
ordered split graph contains a large clique and a large stable set, and therefore
the tree classes (triangle-free, triad-free and ordered split graphs) are significantly
different.

It turns out, however, that all bull-free graphs can be built starting from graphs
that belong to a few basic classes, gluing them together by certain operations.
The basic classes we need are triangle-free graphs, triad-free graphs, a certain
generalization of the ordered split graphs, and a couple of others, that we will not
describe here. Let B denote the set of all bull-free graphs that belong to one of
the basic classes.

In order to state our main result, we need to introduce a few operations, that
will allow us to combine two smaller bull-free graphs together, to obtain a new,
larger, bull-free graph.

Operation O1 is the operation of complementation. The input of O1 is a graph
G1, and the output is the complement of G1.

Operation O2 is the operation of taking disjoint union of two graphs. The
input of O2 is a pair of graphs G1, G2, and the output is a new graph G3, with
V (G3) = V (G1) ∪ V (G2) and E(G3) = E(G1) ∪ E(G2).

Operation O3 is defined as follows. The input of O3 is a pair of graphs G1, G2,
and ordered subsets A1, B1 of V (G1) and A2, B2 of V (G2), with the following
properties:

• A1, B1, A2, B2 are stable sets, with |A1| = |A2| and |B1| = |B2|.
• A1 is complete to B1, and A2 to B2.
• For i = 1, 2 let G′

i be the graph obtained from Gi by adding two new
vertices ai, bi such that {ai} is complete to Ai and {bi} to Bi, and there
are no other edges incident with ai, bi. Then both G′

1 and G′
2 is bull free.
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Under these circumstances, the result of applying O3 to G1, G2, A1, B1, A2, B2 is
the graph G3, obtained from the disjoint union of G1 and G2 by identifying the
corresponding vertices of A1 and A2, and the corresponding vertices of B1 and B2.

Operation O4 is the operation of substitution. The input of O4 is a pair of
graphs G1, G2 and a vertex v ∈ V (G1). The output is a new graph G3, with
V (G3) = V (G1) ∪ V (G2) \ {v} and E(G3) = E(G1 \ {v}) ∪ E(G2) ∪ {xy : x ∈
V (G1) \ {v}, y ∈ V (G2), and xv ∈ E(G1)}. Please note that unlike all the
previous operations, O4 is not symmetric between G1 and G2.

We remark that if the input graphs of the operations O1, . . . ,O4 are bull free,
then so are the outputs.

Let us now state our main result.

Theorem 1. Let G be a bull-free graph. Then either G ∈ B, or G can be obtained
starting from graphs in B, by repeated applications of operations O1, . . . ,O4. Con-
versely, every graph obtained in this way is bull-free.

We now proceed to describe an application of Theorem 1. The Erdős-Hjanal
conjecture [1] states that for every graph H , there exists a constant 0 < δ(H) ≤ 1,
such that if a graph G does not contain an induced subgraph isomorphic to H ,
then G has a stable set or a clique of size |V (G)|δ(H). In joint work with S.Safra
[2], using the structure theorem described above, we were able to settle the Erdős-
Hajnal conjecture for the case when H is the bull. We show that:

Theorem 2. Let G be a bull free graph. Then G contains a stable set or a clique

of size |V (G)| 14 .

In order to prove Theorem 2, we prove inductively, using Theorem 1, that every
bull-free graph G can be covered by at most |V (G)| 12 induced subgraphs of G,
each of which is perfect. It follows that there exists an induced subgraph H of G,

containing at least |V (G)| 12 vertices, and such that H is perfect. Consequently,

H contains a stable set or a clique of size |V (H)| 12 ≥ |V (G)| 14 , and Theorem 2
follows.
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Semidefinite programming bounds for codes and coloring

Monique Laurent

We consider the problem of computing the maximum size A(n, d) of a binary code
of word length n and minimum distance at least d. The problem can obviously be
cast as the problem of finding the stability number α(G) of the graph G = H(n,D)
with node set {0, 1}n and with an edge (u, v) if the Hamming distance of d(u, v)
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lies in the set D := {1, . . . , d−1}. (The techniques apply in fact to the case of any
subset D ⊆ {1, . . . , n}.)

A number of semidefinite hierarchies for α(G) have been introduced in the
literature, that find α(G) in α(G) steps; in particular, by Lovaśz and Schrijver
[5] and Lasserre [3]. We consider the hierarchy of Lasserre, which is known to
be tightest. It is easy to see that, at any fixed stage in the hierarchy, the bound
can be computed (to an arbitrary precision) in time polynomial in |V (G)|. For
Hamming graphs, we show that the bound can be computed in time polynomial in
n (while |V (G)| = 2n); this is based on exploiting the large automorphism group
of Hamming graphs and applying a result of de Klerk, Pasechnik and Schrijver [1]
about the regular ∗-representation for matrix ∗-algebras.

The Delsarte bound for A(n, d) is the first bound in the hierarchy, and the new
bound of Schrijver [6] is located between the first and second bounds in the hier-
archy. While computing the second bound involves a semidefinite program with
O(n7) variables and thus seems out of reach for interesting values of n, Schrijver’s
bound can be computed via a semidefinite program of size O(n3), a result which
uses the explicit block-diagonalization of the Terwilliger algebra. We propose some
strengthenings of Schrijver’s bound with the same computational complexity; in
particular, a parameter ℓ(G) which gives better upper bounds on A(n, d) on some
instances.

Together with Nebojsa Gvozdenović, we also study the problem of approximat-
ing the chromatic number χ(G) of a Hamming graph G = H(n,D). Any upper

bound β(G) on the stability number α(G) yields the obvious lower bound |V (G)|
β(G)

for χ(G). For β(·) = ℓ(·), this new bound substantially improves the classic lower
bound ϑ(Ḡ) given by the theta number (and the strengthenings of Szegedy and
Meurdesoif obtained by adding nonnegativity and triangle inequalities).

