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ematics and the physical sciences the aim was to gain an insight into develop-
ments that had a crucial impact on modern mathematics. Three particular
topics emerged as central themes: 1) The period 1650-1800 raises many issues
related to the role of mathematics in natural philosophy during the Scientific
Revolution and the Enlightenment. Discussing these issues can enhance our
historical understanding of a period in which mechanics, astronomy, navi-
gation, cartography, hydraulics, etc., constituted an important stimulus for
advances in mathematics. 2) The period 1800-1920 centred on the problem
of probing the geometry of space both mathematically and empirically after
the advent of non-Euclidean geometry. 3) The twentieth century was focused
on mathematical modelling and the question of a change in the conception
of mathematical models in various disciplines after 1900.
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Introduction by the Organisers

The workshop was organised by Niccolò Guicciardini (Siena), Tinne Hoff Kjeldsen
(Roskilde), and David Rowe (Mainz). During the five days of the conference 25
talks were given and one special evening lecture was organised.

The organizers developed the idea for this meeting in consultation with several
other colleagues who attended the conference on early modern mathematics held in
Oberwolfach January 5-11, 2003. That meeting brought together historians with
considerable expertise on developments outside pure mathematics. Afterwards
there was a general consensus among the participants that this format had pro-
duced fruitful interactions and some promising new perspectives. The idea behind
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the present workshop called for a similar, open-ended framework, but covering a
broader expanse of time reaching far into the twentieth century. By focusing on
the interplay between mathematics and the physical sciences the aim was to gain
an insight into developments that had a crucial impact on modern mathematics.

This was achieved by inviting experts on the role of mathematics in the phys-
ical sciences who were able to approach this subject from a variety of different
perspectives. The speakers addressed major developments relating to the overall
theme of the conference which focused on thematic issues structured around three
time periods: 1650-1800, 1800-1920, and 1920 up to recent times. Three particular
topics emerged as central themes of interest:

1) Several of the talks on the period 1650-1800 concerned historical problems
involving the role of mathematics in natural philosophy during the Scientific Revo-
lution and the Enlightenment, in particular issues crossing the disciplinary bound-
aries between history of mathematics and the so-called mechanical philosophy in
the natural sciences. Such an approach is vital for the historical understanding of
this period in which mechanics, astronomy, navigation, cartography, hydraulics,
etc., constituted an important stimulus for advances in mathematics.

2) For the period 1800-1920 a number of talks centred on the problem of probing
the geometry of space both mathematically and empirically after the advent of
non-Euclidean geometry. The Riemannian legacy and Poincaré’s conventionalism
served as two cornerstones for this topic, a topic that gained new impetus through
Einstein’s theory of general relativity and the emergence of relativistic cosmology
in 1917.

3) Throughout the twentieth century, mathematical modelling became an in-
creasingly important tool in the physical sciences, and with these developments the
modern concept of mathematical models slowly emerged. Recent research on the
history and epistemology of models indicates that the conception of mathematical
models changed in various disciplines after 1900. This issue was addressed in a
collection of talks, including the case of aerodynamical research in Germany – a
topic that is part of the larger complex of issues involving “mathematics and war”
now receiving widespread attention. Other problems addressed included mathe-
matical modelling in meteorology during the second half of the twentieth century,
one of several fields which exerted a strong influence on the modern conception of
mathematical models.

The workshop brought together the core community of historians of mathemat-
ics, many of whom have attended past meetings in Oberwolfach, along with a num-
ber of historians and philosophers of science with strong interests in mathematical
issues. The meeting was characterized by open discussions which, together with
the talks, shed more light on the interplay between mathematics and the physical
sciences and gave new insights into developments that had a crucial impact on the
development of modern mathematics.

The organizers and participants thank the “Mathematisches Forschungsinsti-
tut Oberwolfach” for making the workshop possible in the usual comfortable and
inspiring setting.
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Abstracts

The Mathematical Sciences in the 17th Century

Volker Remmert

I The mathematical sciences in the 16th and 17th centuries
II Visual strategies of legitimization

III Scientification and mathematisation: Bacon and Galileo
IV The mathematical sciences and theology

The mathematical sciences in the 17th century are of particular interest in order
to understand the historical development of the system of scientific disciplines
that dominated much of 19th - and 20th-century science and society where the
mathematical approach prevailed. Physics, having taken the role of leader in the
hierarchy of scientific disciplines (a “Leitwissenschaft” in the sense of Norbert
Elias), stood as an emblem of this process.

I The mathematical sciences in the 16th and 17th centuries

In the early 17th century the struggle for supremacy in the realm of knowl-
edge was wide open. In the hierarchy of scientific knowledge of the Middle Ages
and up to the late 16th century, the mathematical sciences were subordinate to
theology and philosophy, and natural philosophy in particular. Even though the
mathematical sciences then began boldly to challenge the traditional primacy of
philosophy and theology, the regal insignia in the realm of academic disciplines had
not yet been passed over to the mathematical sciences. During the 17th century
the picture changed: The mathematical sciences began to play a leading role in
the hierarchy of scientific disciplines, and modes of explanation informed by them
increasingly dominated many branches of the sciences and segments of society.

In early modern Europe the term mathematical sciences was used to describe
those fields of knowledge that depended on measure, number and weight (Wisdom
of Solomon 11, 20). The scientiae or disciplinae mathematicae were generally sub-
divided into mathematicae purae, dealing with quantity, continuous and discrete
as in geometry and arithmetic, and mathematicae mixtae or mediae, which dealt
not only with quantity but also with quality – for example astronomy, geography,
optics, music, cosmography and architecture. The early modern mathematical
sciences consisted of various fields of knowledge, often with a strong bent toward
practical applications, which only became independent from each other and as
scientific disciplines in the process of the formation of scientific disciplines from
the late 17th to the early 19th century.

One of the important preconditions of this process and the Scientific Revolution
was the rapidly changing social and epistemological status of the mathematical sci-
ences as a whole from the mid-16 th through to the 17th century. The foundations
of social and epistemological legitimization of the mathematical sciences began to
be laid by the work of mathematicians and other scientists from the mid-sixteenth
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century onward. The strategy was twofold: since the late 16th-century debate
about the certainty of mathematics (quaestio de certitudine mathematicarum), the
mathematicae purae were taken to guarantee the absolute certainty and thereby
worth of knowledge produced in all the mathematical sciences, pure and mixed,
and the mathematicae mixtae were tokens of the utility of this unerring knowledge.
From the first half of the 17th century mathematicians declared that the math-
ematical sciences deserved a new position in the modified hierarchy of scientific
disciplines. It is on this basis that we have to understand the growing consensus
in the early seventeenth century that the mathematical sciences should take up
natural philosophy as an object and their desire to legitimise this transgression of
the existing boundaries.

II Visual strategies of legitimization

When it came to strategies of visual legitimization, frontispieces were the main
medium used. The nexus between the ideas of 17th century scholars (be they
mathematicians, mathematical practitioners, experimental scientists, or natural
philosophers) and the visual images they used to represent them – the active
encoding of ideas into iconographical signs – is the point at which frontispieces
become evidence of scholars’ deliberate intentions to make and shape their own
images of scientific inquiry. Decoding these visual statements to try to under-
stand these processes, offers insights into the self-perception and self-fashioning
of its protagonists, the advancement of their cause and the enhancement of their
respective discipline’s status.

From the perspective of the mathematical sciences frontispieces played specific
and significant roles covering a wide range of functions and audiences. I do not
consider all of these, but confine myself to the examples of patronage and adver-
tising, which are both closely related to the issue of legitimization.

III Scientification and mathematisation: Bacon and Galileo

Hand in glove with the various legitimising strategies and the new self-confidence
were the promises of scientification and mathematisation that Bacon and Galileo
gave almost at the same time. The rhetoric of applicability and utility was es-
sential to most strategies to legitimise the mathematical sciences. This is not to
say that the mathematical sciences were actually and efficiently applied (or that
they could be applied at all). It is important to realise that the incorporation of
elements and methods from the mathematical sciences into other branches of the
sciences or arts did not only have the function to optimize their professional and
scientific activities, but also to enhance their status.

IV The mathematical sciences and theology/the divine

An attempt to review thoroughly the divine element in the seventeenth century
mathematical sciences has not yet been undertaken, but without doubt the divine
entered many a mathematician’s theoretical reflections on the foundations of his
discipline quite naturally. There were two standard arguments for a certain affinity
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between mathematics and divine creation, namely the saying attributed to Plato
that in essence God himself was a geometer (Deum semper Geometriam exercere)
and the famous passage from the Wisdom of Solomon that God had organised the
world according to measure, number, and weight.

In general, the relationship between the mathematical sciences and theology,
and in particular biblical exegesis, in the late 16th and 17th centuries has often
been characterized as difficult and strained. This view, however, stems from a
perspective narrowed down to the Copernican issue and, in particular, the Galileo
affair. In fact, it can be shown that there was a lot of common ground between
theology and exegesis on the one hand and the mathematical sciences on the other
hand in the late 16th and early 17th centuries.

Knowledge about the nature of the relationship between the early modern math-
ematical sciences (including physics) and theology (and scriptural authority) is still
fragmentary even though to understand their association would be an important
element in order to historically understand the volatile interaction between sci-
ence and religion since the Scientific Revolution. In particular, the questions have
been posed, whether or at what point in the development of physics into a specific
scientific discipline the divine element was put out of it. When the mathematical
sciences and physics took up the book of nature as an object of inquiry in the 17th

century, was this the beginning of banning God from physics?
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The Debate on the Principles of Mechanics in the Bernoulli-Varignon
Correspondence (1714-1722)

Jeanne Peiffer

Der Briefwechsel von Johann Bernoulli mit Pierre Varignon, two volumes pub-
lished, is to be completed by a third volume, on which I am currently working.
In the time period 1714 − 1722, three interesting themes are debated by Johann
Bernoulli and his Parisian friend Varignon: ship motion and maneuvering; prin-
ciples of statics; priority dispute on the invention of the calculus. The first two
items allow to put light on some stimulating questions related to the theme of the
present workshop.

In 1714, Johann Bernoulli published a book, Essay d’une nouvelle théorie de
la manoeuvre des vaisseaux, which was a response to an earlier monograph (Paris
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1689) by Bernard Renau d’Eliçagaray, a French engineer active in the royal marine.
Renau’s theory is one of the early attempts to mathematize ship propulsion, ship
motion and maneuvering. It led to lively controversies, especially with Christiaan
Huygens (1693− 1694), who disagreed with Renau’s determination of the velocity
of the ship. In the schematic case of a vessel propelled by two rectangular winds
blowing into two rectangular sails, Renau determines the velocity by calculating
first the velocities the ship would have if it were pushed by each wind separately
in each of the two directions. Then he uses the parallelogram rule to obtain the
resultant velocity as the geometric sum of the two fictitious velocities in each of the
two rectangular directions. This cannot be, as the vessel is not moving on a plane
surface (like a billiard ball), but in a resisting liquid. If the ship moves on with a
constant velocity, it is precisely because at any moment the propelling sail force –
the pressure of the wind – is equilibrated by the resistance of the water. This is
proportional to the square of the velocity, as was then generally admitted, and not
to the simple velocity. The velocity of the ship is deduced from this equilibrium
situation. In the schematic case above, the resultant velocity is thus the geometric
sum of the squares of the velocities the ship would have if two rectangular winds
would propel it separately into two rectangular directions.

In his 1714 monograph, Bernoulli took sides with Huygens’ approach. He de-
veloped a completely new theory based on the above calculation of the velocity.
Renau was unable to understand Bernoulli’s point of view and, supported by Male-
branche and his milieu, didn’t give up his. In the absence of a shared concept of
force, the debate which ensued between Bernoulli and Renau on one side, Bernoulli
and Varignon on the other, was heated and difficult to disentangle. In showing
that Renau’s solution contradicts the fundamental principles of statics, especially
the composition of forces, Bernoulli put the debate on a methodological level, as
Huygens had already done. Renau distinguishes forces for which this principle is
valid (for weights for instance) and forces for which it is not (the compelling sail
forces precisely). Bernoulli is not willing to admit such a distinction. His answer is
exemplary for his understanding of how forces act: “La distinction que vous faites
entre la force des poids et celle des vents n’est point une raison d’admettre le
principe de statique pour ceux-là et de le rejeter pour ceux-ci, car cette distinction
ne regarde que les causes productrices des forces. Or il n’est pas question de savoir
comment les forces sont produites, il suffit qu’elles soient existantes; de quelque
cause qu’elles proviennent, elles feront toujours la même impression, la même ac-
tion, par conséquent le même effet pourvu que ces forces soient appliquées de la
même manière” (letter to Renau, 7.11.1713, publ. in Bernoulli 1714, 193− 220).

Finally Bernoulli gave a formulation of a new principle, the principle of virtual
velocities, which he called “my energy rule”: “le grand et le premier principe de
Statique est que dans chaque équilibre il y a une égalité d’énergies de forces ab-
solues, c’est à dire entre les produits des forces absolues par les vitesses virtuelles”
(unpublished letter to Renau, 12.8.1714). Varignon discussed the fundamentality
of this principle, derived it from the principle of the composition of forces, and
included it in his Nouvelle mécanique (1725), where he showed that for each simple
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machine Bernoulli’s energy rule is valid. Bernoulli himself was aware that his rule
applied not only to statics, but more generally to dynamics and hydrodynamics.

The first interpretations of the controversy in the historiography (by Ed. Hagen-
bach-Bishoff 1884, Pierre Duhem 1905 and Pierre Costable 1957) raise interesting
questions for discussion:

First, the nature of the interactions between the practitioner Renau, who has
the desire, if not the means, to mathematize the movement of the ship, and the
mathematician Bernoulli who finds the motivation for his new principle in the
exchange with Renau. This case study clearly contradicts Hagenbach-Bischoff’s
hierarchic distinction between “Erfinder”, “Forscher” and “Theoretiker”, where
only the last one is credited with contributing, thanks to logic and mathematics,
to the progress in the physical sciences .

Second, the question of the controversies. Do they contribute to the assessment
of truth, the common ground on which everybody agrees, or do they reveal the
internal structure, the rational organization, of a range of phenomena (as Pierre
Costabel emphasizes)?

Finally Pierre Duhem’s reconstruction of the history of the principle of virtual
velocities, which according to him developed continuously from an implicit pres-
ence in a 13th century manuscript to Bernoulli’s analytical formulation, is to be
critically discussed in the light of the evidence given by the Bernoulli correspon-
dences.
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A Latourian Approach to Mathematical Physics circa 1700? Thoughts
on Studying Early Modern Mathematics “in Action”

J. B. Shank

How should we understand the initiation of analytical mechanics in Paris around
1700? In 1692, Pierre Varignon began to lay the foundations of this new science by
applying the new differential calculus developed by Leibniz and taught to him by
Johann Bernoulli and the Marquis de l’Hôpital to the new celestial mechanics of
central forces introduced in Newton’s Principia Mathematica of 1687. (Costabel
1965, 1968; Robinet 1960; Blay 1992) The philosophy of Nicolas Malebranche
also played a key role in Varignon’s initiative, as did the wider cultural climate
that “Malebranchian” thought activated in France. (Shank 2004) Reforms at the
Paris Academy in 1699, which oriented the institution more toward the broader
public, also shaped Varignon’s work, as did the public controversies over his “new
science of motion” which this newly public academy both authorized and sought
to regulate. (Shank 2000) The result was the initiation of a characteristic French
academic science in the early eighteenth century – analytical mechanics – a science
that was going to provide the starting point for the more famous French academic
achievements of d’Alembert, Clairaut, and Maupertuis a generation later, and
Laplace and Lagrange after them.

An older literature treats the rise of analytical mechanics in France as the un-
problematic translation of Newtonian mechanics into the analytical language of
the Leibnizian calculus (Aiton 1972; Cohen 1980). But more recent work has
shown the deeper complexities involved in these developments (Blay 1992; Bos
1974-5; Gabbey 1992; Gingras 2001; Guicciardini 1989, 1999). Varignon’s work
was in fact an original amalgam which drew from a variety of different influences
simultaneously, including Newton. The more important question, therefore, is how
and why this particular science succeeded in establishing itself as a characteristic
practice in France if it was not over-determined by Newton’s legacy or achieve-
ment. My presentation argued that Bruno Latour’s notion of “science in action”
as developed in the book of the same name offers a fruitful way to think about the
development and the triumph of analytical mechanics in France (Latour 1988).
In offering an account of Latour’s rules of method and principles as developed in
Science in Action, my talk also sought to provoke wider discussion of this par-
ticular methodological approach and its applicability to the study of cases in the
history of the mathematical sciences. It finally sought to build bridges between
“Latourian science studies” and the best recent work in the history of early mod-
ern mathematics (Bos 2002; Guicciardini 1999) by suggesting some affinities that
exist between the two.
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Mathematics in the Physical Sciences, 1650-2000 3185

[3] H. J. M Bos, “Differentials, Higher-Order Differentials and the Derivative in the Leibnizian
Calculus,” Archive for the History of the Exact Sciences 14 (1974-75): 1-90.

[4] H. J. M. Bos Redefining Geometrical Exactness. Descartes’ Transformation of the Early
Modern Conception of Construction (Place, 2002).

[5] I. Bernard Cohen, The Newtonian Revolution, With Illustrations of the Transformation of
Scientific Ideas (Cambridge, 1980).

[6] Pierre Costabel, Pierre Varignon (1654-1722) et la diffusion en France du calcul differentiel
et integral (Paris, 1965).

