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Introduction by the Organisers

The workshop Heat kernels, stochastic processes and functional inequalities was
organized by Thierry Coulhon (Cergy), Bruno Franchi (Bologna), Takashi Kuma-
gai (Kyoto) and Karl-Theodor Sturm (Bonn). It was held from November 27th
to December 3nd. The meeting was attended by 56 participants from Australia,
Austria, Canada, Finland, France, Germany, Italy, Japan, Poland, Switzerland,
United Kingdom, and USA. This workshop was sponsored by the European Union,
which allowed the invitation of 18 young people, who contributed positively to the
atmosphere of the meeting.

The conference brought together mathematicians belonging to several fields,
essentially analysis, probability and geometry. One of the main unifying topics
was certainly the study of heat kernels in various contexts: fractals, manifolds,
domains of the Euclidean space, percolation clusters, infinite dimensional spaces,
metric measure spaces. Some related aspects of geometric analysis were also con-
sidered such as Lp-cohomology and mass transportation. There was a stimulating
exchange between probabilistic and analytic points of view, together with a geo-
metric emphasis in most of the problems. We had 5 one hour survey lectures and
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21 thirty-five minutes talks. A lot of time was devoted to discussions and exchange
of ideas.

Among the highlights were relations between mass transportation, generalized
Ricci bounds and contraction properties, connections between heat kernel esti-
mates and percolation clusters, non-linear aspects of diffusions, functional ana-
lytic approach to parabolic regularity, geometric and functional analytic aspects
of infinite dimensional analysis.

This diversity of topics and mix of participants stimulated many extensive and
fruitful discussions. It also helped initiate new collaborations, in particular for the
younger researchers.
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Abstracts

The Kato square root problem: a review and new developments

Pascal Auscher

The following theorem has been proved in [2] in full generality.
Let B = B(x) be an n × n (n ≥ 1 is all this paper) matrix of complex, L∞

coefficients, defined on Rn, and satisfying the ellipticity (or “accretivity”) condition

(1) λ|ξ|2 ≤ ℜe Bξ · ξ∗ and |Bξ · ζ∗| ≤ Λ|ξ||ζ|,

for ξ, ζ ∈ Cn and for some λ, Λ such that 0 < λ ≤ Λ < ∞. Here, u · v =
u1v1 + · · · + unvn and u∗ is the complex conjugate of u so that u · v∗ is the usual
inner product in C

n and, therefore, Bξ · ζ∗ ≡
∑

j,k bj,k(x)ξk ζj . We define a second
order divergence form operator

(2) Jf ≡ −div(B∇f) = −
n∑

i,j=1

∂

∂xi

(
bi,j

∂

∂xj

)
,

which we interpret in the usual weak sense via a sesquilinear form, where ∇ is the
gradient operator and div the divergence operator, its negative adjoint.

The accretivity condition (1) enables one to define a square root J1/2 ≡
√

J , and
a fundamental question is to determine whether one can solve the “Kato square
root problem”, i.e. establish the estimate

(3) ‖
√

Jf‖2 ∼ ‖∇f‖2,

where ∼ is the equivalence in the sense of norms, with constants C depending
only on n, λ and Λ, and ‖f‖2 = (

∫
Rn |f(x)|2H dx)1/2 denotes the usual norm for

functions on Rn valued in a Hilbert space H .

Theorem 1. For any operator as above the domain of
√

J coincides with the
Sobolev space W 1,2(Rn) and ‖

√
Jf‖2 ∼ ‖∇f‖2.

We first mention that an abstract Hilbert space formulation (where B, ∇ are
replaced by abstract operators) was disproved by McIntosh, hence this is really
a theorem about elliptic differential operators. In fact, harmonic analysis meth-
ods involving square function estimates, Carleson measures, maximal functions,
variants of the T (b) theorem and stopping-time arguments are at the heart of the
proof. The case n = 1 was proved back to 1982 in a celebrated paper of Coifman,
McIntosh and Meyer.

The estimate contained in the statement applies to time-evolution parabolic,
hyperbolic or elliptic partial differential equations involving J as the main elliptic
part and where the matrix B could also depend smoothly on time. We review
such applications in this lecture.
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Let us concentrate here on one aspect, namely elliptic problems. This estimate
also contains the L2 boundedness of a boundary Neumann to Dirichlet map for
the following elliptic problem. Consider the elliptic problem

(4)

{
∂2

t u(x, t) − Ju(x, t) = 0 in R
n+1
+ = {(x, t) ∈ Rn × (0,∞)}

u(x, 0) = f(x) on R
n.

Then, a solution is given by the semigroup equation u(x, t) = e−t
√

Jf(x) and the

Neumann data equals −∂tu(x, 0) =
√

Jf(x) so that the Neumann to Dirichlet

map alluded to is ∇
√

J −1. Hence, one can solve the Neumann problem with data
in L2 with an estimate on ∇u and ∂tu. Also this map is invertible, with inverse
−
√

J −1divB acting on gradient fields, and one can solve the Dirichlet problem
with Dirichlet data f having gradients in L2 with an estimate on ∇u and ∂tu (this
is called the regularity problem). This holds for this general class of equations
with complex coefficients. Furthermore, one can impose the solution to satisfy
some control such as quadratic estimates and then uniqueness can be discussed.

This elliptic problem can be embedded in a larger class of problems where we
allow mixed second order derivatives

(5)

{
Lu(x, t) = 0 in R

n+1
+

u(x, 0) = f(x) on Rn.

where, now,

L = −divA∇ ≡ −
n+1∑

i,j=1

∂

∂xi

(
ai,j(x)

∂

∂xj

)

(we use the notational convention that t = xn+1 and ∂/∂t = ∂/∂xn+1 and ∇, div

now denote the full gradient and divergence operators on Rn+1) where A = A(x)
is an (n + 1) × (n + 1) matrix of complex-valued L∞ coefficients, defined on Rn

(i.e., independent of the t variable), and satisfying the uniform ellipticity condition

(6) λ|ξ|2 ≤ ℜe A(x)ξ · ξ∗, ‖A‖L∞(Rn) ≤ Λ,

for some λ > 0, Λ < ∞, and for all ξ ∈ C
n+1, x ∈ R

n. The preceding case,
we say that A is of Kato type, corresponds to an+1,n+1 = 1 and the non-diagonal
coefficients ai,n+1 = an+1,i = 0 if i = 1, . . . , n. We refer to the forthcoming articles
[1] for references on what follows as well for the statements which are new.

In this situation, there no longer is semigroup structure for solving. The con-
struction of the Neumann to Dirichlet map can be made formally using limits of
the layer potentials at the boundary. However, the study of boundedness and
invertibility of the Neumann to Dirichlet map becomes much harder in general.

A trivial case is when A is constant, as this map and its inverse are bounded
(on L2(Rn)) singular integrals of convolution type, that is Calderón-Zygmund
operators. For example, if A is the identity, they are associated to the standard
Riesz transforms on Rn.

Another situation where things are known is the case where A has real and
symmetric L∞ coefficients. Then, Jerison and Kenig solved (I will not be precise
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in saying in which class) the Dirichlet problem with L2 data by the method of
harmonic measure. Later Kenig and Pipher solved (again, in some class) both
the Neumann and regularity problems with datum in L2(Rn) using the previous
result of Jerison and Kenig, and Rellich identities. These identities furnish the a
priori comparison between tangential and normal components of the gradient of
any solution at the boundary, namely

(7)

∫

Rn

|∂νu(x, 0)|2 dx ∼
∫

Rn

|∇T u(x, 0)|2 dx,

where ∇T is the tangential gradient, that is the gradient with respect to x and ∂ν is
the exterior conormal derivative, that is −en+1 ·A∇ with en+1 the unit upward vec-
tor along the xn+1 co-ordinate. Hence, one controls the full gradient of a solution
at the boundary provided one controls either its conormal component (Neumann
datum) or its tangential component (regularity datum), whence solvability. This
method does not rely on boundedness of the Neumann to Dirichlet map. However,
if this boundedeness could be proved, then invertibility follows directly from the
Rellich estimate. Such a boundedness is far from trivial. To indicate why, let us
mention that this class of L’s includes pull-backs of the Laplace operator under a
Lipschitz change of coordinate, and thus the class of Neumann to Dirichlet maps
includes double layer potentials on Lipschitz graphs from potential theory, whose
boundedness is due to Coifman, McIntosh and Meyer in the 1982 paper mentioned
before. Then, Verchota understood in 1984 how to invert the Neumann to Dirich-
let map incorporating the Rellich identities, so that he could use the method of
layer potential to solve both the Neumann and regularity problems.

In the last 20 years some new technology has been developed to reprove the
boundedness of the double layer potential, one of them is called the T (b) theorem,
a criterion to check L2 boundedness for singular integrals (no longer of convolution
type). For the purpose of solving the Kato problem and also some other geometric
problems in complex function theory (the Painlevé problem), the T (b) theorem
has been adapted to various settings and more powerful and flexible versions are
available nowadays. One of them can be proved and applied to obtain the

Theorem 2. Let L be real and symmetric, then the Neumann to Dirichlet map is
bounded and invertible.

As Verchota did in his situation, we can reprove the results of Kenig and Pipher
mentioned above by the method of layer potentials. But that is not all. We can
also develop a perturbation theory by allowing the coefficients of A to vary in L∞

norm. Another type of perturbation theory allowing the coefficients to depend in
a minimally smooth way on the transverse variable t = xn+1 was developed by R.
Fefferman, Kenig, Pipher and then Kenig, Pipher.

Theorem 3. Assume that A(x) is either constant and complex, or real and sym-
metric with L∞ coefficients or real of Kato type (see above) with L∞ coefficients.
Then there exists ε > 0 depending only on the ellipticity constants of A such that
if A′(x) is another complex coefficients matrix with

(8) ‖A′ − A‖∞ ≤ ε
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then the Neumann to Dirichlet map corresponding to L′ = −divA′∇ is bounded
and invertible. Hence, the Neumann and Regularity problems for L′ with L2 data
are solvable.

In fact, this theorem is a consequence of a more general statement that would be
too complicated to explain here. The proof of boundedness is done by a perturba-
tion method comparing the layer potentials associated to A and A′. A remarkable
point of this proof is that the Kato part of A′, that is the matrix obtained by set-
ting the non-diagonal term to 0 and replacing a′

n+1,n+1 by 1, plays an important
role and in fact many of the estimates proved to establish Theorem 1, and some
similar ones, are instrumental in the argument. The proof of invertibility for the
perturbed Neumann to Dirichlet map is done via the method of continuity. This
is here that we need to have handled complex coefficients so as to use tools of
analytic functions such as the Cauchy formula.

To finish, we mention that in [1], we also develop another approach to obtain
solvability of Neumann and Regularity problems (and more general transmission
problems with Lipschitz interface). More precisely we imbed the elliptic problem
in a first order systems (generalized Cauchy-Riemann equations) in some exterior
algebra Λ. This first order system takes the form

(9) ∂tF + TF = 0 in R
n+1
+

where F is Λ-valued and T is some bi-sectorial Dirac-type operator on L2(Rn, Λ)
that is independent of t. In this setting, there is no layer potential but there

is an essential operator, sgn(T ) = T
√

T 2 −1, and the goal is to prove that it is
a bounded operator on L2(Rn, Λ). The solvability of the BVP is equivalent to
having specific numbers in the resolvent set of another related operator whose
boundedness follows from that of sgn(T ). And openness of resolvent sets allows
perturbation. This allows somehow more general perturbation results than the
ones stated above.
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Heat kernels on percolation clusters

Martin Barlow

Let G be an infinite (connected) graph. For x, y ∈ G let µxy = 1 if {x, y} is
edge, and µxy = 0 otherwise. Define the vertex degree µ(x) =

∑
y µxy. Assume

µ(x) < ∞ for all x ∈ G, and extend µ to a measure on G. Set V (x, r) = µ(B(x, r)).
We define a Dirichlet form by:

E(f, f) =
1

2

∑

x,y

(f(x) − f(y))2µxy.

The continuous time simple random walk on G (CTSRW) on G is the process
Y = (Yt, t ∈ [0,∞), P x, x ∈ G) associated with (E , L2(G, µ)). This process waits
at a point x for an exponential time with mean 1, then moves to y ∼ x with
probability µxy/µx. The heat kernel on G is

qt(x, y) = P x(Yt = y)µ−1
y .

Now consider bond percolation on Zd; write C(x) for the open cluster containing
x, and let θ(p) = Pp(|C(x)| = ∞). Recall that in the supercritical regime (p > pc)
there exists a unique infinite cluster, which we denote by C∞ = C∞(ω). The
CTSRW on the infinite percolation cluster C∞ is just the CTSRW on the graph
(C∞(ω), E(ω)|C∞(ω)); denote its heat kernel by qω

t (x, y).
In this talk I considered the heat kernel aspects of the following theorem

Theorem 4. [1] Let p > pc. For each x ∈ Zd there exist r.v. Nx(ω) with
Pp(Nx ≥ n) ≤ c exp(−nεd) and (non-random) constants ci = ci(d, p) such that the
transition density of X satisfies, for x, y ∈ C∞(ω):

c1

td/2
e−c2|x−y|2/t ≤ qω

t (x, y) ≤ c3

td/2
e−c4|x−y|2/t, (GE)

provided

t ≥ Nx(ω), and t ≥ |x − y|.

Let Q be a (large) box in Zd with side r, C(Q) be the largest connected cluster
in Q, and Q′ be a box with side (9/10)r and the same centre as Q. We use four

properties of C(Q); these all hold with probability at least 1 − e−crδ

.