We propose a simple construction for yet stronger lower bounds for χ(G).
Namely, we introduce a simple operator Ψ which maps any graph parameter β(·),
nested between α(·) and χ̄(·), to a new graph parameter Ψβ(·), nested between
ω(·) and χ(·), in the following way:

Ψβ(G) := min
l∈N

β(Kl�G),

where Kl�G is the Cartesian product of G and the clique Kl. Among other
properties, Ψα = χ, Ψχ̄∗ = Ψχ̄ = ω, Ψϑ = ⌈ϑ̄⌉, and if β(·) is polynomial time
computable (resp., given by a semidefinite program) then the same holds for Ψβ(·).
As an application, there is no polynomial time computable graph parameter nested
between χ∗(·) and χ(·) unless P=NP. Under some mild assumption, Ψβ(G) ≥
|V (G)|
β(G) . For β(·) = ℓ(·), Ψℓ(G) gives an improved lower bound for some Hamming

graphs. To be able to compute Ψℓ(G), we apply some symmetry reduction due
to the action of the permutation group Sym(l) on Kl�G and we use again the
block-diagonalization of the Terwilliger algebra.
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Max Cut in dense graphs

Benny Sudakov

The well-known Max Cut problem asks for the largest bipartite subgraph of a graph
G. This problem has been subject of extensive research, both from the algorithmic
perspective in computer science and the extremal perspective in combinatorics.
Let n be the number of vertices and e be the number edges of G and let b(G)
denote the size of the largest bipartite subgraph of G. The extremal part of Max
Cut problem asks to estimate b(G) as a function of n and e. This question was
first raised almost forty years ago by P. Erdős [7] and attracted a lot of attention
since then (see, e.g., [3, 2, 4, 1, 11, 10, 9, 5, 6]).

It is well known that every graph G with e edges can be made bipartite by
deleting at most e/2 edges, i.e., b(G) ≥ e/2. To see this just consider a random
partition of vertices of G into two parts V1, V2 and estimate the expected number
of edges in the cut (V1, V2). A complete graph Kn on n vertices shows that the
constant 1/2 in the above bound is asymptotically tight. Moreover, this constant
can not be improved even if we consider restricted families of graphs, e.g., graphs
that contain no copy of a fixed forbidden subgraph H . We call such graphs H-
free. Indeed, using sparse random graphs one can easily construct a graph G with
e edges such that it has no short cycles but can not be made bipartite by deleting
less than e/2 + o(e) edges. Such G is clearly H-free for every forbidden graph H
which is not a forest. It is a natural question to estimate the error term b(G)−e/2
as G ranges over all H-free graph with e edges. We refer interested reader to
[3, 2, 1, 11], where such results were obtained for various forbidden subgraphs H .

In this paper we restrict our attention to dense (e = Ω(n2)) H-free graphs
for which it is possible to prove stronger bounds for Max Cut. According to a
long-standing conjecture of Erdős [8], every triangle-free graph on n vertices can
be made bipartite by deleting at most n2/25 edges. This bound, if true, is best
possible (consider an appropriate blow-up of a 5-cycle). Erdős, Faudree, Pach
and Spencer proved that for triangle-free G of order n it is enough to delete
(1/18 − ǫ)n2 edges to make it bipartite. They also verify the conjecture for all
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graphs with at least n2/5 edges. Some extensions of their results were further
obtained in [10]. Nevertheless this intriguing problem remains open. Erdős also
asked similar question for K4-free graphs. His old conjecture (see e.g., [9]) asserts
that it is enough to delete at most (1 + o(1))n2/9 edges to make bipartite any
K4-free graph on n vertices. Here we confirm this in the following strong form.

Theorem 1. Every K4-free graph G with n vertices can be made bipartite by
deleting at most n2/9 edges. Moreover, the only extremal graph which requires
deletion of that many edges is a complete 3-partite graph with parts of size n/3.

This result can be used to prove the following asymptotic generalization.

Corollary 2. Let H be a fixed graph with chromatic number χ(H) = 4. If G is
a graph on n vertices not containing H as a subgraph, then we can delete at most
(1 + o(1))n2/9 edges from G to make it bipartite.
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Pairwise colliding permutations and the capacity of infinite graphs

János Körner

(joint work with Claudia Malvenuto)

We call two permutations of the first n naturals colliding if they map at least one
number to consecutive naturals. We give bounds for the exponential asymptotics
of the largest cardinality of any set of pairwise colliding permutations of [n]. We
relate this problem to the determination of the Shannon capacity of an infinite
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graph and initiate the study of analogous problems for infinite graphs with finite
chromatic number.

Let n be an arbitrary natural number and let [n] be the set of all natural
numbers from 1 to n. We will say that two permutations of [n] are colliding if they
map at least one element of [n] into two consecutive numbers, i.e. into numbers
differing by 1. It is then natural to ask for the determination of the maximum
cardinality ρ(n) of a set of pairwise colliding permutations of [n]. One easily
sees that this number grows exponentially with n and its asymptotic exponent

lies between log2
1+

√
5

2 and 1. We will improve the lower bound to 1
4 log 10. We

conjecture the upper bound to be tight.
Certain graphs having as vertex set the permutations of [n] have been intro-

duced before by Cameron and Ku [1] and Larose and Malvenuto [2] These authors
considered Kneser–type graphs in which they studied the growth of stable sets
describing sets of permutations that are “similar” in some sense, whereas our def-
inition of adjacency corresponds to being “different” and distinguishable in some
other, particular sense. In fact, the above Kneser–type problems, unlike ours, have
no immediate relation to capacity in the Shannon sense.

We will generalize our introductory problem in several ways. We will consider
arbitrary infinite graphs over the natural numbers and introduce various new con-
cepts of capacity. As always, graph capacity measures the exponential growth rate
of the largest cliques induced on the Cartesian powers of the vertex set of a graph.
In case of an infinite vertex set such as the naturals this is not always interesting,
for the graph in itself might have infinite cliques. Then it is reasonable to restrict
our attention to particular subsets of the power sets, e. g. those representing
permutations. We will present some simple bounds for the value of new capacities
so obtained.
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The relative strength of topological graph colouring obstructions

Carsten Schultz

In the proof of Kneser’s Conjecture, Lovász has shown that if the neighbourhood
complex of a graph G is (k − 1)-connected, its chromatic number is at least k+2.
Later formulations of this theorem replace the neighbourhood complex by the
complex Hom(K2, G), which is homotopy equivalent to it. One variant of this
theorem is the following.

