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Introduction by the Organisers

The conference brought together people working in mathematical general relativ-
ity, a field which lies at the interface of analysis, differential geometry and physics.
There was a mix of established workers in the subject with participants at the
start of their careers and researchers from neighbouring fields.

The Einstein equations are at the heart of general relativity theory. They form
a system of evolution equations and their solutions are conveniently parametrized
by initial data. These initial data are required to satisfy constraint equations and
these were the topic of several lectures at the conference. The talks of Corvino and
Pollack were concerned with recent progress in methods for constructing solutions
of the constraints. An important concept for solutions of the constraints is that of
mass, including quasilocal mass. This was a central theme of the talks of Degeratu,
Huisken and Shi. Huisken introduced a striking new approach to the definition
of mass based on isoperimetric inequalities. Dain presented a variational charac-
terization of the extreme Reissner-Nordström solution, thus relating the study of
the constraint equations to the theory of black holes. The talk of Wohlfarth was
rather outside the main area of the conference. He described a new concept of
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geometry motivated by string theory which may come to enrich the circle of ideas
within mathematical relativity.

Many of the talks at the conference were on evolution equations related to gen-
eral relativity. Dafermos and Finster presented results related to the dynamical
stability of black holes. Dafermos described new results on the rate of decay of
solutions of the wave equation on the Schwarzschild spacetime while Finster ex-
plained applications of methods of functional analysis to the wave equation on the
Kerr spacetime. Struwe’s talk concerned uniqueness for supercritical nonlinear
wave equations which from the point of view of the Einstein equations are an im-
portant example to compare with. The Maxwell equations are another important
comparison system and Bauer showed how they can be used to understand more
about radiation formulae. Velázquez gave an introduction to singularity formation
in the Keller-Segel model, a parabolic system coming from mathematical biology.
This is a possible source of insight for obtaining a rigorous understanding of critical
collapse in general relativity. The talks of Andréasson, Choptuik and Lindblom
dealt with various aspects of the application of numerical techniques to the study
of the Einstein evolution equations. Choptuik showed impressive new simulations
of coalescing black holes due to Pretorius which could hardly have been imagined
just a year ago.

Cosmology is at present a very active area of research in general relativity. This
is in part due to the challenge of understanding the observed accelerated expansion
of our universe. Mathematics is beginning to make its mark in this subject and
this was reflected by talks of Heinzle, Rendall and Tod.

Mathematical relativity is a meeting point for many ideas and the abstracts
which follow give some idea of the variety of the subject. In fact the spectrum of
topics discussed by the participants at the conference was much wider than those
for which talks could be scheduled. By limiting the number of presentations it
was possible to leave plenty of time for people to exchange insights. The lively
interactions observed make us hopeful that this conference has given a boost to
the development of the subject in the next few years.
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Abstracts

Area geometry and string backgrounds

Mattias N. R. Wohlfarth

1. Introduction

Interest in a geometric understanding of generalized backgrounds in string the-
ory has recently been fueled by Hitchin’s proposal of a unified description of the
spacetime metric and the Neveu-Schwarz two-form [1]. This approach is of intrin-
sic mathematical appeal and has proven valuable in compactifications of string
theory on generalized complex manifolds [2, 3], and in studying D-branes and mir-
ror symmetry [4, 5, 6, 7]. However, the basic premise of string theory, namely
the replacement of point particles by strings, suggests an alternative geometric
picture: manifolds M equipped with an area measure G, not with a metric length
measure. These present a true generalization of Lorentzian manifolds, which in
particular may include a B-field, because only some area measures can be induced
from a metric. We aim at the construction of differential geometric structures on
manifolds (M,G), with a view towards their characterization and to the construc-
tion of gravitational dynamics that could play an important role in understanding
the gravitational sector of strings and branes.

2. Area metric manifolds

The affine variety of oriented areas consists of the simple antisymmetric two-
tensors, or bivectors, Ω in

∧2 TM with Ω ∧ Ω = 0. Any such area can be repre-
sented by two vectors as X ∧Y , which expression encodes the SL(2,R) invariance
under basis change. We consider smooth d-dimensional manifolds M equipped
with an area measure G given by a symmetric metric on the areas’ embedding

space
∧2

TM . So G is a fourth rank covariant tensor with the symmetries

(1) G(X,Y,A,B) = −G(Y,X,A,B) = G(A,B,X, Y ) .

The area measure naturally provides a linear map G :
∧2

TM →
∧2

T ∗M . In
case the inverse of this map exists everywhere on M , we call G an area metric
and (M,G) an area metric manifold.

Any metric manifold (M, g) is an area metric manifold (M,Gg), by virtue of
the induced area metric Gg(X,Y,A,B) = g(X,A)g(Y,B)−g(X,B)g(Y,A). (Note
that Gg(X,Y,X, Y ) is the squared area of the parallelogram spanned by X and Y .)
However, not every area metric is induced by a single metric, but rather by a
finite collection of metrics {g(1) . . . g(N)} via a decomposition theorem for algebraic
curvature maps due to Gilkey [8]. It follows from this theorem that any area metric
can be decomposed as

(2) G = F +

N
∑

i=1

σ(i)Gg(i) ,
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with signs σ(i) = ±1 and a four-form F . The latter, as well as the Gg(i) , are
irreducible representations under the local frame group SL(d,R).

The above decomposition is not unique. Hence two different points of view on
area metric geometry may be taken. The first redefines area metric geometry as
multi-metric geometry (by picking a particular decomposition as the basic data
on the manifold). This approach is discussed in [9], and allows the construction
of curvature invariants in terms of the constituent metrics g(i). The second route,
considered in the following, is canonical in not relying on any decomposition of
the area measure G, see [10] for more detail.

3. Differential geometry of stationary surfaces

In order to identify geometric structures on area metric manifolds (M,G), we
proceed from the equation for surfaces of stationary area, i.e., the equation of
motion of the classical bosonic string. This equation is obtained from variation,
with respect to x, of the surface area integral

(3)

∫

d2σ
√

G(Ω,Ω) ,

for a surface x(σ) embedded in some target space with tangent area Ω = ẋ ∧ x′.
Fixing the reparametrization invariance by a constant normalization G(Ω,Ω), and
satisfying suitable boundary conditions, one finds for all vectors Z the condition

(4) dG(Ω, ·)(Ω ∧ Z) = 0 .

The stationary surface equation can be concisely recast in terms of differen-
tial geometric structures on area metric manifolds (M,G). However, due to the

non-linear nature of area spaces, connections on
∧2

TM do not play a similarly
important role as tangent bundle connections for geodesics, or autoparallels, on
metric manifolds. Better adapted is the concept of pre-connections. For any vec-

tor X and two sections Ω and Σ of
∧2

TM we define a symmetric pre-connection
DX(Ω,Σ) in C∞M by the properties:

DX(Ω,Σ) = DX(Σ,Ω) ,(5)

DX+fY (Ω,Σ) = DX(Ω,Σ) + fDY (Ω,Σ) ,(6)

DX(Ω,Σ + Φ) = DX(Ω,Σ) +DX(Ω,Φ) ,(7)

DX(fΩ,Σ) = fDX(Ω,Σ) +Xf G(Ω,Σ) ,(8)

which are symmetry, C∞M -linearity in X , and R-linearity together with a certain
‘Leibniz’ rule for the sections Ω and Σ. We also define an antisymmetric pre-
connection DX [Ω,Σ] in C∞M on (M,G), with precisely the same properties as
stated above for the symmetric pre-connection, except an additional minus sign
appearing in the first line.

It is now simple to show that symmetric and anti-symmetric pre-connection
together determine a connection on

∧2
TM : for X and Ω as above we define

(9) ∇XΩ =
1

2
G−1(DX(Ω, ·) +DX [Ω, ·], ·) ,



Mathematical Aspects of General Relativity 79

which has all the expected properties. Conversely, any
∧2

TM connection can be
uniquely decomposed into symmetric and antisymmetric pre-connections. Due to
the symmetry of G, the natural requirement of area metric compatibility for any
such connection, ∇XG = 0, is a condition on the symmetric pre-connection alone,
which it fully determines:

(10) ∇XG = 0 ⇒ DX(Ω,Σ) = XG(Ω,Σ) .

Area metric compatibility has further geometric implications. Via the covariant
constancy of the volume form ω(G) on area metric manifolds of even dimension
d ≥ 4 one can show that parallel transport along any curve preserves the intersec-
tion of area distributions and the simplicity of sections of the bundle of antisym-
metric two-tensors.

The symmetric pre-connection enables the construction of a one-form valued

derivative action of areas Σ = X ∧ Y on sections Ω of
∧2

TM . Starting from
the simple expression DX(Ω, Y ∧ Z) for an additional vector field Z, and requir-
ing C∞M -linearity in Z, SL(2,R)-invariance for the pair (X,Y ), and C∞M -
homogeneity under rescalings of Σ, one is led to the definition of

(11) DΣΩ(Z) = DX(Ω, Y ∧ Z) − 1

2
G(Ω, [X,Y ] ∧ Z) + terms cyclic in X,Y, Z .

Based on an area metric compatible pre-connection this expression simplifies to
DΣΩ(Z) = dG(Ω, ·)(Σ∧Z). We may hence rewrite the stationary surface equation
for any tangent area distribution Ω = ẋ ∧ x′ as

(12) DΩΩ = 0 .

The expression DΩΩ thus acquires a neat geometric interpretation as the mean
curvature one-form of a two-surface represented by Ω.

The work detailed here, and in [9, 10], only presents a first step in understand-
ing the geometry of area metric manifolds. Of particular importance for further
research appears to be the construction of invariants for these manifolds, maybe
through the investigation of curvature analogues, which would then allow for the
formulation of gravitational dynamics.
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The long-time dynamics of scalar waves in the Kerr geometry

Felix Finster

(joint work with Niky Kamran, Joel Smoller, Shing-Tung Yau)

We consider the scalar wave equation in the Kerr geometry for Cauchy data which
is smooth and compactly supported outside the event horizon. We derive an
integral representation which expresses the solution as a superposition of solutions
of the radial and angular ODEs which arise in the separation of variables. In
particular, we prove completeness of the solutions of the separated ODEs. From
this integral representation, we deduce decay of the solutions in L∞

loc.
In the talk, the methods of the proof are outlined. The main difficulty is that the

classical energy density can be negative inside an annular region around the event
horizon, the so-called ergosphere. For classical particles, this effect leads to the
so-called Penrose process, which allows to extract energy and angular momentum
from a rotating black hole. A similar phenomenon occurs for scalar waves and is
called superradiance. Mathematically, the indefinite energy density leads to the
difficulty that the inner product is not positive, and thus we cannot use spectral
methods in a Hilbert space.