1. ‘Good volume’:

c1r
d ≤ µ(C(Q)) ≤ c2r

d. (Vd)

2. ‘Good distances’: |x − y|1 ≤ dω(x, y) ≤ c2|x − y|1 for x, y ∈ Q′ ∩ C∞.
3. ‘Good isoperimetric inequality’. If A ⊂ Q ∩ C∞ with µ(A) ≥ 1

2µ(C(Q)) then

µ(A, C(Q) − A)

µ(A)
≥ C

r
. (1)

4. ‘Good surface effects’: C(Q) and C∞ ∩ Q do not differ by much. In particular,
one has

Q′ ∩ C(Q) = Q′ ∩ C∞.
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(1) implies a Poincaré inequality for B = C(Q): if f : C(Q) → R then
∫

C(Q)

(f − f)2dµ ≤ cr2
∑

x,y∈C(Q)

(f(x) − f(y))2µxy. (PI)

(As usual f is the real number which minimises the left hand side.)

A guide to the expected behaviour of Y on C∞ is given by the following theorem
of Delmotte, which translates into the graph setting work of Grigoryan [4] and
Saloff-Coste [7] on manifolds.

Theorem 5. [3] Let Γ be an infinite connected graph, with heat kernel qt(x, y).
The following are equivalent:
(a) Γ satisfies (VD) (volume doubling) and (PI) (Poincaré inequality).
(b) For x, y ∈ G, t ≥ d(x, y),

c1

td/2
e−c2|x−y|2/t ≤ qt(x, y) ≤ c3

td/2
e−c4|x−y|2/t. (GE)

(c) Γ satisfies (PHI).

Proof. Of course the hardest part of the argument is to obtain (b) or (c) from (a).
Delmotte proved that (a) Rightarrow (c) using Moser’s argument.

Since C∞ is random one can consider ‘annealed’ bounds (i.e. on
Ep(q

ω
t (x, y)|x, y ∈ C∞) or ‘quenched’ bounds, on qω

t (x, y). The first quenched
bounds were obtained in by Mathieu and Remy in [6]:

qω
t (x, y) ≤ c1t

−d/2, t ≥ Nx(ω), (UB1)

where Pp(Nx < ∞|x ∈ C∞) = 1.

Before considering how one can prove (UB1), it may be useful to see how not
to do so. It is well known that the ‘Nash inequality’

E(f, f) ≥ c||f ||2+4/d
2 ||f ||−4/d

1 . (N)

is equivalent to:

qt(x, x) ≤ Ct−d/2 for all x, y ∈ G, t ≥ 1. (GUB)

However (GUB) is false for C∞, since C∞ contains arbitrarily large ‘bad’ regions –
for example one-sided strings of length n connected at one end to the rest of C∞.
Thus (N) (and related global Sobolev inequalities) must fail for C∞, and one needs
‘local’ methods.

The basic idea is that if (VD) and (PI) hold for all large balls then one should
also get (GE) for all large times t. To make this more precise we make the following
definitions.

Definition.
1. A ball B = ga(x, r) is good if (Vd) and (PI) hold for B.
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2. Let α = 1/(11(2 + d)). The ball B = Bω(x, R) is very good (VG) if Bω(y, r) is
good for all

Bω(y, r) ⊂ B and Rα ≤ r ≤ R.

3. B = Bω(x, R) is exceedingly good (EG) if B is very good and satisfies a further,
rather complicated, condition.

Theorem 6. Let Γ be an infinite connected graph such that V (x, r) ≤ C0r
d for

all x ∈ G, r ≥ 1.
(a) Suppose for each x ∈ G there exists rx < ∞ such that B(x, R) is VG for all
R ≥ rx. Let Nx = (rx)c. Then

qt(x, y) ≤ c3

td/2
e−c4|x−y|2/t, t ≥ Nx ∨ d(x, y),

and

qω
t (x, y) ≥ c1

td/2
e−c2|x−y|2/t, t ≥ Nx ∨ d(x, y)3.

(b) If B(x, R) is EG for all R ≥ rx then the lower bound holds for t ≥ d(x, y)∨Nx.

One can prove that the hypotheses of Theorem 3(b) hold for C∞ a.s., and so
one derives Theorem 1.

Proof of Theorem 3. The basic idea is to work on an infinite connected graph Γ,
and prove that if a ball B(x0, R) is good/VG/EG then we have the right upper
and lower bounds on qt(x, y) for x, y ∈ B(x0,

1
2R) and for suitable t. Ideally we

would have t ≈ R2, but in fact the arguments needed t ≤ R2/ log R.
Then, since for Theorem 3(a) we suppose that B(x0, R) is VG for all R ≥ Rx

we obtain bounds on qt(x, y) for all large enough t.

Outline (for experts).
1. One can prove on-diagonal upper bounds on qt(x, x) directly from the Poincaré
inequalities, using an argument of Kusuoka-Zhou – see [5].
2. The hardest part is usually to obtain off-diagonal upper bounds. Of the ap-
proaches available one cannot easily use Davies’ method, as it relies on (global)
Sobolev inequalities. An alternative might be to prove a Harnck inequality first,
as in [3], but in [1] I used a method due to Bass and Nash – see [2].
3. For near diagonal lower bounds – i.e.

qt(x, y) ≥ ct−d/2 if d(x, y) ≤ t1/2 (2)

one can use the Fabes-Stroock method based on a weighted Poincaré inequality,
which can be derived from (PI) by the method of [8].
4. Full lower bounds (i.e. if t ≥ d(x, y) ≫ t1/2) require a chaining arguement
which needs (2) in small balls. So ‘very good’ isn’t good enough, and we need
‘exceedingly good’.
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Symmetric Markov chains on Zd with unbounded range

Richard Bass

(joint work with Takashi Kumagai)

Let Xn be a symmetric Markov chain on Zd. We say that Xn has bounded range
if there exists K > 0 such that P (Xn+1 = y | Xn = x) = 0 whenever |y − x| ≥ K.
The range is unbounded if for every K there exists x and y (depending on K)
with |x − y| > K such that P (Xn+1 = y | Xn = x) > 0. There is a great
deal known about Markov chains on graphs when the chains have bounded range.
The purpose of this talk is to discuss results for Markov chains on Zd that have
unbounded range.

Suppose Cxy is the conductance between x and y. We impose a condition on Cxy

which essentially says that the Cxy satisfy a uniform second moment condition.
Let Yt be the continuous time Markov chain on Zd determined by the Cxy, while
Xn is the discrete time Markov chain determined by these conductances. The
transition probabilities for the Markov chain X are defined by

P x(X1 = y) =
Cxy∑
z Cxz

,

while the process Yt is the Markov chain that has the same jumps as X but
where the times between jumps are independent exponential random variables with
parameter 1. When the second moment condition holds, together with two very
mild regularity conditions, we obtain upper bounds on the transition probabilities
of the form

P (Yt = y | Y0 = x) ≤ ct−d/2

and some corresponding lower bounds when x and y are not too far apart. Unlike
the case of bounded range, reasonable universal bounds of Gaussian type need not
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hold when the range is unbounded. We also obtain bounds on the exit probabilities
P (sups≤t |Ys − x| > λt1/2).

We say a uniform Harnack inequality holds for X if whenever h is nonnegative
and harmonic for the Markov chain X in the ball B(x0, R) of radius R > 1 about
a point x0, then

h(x) ≤ Ch(y), |x − x0|, |y − x0| < R/2,

where C is independent of R. Even when Xn is a random walk, i.e., the incre-
ments Xn−Xn−1 form an independent identically distributed sequence, a uniform
Harnack inequality need not hold. However, if we impose an additional strong as-
sumption on the conductances, then we can prove such a Harnack inequality.

We prove that if we have Markov chains X(n) on Zd satisfying the secnd mo-

ment condition uniformly in n, then the sequence of processes X
(n)
t = X[nt]/

√
n is

tight in the space D[0,∞) of right continuous, left limit functions, and all subse-
quential limit points are continuous processes. Under an additional condition on
the conductances (different than the one needed for the Harnack inequality), we

then show that the X
(n)
· converge weakly as processes to the law of the diffusion

corresponding to an elliptic operator

Lf(x) =

d∑

i,j=1

∂

∂xi

(
aij(·)

∂f

∂xj
(·)

)
(x)

in divergence form.

Ultracontractivity and embedding into L∞

Alexander Bendikov

(joint work with Th. Coulhon, L. Saloff-Coste)

One of the classical uses of Sobolev embedding theorem is to show that an L2

function on Rd having k derivatives in L2 with k > d/2 is a bounded function.
This has been generalized as follows. Let e−tA be a semigroup of self-adjoint
operators on L2(X, µ). Assume that, for all t ∈ (0, 1),

‖e−tA‖2→∞ = sup
‖g‖2≤1

‖e−tAg‖∞ ≤ Ct−ν/4.

Then any function f ∈ L2(X, µ) such that Akf ∈ L2(X, µ) for some k > ν/4
(roughly speaking, this corresponds to 2k derivatives in L2) must be a bounded
function. See, e.g., [2, Théorème 1] and the references therein.

The aim of the present paper is to obtain results in this spirit when the semi-
group e−tA satisfies an ultracontractivity bound of the type

(1) ‖e−tA‖2→∞ = sup
‖g‖2≤1

‖e−tAg‖∞ ≤ em(t), t > 0

with a function m which tends to infinity at least as fast as log 1/t as t tends to
0. We call such a function m an ultracontractivity function for e−tA.
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More precisely, we would like to obtain equivalences between (1) and properties
such as

(2) g ∈
∞⋂

0

Dom(An) and lim sup
n→∞

‖Ang‖1/n
2

φ(n)
≤ 1 =⇒ g ∈ L∞(X, µ)

where the function m in (1) and the function φ in (2) are related in some explicit
way. We call a function φ such that (2) holds an embedding function for A.

We also relate these properties to Nash type inequalities and characterize those
functions f on the real line such that ‖e−f(A)‖2→∞ < ∞. Similar questions were
discussed in [1] which focussed on problems related to the long time behavior of
the semigroup. In this paper, the focus is on the short time behavior.

In fact, the connection between Nash inequalities and ultracontractivity bounds
on the one hand, embedding properties of the form (2) (or, to follow the termi-
nology of [2], generalized Gagliardo-Nirenberg inequalities) and ultracontractivity
bounds on the other hand have a different range of validity, as far as the behaviour
of the function m is concerned. Nash inequalities are relevant when the explosion
of m at 0 is not too fast, embedding properties are relevant when the explosion of
m at 0 is fast enough. There is a common zone where both operate (see Theorem
7), and two exclusive zones where only one of them operates.

We also consider the case where X has finite measure and A has discrete spec-
trum together with L∞ bounds on the eigenfunctions. In that case, one can ob-
tain the connection with generalized Gagliardo-Nirenberg inequalities even when
m does not belong to the favorable zone. This applies in particular to left-invariant
Markov generators acting on locally compact metric groups.

Finally, we exhibit families of concrete examples, namely invariant diffusions on
infinite dimensional tori and symmetric Lévy semigroups on the real line, which
display the whole variety of behaviours we have been considering.

Definition 1. Let M be a non-negative non-increasing function defined on (0, +∞)
and such that M(0+) = ∞. For non-negative x, set

(3) F (x) = FM (x) = inf
t>0

{tx + M(t)}

and

(4) Φ(x) = ΦM (x) = sup
t>0

{x

t
e−M(t)/x

}
.

Definition 2. Let M be a non-increasing non-negative function defined on (0, +∞)
and such that M(0+) = ∞. For any real x, set

(5) N(x) = sup
t>0

{xt − tM(1/t)}.

When M ∈ C1, set also

(6) Q(x) =

{
−M ′ ◦ M−1(x) if x ≥ M(∞)

0 otherwise.

We can now state our main result.
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Theorem 7. Let M, F, Φ be as in the above definition. Assume that M is C1,
convex, and that there are constants a, b ∈ (0,∞) such that aM(t) ≤ −tM ′(t) ≤
bM(t) for all t small enough. Let −A be the infinitesimal generator of a sub-
Markovian semigroup on L2(X, µ). Then the following properties are equivalent:

(1) There exists c1 ∈ (0,∞) such that, for all t > 0, ‖e−tA‖2→∞ ≤ ec1M(t).
(2) There exists t0 > 0 such that, for all t > t0, ‖e−tF (A)‖2→∞ < ∞.
(3) There exists C1 ∈ (0,∞) such that for any function f ∈ ⋂∞

0 Dom(An) we
have

lim sup
n→∞

{
‖Anf‖1/n

2

Φ(n)

}
≤ C1 =⇒ f ∈ L∞(X, µ).

(4) There exists C2 ∈ (0,∞) such that the Nash inequality

∀ f ∈ Dom(A) with ‖f‖1 ≤ 1, ‖f‖2
2Φ (log ‖f‖2) ≤ C2

(
〈Af, f〉 + ‖f‖2

2

)

is satisfied.
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On the Robin problem in fractal domains

Krzysztof Burdzy

(joint work with R. Bass, Z.-Q. Chen)

The Robin problem (also known as the “third” boundary problem) for a Euclidean

domain D ⊂ Rd is to find a function u such that

∆u(x) = 0, x ∈ D,(1)

∂u

∂n
= cu, x ∈ ∂D,(2)

with one or more side conditions, where n is the unit inward normal vector field
on ∂D, ∂u/∂n is the normal derivative of u in the distributional sense and c > 0
is a constant. See Gustafson and Abe [8] for the history of this problem.