[7] Pierre Costable, “Introduction,” in André Robinet ed. Oeuvres Complètes de Malebranche.
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Newton’s Inventive Use of Kinematics in Developing his Method of
Fluxions

Kirsti Andersen

Introduction

From the summer 1664 to October 1666, besides being engaged in other re-
search projects, Newton worked intensively on developing a method for solving
geometrical problems, among them determining tangents, areas, curve lengths,
and centres of curvature. His work resulted in a manuscript, known as The Oc-
tober 1666 Tract (Newton 1666), in which Newton had polished his description
so much that one gets the impression that his plan was to present his ideas for a
greater circle of scholars. The tract contains what could be called the first version
of Newton’s method of fluxions. However, Newton did not publish the tract and,
presumably he did not show it to many colleagues, either. Instead, he returned to
his method regularly and kept revising his presentation of it – most likely because
he wanted to improve the theoretical foundation for his technique of determining
the ratio between two velocities (by him called fluxions). Actually, almost four
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decades passed before Newton published a presentation of his method of fluxions
(Newton 1704), though he had made allusions to it in his Principia published in
1687.

Newton’s method of fluxions became known in some of the forms it attained
through Newton’s subsequent revisions. Hence it is natural that most historians
describing Newton’s method have focussed on the later adaptations. However, if
we want to see how far the creative young mathematician could come with very
few tools, it is of relevance to look at Newton’s method of fluxions from October
1666. In this paper, I show a few examples of how Newton solved geometrical
problems with only the help of an intuitive concept of velocity.

Proposition Six

Newton started his October 1666 tract by claiming: “To resolve Problems by
Motions these following Propositions are sufficient”. His first five propositions
concern velocities, for instance the projection of a velocity in one direction upon
another direction, the composition of velocities (the so-called parallelogram rule),
and the ratio between the velocities of two points on a rotating line.

In connection with the concept of velocity, it is of relevance to notice that the
seventeenth century-scientists were well aware of the importance of introducing
line segments with given directions to describe motion, but they did not assign
fixed lengths to directed line segments but worked, like the ancient Greek math-
ematicians, with proportions between the lengths of the line segments. When
considering two motions, Newton explained his understanding of their velocities
by the expression the “proportion and the position of . . . motions” (Newton 1666,
401). I will allow my self to describe this by the term ‘a representative of a veloc-
ity’.

The sixth of Newton’s proposition is very interesting and the core of the present
discussion. However, it is formulated in a way that it is unfamiliar to a modern
reader and, hence, I start by explaining the problem it was meant to solve. Many
of the curves considered in the seventeenth century were inherited from the Greeks
who had defined them by motion – Archimedes spiral and the quadratrix being two
examples. Newton’s basic idea in his new approach to geometry was to develop
this kinematic treatment of curves further. Thus, he considered any curve as
being generated by a motion – which, itself, more often than not was defined
by other motions. To solve, for instance, tangent problems, he was interested in
determining representatives of the velocities of the motions generating a curve,
and of the velocity of the final motion. In this connection he ran into the following
problem.

Let (figure 1 – with my notation rather than Newton’s) the curves c1 and c2 be
moved so that they continuously intersect and let v1 and v2 be (representatives of)
the velocities of the curves. How can we determine the velocity of the instantaneous
point of intersection of the two moving curves?

It was exactly this problem that Newton was confronted with when – on No-
vember 8, 1665 – he was working on determining the tangent to the quadratrix.
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Figure 1

Figure 2

First, he composed the two velocities according to the parallelogram rule (bcgf in
figure 2), but he soon realized his mistake, and it is presumably in this connection
that he became aware of the need for proposition six.

The statement of proposition six is as follows (figure 3). Let v1 and v2 in figure
1 be represented by ab and ad respectively, let the line bc be parallel to the tangent
to the curve c1 (ae) at a and the line ad parallel to the tangent to the curve c2
(ah), and let finally c be the point of intersection of the two mentioned lines. The
line segment ac is then a representative for the velocity of the instantaneous point
of intersection a. Newton formulated this as saying that the five line segments
ab, bc, ad, dc, and ac “shall designe the proportion” and positions of the point a
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Figure 3

moving: 1. with the line ae, 2. on the line ae, 3. with the line ah, 4. on the line
ah, 5. on the curve of intersection (Newton 1666, 401).

Newton applied proposition six to determine the tangent to the quadratrix cor-
rectly (ibid., 418). In this particular case the moving curves are straight lines to
which bc and cd are parallel. Newton did not prove proposition six, but it can
actually be done, based on the parallelogram rule and the ideas of relative velocity
and induced velocity (for more on this point see Andersen, 1968, 161–165). It is
interesting to notice that in the second half of the 1630s Gilles Personne de Rober-
val had also been struggling with determining the tangent to the quadratrix and
formulated a theorem rather similar to Newton’s proposition six (ibid.). Rober-
val’s work was only published in 1693, and can therefore have had no influence on
Newton’s ideas.

1. Proposition Seven

Newton’s proposition seven contains a rule for determining the ratio between
two (or more) velocities of movements that produce lengths between which there
are an algebraic relation. For the sake of simplicity, I only consider two motions.
Newton did not only formulate the rule, but he also proved it, and his proof is
very illustrative for his way of thinking. While he formulated the rule generally,
Newton’s proof only covers a special example, but can easily be generalized. It
deals with the curve

x3 − abx+ a3 − dy2 = 0.

and runs as follows (Newton 1666, 414). Newton assumed that the curve had
been generated by a point moving in the direction of x with the velocity p and
in the direction of y with the velocity q. His aim was to find the ratio between q
and p. He then looked at the situation after a very small amount of time, which
he denoted o and called a moment, had passed. Because of the smallness of o,
Newton considered that the motions in that moment as uniform, that is p and q
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as constant. Thus, x will increase by po and y by qo. Since the moving point must
still be situated on the curve, the above equation still applies, hence

(x + po)3 − ab(x+ po) + a3 − d(y + qo)2 = 0

Using the first equation to reduce the second, Newton obtained

3pox2 + 3p2o2x+ p3o3 − abpo− 2dqoy − dq2o2 = 0.

Dividing by o and then ignoring the terms still containing o, Newton got the
result

3px2 − abp− 2dqy = 0.

His rule was thus: multiply each term with x by its dimension in x and by p/x;
and similarly for the terms containing y: multiply them by their dimension in y
and q/y. Thereby an equation is reached from which the ratio between q and p
can be determined.

When I first saw this deduction several decades ago, I was flabbergasted. How
is it possible to determine the ratio between two velocities without a definition
of a velocity and without a method of determining derivatives? The entire trick
is to assume that in a very small time interval, a velocity can be assumed to be
constant!

Applications of propositions six and seven

Propositions six and seven are very central for Newton’s proofs and for his
derivation of new results. One of his more unexpected applications of proposition
seven is an astute proof of his first proposition from which he easily deduced the
parallelogram rule for velocities (Arthur forth.). Whereas it was more natural
that Newton used proposition seven to determine tangents to algebraic curves
ibid., 416).

In proposition eight Newton formulated the inverse problem of the one treated
in problem seven, that is: given a relation between the ratio q/p and x, determine
y. He remarked that if this always could be solved “all problems whatever might
bee resolved” (ibid., 403).

As already shown, proposition six was of use for determining tangents to some
non-algebraic curves. Newton also showed a very spectacular application of propo-
sition six which was to deduce a rule for determining the centres of curvature (ibid.,
419). It requires some patience to follow Newton in his deductions, but it pays to
keep following his arguments. At least, I am very impressed by how Newton could
derive a result corresponding to the formula for the radius of curvature
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by considering velocities in various directions and introducing considerations from
proposition six (for another opinion, see Whiteside 1961, 377).

Finally, Newton applied motion in introducing the concepts which was later
named an evolute and an involute, and with the help of these and his rule for
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determining the radius of curvature he was able to rectify a number of curves
(Newton 1666, 432).
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On the Geometrical Physics of the 17th Century

Henk J.M. Bos

One characteristic of 17th-century mathematics is the predominantly geometrical
nature of its concepts and techniques. Although the period witnessed the begin-
nings of analytic geometry and the calculus, and although equations increasingly
made their appearance in the pages of mathematics, the relations between vari-
able quantities were mostly understood in terms of ratios and proportionalities,
or in terms of their representations by means of curves with respect to axes in
the plane. The function concept acquired its fundamental place in the theories
of physics only much later. A special instance of this geometrical style in physics
is the representation of the relations between physical quantities such as velocity
(v), distance traversed (s), and time (t) in rectilineal motion. Thus for instance
Galilei gave these relations for uniform motion, which we usually describe as

s = v × t ,

as follows:

1): if v is the same, then s is proportional to t
2): if t is the same, then s is proportional to v
3): if s is the same, then v is inversely proportional to t

and if neither v, nor t, nor s is the same, then
4): s is in the compound ratio of v and t
5): v is in the compound ratio of s and the converse ratio of t
6): t is in the compound ratio of s and the converse ratio of v

Evidently the concern about the physical nature of the variables time, space and
velocity prohibited the use of algebraic operations for these variables; velocity ×
time had no meaning, nor did the ratio of s and v.
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In Huygens’ derivation of the famous relation between the period T and the

length l of a pendulum (in modern terms T = 2π
√

l
g
, g the gravity constant), we

meet the same use of proportionalities. The effect of this use is that in Horologium
Oscillatorium, the work of 1672 in which Huygens published his results on the
motions of free fall and of pendulums, the formula does not appear, nor does the
gravity constant g, and the result equivalent to the modern formula is difficult to
locate in the text.

This example leads to the question whether and how this style characteristic
of mathematics affected the physics of the 17th century. In the case of Huygens’
derivation it did, namely in the way the physical constant describing the process
of fall was introduced. In the modern theory this constant is g, introduced as the
constant which translates the proportionality ‘v is proportional to t’ (v :: t) into
an equation ‘v = g × t’ (or equivalently (s :: t2 into s = 1

2gt
2) in such a way that,

with standard units for length and time, the equation fits the process of free fall
both numerically and qua dimension. Huygens’ physical constant is a different
one. He introduced it only at the end of his reasoning, when he had adjusted his
results to experimental results expressed in numbers. For that he had to transform
the proportionalities v :: t or s :: t2 into relations fit for numerical equalities. He
proceeded as follows. A proportionality like s :: t2, for Huygens, meant that, if
(s1, t1) and (s2, t2) were corresponding distance-time pairs then s1 : s2 = t21 : t22.
Therefore he took as fundamental constant describing free fall, the distance — call
it ssec — which a body falling from rest traverse in the first scond. Then s :: t2

implies s : ssec = t2 : 12 and this relation, once ssec is experimentally determined,
can be used for numerical calculations.

As a result, in Huygens’ style a physical constant characteristically has a pri-
mary dimension (time or length) and is introduced only when numerical results
have to be obtained. In contrast we are used to physical constants introduced
as proportionality factors, introduced from the beginning in order to write equa-
tions, and having more complicated dimensions because they have to balance the
dimensions in the equation.

It seems to me worthwhile to investigate a) whether there are other charcater-
istics of 17th-century physics induced by the more geometrical style of its contem-
porary mathematics, and b) when and how the transition from the earlier to the
later style took place.
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Two Steps Forward, One Step Back: The Space Problem between
Riemann and Einstein

José Ferreirós

The question of geometry and physical space from, say, Gauss to Weyl is very
attractive to a philosophically minded historian. Many of the relevant actors in
that story devoted a great deal of attention to philosophical issues, on top of the
mathematical and scientific ones. In cases like Riemann and Einstein, it has been
aptly said that we find at work the “magic triangle” of Mathematics-Philosophy-
Physics. As my title suggests, I can’t help having the sentiment that Riemann’s
deep reflections were extremely adequate for the events that would take place
in theoretical physics half a century after his death. By this of course I do not
mean to suggest that Riemann somehow “foresaw” the advent of GRT, but his
conceptual standpoint seems more adequate to this event than the ideas of most
other people who worked on the space problem in between – including Einstein
himself in the celebrated ‘Geometrie und Erfahrung ’ of 1921 (which in this respect
makes a contrast with, e.g., Einstein 1934).

Riemann’s intellectual efforts led him to adopt rather innovative viewpoints not
only in mathematics, but also in physics and philosophy. In his inaugural address
‘Über die Hypothesen, welche der Geometrie zugrunde liegen’ (1854), the magic

triangle is at work more than anywhere else, combining those diverse innovations;
a work of that kind, which was left unfinished, had enormous chances of being
quite incomprehensible or unacceptable for contemporary readers.

In epistemology, Riemann was far from Kant, as he accepted Herbart’s decided
rejection of a priori sources of knowledge such as the “pure forms of intuition” and
the “categories”. There have been attempts to read the 1854 geometry lecture as
an argument against Kant, but in my view any such effort is extremely forced
and misleading. He also kept some distance from the positivistic ideas that were
influencing German intellectuals more and more. His epistemological stance places
the origins of all knowledge in experience (Erfahrung), without any a priori ad-
dition, but it emphasizes the way in which our reflecting thoughts (Nachdenken)
keep adding hypotheses (Hypothesen) which are indispensable to the growth of
knowledge. One of his manuscripts has interesting remarks to the effect that the
word hypothesis has “now” a different meaning than in Newton: “today one un-
derstands by hypothesis everything that is added in thought to the phenomena”
(Alles zu den Erscheinungen Hinzugedachte; Riemann 1876, 493). He goes on
to criticize the distinction between “axioms and hypotheses” in Newton, showing
how the law of inertia is a hypothesis. All of this is relevant to understanding the
views on the geometrical axioms proposed in his (1854).

Riemann’s emphasis on the role of hypotheses in physical theories is congenial
with Einstein’s mature views on the interplay between creative thought and em-
pirical elements in science (Einstein 1933). At this point in my talk we discussed
how Einstein evolved from a Machian sceptical empiricism in his early years, to a
more sophisticated viewpoint (Holton 1968). The discovery, studying the rotating
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disk in 1912 (Stachel 1980), that the problem of relativistic gravitation required
adoption of a Riemannian space of variable curvature had an inescapable impact.
Operationalism with respect to the basic coordinate systems was no longer tenable,
as the (semi)Riemannian metric had to be given physical meaning as a whole (Ein-
stein 1934; see Einstein 1916, 775 & 779). But it still took Einstein several more
years to distance himself from the way of presenting the space problem that was
typical around 1900. This classical space problem had emerged from Helmholtz,
and it represented a step backward from Riemann’s unorthodox and extremely
general formulation of the same question.

In comparison with Riemann, Helmholtz’s standpoint was certainly closer to
positivism due to its operationalist underpinnings. This is reflected in the very ti-
tles of their contributions: to Riemann’s “Hypothesen”, Helmholtz replies “That-
sachen”, facts! (Helmholtz 1868). Helmholtz argued that the concept of rigid
body, and the free mobility of bodies in space, are essential building stones for
any possible conception of geometry, as they are necessary for the physical possi-
bility of checking congruence relations, and thus for any geometric measurement
(Helmholtz 1868, 197). He presented this approach to geometry as a simpler way
of developing Riemann’s results (op. cit., 194, 197), although he admitted that
his direct approach from free mobility entails a limitation of the great generality
of Riemann’s analytical study. Helmholtz’s problem led to detailed mathemati-
cal considerations, culminating in Lie’s work. His success in defining the classical
space problem had the effect that most mathematicians in the late 19th century

understood Riemann’s more general investigations to be only of interest to pure

analysis, while for questions of physical geometry it was merely the spaces of con-

stant curvature that had any role to play (see e.g. Poincaré 1902).
Even Einstein’s (1921) was essentially based on the operationalist, Helmholtzian

way of posing the space problem. As a result, there was a split between the analytic
line of development arising from Riemann’s (1854), including research by Christof-
fel, Lipschitz, Ricci and Levi-Civita on differential invariants, and the space prob-

lem as discussed by Lie, Poincaré and others, leading up to Minkowski’s reaction
to special relativity. This whole development was reinforced by the dominance
of group-theoretic thinking about geometry around 1900, which left no space for
the more general Riemannian geometries (see e.g. Norton 1999). It came as a
great surprise when both strands merged in the search for a relativistic theory of
gravitation.

For Riemann, the starting point in metric geometry was not the congruence of
solids, but rather the invariance of the line element ds, its “independence from
position” (Riemann 1854). This was not merely based on mathematical reasons,
but on convictions having to do with the foundations of physical theory. Simple
physical laws were only to be found at the local level, as expressions valid for points
in space and time (Archibald 1991, 269), and at this local level the “empirical
concepts” of “solid body and light ray loose their validity” (Riemann 1854, 267).
Indeed, these ideas were intimately connected with Riemann’s work in theoretical
physics, the ‘Naturphilosophische Fragmente’ where he strived to produce a unified
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theory of the basic physical forces – gravitation, heat, light, electromagnetism –
on the basis of a geometrically conceived system of dynamic processes in an ether
field (see Wise 1981). Working along this line, in 1853, Riemann was led to the
assumption that the ethereal element varies in time, so that one can determine dsi

as linear expressions on dx, dy, dz such that:

dx′
2
+ dy′

2
+ dz′

2
= G1

2ds1
2 +G2

2ds2
2 +G3

2ds3
2,

with functions Gi depending on time and on the spatial coordinates (Riemann
1876, 505), and

ds2 = dx2 + dy2 + dz2 = ds1
2 + ds2

2 + ds3
2.

The link to his later differential geometry is quite apparent (see also Bottazzini
& Tazzioli 1995), and it explains the intriguing sentence of the geometry lecture
where Riemann speculates about a connection between physical forces and the
expression for the line element (Riemann 1854, 268). But here he was in all
likelihood thinking about electromagnetism, not gravitation (Riemann 1876, 506).
In my opinion, what Riemann tried to do in 1854 was to eliminate the duplicity of
a Newtonian space and an ethereal field that he had been assuming in his previous
work on the unification of physical forces. The Leibnizian, relationalist tendencies
that Riemann shared with his preferred philosopher, Herbart (see Ferreirós 2000),
thus led to his new and (in Einstein’s words) “prophetic” perspective on geometry.
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Curved Spaces: Mathematics and Empirical Evidence, ca. 1830 – 1923

Erhard Scholz

The talk presented a survey of the attempts to find empirical bounds for the
curvature of physical space from astronomical data over a period of roughly a
century. It covered the following stages: (1) Lobachevsky, (2) Gauss and his
circle, (3) astronomers of the late 19th century, (4) outlook on the first relativistic
cosmological models. The authors of the first three sections used parallax data
with slightly different methodologies and increasing mesurement precision. In the
last phase a new methodological approach to physical geometry was opened by
general relativity, and two completely new data sets came into the game, mass
density and cosmological redshift.