In order to overcome this difficulty, we use several methods: First, we consider
the problem in finite volume, where spectral methods in Pontrjagin spaces can be
applied. Second, we derive resolvent estimates, which make it possible to quan-
titatively compare the dynamics in finite and in infinite volume. Next, we make
use of the separation of variables in the Kerr metric together with estimates for
the resulting ordinary differential equations (so-called WKB estimates and invari-
ant region estimates for the complex Riccati equation). Moreover, we use spectral
estimates for the angular equation, which were worked out in collaboration with
Harald Schmid [2]. Combining these methods with Whiting’s mode stability re-
sult [4], we obtain an integral representation of the scalar wave propagator which
involves contour integrals in the complex plane [1].

In order to derive decay rates, one needs to move the contours onto the real
axis. To this end, we need asymptotic estimates for the radial equation, which are
obtained using the Jost equation. Then a causality argument allows us to rule out
poles of the resolvent on the real axis. We thus obtain an integral representation of
the propagator as an infinite sum over the angular momentum modes, each of which
is an integral of the energy variable ω on the real line [3]. This representation has
similarity with a Fourier representation, and we can apply the Riemann-Lebesgue
lemma to get the desired decay in L∞

loc.
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A numerical investigation of the stability of steady states and critical

phenomena for the spherically symmetric Einstein-Vlasov system

Håkan Andréasson

(joint work with Gerhard Rein)

We investigate the stability of steady states for the spherically symmetric, as-
ymptotically flat Einstein-Vlasov system. This system describes a self gravitating
collisionless gas in the framework of general relativity. Here the matter is thought
of as a large ensemble of particles, which is described by a density function on
phase space, and the individual particles move along geodesics; for further infor-
mation on this system cf. [1]. In astrophysics it is used as a model for compact
star clusters and galaxies. In this context the stability question was first studied
by Zeldovich et al. in the sixties, [14]. They characterize a steady state by its cen-
tral redshift and binding energy and conjecture that the binding energy maximum
along a steady state sequence signals the onset of instability. Ipser [6] and Shapiro
and Teukolsky [13] found numerical support for this conjecture for isotropic steady
states. In our investigation we find that this conjecture also holds for non-isotropic
steady states where the density on phase space depends on the particle energy and
angular momentum. We also investigate the role of the binding energy and find
that states with a positive binding energy will be bound and the solution will oscil-
late in a neighbourhood of the steady state, while a negative binding energy leads
to dispersion. Our initial motivation for studying the stability of steady states was
its role in critical collapse. This topic started with the work of Choptuik [3] where
he studied the Einstein-Scalar-Field system. He took a fixed initial profile for the
scalar field and scaled it by an arbitrary constant factor. This gives rise to a family
of initial data depending on a real parameter A. It turned out that there exists a
critical parameter A∗ such that for A < A∗ the corresponding solutions disperses,
while for A > A∗ the corresponding solutions collapse and produce a black hole.
This was in accordance with the theoretical results established by Christodoulou,
see [5] for a review. The surprising result was that the limit of the mass M(A)
of the black hole tends to zero for A → A∗ so that in such a one-parameter fam-
ily there are black holes with arbitrarily small mass. Choptuik found that this
fact is related to the existence of self-similar solutions of the Einstein-scalar-field
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equations, in particular, the critical solution is self-similar and universal, i.e., in-
dependent of the initial profile which determines the one-parameter family. Later
on a similar investigation was performed for the Einstein-Yang-Mills equations by
Choptuik, Chmaj and Bizoń [4]. Here both cases where limA→A∗

M(A) = 0 and
limA→A∗,A>A∗

M(A) > 0 were found, called type II and type I respectively. In
the latter case there is accordingly a mass gap.

As opposed to the field theoretic matter models mentioned above the Vlasov
model is phenomenological, but in contrast to fluid models several global results
have been established. For the spherically symmetric and asymptotically flat case
it was shown in [8] that sufficiently small initial data launch global, geodesically
complete solutions which disperse for large times. It is also known that there do ex-
ist initial data, necessarily large, which develop singularities [12]. The proof relies
on the Penrose singularity theorem. There are no general results on the behavior
of large data solutions yet, except for the following: If data on a hypersurface of
constant Schwarzschild time give rise to a solution which develops a singularity
after a finite amount of Schwarzschild time, then the first singularity occurs at the
center of symmetry [10]. In [2] further results on the global behaviour of solutions
for large data can be found. The transition between dispersion and gravitational
collapse was numerically investigated by Rein, Rendall, and Schaeffer [11], and
it was found that there is a mass gap in the M(A) curve. This result was later
confirmed by Olabarrieta and Choptuik [7]. In addition, these authors reported
evidence that the mass gap is due to the presence of static solutions, and they
conjectured that the critical solution is universal.

In the present investigation we address the role of steady states in critical phe-
nomena for the Einstein-Vlasov system and the question of universality by ex-
plicitly exploiting the fact that for this system the existence of an abundance of
steady states is well-established [9], and that these steady states can easily be
computed numerically. Computing a steady state fs we consider the family Afs
of initial data. Within every family of steady states given by a specific depen-
dence on particle energy and angular momentum we found unstable steady states
which act as critical solutions: If they are perturbed with A > 1 they collapse to
a black hole, if they are perturbed with A < 1 they either disperse or oscillate in
a neighbourhood of the steady state, depending on the sign of the binding energy.
Due to the abundance of possible such dependences on particle energy and angular
momentum there cannot be a universal critical solution in spherically symmetric
collapse for the Einstein-Vlasov system.

Our main motivation for this numerical study is that it may lead to conjectures
on the behavior of solutions of the Einstein-Vlasov system which may eventually
be proven rigorously.
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Some recent results on the Einstein constraint equations

Justin Corvino

1. On the Existence and Stability of the Penrose Compactification

In the 1960’s Penrose [26] proposed a model of isolated gravitational systems based
on the conformal compactification of Minkowski space. As the model has had
enormous influence on the study of gravitational radiation, one would like to es-
tablish stability results which yield new examples through perturbation. Friedrich
attacked this problem by rewriting the Einstein equations to emphasize the con-
formal structure, and he obtained a semi-global stability result for Minkowski
space: for hyperboloidal data suitably close to a given hyperboloidal data set in
Minkowski space (intersecting future null infinity), the resulting solution of the
initial-value problem for Einstein’s vacuum equation admits a conformal compact-
ification to the future [18]; see also more recent work of Anderson and Chruściel
[1]. Thus, if one could control the asymptotics near infinity on an asymptotically
flat initial data set, in such a manner that it will evolve to a spacetime with suit-
able hyperboloidal slices (to the future and the past), then one could invoke the
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stability result to evolve the data to a spacetime which possesses a smooth com-
pactification. In fact, Cutler and Wald [16] use this method to produce solutions
of the Einstein-Maxwell field equations that admit a smooth compactification.

We state a version of linearization stability of the conformal compactification
(in the vacuum case) in terms of the initial data [14]. The proof involves a careful
study of the construction in [12] of perturbations of given asymptotically flat, scalar
flat metrics to ones which are Schwarzschild near infinity (in the time-symmetric
case, the constraint equations reduce to the vanishing of the scalar curvature).
Recall that at the flat metric, the linearization L of the scalar curvature operator
is given by L(h) = −∆(tr h)+div(div(h)). The Euclidean metric is a critical point
for the ADM mass function, in an appropriate space of solutions to the Einstein
constraints ([2], [3], [10]). We say that a solution h of L(h) = 0 is nondegenerate
if the second variation of the mass in the direction of h is positive.

Theorem 1. Let h be any smooth, compactly supported, symmetric (0,2)-tensor on
R

3 with L(h) = 0, and for sufficiently small ǫ, let gǫ = u4
ǫ(δ+ǫh) be asymptotically

flat with zero scalar curvature. If h is nondegenerate, there is an R0 > 0 so that
for all ǫ small enough, there is a metric ḡǫ of zero scalar curvature which agrees
with gǫ in {x : |x| ≤ R0} and is exactly Schwarzschild outside {x : |x| ≥ 2R0}, and
so that the maximal Ricci-flat spacetime with the three-geometry ḡǫ as a totally
geodesic Cauchy surface admits a smooth conformal compactification. Moreover
the path ḡǫ is tangent to h at ǫ = 0.

We remark that one can approximate any solution h (in an appropriate weighted
function space) of the linearized constraint L(h) = 0 by a compactly supported
solution [14]. Note that a TT-tensor (trace-free and divergence-free) with respect
to the flat metric is in the kernel of L and is nondegenerate [9]. It is known
that there is an infinite-dimensional space of compactly supported TT-tensors at
the flat metric ([4], [17], [14]). We thus have as a corollary that there exists an
infinite-dimensional family of solutions of the vacuum constraint equations whose
evolution admits a Penrose compactification; this echoes and augments the result
of Chruściel and Delay [11], who construct an infinite-dimensional family of such
solutions which are parity-symmetric. We note that all of these constructed exam-
ples (including the Cutler-Wald examples) are Schwarzschild in a neighborhood
of spatial infinity, which is consistent with the known restrictions at space-like in-
finity for asymptotically simple spacetimes as given by Friedrich [19] and Valiente
Kroon [29].

2. Asymptotically Flat and Scalar-Flat Metrics on R
3 with

Multiple Horizons

We consider asymptotically flat initial data for the time-symmetric vacuum field
equations, given by an asymptotically flat three-manifold (M, g) with zero scalar
curvature. From Meeks, Simon and Yau [24], if M has nontrivial topology, then
(M, g) has a stable minimal sphere (horizon). The natural question then is how
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to construct horizons on (R3, g), where the topology is trivial. The first existence

result was obtained by Beig and Ó Murchadha [5] by conformally rescaling critical
sequences of metrics for the conformal Laplacian on S

3. There is related work of
Yan [30] which gives metric criteria on (S3, g) to guarantee the existence of minimal
spheres in the conformal rescalingG4g on S

3\{P}, where G is the Green’s function
at P of the conformal Laplacian. Further existence results have been obtained by
Shi and Tam [28], [27]. A construction due to Miao [25] produces examples by
first filling in the Schwarzschild metric to produce a metric on R

3 with nonnegative
scalar curvature, and then using two types of scalar curvature deformation (one
local and one conformal) to deform the metric to zero scalar curvature so that the
horizon persists. One may apply Miao’s construction to the multi-horizon data
constructed by Chruściel-Delay [11] (which has nontrivial topology) to prove the
following theorem from [13].