Our interest in the Robin problem stems from some recent applications in
physics, electrochemistry, heterogeneous catalysis and physiology; see [4], [5], [7],
[11] and the references therein. Consider the mixed Dirichlet-Robin problem

∆u(x) = 0, x ∈ D \ B∗,(3)

∂u

∂n
= cu, x ∈ ∂D,(4)

together with the side condition

u(x) = 1, x ∈ ∂B∗,(5)
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where B∗ ⊂ D is a fixed closed ball with non-zero radius. The solution to (3)-(5)
represents the steady state of a system in which some particles move randomly in
D\B∗ and cross a semi-permeable membrane ∂D. The other part of the boundary,
∂B∗, is a source of particles and can be controlled so that we can assume a condition
of type (5). The constant c in (4) is a physical characteristic of the membrane ∂D.
The constant c will play no role in our theorems so we take c = 1.

In some applied situations, it is desirable to have as much flux through the
boundary as possible. The points of a man-made or natural membrane ∂D where
there is no flux can be considered an inefficient use of material. Hence, it is inter-
esting to know when the flux is non-negligible through all points of the membrane.
In other words, we would like to know whether infx∈∂D ∂u/∂n(x) > 0. In view
of the relation (4) between the flux ∂u/∂n and the density u of particles and the
maximum principle for the harmonic function u, this condition is equivalent to
infx∈D\B∗

u(x) > 0.

Definition 1.1. We say that the whole surface of D is active if

inf
x∈D\B∗

u(x) > 0.(6)

If it is not the case that the whole surface is active, we say part of the surface is

nearly inactive.

In this paper we investigate the following problem.

Problem 1.2. Give necessary and sufficient conditions of a geometric nature for

the whole surface of D to be active.

It is not difficult to show that the whole surface of a bounded Lipschitz domain
is always active. We have posed Problem 1.2 in terms of u rather than ∂u/∂n
because we are interested in non-Lipschitz domains D; so there are some boundary
points where n is not well-defined while the solution u is always well-defined, and,
in fact, is smooth in D \ B∗. We do not have a complete solution to Problem
1.2, but we give a fairly explicit answer for some natural families of domains with
fractal boundary.

We will approach Problem 1.2 using probabilistic methods. This agrees well
with the motivating physical models. Suppose that X is reflecting Brownian mo-
tion in D, L is its local time on ∂D, and TB∗

is the hitting time of B∗ by X . When
D is a bounded C3-smooth domain, it is known that (see [9] and [10]

u(x) = Ex

[
exp

(
−1

2
LTB∗

)]
.(7)

This formula indicates that the third boundary problem (4) is more difficult to
study from the probabilistic point of view than the corresponding Dirichlet and
Neumann problems. This is because the Dirichlet problem corresponds to killed
Brownian motion and killing on the boundary presents no technical problems.
The Neumann boundary problem corresponds to reflecting Brownian motion. The
construction of reflecting Brownian motion in an arbitrary domain D is a major
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technical challenge. Although this feat has been accomplished long time ago by
Fukushima [6] on an abstract compactification, called the Martin-Kumarochi com-
pactification, of D, many questions about the construction of reflecting Brownian
motion on the Euclidean closure of a domain remain open (see [1]). Formula (7)
shows that the Robin boundary problem (3)-(5) requires the construction and un-
derstanding of the local time. This is harder than constructing reflecting Brownian
motion itself, because it is known that reflecting Brownian motion does not have
a semimartingale decomposition in some domains. For some results in this area,
see, e.g., DeBlassie and Toby [3]. For information on the eigenvalue problem for
the Laplacian with Robin boundary conditions, see Smits [12], [13].

The following are some results proved in this paper.

• (i) The solution of Problem 1.2 for a class of domains with fractal bound-
aries.

• (ii) A semimartingale decomposition of reflecting Brownian motion in a
class of fractal domains.

• (iii) A sharp estimate for the Green function with Neumann boundary
conditions in long and thin domains.

• (iv) A new version of the Neumann boundary Harnack principle, stronger
than the one in [2].

A simple example illustrating our main theorems is a cusp domain, defined for
a fixed α > 1 by

D =
{

x = (x1, x2, . . . , xd) : 0 < x1 < 1 and xα
1 > (x2

2 + · · · + x2
d)

1/2
}

.

Applying the main results of this paper, we can show that the whole boundary of
D is active if α ∈ (1, 2), and part of ∂D is nearly inactive if α ≥ 2.
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Correlation inequalities of Brascamp-Lieb inequalities and the heat
kernel

Eric Carlen

We discuss recent work with Elliott Lieb and Michael Loss, showing that a sim-
ple heat kernel argument can be used to prove correlation inequalities of Brascamp–
Lieb type, and explain some new examples obtained this way.

1. Introduction

Consider an integral of a product of functions, such as

(1)

∫

X

N∏

j=1

fj(πj(x))dµ

where the πj are certain “projections” from the measure space X to R. For
example when X is the unit sphere in RN , one might have πj(x) = ~ej · x, where
~ej is the jth standard basis vector of RN .

When µ is a probability measure, the πj , and hence the fj ◦ πj are random
variables. In general, they will not be independent. This is the case in the example
mentioned above when µ is the normalized probabilty measure on the unit sphere.
Then of course, the integral of the product will not equal the product of the
integrals. Indeed, it can even be the case that the integral of the product is
infinite, due to correlations, while each individual integral is finite.

A Brascamp–Lieb inequality is one that relates an integral of a product, such
as the one in (1), to a product of the Lp norms of the fj ◦ πj , as in

(2)

N∏

j=1

(∫

X

|fj(πj(x))|pj dµ

)1/pj

.

The classical theorem of Brascamp and Lieb [2],[6] concerns the case in which
X is RM , with M < N , dµ is Lebesgue measure, and πj(x) = ~aj · x where the
{~a1, . . . ,~aN} span RM . Given Lp indices pj with 1 ≤ pj ≤ ∞ for j = 1, 2 . . . , N ,
form the vector

(3) ~p = (1/p1, 1/p2, . . . , 1/pN) ,
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and define
(4)

D(~p) = sup

{∫
RM

∏N
j=1 fj(~aj · x)dNx

∏N
j=1 ‖fj‖pj

: fj ∈ Lpj (R) j = 1, 2, . . . , N

}
.

Next, let G denote the set of all centered Gaussian function functions on R; i.e.,

those of the form g(x) = e−(sx)2/2 for some s > 0. Define DG(~p) by

(5) DG(~p) = sup

{∫
RM

∏N
j=1 gj(~aj · x)dNx

∏N
j=1 ‖gj‖pj

: gj ∈ G j = 1, 2, . . . , N

}
.

The classical theorem of Brascamp and Lieb states that D(~p) = DG(~p), and hence

(6)

∫

RM

N∏

j=1

fj(~aj · x)dNx ≤ DG(~p)

N∏

j=1

‖fj‖pj

for all non negative f1, . . . , fN .
An important special case arises when N = 3, M = 2 and

~a1 = ~e1 ~a2 = ~e1 − ~e2 and ~a3 = ~e2 .

Then, denoting f1, f2, f3 by f, g, h respectively, (1) becomes
∫

R2

f(x)g(x − y)h(y)dxdy .

In this case, it is quite easy to compute DG(~p), and thus one obtain the sharp
constant in Young’s inequality. (This important special case was also treated
independently and simultaneously by Beckner.)

Several new examples of Brascamp–Lieb type correlation inequalities have re-
cently been proven by Lieb, Loss and the author [3],[4]. The first of these holds
when, as discussed in the introduction, the measure space X in (1) is the unit
sphere SN−1 in R

N equipped with the uniform probability measure µ:

Theorem 8. For all N ≥ 2, given non–negative measurable functions f1, . . . , fN ,
on [−1, 1],

(7)

∫

SN−1




N∏

j=1

fj ◦ πj



dµ ≤
N∏

j=1

‖fj ◦ πj‖Lp(SN−1) .

for all p ≥ 2. Moreover, the L2 norm is optimal in that for each p < 2, there exist
functions fj so that ‖fj ◦πj‖Lp(SN−1) < ∞ for each j, while the integral on the left
side of (7) diverges. Finally, for every p ≥ 2 and N ≥ 3, there is equality in (7) if
and only if some function fj vanishes identically, or else each fj is constant.

In the second of these, X is Sn denote the symmetric group on N letters; i.e.,
the group of all permutations σ of {1, . . . , N}. Let the (composition) product in
Sn be denoted by juxtaposition, and for each 1 ≤ i, j ≤ N with i 6= j, let σi,j be
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the pair permutation with σi,j(i) = j, σi,j(j) = i, σi,j(k) = k for k 6= i, j. Let µ
denote the uniform probability measure on Sn so that if g is any function on Sn,

(8)

∫ n

S
g(σ)dµ =

1

N !

∑

σ∈Sn

g(σ) .

Theorem 9. For any N ≥ 2 given functions f1, . . . , fN , on {1, . . . , N},

(9)

∫

Sn




N∏

j=1

fj ◦ πj



dµ ≤
N∏

j=1

‖fj ◦ πj‖Lp(Sn) .

there is equality in (9) if and only if at least one of the functions fj is zero, or else

each fj(k) = Cje
i(αj−βk) for some α1, . . . , αN , β1, . . . , βN , and C1, . . . , CN

This can be reformulated as a theorem about permanents, if we identify func-
tions f on {1, . . . , N} in the obvious way: Let F be an N × N complex matrix

whose jth column is the vector ~fj in CN . Let |fj |2 denote the sum of the absolute

squares of the entries of ~fj. Hadamard’s inequality for determinants [5] states

that | det(F )| ≤ ∏N
j=1 |~fj |. Then it is easy to reformulate the previous theorem as

follows:

Theorem 10. For any vectors ~f1, . . . , ~fN in C
N we have the inequality

(10) |perm(F )| ≤ N !

NN/2

N∏

j=1

|~fj | .

For N > 2, there is equality in (10) if and only if at least one of the vectors ~fj

is zero, or else F is a rank one matrix and, moreover, each of the vectors ~fj is a
constant modulus vector; i.e., its entries all have the same absolute value.

All of the theorems mentioned above, including the original paradigm, can be
proved using a simple heat kernel interpolation. Barthe [1] had earlier given a
proof of the original Brascamp–Lieb Theorem using an interpolation constructed
by means of optimal mass transportation. This works very well on RN , but it is
not clear how it could be adapted to work on SN−1 or on Sn. On the other hand,
the heat kernel proof is very simple, and works in essentially the same way in each
of the cases mentioned above. We now biefly describe how this works.

For any non negative function f on {1, . . . , N} and any 1 ≤ j ≤ N , and any

1 ≤ p < ∞, consider the function defined by
(
et∆(f ◦ πj)

p
)1/p

. It is easy to see
that the result is also of the form g ◦πj . Moreover, the Lp norm is constant during
the evolution. All one has to do is a calculation to check that the integral of the

product increases with t. Finally, on SN−1 or on Sn,
(
et∆(f ◦ πj)

p
)1/p

tends to

a constatn, while on RM , it gets “more and more Gaussian”. For the details, see
the cited papers.
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Lp cohomology and the boundness of the Riesz transform

Gilles Carron

(joint work with Th. Coulhon, A. Hassell)

Let M be a complete Riemannian manifold with infinite measure. The Riesz
transform T on M is the operator

f → d∆−1/2f,

where ∆ is the positive Laplace operator on M . Thanks to the Green formula we
have :

∀f ∈ C∞
0 (M), ‖∆1/2f‖2

L2 = 〈∆f, f〉 = ‖df‖2
L2

hence the Riesz transform is always a bounded map from L2(M) to L2(M ; T ∗M).
It is of interest to figure out the range of p for which T extends to a bounded map
Lp(M) → Lp(M ; T ∗M). Equivalently, we can ask whether

‖ df ‖p ≤ ‖∆1/2f‖p for all f ∈ C∞
c (M).

There is a lot of result in this direction. I will only mention few of such results :

i) On R
n, for all p > 1, the Riesz transform is bounded on Lp.

ii) On manifold with non negative Ricci curvature, the Riesz transform is bounded
on Lp for all p > 1 ([3]).
iii) On certain Cartan-Hadamard manifolds, the Riesz transform is bounded on
Lp for all p > 1
([7]).
iv) On simply connected nilpotent Lie groups endowed with a left invariant metric,
the Riesz transform is bounded on Lp for all p > 1 ([1]).
v)In [5], T. Coulhon and X.T. Duong have shown that if for some C > 0 and
ν > 0, (M, g) satisfies the the relative Faber-Krahn inequality :

∀x ∈ M, R > 0 and Ω ⊂ B(x, R) λ1(Ω) ≥ C

R2

(
volΩ

volB(x, R)

)−2/ν

,
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then for all p ∈]1, 2] the Riesz transform is bounded on Lp.
They also indicated that for p > n, the Riesz transform is not bounded on Lp

on a connected sum of two Euclidean space.
Our result is the following :

Theorem Let M be a complete Riemannian manifold of dimension n ≥ 3 which
is the union of a compact part and a finite number of Euclidean ends. Then the
Riesz transform is bounded from Lp(M) to Lp(M ; T ∗M) for 1 < p < n, and is
unbounded on Lp for all other values of p if the number of ends is at least two.