(1) Already in his first publication on his new non-Euclidean geometry (NEG),
N.I. Lobachevsky gave a rough estimation of space curvature by astronomical data
(Lobatschewsky 1829-30/1898). By a simplifying argument he derived the estima-
tion a < 6.012 10−6 for the diameter a of the earth’s yearly orbit, expressed in
units K = 1 of the “constant” of NEG. We my prefer to read his result the other
way round,

(1) K > 3 · 105AU ≈ 2.4LY

(1AU = a
2 the astronomical unit, LY light year). In many of his other publications

Lobachevsky discussed the relationship between physical and astronomical space
to his new geometry. Sometimes he included quantitative estimations, although
mostly weaker ones than in 1830, sometimes he added qualitative methodological
remarks, highly interesting in themselves.

(2) Apparently, C.F.Gauss used his high precision geodetical measurements for
gaining a first secure empirical estimation for a bound of the constant K already
in the early 1820s.1 Gauss knew well that parallax measurements were completely
unreliable at the time. In a letter to H.C. Schumacher (29. June 1831, (Gauss
Werke VIII)) he reported on properties of NEG which came close to a method to
determine bounds of space curvature by parallax data. Moreover, in his seminars
in the 1840s and/or early 1850s he discussed the question of determination of

1There has been an extended discussion in the history of mathematics whether or not this
report can be trusted. I consider it as reliable; cf. (Miller 1972, Scholz 2004, Scholz 2006).
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the nature of physical space by astronomical observations but apparently never
claimed to have a solution to it.2

B. Riemann dared a more definite claim. At the end of his famous Habilita-
tionsvortrag of 1854 he stated in passing that, if the curvature κ of physical space
is constant, it is very small in comparison with the reciprocal of the area A of
triangles △ “accessible to our telescopes”. In other words,

(2) |κ|A(△) << 1 , or |κ| << A(△)−1 .

Riemann’s formulation expressed the state of art of theoretical evaluation of the
results of high precision astronomy at the time of Bessel and Gauss.

(3) Only a few theoretically inclined astronomers of the late 19th century dealt
with the question, among them Robert S. Ball (1840 – 1913), Astronomer Royal
of Ireland at the observatory Dunsink, and Karl Schwarzschild (1873 – 1916). Ball
was an experienced astronomer. He refrained from a definite answer of how to
determine a hypothetical space curvature from them. He indicated only quite
generally that “it would seem” that it can only be “elicited by observations of the
same kind as those which are made use of in parallax measurements” (Ball 1879,
519)

A more definite answer was given two decades later by K. Schwarzschild in a talk
given during the 1900 meeting of the Astronomische Gesellschaft at Heidelberg.3

For the hyperbolic case he arrived at an estimation of the radius of curvature R,
κ = 1

R2 ,

(3) R > 4 · 106AU ≈ 60LY,

an order of magnitude above Lobachevsky’s value (due to his sharper parallax val-
ues) and with a convincing derivation without logical dependence on a precarious
simplifying assumption.

(4) The next, by far most radical, turn for modern cosmology came with Albert
Einstein’s general theory of relativity (GRT) in 1915. GRT changed the role of
curvature completely; from now on curvature was insolubly linked to the mass-
energy-stress tensor T on the right hand side of the Einstein equation. At the time
it was close to impossible, however, to make a reasonable guess of cosmic mass
energy density.

For his first relativistic model of cosmological model A. Einstein (Einstein 1917)
came to a provisional estimation of ρ ∼ 10−22g cm−3 by an evaluation of available
counts of stars and nebulae. Because of its great unsecurity, Einstein did not
publish the estimation:4

(4) R ∼ 107LY .

After W. de Sitter’s invention of the second model of general relativistic cos-
mology, H. Weyl studied a model of diverging time-like flow lines in the de Sitter

2(Hoppe 1925).
3It has been discussed at different places how Schwarzschild determined bounds for the cur-

vature of astronomical space from parallax and other data; cf. (Schemmel 2005).
4He wrote about it in a letter to M. Besso (Dec 1916) or mentioned it in conversations.
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hyperboloid of “radius” a. The divergence led to the model phenomenon of a
systematic redshift expected for light emitted from very distant sources.5 The
infinitesimal linearization of Weyl’s formula led to a relation between redshift z
and distance d, z = 1

a
d (Weyl 1923, 323). Here the Hubble constant H , in later

terminology, was H = a−1. From the best recent redshift and distance data of
nebulae of the local cluster, Weyl arrived at an estimation of the de Sitter radius
(identical to the the constant curvature radius R of orthogonal spacelike sections
to the flow lines)

(5) R = H−1 ∼ 109 LY (Weyl 1923, app. III) .

This was a splendid estimation, close to what E. Hubble found in his much
more precise and detailed measurements at the end of the decade.6 In 1923 there
were now two methods for determining the curvature of the spatial sections of
cosmological models. They relied on rather different principles, and led to first
estimations which were both 5 – 7 orders of magnitude above the highest bounds
derived by the methods of the 19th century and differed among each other “only”
by two orders.
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Space and its Geometry 1800 – 1900

Klaus Volkert

In my paper I discussed the changing ideas on space and its geometry. Up to
around 1750 discussions about space were situated in a metaphysical context –
centered around the question of relational or absolute space (cf. Euler’s paper
“Reflexions sur l’espace et le temps” [1750]). All that had no real impact on
solid geometry: Space was more or less absent from solid geometry at that time
– it was a matter of course. This thesis was underlined by some citations from
mathematical dictionaries (Wolff, Hutton, Klügel) showing that these authors had
not much to say on mathematical space.

In Euclid’s “Elements” there is no definition of space but only one of a solid (XI,
def. 1). From his theorems and their proofs we may infer that Euclid’s space was
three-dimensional, homogeneous and isotropic. Even the basic property of being
three-dimensional is not formulated by Euclid explicitly. We must reconstruct it
from his theorem XI, 3: “If two planes cut one another, their common section
is a straight line.” Even in von Staudt’s “Geometrie der Lage” (1847, §20) this
theorem is proved without an explicit hypothesis on the number of dimensions of
space.

Euclid left another very basic problem to the mathematicians of later times:
how to define the congruence of two polyhedra? He stated (IX, def. 20): “Equal
and similar solid figures are those contained by similar planes equal in multitude
and in magnitude.” This definition was critized by R. Simson (1687 – 1768): Take
two pyramids with congruent bases but different heights. Put them together in
the normal style (by “addition”). But you may “subtract” the smaller one from
the bigger one. So you get two polyhedra congruent in Euclid’s sense which is
absurd.

In particular you can’t infer that two polyhedra being congruent in Euclid’s
sense have the same volume – a fact which is used in the proof that Euclid gave
for his proposition XI, 24: “If a parallelipedal solid be cut by a plane through the
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diagonals of the opposite planes, the solid will be bisected by the plane.” The two
resulting prismata are symmetric but not congruent in the sense of superposability.

It was Legendre who tried (first ?) to manage these difficulties on a concep-
tual level. That is, he introduced a distinction between congruent and symmetric
solids – the latter being composed by the same polygons but in a different order.
Here orientation shows up – a big theme in the 19th century. Legendre gave a
systematic treatment of solid geometry – the first after Euclid – which introduced
new basic ideas. He incorporated spherical geometry in his textbook (“Eléments
de géométrie”, 1794) as the missing link between plane and solid geometry – a fact
that is highlighted by his ingenious proof of Euler’s theorem. In the context of
spherical geometry the riddle of orientation was discussed even before Legendre in
the 18th century. Segner had remarked that a spherical triangle and its diametrical
counterpart are in general not superposable – so one has to demonstrate that they
have same area (“Vorlesungen über die Rechenkunst und Geometrie. . . ”, 1767 [p.
591]). Legendre gave a first proof for this fact using the idea of equidecompos-
ability. He extented his result to symmetric solids – a problem later discussed by
Gauß und Gerling.

A strong impetus to study symmetry came from crystallography. Bravais gave
in 1849 a rather complete discussion of the symmetry-types of polyhedra (plane,
pointwise and rotational – he missed the rotation-reflection). His method was
quite classical: he considered only the vertices of the polyhedra and their images.
So there was no explicit idea of transformations and therefore no considerations
on the surrounding space. It is not surprising that space became a theme when
transformations were considered by Helmholtz and others in the second part of the
19th century (cf. the famous space-problem), a development that was anticipated
by Möbius with his theory of geometric “Verwandtschaften”. But this is an another
story.

It is often stated that around 1800 there was an increasing interest in solid
geometry (cf. the book by Paul for example). There were different causes for that:
First we may cite Monge and his descriptive geometry – a technique for repre-
senting three-dimensional figures in two dimensions. It was designed to help in
practical questions and intended to create a common language for scientists, inge-
nieurs, artists [in the Mongian sense of the word] and craftsmen. The needs of the
beginning industrial era demanded obviously a deeper development of solid geome-
try since all practical production takes place in three dimensions. The experiments
performed by Oersted, Ampère and others raised the riddle of orientation of space
(cf. Fr. Steinle’s paper – I owe much to him for elucidating this problem to me) de-
manding a precise language to express the facts found in practise. This riddle was
also present in crystallography where one had to choose an orientation to fix the
axes introduced to describe the structure of the crystals (Weiß, Hessel, Bravais).
Later in the 19th century the problem of symmetry showed up in chemistry in the
context of isomers (van’t Hoff, Le Bel). The symmetrical spatial structure of the
molecules causes here different physical behavior. So we may conclude that there
was an interaction between solid geometry and its so-called applications – but
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not in the direct sense that the latter raised a concrete question that was solved
by the former. It was more or less an indirect influence, a need for an adequate
conceptual frame for example. One could handle every single spatial situation in
a more or less ad hoc way – but this doesn’t mean to have a good all embracing
theory! From a methodological point of view it is clear that it is difficult to grasp
this influence but nevertheless it is important.

Möbius commented on the problem of symmetric solids in his “Barycentrischer
Calcul” (1827): Two such solids could be superimposed by a rotation around a
plane (sic!) if there would be a four-dimensional space: “But since such a space
cannot be thought, so coincidence is impossible in this case, too.” (Smith 1959,
526) Grassmann and Plücker rejected also the idea of a four-dimensional space.
For those mathematicians there was a difference between real metaphysical space
and the abstract speculations in mathematics.

A first step to overcome this restriction was taken by Cayley and Cauchy.
Around 1850 they started to develop the analytical geometry of n-dimensional
spaces – thus generalizing the well known results of the second half of the 18th

century on the elementary analytical geometry of space. But they carefully avoided
a “recourse to any metaphysical notion” in treating only “analytical points” (not
real points) and so on: The new geometry can thus be understood as a “disguised
form of algebraic formulation” (Sylvester).

The acceptance of the geometry of higher dimensional spaces took place in par-
allel to that of non-Euclidean geometry beginning around 1860. In 1869 Sylvester
stated: “If Gauss, Cayley, Riemann, Schläfli, Salmon, Clifford, Kronecker, have an
inner insurance of the reality of transcendental space, I strive to bring my faculties
of mental vision into accordance with them.” (Inaugural Presential Adress to the
BAAS). Like in the history of non-Euclidean geometry arguments of authority are
important here. But there is also an argument of utility in Sylvester: if we de-
cide to refuse transcendental geometry we must refuse also other achievements of
mathematics which proved to be useful! This is a nice example of justification in
mathematics. To Jordan, who wrote the first systematic treatment of analytical
geometry in n dimensions (1875) this was the culminating point of the fusion of
algebra and geometry – initiated long ago by Descartes. But even in 1895 Poincaré
(in his introduction to his great paper on “Analysis situs”) felt obliged to state
that the new geometry has “a real object”.

A great step towards the acceptance of hypergeometry was taken by Stringham
who clarified in 1880 – using absolutely classical tools – the question of the six
regular hypersolids (in four dimensions). This was perhaps the first substantial
result in hypergeometry which couldn’t be discarded as “mere analytical”.

The riddle of orientation was discussed intensely in the 1870 in the realm of
topology – in particular in respect to “one-sided” surfaces as the Möbius strip. A
very classic object of geometry – that is the projective plane – was understood
in a new more complete way. The distinction between congruent and symmetric
solids disappeared with the introduction of transformations and the reduction of
all rigid motions to products of reflections in planes in the 20th century.
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To conclude this very incomplete sketch of a fascinating history let me underline
four points:

(1) The acceptance of a new basic concept like that of hyperspace is not a
result of clear cut definite decision but of a growing evidence of its ex-
istence (among others in the sense of usefulness). It presupposed a new
understanding of the foundations of mathematics – in particular an eman-
cipation from metaphysical restrictions.

(2) The interactions between the sciences and geometry are numerous. But
they were often not of the form of precise problems or questions. They
established something like a climate of curiosity or interest. A decisive
point was the desire to create a systematic basis for geometry – a point
becoming very clear in Legendre’s treatise.

(3) Our modern ideas on the application of mathematics to the sciences are not
adequate to grasp the developments before 1850. In those days geometry
was “mixed” in the sciences (cf. the term “mixed mathematics” which was
quite current at that time) and not “applied” to the sciences. So geometry
was subject to the restrictions imposed by metaphysics in an inevitable
way. Euler was one of the first who denied this point of view.

(4) It must be stated that there were other developments in mathematics
which were important to our theme and which couldn’t be discussed here.
I want to cite two of them: Differential geometry and transformational
geometry. The first focussed on the idea that there is a structure imposed
on an entity (like a surface), the second on the idea of space as a whole.
Both tended to separate the substratum (in modern terms: a set) from its
structure (e.g. the metric). So they prepared the modern idea of space
being a model for certain “space like” relations; in constructing such a
model one feels free to choose the one which seems the most adequate.
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Who’s A Conventionalist? Poincaré’s Correspondence with Physicists

Scott Walter

Henri Poincaré’s engagement with physics was an enduring one, spanning almost
the entire length of his scientific career, from his doctoral thesis of 1879 to the end
of his life in 1912. This interest in the problems of physics, however, represents
a serious challenge for the historian of exact science, for several reasons. First
and foremost, there is the hard fact that Poincaré pursued problems of physics in
parallel with seemingly-unrelated interests in analysis, topology, geometry, celestial
mechanics, electrotechnology, and philosophy of science. Locating the threads
tying these disparate disciplines together is only part of the task; attaching them
to Poincaré’s actual practice of science is another matter altogether. Secondly, the
turn of the twentieth century saw the emergence of the sub-discipline of theoretical
physics, and a consequential remapping of disciplinary frontiers, a remapping in
which Poincaré was an important cartographer, and one whose writings on the
interrelations of logic, mathematics, geometry, mechanics, and mathematical and
experimental physics exercised a durable influence on scientists throughout the
twentieth century.

Historical studies have illustrated Poincaré’s innovative approaches to questions
of mathematical physics, and his critical, but apparently independent evaluation
of leading theories of the day: Maxwellian electrodynamics, kinetic gas theory,
Newtonian gravitation, electronic theories of matter, and quantum theory. Like-
wise, the effectiveness of Poincaré’s disciplinary entrepreneurship is better known
in part thanks to the opening of the Nobel Archives, which reveal a widespread ap-
preciation of his contributions to physics on the part of the international scientific
community.

For its several merits, this historical work has illuminated neither the why nor
the how of Poincaré’s engagement with physics. These are, of course, topics that
Poincaré did not address himself, at least not directly. In his last four years,
Poincaré’s state of health declined, and he did not find the time to write his
memoirs. A good scientific biography has yet to be published, although several
lives of Poincaré are in the works. Adding to the difficulty of the biographer’s task
is the fact that only a small portion of Poincaré’s Nachlass has been published.
Among the unpublished portion of the Nachlass are two hundred and fifty-seven
letters to and from physicists, less than ten percent of which has been exploited
to any extent by historians. To obtain an idea of how Poincaré went about doing
physics, and why he did so, surely this would be a good place to begin.

What then does Poincaré’s correspondence with physicists tell us about his
engagement with the problems of physics? One way to approach the question is
by examining the relation between the image of Poincaré’s physics drawn from
his published works, and that arising from his unpublished correspondence. The
image we form is multi-faceted, of course, but let us look briefly at just one facet:
the thematic image. Are there themes in Poincaré’s published work that are
echoed in his correspondence? If so, which ones? What themes find no echo in
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the correspondence? Inversely, we can ask if there are themes addressed in the
correspondence that are absent in the published œuvre.

First of all, among the problems of physics addressed by Poincaré in print, and
which have an epistolary pendant, we find multiple resonance, the Zeeman effect,
questions concerning Lorentz’s theory of electrons, and the Rowland effect (i.e.,
the magnetic action of convected charge). Study of the Rowland effect, in particu-
lar, generated a significant volume of correspondence in the period 1901-1903 (38
letters), while only two published articles are linked to the topic, one of which is
an edition of his letters to the French physicist Alfred Potier. The themes “miss-
ing” from Poincaré’s correspondence include the foundation of the second Law of
Thermodynamics, kinetic theory in general, probability, and quantum theory.

As for the inverse relation, in his correspondence Poincaré takes up, among other
topics, what he called “Le Bon” rays, and N rays. The former were also known as
“black light”, or “lumière noire”, in the coinage of their erstwhile producer, friend
and editor of Poincaré, Gustave Le Bon. The latter rays were the work of one
of France’s leading experimental physicists, René Blondlot. The fact that both
phenomena were spurious may seem sufficient to explain Poincaré’s reticence to
publish, but it is not, as demonstrated by his publications on the equally-spurious
absence of the Rowland effect. Perhaps after close study of these and other cases
present in Poincaré’s correspondence, historians will be in a better position to
understand how and why Poincaré constructed his singular—and phenomenally
successful—physical world-view.