Theorem 2. There exist asymptotically flat metrics on R
3 with zero scalar cur-

vature and multiple minimal spheres.

The proof uses several methods of deforming the scalar curvature on a manifold:
the conformal method, as well as two localized methods, one due to Lohkamp [23],
and the other due to us [12].

3. On Isoperimetric Surfaces in General Relativity

One of the major recent developments in mathematical relativity is the resolu-
tion of the Riemannian case of the Penrose conjecture, by Huisken-Ilmanen [22]
and Bray [7]. Bray had obtained earlier partial results in his thesis [6] by using
isoperimetric surface techniques. Bray established that the isoperimetric profile of
the time-symmetric Schwarzschild initial data (of positive mass) is given by the
radially symmetric spheres (i.e. these spheres are the surfaces homologous to the
horizon which minimize area for net volume against the horizon), the method of
proof of which has been codified in Bray-Morgan [8]. The main idea is that one
can deduce the isoperimetric profile of a given metric if one can construct an ap-
propriate map to a model space (for instance Euclidean space or hyperbolic space)
in which the profile is known. We use the method to deduce the isoperimetric pro-
file for the time-symmetric Reissner-Nordström and Schwarzschild-Anti-deSitter
initial data [15], which in each case is again given by the the radially symmetric
spheres. In contrast, in the negative mass Schwarzschild, the radially symmetric
spheres are unstable. For recently announced work by Huisken which explores
the relation between isoperimetric inequalities and the mass of asymptotically flat
metrics, see [20], [21].
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An isoperimetric concept for mass and quasilocal mass

Gerhard Huisken

For a complete Riemannian 3-manifold (M3, g) with asymptotically flat end (M̄, g)
⊂ (M3, g), M̄ ≃ R

3\B1(0) with g ∈ C2(M3), |g−δ| ≤ c/r the classical ADM-mass
is a flux integral at infinity

mADM = lim
R→∞

1

16π

∫

∂BR

(gij,i − gii,j)dν
j

which is known to be geometric invariant when assuming appropriate decay as-
sumptions for the first and second derivatives of the metric. The notion of mass
is motivated from General Relativity, where (M3, g) arises as a 3-dimensional
spacelike hypersurface of a Lorentzian 4-manifold modelling an isolated gravitat-
ing system such as a star, a black hole or a galaxy. In this setting the mass
represents the total energy of the isolated system including the contributions of
the gravitational field. Einsteins field equations together with a natural energy
condition from physics for the matter fields leads to the consideration of metrics
g with nonnegative scalar curvature R ≥ 0.

The classical positive mass theorem first proven by Schoen and Yau then states
that for asymptotically flat 3-manifolds (M3, g) with nonnegative scalar curvature
the ADM-mass of each end is nonnegative with equality holding only on Euclidean
space.

The current lecture proposes to interpret the mass as an asymptotic isoperi-
metric defect, namely we define

mISO = lim sup
R→∞

2

|∂BR|

(

Vol(BR) − 1

6
√
π
|∂BR|

3
2

)

The isoperimetric mass of three dimensional flat space is zero in view of the isoperi-
metric inequality. Using both mean curvature flow and inverse mean curvature flow
we show in a first step that the new concept is consistent with the classical ADM-
mass when it is defined and satisfies the positive mass theorem on manifolds with
nonnegative scalar curvature: 0 ≤ mISO ≤ mADM.

Since the new concept of isoperimetric mass only needs a C0-metric and since
the condition of nonnegative scalar curvature can also be interpreted in terms of
(local) isoperimetric defects for such metrics, we will ultimately prove a C0-version
of the positive mass theorem: A Riemannian 3-manifold with locally nonnegative
isoperimetric defect has nonnegative isoperimetric total mass. In this setting the
isoperimetric inequality becomes the natural analogue for the mean value inequal-
ity satisfied by subharmonic functions in the Newtonian theory.
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We also propose a new isoperimetric definition of quasilocal mass for a 2-surface
Σ2 ⊂ (M3, g) and domains Ω ⊂ (M3, g) based on the isoperimetric profile of
the spatial Schwarzschild manifold (M3, gm), gm = (1 + m/2r)4δ. It turns out
that the new definition of quasilocal mass has all desired properties of such a
quantity such as monotonicity and positivity properties. In the smooth case the
isoperimetric quasilocal mass will be attained on constant mean curvature surfaces
giving a natural link to the center of mass definition of Huisken and Yau [2]
via cmc-foliations. It should be noted that H.Bray and F. Morgan [1] proved
the isoperimetric minimizing property of the concentric cmc-slices in the spatial
Schwarzschild metric.
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Quasi-local mass and the existence of horizons

Yuguang Shi

(joint work with Luen-Fai Tam)

In 1972, Thorne made the following conjecture, which later became known as the
hoop conjecture (see [2]):

Conjecture 1. Black holes with horizons form when and only when a mass M
gets compacted into a region whose circumference in every direction is C ≤ 4πM .

The conjecture is loosely formulated . Several concepts such as mass, circum-
ference etc. are not clearly defined. Hence, this conjecture allows many different
precise interpretations. In 1983, Schoen and Yau in [5], define a kind of radius
of a bounded region, and derive an upper bound for this radius for a region in
spacetime without apparent horizons in terms of the lower bound of mass den-
sity. By studying Jang equation, they obtained some important results for the
existence of horizons in the spirit of the hoop conjecture. However, Schoen-Yau’s
arguments cannot be used in time symmetric case, since in this case, Jang equation
has obvious solution.

In this talk, we will focus on the time symmetric case, in this case, a horizon
is a kind of minimal surface. We always assume (Ω, g) is a 3-dimensional compact
Riemannian manifold with smooth boundary and nonnegative scalar curvature.
Besides this, we also assume the Gaussian curvature and the mean curvature with
respect to outward unit norm of the boundary is positive.
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Known Result (Meeks-Yau). Let Ω be as above, and it is not diffeomorphism
with B

3, then it contains a minimal surface; in addition, if Ω is simply connected,
then the minimal surface is the boundary some subdomain of Ω.

So, in the following, we assume Ω is diffeomorphism with B
3. We want to use

the following quasi-local mass to investigate the problem.

• Hawking mass: MH(∂Ω) =
√

|∂Ω|
16π (1− 1

16π

∫

∂Ω
H2), H is the mean curva-

ture of ∂Ω with respect to outward norm. |∂Ω| is area of ∂Ω.
• Brown-York mass: MBY(∂Ω) = 1

8π

∫

∂Ω(H0 −H)dσ, here H0 is the mean

curvature of isometric embedding image of ∂Ω in R
3.

It is believed that the lower bound estimate of these quasilocal mass relates to the
existence of horizon, for instance, see Walter Simon’s observation, (see [1]). By
the above expression, we see that quasi-local mass only depends the geometry of
∂Ω and the mean curvature. However, we have:

Proposition 2. There exist asymptotically flat metrics g1, g2 with nonnegative
scalar curvature on R

3 such that g1 = g2 outside some compact set, (R3, g1) con-
tains a stable minimal sphere but (R3, g2) does not contain any compact minimal
surfaces.

By Proposition 2, we may construct two domains with the same boundary
geometry and mean curvature, while one contains a horizon the other does not.
From the proposition, in order to find a sufficient condition for the existence of
compact minimal surfaces, we need to know information in the interior of the
domain. This motivates us to introduce the following quantity using Hawking
mass of some compact surfaces inside a domain.

Let Ω1 ⊂⊂ Ω2 ⊂ Ω such that Ω1 and Ω2 have smooth boundaries. We need the
following lemma from [4]

Lemma 3 (Meeks-Yau). With the above notations and let d be the distance be-
tween Ω1 and ∂Ω2. Let ι be the infimum of the injectivity radius of points in
{x| d(x, ∂Ω2) >

d
4}. Let K > 0 be the upper bound of the curvature of Ω2. Sup-

pose N is a minimal surface and x ∈ N with d(x, ∂Ω2) = d
2 , so that d(x, ∂N) ≥ d

2 ,
then

(1) |N ∩Bx(r)| ≥ CK−2

∫ r

0

τ−1(sinKτ)2dτ

where r = min{ d2 , ι}. Here C is a positive absolute constant.

For such Ω1, Ω2, let

(2) α2
Ω1;Ω2

= min

{

CK−2
∫ r

0 τ
−1(sinKτ)2dτ

|∂Ω1|
, 1

}

Let FΩ2 be the family of precompact connected minimizing hulls with C2 bound-
ary in Ω2, for the definition of minimizing hull please see [3]. Define

(3) m(Ω1; Ω2) = sup
E∈FΩ2 ,E⊂Ω1

mH(E).
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Define

(4) m(Ω) = supαΩ1;Ω2m(Ω1; Ω2)

where the supremum is taken over all Ω1 ⊂⊂ Ω2 ⊂ Ω with smooth boundaries.
Here and below Ωi is always assumed to be nonempty.

In general, the Hawking mass of a compact surface may be negative. However,
one can prove that m(Ω) ≥ 0, and for manifolds with nonnegative scalar curvature
m(Ω) = 0 implies local flatness of manifolds.

Now, we are able to give some lower bounds of the Brown-York mass in terms
m(Ω). By this, we give a sufficient condition on existence of horizons in Ω.

Theorem 4. Let (Ω, g) be a compact three manifold with connected smooth bound-
ary and with nonnegative scalar curvature. Assume that Ω is simply connected and
suppose ∂Ω has positive Gauss curvature and positive mean curvature with respect
to the outward normal. Then

(5) mBY(∂Ω) ≥ mH(∂E).

for any connected minimizing hull E in Ω where E ⊂⊂ Ω with C1,1 boundary.
Moreover, equality holds for some minimizing hull E with the above properties if
and only if Ω is a standard ball in R

3 and E is a standard ball in Ω. In particular,
mBY(∂Ω) ≥ mH(∂Ω) and equality holds if and only if Ω is a standard ball in R

3.

In the above theorem, we do not assume that (Ω, g) contains no horizons. In
order to obtain a sufficient condition that (Ω, g) contains a horizon, we need an-
other estimate of the Brown-York mass. Let m(Ω) as defined in (4). We have the
following:

Theorem 5. Let (Ω, g) be a compact manifold with connected smooth boundary
and with nonnegative scalar curvature. Assume that Ω is simply connected and
suppose ∂Ω has positive Gauss curvature and positive mean curvature with respect
to the outward normal. Suppose (Ω, g) has no horizons. Then m(Ω) ≤ mBY(∂Ω).
Equality holds if and only if Ω is a domain in R

3.