Let’s describe a key point in the proof in the case of a connected sum of two
Euclidean space M = Rn#Rn. Such manifold is topologically the product R×Sn−1

endowed with the metric

(dr)2 + (1 + r2)(dθ)2

where (dθ)2 is the standard round metric on the sphere Sn−1 and r the radial
variable. One of our argument is a precise description of the behavior for large x
and y of the Schwarz kernel of the operator :

∆−1/2 =
2

π

∫ ∞

0

(∆ + k2)−1 dk.

If P (x, y) is the kernel of this operator, we show that when x ∈ M and y = (r, θ)
then for r → ±∞

P (x, (r, θ)) ≃ u±(x)

rn−1

where u± is the harmonic function such that

lim
r→±∞

u±(x) = 1

lim
r→∓∞

u±(x) = 0

At infinity, we also get

|du±(r, ω)| = O(r1−n).

With this estimate, we can show that the Riesz transform can be bounded only
when p < n. To get the full result, we obtain sharper estimates by using the
scattering calculus introduced by R. Melrose ([8]).

In ([2]), authors have remarked that if the Riesz transform is bounded on
Lp/(p−1) and on Lp then the operator P = d∆−1d∗ extend to a bounded op-
erator on Lp(T ∗M). On L2(T ∗M), this operator P is the orthogonal projection
on the closure of the space dC∞

0 (M). But on (M, g), the space of L2 differential
one-forms admits the Hodge decomposition

L2(T ∗M) = H1(M) ⊕ dC∞
0 (M) ⊕ d∗C∞

0 (Λ2T ∗M),

where H1(M) = {α ∈ L2(T ∗M), dα = 0 = d∗α} (see [6]). Let us recall now the
definition of reduced Lp-cohomology: for p ≥ 1 , the first space of reduced Lp

cohomology of (M, g) is

H1
p (M) =

{α ∈ Lp(T ∗M), dα = 0}
dC∞

0 (M)
,
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where we take the closure in Lp. On L2, we have

{α ∈ L2(T ∗M), dα = 0} = H1(M) ⊕ dC∞
0 (M),

hence the first space of reduced L2 cohomology can be identified with H1(M).

We assume now that the manifold (M, g) satisfies the following conditions
(∫

M

|f | 2ν
ν−2 dvol

)1−2/ν

≤ C

∫

M

|df |2dvol, ∀f ∈ C∞
0 (M),

And that at one point x0 ∈ M , we have a control on the growth of geodesic balls
centered at x0 :

volB(x0, r) ≤ Crν , ∀r ≥ 1.

Proposition Under these two hypotheses, if the Riesz transform is bounded in Lp

for some p > 2, then

H1
p (M) = {α ∈ Lp(M ; T ∗M) | d∗α = dα = 0}.

If moreover the Ricci curvature of M is bounded from below then there is a natural
map

H1
2 (M) → H1

p (M)

which is injective.
Corollary If M has at least two ends, then the Riesz transform is not bounded on
Lp for any p ≥ ν.

Let’s us describe two examples :

First example: The manifold M = Rn#Rn = R × Sn−1 endowed with a
metric (dr)2 + (1 + r2)(dθ)2. Then it is easy to show by direct computation that

{α ∈ Lp(M ; T ∗M) | d∗α = dα = 0} = R
dr

(1 + r2)
n−1

2

.

Where as

H1
p (M) =

{
R ifp < n
{0} if p ≥ n

Hence the map H1
2 (M) → H1

p (M) is injective only for p < n. The proposition
gives in this case the right range of p’s where the Riesz transform is bounded on
Lp.

Second example: Let M be a connected sum of several (say l ≥ 2) copies of
a simply connected nilpotent Lie group N endowed with a left invariant metric,
let ν be the homogeneous dimension of N ; that is

ν = lim
R→∞

log volB(o, R)

log R
,

Then M satisfies the Sobolev inequality, the upper bound on the volume growth
of geodesic balls and more over it’s clear that its Ricci curvature is bounded from
below. We known that the Riesz transform is bounded on Lp for p ∈]1, 2] and not
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bounded on Lp for any p ≥ ν. Moreover we can compute the Lp cohomology of
M :

H1
p (M) =

{
H1

c (M) ≃ Rl−1 if p < ν
{0} if p > ν

Hence the map

H1
2 (M) → H1

p (M)

is injective when p < ν. It is then tempting to propose the following conjecture :

On such a manifold M , is the Riesz transform bounded on any p ∈]1, ν[ ?
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Boundary Processes of Markov Processes

Zhen-Qing Chen

(joint work with Masatoshi Fukushima, Jiangang Ying)

Time change is one of the most basic and very useful transformations for Markov
processes, which has been studied by many authors. However a precise character-
ization of the time-changed process of a Markov process X on a state space E by
a Revuz measure whose quasi-support F is a proper subset of E has only been
started very recently. The time-changed process has F as its state space so it can
be regarded as the trace process of X on F .

The following is a prototype of the problem we discussed in the talk. Suppose
X is a Lévy process in Rn that is the sum of a Brownian motion in Rn and an
independent spherically symmetric α-symmetric stable process in Rn, where n ≥ 1
and α ∈ (0, 2). Denote by B(x, r) the open ball in Rn centered at x ∈ Rn with

radius r. Its Euclidean closure is denoted by B(x, r). Let F = B(0, 1)∪∂B(x0, 1),
where x0 ∈ Rn with |x0| = 3. What is the trace process of X on the closed set
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F? More precisely, let µ(dx) := 1B(0,1)(x) dx + σ∂B(x0,1), where σ∂B(x0,1) denotes

the Lebesgue surface measure of ∂B(x0, 1). It is easy to see that µ is a smooth
measure of X and it uniquely determines a positive continuous additive functional
Aµ = {Aµ

t , t ≥ 0} of X having µ as its Revuz measure. Define its inverse

τt := inf{s > 0 : Aµ
s > t} for t ≥ 0.

Then the time changed process Yt := Xτt is a symmetric Markov process on F ,
which can be regarded as the trace process of X on F . So the more precise question
is

Question: Can we characterize the time changed process Y ?
In fact, one can ask such questions for a general irreducible Markov process

X that has a weak dual process on a general state space E which not only can
have discontinuous sample paths but also can have killings inside E or have finite
lifetime, and for any quasi-closed subset F of E.

When X is a general m-symmetric Markov process, we have obtained a com-
plete characterization of the time changed process Y in terms of its Burling-Deny
decomposition in [1]. In particular, the characterization of Lévy system of Y is ob-
tained in terms of Feller measure and supplement Feller measure. These measures
are intrinsic quantities for the part process of X killed upon leaving E \ F .

We also studied time changes for non-symmetric Markov processes. Let (X, X̂)
be a pair of Borel standard processes on a Lusin space E that are in weak duality
with respect to some σ-finite measure m that has full support on E. Let F be
a finely closed subset of E. In [2], we have obtained the characterization of a
Lévy system of the time changed process of X by a positive continuous additive
functional (PCAF in abbreviation) of X having support F , under the assumption
that every m-semipolar set of X is m-polar for X . The characterization of the
Lévy system is again in terms of Feller measures, which are intrinsic quantities for
the part process of X killed upon leaving E \ F . Along the way, various relations
between the entrance law, exit system, Feller measures and the distribution of the
starting and ending point of excursions of X away from F are studied. We also
show that the time changed process of X is a special standard process having a
weak dual and that the µ-semipolar set of Y is µ-polar for Y , where µ is the Revuz
measure for the PCAF used in the time change.

The research of this author is supported in part by NSF Grant DMS-0303310.
These work extend the previous results obtained by LeJan in [4]-[5] and by

Fukushima, He and Ying in [3].
This talk is based on joint work with Masatoshi Fukushima and Jiangang Ying

[1] and [2].
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Limit theorems for geometric approximations to Wiener measure

Bruce Driver

A typical path integral is an informal expression of the form

(1)
1

Z

∫

F
f(σ)e−E(σ)Dσ

where F is a space of maps from one manifold to another, f is a real valued
function on F , E(σ) is the energy of the map σ, Dσ is “Lebesgue measure” and
Z is a normalization constant. The use of path integrals for “quantizing” clas-
sical mechanical systems (whose classical energy is E) started with Feynman in
[3] with very early beginnings being traced back to Dirac [2]. We present three
rigorous interpretations to the path integral in (1) in the simplest non-trivial case,
namely when F = {σ ∈ C ([0, 1] → M) : σ (0) = o} where M is a compact, d –
dimensional Riemannian manifold and o is a fixed point in M. This is done by
first replacing F by an increasing sequence {Fn} of approximating finite dimen-
sional “submanifolds” consisting of piecewise geodesic paths. The formal measure
Dσ on F is then replaced by the Riemannian volume measure on Fn relative to
three different natural Riemannian metrics. The limit of these three approximat-
ing measures is shown to exist as a measure on F . Each of the limiting measure are
absolutely continuous relative to the Wiener measure (ν) on F and their (distinct)
Radon-Nikodym derivatives are explicitly computed.

In more detail, let Pn := {si := i
n : i = 0, 1, 2, . . . , } be a uniform partition of

[0, 1] ,
Fn = {σ ∈ F : ∇σ′(s)/ds = 0 off Pn} .

For σ ∈ Fn, and X, Y ∈ TσFn, define:

(1) the H1–Metric on Fn by

G1(X, Y ) :=

∫ 1

0

〈∇X(s)

ds
,
∇Y (s)

ds

〉
ds,

(2) the Riemann sum approximation to the H1–Metric on Fn by

G1
n(X, Y ) :=

n∑

i=1

〈∇X(si−1+)

ds
,
∇Y (si−1+)

ds

〉
1

n
,

and
(3) the Riemann sum approximation to the L2–Metric on F by

G0
n(X, Y ) :=

n∑

i=1

〈X(si), Y (si)〉
1

n
.
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Further define three measure ν0
n, ν1

n, and νn on Fn as:

dν0
n :=

1

Z0
n

e−
1
2EM · dVolG0

n
,

dν1
n :=

1

Z1
n

e−
1
2EM · dVolG1

n
,

and

dνn :=
1

Z1
n

e−
1
2EM · dVolG1|TFn

where

EM (σ) :=

∫ 1

0

|σ′(s)|2g ds,

is the energy functional, and Z0
n and Z1

n are normalization constants given by

Z0
n :=

(
2π/n2

)nd/2
and Z1

n := (2π)dn/2.

In each of the three theorems below f is assumed to be a bounded and continuous
(in the sup-norm topology) real valued function on F .

Theorem 11 (Andersson and Driver [1]). The sequence of measures
{
ν1

n

}∞
n=1

satisfy,

lim
n→∞

∫

Fn

f(σ)dν1
n(σ) =

∫

F
f(σ)dν(σ)

Theorem 12 (Andersson and Driver [1]). Let Scal (m) be the scalar curvature of
M at a point m ∈ M. Then

lim
n→∞

∫

Fn

f(σ)dν0
n(σ) =

∫

F
f(σ)e−

1
6

R 1
0

Scal(σ(s))dsdν(σ).

For each m ∈ M, let Rm be the curvature tensor at m ∈ M and define Γm ∈
End (TmM) by

Γm =

d∑

i,j=1

(
Rm (ei, Rm(ei, ·)ej) ej

+ Rm (ei, Rm(ej , ·)ei) ej + Rm (ei, Rm(ej , ·)ej) ei

)

where {ei}i=1,2,...,d is any orthonormal basis for Tm(M). For σ ∈ F , let u (s) :=
//s (σ) denote stochastic parallel translation along σ and define a linear operator
on L2 ([0, 1] ; ToM) by

(Kσf) (t) :=

∫ 1

0

t ∧ s
[
u (s)

−1
Γσ(s)u (s)

]
f (s) ds.
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Theorem 13 (Adrian Lim [4]). Suppose the sectional curvatures of M are bounded
below by 0 and above by 1/ (2 · dim (M)) , then

lim
n→∞

∫

Fn

f(σ) dνn(σ)

=

∫

F
f(σ)e−

1
6

R 1
0

Scal(σ(s)) ds · det

(
I +

1

12
Kσ

)
dν(σ).

We refer the reader to the references in [1] and [4] for more background and
related references to these three theorems.
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Intertwined diffusions

David Elworthy

(joint work with Y. LeJan, X.-M. Li-Hairer)

A) Intertwined diffusion generators. Consider a smooth surjective map p :
N → M between manifolds N and M with smooth diffusion generators A and B
on the manifolds M and N respectively, intertwined by p. This means that for
any smooth f : M → R we have

B(f ◦ p) = A(f) ◦ p.

They have symbols σA and σB related by the commutative diagram

T ∗
uN

σB
u - TuN

6
(Tup)∗

T ∗
p(u)M

?
Tp(u)M-

σA
p(u)

Tup

where Tup denotes the derivative map of p at the point u, a linear map between
the relevant tangent spaces, and (Tup)∗ is its adjoint acting on cotangent spaces.
Recall that the (principal) symbol of a second order differential operator such as
A is defined by

dfx(σA
x (dgx)) =

1

2

(
A(fg)(x) − f(x)A(g)(x) − g(x)A(f)(x)

)
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for x ∈ M and smooth functions f and g on M . The symbols of our diffusion gener-
ators determine symmetric, positive semi-definite, bilinear forms on the cotangent
spaces. Let Ex be the image of σA

x and let 〈−,−〉 be the inner product induced
on it by σA

x . In the elliptic case Ex the symbol is positive definite and Ex is the
whole of the tangent space TxM , furnishing M with a Riemannian metric.