Theoretical Cosmology and Observational Astronomy, circa 1930

Craig Fraser

In popular writing and textbooks on modern cosmology it is stated that the gen-
eral theory of relativity contributed in a fundamental way to the revolution in
cosmology that took place in the 1920s and 1930s. Thus Peebles [1993, 227] writes
“General relativity was one of the keys to the discovery of the expansion of the uni-
verse. . . ” On the other hand, some astronomers understand the history primarily
or even exclusively in terms of improvements in instrumentation and advances in
the interpretation of observations, cf. Sandage [1956].

To gain insight into the relationship of theory and observation in cosmology it is
useful to examine the period of the 1920s leading up to Edwin Hubble’s publication
of the redshift-distance law in 1929. That cosmological solutions of the equations
of general relativity were derived at precisely the same time that Vesto Slipher
and Milton Humason were beginning to detect large systematic nebular redshifts
was simply a coincidence. The two developments were largely independent. The
advances in telescopic instrumentation that made the nebular research possible
followed from improvements in technology and the increased financial support for
astronomy in America from government and philanthropic foundations. General
relativity by contrast developed within a central European scientific culture with a
strong emphasis on advanced mathematics and pure theory. In retrospect, it seems
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that Hubble’s relation would have been detected inevitably with improvements
in the size, quality and location of observing facilities; it could well have been
discovered earlier or later. It is nonetheless a fact that throughout the decade
leading up to the 1929 breakthrough, speculation about the redshifts was often
tied in with theorizing in relativistic cosmology. Hubble was aware of Willem de
Sitter’s writings and explicitly cited the relativistic de Sitter effect in the 1929
paper. It was also the case that general relativists such as Eddington were among
the first to explore the implications of Hubble’s discovery in terms of dynamical
world solutions.

Although the observational discoveries of the period were independent of theo-
retical work in relativistic cosmology, the converse can not be said to be true. At
the time he wrote his 1917 paper de Sitter was aware of Slipher’s findings through a
report on them published by Arthur Eddington in the Monthly Notices of the Royal
Astronomical Society. A more detailed description of these findings was presented
by Eddington in his 1920 book Space, Time and Gravitation, where he wrote “The
motions in the line-of-sight of a number of nebulae have been determined, chiefly
by Professor Slipher. The data are not so ample as we should like; but there is no
doubt that large receding motions greatly preponderate.” [Eddington 1920, 161]
It is significant that Friedmann in his 1922 paper cited both de Sitter’s paper and
the French translation of Eddington’s book. The very high redshifts reported in
these sources certainly would have raised doubts about Einstein’s assumption of a
static universe, and suggested the possibility of dynamical cosmological solutions
of the field equations. It is also known that Slipher’s findings were reported in 1923
in a widely read Russian scientific magazine published in Petrograd, Friedmann’s
home city. The case of Friedmann is interesting because he more than Lemâıtre is
often seen as someone who was uninfluenced by observation and whose geometric
solutions represented a prescient achievement of pure theory. It should be noted
that one of the key assumptions of his relativistic solution, the dependence of the
scale function only on the time, was later found to hold for the universe as a whole.
The relativists were not working in complete isolation from observational work,
although it is nonetheless the case that the emergence of dynamic theoretical so-
lutions at precisely this time was a highly unusual event of which there are few
parallels in the history of science.

In the work during the 1920s on relativistic cosmology no one with the possible
exception of Carl Wirtz and Howard Robertson had predicted a linear redshift-
distance relation, or made an attempt to configure the spectroscopic data to what
was then known about distances to nebulae. The very status of the nebulae much
less their distances was only being clarified during this period. To understand
why an expansionist interpretation of the universe was not generally considered
before 1930 it is also important to understand the intellectual atmosphere of the
1920s. What most struck scientists of the period about the spectroscopic data
was the fact that it might well consist of a verification of Einstein’s radical new
theory of gravity. It was this theory and its revolutionary implications that ex-
cited scientists. The nebular spectral shifts seemed to offer clear and unequivocal
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evidence for general relativity, much clearer than the fine discriminations involved
in interpreting eclipse observations. The focus of scientific attention was on the
meaning of the observational data for general relativity and not on the possible
fact of universal expansion.

After 1929 when expansion seemed to be the most natural interpretation of
Hubble’s law, the general relativists were able to turn to the until-then neglected
dynamical models of Alexander Friedmann and Georges Lemâıtre. It is worth not-
ing that Hubble regarded the concept of an expanding universe as a notion rooted
in the general theory of relativity. In retrospect, it seems clear that if one accepts
the redshifts as due to real velocities – and this is the most obvious explanation
– then it follows that the universe is expanding, a conclusion which requires for
its warrant no particular theory of gravity much less the formidable machinery
of general relativity. In 1933 Eddington wrote that the theorists had for the past
fifteen years been expecting something “sensational” [Eddington 1933, 2] along the
lines of Hubble’s discovery (and there could be no finding more sensational than
Hubble’s) and seemed almost to be taking some credit on behalf of the theorists
for the discoveries coming from the great American observatories.

There seems little doubt that Hubble was concerned to emphasize the purely
phenomenological character of his result, its independence from contemporary the-
orizing in mathematical cosmology. To concede that the redshifts were recessional
velocities was in Hubble’s view to accept an underlying theoretical approach to
cosmology, and possibly to suppose that an achievement of skilled observation
owed something to the “invented universe” of the theorist. As he emphasized in
a 1936 book, “the conquest of the realm of the nebulae was an achievement of
great telescopes.” In this book he explicitly referred to the “expanding universe
of general relativity,” and implied that the acceptance of the redshifts as actual
velocity shifts was dependent on acceptance of this theory. Any other explanation
of the redshifts would require some new principle of physics, but Hubble felt that
this might very well be necessary. His doubts about expansion intensified in the
years which followed. Given the very high number assigned at the time to Hub-
ble’s constant, it seemed that the universe would have to be very dense, small and
young, much more so than was indicated by general observation. In a 1942 article
in Science he concluded that “the empirical evidence now available does not favor
the interpretation of redshifts as velocity shifts.” [Hubble 1942, 214]

It is true that world models based on solutions of the relativistic field equations
reflected assumptions that were later found to be true of the universe as a whole.
Nevertheless, that the investigation of relativistic solutions occurred at the same
time as the exciting advances in nebular astronomy was, in the final analysis, an
interesting historical coincidence.
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The Reception of Slater’s Group-free Method in Early Textbooks on
Quantum Mechanics and Group Theory

Martina R. Schneider

Shortly after the new theories of quantum mechanics were introduced in 1925 and
1926, a couple of physicists (W. Heisenberg, E. Wigner, F. London, W. Heitler)
and mathematicians (H. Weyl, J. von Neumann) used group theory in quantum
mechanics. On the one hand, group theory provided mathematical tools for a qual-
itative analysis of atomic spectra (quantum numbers, spectroscopic rules), and on
the other hand, it provided a mathematical-conceptual framework for parts of
quantum mechanics. There was a mixed reaction of the physicists’ community
to the use of group theory in quantum mechanics. Only a few physicists inte-
grated this new method into their work. A lot of physicists had great difficulties
understanding it. Representation theory which was at the core of the group-
theoretical method in quantum mechanics had rarely been used before in physics.
The term “Gruppenpest” (group pestilence), probably introduced by the physicist
Paul Ehrenfest, became a catch word for those physicists who were opposed to
group theory. (On the role of group theory in quantum mechanics and its recep-
tion by physicists in the late 1920s see, for example, chapter III.4 in [Mehra and
Rechenberg 2000].)

The resistance to group theory grew when the young American physicist John
Slater published a paper on the classification of the multiplet system and the
calculation of energy levels of the different multiplets of an atom with several elec-
trons [1929] – without using group theory. He proved that an old semi-empirically
derived method to determine the multiplet system was also compatible with the
new wave mechanics. This method was displayed e.g. in Friedrich Hund’s mono-
graph [1927a, §25], but based on the out-dated vector scheme. One only needed
to set up a table with all combinatorically possible configurations of electrons,
reduce it with the help of Pauli’s exclusion principle to all physically possible
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ones and then visualize the table of configurations by a diagram. The diagram
was then to be reconstructed by superposing certain simple rectangular diagrams
which were related to the quantum numbers L, S (total angular momentum, total
spin angular momentum). The simple rectangular diagrams which appeared in
the reconstruction then gave rise to multiplets with quantum numbers L, S. This
slight modification of Hund’s approach in a new theoretic context became known
as Slater’s method. One essential step in proving the compatibility with wave
mechanics, was Slater’s introduction of the determinant method – which included
the spin function for the first time – to construct antisymmetric wave functions.

In the group-theoretical approach one had to know about the irreducible repre-
sentations of the group of spatial rotations and of permutations to determine L, S.
(Friedrich Hund [1927b] had developed a different group-free approach in the new
theoretical framework in 1927 which had not become popular.) Slater’s group-
free method was warmly welcomed by the physicists’ community. Many physicists
believed that this was the beginning of the end of group theory in quantum me-
chanics.

Despite the resistance to group theory Wigner and Weyl continued their di-
rection of research. They were joined by several others, e.g. by the physicists
H. Casimir and C. Eckart, and by the mathematician B. van der Waerden. In
the early 1930s three textbooks on the group-theoretical method were published
by Weyl [1931], by Wigner [1931] and by van der Waerden [1932]. All three of
them used a group-theoretical method to determine the multiplet structure, as one
would expect. And all three referred to Slater’s method in their prefaces. This,
however, is almost the only thing they have in common regarding Slater’s method.

Hermann Weyl [1931] did not mention Slater’s method explicitly. He referred
to Slater’s article in two footnotes but not in connection with the above method.
He referred to it because of Slater’s innovative approach to calculate energy levels
[Weyl 1931, p.353, fn. 4; p.356, fn. 314]. Weyl thought that

“Nevertheless, the representations of the group of permutations
have to stay a natural tool of the theory, as long as the existence
of spin is taken into account, but its dynamic effect is neglected
and as long as one wants to have a general overview of the resulting
circumstances” [Weyl 1931, p.viif, translation MS].

The fact that Weyl chose to ignore Slater’s group-free method might seem rea-
sonable in a book on group theory. The two other authors, however, thought
differently: in addition to a group-theoretical method Wigner and van der Waer-
den decided to include Slater’s method.

Eugen Wigner [1931, pp. 308-321] showed how Slater’s method tied in with
group theory. In fact, he gave a group-theoretical explanation of Slater’s method.
Wigner showed that the diagram was linked to characters of the irreducible rep-
resentation of the rotation group. He thought that the importance of Slater’s
method did not rest upon the avoidance of group theory but upon its relation to
group theory:
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“The significant feature of the Slater method is that it makes it

possible to avoid entirely the consideration of symmetry of the

Schrödinger equation under permutation of the Cartesian coordi-

nates alone, by considering instead the invariance under rotations
QR of the spin coordinates.” [Wigner 1931, p.316, emphasis in
original; translation taken from the English edition 1959, p.317].

Contrary to Slater’s original aim to use a method not based on group theory,
Wigner interpreted Slater’s method as examplifying a deep group-theoretical con-
nection. Thus, Wigner changed the context of Slater’s method radically. The
groupification of Slater’s method also had the advantage that the guessing process
in the end could be replaced by an easy calculation of L, S from the diagram.
Another spin-off was that the limits of applicability of Slater’s method became
clear. The limitation of Slater’s method to electrons (spin = 1/2) was the physical
reason for Wigner to introduce the irreducible representation of the permutation
group.

Unlike Wigner, Bartel van der Waerden [1932, pp. 120-124] kept to Slater’s
original aim. He optimized Slater’s method, shortening the table of configurations
and outlining a clear-cut procedure to determine L, S directly from the table with-
out constructing a diagram. Moreover, he set up rules to reduce the problem to
situations which were easier to handle and included a list of possible multiplets for
electrons with angular quantum number l ≤ 2. All of this was achieved without
the use of group theory.

These different treatments of Slater’s method in early textbooks on group theory
and quantum mechanics can be seen as three different answers to the physicists’
complaints regarding group theory. Wigner and Weyl were not prepared to in-
clude Slater’s method as such in a book on group theory. They had invented
the group-theoretical approach and wanted to advocate it despite resistance from
the physicists’ community. Wigner and Weyl both constructed the irreducible
representations of the permutation group because they thought it was physically
necessary. Wigner’s way of including Slater’s method and Weyl’s omission of it
both point to their conceptual preference of group theory.

Van der Waerden, however, took the physicists’ complaints regarding group
theory seriously. This is quite remarkable for an algebraist and shows how famil-
iar van der Waerden was with the needs of the working physicists with whom he
had close personal contacts. In Groningen, he had helped the circle around Paul
Ehrenfest to understand the group-theoretical approach in 1928/29. In Leipzig, he
gave a seminar on it during the winter term 1931/32 which was attended by the
physicists Werner Heisenberg, Friedrich Hund and their students. Van der Waer-
den’s textbook developed from this seminar. Thus he had first hand experience of
the struggles of physicists with group theory.

The heated debate on the use of group theory in quantum mechanics also in-
dicates a tension within the physicists’ community: The two different approaches
to determine the multiplet structure represent two different views on methodology
in physics. The group-theoretical method was a mathematically and conceptually
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pleasing approach because it could explain many empirical results from one math-
ematical perspective. It was thus aesthetically pleasing from a theoretical point
of view. However, this point of view was not shared by everybody at that time.
Slater’s method was a mathematically easy approach which served those physicists
well who did not care about the method as long as it was simple and the results
were correct. It completely satisfied the needs of the more pragmatically minded
physicists. Van der Waerden’s inclusion of an optimized version of Slater’s method
also points to a need for this pragmatic approach from the physicists around van
der Waerden and within the physicists’ community as a whole.
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Mathematics, Meaning and Methodology. On the Structural
Development of Mathematical Philosophy of Nature from Newton to

Lagrange

Helmut Pulte

The role of mathematics in 18th century science and philosophy of science can
hardly be overestimated, though it was and is frequently misunderstood. From
today’s point of view one might be tempted to say that philosophers and scientists
in the 17th and even more in the 18th century became aware of the importance of
mathematics as a means of ‘representing’ physical phenomena or as an ‘instrument’
of deductive explanation and prediction: the rise of mathematical physics, so to
speak, as a peripherical phenomenon of the new experimental sciences, and the
mathematical part of physics as a methodologically directed, constructive enter-
prise that is somehow ‘parasitical’ with respect to experimental and observational
data. But such modernisms are missing the central point, i.e. the ‘mathematical
nature of nature’ according to mechanical philosophy. Some general features of
mathematics under the premise of mechanism will be important to understand the
general development of mathematical philosophy in the course of the 18th century.
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‘Semantical ladenness’ of mathematics

On the premise of mechanism, the primary aim of natural philosophy was the
determination of the motion of material particles under different physical condi-
tions — the science of motion, so to speak, as the ‘hard core’ of natural philos-
ophy. Motion itself being regarded as a genuine mathematical concept, natural
philosophy had to be not only an experimental, but also (first and above all) a
mathematical science. Taking this idea of motion seriously, the attribute ‘mathe-
matical’ should not be understood as ‘mathematics applied to science’ but rather
as ‘science, having essentially to do with mathematical entities’. It is important to
note, however, that in the course of the 18th century, rational mechanics — even in
its abstract, ‘analytical’ form that can be found in the works of Euler, d’Alembert
and Lagrange — never became a ‘purely’ mathematical exercise without physi-
cal meaning: its concepts and primary laws were located in natural reality, and
(therefore) its deductive consequences were expected to be empirically meaningful.

Euclideanism

A second common feature of mathematical philosophy of nature is of equal
importance with respect to the role of mathematics: Rational mechanics follows
the ideal of Euclidean geometry, or, to be more precise, its concept of science is best
described as ‘Euclideanism’ (in Lakatos’s sense). Its most important feature is that
its first principles are not only true, but certainly true, i.e. infallible with respect
to empirical ‘anomalies’. This means, first and above all, that rational mechanics
should not be understood as a hypothetical-deductive, but rather as an axiomatic-
deductive science. In other words: If the hypothetical-deductive method is “at
the core of modern science” (as is sometimes claimed), rational mechanics from
Newton to Kant is not modern, and if it is defined as ‘modern’ [neuzeitlich], this
characterization cannot be true. The ‘historical stability’ of classical mechanics
from Newton to Einstein is not only due to its empirical success, but also to
its Euclideanistic leanings, and the decline of ‘mechanical Euclideanism’ was a
necessary historical premise for its removal at the beginning of this century.

It is, however, by no means evident that primary laws of nature are ‘prime can-
didates’ for axioms of a deductively organized theory, nor is it clear whether such a
‘metatheoretical coincidence’ is possible at all: From natural laws the philosopher-
scientist expects truth, empirical generality, explanatory power (mechanical expla-
nation of possibly all phenomena of nature), a certain plausibility and intuitivity
with respect to his scientific metaphysics and (perhaps) necessity. From first prin-
ciples or ‘axioms’ of a theory he expects, above all, truth, deductive power (entail-
ment of all the other laws of a theory); moreover they are thought to be neither
provable by other propositions nor — due to their evidence — to be in need of such
a proof. This is a central point of my discussion: Laws have to explain nature,
axioms have to organize theories. But a ‘congruence’ of both demands is increas-
ingly difficult to guarantee when science produces a growing body of knowledge.
Traditional mechanical Euclideanism is at stake here.



Mathematics in the Physical Sciences, 1650-2000 3211

Orders of science

The plural ‘orders’ refers to a third point which should be underlined: At the
beginning of the 18th century, there were indeed fundamentally different attempts
to gain a coherent system of ‘mathematical principles of natural philosophy’: At
least Descartes’ ‘geometrical’ mechanics, Newton’s mechanics of (directive) forces,
and Leibniz’s dynamics, based on the conservation of vis via, have to be sharply
separated.