Remark 6. The similar lower bounded estimate is also true for Bartnik mass.

Let Ω be as in the theorem. Isometrically embed ∂Ω in R
3. Let R be the radius

of the smallest circumscribed ball of ∂Ω in R
3. We have the following:

Corollary 7. Let (Ω, g) be a compact manifold with nonnegative scalar curvature
and with connected boundary which has positive mean curvature and positive Gauss
curvature. Suppose Ω is simply connected and suppose m(Ω) ≥ mBY(∂Ω), then
there is a horizon in Ω unless Ω is a domain in R

3. Hence if m(Ω) ≥ 2R, then
Ω contains a horizon. In particular, if m(Ω) ≥ 2 diam(∂Ω) then Ω contains a
horizon. Here diam(∂Ω) is the diameter of ∂Ω with respect to the metric induced
by g.

There are examples so that m(Ω) > mBY(Ω). Consider the metrics (R3, ds2m =
u4
m(dρ2 + ρ2dσ2)) defined in the proof of Proposition 2, where dρ2 + ρ2dσ2 is the

Euclidean metric. Since as m→ 0, ds2m converges uniformly on the Euclidean ball
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B4 = {x ∈ R
3| |x| < 4} to the standard metric on the unit sphere, we see that for

sufficiently small m > 0, the boundary of Bτ is mean convex for all 0 < τ < 2 with
respect to ds2m. B1 is a minimizing hull in B2. Moreover, there is δ > 0 such that
the Hawking mass mH(∂B1) of ∂B1 with respect to ds2m is at least δ, provided
m > 0 is small enough. Hence for all m > 0 small enough, αΩ1;Ω2m(B1;B2) ≥ δ.
Now consider the domain Ω = Bρ, where ρ = 8/m > 2ρ0. It is easy to see that ∂Ω
has positive mean curvature and positive Gauss curvature with diameter d ≤ Cm,
here C is a universal constant. Hence

m(Ω) ≥ αΩ1;Ω2m(B1;B2) ≥ δ > 2d ≥ mBY(Ω)

provided m is small enough.
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Conformal gauge singularities

Paul Tod

(joint work with Christian Luebbe)

A conformal gauge singularity is a space-time singularity at which the metric gab
is singular but the conformal equivalence class [gab] of the metric is not. Thus the
singularity may be seen as arising simply from the choice of representative metric
in the conformal class, in other words from the choice of conformal gauge.

The interest in these arises from a wish to study cosmological models in General
Relativity with singularities at which the Weyl tensor is finite. This interest in
turn is generated by Penrose’s Weyl Curvature Hypothesis [1], [2]. Penrose argues
that initial singularities, notably the Big Bang, are different in character from final
singularities, such as those arising in gravitational collapse. This difference is, he
says, ‘something like: the Weyl tensor Cabcd vanishes at any initial singularity’
([1]).

According to Penrose, this restriction on initial singularities is enforced by phys-
ical laws, but without needing to know what these are one can simply seek to study
the resulting class of space-times. Two questions present themselves: first, can one
produce examples of cosmological models with an initial singularity at which the
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Weyl tensor is finite or zero? and second, how may one recognise a space-time
singularity at which the Riemann tensor is singular while the Weyl tensor is not,
and is the singularity then a conformal gauge singularity?

The first question can be answered positively after the following observation: if
the metric is conformally-rescaled according to g̃ab = Ω2gab then the Weyl tensor
transforms as C̃ d

abc = C d
abc . Thus suppose we have a manifold with metric (M, g);

take a smooth space-like surface Σ in M and a function Ω which vanishes at Σ,
not necessarily smoothly, and is positive and smooth on M̃ , the part of M to the
future of Σ. Now rescale the metric as above, then (M̃, g̃) is a space-time with a
curvature singularity at Σ at which the Weyl tensor is finite (since it is equal to
the Weyl tensor in M). In the terminology of the start of this abstract, this is a
conformal gauge singularity.

It is known that, for cosmological models whose source is a perfect fluid with
a certain equation of state [3] or massless collisionless matter [4], there is a well-
posed initial value problem with data at the singularity surface Σ. The proofs rely
on an existence theorem of Claudel-Newman [5]. Thus these are cosmologies with
conformal gauge singularity.

The second, or converse question is to ask whether, or when, cosmological
singularities with finite Weyl tensor are conformal gauge singularities. First we
need a definition of finite Weyl tensor at a singularity. For this we invoke two
conformally-invariant notions: conformal geodesics, and conformal propagation
along a conformal geodesic (see e.g. [6]). These depend only on the conformal class
of the metric, and we can say that Weyl tensor is finite at a curvature singularity if
its components are bounded in a conformally-propagated frame along a conformal
geodesic going into the singularity. Next we would like a result connecting the
existence of a conformal extension through a space-time singularity with conditions
on the Weyl tensor framed in this way.

For this, we first recall the extension theorem of Racz [7]: Given an incomplete
causal geodesic γ in a strongly causal space-time, and boundedness conditions on
the components of the Riemann tensor in a parallelly-propagated frame along γ,
Racz shows the existence of a regular coordinate system on a neighbourhood U
of a final segment of γ. Then given bounds on the Riemann curvature and its
derivatives (to say order k + 1) in this coordinate system, he shows that there is
a Ck-extension of the metric to an open V containing U . With an incomplete
conformal geodesic and conditions on conformal curvatures (in fact the tractor
curvatures of [8]) we can parallel this theorem to construct similar coordinate
systems. At the time of writing it appears that we can then find a conformal
factor so that the conditions of Racz’s theorem are satisfied and thus conclude
that there is a conformal extension. Thus, with these conditions, the singularity
is a conformal gauge singularity.

This is a local extension theorem. To find a global extension theorem, we con-
sider spatially-homogeneous perfect-fluid space-times with an initial singularity.
It turns out that the matter flow lines are actually conformal geodesics (as well as
metric geodesics). If we impose the conditions
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• There is a choice of projective parameter on these conformal geodesics so
that the singularity is at a finite distance.

• The conformal factor dictated by this choice makes the rescaled fluid ex-
pansion finite.

• The conformal (tractor) curvatures are finite in the conformally-propa-
gated frame.

Then the initial singularity is a conformal gauge singularity.
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A new generalized harmonic evolution system

Lee Lindblom

(joint work with M. A. Scheel, L. E. Kidder, R. Owen, and O. Rinne)

This report describes recent work on finding a formulation of the Einstein equa-
tions suitable for constructing stable numerical evolutions. The formulation stud-
ied here specifies the coordinate degrees of freedom with a generalized harmonic
gauge source function rather than with the usual lapse and shift. This type of
formulation appears to have played a critical role in the very impressive binary
black hole evolutions performed recently by Pretorius [1, 2]. This report analyzes
why this type of formulation is so effective for numerical work, describes a recent
extension of the system that makes it possible to construct boundary conditions
which prevent the influx of constraint violations, and describes numerical tests
that demonstrate the effectiveness of the new equations and boundary conditions.

The gauge source functionHa is defined as the action of the scalar-wave operator
on the coordinate functions xa:

Ha(x) ≡ ψab∇c∇ax
b = −ψbcΓabc ≡ −Γa,(1)

where ψab is the spacetime metric and Γabc is the usual Christoffel symbol. The
coordinates are fixed in this approach by requiring that Γa = −Ha, for a prescribed
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Ha. The existence of solutions to the inhomogeneous wave Eq. (1) guarantees
the existence of such coordinates. Choosing the coordinates in this way has two
important consequences. The first is well known: the vacuum Einstein equations,

0 = Rab −∇(aCb),(2)

where Ca = Ha + Γa, are manifestly hyperbolic since the principal part of the
equations is just ψcd∂c∂dψab for any value of the gauge source function [3]. The
second consequence is less widely appreciated: The constraints of the system are
profoundly transformed. The condition Ca = 0 is the primary constraint of this
system, while the standard Hamiltonian and momentum constraints Ma = Gabt

b

(where ta is the unit normal to a Cauchy surface) are determined by the derivatives
of Ca: Ma = tb(∇(aCb) − 1

2ψab∇cCc). This means that the primary constraints
depend on the first but not the second derivatives of the metric.

Adding multiples of the constraints to the Einstein equations is known to have a
significant effect on the growth rates of constraint-violating solutions [4]. However,
multiples of the Hamiltonian and momentum constraints can be added only in
very restricted ways consistent with the hyperbolic structure of the equations;
this is because the addition of these constraints changes the principal part of
the equations. In contrast, arbitrary multiples of the gauge constraint Ca can be
added to the system, Eq. (2), without effecting the hyperbolic structure at all.
Pretorius [2], based on the suggestion of Gundlach, et al. [5], used a modified
evolution system that included the following additional gauge constraint terms
designed to suppress the growth of the constraints:

0 = Rab −∇(aCb) + γ0

[

t(aC b) −
1

2
ψab t

cCc
]

.(3)

The Bianchi identities then imply that Ca satisfies the damped wave equation,

0 = ∇c∇cCa − 2γ0∇b[ t(bCa)] + C b∇(aCb) −
1

2
γ0 taC bCb,(4)

which exponentially suppresses all small short-wavelength constraint violations
when the parameter γ0 is positive [5]. This constraint-suppressing feature of the
modified generalized harmonic system, Eq. (3), contributed significantly to the
success of Pretorius’ impressive binary black-hole evolutions [2].

We have recently extended the modified generalized harmonic evolution system,
Eq. (3), to a first-order symmetric-hyperbolic form. (See Ref. [6] for the details.)
This new system is linearly degenerate, so shocks do not form from smooth initial
data. This system also includes new constraints that arise when additional fields
are added to make the system first order. Appropriate terms (proportional to the
constraints times a second constraint-damping parameter γ2) are added to suppress
the growth of these new constraints. Constraint-preserving and physical boundary
conditions are also presented, and the well-posedness of the new evolution system
with these boundary conditions is analyzed.

We tested the new evolution system by evolving initial data for a Schwarzschild
black hole. In these evolutions we “freeze” the values of the incoming characteristic
fields on the boundaries. We performed these numerical evolutions using spectral
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Figure 1. Evolution of Schwarzschild initial data.