There are obvious questions which arise from this set up. One is on the relation-
ships between the operators A and B, for example is there a nice decomposition
of B? are there spectral relationships? Others concern the diffusion processes
generated by the operators, for example the existence of a skew product decom-
position of B-diffusions, or the filtering problem of finding the conditional law of
the B-diffusion given its projection on M by p. We have not considered relations
between the spectra of A and B, for this in the special cases when M and N are
Riemannian manifolds and the map p is a Riemannian submersion with A and B
the corresponding Laplace -Beltrami operators, see [1]. However the other ques-
tions are discussed in [4], with an earlier version for the case when p : N → M is a
principal bundle, and so in particular M is the quotient of N by a group action in
[3]. Most of our results require a ”cohesiveness” condition on A, described below.

Earlier results have mainly concerned the cases where B is the Laplacian : see
[2] for a skew product decomposition when p is Riemannian with totally geodesic
fibres, with an application to a factorisation theorem for harmonic maps; there is
an extension of this by Liao in [7] to more general Riemannian submersions; for
a discussion of skew -product decompositions of Brownian motions, with many
examples, see Pauwels& Rogers [9], or [10].
B) Semi-Connections. The key step in our discussions is the construction of a
semi-connection associated to our intertwining. For this we need the symbol of
A to have constant rank, q say. this means that if E denotes the union of all the
subspaces Ex, x ∈ M then E is a subbundle of the tangent bundle TM .

By a (non-linear) semi-connection on p : N → M over E we will mean a smooth
horizontal lift map H giving for each u ∈ N a linear mapping Hu : Ep(u) → TuN
which is a right inverse to the derivative Tup : TuN → Tp(u)M of p at u. For such
a semi-connection let Hu denote the image of Hu; this is the horizontal subspace at
u. Let Fu be the sum of Hu with the vertical subspace KerTup and Πu : Fu → Hu

the projection. When E = TM we have a (non-linear) connection[8].
If we assume that σA has constant rank and so has image a subbundle E we

obtain a semi-connection over E characterised by the requirement

Hu ◦ σA
p(u) = σB(Tup)∗.

A semi-connection H over E determines a covariant differention ∇H in the E-
directions acting on smooth sections f : M → N of p. For this note that the
derivative Txf at a point x = p(u) of such a section maps Ex to Ff(x). Then, by

definition, ∇H
v := Txf(v) − Πf(x)Txf(v) ∈ KerTf(x)p, for all v ∈ Ex. Also any

curve σ in M with σ̇(t) ∈ Eσ(t) for all t has a unique maximal horizontal lift σ̃ with

σ(0) any given point above σ(0) and ˙̃σ(t) ∈ Hσ̃(t) for all t for which it is defined.
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Using Stratonovich differentials there is the corresponding result for continuous
semi-martingales in M .

To lift an A-diffusion by this ”corresponding result” we need to assume that A
is cohesive or along E. There are various possible definitions of this; one is that
A has a smooth Hormander form representation

A = 1/2
∑

j

LXjLXj + LA

where LA denotes Lie differentiation along the vector field A, and Xj , j = 1, ..., m
and A are vector fields taking values in E.

Given this cohesiveness there is a canonical decomposition of B into the sum of
a ”horizontal ” and a ”vertical” diffusion generator. If p : N → M is a principal
bundle and B is equivariant then so is this decomposition and there is a skew prod-
uct representation of B-diffusions. In this case the semi-connection is equivariant,
and is sometimes called a ”partial connection” or ”connection over E”.
C.Stochastic flows and diffusion of tensors. This theory is applied to stochastic
flows to obtain a skew product decomposition of the flow (given a cohesive genera-
tor), and a representation of the conditioned flow given the one point motion from
a chosen point of M . Also a stochastic flow for A determines a diffusion of sections
of tensor bundles giving a semi-group on tensor fields generated by the right hand
side of our Hormander form for A using the usual extension of lie differentiation
to tensor fields. Our techniques give an expression for the ’filtering out of the
redundant noise’ from these diffusions, generalising results in [6] and [5].
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One point extensions of general Markov processes

Masatoshi Fukushima

The ’boundary problem of Markov processes’ was one of the popular subjects
in probability theory in the 1960’s ([1],[2],[3],[4], [5], [6]). Later developements
in the theory of Markov processes, especially the excursion theory based on exit
systems [8] and the time change theory based on Dirichlet forms [9] were rooted
in the study of the boundary problem. In a series of joint works with H.Tanaka,
Z.-Q.Chen and J.Ying ([11],[13],[14], [15]), I have been reconsidering those issues
left open in the boundary problem by using the well developed current theory of
Markov processes.

In [11] and [15], we are concerned with the one point extensions of general
Markov processes originated in the seminal work of Itô [6] supplemented by Meyer
[7]. Itô only gave an analysis and left open the synthesis, namely, construction
problem starting with the minimal process. A motivation of Itô’s work was in
his study with McKean [1] on the Brownian motion on the half line, while FT
was motivated by the extension of the absorbing Brownian motion on the multi-
dimensional bounded domain to its one point compactification presented in [4] in
terms of the associated Sobolev space.

I shall talk about [15] which extends [11] from the symmetric diffusion process
to the pair of standard processes in weak duality.

More specifically, Let a be a non-isolated point of a topological space E. Suppose

we are given standard processes X0 and X̂0 on E0 = E \ {a} in weak duality
with respect to a σ-finite measure m on E0 which are of no killing inside E0 but

approachable to a. We first show that their right process extensions X and X̂ to E
admitting no sojourn at a and keeping the weak duality are uniquely determined

by the approaching probabilities of X0, X̂0 and m up to a non-negative constant δ0

representing the killing rate of X at a. We then construct, starting from X0, such
X by piecing together returning excursions around a and a possible non-returning
excursion including the instant killing. This extends [11] which treats the case
where X0, X are m-symmetric diffusions and X admits no sojourn nor killing at
a. While the Dirichlet form theory plays a role in [11], the recent studies of exit
systems in [12] and [14] replace the role. As typical examples, the cases where
X0 is the censored symmetric stable process studied in [10] and a non-symmetric
diffusion process on an Euclidean domain are presented.
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Quasi-invariance of the Wiener Measure on the Loop Space of a
Riemannian Manifold

Elton Hsu

Let M be a compact Riemannian manifold and Px(M) the space of continuous
functions γ : [0, 1] → M such that γ(0) = x. The standard filtration of Borel
σ-fields is denoted by {Bs, 0 ≤ s ≤ 1}. Let Px be the law of Brownian motion on
M from x ∈ M and Pxy be the law of Brownian bridge on M from x to y with time
length [0, 1]. We know that these two measures are mutually equivalent on Bs for
all s < 1. The measure Pxy is concentrated on Pxy(M) = {γ ∈ Px(M) : γ(1) = y}.

Introduce the Cameron-Martin norm

|h|H =

√∫ 1

0

|ḣs|2ds

and the Cameron-Martin space

H0 = {h ∈ P (Rn) : h(0) = h(1) = 0 and |h|H < ∞} .

Consider the vector field Dh defined on P (M):

Dh(γ)s = U(γ)shs,
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where U(γ) is the horizontal lift of γ starting from a fixed frame ux at x. It has been
shown ([1] and [2]) that the vector field Dh generates a flow {ζt, t ∈ R} on Pxy(M)
and the Wiener measure Pxy is quasi-invariant under the flow. More precisely, the
shifted Wiener measure P t

xy = Pxy ◦ ζ−t is mutually absolutely continuous with
Pxy. In this note, we outline a proof of this result which is simpler than the previous
approaches. Details will be found in the forthcoming paper [3] coauthored with
Fuzhou Gong.

For s < 1, the two measures Pt
xy and Pxy are equivalent on Bs. The Radon-

Nikodym derivative

ls =
dP−t

xy

dPxy

∣∣∣∣
Bs

, 0 ≤ s < 1

is an exponential martingale. Hence, it must have the form ls = ezs , where

zs =

∫ s

0

〈βτ , dbτ 〉 −
1

2

∫ s

0

|βτ |2dτ.

Here bs is a euclidean Brownian motion (the martingale part of the stochastic
development ws of γs. The process βs can be expressed as

βs =
(
Ot

s

)∗
c(1 − s, ut

s) − c(1 − s, us) +
(
Ot

s

)∗
At

s,

where

c(1 − s, us) = u−1
s ∇ ln pM (1 − s, γs, y)

with pM (·, ·, ·) being the heat kernel of M and ut
s being the horizontal lift of

γt
s = ζ(γ)t

s starting from a fixed frame u0. The processes {Ot
s, At

s} are given in
terms of the flow ζt as follows. Let J : P0(R

n) → Px(M) be the Itô map (stochastic
development) and wt = J−1γt : Px(M) → P0(R

n) the image of the flow in the flat
path space P0(R

n). It can be uniquely written in the form

dwt
s = Ot

s dws + At
sds,

where Ot
s ∈ O(n), the orthogonal group. The flow equation for the vector field Dh

is equivalent to a flow equation for wt (or equivalently, for {Ot, At}):

Ot = I −
∫ t

0

K(wλ)Oλdλ, At = Ot

∫ t

0

(
Oλ

)−1
{

ḣ − 1

2
Ricuλh

}
dλ.

Here Ricu is the scalarized Ricci transform at a frame u ∈ O(M) and Kh(wt)s ∈
o(n) (antisymmetric matrices). We do not need to K(wt)s explicitly save for the
fact that K(wt)s is the vertical component of d (ut

s) /dt.

The mutual absolute continuity of P−t
xy and Pxy on B1 is equivalent to the

uniform integrability of the exponential martingale ls. Writing l1 = ezsez1−zs and
using Jensen’s inequality we have

l−1
s Exy [l1|Bs] = Exy

[
ez1−zs

∣∣Bs

]
≥ eExy[z1−zs|Bs].

Suppose that we can find a constant C independent of 0 ≤ s < 1 such that

(1) Exy [z1 − zs|Bs] ≥ −C.
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Then 0 ≤ ls ≤ eC
Exy {l1|Bs}, which immediately implies the uniform integrability

of {ls, 0 ≤ s < 1}. Therefore it is enough to prove (1), or

(2) Exy

[∫ 1

s

|βt
τ |2dτ

∣∣∣∣Bs

]
≤ C.

the process βs has three terms. The last term is easy to deal with because
∣∣O−t∗A−t

s

∣∣ ≤ C |t|
{
|hs| + |ḣs|

}
.

The difference which forms the first two terms is the integral from 0 to t of the
derivative of Ot∗

s c(1 − s, ut
s) (with respect to t). From the flow equation we have

d

dt
Ot∗

s = Ot∗
s K(wt)s.

Here we have used the antisymmetry of K(wt)s. As for the derivative dut/dt, its
horizontal component is ut

shs by the definition of horizontal lift, and its vertical
component is K(wt)s, as we have pointed out before. Therefore the derivative of
c(1 − s, ut

s) with respect to t is equal to
〈(

ut
s

)−1 ∇2 ln pM (1 − s, γt
s, y), hs

〉
− K(wt)s c(1 − s, ut

s),

the first term on the right side being just the matrix multiplication. Now, in the
derivative of Ot∗

s c(1 − s, ut
s) with respect to t, the two terms involving K(wt)s

cancel each other and we obtain simply

d

dt

{
Ot∗

s c(1 − s, ut
s)

}
= Ot∗

s

〈(
ut

s

)−1 ∇2 ln pM (1 − s, γt
s, y), hs

〉
.

This shows that the inequality (2) we wanted to prove is implied by

Exy

{∫ 1

s

|∇2 ln pM (1 − s, γt
s, y)|2|hτ |2 dτ

}
≤ C.

Using the estimate

∣∣∇k ln pM (s, z1, z2)
∣∣ ≤ Ck

[
1√
s

+
dM (z1, z2)

s

]k

.

we see that the left side is bounded by

Exy

∫ 1

0

[
dM (γt

s, y)4

(1 − s)4
+

1

(1 − s)2

]
|hs|2 ds.

We have the bound

Exy, dM (γt
s, y)4 ≤ C

(
1 + |h|4H |t|4

)
(1 − s)2.

It follows that there is a constant C (depending on t and |h|H ) such that

Exy

∫ 1

0

[
dM (γt

s, y)4

(1 − s)4
+

1

(1 − s)2

]
|hs|2 ds ≤ C

∫ 1

0

∣∣∣∣
hs

1 − s

∣∣∣∣
2

ds ≤ 4C|h|H .
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Jump processes, L-harmonic functions, continuity estimates

Moritz Kassmann

(joint work with R. Husseini and M. Barlow/R. Bass/Z.-Q. Chen)

Given a family of Lévy measures µ(x, dh) we study the following set of questions:

• When can one construct corrsponding jump processes in R
d ?

• What can one say about heat kernels ?
• Are harmonic functions with respect to theses processes regular ?
• Does the generator extend to the generator of a Feller semi-group ?

This program is not new at all, it is rather natural to raise the questions above
and there are several publications on this subject. One way to summarize existing
results is: As long as x 7→ µ(x, dh) is smooth and A 7→ µ(x, A) is asymptotically
rotational invariant and non-degenerate, one can construct corresponding Feller
processes and harmonic functions are smooth.

In our presentation we concentrated on cases where these two assumptions
may fail. First, we explained what can happen in general situations. Assume
µ(x, dh) = n(x, h) dh and

c0

|h|d+α
≤ n(x, h) ≤ c1

|h|d+β
, n(x, h) = n(x + h,−h)(1)

where d is the space dimension and α, β ∈ (0, 2), α < β are two real numbers.
With the help of Dirichlet form techniques one can associate a strong Markov
process to µ(x, dh). Quite astonishing is the following result which we presented:

Theorem 14. [2] Under the above assumption (1) there are discontinuous L-
harmonic functions and the martingale problem for

Lu(x) = p. v.