Newton’s Principia was obviously most successful in empirical respect, but it
was neither unique in its intention, nor was it faultless or complete in its execution,
nor was it understood as ‘revolutionary’ by the first generation of its readers, as
far as the principles of mechanics are in question. ‘Classical mechanics’ and
‘Newtonian mechanics’ (understood as mechanics laid down by Newton) are by no
means synonymous names. As far as the foundations of rational mechanics are at
stake, the great ‘Newtonian revolution’ did not take place.

During a period of ‘permanent revolution’, however, so-called ‘formal’ elements
of science gain a peculiar quality: While a ‘conceptual discourse’ across the bound-
aries of actual scientific metaphysics is hardly possible and almost futile (as is best
illustrated by the famous Leibniz-Clarke correspondence), the language of mathe-
matics becomes even more important for a small (and in a way isolated) scientific
community that promotes rational mechanics (as is best illustrated by the con-
tinental reception of Newton’s Principia). This does not mean a sharing of the
somehow naive view that mathematics in the age of reason worked as a kind of
meta-language, capable of solving even philosophical problems of rational mechan-
ics and, as it were, ‘replacing’ the Babylonian confusion of the different tongues
of metaphysics. It means, however, that mathematics played a key role in making
accessible the results of one research program of mechanics to the others, that it
was indispensable in integrating those parts which seemed valuable and that it
was the only means in order to formulate ‘towering’ principles (like that of least
action or virtual displacements) from which all the accepted laws of mechanics,
whether they emerged from their ‘own’ research program or not, could be derived.

Scientific metaphysics tends towards a separation, mathematics tends towards
an integration of different programs. At the end of the eighteenth century, we
have one (and only one) system which represents all the accepted ‘mathematical
principles of natural philosophy’: Lagrange’s Méchanique Analitique. But did it
keep what mathematical philosophy of nature, a century earlier, had promised?

Understanding the Change of Concepts of Science

The three abovementioned features form the basis of my outline. Its aim is a
better understanding of the metatheoretical change of rational mechanics which
took place in the course of the 18th century and is most obvious if we compare
Newton’s Principia (1687) and Lagrange’s Méchanique Analitique (1788).

In general, I argue that there is a growing tension between the order of nature
and the orders of science that leads to a dissolution of Euclideanism at the end
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of the 18th century, which becomes most obvious in a meaning-crisis of so-called
‘axioms’ or ‘principles’ of mechanics.

Rational mechanics increasingly relied on abstract mathematical tools and tech-
niques, thereby ‘unloading’ its axioms from empirical meaning and intuitivity
which at first (with respect to the scientific metaphysics from which they de-
pended) were their characteristics. This process ends in Lagrange’s mechanics. It
makes use of ‘first’ principles only as formal axioms with great deductive power,
but these principles can no longer be understood as laws of nature in the original
meaning. This is what, in the end, caused a ‘crisis of principles’ at the turn of the
century. Kant, for example, tried to ‘synthesize’ mechanical knowledge in some
principles, which are, under the premises of his system, certain and evident, but
he makes by no means clear how the whole body of accepted knowledge could
be based on these principles; the unique ‘order of science’ remains an ‘projected’
ideal.

The development in question was promoted by the rise of analytical mechanics
and opened the way for conventionalism and instrumentalism in mechanics in the
course of the following century, starting with Jacobi, Riemann and Carl Neumann
and continued by Mach, Hertz, Poincaré, Duhem and others. The dissolution of
‘mechanical euclideanism’ is a process that continues until the end of the 19th

century, but is introduced by the formalisation of rational mechanics in the 18th

century, culminating in Lagrange’s Méchanique Analitique.
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An Everlasting Temptation? Philosophical Perspectives on Action
Principles and Variational Calculus

Michael Stöltzner

Over the centuries, hardly another principle of classical physics has to a compa-
rable extent nourished exalted hopes into a universal theory, has constantly been
plagued by mathematical counterexamples, and has ignited metaphysical contro-
versies about causality and teleology than did the principle of least action (PLA)
and its kin. Primarily responsible for the classical clashes on physical teleology
and natural theology was the fact that the PLA designates, among all possible
scenarios, the one that minimizes, or at least corresponds to the extremum of a
certain quantity. This argumentative figure reverberated the classical topos of a
parsimonious nature. [7]



Mathematics in the Physical Sciences, 1650-2000 3213

Since antiquity it had been well-known, however, that there are instances where
the quest for minimality fails. Already Leibniz, reflecting upon the new varia-
tional calculus, contemplated that in such cases the actual world was uniquely
distinguished among the possible ones by being the most determined. To poster-
ity, this modal view would repeatedly promise a way to circumvent the notorious
metaphysical problem of physical teleology.

Modern philosophy of science has treated the PLA with neglect, more than
with suspicion, despite the fact that it provides a simple scheme to formulate
the basic laws of theories so different as classical mechanics, electrodynamics,
relativity theory, and – in a somewhat different setting – quantum physics. [13]
To the Vienna Circle and the tradition building upon it, the PLA even became a
shibboleth. [10] For, attributing any genuine physical significance to the PLA –
apart from its providing a convenient reformulation of the differential equations
of motion derivable from it – introduced unwarranted analogies between physical
processes and goal-directed behavior.

The principal aim of my research is to attempt a philosophical classification
of the interpretations of the PLA that were advanced during its long history.
Despite the obvious fact that such interpretations were embedded into starkly
diverging philosophical agendas and were based upon a different knowledge of
the mathematical intricacies of the PLA, it seems to me that, having adopted an
abstract characterization of the PLA, one can distinguish three types of strategies.
In describing the relationship between the PLA (and related integral principles)
and the usual differential equations of motions they involve modal commitments
of an increasing strength.

Taking Mu as the space of all possible motions between two points, the PLA
states that the actual motion u extremizes the value of the integral W [u] =
∫

L(t, u(t), u̇(t)) in comparison to all possible motions, the variations (u + δu) ∈
Mu. Zeroth order: u is uniquely determined within Mu as compared to the other
degenerate scenarios. First order: There exists a functional W [u] for Mu whose
extremal values yield the differential equations of motion. Second order: There
exist structural features of Mu guaranteeing that W [u] attains its minimum. [11, 8]

Zeroth order formal teleology characterizes the empiricist reading of the PLA
put forward by Mach, Petzoldt and Ostwald. [5] Several critics of this view empha-
sized that, if its antimetaphysical ambition is taken at face value, it can hardly be
distinguished from the simple fact that a physical phenomenon can be described
by a specific mathematical formula.

The distinction between first and second order formal teleology is modeled after
the distinction between necessary and sufficient conditions for the minimality of
W [u]. (It is true that in this way the classification becomes somewhat anachronistic
because this distinction for a long time has described the major line of progress in
variational calculus.) Historically, the main advocates of these interpretations were
Planck and Hilbert respectively. Planck [6] was convinced that for each domain of
reversible physics an appropriate PLA could be found. To him, this represented
a structural feature of the real world. Hilbert [2] not only used the PLA as the
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main tool in the axiomatization of physical theories of both foundational and
phenomenological character, it also bears striking similarities to the different steps
of the axiomatic method. In his philosophical understanding, Hilbert oscillated
between the belief in a non-Leibnizian pre-established harmony of mathematics
and physics and a rather pragmatic attitude in case such a harmony was not
in sight. The common element of his attitude was, to my mind, his quest for an
independent ‘architectural’ justification – to use a Leibnizian term – that permitted
the mathematician to deepen the foundation of physical theory. [3, 9]

If this classification based on modal commitments is sound, the question arises
how to assess the ontological status of the possible dynamical scenarios. Especially
in the case of second-order formal teleology, one has to make strong assumptions
about counterfactual or even counterlegal scenarios in order to reach a mathemat-
ically meaningful formulation of the PLA. [1] One option would be to follow the
Kantian intuition and consider the PLA, as the conjunction of the actual dynam-
ics and the possible ones, as a formal teleological structure in the sense of Kant’s
Critique of Judgement (that is, as a structure that exhibits purposiveness without
any purpose).

I shall, instead, propose a less “teleological” interpretation that comes closer
to the original idea of variation. If we understand the PLA as a mathematical
thought experiments, in a sense inspired by Mach and Lakatos [4], the alleged sys-
temic properties of the ensemble of actual and possible dynamics simply express
the integrity of the thought-experimental set-up. Possible worlds are meaningful
only with respect to this set-up. If the thought experiment succeeds, it can well be
developed into a real experiment that corroborates the law succinctly expressed by
it. This is important because scholarship on scientific thought experiments takes
empirical realizability as a criterion of success. If the thought experiment fails, it
fails with respect to the applicability of mathematics to a physical situation. This
comprises cases where the PLA is minimized by a curve that is unphysical. As
with real experiments, one might search for conditions under which the thought
experiment is successful or yields a definitively negative result. Such an attitude
comes close to Hilbert’s optimism about variational calculus that is expressed in
his 20th problem. On the other hand, one may hope that explorative thought ex-
perimentation is able to unveil a scientifically meaningful mathematical structure.
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[12] M. Stöltzner and P. Weingartner (eds.), Formale Teleologie und Kausalität, Paderborn,
2005.

[13] W. Yourgrau and S. Mandelstam, Variational Principles in Dynamics and Quantum The-
ory, London, 1968.

Experiment and Mathematisation in Early Electrodynamics

Friedrich Steinle

My talk focuses on the question of how domains that are treated experimentally
and qualitatively may become mathematised. To use for a moment Kuhn’s fa-
mous distinction, my question is how Baconian science becomes mathematical.
Electricity, heat and colour provide characteristic cases in which mathematisa-
tion and quantification had to start from scratch. Other cases, like magnetism or
hydrodynamics, are more complex: there had traditionally been some degree of
quantification and mathematics involved. In those cases Kuhn’s neat dichotomy
does not work, or is at least revealed as one of degrees.

The case of electricity is particularly interesting. Throughout the 18th century,
electricity was treated only qualitative (with the exception of Aepinus whose work
found no response in his time), whereas a century later it was thoroughly quantified
and mathematised. What is more, that process went along several unconnected
strands – Poisson’s electrostatic theory, Ritter’s formalization of galvanism, and
Ohm’s introduction of quantitative notions, for example, had more or less nothing
to do with each other. Even more, the domain that was eventually to become
the core of all electrical theory – electrodynamics – had for several decades a
curious constellation: there were two prominent, but incompatible conceptual and
theoretical frameworks in parallel: action-at-a-distance theories on the one hand,
and field theories on the other. It is likely that this dichotomy took its origin
in different approaches towards the question how a large and unexplored domain
of phenomena should be treated, quantified and eventually mathematised. In my
talk, I shall focus on some significant aspects of the early phase of this development
– I discuss how Ampère and his fiercest competitor Biot approached the new
domain in strikingly different ways.

***

Oersted’s discovery of electromagnetic action provided a profound challenge
for the established Laplacian program of mathematising ever wider physical do-
mains. The fundamental notion of a central force, attractive or repulsive, directed
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along the straight line between its point-like centres, and depending only on their
distance, seemed to be not applicable to the experimental result. The most promi-
nent exponent of that program in physics, Jean-Baptiste Biot, took the challenge
and attempted at implementing the Laplacian ideal of mathematisation. Together
with his assistant Félix Savart, he set up a measuring apparatus (and was able
to surmount the huge experimental difficulties!), determined the dependence of
the electromagnetic effect on the distance between wire and magnetic needle, and
reduced this macroscopic law to a force law between the supposedly point-like
magnetic elements as centres of force. The result is known up to this day as the
law of Biot and Savart.

However, his successful approach of mathematisation had strong preconditions
and serious ‘costs’. From the mathematical toolbox available, it was clear that
the only number to be determined was the exponent of the one-term polynomial
– there was just no means available to determine any more complex force law.
Moreover, Biot had to choose a highly symmetric experimental arrangement and
thus to ignore the bewildering complexity of the experimental results that im-
mediately appeared in less symmetric constellations. The central problem that
bothered many researchers in Europe – the problem of expressing spatial orienta-
tion that obviously played a central role – was blended out by the very apparatus.
Biot’s program of mathematising electromagnetism, far from being ‘innocent’ or
straightforward, was largely characterized by enforced application of an existing
mathematical toolbox and of a well-defined research program (mathematisation
via precision measurement), on the cost of deliberately ignoring the puzzling and
widely unexplored complexity of the new domain.

***

Even before Biot could start his research, an outsider jumped into the new field.
André-Marie Ampère, professor of mathematics and mechanics, and not commit-
ted to the Laplacian program, started his feverish work with a wide experimental
search for regularities or laws, and quickly came to formulate two “general facts”
or laws. In the first of them, later known as Ampère’s ‘swimmer law’, he invented
new concepts, such as ‘left’ and ‘right’ of a current, in order to specify in a general
way the direction in which the needle’s north pole moved in front of a wire with a
definite direction of electric current. He even claimed – somewhat prematurely –
that even the complex electromagnetic effects could be covered by his two laws.

Before he could work out this claim in detail, however, he changed his research
agenda drastically. On complicated pathways, he had realized an effect in which
two spirals of wire with a current running through them attracted or repelled
each other, without any ordinary magnetism involved. He saw a completely new
domain of research ahead: the domain of interacting electric currents, soon to be
labelled “electrodynamics” by himself. And from the outset, he pursued the goal
to approach this domain mathematically – a goal to which he would devote several
years, and in favour of which he dropped his previous experimental explorations.

In his attempts to mathematise, he drew on the resources around him, i.e. the
Laplacian conceptual scheme, though with significant deviations. In particular, he
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saw more clearly than Biot (and due to his initial exploratory work) that the action
was not isotropic, i.e. that angles had to be introduced in the law. He considered
very small (perhaps infinitesimal) current elements as centres of a force acting
along the straight line between them and depending both on the distance and
the angles formed by the two elements. In a bold extrapolation of two empirical
results – attraction of parallel currents and repulsion of antiparallel currents – he
suggested the force would depend on the cosine of one angle, and the sines of the
two others. As to dependence on the distance, he took an inverse square law for
granted. The first force law he presented:

F ∼ 1
r2 sinα sinβ cos γ

was essentially a suggestion with only very weak empirical footholds.
In order to test that formula, Ampère had a complicated apparatus constructed,

with the idea to directly measure the dependence of the force on the angles. How-
ever, while he described the apparatus in all detail, he never gave any results –
it is most likely that he never arrived at stable outcomes. This is not too sur-
prising, since with electrodynamic measurements he indeed had to face even more
experimental difficulties than Biot had with his electromagnetic measurements.

For Ampère, this failure meant that his initial program was stuck – the way to
mathematisation via quantification was blocked. But already a few weeks later,
Ampère came up with proposing a different pathway, a pathway that involved a
bold and hypothetical postulate. If one considered a current element as being
made up by two arbitrarily chosen components, the postulate claimed that the
electrodynamic force exerted by the current element was equal to the sum of the
forces exerted by its components. Ampère was well aware that this postulate
needed experimental support, but he would deliver that support only much later.
For the time being, however, the postulate allowed him to mathematically derive

the law from the few empirical results he already had: attraction of currents in
parallel position, repulsion in antiparallel position, and no action in rectangular
position. It is striking to see that the resulting formula

F = gh

r2 (sinα sinβ cos γ + n
m

cosα cosβ)

was obtained without a single measurement. Nevertheless, when Ampère presented
it proudly to the Academy, he insisted on it being empirically founded.

***

The two pathways towards mathematisation taken by Biot and Ampère, re-
spectively, differ drastically. While in Biot’s case mathematisation was achieved,
at least in principle, via measurement, i.e. via quantification, in Ampère’s case
we have a process of mathematisation without quantification. And Ampère would
cultivate this pathway further: his famous procedure of equilibrium experiments
was essentially designed to allow mathematisation while avoiding (the technically
difficult or even impossible) measurement – in other words, to reduce the em-
pirical input in the mathematisation process to yes-no responses to well-designed
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questions. The picture of possible pathways towards mathematisation of electro-
dynamics will get even much richer and more complex as soon as one includes the
cases of Ohm, Faraday, Thomson, Neumann and Maxwell. The relation of quantifi-
cation and mathematisation is by no means straightforward, but may widely vary,
depending on the experimental, conceptual, and mathematical resources available
and on the specific scientific cultures. The topic deserves much further research.
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The Rise of Mathematical Modeling

Gerard Alberts

The appeal to mathematical thought has in the 20th century taken on the form
of a procedure: mathematical modeling. Bernard de Fontenelle (1699) wrote how
knowledge is improved when mathematical thought (esprit géometrique) is trans-
ferred to it. While he had to catch a mathematician to write a better book, today
we may follow a procedure. Putting mathematics to use for 150 years followed the
idea of “applied mathematics” (1800-1950). Then it was superseded by the more
general idea of mathematical modeling. Two traditions pointed in that direction.
One, from inside applied mathematics where the truth of theory in examples like
kinetic theory of gases and electromagnetics had become problematic. Hertz re-
acted proposing his notion “Bild” (1894), which only gradually was replaced by
model, mathematical model. Two, from the outside mathematizing tendencies in
economics, social sciences, psychology and the like grew into full-blown qualita-
tive sciences. Burgers’ hydrodynamics and Tinbergen’s econometrics are given as
(Dutch) illustrations of both developments, showing how mathematical model was
presented not by the skeptics, but by those who as long as possible stuck to the
search for truth. Another Dutchman, David van Dantzig, described mathematical
modeling as a practice, a procedure: “General Procedures of Empirical Science.”
(1946)



Mathematics in the Physical Sciences, 1650-2000 3219

Adjusting Mathematics and Experiment: Episodes from Early
Aerodynamics, 1900-1918

Moritz Epple

The history of hydro- and aerodynamics has received new interest recently for a
number of reasons: these fields, crucial to major civil and military technologies
of the 20th century, have offered and continue to offer some of the most difficult
challenges to mathematical thought and computation since the mathematization
of flows was first envisaged in the 18th century [1], [2].

Aerodynamics, in particular, experienced a rather singular period of formation
as a science. After the first motorized flights – carried out with virtually no
scientific underpinnings – had shown that a new technology was emerging, the
pressure to develop suitable scientific tools for aviation became rather high (not
least from the military side). While the subsequent development is still most often
described by a smooth success story, the talk discussed some of the difficulties that
needed to be overcome before a roughly consistent and roughly adequate theory
of the drag and lift of airplanes, a theory of wings and propellers, etc., could be
achieved.