0 500 100010
-14

10
-10

10
-6

10
-2

t/M

|| C ||

{N
r 
, L

max
} = {9, 7}

{17, 15}

{21, 19}

{13, 11}

0 100 200 30010
-12

10
-9

10
-6

10
-3

t/M

〈RΨ4〉

Figure 2. Evolution of perturbed Schwarzschild.

methods as described in Ref. [7] for a range of numerical resolutions specified by
Nr (the highest order radial basis function) and Lmax (the highest order spherical-
harmonic). Figure 1 shows the time dependence of the constraint norm ||C|| for
several values of the constraint-damping parameters γ0 and γ2. These tests show
that without constraint damping the extended evolution system is extremely un-
stable, but with constraint damping the evolutions of the Schwarzschild spacetime
are completely stable up to t = 10, 000M (and forever, we presume). These tests
also illustrate that both the γ0 and the γ2 constraint damping terms are essential.

We also tested our new boundary conditions by evolving a black hole per-
turbed by an incoming gravitational wave (GW) pulse. We perturb Schwarz-
schild initial data by injecting a GW pulse through the boundary with time profile

f(t) = A e−(t−tp)2/w2

and A = 10−3, tp = 60M , and w = 10M . Figure 2 shows
the evolution of ||C|| for both constraint-preserving boundary conditions (dashed
curves) and simple boundary conditions that freeze all the incoming characteristic
fields (solid curves). These results illustrate that the new boundary conditions in-
deed prevent the influx of constraint violations. Figure 2 also illustrates the time
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dependence of the Weyl tensor component Ψ4 averaged over the outer bound-
ary of the computational domain. The dashed curve (using constraint-preserving
boundary conditions) shows black-hole quasi-normal oscillations with the correct
complex frequency, while the solid curve (using freezing boundary conditions)
is completely unphysical. These results show that proper constraint-preserving
boundary conditions are essential if accurate gravitational waveforms are needed.

This work was supported in part by a grant from the Sherman Fairchild Foun-
dation to Caltech and Cornell, by NSF grants PHY-0099568, PHY-0244906 and
NASA grants NAG5-10707, NAG5-12834 at Caltech, and by NSF grants PHY-
0312072, PHY-0354631, and NASA grant NNG05GG51G at Cornell.
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The redshift effect and decay rates for the wave equation on a

Schwarzschild exterior

Mihalis Dafermos

(joint work with Igor Rodnianski)

We consider the following problem: Let (M, g) denote the maximally extended
Schwarzschild spacetime [7] with parameter M > 0. Let S denote a complete
Cauchy surface, and consider locally C6 solutions of the wave equation

(1) �gφ = 0

on M, such that φ|S and ∇φ|S decay sufficiently rapidly at spatial infinity. (We
do not assume φ vanishes at the sphere of bifurcation of the event horizon.) The
main result presented in this talk is a set of decay rates for φ and its energy flux

in the closure of the domain of outer communications J+(I−) ∩ J−(I+) ⊂ M. In
particular, the decay rates apply along the event horizon H+.

To state precisely the result, let us introduce some notation: By u and v, we
mean standard Eddington-Finkelstein retarded and advanced time coordinates on
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J+(I−) ∩ J−(I+).1 The origin of these coordinates can be chosen arbitrarily.

Let us set v+ = max{v, 1}, u+ = max{u, 1}. If S′ ⊂ J−(I+) ∩ J+(I−) then
set v+(S′) = max{infS′ v, 1}, u+(S′) = max{infS′ u, 1}. Finally, let Flux(φ,S′)
denote the flux of the energy of φ as measured by the standard static Killing field.

Theorem 1. Let φ be a solution of (1) as described above. For any achronal

hypersurface S′ ⊂ J−(I+) ∩ J+(I−), we have

Flux(φ,S′) ≤ C((v+(S′))−2 + (u+(S′))−2).

(We also allow S′ ⊂ I+, interpreted in the obvious limiting sense.)
In addition, we have the pointwise decay rates

|φ| ≤ Cv−1
+

in J−(I+) ∩ J+(I−), and

|rφ| ≤ CR̂(1 + |u|)− 1
2

in {r ≥ R̂ > 2M} ∩ J+(S).

The result of the above theorem was proven for the 0-th spherical harmonic of
φ in [3], as a special case of a much more general result concerning the collapse
of a self-gravitating scalar field. Partial results in the direction of Theorem 1 are
obtained independently by [1]. The uniform boundedness of φ is a classical result
of Kay and Wald [8].2 Polynomial decay rates of the form proven here were first
heuristically obtained in [9, 6].

The motivation for studying uniform decay rates as in Theorem 1 is discussed
at length in [3, 4, 5]. Briefly, these decay rates are related to astrophysical obser-
vations of black holes, their internal structure, in particular the nature of apparent
horizons and singularities (see [2]), and finally, the possibility of proving non-linear
stability for these spacetimes (see the remarks in [3]).

The proof of Theorem 1 is contained in the preprint [5].
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Singular solutions for the Keller-Segel model of chemotaxis

Juan J. L. Velázquez

The term chemotaxis denotes the tendency of some biological organisms to move
in the direction of increasing gradients of a chemical substance. A system of
equations that describes such phenomenon by means of a simple system of partial
differential equations is the so-called Keller-Segel model. This system describes the
concentration of organisms by means of two variables, namely the concentration
of the organism n and the concentration of chemoattractant substance c. In the
derivation of the Keller-Segel model it is assumed that both the organism and the
chemical substance diffuse in a classical fickian manner. It is also assumed that
the velocity of the organism towards the region having larger concentrations of
chemical is proportional to the gradient of the substance. Under these assumptions
the Keller-Segel system becomes, in suitable dimensionless units to (cf. [4]):

nt = ∆n− χ∇ (n∇c) , x ∈ Ω ⊂ IR2 , t > 0(1)

ct = D∆c+ n− αc , x ∈ Ω ⊂ IR2 , t > 0(2)

On the other hand, if the diffusivity of the chemical is much larger than the
diffusivity of the microorganism, the Keller-Segel model reduces to the following
elliptic-parabolic system (cf. [5]):

nt = ∆n− χ∇ (n∇c) , x ∈ Ω ⊂ IR2 , t > 0(3)

0 = ∆c+ n− n̄ , x ∈ Ω ⊂ IR2 , t > 0(4)

where n̄ is the mean value of n in the domain Ω.

The first rigorous proof of the existence of singularities for chemotaxis models
was obtained in [5]. On the other hand, a detailed construction of solutions of the
systems (1), (2) or (3), (4) yielding Dirac mass formation in finite time might be
found in the references [1], [2], [3].

In my talk I review the singularity formation results contained in these articles. I
will describe also some recent results derived using matched asymptotic expansions
that show how to continue the solutions of the system (3), (4) beyond the time of
formation of the singularity. Such arguments, indicate that the solutions of (3),
(4) can be extended as some singular solutions including a regular, bounded part
nreg (x, t) plus a set of Dirac masses. The regular part of the solution and the
Dirac mass part solve the following system of equations (cf. [6], [7]):
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∂nreg

∂t
= ∆nreg +

N
∑

j=1

Mj (t)

2π

(x− xj (t))

|x− xj (t)|2
· ∇nreg −∇ (nreg∇creg)(5)

creg = − 1

2π

∫

IR2

log (|x− y|)nreg (y, t) dy(6)

ẋi (t) = Γ (Mi (t))Ai (t) , i = 1, ..., N(7)

Ai (t) = −
N

∑

j=1

Mj (t)

2π

(x− xj (t))

|x− xj (t)|2
+ ∇creg (xi (t) , t)(8)

dMi (t)

dt
= creg (xi (t) , t)Mi (t) , i = 1, ..., N(9)

where

n (x, t) =

N
∑

i=1

Mi (t) δ (x− xi (t)) + nreg (x, t)

The well-posedness of the system (5)-(9) in Hölder spaces has been obtained in
[8].
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The Einstein-scalar field constraint equations on compact manifolds

Daniel Pollack

(joint work with Yvonne Choquet-Bruhat and James Isenberg)

This focus of this talk is on the constraint equations for the Einstein-scalar field
system on compact manifolds. Using the conformal method we reformulate these
equations as a determined system of nonlinear partial differential equations. We
contrast the difficulties encountered between analyzing this system and systems
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obtained from either the vacuum constraint equations of other matter/field models,
e.g. the Einstein-Maxwell system. By introducing a new conformal invariant,
which is sensitive to the presence of the initial data for the scalar field, we are
able to divide the set of free conformal data into subclasses depending on the
possible signs for the coefficients of terms in the resulting Einstein-scalar field
Lichnerowicz equation. For most of these subclasses we determine whether or not
a solution exists. We consider this system in such generality so as to include the
vacuum constraint equations with an arbitrary cosmological constant, the Yamabe
equation and even (all cases of) the prescribed scalar curvature problem as special
cases.

The field variables for an Einstein-scalar field theory consist of a spacetime
metric g and a real-valued scalar field Ψ, both specified on an (n+ 1)-dimensional
spacetime manifold M . The coupling of a scalar field to the Einstein gravitational
field theory does not add any new constraint equations to the theory. We have
the usual Hamiltonian and momentum constraints, but with added scalar field
source terms. Writing these out in terms of the n + 1 decomposition fields on
an n-dimensional spacelike hypersurface Σ {γ̄ (the spatial metric), K̄ (the second
fundamental form, or extrinsic curvature), ψ̄ (the scalar field restricted to Σ), π̄
(the normalized time derivative of Ψ restricted to Σ)} we have

R(γ̄) − |K̄|2γ̄ + (tr K̄)2 = π̄2 + |∇ψ̄|2γ̄ + 2V (ψ̄)(1)

divγ̄K̄ −∇(tr K̄) = −π̄∇ψ̄,(2)

where all derivatives and norms are taken with respect to the metric γ̄ on Σ.
Here V (·) is the potential of our scalar field, a priori this is an arbitrary smooth
function. These constraints are to be solved for the Cauchy data (γ̄, K̄, ψ̄, π̄) on a
chosen n-dimensional manifold Σ.