Theorem 1 ([4, 1]). Let G be a graph with at least one edge. Then

cohom-indZ2
Hom(K2, G) ≤ χ(G) − 2.
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For graphs H and G, the cell complex Hom(H,G) has the graph homomor-
phisms from H to G as 0-cells, while the higher dimensional cells are indexed by
multi-homomorphisms, functions which assign to every vertex of H a non-empty
set of vertices of G such that every choice of one of these for every vertex of H
yields a graph homomorphism. An involution on H which flips an edge makes
Hom(H,G) into a free Z2-space. The emphasis on the cohomological index of
the Z2-action comes from the work of Babson & Kozlov on the following theorem
which proves a conjecture by Lovász.

Theorem 2 ([2, 5]). Let G be a graph with an odd cycle and r ≥ 1. Then

cohom-indZ2
Hom(C2r+1, G) ≤ χ(G) − 3.

Previous proofs of this theorem can be summarized at follows. One studies the
complex Hom(C2r+1,Kn). This is the hard part. Then the functorality of Hom
in the second argument is used to deduce information on Hom(C2r+1, G) from the
existence of an n-colouring of G, i.e. from Hom(G,Kn) 6= ∅.

Extending an elegant partial proof of Theorem 2 by Živaljević [6, 7], we present
a simpler way of obtaining the desired information on Hom(C2r+1,Kn), or even
Hom(C2r+1, G) for an arbitrary graph G. This uses the idea that Hom is not only
functorial, but that there is a continuous map extending composition of homomor-
phisms, in this case

Hom(K2, C2r+1) × Hom(C2r+1, G) → Hom(K2, G).

Using properties of this map and of the Z2-actions on Hom(K2, C2r+1) induced by
involutions on K2 and C2r+1 we obtain the following result.

Theorem 3. Let G be a graph with an odd cycle and r ≥ 1. Then

cohom-indZ2
Hom(C2r+1, G) + 1 ≤ cohom-indZ2

Hom(K2, G).

This reduces Theorem 2 to Theorem 1. It therefore proves Theorem 2 in a
simple way, but also shows that lower bounds on the chromatic number that can
be obtained from it can also be obtained from the complex Hom(K2, G) originally
studied by Lovász.

Theorem 3 can be generalized as follows.

Theorem 4. Let G,G′ be graphs with involutions, the involution on G flipping
an edge, and k ≥ 1. If

• coindZ2
Hom(G,G′Z2) ≥ k − 1,

• there is a graph homomorphism from G to G′ that commutes with the
involutions, and

• Hom(G,G′) is (k − 1)-connected,

then

cohom-indZ2
Hom(G′, H) + k ≤ cohom-indZ2

Hom(G,H)

for all graphs H with Hom(G′, H) 6= ∅.
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Here, G′Z2 is a graph whose vertex set is the set of all orbits of the involution
on G′. Its edge set is the largest one such that the map V (G′Z2) → P(V (G′))
assigning to each orbit the orbit itself is a multi-homomorphism.

This theorem can be applied to yield a result analogous to Theorem 2, with
circuits of chromatic number 3 replaced by Kneser graphs of chromatic number 4.
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Matching points to hyperplanes

Anders Björner

Let P ⊆ Rd and H = {hyperplanes spanned by P}, and assume that the affine
span of P is Rd. We are concerned with the problem:

does there exist an injective mapping f : P → H such that p ∈ f(p)
for all p ∈ P?

We call such a mapping a matching.

Conjecture 1. For every dimension d and all subsets P ⊆ Rd there exists a
matching f : P → H.

It follows from a result of matroid theory [2] (based on Hall’s marriage theorem)
that the conjecture is true for all finite sets P . The case P = Rd is easy to verify
via an explicit construction. The case of general infinite sets is, however, less
obvious. Here is what we can prove.

Theorem 2. Let P ⊆ Rd and H = {hyperplanes spanned by P}. Suppose that
one of the following three conditions is satisfied:

(i) d = 2,
(ii) d = 3, 4 and the cardinal |P | is regular,

(iii) |P | < ℵω.
Then there exists a matching f : P → H.
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From condition (iii) we draw the following conclusion.

Corollary 3. The Continuum Hypothesis implies Conjecture 1.

In this connection we would like to point out the existence of results in Euclidean
combinatorics that depend on the choice of axioms for set theory. E.g., Shelah and
Soifer [4] construct a graph on the real line whose chromatic number is 2 assuming
the Axiom of Choice, and is greater than ℵ0 (if it exists) using another consistent
axiom system for R.

A proof of the theorem appears in [1]. Part (i) is proved via a direct geometric
construction. For the other parts one works in the setting of geometric lattices,
which provides a convenient framework for inductive resoning starting from the
d = 2 case. This part uses the transversal theorem of Milner and Shelah [3] in an
essential way.

It is in the course of the induction arguments that one runs into trouble with
singular cardinals, a circumstance that necessitates the cardinality restrictions
imposed in parts (ii) and (iii). As expressed in the conjecture, we believe that
these problems can be overcome. However, examples such as those of Shelah-Soifer
[4] are healthy reminders of the conceivable dependence on extra hypotheses, such
as CH, for certain combinatorial properties of real space.
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Szemerédi’s regularity lemma and compactness

Balázs Szegedy

(joint work with László Lovász)

Szemerédi’s regularity lemma is a fundamental tool in graph theory: it has many
applications in extremal graph theory, in the area called “Property Testing”, com-
binatorial number theory, etc. Here we present the regularity lemma as a result
in analysis. The motivation for this analytic language is comming from the paper
[3] where we introduce a convergence notion for graph sequences. Roughly speak-
ing, a graph sequence Hi is convergent if the density of any fixed graph G in the
members of the sequence tends to a limit f(G). We prove in [3] that for every
convergent graph sequence Hi there is a “natural” limit object from which the
limits of the subgraph densities can be read off. These objects are two variable
measurable functions w : [0, 1]2 7→ [0, 1] such that w(x, y) = w(y, x) for every
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x, y ∈ [0, 1]. Let W0 denote the set of all such functions and let W denote the
space of all bounded measurable functions w : [0, 1]2 7→ [0, 1]. We consider the
following norm on W :

‖W‖� = sup
S,T⊆[0,1]

∣

∣

∣

∣

∣

∣

∫

S×T

W (x, y) dx dy

∣

∣

∣

∣

∣

∣

.