∫ (
u(x + h) − u(x)

)
n(x, h) dh

is not well-posed.

In [1] we concentrate on continuity a-priori estimates for harmonic functions.
Hölder regularity of functions being harmonic w.r.t to diffusions or jump processes
has been an important object of studies for many years. The standard method
used to prove Hölder regularity in the general case goes back to Krylov and Safonov
(1979). At the heart of these techniques are exit time estimates of the following
type: There exists a c > 0 such that, given any starting point x, a small ball
B(x, r) and any measurable set A ⊂ B(x, r) not too small relative to the ball,
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the probability of hitting A before leaving B(x, r) the first time is bounded from
below by c.

Nonetheless often a much weaker uniform control on the modulus of continuity
of harmonic functions is sufficient. In the talk we presented continuity estimates
for a class of pure jump processes where the above exit time estimates do not
necessarily hold. In fact the probability of hitting A before leaving B(x, r) may
tend logarithmicly to 0 for r → 0, as can be illustrated by an example.

As an application a certain kind of uniqueness of the martingale problem is es-
tablished in [1]. Combining the results of [1] and [2] the problem of well-posedness
of the martingale problem for non-local operators is now much better understood
than it was before.

Preprints with references to other papers can be found at the web page:
http://www.iam.uni-bonn.de/∼kassmann
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Resistance forms and heat kernel estimates

Jun Kigami

The notion of resistance form was introduced to characterize a space where
every pair of points has a finite resistance. Let (E ,F) be a resistance form on X .
Under mild assumptions, for any nonempty compact subset B of X ,we have the
B-Green function gB : X × X → [0,∞) which satisfies (GB1) and (GB2):
(GF1) gB(x, y) = gB(y, x) and gB(x, y) = 0 for any y ∈ B.
(GF2) Define gx

B(y) = gB(x, y), then gx
B ∈ F and

E(gx
B, u) = u(x)

for any u ∈ F with u|B ≡ 0.
If (E ,F) is a local regular Dirichlet form on L2(X, µ) as well, we may associate

a diffusion process and have

Ex(τB) =

∫

X

gB(x, y)µ(dy),

where τB = inf{t|Xt ∈ B}.
Applying those facts, we will sutdy an asymptotic behavior of the associated

heat kernel. In particular, desired heat kernel estimates are the sub-Gaussian
upper estimate (1) and the near diagonal lower sub-Gaussian estimate (2) below.

The upper sub-Gaussian estimate:

(1) p(t, x, y) ≤ c1

V (x, t1/β)
exp

(
− c2

(d(x, y)β

t

) 1
β−1

)
,
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where V (x, r) = µ({y|d(x, y) < r}).

The near diagonal lower sub-Gaussian estimate:

(2)
c

V (x, t1/β)
≤ p(t, x, y)

if d(x, y) ≤ ǫ.
We will try to find a “good distance” d under which we have (1) and (2)

Theorem Let (E ,F) be a resistance form on X . Assume that (E ,F) is a local
regular Dirichlet form on L2(X, µ). Let p(t, x, y) be the heat kernel associated
with (E ,F) and µ. Then the following two conditions (A) and (B) are equivalent.
(A) µ has the volume doubling property with respect to the resistance metric
associated with the resistance form (E ,F).
(B) There exists a distance d and β > 1 such that d is quasisymmtric to the
resistance metric and (1) and (2) hold.

A logarithmic Sobolev form of the Li-Yau inequality

M. Ledoux

(joint work with D. Bakry)

This is a summary of a paper to appear in Revista Mat. Iberoamericana.
We present a finite dimensional version of the logarithmic Sobolev inequality

for heat kernel measures of non-negatively curved diffusion operators that con-
tains and improves upon the Li-Yau parabolic inequality in Riemannian manifolds
with non-negative Ricci curvature. This new inequality is of interest already in
Euclidean space for the standard Gaussian measure, and provides a finite dimen-
sional extension of the classical logarithmic Sobolev inequality. The result may
also be seen as an extended version of the semigroup commutation properties un-
der curvature conditions, and the functional inequality is actually equivalent to
the curvature-dimension condition. The proof relies on the classical Bakry-Emery
semigroup argument which is improved by the dimension hypothesis together with
a suitable integration of the resulting differential inequality. Partial results under
arbitrary curvature conditions are also discussed, although the optimal form seems
difficult to obtain. The main result may be applied, as time goes to infinity, to
reach, in this setting, optimal Euclidean logarithmic Sobolev inequalities for the in-
variant measure. Exponential Laplace differential inequalities through the Herbst
argument furthermore yield diameter bounds and dimensional estimates on the
heat kernel volume of balls.
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On the range of random walks on percolation clusters

Pierre Mathieu

Let

N(t) = #{X(s) ; 0 ≤ s ≤ t}
denote the range up to time t of a nearest neighbor path in the lattice Zd, say
(X(s), s ≥ 0).

When (X(t), t ≥ 0) performs a simple symmetric random walk on Zd, the
asymptotics of the Laplace transform of N(t) are given by the:

Theorem 15. (M.D. Donsker, S.R.S. Varadhan, [3])
Let E denote the expectation with respect to the law of the simple symmetric ran-
dom walk on Zd. Let α ∈]0, 1[. As t tends to +∞,

t−d/(2+d) log E(αN(t))

converges to some limit: cd(α) ∈] −∞, 0[.

This abstract reports on our attempt to obtain a similar bound for the sym-
metric random walk on a percolation cluster.

Random walks on percolation clusters

Consider super critical Bernoulli bond percolation in Zd: let Ed be the set of
edges of the grid Zd. Let Ω be the set of sub-graphs of (Zd, Ed). We identify
Ω with the product space {0, 1}Ed and define Q to be the product Bernouilli(p)
measure on Ω.
We assume that p > pc, where pc is the critical probability for the appearance
of an infinite connected component in ω, see [5]. Thus Q.a.s. the graph ω has a
unique infinite connected component, the so-called infinite cluster, that we will
denote with C(ω). Finally define

Q0(.) = Q(.|0 ∈ C(ω)) .

For a given ω ∈ Ω such that 0 ∈ C(ω), let Pω be the law of the simple
symmetric random walk on C(ω) started at point 0. We use the notation Eω

for the expectation with respect to Pω.

Theorem 16. (C. Rau, in preparation)
Let α ∈]0, 1[. There exist constants C1 = C1(α, p, d) and C2 = C2(α, p, d) such
that Q0 almost surely, for large enough times t one has

e−C1t−d/(2+d) ≤ Eω(αN(t)) ≤ e−C2t−d/(2+d)

.

Comparing with Theorem 15, one notices that the order of magnitude of the
Laplace transform of N(t) is the same as for the random walk on the full grid Zd.

We do not know wether t−d/(2+d) log Eω(αN(t)) actually has a limit or not.
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Some indication on the proof: The lower bound is easy to prove. Below,
we only discuss the upper bound when α = 1/2.

Following [4], we use the interpretation of the Laplace transform of N(t) as a
return probability for a Markov chain on the wreath product C(ω) ≀ {0, 1}, say
Eω[2−N(t)1X(t)=0] = Pω[Z(t) = 0]. To get an upper bound on Pω[Z(t) = 0],
we first obtain a sharp control on the isoperimetric profile of the cluster C(ω) in
the spirit of [6], and then deduce isoperimetric bounds on the wreath product as
in [4]. Using general results on the link between isoperimetric inequalities, Nash
inequalities and return probabilities as in [2], we can conclude the proof.
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Sharp decay rates for the fastest conservative diffusions

Robert J. McCann

In many diffusive settings, initial disturbances will gradually disappear and all but
their crudest features — such as size and location — will eventually be forgotten.
Quantifying the rate at which this information is lost is sometimes a question of
central interest. Joint works with Yong Jung Kim (KAIST) and Dejan Slepcev
(UCLA) address this issue for the conservative nonlinearities in a model problem
known as the fast diffusion equation

ut = ∆(um), (n − 2)+/n < m < 1 u, t ≥ 0, x ∈ Rn,

which governs the decay of any integrable, compactly supported initial density
towards a characteristically spreading self-similar profile. For other values of the
parameter m, this equation has been used to model heat transport, population
spreading, fluid seepage, curvature flows, and avalanches in sandpiles.

For the fastest conservative nonlinearities m ≤ n/(n+2), we develop a potential
theoretic comparison technique with Kim which establishes the sharp conjectured
power law rate of decay 1/t uniformly in relative error, and in weaker norms such
as L1(Rn). For nonlinearities m ≥ (n − 1)/n we attain nearly the same L1(Rn)
rate as a second order asymptotic after centering the mass of the solution, using
an entropy dissipation approach with Slepcev. This leaves a gap in dimensions
n ≥ 3.
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Besov Spaces on Fractals and Conformal Geometry

Hervé Pajot

The main goal of this talk is to explain how to define classical tools of analysis
(like Besov spaces or Poincaré inequalities) in singular spaces and how to use them
to study some problems in conformal geometry.

Let (X, d, µ) be a metric measure space. Assume that µ is Q-regular, that is
there exists C > 0 such that

C−1RQ ≤ µ(B(x, R)) ≤ CRQ

whenever x ∈ X and R ∈ (0, diamX). Note that Q is the Hausdorff dimension
of (X, d). We will say that d is Q-regular if the Hausdorff measure of d is Q-regular.

For any p ≥ 1, the Besov p-norm of the function u : X → R is given by

||u||p =

(∫

X

∫

X

|u(x) − u(y)|p
d(x, y)2Q

dµ(x)dµ(y)

)1/p

.

Given two functions u and v, we write u ∼ v if u−v is constant almost everywhere
(with respect to µ). For p ≥ 1, we define the Besov space Bp(d) by

Bp(d) = {u : X → R in Lp(µ); ||u||p < +∞}/ ∼ .

In the Euclidean case of Rn, Bp(deucl) is the classical Besov space B
n/p
p,p (Rn) (if

n/p < 1).

Recall that an homeomorphism f : (Z1, d1) → (Z2, d2) is quasisymmetric (or
shortly QS) if there exists an increasing homeomorphism φ : R

+ → R
+ such that

d1(x, y) ≤ td1(x, z) =⇒ d2(f(x), f(y)) ≤ φ(t)d2(f(x), f(z))

whenever x, y, z ∈ Z1, t ∈ (0, +∞). The conformal gauge of the metric space
(X, d) is defined by

J (X, d) = {δ distance on X ; Id : (X, d) → (X, δ) is QS}.
The conformal dimension of (X, d) is

Cdim(X, d) = inf{Hdim(X, δ); δ ∈ J (X, d)}.
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In [1], first groups of lp-cohomology associated to the conformal gauge J (X, d)
are construted (if (X, d) is also compact and uniformly perfect). They are denoted
by lpH

1(J (x, d)). The critical exponent of lp cohomology is given by

p(J (X, d)) = inf{p ∈ [1, +∞); lpH
1(J (x, d)) 6= {0}}.

It turns out that lpH
1(J (x, d)) and Bp(d) are isomorphic as Banach spaces. Hence,

p(J (X, d)) = inf{p ∈ [1, +∞), Bp(d) 6= {0}}.
The conformal dimension and the critical exponent of lp cohomology are invari-

ant under QS homeomorphisms. Are they equal in general ?

Theorem [1]. Let (X, d) be a compact, uniformly perfect metric space. Assume
that there exists δ ∈ J (x, d) such that δ is Q0-regular and admits a (1, Q0)-
Poincaré inequality (see the definition below) for some Q0 > 1. Then,

Cdim(X, d) = p(J (X, d)).

In fact, by a result of Tyson [3], Q0 = Cdim(X, d). Observe that Lipschitz func-
tions are in Bp(d) for p > Q0 and hence p(J (X, d) ≤ Q0. To get the reverse
inequality, we prove that any function in Bp(d) with p < Q0 is constant almost
everywhere by using the Poincaré inequality.

Let p ≥ 1. We say that (X, d, µ) supports a (1, p) Poincaré inequality if there
exists a constant Cp > 0 such that

1

µX(B)

∫

B

|u − uB|dµX ≤ CpdiamB

(
1

µX(B)

∫

B

ρpdµX

) 1
p

whenever
- B is a open ball in X ,
- u : X → R is continuous and bounded in B,
- ρ : X → R+ is an upper gradient of u in B,
and where uB denotes the mean value of u on B. Recall that ρ : X → R+ is
an upper gradient of u in B if for any x ∈ X , any y ∈ X , any rectifiable curve

γ in X connecting x to y, we have |u(x) − u(y)| ≤
∫

γ

ρ. We say that d admits

a (1, p)-Poincaré if (X, d, µ) (where µ is the Hausdorff mesure of d) supports a
(1, p)-Poincaré inequality in the previous sense.

What happens in fractals, for instance for the Sierpinski carpet (SC) and the
Sierpinski gasket (SG) ?

Hdim(SC) = log(3)/ log(2) Cdim(SC) = 1 p(SC) =???,

Hdim(SG) = log(8)/ log(3) Cdim(SC) =??? p(SC) =???.