We use the conformal method is to recast the constraint equations (1)-(2) into
a form which is more amenable to analysis, by splitting the Cauchy data into (i)
the “conformal data”, which one can choose freely, and (ii) the “determined data”,
which is determined by solving the recast constraints. For the gravitational data,
one achieves an optimal form via the decomposition of the covariant 2-tensors

γ̄ = φ
4

n−2 γ and K̄ = φ−2(σ + DW ) +
τ

n
φ

4
n−2 γ

where the conformal data consists of a Riemannian metric γ = γab, a symmetric
tensor σ = σab which is divergence-free and trace-free with respect to γ (so that
σ is what is commonly referred to as a TT-tensor) and a scalar τ representing
the mean curvature of the Cauchy surface Σ in the resulting spacetime; while the
determined data consists of the positive function φ and the vector field W = W a.
Here the operator D is the conformal Killing operator relative to γ, defined by
(DW )ab := ∇aWb +∇bWa− 2

nγab∇mW
m, where ∇ is the covariant derivative for

the metric γ. The kernel of D consists of conformal Killing fields. We decompose
the scalar field initial data (ψ̄, π̄) as follows:

ψ̄ = ψ and π̄ = φ−
2n

n−2π.
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Combining these decompositions of the gravitational and the scalar field data, we
write out the conformal form of the constraint equations as follows:

(3)
∆γφ− n−2

4(n−1)

(

R(γ) − |∇ψ|2γ
)

φ + n−2
4(n−1)

(

|σ + DW |2γ + π2
)

φ−
3n−2
n−2

− n−2
4(n−1)

(

n−1
n τ2 − 4V (ψ)

)

φ
n+2
n−2 = 0.

(4) divγ(DW ) =
n− 1

n
φ

2n
n−2∇τ − π∇ψ.

The operator divγ◦D appearing in (4) is a second order, self-adjoint, linear, elliptic
operator whose kernel consists of the space of conformal Killing vector fields on
(Σ, γ). It follows that for a given set of functions (φ, τ, ψ, π) we may solve (4)

provided n−1
n φ

2n
n−2∇τ −π∇ψ is orthogonal to this space. The resulting solution is

unique if and only if the space of conformal Killing vector fields on (Σ, γ) is empty.
To facilitate our subsequent discussion of (3) we make the following definitions.

We set cn = n−2
4(n−1) and let

Rγ,ψ = cn
(

R(γ) − |∇ψ|2γ
)

, Aγ,W,π = cn
(

|σ + DW |2γ + π2
)

and

Bτ,ψ = cn

(

n− 1

n
τ2 − 4V (ψ)

)

.

We may then rewrite the Lichnerowicz equation (3) for the Einstein-scalar confor-
mal data (γ, σ, τ, ψ, π) with a given vector field W satisfying (4) as

(5) ∆γφ−Rγ,ψ φ+ Aγ,W,π φ
− 3n−2

n−2 − Bτ,ψ φ
n+2
n−2 = 0.

We denote the conformal class of the metric γ by [γ]. The Yamabe-scalar field
conformal invariant is then defined by

Yψ([γ]) = inf
u∈H1(Σ)

Qγ,ψ(u) = inf
u∈H1(Σ)

c−1
n

∫

Σ

[|∇u|2γ + cn
(

R(γ) − |∇ψ|2γ
)

u2] dηγ

(
∫

Σ

u
2n

n−2 dηγ

)

n−2
n

.

Yψ([γ]) is independent of the choice of background metric in the conformal class
used to define it, and is therefore an invariant of the conformal class. Using
Hölder’s inequality we observe that |

∫

Σ(R(γ) − |∇ψ|2γ)u2] dηγ | ≤ c‖u‖2
pn

for some
constant c independent of u. This shows that Yψ([γ]) > −∞. The following
proposition may be proved in an analogous way to the well known result for the
usual Yamabe conformal invariant (when ψ ≡ 0).

Proposition 1. The following conditions are equivalent:

(i) Yψ([γ]) > 0 (respectively = 0, < 0).

(ii) There exists a metric γ̃ ∈ [γ] which satisfies (R(γ̃)−|∇̃ψ|2γ̃) > 0 everywhere

on Σ (respectively = 0, < 0).
(iii) For any metric γ̃ ∈ [γ], the first eigenvalue, λ1, of the self-adjoint, elliptic

operator −Lγ̃,ψ is positive (respectively zero, negative).
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Our main focus is determining which sets of vacuum CMC conformal data
permit the vacuum Lichnerowicz equation to be solved and which do not. For
the Einstein-scalar case, the classification of the data is complicated, primarily
because there are more relevant possibilities for the signs of the coefficients in (3).
We collect the results of our analysis, in the cases where B does not change sign, in
the following two tables, where “Y” indicates that the Lichnerowicz equation can
be solved for that class of conformal data, “N” indicates that the corresponding
Lichnerowicz equation has no positive solution, “PR” indicates that we have partial
results and “NR” indicates that for this class of initial data we have no results
indicating existence or non-existence.

Bτ,ψ < 0 Bτ,ψ ≤ 0 Bτ,ψ ≡ 0 Bτ,ψ ≥ 0 Bτ,ψ > 0

Yψ([γ]) < 0 N N N PR Y
Yψ([γ]) = 0 N N Y N N
Yψ([γ]) > 0 PR PR N N N

Table 1: Results for Aγ,W,π ≡ 0 and Bτ,ψ of determined sign.

Bτ,ψ < 0 Bτ,ψ ≤ 0 Bτ,ψ ≡ 0 Bτ,ψ ≥ 0 Bτ,ψ > 0

Yψ([γ]) < 0 N N N PR Y
Yψ([γ]) = 0 N N N Y Y
Yψ([γ]) > 0 PR NR Y Y Y

Table 2: Results for Aγ,W,π 6≡ 0 and Bτ,ψ of determined sign.
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Angular momentum–mass inequality for axisymmetric black holes

Sergio Dain

In this talk I prove that extreme Kerr is a strict absolute minimum of the total
mass in an appropriately defined Banach space. As a consequence, we obtain that
any vacuum, maximal, asymptotically flat, axisymmetric initial data for Einstein
equations in this space satisfy the inequality

√

|J | ≤ m,
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where m and J are the total mass and angular momentum of the data.

Multipole radiation in systems of collisionless gases

Sebastian Bauer

(joint work with Markus Kunze, Gerhard Rein, Alan D. Rendall)

In this talk I report on some recent results obtained in [4]. That contribution is
concerned with the mathematical properties of certain models for the interaction
of matter, described by a kinetic equation, with radiation, described by hyper-
bolic equations. The first model, the relativistic Vlasov-Maxwell system, plays
an important role in plasma physics. The motivation for studying the second
model, the Vlasov-Nordström system, comes from the theory of gravitation. On a
mathematical level the Vlasov-Maxwell system can also give insights into gravity.

The most precise existing theory of gravitation, general relativity, predicts that
certain astrophysical systems, such as colliding black holes or neutron stars, will
give rise to gravitational radiation. There is a major international effort under
way to detect these gravitational waves [6]. In order to relate the general theory
to predictions of what the detectors will see it is necessary to use approxima-
tion methods - the exact theory is too complicated. The mathematical status of
these approximations remains unclear although partial results exist. This paper is
intended as a contribution to understanding the mathematical structures involved.

Since the solutions of the equations of general relativity are so difficult to analyze
rigorously it is useful to start with model problems. One possibility is the scalar
theory of gravitation considered here, the Vlasov-Nordström theory [5]. It has
already been used as a model problem for numerical relativity in [9].

Among the approximation methods used to study gravitational radiation those
which are most accessible mathematically are the post-Newtonian approximations.
Some information on these has been obtained in [7] and [8]. Results which are
analogous to these but go much further have been obtained for the Vlasov-Maxwell
and Vlasov-Nordström systems in [3], [1] and [2] respectively. Only the last of these
results include radiation explicitly. Here we take a another step in doing so. For
the case of finite particle systems interacting with their self-induced fields there
are several rigorous results concerning radiation; see [10] for an up-to-date review.

The main results [4, Theorem 1.4 and Theorem 1.9] are relations between
the motion of matter and the radiation flux at infinity for the Vlasov-Maxwell
and Vlasov-Nordström systems respectively. They are analogues of the Einstein
quadrupole formula [11, (4.5.13)] which is a basic tool in computing the flux of
gravitational waves from a given source. In the case of the Einstein and Maxwell
equations a spherically symmetric system does not radiate. For the Vlasov-
Nordström system a spherical system can radiate and the specialization of the
general formula to that case is computed. In [9] a difference between the spheri-
cally symmetric and the general case was claimed but we have not succeeded in
connecting this to our results. The main theorems are obtained under plausible
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assumptions on the behavior of global solutions of the relevant system ([4, As-
sumption 1.1 and Assumption 1.6]). The former can be proved to hold in the case
of small data.

For the systems we are going to consider the (scalar) energy density e and the
(vector) momentum density P are related by the conservation law

∂te+ ∇ · P = 0.

Defining the local energy in the ball of radius r > 0 as

Er(t) =

∫

|x|≤r

e(t, x) dx,

this conservation law and the divergence theorem imply that

d

dt
Er(t) =

∫

|x|≤r

∂te(t, x) dx = −
∫

|x|≤r

∇ · P(t, x) dx = −
∫

|x|=r

x̄ · P(t, x) dσ(x),

where x̄ = x
|x| denotes the outer unit normal. More specifically, for the relativistic

Vlasov-Maxwell system with two particle species,

eRVM(t, x) = c2
∫

√

1 + c−2p2 (f+ + f−)(t, x, p) dp

+
1

8π

(

|E(t, x)|2 + |B(t, x)|2
)

,

PRVM(t, x) = c2
∫

p(f+ + f−)(t, x, p) dp+
c

4π
E(t, x) ×B(t, x),

whereas for the Vlasov-Nordström system,

eVN(t, x) = c2
∫

√

1 + c−2p2 f(t, x, p) dp+
c2

8π

(

(∂tφ(t, x))2 + c2|∇φ(t, x)|2
)

,

PVN(t, x) = c2
∫

pf(t, x, p) dp− c4

4π
∂tφ(t, x)∇φ(t, x).

Here f+ and f− are the phase space distributions of positive and negative charges
respectively, E and B are the electromagnetic fields; f is the phase space distri-
bution of the gravitating matter and φ is the scalar gravitational potential. The
assumptions on the support of the distribution function are such that the contri-
butions of

∫

p(f+ + f−) dp to PRVM and
∫

pf dp to PVN vanish for |x| = r large.
Hence

d

dt
ERVM
r (t) =

c

4π

∫

|x|=r

x̄ · (B × E)(t, x) dσ(x)

for the relativistic Vlasov-Maxwell system, and

d

dt
EVN
r (t) =

c4

4π

∫

|x|=r

x̄ · (∂tφ∇φ)(t, x) dσ(x)

for the Vlasov-Nordström system.
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The main results of [4] are concerned with the expansion of these energy fluxes
for r, c→ ∞ and |t− c−1r| ≤ const. Under suitable assumptions it is proved that,
to leading order,

d

dt
ERVM
r (t) ∼ − 2

3c3
|∂2
tD(u)|2,

where u = t − c−1r denotes the retarded time and D(u) =
∫

xρ0(u, x) dx is the
dipole moment associated to the Newtonian limit of the relativistic Vlasov-Maxwell
system. Similarly,

d

dt
EVN
r (t) ∼ − 1

4πc5

∫

|ω|=1

(

∂tR(ω, u)
)2
dσ(ω),

with a more complicated radiation term R associated to the Newtonian limit of the
Vlasov-Nordström system. In the spherically symmetric case, ∂tR(ω, u) is found
to be proportional to ∂tEkin(u), the change of kinetic energy of the Newtonian
system. The exact statements are contained in [4, Theorems 1.4 and 1.6].
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On the Positive Mass Conjecture in higher dimensions

Anda Degeratu

(joint work with Mark Stern)

In the context of general relativity, it has been proved [4, 5, 3] that the total mass of
an isolated system is never negative, provided that the sources of the gravitational
field consist of matter with positive mass density moving no faster than light and
that spacetime is asymptotically flat.