For the case of matrices, this norm is called the “cut norm”; various important
properties of it were proved by Alon and Naor [2] and by Alon, Fernandez de la
Vega, Kannan and Karpinski [1]. We define the density of a graph G in an element
w ∈ W0 with

t(G,w) =

∫

x1,x2,...,xn

∏

(i,j)∈E(G),i<j

w(xi, xj) dx1 dx2 . . . dxn

where the vertex set of G is assumed to be {1, 2, . . . , n}. Let φ : [0, 1] 7→ [0, 1] be
a measurable function and for w ∈ W let wφ denote the function with wφ(x, y) =
w(φ(x), φ(y)). It is easy to see that t(G,w) = t(G,wφ) if G is a graph, w ∈ W0

and φ is measure preserving. This motivates the following distance

δ�(U,W ) = inf
φ,ψ

‖Uφ −Wψ‖�,

where φ and ψ range over all measure preserving maps [0, 1] → [0, 1]. Let X0

denote the space which is obtained from W0 by identifying elements whose δ�
distance is 0. We prove that

Theorem 1. The metric space (X0, δ�) is compact.

It turns that this theorem implies the regularity lemma and some of its stronger
versions.
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Excluded subposets in the Boolean lattice

Gyula O.H. Katona

Let [n] = {1, 2, . . . , n} be a finite set, families F ,G, etc. of its subsets will be

investigated.
(

[n]
k

)

denotes the family of all k-element subsets of [n]. Let P be a
poset. The goal of the present investigations is to determine the maximum size of a
family F ⊂ 2[n] which does not contain P as a (non-necessarily induced) subposet.
This maximum is denoted by La(n, P ). In some cases two posets, say P1, P2 could
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be excluded. The maximum number of subsets is denoted by La(n, P1, P2) in this
case.

The easiest example is the case when P consist of two comparable elements.
Then we are actually looking for the largest family without inclusion that is with-
out two distinct members F,G ∈ F such that F ⊂ G. The well-known Sperner
theorem ([4]) gives the answer, the maximum is

(

n
⌊n

2
⌋
)

.

We say that the distinct sets A,B1 . . . , Br form an r-fork if they satisfy A ⊂
B1, . . . , Br. A is called the handle, Bis are called the prongs of the fork. On
the other hand, the distinct sets A,B1 . . . , Br form an r-brush if they satisfy
B1, . . . , Br ⊂ A. The r-forks and the r-brush are denoted by F (r), B(r), re-
spectively. An old theorem solves the problem when the 2-fork and the 2-brush
are excluded.

Theorem 1 ([3]).

La(n, F (2), B(2)) = 2

(

n− 1

⌊n−1
2 ⌋

)

.

The optimal construction is the family

F =

{

F : F ∈
(

[n− 1]

⌊n−1
2 ⌋

)}

⋃

{

F ∪ {n} : F ∈
(

[n− 1]

⌊n−1
2 ⌋

)}

.

We have proved the following theorem in a paper appearing soon.

Theorem 2 ([2]). Let n ≥ 3. If the family F ⊆ 2[n] contains no four distinct sets
A,B,C,D such that A ⊂ C,A ⊂ D,B ⊂ C,B ⊂ D, then |F| cannot exceed the sum
of the two largest binomial coefficients of order n, i.e., |F| ≤

(

n
⌊n/2⌋

)

+
(

n
⌊n/2⌋+1

)

.

Following the suggestion of J.R. Griggs, such a family could be called a butterfly-
free meadow. The optimal construction here is obvious, one can take all the subsets
of sizes ⌊n/2⌋ and ⌊n/2⌋ + 1.

In all of these cases the maximum size of the family is exactly determined. This
is not true when the r-fork is excluded. In a paper under preparation A. De Bonis
and the present author proved the following theorem.

Theorem 3 ([1]).
(

n

⌊n2 ⌋

)(

1 +
r

n
+O(

1

n2
)

)

≤ La(F (r + 1)) ≤
(

n

⌊n2 ⌋

)(

1 + 2
r

n
+O(

log n

n3/2
)

)

.

A weaker version of the upper bound in this theorem was obtained in [5]: the
constant in the second term was larger. There is still a gap between the lower and
upper bounds in the second term: a factor 2. This however seems to be a serious
difficulty. The best construction (lower bound) contains all sets in one level and a
thinned next level.

Let the poset N consist of 4 elements illustrated here with 4 distinct sets sat-
isfying A ⊂ B,C ⊂ B,C ⊂ D. We were not able to determine La(n,N) for a
long time. Recently, a new method jointly developed by J.R. Griggs, helped us to
prove the following theorem.
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Theorem 4.
(

n

⌊n2 ⌋

)(

1 +
1

n
+ o(

1

n
)

)

≤ La(n,N) ≤
(

n

⌊n2 ⌋

)(

1 +
2

n
+ o(

1

n
)

)

.
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Extremal Subgraphs of Random Graphs

Graham Brightwell

(joint work with Konstantinos Panagiotou and Angelika Steger)

It is well-known that most large triangle-free graphs are bipartite. Specifically,
Osthus, Prömel and Taraz [3], and independently Steger [4] showed that, if m ≥
Cn3/2

√
logn, for C a suitable constant, then the number of triangle-free graphs

with n vertices and m edges is asymptotically equal to the number of bipartite
graphs with n vertices and m edges.

We consider a problem of a similar flavour. Let G = G(n,m) = (V,E) be a
random graph with |V | = n and |E| = m. Let T (G) be a largest subset of E
containing no triangle, and let B(G) be a largest subset of E such that (V,B(G))
is bipartite. We always have |T (G)| ≥ |B(G)|, but for what range of m = m(n)
do we asymptotically almost surely have equality?

For Π a bipartition or cut of V (G), let Π(G) denote the set of edges going across
the partition, i.e., joining vertices in opposite parts. Then |B(G)| is the maximum,
over bipartitions Π, of |Π(G)|: this is the size of a maximum cut in G, and is much
studied.

The maximum cut in a random graph is normally of more interest if m is smaller,
say around cn, for c a constant. As c increases from 1

2 to ∞, E|B(G)|/m decreases

from 1 to 1
2 . There has been some recent work (see, e.g.,[2]) pinning down this

behaviour more precisely. In the range we are considering, |B(G)| exceeds m/2 by
at most about C

√
mn.

In a 1990 paper, Babai, Simonovits and Spencer [1] proved that there is a
positive constant δ such that, for m ≥ (1

2 − δ)
(

n
2

)

,

Pr
(

|T (G(n,m))| = |B(G(n,m))|
)

→ 1 as n→ ∞ (∗).