One of the decisive issues that required subtle research was the mutual adapta-
tion of mathematical and experimental tools for studying the problem of flight.

From a mathematical perspective, the situation before 1900 was characterized
by the availability of differential equations (the Euler equations, the Navier-Stokes
equations) which were far too difficult to solve for a realistic situation of a flying
body. From an empirical perspective, the situation was not much better: Empirical
findings and measurements, e.g. in small wind tunnels, were hardly reliable and
impossible to reproduce with some precision in other places.

However, things did not change substantially after the first theory fragments
were proposed which enter today’s successful approach to flight. This holds both
for the Joukowski-Kutta theory of lift, introduced in the early 1900’s and idealizing
the flow along wings as a two-dimensional ideal flow that can be treated by means
of conformal mappings, and for Ludwig Prandtl’s boundary layer theory, proposed
in 1904. In particular, the phenomenon of the so-called ‘separation of the bound-
ary layer’ made the basic assumption of Joukowski’s and Kutta’s explanation of
lift (conformal flows) highly problematic. The tension between idealized descrip-
tions and this and other phenomena related to turbulence called for empirical
investigation.

The same was true for the next phase of theory development, the work of Ludwig
Prandtl’s group in Göttingen toward a new, properly three-dimensional theory of
wings immediately before and during World War I [3]. Based on a linearization of
the Euler equations, this approach was closer to Joukowski-Kutta lift theory than
to boundary layer theory and hence equally problematic. Moreover, the three-
dimensional situation created additional difficulties (for some time, the assumed
distribution of vorticity, and hence lift, along a ‘lifting line’ produced singularities
in local flow speeds contradicting the linearization assumptions).
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The reason why such approaches, based on Euler’s equations, could neverthe-
less achieve good results for the flight problem was understood in consequence of
another strand of research which had quite different aims. This was the calibra-
tion of the experimental systems of aerodynamics that turned out to be necessary
after the first two major large wind tunnels had been built in 1908 and 1909 in
Göttingen’s Modellversuchsanstalt, on the one hand, and in Paris by Gustave Eif-
fel, on the other. While the former institution was built some months earlier, Eiffel
was the first to actually make measurements.

A detailed discussion of the fairly large discrepancies of the measured data on
the drag of spheres between Paris and Göttingen shows that only the surpris-
ing twists and turns of this competition for the most authoritative measurements
helped to understand the fundamentals of reliable wind-tunnel testing, including
the scaling effects depending on the Reynolds number of flows. Prandtl finally
also explained in terms of his boundary layer concept why the transition from
the ‘subcritical’ to the ‘supercritical’ regime of flows around a body could lead to
very different data on drag. It was a quite unintended outcome of this attempt at
understanding experimentation that the same phenomenon also helped to explain
why flight could be described mathematically in terms of Eulerian approaches:
In the supercritical regime, the regions of turbulence (and the form of the sepa-
rated boundary layers) were such that they did not preclude flow patterns roughly
corresponding to the assumptions and predictions of lift or wing theory.

In conclusion, these episodes show how closely mathematization and experimen-
tation were intertwined in the formation of aerodynamical science. This may be
characteristic of the hybrid research configurations of twentieth century science,
but it may also be a feature of using mathematics in a physical context that is
more common than usually thought. In the view of the speaker, similar episodes
call for a closer cooperation between historians of mathematics and historians of
experimentation.
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The Hopfield model: In between the General and the Specific

Andrea Loettgers

Models are an integral part of contemporary scientific practice. In recent studies
which focus on how scientists construct, apply, and manipulate models historians
and philosophers of science [1, 2, 3] have revealed the large number of different
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functions models fulfill in science. Here the role of models in interdisciplinary re-
search contexts will be discussed by examining a specific neural network model, the
Hopfield model. The model mimics the brain function of auto-associative mem-
ory. The model was introduced in 1982 by John Hopfield in an article entitled
Neural Networks and physical system with emergent collective computational abil-
ities. [4] It was constructed at the interface of theoretical physics, neuroscience,
and computer engineering. An examination of the development of the model in
the different scientific disciplines shows that the model was received, applied and
modified differently by the scientists in the respective scientific communities. The
way scientists used the model depended on various interdependent factors: the
modeling traditions, scientific cultures, and the understanding of the nature of bi-
ological systems. These factors also turned out to be obstacles to the formation of
interdisciplinary research. Only by the introduction of new research fields such as
computational neuroscience, DNA based computing, and synthetic biology did in-
terdisciplinary research develop. John Hopfield started his scientific career in solid
state physics. By the beginning of the 1970’s, he went into molecular biology and,
later on, he became interested in neuroscience. A closer look at the construction
process of his neural network model shows that he approached the problem with
the attitude of a theoretical physicist. Computational properties of the brain, he
wrote in his 1982 paper, could result from collective properties, meaning from the
interaction between the neurons in the brain. Collective properties is a concept
which is used in theoretical physics in the investigation of many body. By making
the assumption that computational properties result from cooperative properties
he drew up on a tradition of modeling many body problems in theoretical physics.
In this tradition, models are constructed as simple as possible in order to find
the crucial parameters responsible for the observed phenomena. In this case, the
model becomes a representation of the phenomena independent from any specific
systems [5] and thus can function as a representation for a class of systems which
share the properties represented by the model. Neuroscientists reacted very scep-
tically to the Hopfield model. The model contradicted their daily experiences of
the complexity of the brain structure and the processes taking place in the brain.
They could not see how to apply the model to their research. Theoretical physi-
cists, on the other hand, found the model very attractive. They used the model in
their research on disordered magnetic systems and at the same time they became
active in the field of neural networks. The abstract character of the model ap-
pealed to computer engineers who started to develop and construct new computer
architectures. Depending on the different scientific backgrounds, scientists applied
and manipulated the Hopfield model differently, which means it fulfilled different
functions in the different scientific disciplines. But different modeling traditions
and understanding of the nature of biological systems prevented the model from
mediating between the different disciplines and the formation of interdisciplinary
cooperation.
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Mathematicians Doing Physics: Mark Kac’s Work on the Modeling of
Phase Transitions

Martin Niss

Modeling of physical phenomena is an important activity of physics. One of the
factors that shape this activity is mathematical tractability because only tractable
models are of any use. Since physicists are not always capable of carrying out a
mathematical analysis of physically relevant models, there is room for the skills of
mathematicians. One of the fields were mathematicians have assisted physicists is
the attempt to understand phase transitions, such as the boiling of liquids or the
magnetic phase transition (where the heating of a magnet takes it from a magnetic
regime to a non-magnetic one). The talk examined the similarities and differences
between mathematicians and physicists in shaping the field of phase transitions
after World War II.

Shortly after the advent of quantum mechanics in 1926-1927, physicists de-
signed and examined a number of microscopic models of phase transitions. Their
experiences gradually led to two lessons. First, an approximation scheme used
widely to examine these models does in fact give incorrect results. Second, with-
out this approximation scheme only very few models are soluble. Physicists tried
to get scientists who saw themselves as mathematicians interested in these matters
and this “campaign” did result in the attention of several mathematicians. These
mathematicians assisted in two ways. First, they showed with full mathemati-
cal rigor that the formalism of statistical mechanics is capable of accommodating
phase transitions. This rather technical contribution was seen by physicists as
important because it secured the foundations, but as giving little physical un-
derstanding. The second contribution was of much more direct relevance in this
respect, as the mathematicians participated in the examination of models. Some
mathematicians, including John von Neumann and Norbert Wiener, tried unsuc-
cessfully to derive the physical properties of models proposed by physicists. A
few mathematicians invented physical models on their own and were much more
successful. Physicists saw these models as significant contributions to the devel-
opment of the understanding of phase transitions. So, in order to contribute the
mathematicans couldn’t simply use their mathematical skills to solve problems
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posed by the physicists. To help, they had to participate more directly in the
shaping of the field. In short, they had do physics.

One of the most important mathematicians doing physics was the Polish-Ameri-
can Mark Kac (1914-1984). He started his career in pure mathematics, mainly
probability, analysis, and number theory. His collaboration with the physicist
George Uhlenbeck during World War II got him interested in physics and in the last
part of his career he worked extensively on phase transitions. However, throughout
his life, Kac consistently saw himself as a mathematician. Kac’s work differed in
subtle ways from the work of contemporary physicists and thus shed light on the
relation between mathematicians and physicists and their disciplines in a modeling
context.

Kac proposed a host of models of phase transitions. Here the focus is on two of
those: his first model in this area and his most successful model. Kac introduced
the first model, the so-called spherical model, in 1952 as an approximation to an-
other model which represents a magnet [1]. In the five years between his invention
of the new model and his publication of it, Kac came to the conclusion that the
new model was in fact a better description of magnets than the original model.
The second model was designed by Kac to give a constructive proof of the exis-
tence of a microscopic model, which leads to the van der Waals equation, a widely
used empirical equation for gases [2]. Kac’s notebooks reveal that he immediately
was able to see a connection between this model and the mathematical theory of
stochastic processes; this connection allowed him to derive the properties of the
model. At the time, very few physicists were well-enough versed in the theory
of stochastic processes to see this connection, so his mathematical background
enabled him to provide the solution to this important physical problem.

The two models were received differently by the physics community. Most
physicists rejected the first model on the grounds that it was too far removed from
physical reality to be of more than purely mathematical interest, but Kac main-
tained his view despite this criticism. His lack of physical background probably
made him more susceptible to models which were unacceptable to contemporary
physicists. The second model was much more favorably received as it solved an
important physical problem. Since the van der Waals equation was found to be an
empirically inaccurate, it did not matter much that the model was not a realistic
description of real gases. What mattered was that the model leads to the correct
equation. The first model, on the other hand, was supposed to say something
about real systems according to Kac. For real systems, the physicists have some
demands if they are to accept a model and this model did not meet these demands.

In addition to the proposal of models, Kac tried to put the ideas derived from
the study of such models into a more unified description of phase transitions [3, 4].
He tried to find the mathematical mechanism responsible for phase transitions,
building on the observation that for both of the above models, the phase tran-
sition was reflected in a double degeneracy of an eigenvalue of a certain integral
operator. This program did not receive much attention from the physicists. Even
among those interested in such a mechanism of phase transitions, Kac’s ideas
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were neglected because they were not found to yield insight into the physics of
phase transitions. The linear operators could not be given a physical interpreta-
tion. Consequently, physicists thought that it was not possible to go from such a
mathematical mechanism to the physical mechanism of phase transitions.

Several mathematicians have paricipated directly in the modeling of physical
phenomena after World War II and it is the hope of the speaker that further
studies will analyse their contribution to this important physical activity.

References

[1] Berlin, T.H. and Kac, M. 1952. ‘The Spherical Model of a Ferromagnet’, Phys. Rev. 86,
1952), 821-835.

[2] Kac, Mark 1958. ‘On the Partition Function of a One-Dimensional Gas’, Phys. Fluids 2,
(1959), 8-12.

[3] Kac, Mark 1966. ‘Mathematical Mechanisms of Phase Transitions”, in 1966 Brandeis Sum-
mer Inst. Theor. Phys., vol 1, 243-305.

[4] Thompson, C. J. ‘The Contributions of Mark Kac to mathematical physics’, Ann. Probab
14, 1986, 1129-1138.

Mathematics “for its Connection with the Physical Sciences:”
Educational Initiatives at Mid-Nineteenth-Century Harvard

Deborah Kent

Nineteenth-Century American science was both geographically and intellectually
removed from scientific and mathematical activity in Europe. Early in the cen-
tury, mathematics in the United States was strictly an undergraduate subject and
very few—if any—of the amateur mathematical practitioners conceived of creating
new mathematical knowledge. [1, 2, 3, 4] Those in favour of improving scientific
education entered into debates about the role of higher education in the context
of American democracy. While echoes of Benjamin Franklin and Thomas Jeffer-
son connected notions of democratic practical education with inexact ideas like
invention and vaguely agricultural mechanical studies, new needs for scientifically
trained Americans emerged from the nation’s growing businesses and expanding
infrastructure. [5, 6, 7] Many in the young republic hesitated to import all the
necessary expertise, but America needed educational reform before it could build
and replenish its own supply of scientists.

There was, however, a small group of self-appointed American scientific elites
who self-consciously worked to organize the pursuit of science and to establish it
as a legitimate profession in the United States.[8] As the mathematician among
them, Benjamin Peirce introduced major curriculum reforms at Harvard over the
course of his career there, from 1833 to 1880. The archival record indicates Peirce’s
educational objectives and reflects his efforts to elevate the level of general math-
ematical education while working to reorient the traditional college curriculum
towards one that would encourage scientific education and foster research.

Peirce based his early arguments for renovating the mathematical curriculum
on the utility of mathematics and its connection to physical science. In 1839, he
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successfully introduced an elective system in mathematics that offered students
options after the first year of mandatory algebra and geometry. Those who chose
to continue for another year could study applied mathematics, such as engineering,
surveying, and navigation, or a course designed for future school teachers. The
final option was a three year course of demanding study in pure mathematics
under Peirce’s careful supervision. Although the practical course was very popular,
Peirce worried that the engineering program lacked a theoretical foundation. A
different concern plagued the Harvard administration, who feared their institution
would begin to favour the sciences and, as they saw it, deteriorate into a trade
school.

The foundation of the Lawrence Scientific School by Harvard in 1847 provided
somewhat of a compromise between elitist conceptions of higher education and
constraints of institutional finance and democracy.[9] Peirce and his persistent
friends persuaded textile magnate Abbott Lawrence both to fund the school and
to specify that it be dedicated to “the acquisition, illustration, and dissemination
of the practical sciences forever.”1 With the École Polytechnique and German
universities as his model, Peirce designed a demanding course of mathematical
study for the Lawrence Scientific School. In 1848, the syllabus of one course at
the Lawrence Scientific School under Peirce included Lacroix’s Calcul différentiel
et intégral, Cauchy’s Les Applications du Calcul infinitésimal à la Géométrie, and
Monge’s Application de l’Analyse à la Géométrie. Other coursework included work
of Laplace, Biot, Airy, Gauss, and Bessel.[10] Although it is difficult to determine
exactly the number of students Peirce taught at the Lawrence Scientific School,
it is easy to conclude that this curriculum was entirely too advanced for them.
Peirce nonetheless considered it a great success.

Despite Peirce’s optimism, the Lawrence Scientific School deteriorated within a
few years and eventually closed completely. It and the elective system were both
essentially failed attempts to begin a tradition of mathematical research and engi-
neering excellence at Harvard. Still, within the context of democratic discontent
about higher education, Peirce employed the argument of utility to restructure
scientific education at Harvard. He managed to encourage more advanced science,
to open the door to practical training, and to bring about significant changes to
the Harvard curriculum. Although it would be the mid-1870s before this curric-
ular flexibility would be restored, Peirce had introduced Harvard to structured
scientific education.

References

[1] Dirk J. Struik, Yankee Science in the Making (New York: Collier Books, 1962).
[2] Nathan Reingold “American Indifference to Basic Research: A Reappraisal,” Nineteenth-

Century American Science: A Reappraisal, ed. George H. Daniels (Evanston: Northwestern
University Press, 1972, 38-61).

[3] David Eugene Smith and Jekuthiel Ginsburg The History of Mathematics in American
Before 1900 (Chicago: Mathematical Association of America, 1934), 78-79.

1“Letter of Abbott Lawrence, June 7, 1847, Reprinted for a Dinner of the Lawrence Scientific
School Association,” 5 October 1909, HUB 2512.48. Harvard University Archives.



3226 Oberwolfach Report 56/2005

[4] Florian Cajori, The Teaching and History of Mathematics in the United States (Washington:
Government Printing Office, 1890).

[5] “Original Papers in Relation to a Course of Liberal Education,” American Journal of Science
and the Arts 15 (1829), 297-351.

[6] Frederick Rudolph, The American College and University: A History (New York: Alfred
A. Knopf, 1968).

[7] Mary Ann James,“Engineering an Environment for Change: Bigelow, Peirce, and Early
Nineteenth-Century Practical Education at Harvard,” Science at Harvard University ed.
Clark Elliott and Margaret Rossiter (Bethlehem, PA: Lehigh University Press, 1992), 55-75.

[8] Mark Beach, “Was There a Scientific Lazzaroni?” Nineteenth-Century American Science:
A Reappraisal, ed. George H. Daniels (Evanston: Northwestern University Press, 1972)
115-132.

[9] Robert A. McCaughey, Josiah Quincy, 1772-1864: The Last Federalist (Cambridge: Har-
vard University Press, 1974).

[10] Karen Hunger Parshall and David E. Rowe The Emergence of the American Mathematical
Research Community, 1876-1900: J.J. Sylvester, Felix Klein, and E.H. Moore (Providence:
American Mathematical Society and London: London Mathematical Society, 1994), 50.

Modeling in Climate Sciences: Historical, Epistemological,
Anthropological and Political Aspects

Amy Dahan

My starting point in this subject was:

• An interest in WWII (near discontinuous change in a lot of fields, partic-
ularly meteorology), and Cold War; and the beginning of the computer
era

• My paper on the case study of meteorology which revealed important
tensions between understanding and predicting,

– Archive for Hist.Ex.Sciences, 2001, 55, 395-422.
– Les Sciences pour la Guerre, (with D. Pestre) Ed EHESS, 2004.

• An interest in the history and epistemology of models and modeling prac-
tices

– Amy Dahan & Michel Armatte: Revue d’Histoire des Sciences, 57(2),
2004/05, 245-303.

There are two moments of rupture in the history of models and modeling

• First turning point in the 1950’s;
• Second turning point in the 1980’s:

– Shift in the objects, phenomena, and systems under consideration:
increasing complexity, multiple interactions and feed-back, multiple
scales and temporalities;

– generalized using of computers and numerical simulations;
– interest for macroscopic topics;
– new cultural hierarchies and values.