In 1961 Arnowitt, Desser and Misner introduced the mass of an asymptotically
flat hypersurface in spacetime [1]; their definition extends to higher dimension.
A non-compact Riemannian manifold (Mn, g) is asymptotically flat if, outside a
compact set, the metric asymptotically approaches the Euclidean metric on R

n.
This means that at infinity gij = δij + O(r−n+2), with appropriate decay for the
derivatives of g. The mass of M is defined to be

(1) m(M, g) =
1

16π
lim
r→∞

∫

Sr

(∂igij − ∂jgii)dΩ
i,

where Sr denotes the sphere of radius r in the coordinate system at infinity.

Positive Mass Conjecture. If (Mn, g) is an asymptotically flat manifold of
dimension n ≥ 3 and the scalar curvature is positive, then the mass is positive.
Moreover, the mass vanishes if and only if (Mn, g) is isometric to (Rn, eucl).

In the case n = 3 this conjecture was proved by Schoen and Yau in 1979 using
minimal surfaces techniques. Their proof generalizes inductively up to dimension
n ≤ 7. The reason for which it cannot be pushed further is that for manifolds of
dimension 8, minimal representatives of classes in Hn−1(M) have singularities in
codimension 7. Recently Lohkamp announced a strategy to deal with this kind of
singularities.

In 1981 Witten gave another proof of the conjecture in the case n = 3 using
a spinorial approach, [5]. A rigorous mathematical interpretation was given by
Parker and Taubes [3]. This proof generalizes to all asymptotically flat manifolds
with positive scalar curvature [2].

In this talk I reported on a possible approach towards solving the conjecture
in higher dimension, based on Witten’s spinorial proof. Unlike the case of 3-
manifolds, a higher dimensional manifold need not be spin. The obstruction to
having a spin structure on an oriented Riemannian manifold is given by the sec-
ond Stiefel-Whitney class. Our idea is to cut the manifold M , replace it with an
incomplete manifold M \ V with a spin structure, and consider the corresponding
Dirac operator. The challenge is to find the right way to do the analytical manip-
ulations near V so that the positivity of the mass be obtained through a similar
argument as in Witten’s proof.
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On uniqueness and stability for supercritical nonlinear wave and

Schrödinger equations

Michael Struwe

The results we present below are described in detail in the forthcoming paper [11].
They extend previous results from [10].

Consider the Cauchy problem for the equation

(1) utt − ∆u+mu+ f(u) = 0 on R × R
n

with data

(2) (u, ut)|t=0
= (u0, u1) ∈ C∞

0 × C∞
0 (Rn),

where m ≥ 0 and where f = F ′ for some C2-function F : R → R satisfying

(3) 0 ≤ uf(u) ≤ CF (u)

with some uniform constant C. Moreover, we request polynomial type behavior
in the sense that for all R > 0 there exist numbers ε = ε(R) > 0, C = C(R) such
that the conditions

(4) F (u + w) − F (u) − f(u)w ≥ εF (w) − C|w|2

as well as

(5) F (u+ w) − F (u) − f(u)w ≤ CF (w) + C|w|2

and

(6) |f(u+ w) − f(u) − f ′(u)w| ≤ CF (w) + C|w|2

hold true for all w whenever |u| ≤ R. Clearly, we may assume that ε ≤ 1. The
conditions (3)-(6) are satisfied for F (u) = |u|p for any p ≥ 2; however, they fail to

hold for example when F (u) = eu
2 − 1.

For classical solutions u of (1), upon multiplying equation (1) by ut and inte-
grating over any time-slice [0, t] × R

n, one easily finds the energy identity

(7) E(u(t)) =

∫

{t}×Rn

( |Du|2 +mu2

2
+ F (u)

)

dx = E(u(0)),

where Du = (ut,∇u) is the space-time gradient. Moreover, these solutions have
spatially compact support and therefore together with their derivatives are uni-
formly bounded on any such time-slice.
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In the case of nonlinearities with “supercritical” growth the Cauchy problem (1),
(2) is not known to admit global smooth solutions. However, by results of Segal
[6], Lions [5], and Strauss [8], assuming (3) we always can obtain weak solutions
to this equation with Du,mu ∈ L∞(R;L2(Rn)) and with F (u) ∈ L∞(R;L1(Rn)),
satisfying the equation (1) in the sense of distributions and such that the energy
inequality

(8) E(u(t)) ≤ E(u(0))

holds for all t; see for instance [7], Chapter 6.2, or [9], Theorem 3.1. We call
such solutions “of energy class”. Note that the map t 7→ Du(t) ∈ L2(Rn) is
weakly continuous for energy class solutions u of (1). The condition (8) and strict
convexity of the L2-norm then imply that the initial data are continuously attained
in the H1-norm.

We now have the following stability result for smooth solutions – whenever they
exist – within the a priori much larger class of distribution solutions of (1), (2)
satisfying (8).

Theorem 1. Suppose u ∈ C∞(R×R
n) is a classical solution to problem (1), (2),

where f satisfies (3) - (6). For (v0, v1) ∈ H1 × L2(Rn) with F (v0) ∈ L1(Rn) let
v be an energy class solution to (1) with Cauchy data (v, vt)|t=0

= (v0, v1) and
satisfying the energy inequality

(9) E(v(t)) ≤ E(v(0)) for all t.

Then, letting w = v− u, if m > 0 and if u in addition is uniformly C1-bounded in
space-time, for all t ≥ 0 with constants Ci = Ci(u) we have the estimate

(10) E(w(t)) ≤ C1e
C2tE(w(0)).

If m = 0 or if u fails to be uniformly bounded, for any time T > 0 and any
0 ≤ t ≤ T with a constant C = C(u, T ) there holds

(11) E(w(t)) + ||w(t)||2L2 ≤ C(E(w(0)) + ||w(0)||2L2).

In particular, we obtain the following uniqueness result.

Theorem 2. Suppose u ∈ C∞(R×R
n) is a classical solution to equation (1) with

Cauchy data (u, ut)|t=0
= (u0, u1) ∈ C∞

0 × C∞
0 (Rn), where f satisfies (3) - (6).

Also let v be an energy class solution to (1), (2), satisfying (8). Then u ≡ v.

Theorem 2 is similar to the uniqueness result of Ladyzenskaya for the Navier-
Stokes equations [4]. Moreover, Theorems 1, 2 are related to results of Dafermos
[1] and DiPerna [3] for hyperbolic systems of conservation laws; see also Dafermos
[2], Chapter 5.3. Note, however, that in contrast to [2] we do not require the energy
to be non-increasing in forward time. Thus, whenever the Cauchy problem (1), (2)
admits a smooth solution, Theorem 2 also can be used to establish convergence in
the energy norm of standard approximation schemes for equation (1), which often
yield weak solutions of energy class; see [11] for details.

The proofs of Theorems 1 and 2 are straightforward and, hopefully, can be
carried over to other settings.
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Accelerated expansion from pure gravity in higher dimensions

J. Mark Heinzle

(joint work with Lars Andersson)

A simple way of modeling accelerated expansion in cosmology is to consider grav-
ity coupled to matter described by nonlinear scalar fields (inflaton, quintessence,
k-essence, . . . ). Nonlinear scalar fields arise rather naturally from the dimensional
reduction of supergravity models which are based on string theory or M-theory.
It is thus natural to consider the dimensional (Kaluza-Klein) reduction of a D-
dimensional spacetime (where typically D = 10 or D = 11) and to investigate
whether the dimensionally reduced spacetime (a four-dimensional spacetime with
nonlinear scalar field) exhibits phases of accelerated expansion.

Townsend and Wohlfarth [1] have shown that the reduction of a D-dimensional
vacuum spacetime, given by the warped product of a four-dimensional flat Fried-
mann model and a hyperbolic internal space, leads to a transient phase of accel-
eration. In [2] it has been shown that it is possible to obtain late time accelerated
expansion, if the four-dimensional model is a κ = −1 Friedmann model. In subse-
quent papers the dependence of the results on the dimension D was noted and the
considerations were extended to multiply warped product spacetimes [3, 4, 5, 6].

Here we restrict our attention to the simple case of D-dimensional vacuum dou-
bly warped spacetimes. The method of scale invariant dynamics enables us to
discuss the problem in a systematic way: we can give a comprehensive descrip-
tion of the global dynamics of the D-dimensional spacetimes and their dimensional
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reduction. In particular, we are able to prove that there exists a unique dimension-
ally reduced model with eternal acceleration. Generic models exhibit a transient
phase of acceleration, late-time acceleration, or no accelerated expansion at all.

Let (M, g) and (N, h) be Einstein manifolds of dimension m and n with

(1) Ric[g] = kg(m+ n− 1)g , Ric[h] = kh(m+ n− 1)h ;

kg and kh are constants; we set kg = kh = −1. On the D = 1+m+n dimensional
spacetime R ×M ×N consider a metric of the form of a doubly warped product

(2) −dt2 + a2(t) g + b2(t)h ;

a > 0, b > 0. We introduce scale invariant variables according to

(3) P = − ȧ

aH
, Q = − ḃ

bH
, A = − 1

aH
, B = − 1

bH
,

where H is the mean curvature, H = −mȧ/a−n ḃ/b. The D-dimensional vacuum
equations lead to the evolution equations,

A′ = A [P − (mP 2 + nQ2)] , B′ = B [Q− (mP 2 + nQ2)](4a)

P ′ = P [1 − (mP 2 + nQ2)] + (m+ n− 1)kgA
2 ,(4b)

Q′ = Q [1 − (mP 2 + nQ2)] + (m+ n− 1)khB
2 ,(4c)

which are supplemented by two constraint equations, C1 = mP + nQ− 1 = 0,

(5) C2 = (mP 2 + nQ2) − (m+ n− 1)(kgmA
2 + khnB

2) − 1 = 0 .