Perhaps what is most striking about this result is its domain of validity. It seems
unlikely that the property (∗) has a threshold for m a constant proportion of
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(

n
2

)

; indeed, Babai, Simonovits and Spencer asked whether this result could be

extended to cover all m ≥ ε
(

n
2

)

, for ε > 0 constant.

As far as we know, (∗) could hold whenever m = m(n) ≥ n3/2+ε, for arbitrary

ε > 0. The property does not hold for (say) m =
1

10
n3/2

√

log n, as the random

graph G(n,m) asymptotically almost surely has an induced 5-cycle H such that no
other vertex has more than one neighbour in H : any maximum-size triangle-free
subgraph then includes all the edges of H , and is not bipartite.

We prove that property (∗) holds whenever m = m(n) ≥ n2−δ, for some fixed
δ > 0.

Our proof involves a couple of features that may be of interest. The account
below gives some of the intuition; there are some technical issues not discussed
here.

We begin by using a strong form of the sparse regularity lemma (see the Abstract
of Angelika Steger in this collection) to show that the largest triangle-free subgraph
of G = G(n,m) asymptotically almost surely differs from some Π(G) by at most
εm edges.

We then show that we can restrict attention to graphs differing from some
Π(G) by at most about (n2/m)7 edges. For any particular Π, we show that the
probability that |Π(G)| can be improved by such a small perturbation is very small.

However, to apply this we also need to show that there are relatively few cuts
Π such that |Π(G)| is close to – within about (n2/m)7 of – |B(G)|. We are able to
show that this is indeed the case. Our proof method also tells us something about
the family of maximum cuts in a random graph, namely that there is only a small
set U of vertices such that any two maximum cuts differ only on U . For details,
we refer to the paper, which is currently still in preparation.

Although our main focus is on the most appealing case of triangle-free graphs,
our methods do extend to more general settings.
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Singularity of random matrices

Van H. Vu

(joint work with Terence Tao)

Random matrices is an important area of mathematics, with strong connections to
various other fields. One of the main objects in this area is matrices whose entries
are i.i.d random variables. We focus on the following basic model

• Mn: n by n matrix whose entries are i.i.d variables with Bernoulli distri-
bution (taking values −1 and 1 with probability half).

A famous problem is to estimate the probability that Mn is singular. Let us
denote by pn this probability. Since Mn is singular if it has two identical rows, it
is trivial that pn ≥ (1/2 + o(1))n. A notorious conjecture in the field is that this
bound is sharp.

Conjecture 1. pn = (1/2 + o(1))n.

The first result concerning singularity was obtained by Komlós in 1967, who proved
pn = o(1). Later, he improved the bound to O(n−1/2). A significant progress was
made in 1995, when Kahn, Komlós and Szemerédi proved that pn ≤ .999n (see [4]
and the references therein).

Recently, T. Tao and I made a progress by improving the bound further to
further to (3/4+o(1))n [6]. We discovered a surprising connection betweeen prob-
lems on random matrices and additive combinatorics. In particular, the proof of
the new bound uses various ingredients from additive combinatorics (in particular,
Freiman’s theorem).

The details are somewhat technical, but my feeling is that the optimal bound
(1/2 + o(1))n might be within sight. In fact, I believe that any improvement upon
the constant 3/4 could perhaps lead to the solution of the conjecture. Furthermore,
our techniques can be used for other discrete distributions as well and in certain
cases we can obtain sharp results.

A closely related question is to estimate the probability that a random symmet-
ric matrix is singular. Let Qn be the random symmetric n by n matrix whose upper
diagonal entries are i.i.d. Bernoulli random variables. Weiss (1980s) conjectured
that Qn is almost surely non-singular. Recently, Costello, Tao and I [1] confirmed
this conjecture. Our proof again makes a detour to additive combinatorics, with
the main lemma being a quadratic version of the classical Littlewood-Offord-Erdős
problem [2].

The relevant papers can be downloaded from my website.
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Perfect packings in graphs and critical chromatic number

Daniela Kühn

(joint work with Oliver Cooley and Deryk Osthus)

Given two graphs H and G, an H-packing in G is a collection of vertex-disjoint
copies of H in G. H-packings are natural generalizations of graph matchings
(which correspond to the case when H consists of a single edge). An H-packing
in G is called perfect if it covers all vertices of G. If H has a component which
contains at least 3 vertices then the question whether G has a perfect H-packing
is difficult from both a structural and algorithmic point of view. For example,
Tutte’s theorem characterizes those graphs which have a perfect H-packing if H
is an edge but for other graphs H no such characterization exists. This leads to
the search for simple sufficient conditions which ensure the existence of a perfect
H-packing. The following theorem of Komlós, Sárközy and Szemerédi [6] is a
fundamental result of this kind.

Theorem 1. For every graph H there exists a constant C = C(H) such that every
graph G whose order n is divisible by |H | and whose minimum degree is at least
(1 − 1/χ(H))n+ C contains a perfect H-packing.

This confirmed a conjecture of Alon and Yuster [2]. As observed in [2], there
are graphs H for which the above constant C cannot be omitted completely. Thus
one might think that this settles the question of which minimum degree guarantees
a perfect H-packing.

However, there are graphs H for which the bound on the minimum degree
can be improved significantly: Kawarabayashi [4] conjectured that if H = K−

ℓ

(i.e. a complete graph with one edge removed) and ℓ ≥ 4 then one can replace the
chromatic number with the critical chromatic number in Theorem 1 and take C =
0. He [4] proved the case ℓ = 4. Here the critical chromatic number χcr(H) of a
graph H is defined as

χcr(H) :=
(χ(H) − 1)|H |
|H | − σ(H)

,

where σ(H) denotes the minimum size of the smallest colour class in a colouring
of H with χ(H) colours. Note that χcr(H) always satisfies χ(H) − 1 < χcr(H) ≤
χ(H). The critical chromatic number was introduced by Komlós [5]. He (and
independently Alon and Fischer [1]) observed that for any graph H it gives a
lower bound on the minimum degree that guarantees a perfect H-packing.