Climatology seems a paradigmatic example of this second moment.
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Let us come to Climate Studies
Three main forces shaped climate modeling in the 1970’s:

• The development of instrumentation (satellite observations), very well
funded by the 1960’s and 70’s; which provided a new and huge amount of
data;

• Second booming technology: computing, and its exponentially growing
capacity;

• The emergence of environmental awareness about the anthropic green-
house effect, in the late 1980’s (the International Panel for Climate Change
(IPCC) is created in 1988).

We can underline three main interdependent characteristics of Climate Studies for
the late 1980’s:

• Anthropic sensitivity (forcing by greenhouse effect). There is a lack of a
“reference trajectory” and that makes the validation of models problem-
atic.

• It is both a scientific and political field: Emergence of the greenhouse effect
on the international political scene; IPCC is created in 1988. Science is
closely linked with expertise.

• Integration and feedback loops. Integration (oceans, soils, ice, socio-
economy etc) is absolutely necessary, given the systems’ complexity and it
affects the certainty and reliability of the predictions derived from models.

The main contemporary tool: Global numerical models
In fact, the meteorological tradition became hegemonic in climatology

• General Circulation Models (GCM): 3-dim representations of the atmos-
phere’s movements and changes in its physical state.

In each GCM, there are two parts:

• Dynamical part of the model: difficulties about the initial state (data-
laden models), about the boundary conditions (ground surface, vegetation
cover, ice fields).

• The dynamics/physics interface: “parametrizations” of physical phenom-
ena under the grid size, e.g., clouds. Diversity and complexity of these
practices. No universality in these practices.

• For the scientists, what is the priority? To gain a better understanding to
disturbances or to produce the most realistic representations? A source of
controversies and debates. . .

1985-1995: Reconfiguring the field

• Creation of IPCC; links between science and politics became stronger,
climate change became a major scientific and geopolitical issue;

• The ocean-atmosphere coupling (1992, 95): importance of J-L. Lions’ role;
• Modeling climate change, main scientific trends:
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– acceleration of coupling activity, towards a generalized science of cou-
plings?

– tendency to integrate a growing number of climate factors (computer
here is crucial): carbon cycle, chemical pollutions. . .

– multidisciplinarity, collectives projects, extended networks.

Scenarios

• Methodology of the third IPCC report: 3 stages
– define economic scenarios of the future evolution of greenhouse gas

emissions,
– use biochemical models (carbon cycle models. . . ) to establish scenar-

ios of future atmospheric concentrations of the greenhouse gases,
– use GCMs forced by these concentration scenarios to evaluate climatic

changes.
• Scenario: halfway between models and narratives.

Three new epistemological aspects

• The particularly heterogeneous and disunified basis on which models of
climate change are constructed.

• Computers (and the Web) play a central role in practices and methodology.
They are crucial to overcome the disparities and to initiate an integrative
process. (See Galison: Computer Simulations and the Trading Zone, in
The Disunity of Science, Peter Galison and David J.Stump (eds), Stanford:
Stanford University Press, 1996, p 118-157).

• the shift of attention from models and towards modeling, to introduce the
category of actors into modeling processes.

– All constructed models are the outcome of collective work and each
model coupling represents an extension of the community of the sci-
entists involved, as well as an increased complexity of the actors’
configuration.

Analytic anti-reductionism, transdisciplinarity and networking arguably define the
methodology of today’s climate change studies.

Political Stakes of the Field

• Global Climate Modeling: is it a “North Science”?(!)
in the sense that the privileged methodology is based on partial differential
equations, so it:

– obliterates the past (the emissions before 1990 in developed coun-
tries).

– “naturalizes” the present (inequity between North and South).
– globalizes the future (CO2 molecules).

• Globalization and local priorities :
the physical treatment (the choice of a mean temperature) privileges the
global rather than the local.
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• Is the representation of countries from the South sufficient?
• Controversies between different priorities: mitigation or adaptation to cli-

mate change etc.
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The Contingency of the Laws of Nature in Émile Boutroux and Henri
Poincaré

Michael Heidelberger

This article deals with the influence that philosophy had upon mathematics at a
time when a new conception of mathematics was coming to the fore. The French
philosopher Émile Boutroux (1845-1921) developed a philosophy of nature accord-
ing to which natural laws lack all necessity. Instead, he argued, they are endowed
with contingency as an inherent property. According to this terminology, a law is
contingent if it is not completely determined by past events and if the deviation
from the determined case is so small that, in most cases, it cannot be detected
empirically. This comes close to a form of indeterminism. Boutroux did not regard
his assumption of contingency as a metaphysical or anti-empirical, arbitrary pos-
tulate, but, rather, as a precondition which is actually more in line with empiricism
and much less metaphysical than its deterministic counterpart. The philosophical
consequences that follow from this conception led him to a new view of science
and mathematics, which became very influential in the Third French Republic.
The list of Boutroux’s students reads like the intellectual “Who’s Who?” of the
time. Many philosophers and scientists contributed to this debate – among them
Boutroux’s brother-in-law Henri Poincaré. It can be shown that the founders of
Pragmatism, Charles Sanders Peirce and William James, profited from Boutroux’s
ideas. Last but not least, Boutroux also influenced his son, the mathematician and
philosopher Pierre Boutroux (1880-1922).

The main work in which Boutroux developed his outlook was his 1874 disser-
tation “De la contingence de la nature.” It grew from two seeds: First, Boutroux
adopted a thorough critique of Hegel’s deterministic philosophy of history from the
German philosopher Eduard Zeller, whom he had met in 1868/69 during a year-
long stay at the University of Heidelberg on the eve of the Franco-Prussian War.
Second, it resulted from a thorough critique of Descartes’ philosophy of mathe-
matics, which he laid down in a short Latin thesis accompanying the dissertation.
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Boutroux argued there that if the course of nature is rooted in divine will – as
Descartes had thought – and if – against Descartes – God’s immutability manifests
itself in constant creativity, the universe must be conceived of as being intrinsically
variable, diverse and full of incomparable individuality. Not all changes can be
lawful changes. In 1894, Boutroux expanded his perspective and complemented
it with a detailed discussion of the natural sciences and mathematics of his day.
(His later books dealt with, among other topics, the relation of science to religion
and the philosophy of William James.)

From his theory of contingency, Boutroux was led to defend a fundamental
disunity of science. This view broke completely with the doctrine avowed by Plato,
Galileo, Descartes and others that the book of nature is written in mathematical
letters, or, as Descartes put it, that mathematics (extension) is to be identified with
the essence of material things. Boutroux’s view is that the special sciences cannot
be reduced to fundamental ones and that each science has a certain autonomy from
the other sciences. Each science is guided by a special ‘regulative idea’ which is
developed by human understanding itself in order to render nature understandable.
With this, Boutroux comes very close to Auguste Comte, who had also taught that
the different sciences are ordered in a hierarchy of emergent and irreducible levels.
In the same way, mathematical laws have to be regarded as free creations of human
understanding. Although they are, it is true, guided by experience, they do not
express a synthetic content. On the other hand, the laws of mathematics are not
purely analytic either.

If we compare Boutroux’s outlook with Henri Poincaré’s philosophical views,
we find a striking similarity: mathematics, Poincaré maintains, is to some extent
an arbitrary enterprise that is only regulated by criteria of consistency and human
convenience, but not of truth. Nevertheless, mathematics is not just a tautological
enterprise but a creative undertaking. As Poincaré wrote in his “La science et
l’hypothèse”: “The object of mathematical theories is not to reveal to us the real
nature of things; that would be an unreasonable claim. The only object is to
co-ordinate the physical laws with which physical experiment make us acquainted,
the enunciation of which, without the aid of mathematics, we should be unable
to affect.” (Poincaré 1902, 51f.) The only reality we can attain pertains to the
relations of things but never to the objects themselves.
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[3] Boutroux, Émile (1895): De l’idée de loi naturelle dans la science et la philosophie contem-
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Poincaré and the Equations of Mathematical Physics

Jean Mawhin

Poincaré has occupied, from 1886 till 1896, the chair of mathematical physics and
probability at the Faculty of Science of the University of Paris. His lectures, which
have been published in a dozen of volumes, deal with most aspects of classical
mathematical physics.

The most important results of Poincaré on the partial differential equations
of mathematical physics are contained in three substantial memoirs published
between 1890 and 1896:

[1 ] Sur les équations aux dérivées partielles de la physique mathématique,
American J. Math. 12 (1890), 211-294. Oeuvres, tome IX, 28-113

[2 ] Sur les équations de la physique mathématique, Rend. Circolo Mat.

Palermo 8 (1894), 57-155. Oeuvres, tome IX, 123-196
[3 ] La méthode de Neumann et le problème de Dirichlet, Acta Math. 20

(1896-97), 59-142. Oeuvres, tome IX, 202-272.

The memoir [1] first introduces the famous sweeping out method (balayage)
for proving the existence of a solution to the Dirichlet problem for an arbitrary
domain. This is followed by a heuristic approach to the eigenvalue problem for
the Laplacian submitted to Fourier boundary conditions. Poincaré first rediscov-
ers H. Weber’s recursive determination of eigenvalues and eigenfunctions through
minimization of the generalized Dirichlet integral on subspaces orthogonal to the
previous eigenfunctions. But he completes Weber’s result with an upper bound for
the eigenvalues which is equivalent to Fischer’s minimax characterization of the
eigenvalues, and with a lower bound of the eigenvalues, for the case of Neumann
boundary conditions, based on a first version of what is nowadays called Poincaré’s
inequality for functions with mean value zero.

The memoir [2] gives the first rigorous existence proof of an infinity of eigen-
values going to infinity for the Laplacian under Dirichlet boundary conditions. It
is based upon an original expression of the solution of the forced Laplacian as a
meromorphic function of the eigenvalue parameter. The proof uses an improved
version of Poincaré’s inequality mentioned above. In the remaining part of the
paper, Poincaré tries to extend the results to the more general Fourier boundary
conditions. He is not successful but anticipates at this occasion the concept of
weak solution.

The memoir [3] extends the Neumann method, looking for the solution of Dirich-
let problem as a double layer potential, from the case of a convex domain treated
by Neumann to that of a simply connected domain. It has been the main source
of inspiration for Fredholm’s theory of integral equations.

Besides those fundamental results, one still owes to Poincaré the first general
solution of the telegraph equation and original results on the heat equation.
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G.D. Birkhoff’s Unpublished Paper on ‘Some Unsolved Problems of
Theoretical Dynamics’1

June Barrow-Green

Birkhoff’s first paper on dynamics, which was published in 1912, marked the be-
ginning of a new phase in dynamical theory.[2] Not only did Birkhoff explicitly
consider a general dynamical system as opposed to addressing a particular dynam-
ical problem, but he also thought in terms of “sets” of motions — more specifically
“minimal” or “recurrent” sets of motions — as opposed to thinking solely in terms
of a particular type of motion. Later the same year he created an international
sensation by supplying a proof of Poincaré’s ‘Last Geometric Theorem’.[3] He
continued to work on dynamics for the rest of his life, producing many important
papers in the area, notably on the restricted three-body problem, stability the-
ory, periodic orbits, and ergodic theory. In particular he was deeply influenced by
Poincaré’s great treatise on celestial mechanics — the three volume Les Méthodes
Nouvelles de La Mécanique Céleste — which had appeared in the last decade of
the nineteenth century, with the result that much of his most important work re-
lated to dynamics and the theory of orbits. Indeed he continued Poincaré’s work
in so many ways, that the Russian mathematician Nikolai Krylov called him ‘the
Poincaré of America’.2

In 1927 Birkhoff published his seminal text Dynamical Systems, which derived
from a lecture series he had given at the University of Chicago in 1920. It was
the first book on dynamics to deal not just with a single problem, or type of
problem, but instead to tackle the most general class of dynamical systems. As
Bernard Koopman pointed out in his review, dynamical systems theory had by
this date become far removed from its origins in the search for solutions to physical
problems and had ‘taken the aspect of a deep analysis of methods’.[4] That it had
done so was in no small part due to Birkhoff. In his hands the subject had taken
on an increasingly abstract character becoming more and more topological. So
much so in fact that in the 1950s a new sub-discipline emerged called topological
dynamics.3

From the end of the 1920s Birkhoff began to draw up lists of unsolved problems
in theoretical dynamics. In 1928 he gave a series of lectures at the University
of Berlin entitled ‘Einige Probleme der Dynamik’ (‘Some Problems of Dynamics’)

1See [1].
2On the 9th August 1924 Raymond Archibald, who was in Toronto for the International

Congress of Mathematicians wrote to Birkhoff: “The meetings so far have been of extraordinary
appeal. Some 600 scientists came from overseas to the association meetings. I spent all day,
afternoon and evening, with Russian, Swedish and Norwegian mathematicians—Phragmen, Ore,
Malmquist, Kryloff, Bjerkness. Kryloff is a magnificent man and wanted especially to meet you.
He said, among other things ‘Birkhoff is the Poincaré of America’.” Birkhoff Papers, HUG 4213.2
(Box 4, 1924 A-Z), Harvard University Archives.

3“By topological dynamics we mean the study of transformation groups with respect to those
topological properties whose prototype occurred in classical dynamics. Thus the word “topolog-
ical” in the phrase “topological dynamics” has reference to mathematical content and the word
“dynamics” in the phrase has reference to historical content”. [5]
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and in 1929 the lectures were published in a condensed form.[6] Having emphasised
the importance of qualitative dynamical ideas for the exact sciences, he briefly
considered some simple examples before listing eight problems, most of which
were concerned with the notion of stability. In 1937 he gave a lecture at the
Institut Henri Poincaré in Paris entitled ‘Quelques problèmes des la Dynamique
théorique’.4

But it was in a lecture in September 1941, at the fiftieth anniversary symposium
of the University of Chicaco, that he gave his final list of unsolved problems of
theoretical dynamics. A summary of his lecture[7] was published soon afterwards
and by the time of his death in 1944 he had completed a draft of an extended ver-
sion which was promised for publication in the Recueil Mathématique de Moscow.
The draft, which consists of some 40 pages of annotated typescript, survives in
the Birkhoff papers at Harvard University Archives.5

The nature of the paper is clear from the opening two paragraphs:
“It scarcely seems too much to say that all the basic problems of point-set

theory, topology, and the theory of functions of real variables present themselves
naturally in purely dynamical contexts. Some of these dynamical problems are
best formulated and solved in terms of an underlying abstract space, as important
recent Russian and American work has shown. Others are inherently of more
special character.

In the present paper I venture to set forth certain unsolved problems of this
type which seem to me worthy of further study. The problems are arranged as
much as possible in order of decreasing abstractness. They are formulated in
terms of positive conjectures in the belief that this procedure is most likely to
stimulate further research. In each case indications of the underlying reasons for
these conjectures are made. Some new definitions are given . . . and some partial
results are deduced etc.”

After a lengthy introduction, Birkhoff discusses sixteen problems. The first
ten are formulated in terms of abstract spaces; the eleventh is concerned with
extensions of results of Sundman on the three-body problem to the motion of
a gas; and the last five, which are topological in nature, are concerned with n-
dimensional spaces. The final problem, which embodied conjectures concerning
a conservative transformation of a two dimensional ring into itself in cases where
Poincaré’s last geometric theorem does not apply, was the part of the paper that
Birkhoff thought his audience would find the most interesting. He ended: “In
concluding this unusual form of paper, I venture to hope that the conjectures
made will accelerate further advances. However, it must be confessed that most
of these problems present difficulties which may be difficult to surmount.”

Given the occasion — the Chicago semi-centenary — and given Birkhoff’s posi-
tion at the time as one of the leading figures, if not the leading figure, in American
mathematics, it is worth speculating whether Birkhoff in choosing the topic for

4No written copy of the lecture appears to have survived. Birkhoff referred to the lecture in
‘Some unsolved problems of theoretical dynamics’, Note 1. See Footnote 1 above.

5See Footnote 1.
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his talk had lingering at the back of his mind another occasion and another set of
problems, a set of problems that had established the agenda for mathematics in
the 20th century. Was Birkhoff perhaps seeking to emulate Hilbert’s address to the
International Congress of Mathematicians in Paris in 1900? It is of course a ques-
tion that is impossible to answer and the fact that the paper never got published
meant that even if Birkhoff did harbour hopes in that direction, there was little,
if any, chance for them to be realised. While mathematicians could get an overall
sense of Birkhoff’s ideas from the summary in Science, they did not have access
to the detail they needed in order to make progress along the lines that Birkhoff
anticipated. Furthermore, the fact that the summary was published during the
War meant that in all likelihood it got subsumed under other rather more pressing
concerns.

Consideration of Birkhoff’s unpublished paper raises several questions, relat-
ing both to the problems themselves and to the context in which the paper was
produced. For example:

(1) Which, if any, of his problems have been solved? If so, when, by whom
and how?

(2) Was Birkhoff’s approach a fruitful one? Have any of the problems (or other
problems similarly formulated) led to any new/significant developments?

(3) What can be said about Birkhoff’s choice of problem?
(4) To what extent is the manuscript (in)complete?
(5) How does Birkhoff’s paper relate to his earlier work on (a) the same topic;

(b) related topics; (c) other work he was doing at the time?
(6) How does Birkhoff’s paper relate to the work of his contemporaries, par-

ticularly those in Russia?
(7) How was Birkhoff’s lecture/summary paper received?