In fact, the conformal dimension of other pcf sets in the sense of Kigami (like
the Sierpinski gasket) is also one (see [4]. Note that, by standard arguments, we
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get 1 + log(2)/ log(3) ≤ Hdim(SC) < log(8)/ log(3). A good general reference
concerning conformal dimension and related topics is the recent book of Heinonen
[2].
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Stochastic Generalized Porous Media Equations

M. Röckner

(joint work with J.-G. Ren, F.-Y. Wang)

Recall that for ∆, the Laplace operator on Rd, the following differential equation

dXt

dt
= ∆

(
|Xt|r signXt

)

is called the porous medium equation if r > 1 and the fast diffusion equation if r ∈
(0, 1). A special feature of this equation is that the solution decays algebraically
fast in t when r > 1 and decays to zero at finite time when r ∈ (0, 1). For
historical remarks and recent progress on this equation, we refer to [2, 1, 11] and
the references therein.

In recent years, the stochastic version of the porous medium equation has been
studied intensively, see [8] for the existence, uniqueness and long-time behavior of
some stochastic generalized porous media equations with finite reference measures,
[12] for the stochastic porous media equation on Rd where the reference (Lebesgue)
measure is infinite and [3, 7] for the analysis of the corresponding Kolmogorov
equations. See also [19] for large deviation results for a class of generalized porous
media equations.

The basic motivation of this work is to study, for example, the following sto-
chastic porous media and fast diffusion equation:

(1) dXt = L
( l∑

i=1

αi|Xt|ri signXt

)
+ B(t, Xt) dWt ,

where L is a negative definite self-adjoint operator on L2(m) for some σ-finite
measure m, Wt is the Brownian motion on a reference Hilbert space, and B a
properly defined linear operator from this Hilbert space to the state space of Xt.
Here, l ∈ N and ri, αi > 0, i = 1, . . . , l, are fixed numbers. If ri < 1 and rj > 1 for
some i, j ≤ l, we call this equation the stochastic porous media and fast diffusion
equation. As a consequence of our main result, this equation has a unique solution
as soon as B satisfies a Lipschitz type condition.
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To solve such an equation, we first establish a general result for “monotone”
stochastic equations, which extends the corresponding one of Krylov and Rozovskii
([13, Theorems II.2.1 and II.2.2]). As a direct application, we are able to solve

(1) with
∑l

i=1 αi|Xt|ri sign(Xt) replaced by Ψ(t, Xt) for a more general time–
dependent function Ψ comparable with an N -function. The Orlicz space (cf. [16])
determined by N plays an essential role in our analysis.
Acknowledgement. This work has been supported in part by the DFG through
the Forschergruppe “Spectral Analysis, Asymptotic Distributions and Stochastic
Dynamics”, the BiBoS Research Centre, NNSFC(10121101) and RFDP.
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Variational convergence over metric spaces

Takashi Shioya

(joint work with K. Kuwae)

The talk is on the joint work [7, 8] with K. Kuwae.
Let Mi → M and Yi → Y (i = 1, 2, 3, . . . ) be two pointed Gromov-Hausdorff

convergent sequences of proper metric spaces, where ‘proper ’ means that any
bounded subset is relatively compact, and let us give measures on Mi which
converge to a measure on M with respect to the measured Gromov-Hausdorff
topology. We are interested in the convergence and asymptotic behavior of maps
ui : Mi → Yi and also energy functionals Ei defined on a family of maps from
Mi → Yi. Note that there are several attempts to define natural energy function-
als on the mapping space from M to Y by the measured metric structure of M and
the metric structure of Y . We introduce a natural definition of the Lp-convergence
of ui : Mi → Yi to u : M → Y , p ≥ 1, and establish a general theory for energy
functionals Ei by extending the theory of variational convergences, mainly studied
by Mosco [9]. Mosco introduced the asymptotic compactness of energy functionals
{Ei}, which is a generalization of the Rellich compactness. The asymptotic com-
pactness is useful to obtain the convergence of energy minimizers, i.e., harmonic
maps, and also to investigate spectral properties in the linear case. Under a uni-
form bound of Poincaré constants and some property of the metric on M , we prove
the asymptotic compactness of {Ei}. We focus on a Γ-convergence with the asymp-
totic compactness, say compact convergence. If {Ei} is asymptotically compact, it
has a compact convergent subsequence. We prove that the compact convergence is
equivalent to the Gromov-Hausdorff convergence of the energy-sublevel sets, which
is a geometric interpretation of compact convergence. This is connected with Gro-
mov’s study of spectral concentration, Section 3 1

2 .57 of [1]. We also prove that the
compact convergence of Ei is equivalent to a convergence of associated resolvents,
provided that Yi are all CAT (0)-spaces and Ei are lower semi-continuous convex
functionals. Such the resolvent was defined by Jost [2] using the Moreau-Yosida
approximation. As applications of our theory, we study the approximating energy
functional and its spectral property. We also obtain the compactness of energy
functionals if Mi are Riemannian manifolds with a lower bound of Ricci curvature.
In the case where Ei are symmetric quadratic forms on L2-spaces, there are some
applications of our theory to a homogenization problem, [11], and convergence of
Dirichlet forms, [3, 4, 10], including finite-dimensional approximation problems,
[5, 6].
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The principal eigenvalue for time-changed processes and applications

Masayoshi Takeda

1. Gaugeability for Feynman-Kac Functionals

Chen [1] and Takeda [3] showed that the gaugeability, that is, the integrabil-
ity of Feynman-Kac functionals, or the subcriticality of Schrödinger operators is
equivalent to that the principal eigenvalue of time changed process is greater than
one (Theorem 17 below). The objective of my talk is to give two applications of
this result.

Let M be a non-compact, complete Riemannian manifold and m the volume.
Let M = (Px, Bt) be the Brownian motion on M . For a domain D ⊂ M , let MD be
the absorbing Brownian motion on D. We assume that MD is transient. Chen [1]
generalized the notion of Green-tightness for general transient Markov processes
and introduced a new Kato class. We denote by SD

∞ this class associated with
MD. For µ ∈ SD

∞, define

λ(µ; D) = inf

{
1

2

∫

D

(∇u,∇v) dm : u ∈ C∞
0 (D),

∫

D

u2(x)µ(dx) = 1

}
.

Then λ(µ; D) is the principal eigenvalue of the time-changed process of MD by Aµ
t .

Here Aµ
t is the positive continuous additive functional in the Revus correspondence

with µ. Let pµ,D
t (x, y) be the integral kernel of Feynman-Kac semigroup:

pµ,D
t f(x) := Ex[exp(Aµ

t )f(Bt); t < τD] =

∫

D

pµ,D
t (x, y)f(y)dy
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(τD = inf{t > 0 : Bt 6∈ D}) and Gµ,D(x, y) :=
∫ ∞
0 pµ,D

t (x, y)dt.@

Theorem 17. ([1],[3]) Let µ ∈ SD
∞. Then the following statements are equivalent:

(1) (i)] (gaugeability) sup
x∈D

Ex[eAµ
τD ] < ∞;

(ii) (subcriticality) Gµ,D(x, y) < ∞ for x, y ∈ D, x 6= y;
(iii) λ(µ; D) > 1.

2. Applications of Theorem 17

(i) Let B̄ = (P̄x, B̄t) be a branching Brownian motion with branching rate
k and branching mechanism {pn(x)}n≥2: P̄x[T > t|σ(B)] = exp(−Ak

t ) (T
is the first splitting time),

∑∞
n=2 pn(x) = 1. Set Q(x) =

∑
n≥2 npn(x) and

µ(dx) = (Q(x) − 1)k(dx). We assume that supx∈M Q(x) < ∞.

Theorem 18. ([4]) Let K be a closed set with Cap(K) > 0 and let µ ∈ SD
∞,

D = M \ K. Then

λ(µ; D) > 1 ⇐⇒ sup
x∈D

Ēx[NK ] < ∞.

Here NK is the number of branches hitting K.

R.Z. Khas’minskii gave a sufficient condition for gaugeability known as Khas’-
minskii lemma, and applied it for showing the finiteness of the expectation of NK .
To prove Theorem 18, we show that for µ ∈ SD

∞

sup
x∈D

Ex[exp(Aµ
τD

)] < ∞ ⇐⇒ sup
x∈D

Ex[exp(Aµ
τD

); τD < ∞] < ∞.

Then the identity
Ēx[NK ] = Ex[exp(Aµ

τD
); τD < ∞]

leads us to Theorem 18.

(ii) Let d(x, y) be the distance. Let p(t, x, y) be the heat kernel. Suppose that
it satisfies the Gaussian lower and upper bounds (Li-Yau estimate): for any
x, y ∈ M and t > 0,

C1 exp
(
−c1

d2(x,y)
t

)

m(B(x,
√

t))
≤ p(t, x, y) ≤

C2 exp
(
−c2

d2(x,y)
t

)

m(B(x,
√

t))

(C1, c1, C2, c2 are positive constants. B(x, r) = {y ∈ M : d(x, y) < r}). Let
pµ(t, x, y) be the heat kernel of the Schrödinger operator, 1

2∆ + µ.

Theorem 19. ([5]) Let µ ∈ SM
∞ . Then pµ(t, x, y) satisfies the Li-Yau estimate if

and only if λ(µ; M) > 1.

Example: Let M = Rd (d ≥ 3) and µ = σr the surface measure of {|x| = r}.
Then

λ(σr ; R
d) =

d − 2

2r
.

Hence pσr (t, x, y) satisfies the Gaussian estimate, if and only if r < d−2
2 .
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Remark 1. Let d = 3 and λ(µ; R3) = 1, for example, µ = σ1/2. Then

pµ(t, x, y) ≃ C1

t3/2

(
1 +

√
t

< x >

) (
1 +

√
t

< y >

)
exp

(
−c1

|x − y|2
t

)

(< x >:= 1 + |x|) (cf. [2, Theorem 10.15]).

Remark 2. Let µ = µ+ − µ− be a signed measures such that µ+ ∈ SM
∞ and

supx∈M Gµ−(x) < ∞. Then the Li-Yau estimate of the heat kernel pµ(t, x, y) is
equivalent to

inf{E(u, u) +

∫

M

u2dµ− : u ∈ C∞
0 (M),

∫

M

u2dµ+ = 1} > 1.

For µ = −µ−, the result above is shown in [2, Theorem 10.5].

Remark 3. Theorem 19 can be extended to the symmetric α-stable process (d >

α). Let µ ∈ SR
d

∞ with
∫

Rd

∫
Rd |x − y|α−ddµ(x)dµ(y) < ∞. Then the heat kernel of

−1

2
(−∆)α/2 + µ satisfies

C1

(
1

td/α
∧ t

|x − y|d+α

)
≤ pµ(t, x, y) ≤ C2

(
1

td/α
∧ t

|x − y|d+α

)
,

if and only if

λ(µ) = inf{Eα(u, u) : u ∈ C∞
0 (Rd),

∫

Rd

u2dµ = 1} > 1.

Here

E(α)(u, u) = K(α, d)

∫∫

Rd×Rd\d

(u(x) − u(y))2

|x − y|d+α
dxdy.
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Brownian motion on Jordan curves and stochastic calculus of
variations on the diffeomorphism group of the circle

Anton Thalmaier

(joint work with Hélène Airault and Paul Malliavin)

We report on recent progress of constructing unitarizing probability measures
for the representation of the Virasoro algebra V , using methods of Stochastic
Analysis.

Denote by Diff(S1) the group of orientation preserving diffeomorphisms of the
circle S1 and by diff(S1) its Lie algebra. With the identification diff(S1) ∼=
C∞(S1; R) the Lie bracket takes the form [u, v] = uv̇ − u̇v. We are interested
in central extensions of Diff(S1) and diff(S1), the Virasoro group, resp., Virasoro
algebra. In explicit terms the Virasoro algebra is given (modulo equivalence) by

V ≡ Vc = R ⊕ diff(S1)

with the Lie bracket [sκ + u, tκ + v] = c
12 ω(u, v)κ + [u, v] (κ central element ,

c > 0 central charge), where ω an antisymmetric bilinear form satisfying the
cocycle condition ω([u, v], w)+ω([v, w], u)+ω([w, u], v) = 0. Such forms have been
classified by Gelfand-Fuks and are modulo the choice of constants given by the
fundamental cocycle (1.2.1) [2]. There are two well-known representations of V :

• on the space U∞ of univalent functions on the disk
• on the Sato Grassmannian via an embedding of Diff(S1) into Sp(∞).

For both the diffeomorphism group Diff(S1) of the circle S1 is a key object [2].

Brownian motion on Diff(S1). Denote by H ⊂ Diff(S1) the restrictions to S1

of the Poincaré group of homographic transformations. The Lie algebra of H is
su(1, 1) and generated by the vector fields cos θ, sin θ, 1.

Theorem 20 ([3]). There exists a unique semi-Hilbertian metric on diff(S1) which
is invariant under the adjoint action of su(1, 1).

Let Diff(S1)/S1 be the diffeomorphisms of S1 which fix a point on the circle
and let diff0(S

1) = {u ∈ diff(S1) :
∫

S1 u(θ) dθ = 0}. Developing u ∈ diff0(S
1)

in terms of a Fourier series u(θ) =
∑

k≥1(ak cos kθ + bk sin kθ), let J u(θ) =∑
k≥1(−ak sin kθ + bk cos kθ). Then J 2 = − id and J defines an almost complex

structure on diff0(S
1) which is integrable. The Kähler metric on diff0(S

1) is

‖u‖2 := ω(u,J u) =
∑
k≥1

α2
k (a2

k + b2
k), αk = (k3 − k)1/2.

The Lie subalgebra of diff(S1) generated by 1, sin, cos is su(1, 1), and

diff(S1)/su(1, 1) =
{
θ 7→

∑
k≥2

(ak cos kθ + bk sin kθ)
}

=̂ H3/2(S1).