Our main result of [8] is that for any graph H , either its critical chromatic num-
ber or its chromatic number is the relevant parameter which governs the existence
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of perfect packings in graphs of large minimum degree. The exact classification
depends on a parameter which we call the highest common factor of H and which
is defined as follows. We say that a colouring of H is optimal if it uses exactly
χ(H) =: ℓ colours. Given an optimal colouring c, let x1 ≤ x2 ≤ · · · ≤ xℓ denote
the sizes of the colour classes of c. Put D(c) := {xi+1 − xi | i = 1, . . . , ℓ− 1}. Let
D(H) denote the union of all the sets D(c) taken over all optimal colourings c.
We denote by hcfχ(H) the highest common factor of all integers in D(H). (If
D(H) = {0} we set hcfχ(H) := ∞.) We write hcfc(H) for the highest common
factor of all the orders of components of H . If χ(H) 6= 2 we say that hcf(H) = 1
if hcfχ(H) = 1. If χ(H) = 2 then we say that hcf(H) = 1 if both hcfc(H) = 1 and

hcfχ(H) ≤ 2. So for example K−
ℓ and K2,5,7 both have hcf = 1.

As indicated above, our main result in [8] is that in Theorem 1 one can replace
the chromatic number by the critical chromatic number if hcf(H) = 1. It turns
out that Theorem 1 is already best possible up to the value of the constant C
if hcf(H) 6= 1. Combining both results yields a minimum degree threshold for
perfect graph packings which up to an additive constant is best possible for all
graphs H . Indeed, let

χ∗(H) :=

{

χcr(H) if hcf(H) = 1;

χ(H) otherwise.

Also let δPack(H,n) denote the smallest integer k such that every graph G whose
order n is divisible by |H | and with δ(G) ≥ k contains a perfect H-packing.

Theorem 2. For every graph H there exists a constant C = C(H) such that
(

1 − 1

χ∗(H)

)

n− 1 ≤ δPack(H,n) ≤
(

1 − 1

χ∗(H)

)

n+ C.

Note that while the definition of the parameter χ∗ is somewhat complicated,
the form of Theorem 2 is similar to that of the Erdős-Stone theorem. Related
algorithmic aspects are considered in [7]. In [3] we considered the case when
H = K−

ℓ and proved the conjecture of Kawarabayashi for large graphs G.
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An approach to obtain exact results for an extremal hypergraph

problem

Dhruv Mubayi

(joint work with Oleg Pikhurko)

Let F be a k-uniform hypergraph (k-graph for short). Write ex(n, F ) for the
maximum number of edges in an n-vertex k-graph containing no copy of F . When
k > 2, computing ex(n, F ), in fact even determining limn→∞ ex(n, F )/

(

n
k

)

(which
is known to exist), is usually difficult. We propose a general method for this
problem.

For l ≥ k, let T kl (n) be the complete l-partite k-graph with part sizes ⌊n/l⌋ or
⌈n/l⌉: every edge of T kl (n) has at most one vertex in each of the l parts, and all
edges subject to this restriction are present. Let

tkl (n) = |T kl (n)|.
(We identify a k-graph with its edge set.)

Suppose that we wish to prove that ex(n, F ) = tkl (n) for a given F . Our method
has four steps:
Step 1. Define an appropriately chosen family K of k-graphs such that F ∈ K.
There is no general recipe for K. A particular property that K should possess is
that any F -free k-graph of order n can be made K-free by removing o(nk) edges.
Then ex(n, F ) = ex(n,K) + o(nk) but, hopefully, ex(n,K) is easier to analyze.
Step 2. Prove that K is stable with respect to T kl (n). Loosely speaking, this
means that every K-free k-graph G on n vertices with close to ex(n,K) edges can
be transformed to T kl (n) without changing too many edges.
Step 3. From the stability of K, deduce the stability of F . This can be achieved
for a large class of examples by using the hypergraph regularity Lemma and its
associated counting Lemma (see Gowers [2] and Nagle-Rödl-Schacht-Skokan [6]).
Step 4. Using the stability of F , deduce the exact result ex(n, F ) = tkl (n). This
technique was first employed by Simonovits [9] to determine ex(n, F ) exactly for
color-critical 2-graphs F . Recently, stability has been used to determine exact
results for several hypergraph Turán problems [1, 3, 4, 5, 7, 8].

We illustrate this approach via two examples. The first is a possible general-
ization of Turán’s graph theorem to k-graphs, and yields the first infinite family
of k-graphs, for each k > 2, whose extremal function is exactly determined. The
second is a generalization of Mantel’s theorem in a different direction.

Example 1. Fix l, k ≥ 2. Let Hk
l be the k-graph with vertex set A∪̇ ˙⋃

S∈(A

2)BS ,

where |A| = l, |BS | = k − 2 for every S, and edge set {S ∪ BS : S ∈
(

A
2

)

}. Thus

Hk
l is the k-graph obtained from the complete graph Kl by enlarging each edge

with a set of k − 2 new vertices. Hk
l has l + (k − 2)

(

l
2

)

vertices and
(

l
2

)

edges.

Theorem 2. Let l, k ≥ 2 and n be sufficiently large. Then the maximum number
of edges in an n-vertex k-graph containing no copy of Hk

l+1 is tkl (n). The only

k-graph for which equality holds is T kl (n).
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Example 3. Let Fank be the k-graph comprising k+ 1 edges E1, . . . , Ek, E, with
Ei ∩ Ej = {x} for all i 6= j, where x 6∈ E, and |Ei ∩ E| = 1 for all i. In other
words, k edges share a single common vertex x and the last edge intersects each
of the other edges in a single vertex different from x. Note that Fan2 is simply a
triangle, and in this sense Fank generalizes the definition of K3.

Theorem 4. Let k ≥ 3. Then, for all sufficiently large n, the maximum number
of edges in an n-vertex k-graph containing no copy of Fank is tkk(n). The only
k-graph for which equality holds is T kk (n).
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Perfect Matchings and Hamilton cycles in uniform hypergraphs

Deryk Osthus

(joint work with Daniela Kühn)

Matchings in uniform hypergraphs. The so called ‘marriage theorem’ of Hall
provides a necessary and sufficient condition for the existence of a perfect matching
in a bipartite graph. For hypergraphs there is no analogue of this result—up to
now only partial results are known.