A prime denotes differentiation w.r.t. the time τ , given by ∂τ = H−1∂t. Note that
with our conventions H < 0, hence by introducing τ we have the singularity to
the future. The equation for H decouples from (4), H ′ = H(mP 2 + nQ2).

The state space {(A,B, P,Q) | (C1 = 0) ∧ (C2 = 0) ∧ (A > 0) ∧ (B > 0)
}

has
compact closure. Due to its regularity the system (4) can be smoothly extended
to also include A = 0 and B = 0. The equations on A = 0 (respectively B = 0)
can be interpreted as the system of equations that arises when the first factor
(respectively the second factor) of the metric (2) is Ricci flat. This is because
setting A = 0 in (4) and (5) corresponds to setting kg = 0 and discarding the
decoupled equation for A. The method of scale invariant dynamics thus allows for
the simultaneous treatment of all cases kg ≤ 0, kh ≤ 0.

The system (4) can be analyzed with dynamical systems methods. The attract-
ing set consists of five fixed points: (F1) and (F2), which are local sinks, (FA) and
(FB), which are saddles, and (F∗), which is the global source. Orbits converging to
(F1,2) as τ → ∞ represent solutions that are asymptotically Kasner, i.e., a ∝ tp,
b ∝ tq as t→ 0, where mp+nq = 1, mp2 +nq2 = 1. Orbits converging to (FA) are
associated with solutions a → const, b ∝ t; orbits converging to (F∗) as τ → −∞
lead to Friedmann type solutions, a ∝ b ∝ t as t → ∞. A schematic depiction of
the global dynamics is given in Fig. 1(a).

Dimensional (Kaluza-Klein) reduction transforms a D = 1+m+n dimensional
vacuum spacetime (R×M×N), cf. (2), to a (1+m)-dimensional spacetime R×M
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Figure 1. Schematic of the flow on the state space and the do-
main of acceleration; D = 1 +m+ n ≥ 10.

with metric γ and nonlinear scalar field ϕ. We find that

(6) γ = b2n/(m−1)(−dt2 + a2g) = −dt̄2 +
(

abn/(m−1)
)2

g = −dt̄2 + ā2 g

with ā = abn/(m−1), and ϕ = (8π)−1/2 (m + n − 1) (m − 1)−1 log b; the energy-
momentum tensor of ϕ is that of a scalar field with the nonlinear potential V (ϕ),

V (ϕ) ∝ exp(−2
√

8π n1/2(m−1)−1/2(m+n−1)1/2ϕ). The spacetime (R×M,γ, ϕ)
is a solution of the Einstein nonlinear scalar field equations.

By construction, every orbit in Fig. 1(a) corresponds to a solution (R×M,γ, ϕ),
where ā = abn/(m−1) is determined via (3). A simple calculation shows that
dā/dt̄ = (m − 1)−1[1 − P ]/A > 0, since P < 1 from (5). Further differentiation
leads to

(7)
d2ā

dt̄2
=
ab−n/(m−1)

m− 1
H2

[

− (1 − P )2 − (m+ n− 1)
(

kg(m− 1)A2 + khnB
2
)

]

.

There exists a domain A in the state space such that

(8)
d2ā

dt̄2
> 0 for all (A,B, P,Q) ∈ A .

The domain A is the domain of acceleration, depicted in Fig. 1(b): whenever an
orbit passes through this domain, the cosmological model (R×M,γ) it represents
undergoes accelerated expansion. In particular we can prove the following

Theorem 1 (Existence and uniqueness of eternal acceleration). Let D ≥ 10 (with
(m,n) 6= (2, 7)). Then there exists a unique solution γ = −dt̄2+ā2g of the (1+m)-
dimensional Einstein equations (with nonlinear scalar field ϕ) arising from the
dimensional reduction of a (1 + m + n)-dimensional vacuum solution, such that
d2ā/dt̄2 > 0 for all t̄.
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For the proof of the theorem we show that the orbit connecting (FB) with (F∗)
lies entirely in A. Since (FB) is a saddle it follows immediately that there cannot
exist any other orbit with the same property.

Superimposing Figs. 1(a) and 1(b) we can read off if a generic orbit leads to a
cosmological model exhibiting accelerated expansion. For instance, the orbit (F1)–
(FA) on the boundary A = 0 leads to a (Ricci flat) model with a transient phase
of acceleration; this model is the one originally described in [1]. It would be of
interest to quantify how much accelerated expansion one can actually obtain, e.g.,
to compute the number of e-foldings for the models. Furthermore, a generalization
of the formalism to the case of multiply warped product metrics suggests itself.
Whether the resulting dynamical system can be treated by simply generalizing the
present methods (especially in view of the global dynamics and the methods used
in proof of the theorem) remains to be seen.
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A brief history of the 2–body problem in numerical relativity

Matthew W. Choptuik

Following a very brief synopsis of numerical work on the collision of two black holes
(∼1970 – 2005) I focused on Pretorius’ new “Generalized Harmonic Code” and
results obtained over the last year or so with that code. These results include the
late stages of inspiral (currently, up to four-and-a-half orbits), followed by merger
and ringdown to a final Kerr hole, as well as axisymmetric collisions between a
black hole and a relativistic (but not especially compact) (mini-)boson star (i.e.
the complex boson field φ satisfies �φ = m2φ, with m the bosonic [particle] mass).
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Accelerated cosmological expansion and k-essence

Alan D. Rendall

An important recent development in cosmology is the realization that the expan-
sion of our universe is accelerating. The cause of this is not known and many
mechanisms have been proposed in the literature. The simplest of these arises for
the Einstein equations with normal matter in the presence of a positive cosmo-
logical constant Λ. There are several mathematical results on this situation. In
particular there is a nice theorem due to Wald [6] in the homogeneous case. It
applies to solutions which are forever expanding. This includes most homogeneous
models, more specifically the Bianchi models of types I-VIII which are expanding
at some time. Any kind of matter which satisfies the dominant and strong en-
ergy conditions is allowed. Global solutions isotropize and their spatial curvature
becomes negligible, as does the energy density of normal matter. For interesting
classes of matter such as perfect fluids and collisionless matter this result can be
extended. Global existence can be proved and details of the late-time behaviour
obtained. In these spacetimes the expansion is exponential.

Among more general models leading to accelerated expansion the simplest and
most frequently studied are based on a nonlinear scalar field φ with potential
V . These are sometimes known under the name quintessence. Whether or not
accelerated expansion is obtained depends on the form of V . The only result on
existence of models without symmetry which have certain asymptotics is that of
[2]. It applies to certain exponential potentials. In the homogeneous case much
more is known. One important class of models is that where the potential has a
strictly positive lower bound. In that case the direct analogue of Wald’s theorem
holds and the late-time expansion is exponential. The value of the potential at
the minimum determines the exponent. Another class which frequently occurs is
where the potential is positive but tends to zero at infinity. If it goes to zero
slower than any exponential then an analogue of Wald’s theorem holds, with the
expansion being faster than any power and no faster than exponential. Detailed
asymptotics can be obtained using the slow-roll approximation [3].

The standard Lagrangian for a nonlinear scalar field is L = −V (φ) +X , where
X = −∇αφ∇αφ/2. The generalization where L = L(φ,X) for some nonlinear
function L of φ and X is known as k-essence [1]. The k in the name stands for
kinetic. The equation of motion is
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The mathematical properties of solutions of the Einstein equations coupled to k-
essence and ordinary matter were recently examined in [4]. A basic problem, which
has already been solved, is what conditions on L are necessary for the equation
of motion of φ to be hyperbolic. In that case the Einstein equations coupled to
k-essence are also hyperbolic. It is also known for which choices of L superluminal
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propagation is possible. The dominant, strong and weak energy conditions have
been analysed for this class of matter models.

In the homogeneous case statements can be obtained about the late-time dy-
namics. The first goal is, as in the simpler models, to obtain analogues of Wald’s
theorem. This has been done for class of models which generalize quintessence
models with a positive lower bound for the potential. It should also be possible
to obtain results for a situation like that of quintessence with a potential which
tends to zero at infinity. These are not, however, the most interesting classes of
k-essence models. These models were originally introduced as a way of getting so-
lutions with qualitative properties different from those of previously known cases.
Here it typically happens that X does not go to zero as t → ∞. Results on so-
lutions with this kind of behaviour were obtained in [4]. Unfortunately they do

not apply to the case where L(φ,X) = φ−2L̃(X) which are of particular interest
in applications and here more work is required.

One reason why models in the restricted case just mentioned are difficult to
handle is that they are expected to exhibit power-law expansion. It is known from
the study of quintessence, where power-law expansion corresponds to an exponen-
tial potential, that this is more difficult to treat than faster (e.g. exponential)
expansion. Even the case of quintessence with a potential which is asymptotically
exponential but not exactly exponential had not been treated until very recently.
A result of this kind was obtained as a by-product of the work on k-essence in
[4]. For an exactly exponential potential V (φ) = V0e

−kφ accelerated expansion is
obtained if the positive exponent k is less than 4

√
π. In [4] it was shown that the

same holds true for potentials which are asymptotically exponential in a suitable
sense under the stronger restriction that that the asymptotic exponent is less than
4
√

π/3.
In [4] it was assumed for simplicity that all models considered satisfied the dom-

inant energy condition. After this work was completed the author discovered a
paper of Vikman [5] which explores what happens in the absence of this assump-
tion. It is easy to see that there are Lagrangians L for which the dominant energy
condition is not always satisfied. An interesting question which is motivated by
the observational data is whether a solution can evolve from a regime in which
the dominant energy condition is satisfied to one in which it is not. The results of
[5] indicate that under reasonable physical assumptions a transition of this kind
is not possible. Depending on the choice of L there may be no solutions at all ex-
hibiting a transition of this kind or those which do may be unstable with respect
to homogeneous or inhomogeneous perturbations.

The results discussed above seem like only small forays into the unknown ter-
ritory of k-essence models. A comprehensive overview of the terrain is not yet
available. It is a challenge for the future to obtain one. There are also many more
models of accelerated expansion which remain to be understood mathematically.
For instance the k-essence scalar field can be replaced by several coupled scalar
fields. Other kinds of fields can be coupled to the Einstein equations and theories
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of gravity other than Einstein’s can be investigated. Clearly many things remain
to be explored.
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