Brownian motion on the universal Teichmüller space Diff(S1)/ SU(1, 1), with re-
spect to the H3/2 metric, is constructed by exponentiating BM on diff(S1), see
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[10], [5], [8]. Let xk(t) be an independent sequence of scalar Brownian motions,
and let

e2k+1 := α−1
k sin kθ, e2k := α−1

k cos kθ, αk =
√

k3 − k, k > 1.

Brownian motion on Diff(S1) is formally a solution of the Stratonovich SDE

(∗) dgt =
∑
k>1

(
e2k(gt) ◦ dx2k(t) + e2k+1(gt) ◦ dx2k+1(t)

)
.

Solving (∗) via Abel regularization, we fix ρ > 0 and replace αk by
√

k3 − k/ρk.
For ρ < 1, the theory of stochastic flow of diffeomorphisms guarantees a unique
solution gρ which takes values in the smooth diffeomorphisms of S1.

Theorem 21 (Limiting case ρ = 1). As ρ ր 1, the limit gt(θ) of gρ
t (θ) exists

uniformly in θ and defines a solution of (∗), but (θ 7→ gρ
t (θ)) ∈ Homeo(S1) only.

Brownian motion on Jordan curves [4]. Let J = {Γ ⊂ C : Γ Jordan curve}.
To Γ ∈ J there is a continuous injective parametrization ϕ : S1 → C such that
ϕ(S1) = Γ. Holomorphic parametrizations are constructed as follows. Each Jor-
dan curve Γ splits the complex plane into two simply connected domains D+

Γ ,

D−
Γ . Let D be the open unit disc in C. By the Riemann mapping theorem, there

exist biholomorphic mappings F+ : D → D+
Γ and F− : D → D−

Γ (unique mod-

ulo SU(1, 1)) which by Caratheodory extend to homeomorphisms F+ : D̄ → D̄+
Γ ,

F− : D̄ → D̄−
Γ . Then F±|S1 parametrize Γ, and gΓ := (F+)−1 ◦ F−|S1 defines an

orientation preserving homeomorphism of S1. Now let J∞ := C∞ Jordan curves
.

Theorem 22 (Beurling-Ahlfors “conformal welding”). The mapping Γ 7→ gΓ from
J∞ to Diff(S1) is surjective and induces a canonical isomorphism

J∞ ∼= SU(1, 1)\Diff(S1)/ SU(1, 1).

To construct BM on Jordan curves from BM “on Diff(S1)” we have to factor-
ize gt as gt = (F+

t )−1 ◦ F−
t |S1. By conformal welding we first associate to the

regularized process t 7→ ρgt on Diff(S1) a process t 7→ ρΓt with values in J∞.

Theorem 23 (Brownian motion on Jordan curves [4]). As ρ ր 1, the regularized
process t 7→ ρΓt converges to a diffusion on the space of continuous Jordan curves.

Let U+ denote the space of univalent functions on D which are continuous
and injective on D̄, resp. U− the equivalent space of functions, univalent on
{z ∈ C : |z| > 1}, continuous and injective on {z ∈ C : |z| ≥ 1}.
Theorem 24 (Stochastic Sewing Theorem). There exist processes f+

t , f−
t , taking

values in U+, resp. in U−, such that gt = (f+
t )−1 ◦ f−

t |S1.

Brownian motion on univalent functions. Denote by U∞ the space of univa-
lent functions f ∈ C∞(D̄; C), normalized by f(0) = 0, f ′(0) = 1. To f ∈ U∞ we
associate the C∞ Jordan curve Γ = f(∂D) around the origin 0. The Riemann map-
ping theorem provides a biholomorphic map hf : {z ∈ C : |z| > 1} ∼−→ D−

Γ with

hf (∞) = ∞, which extends to a diffeomorphism hf : {z ∈ C : |z| ≥ 1} ∼−→ D̄−
Γ .
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By Kirillov (1982), the mapping U∞ ∋ f 7→ gf := (f−1◦hf )|S1 ∈ Diff(S1) induces
an isomorphism U∞ ∼= Diff(S1)/S1. In particular, U∞ is a homogeneous space
under the left action of Diff(S1).

Theorem 25 ([4]). As ρ ր 1, the regularized process with values in U∞ construc-
ted from the motion t 7→ ρgt on Diff(S1) converges to a diffusion t 7→ ft taking
values in the univalent functions on D which are continuous and injective on D̄.

Unitarizing measures. We read u ∈ diff(S1) as right-invariant vector field û on
Diff(S1), and consider the Neretin differential form Ω on Diff(S1), see (2.2.5) [2].

Theorem 26. Let M = U∞ = Diff(S1)/S1 and denote by H(M ) the space of
holomorphic functionals on M . For any c > 1, we get a representation ρ of Vc

on H(M ) by defining ρ(u)φ = 〈û, dφ〉 + c 〈û, Ω〉 and ρ(κ)φ = iφ c/12.

There exists a function K (“Kähler potential”) on Diff(S1), invariant under
SU(1, 1), such that ∂∂̄K = ω and 3 ∂̄K = Ω. Unitarizing measures should formally
be of the type “µγ = c0 exp(−c K) dvol” where dvol ≡ “volume measure” of the
infinite dimensional Kähler manifold ∆M1 := Diff(S1)/Γ with Γ = SU(1, 1)

Consider the horizontal Laplacian ∆H = 1
2

∑
(∂r

ek
)2 on Diff(S1) and the Laplace

Beltrami operator ∆M1 to the Kähler metric on M1. Let π be the projection from
Diff(S1) to M1. Then ∆H(φ ◦ π) = (∆M1φ) ◦ π. By solving an appropriate SDE,
a diffusion on M1 is constructed to the operator ∆M1 − c∇K ·∇ where ∇K ·∇ =∑

k(∂r
ek

K) ∂r
ek

. The vector field ∇K is called unitarizing drift.

Theorem 27. The Ornstein-Uhlenbeck process associated to ∆M1−c∇K ·∇ exists
on the group of Hölder homeomorphisms.

Theorem 28 (Airault-Malliavin-Thalmaier [3]). An unitarizing measure must be
supported by Homeo(S1)/Γ and will be an invariant measure for the Ornstein-
Uhlenbeck diffusion to ∆M1 − c∇K · ∇, where c is the central charge.

Theorem 29 (Bowick-Rajeev [6], Airault [1], Gordina-Lescot [9]).

Ricci(Diff(S1)/Γ) = −13/6 × identity.

Theorem 30. For γ > 13/6 an invariant measure exists and is unique.

The proof uses the method of “confinement under curvature positivity” [7].
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Optimal transport, Ricci curvature and synthetic geometry

Cedric Villani

In this survey talk, I reported on a recent direction of research mixing analysis,
geometry and probability theory. I first illustrated the power of monotone changes
of variables with an elementary proof of optimal Sobolev inequalities (joint works
with Cordero-Erausquin, Nazaret and Maggi). On a Riemannian manifold, there
is a “canonical” construction of monotone maps based on optimal transport theory
with cost equal to the square of the geodesic distance. This leads to the interplay
between optimal transport and Riemannian geometry, in particular Ricci curvature
lower bounds (Otto and I; Cordero-Erausquin, McCann and Schmuckenschläger).
These ideas were recently used by Lott and I on one hand, Sturm on the other
hand, to start the development of a synthetic theory of Ricci curvature lower
bounds on metric-measure length spaces: curvature-dimension bounds CD(K, N)
are defined in terms of the behavior of certain nonlinear convex functions of the
density along geodesics of optimal transport.

Much more information can be found in the following references:
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Local Poincare Inequality by Transportation

Max-K von Renesse

The sharp geometric properties of optimal mass transportation [2], [8] can be
used to develop a theory of singular metric measure spaces with generalized lower
Ricci curvature bounds [7], [3].

The notion of dimension-curvature bounds obtained in this framework are a
priori global in nature and do not allow for simple localization unless additionl
geodesic convexity of the respective domain is assumed.

In particular it is not at all obvious how to obtain local Poincare type inequali-
ties which are known as a crucial ingredient for regularity and heat kernel estimates
on metric measure spaces. For instance, the ad hoc technique of expanding the
global logarithmic Sobolev inequality gives only a global Poincare estimate in the
positive curvature case [3].

We show how to derive local Poincare inequalities from the related concept of
the qualitative Measure Contraction Property (MCP) introduced in [5] and which
is implied by the curvature-dimension bounds under weak additional assumptions.
The MCP condition is a substitute for the Jacobian estimate for the exponential
map in the smooth Riemannian case and it suffices to carry out the argument in
[1] in order to obtain the ’segment inequality’. The latter implies a weak (1,1)-
Poincare inequality in the sense of upper gradients.

The result is very similar to the work [6] which assumes a ’strong local doubling
condition’. A different approach to local Poincare inequalities based on the notion
of ’democratic coupling’ in the non negative curvature case is taken in [4].
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The spectrum of the averaging operator on a network

Wolfgang Woess

(joint work with Donald I. Cartwright)

Let X be a countable, connected graph with symmetric neighbourhood rela-
tion ∼ and without loops and multiple edges. We view it as a one-complex, where
each edge is a (homeomorphic) copy of the unit interval and edges are glued to-
gether at common endpoints (vertices). We write X0 for the vertex set and X1

for the one-skeleton of X . Every point in X1 is of the form (xy, t), the point at
distance t from x on the non-oriented edge [x, y] = [y, x], where 0 ≤ t ≤ 1, and
x, y ∈ X0, x ∼ y. Thus, (xy, 0) = x and (xy, t) = (yx, 1 − t). The discrete graph
metric d(·, ·) on the vertex set has a natural extension to X1. We equip each edge
[x, y] with a positive conductance

c(xy) = c(yx). On X0, we consider the discrete measure m
0, where m

0(x) =∑
y:y∼x c(xy), and assume that

m
0(x) < ∞ for all x ∈ X0. On X1, we introduce the

continuous weighted “Lebesgue” measure m
1 which at the point

(xy, t) is given by c(xy) · dt, if 0 < t < 1 (the vertex set has m
1-measure 0).

The pair (X, c), together with these measures, is called a network. On a network,
there are three natural operators.

The first is the transition operator P acting on functions g : X0 → C by

Pg(x) =
1

m0(x)

∑

y:y∼x

c(xy) g(y) .

The second is the Laplace operator ∆. It can be defined via Dirichlet form theory,
or by considering the space of all continuous functions F : X1 → C which are
twice differentiable in the interior of each edge and satisfy the Kirchhoff equations

∑

y:y∼x

c(xy)F ′(xy, 0+) = 0 for all x ∈ X0 .

We then have

∆F (xy, t) = F ′′(xy, t) ,

the 2nd derivative with respect to t ∈ (0, 1), and ∆ has to be closed suitably. See
e.g. Cattaneo [1], Solomyak [3] or Eells and Fuglede [2] for precise details.

The third operator, and main object of the talk, is the
averaging operator A over balls of radius 1. It acts on locally integrable func-

tions F : X1 → C by

AF (xy, t) =
1

m0(x)

∑

u∼x

c(xu)

∫ 1−t

0

F (xu, s) ds

+
1

m0(y)

∑

v∼y

c(yv)

∫ t

0

F (yv, s) ds .
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In the regular case, i.e., when m
0(·) is constant, this is just the m

1-average of F
over the ball with radius 1 centered at (xy, t).

We are interested in the relation between the spectra of the operators A and P .
Cattaneo [1] has given a complete description of the H2-spectrum of ∆ in terms
of the ℓ2-spectrum of P . Our plan is to describe the L2-spectrum of A in terms of
the ℓ2-spectrum of P .

This refers to the (complex) Hilbert spaces L2(X1, m1) and ℓ2(X0, m0). The
inner product of the latter is given by

〈g1, g2〉 =
∑

x∈X0

g1(x)g2(x) m
0(x) ,

and P is self-adjoint with ‖P‖ ≤ 1 on this space.
Analogously, the inner product on L2(X1, m1) is

〈F1, F2〉 =
1

2

∑

x∈X0

∑

y∈X0:y∼x

c(xy)

∫ 1

0

F1(xy, t)F2(xy, t) dt .

Again, A is self-adjoint with norm bounded by 1 on L2(X1, m1).
There is a large body of literature on the spectrum of transition (resp. adjacency

and discrete Laplace) operators on finite graphs.
Since not much work has been done regarding the spectra of averaging oper-

ators on networks, it appears to be useful to have a method for translating the
spectrum of P into the spectrum of A. Our main results are the following.

Theorem 1. The spectrum of A is

spec(A) = {0} ∪
{

sin ω

ω
: ω ∈ R \ {0} , cosω ∈ spec(P )

}
∪ {1 : 1 ∈ spec(P )} .

Corollary. Let ρ = ρ(P ) denote the spectral radius of P . Then the spectral

radius of A is

ρ(A) =

{
1 , if ρ = 1 ,√

1 − ρ2
/

arccos(ρ) , if ρ < 1 .

Let specp(P ) denote the point spectrum of P , i.e., the set of ℓ2(X0, m0)-
eigenvalues of P .

Theorem 2. We have

specp(A) \ {0} =
{
1 : 1 ∈ specp(P )

}
∪

{
sin ω

ω
: ω ∈ R \ {0}, cosω ∈ specp(P )

}
.
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Moreover, 0 ∈ specp(A) unless m
0(X0) = ∞ and X is a tree with the property

that after removal of any edge, at least one of the two connected components is

recurrent.
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