A simple corollary of Hall’s theorem for graphs states that every bipartite graph
with vertex classes A and B of size n whose minimum degree is at least n/2
contains a perfect matching. This can also be easily proved directly by considering
a matching of maximum size. In [2] we proved an analogue of this result for uniform
hypergraphs. Instead of two vertex classes and a set of edges joining them (as in
the graph case), we now have r vertex classes and a set of (unordered) r-tuples,
each of whose vertices lies in a different vertex class. A natural way to define the
minimum degree of an r-uniform r-partite hypergraph H is the following. Given
r− 1 distinct vertices x1, . . . , xr−1 of H, the neighbourhood Nr−1(x1, . . . , xr−1) of
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x1, . . . , xr−1 in H is the set of all those vertices x which form a hyperedge together
with x1, . . . , xr−1. The minimum degree δ′r−1(H) is defined to be the minimum
|Nr−1(x1, . . . , xr−1)| over all tuples x1, . . . , xr−1 of vertices lying in different vertex
classes of H.

Theorem 1. Suppose that H is an r-uniform r-partite hypergraph with vertex
classes of size n ≥ 1000 which satisfies δ′r−1(H) ≥ n/2 +

√
2n logn. Then H has

a perfect matching.

Theorem 1 is best possible up to the error term
√

2n logn. Surprisingly, a simple
argument already shows that a significantly smaller minimum degree guarantees
a matching which covers almost all vertices of H:

Theorem 2. Suppose that H is an r-uniform r-partite hypergraph with vertex
classes of size n which satisfies δ′r−1(H) ≥ n/r. Then H has a matching which
covers all but at most r − 2 vertices in each vertex class of H.

Again, the bound on the minimum degree in Theorem 2 is essentially best possible.
We used Theorems 1 and 2 to obtain analogues for r-uniform hypergraphs H

which are not necessarily r-partite. The resulting bounds on the minimum degree
are best possible up to an error term of O(

√
n logn). Recently, Rödl, Ruciński

and Szemerédi [6] improved this error bound to O(log n).

Hamilton cycles in 3-uniform hypergraphs. A classical theorem of Dirac
states that every graph on n vertices with minimum degree at least n/2 contains
a Hamilton cycle. If one seeks an analogue of this result for 3-uniform hyper-
graphs H, then several alternatives suggest themselves. We define the minimum
degree δ(H) of H to be the minimum |N(x, y)| over all pairs of distinct vertices
x, y ∈ H (where N(x, y) is defined as in the previous section).

We say that a 3-uniform hypergraph C is a cycle of order n if there a exists a
cyclic ordering v1, . . . , vn of its vertices such that every consecutive pair vivi+1 lies
in a hyperedge of C and such that every hyperedge of C consists of 3 consecutive
vertices. A cycle is tight if every three consecutive vertices form a hyperedge. A
cycle of order n is loose if it has the minimum possible number of hyperedges
among all cycles on n vertices. Thus if the number n of vertices in a loose cycle
C is even and at least 6, then consecutive hyperedges in C have exactly one vertex
in common and the number of hyperedges in C is exactly n/2. A Hamilton cycle
of a 3-uniform hypergraph H is a subhypergraph of H which is a cycle containing
all its vertices. In [4] we proved the following result.

Theorem 3. For each σ > 0 there is an integer n0 = n0(σ) such that every 3-
uniform hypergraph H with n ≥ n0 vertices and minimum degree at least n/4 +σn
contains a loose Hamilton cycle.

The bound on the minimum degree in Theorem 3 is best possible up to the error
term σn. In fact, if the minimum degree is less than ⌈n/4⌉, then we cannot even
guarantee any Hamilton cycle. Recently, Rödl, Ruciński and Szemerédi [5] proved
that if the minimum degree is at least n/2 + σn and n is sufficiently large, then
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one can even guarantee a tight Hamilton cycle. Their bound is best possible up
to the error term σn. The proof of Theorem 3 relies on the Regularity Lemma for
3-uniform hypergraphs due to Frankl and Rödl [1]. As a tool, we use a ’blow up’
type result: every ‘pseudo-random’ hypergraph contains a loose Hamilton cycle.
This in turn uses a probabilistic argument based on results about random perfect
matchings in pseudo-random graphs [3].
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[2] D. Kühn and D. Osthus, Matchings in hypergraphs of large minimum degree, Journal of

Graph Theory to appear.
[3] , Multicoloured Hamilton cycles and perfect matchings in pseudo-random graphs,

SIAM Journal Discrete Mathematics, to appear.
[4] , Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree, Journal

of Combinatorial Theory, Series B, to appear.
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Extremal problems on packing of graphs

Alexandr Kostochka

(joint work with Gexin Yu)

Recall that n-vertex graphs G1, G2, . . . , Gk are said to pack if there exist injective
mappings of their vertex sets onto [n] = {1, . . . , n} such that the images of the
edge sets do not intersect. In particular, two n-vertex graphs G1 and G2 pack if
G1 is a subgraph of the complement G2 of G2 (and vice versa).

In terms of packing, some graph theory problems or concepts can be generalized
or made more natural. For example, the problem of existence of a hamiltonian
cycle in an n-vertex graph G is equivalent to the question whether the n-cycle
Cn packs with the complement G of G. Another example: For a graph G on n
vertices, being equitably k-colorable is equivalent to pack with the n-vertex graph
whose components are cliques with ⌊n/k⌋ or ⌈n/k⌉ vertices.

Study of extremal problems on packings of graphs started in the 1970s by Sauer
and Spencer [10] and Bollobás and Eldridge [3].

In particular, Sauer and Spencer [10] proved the following result.

Theorem 1. Suppose that G1 and G2 are graphs of order n such that
2∆(G1)∆(G2) < n. Then G1 and G2 pack.

One of the main conjectures in the area is the Bollobás–Eldridge-Catlin (BEC)
conjecture (see [3]) stating that if G1 and G2 are n-vertex graphs and (∆(G1) +
1)(∆(G2) + 1) ≤ n+ 1, then G1 and G2 pack.
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If true, the conjecture would be sharp. It is a considerable extension of the
Hajnal-Szemerédi Theorem on equitable colorings. The conjecture has been proved
in the case ∆1 ≤ 2 by Aigner and Brandt [1] and Alon and Fisher [2], and in the
case ∆1 = 3 and n is huge by Csaba, Shokoufandeh, and Szemerédi [5]. The aim
of this talk is to report very recent results on the topic and to state new problems.