Endeavouring to answer these and related questions is the subject of my current
research.
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Mathematicians Engage with Relativity: Examples from Unified
Theory Work in the 1920s

Catherine Goldstein & Jim Ritter

This talk reports on a small part of a larger joint project on unification theories in
the twenties. There already exist historical works on these theories (in particular
[4, 5, 1]), and our specific objectives in this project are twofold: first of all, to study
more deeply the interactions between mathematics and physics, and then, to use
this rich material to test some methodological issues, in particular concerning the
dynamics of research, through a systematic network analysis of papers. Our talk
focussed only on the first issue (see [2] for the second). To control the multiple
parameters affecting the relations between physics and mathematics, and their
very definitions, we have selected from our hundred or so authors three of them
who shared important characteristics: they were all professional mathematicians,
their proposals were taken up by followers, they were all attempting to integrate
electromagnetism and gravitation in a unified point of view, in the aftermath of
Einstein’s and Weyl’s theories and all three used a geometric perspective. Our per-
spective here is mainly comparative, to display how each of these mathematicians
explicitly established a frontier between mathematics and physics inside his own
work, a frontier which did not coincide with the disciplinary boundaries, as indi-
cated in the reviewing journals for instance, nor with the limits of their effective
interactions with physicists.

I – The Geometry of nature according to Whitehead

Whitehead’s contributions to physics took place in the period between his fa-
mous work on logic with Bertrand Russell, the Principia Mathematica, and the
philosophical texts of his American period; they consist of several articles, in par-
ticular on space-time, and in three books, An Enquiry Concerning the Principles
of Natural Knowledge (1919), The Concept of Nature (1920) and the Principles of
Relativity with Applications to Physical Science (1922), written when Whitehead
was Professor of Applied Mathematics at Imperial College in London.

Whitehead’s physics is what he called a pan-physics, a natural philosophy (an
excellent introduction to his work in physics is given in [3]). Fundamental physical
concepts are not to be identified with variables in mathematical equations (as is
the case in Einstein’s general relativity), nor are they to be defined by measure-
ment procedures; they should be natural elements, rooted in human experience.
Ultimate facts of nature, for Whitehead, are events, connected by space-time re-
lations. In the preface of the Principle of Relativity, Whitehead summarizes his
point of view in evocative terms:
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“Our experience requires and exhibits a basis of uniformity, and
[...] in the case of nature this basis exhibits itself as the unifor-
mity of spatio-temporal relations. This conclusion entirely cuts
away the casual heterogeneity of these relations which is the es-
sential of Einstein’s later theory.. . . It is inherent to my theory to
maintain the old division between physics and geometry. Physics
is the science of the contingent relations of nature and geometry
expresses its uniform relatedness.”

The uniformity is expressed by adopting Minkowski space as space-time geom-
etry. A crucial tool in order to reconstruct the standard things required in a
physico-mathematical theory, like points or particles, is the method of extensive
abstraction, linked to Whitehead’s previous work on the axiomatics of geometry
which was supposed to have constituted the fourth volume of the Principia and
was never published. The method derives geometrical objects (like points) from
classes of events as ideal limits, and similarly for particle-events (restrictions of
events to 0 dimensions), routes or paths (restrictions to 1 dimension), etc.

The law of motion is given for the so-called impetus I by

dI = M
√
dJ2 + c−1EdF,

M being here the mass of the particle M and E its charge; dJ and dF (corre-
sponding to the laws of gravitation and electromagnetism) are supposed to be
empirically determined. Whitehead then applies a variation principle to the inte-
gral of dI along a route between two particle-events A and B and obtains a system
of differential equations of Euler-Lagrange type. For the specific law of gravitation
he has posited, based on retarded potentials, a solution can be exhibited and the
classical tests of general relativity recovered (see [3] for more details).

Thus two geometries are at work in Whitehead’s theory: one is the fixed one
attached to the Minkowskian space-time, the other is that of the dynamic space,
which hosts the (contingent) laws of nature. Whitehead indeed proposes his own
law of gravitation as just one simple possibility among others, and is ready to
abandon it for, say, Einstein’s law if experiments were ever to require it, but
under the condition that it be interpreted as a purely empirical law: neither the
mathematical derivation of the law nor the interpretation of Einstein’s Riemannian
space-time as the real-world space are considered as assets by Whitehead, quite
the contrary. In a discussion following an alternative proposal by George Temple
[A generalization of Professor Whitehead’s Theory of Relativity, Proc. Phys. Soc.

London 36, 1925, 176-192], based on similar principles to those of Whitehead, this
last makes his point clearly: “A further advantage of distinguishing between space-
time relations as universally valid and physical relations as contingent is that a
wider choice of possible laws of nature (e.g., of gravity) thereby becomes available,
and while the one actual law of gravity must ultimately be selected from these by
experiment, it is advantageous to choose that outlook of Nature which gives the
greater freedom to experimental inquiry.
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[. . . ] In investigating the laws of nature what really concerns us is our own ex-
periences and the uniformities which they exhibit, and the extreme generalizations
of the Einstein method are only of value in so far as they suggest lines along which
these experiences may be investigated. There is a danger in taking such gener-
alizations as our essential realities, and in particular the metaphorical ‘warp’ in
space-time is liable to cramp the imagination of the physicist, by turning physics
into geometry.”

II – Oswald Veblen and the Princeton school

The successes of general relativity in the early 1920s—and a visit by Einstein
himself—inspired two Princeton University geometers to join forces in 1922. Start-
ing that year, the differential geometer Luther Pfahler Eisenhart and Oswald Ve-
blen, topologist and specialist of axiomatic projective geometry, began writing a
series of articles, jointly with each other, with other colleagues and their students,
as well as individually, which represented a general program for the reconstruc-
tion of geometry and physics. The outline of this program was summed up by
Veblen in his farewell address as vice-president of the American association for the
Advancement of Science in December of 1922.

For Veblen, geometry is simply a branch of physics, indeed its core. The tra-
ditional geometries, projective, affine and metric, as organized in Felix Klein’s
group-theoretical Erlangen program, are created through an increasingly restric-
tive articulation of blocs of axioms. Adding further, more physical axioms concern-
ing time, mass, etc. produces the kinematics then dynamics of classical physics.
But modern physical theories, such as relativity and quantum theory, need a new,
more general, geometrical core and a new organizing principle.

In ordinary Riemannian geometry the geodesics are given by the differential
equation

d2xk

ds2
+ Γk

ij

dxi

ds

dxj

ds
= 0, (∗)

where i, j, k = 0, . . . , 4 and the Γk
ij are the Christoffel symbols of the second kind,

formed from the metric and its first derivatives. Now, proposed Veblen, start from
the equation (∗) and view the Γk

ij simply as a collection of 43 = 64 coefficients.
Then the curves (paths) defined by solutions of (∗) will serve to characterize a
geometry. Of course, not every choice of coefficients describes distinct paths and
thus a distinct geometry. Geometries are defined by the equivalence classes of
paths; all Γs given by the equation

Γ
k

ij = Γk
ij + ψiδ

k
j + ψjδ

k
i

with ψi a covariant vector, yield equivalent geometries.
The new hierarchy of geometries can now be constructed by imposing more and

more axiomatic restrictions on the classes of paths: where there is a connection
between the Γk

ij and the metric of a space one has the familiar Riemannian case;

those paths which depend on a particular choice of Γk
ij independently of a metric

will define an affine geometry; those which are independent of such a choice form



3238 Oberwolfach Report 56/2005

the most general geometry, a projective geometry of paths. Most of the attention
of the Princeton School in the 1920s was directed to the last case. Under the
influence of Veblen’s student then colleague, Tracy Y. Thomas, this choice was
confirmed and increasingly supplemented by techniques drawn from differential
invariant theory.

After some years passed in building up the geometric core, the Princeton group
felt itself ready to intervene in physics for the first time on the occasion of Einstein’s
publication of his 1925 unified field theory (with an asymmetric connection).

The papers published by the Princeton School on this occasion show that
whereas some of its members, like Eisenhart, saw their role as the traditional one
of clarifying and rigorizing physicists’ theories, others, like Thomas, were ready
to generalize Einstein’s new theory, putting forward a structure which englobed
other alternate affine theories like those of Hermann Weyl and Jan Schouten.

Five years later, when Einstein published a series of articles on his Fernpar-
allelismus theory, Thomas and Veblen were ready to go much further. Indeed
Thomas, in a long series of articles on the initial value problem in unified field
theories, did not hesitate to (twice) modify Einstein’s own field equations in the
name of “simplicity” from the geometry of paths point of view. Veblen went even
further and produced his own rival unified theory, “projective relativity”.

III – Élie Cartan

Élie Cartan in Paris became interested in relativity for many of the same rea-
sons as his contemporaries at Princeton: the rising fame of the theory, a visit by
Einstein to the French capital and a clear way to use some of the techniques he had
pioneered in preceeding years. In fact there were two aspects to Cartan’s previous
work which he felt could be applied directly: first, the classification and structure
of Lie groups and algebras and second, the theory of differential (Pfaffian) forms.
He would use these two tools to establish mathematical results which could then
be offered to physicists as a basis for their own developments in physical theories.

With the first approach, Cartan would found and extend geometry through an
enlarged and modernized version of the old Erlangen program, based now on Lie
groups rather than the finite symmetry groups treated by Klein, inapplicable to
Riemannian geometry and its generalizations. In this way the physicists would
have new spaces, endowed with new geometrical properties in which to found
their unified theories. With the second, Cartan promised a means to find and
characterize all those differential equations on a space which satisfied given physical
or mathematical conditions and might therefore serve as potential field equations
to describe the dynamics on these new spaces.

Indeed it was the second focus which provided Cartan’s first success in the field.
He was able to show in 1922 that the Einstein field equations—both the original
1915 ones and those with the cosmological constant—were the only set of field
equations which satisfied the various conditions that Einstein himself had set out
as being desiderata for a physically acceptable set of field equations. Moreover “my
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methods allow me to present, in a virtually intuitive form, the gravitational equa-
tions of general relativity. [. . . ] The formulas which lead to Einstein’s gravitational
tensor fit into a few lines; moreover, it is possible to dress them in a geometrical
form which allows a precise and rigorous formulation, without any calculation, of
Einstein’s laws of gravitation.”[E. Cartan, Notice sur travaux scientifiques, Paris,
1922]

That same year, Cartan used his first, group-theoretic approach to introduce
torsion as a new geometric concept. Though he was unsuccessful in a private
conversation that year in selling this idea to Einstein as a basis for a possible
unified theory, six years later Einstein would make use of just such an extension
for his Fernparallelismus theory, one in which the space contained no curvature
but a non-zero torsion. In the context of this new theory, Cartan attempted to
reproduce his success of 1922 by determining the acceptable class of possible field
equations for his new space:

“For what partial differential equations E must one restrict the
general scheme of Riemannian space wih absolute parallelism in
order to obtain a faithful image of the physical universe?

[Now] to the logical conditions imposed by the very nature of
the question and to the conditions of analytic simplicity, it suffices
to add a single condition, drawn from physical determinism for
the problem to admit only a very restricted number of solutions,
such that the physicist, if M. Einstein’s attempt is not a vain one,
will have merely to choose among a small number of universes con-
structed in a purely deductive fashion.”[E. Cartan, Le parallélisme
absolu et la théorie unitaire du champ, Revue de métaphysique et

de morale, 1931, 13-28]

A year of calculation allowed Cartan to present a series of possible field equa-
tions with 15, 16 or 22 equations; unfortunately by this time Einstein had aban-
doned the whole Fernparallelismus scheme and was engaged in another, quite
different unified field theory effort.

We have followed three cases of mathematicians engaging with the new rela-
tivity theory in the early 1920s. Each did so with his own, specific agenda and,
though not gone into here, this agenda often had institutional as well as intellec-
tual dimensions. In particular, mathematicians had their own “unity” problem.
Mathematicians can instrumentalize physics as well as the opposite. The fron-
tier defined between mathematics and physics, as well as their own role varied.
Consider our own triplet of examples:

• Whitehead — geometry and physics are to be seen as rigorously distinct
though Whitehead will work in both domains simultaneously.

• Veblen and the Princeton school — geometry is a part of physics; Eisenhart
works principally on the geometric core, while Veblen and Thomas work
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on both the geometric and physical levels, offering modifications or even
entirely new creations.

• Cartan — geometry and physics are totally distinct and Cartan will work
only in mathematics, though on objects among which the physicist has
only to make his choice.

Thus, the frontier between mathematics and physics and the distinction between
mathematicians and physicists do not coincide.
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Einstein’s Unified Field Theory within Metric-Affine Geometry

Hubert F. M. Goenner

An example for the interaction of mathematicians and physicists is presented which
centers around Albert Einstein’s “Unified Field Theory” (UFT) of gravitation and
electromagnetism. While the theoretical motivation for General Relativity had
been the necessity to obtain a relativistic theory of gravitation replacing Newton’s,
UFT lacked a clearer motif than the vague hope for another unification of physical
fields. Moreover, there was no need for such an endeavor from the empirical side.
If so desired, my example may be looked at from the aspect of mathematical
modeling. On the side of physics we do have the fundamental interactions of
gravitation and electromagnetism, described by the corresponding physical fields.
On the side of mathematics, differential geometry enters with its geometric objects,
plus hyperbolic PDE’s for the formulation of the field equations. The modeling is
called “geometrization” of physics; it amounts to the construction of unambiguous
relations between physical observables and geometrical objects.

First, a brief introduction into the concept of (linear) affine connection (with
components L k

ij in local coordinates xj) governing parallel transport of tangent

vectors on the four-dimensional space-time manifold, and into torsion S k
ij := L k

[ij]

was given in the talk1. If, in addition, an asymmetric metric tensor gik = h(ik) +
k[ik] is allowed, then several connections may be defined. Among them we find
the usual Levi-Civita connection {..}h of Riemannian geometry formed with the

1Symmetrization- (..) and antisymmetrization brackets [..] are used.
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symmetric part h of the metric, Hattori’s connection (Hattori 1928) constructed
from both the symmetric and antisymmetric parts of the metric2:

{..} k
ij Hattori

:= 1
2h

kr(gri, j + gjr, i − gji, r) ,

and Einstein’s “plus”- and “minus”- connections L k
ij and L k

ji , differing by torsion
terms.

Einstein’s first three papers on UFT were discussed (Einstein 1925, 1945; Ein-
stein & Straus 1946), only. They all employ the metric and the connection as
independent variables – with altogether 80 components in local coordinates while
only 6 + 10 of them would be needed for a description of the gravitational and
electromagnetic fields. In Einstein’s approach, the symmetric part of the metric
h is taken to correspond to inertial and gravitational fields while the antisym-
metric part k houses the electromagnetic field. The field equations are derived
from such a Lagrangian that General Relativity is contained in UFT as a limiting
case. There are many possibilities for such a Lagrangian, however. Nevertheless,
Einstein uses, without further justification, a Lagrangian corresponding (more or

less) to the curvature scalar in Riemannian geometry
√

−det(gik) glmKlm(L) 3.
These field equations whose alternative forms were named the strong and weak
equations, are also used to express the connection as a complicated functional of
the metric and its derivatives. This was achieved not before the 1950s, however.

There are two small differences between Einstein’s first paper using metric-
affine geometry (Einstein 1925) and his second (Einstein 1945): He now introduced
complex-valued fields on real space-time in order to apply what he termed “her-
mitian symmetry”4 (ḡki = gik; L̄ k

ji = L k
ij ). After Pauli had observed that such

a symmetry could be obtained also with real fields, in his next paper (Einstein
& Straus 1946) Einstein switched back to real fields. Furthermore, he gave two
formal criteria as to when a theory could be called a “unified” field theory. The
first was that “the field appear as a unified entity”, and the second that “neither
the field equations nor the Hamitonian function can be expressed as the sum of
several invariant parts, but are formally united entities”. He readily admitted that
for the theory of his present paper (Einstein & Straus 1946), the first criterion was
not fulfilled.

Looking at the mutual “directions of influence” between mathematics and phys-
ics, we may distinguish three fruitful exchanges. It is known that the mathemati-
cian Grossmann provided Einstein with the Ricci-calculus as the means of for-
mulating General Relativity within Riemannian geometry. This very theory then
radiated back into mathematics and helped to introduce the most general concept
of an affine connection (Hessenberg, T. Levi Civita, E. Cartan, H. Weyl). Next,
the transfer of this new geometrical concept into physics led to the unified field the-
ories of Eddington, Einstein, and Schrödinger (Eddington 1921, Schrödinger 1943,

2A, j := ∂A
∂xj

3For a general affine connection L, its curvature tensor Kl
ijk

(L) allows for two contractions,

corresponding to an (asymmetric) Ricci tensor Kik = Kl
ikl

and to what is called “homothetic

curvature” Vik = Kl
lik

.
4The bar signifies complex conjugation.
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1944). It seems to me that after this third interaction mathematics no longer did
profit from physical theory: the conceptual development of metric-affine geometry
took place independently within mathematics (L. P. Eisenhart, O. Veblen, J. M.
Thomas, T. Y. Thomas). Of course, mathematicians helped theoretical physicists
to both solve their equations and invented new equations for UFT. Unfortunately,
to the exact solutions of such equations found, in most cases no physical mean-
ing could be given. In physics, the next step in unification would be taken only
in the 1960s through the joinder of the weak and electromagnetic interactions in
electroweak theory with gravitation being left out. In mathematics, important de-
velopments leading to differential topology as well as to the theory of fibre bundles
originated with E. Cartan – not with anyone connected to the UFTs of Einstein
and others.

The various forms of UFT given in Einstein’s three papers all suffer from the
same problem: metric-affine geometry provides us with too many mathematical
objects as to allow for a convincing selection of an unambiguous geometrical frame-
work for a physical theory describing gravitation and electromagnetism. In addi-
tion, within metric-affine geometry, the dynamics (i.e. field equations) is highly
arbitrary. Moreover, even if UFT had succeeded as a well-put theory, the newly dis-
covered particles (neutron, mesons, neutrino), by the 1940’s, would have required
another approach taking into account the quantum nature of these particles (field
quantization). The UFTs of the 1920s to the 1940s did not get to the stage where
empirical tests could have been made; also, no novel gravito-electromagnetic ef-
fects were derived. In a way, UFT was as removed from an empirical basis then
as string theory is now. Perhaps, Einstein’s successful unification of gravitational
and inertial forces within General Relativity and its ensuing fame misled him, and
a number of mathematicians and theoretical physicists, to invest their efforts into
work on formal schemes for a unification of gravitation and electromagnetism.
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