The restriction 2∆(G1)∆(G2) < n in Theorem 1 is sharp in the sense that if G2

is a perfect matching and G1 = K0.5n+1, then 2∆(G1)∆(G2) = n, but G1 and G2

do not pack. However, there are not many such examples. Kaul and Kostochka [7]
gave a characterization of the pairs (G1, G2) of n-vertex graphs with 2∆1∆2 = n
that do not pack.

Theorem 2. Let G1 and G2 be n-vertex graphs with maximum degrees ∆(Gi) =
∆i for i = 1, 2. Let 2∆1∆2 ≤ n. G1 and G2 do not pack if and only if one of G1

and G2 is a perfect matching and the other either is Kn

2
,n

2
with n

2 odd or contains
Kn

2
+1.

Bollobás, Kostochka and Nakprasit [4] proved that when one of the two graphs
is sparse, to be precise, d-degenerate for a small d, then much weaker conditions
on ∆1 and ∆2 imply the existence of a packing.

Theorem 3. Let d ≥ 2. Let G1 be a d-degenerate graph of order n and maximal
degree ∆1 and G2 a graph of order n and maximal degree at most ∆2. If

(1) 40∆1 ln ∆2 < n and 40d∆2 < n,

then there is a packing of G1 and G2.

Both restrictions in (1) are weakest up to a constant factor. Kaul, Kostochka
and Yu [8] proved the following weakening of the BEC conjecture that improves
the bounds of Theorem 1 for large ∆1 and ∆2.

Theorem 4. Let G1 and G2 be n-vertex graphs with maximum degrees ∆1 and
∆2, respectively. If ∆1,∆2 ≥ 300 and

(2) (∆1 + 1)(∆2 + 1) ≤ 0.6n+ 1,

then G1 and G2 pack.

This gives a partial answer to Problem 4.4 in [6].

Let σ2(G) denote the maximum of 0.5(degG(v) + degG(u)) over all edges of
G. In other words, σ2(G) = 0.5∆(L(G)) + 1, where L(G) is the line graph of G.
Then the theorem of Ore [9] refining Dirac’s theorem on hamiltonian cycles can
be stated in terms of packings as follows.

Theorem 5. If n ≥ 3 and G is an n-vertex graph with σ2(G) ≤ 0.5n− 1, then G
packs with the cycle Cn.

We conjecture that the following Ore-type analog of the BEC-conjecture is true.

Conjecture 6. If G1 and G2 are n-vertex graphs and (σ2(G1) + 1)(∆(G2) + 1) ≤
n+ 1, then G1 and G2 pack.

Conjecture 6 would imply the Ore-type version of Hajnal-Szemerédi Theorem.
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The random planar graph process

Anusch Taraz

(joint work with Stefanie Gerke, Dirk Schlatter and Angelika Steger)

The study of the random graph process (Gn,t)
N
t=0, where one starts with an empty

graph on n vertices and adds all N :=
(

n
2

)

edges in a random order, was initiated
by Erdős and Rényi in a series of papers more than 40 years ago [3]. During
the past decades, there has been a wealth of fascinating results in the area, and
although some problems still remain unsolved, the model in general seems to be
well understood. But comparatively little is known about variants of this process,
where extra conditions have to be satisfied when inserting the edges. These condi-
tions distort the randomness in such a way that the methods and tools employed
for the original case are of little use.

A restricted random graph process (Pn,t)
N
t=0 is a random graph process equipped

with an additional acceptance test: after we have randomly chosen the edge to
be inserted, we check whether the present graph together with this edge preserves
a certain property. If so, we take it, otherwise we reject it (and never look at it
again).

Special cases which have been considered include the properties triangle-freeness
and cycle-freeness. In both cases, the outcome of these random graph processes dif-
fer significantly from the corresponding uniform models. Erdős, Suen, and Winkler
[4] have shown that with high probability the outcome of the random triangle-free
graph process only has close to n3/2 edges, whereas a well-known result by Erdős,
Kleitman, and Rothschild [2] states that with high probability a uniformly random
triangle-free graph is bipartite and has θ(n2) edges. Aldous [1] investigated the
random cycle-free graph process (Tn,t)

N
t=0 and showed amongst other results that

the number of leaves in the resulting tree is concentrated around approximately
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0.406n. By noting that the leaves of a tree are precisely those vertices whose label
does not appear in a Prüfer code, it is easy to see that the number of leaves in a
uniformly random tree is concentrated around n/e.

Here we require the graph to be planar and shall be interested in the evolution of
this restricted random process. There are two ways in which we will parametrize
the process. Let Pn,t0 denote the random planar graph obtained after t0 edges
have been considered. Pn,m=m0

, on the other hand, describes the random planar
graph after m0 edges have been accepted. As edges between vertices in different
components are always accepted, it is obvious that Tn,t ⊆ Pn,t ⊆ Gn,t for all
t = 0, . . . , N . Thus, after the connectivity threshold for Gn,t, which lies at t =
n logn/2, Pn,t must have at least n− 1 edges with high probability. The following
theorem may thus seem somewhat surprising.

Theorem 1. For every ǫ > 0, there exists δ > 0 such that

P
[

e
(

Pn,δn2

)

≥ (1 + ǫ)n
]

< e−n.

The uniform model of random planar graphs has found considerable attention
in the literature over the past decade. Recently, Giménez and Noy [6] gave rather
precise asymptotic expressions for both the number of simple, labelled planar
graphs with n vertices and dn edges, and the number of those which are connected.
These results yield an analytic expression for the probability that a uniformly
random planar graph with dn edges is connected. As it turns out, this probability
is bounded away from 0 and 1 for every 1 < d < 3. From Theorem 1, we can
immediately infer that this is not true for Pn,m=dn.

Theorem 2. For every 1 < d < 3,

P [Pn,m=dn is connected ] −→ 1 as n −→ ∞.

Gerke, McDiarmid, Steger, and Weißl [5] have shown the following result about

the containment of a fixed planar graph H in a graph P̂n,m=dn which is chosen
uniformly at random from the class of all planar graphs with n vertices and dn
edges:

P

[

P̂n,m=dn contains at most αn pairwise vertex–disjoint copies of H
]

< e−αn,

for every 1 < d < 3 and a positive constant α = α(H, d).
In this respect, the two models do agree: the following analogue is our second

main result.

Theorem 3. Let H be a planar graph. For every 1 < d < 3, there exists α =
α(H, d) > 0 such that

P [Pn,m=dn contains at most αn pairwise vertex–disjoint copies of H ] < e−αn.
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