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Abstract. All up-to-date engineering applications of advanced multi-phase
materials necessitate a concurrent design of materials (including composition,
processing routes, microstructures and properties) with structural compo-
nents. Simulation-based material design requires an intensive interaction of
solid state physics, material physics and chemistry, mathematics and informa-
tion technology. Since mechanics of materials fuses many of the above fields,
there is a pressing need for well founded quantitative analytical and numeri-
cal approaches to predict microstructure-process-property relationships tak-
ing into account hierarchical stationary or evolving microstructures. Owing
to this hierarchy of length and time scales, novel approaches for describing/
modelling non-equilibrium material evolution with various degrees of resolu-
tion are crucial to linking solid mechanics with realistic material behavior.
For example, approaches such as atomistic to continuum transitions (scale
coupling), multiresolution numerics, and handshaking algorithms that pass
information to models with different degrees of freedom are highly relevant
in this context. Many of the topics addressed were dealt with in depth in this
workshop.
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Introduction by the Organisers

The workshop Mechanics of Materials, organised by Reinhold Kienzler (Bremen),
David L. McDowell (Atlanta) and Ewald A. Werner (München) was held January
22nd–January 28th, 2006. The workshop attracted some 40 participants with a
wide geographic spread. Special attention was devoted to increasing the partici-
pation of younger members of the related research community.
Mechanics of Materials is a broad, interdisciplinary subject that focusses on the
intersection of Applied Mathematics, Continuum Mechanics, Material Physics and
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applications. To address important, emerging topics related to these interdiscipli-
nary areas, several themes were pursued in distinct sessions, each with keynote
addresses and extended discussions. The following main topics were treated:

• Emerging topics at the interface of Mechanics of Materials and Materials
Science

• Inhomogeneous materials and phase transformations
• Configurational Mechanics
• Atomistic and discrete modelling approaches to defects and defect struc-

tures
• Mathematical modelling new materials and engineering applications
• Elasticity, Plasticity and time dependent material behavior

Although these fields appear to be quite unconnected, certain physical properties
and numerous mathematical approaches were identified as common structures.
This includes basic balance and conservation laws as well as variational principles
for establishing and solving the evolving partial differential equations. Bridging
scales from electrons to macroscopic structures by various consistent methods we
were able to arrive at a more complete picture of modelling material behavior and
the associated mathematical challenges.
The unique atmosphere at the Institute offered an extraordinary opportunity for
intense, amiable exchange of currently emerging, detailed and conceptual ideas.
The significant amount of time devoted to fruitful discussion is certainly an element
that made this meeting in Oberwolfach distinct from other outstanding technical
venues. Many new collaborative relationships were initiated.
The following abstracts very well summarize both the keynote lectures and the
additional contributions to the discussion.
It was our great pleasure to celebrate during an informal gathering the 50th an-
niversary of Horst Lippmann as participant, organizer and long-term intellectual
contributor to many Oberwolfach workshops.
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Abstracts

State of the art in engineering creep mechanics and open questions

Holm Altenbach

(joint work with Konstantin Naumenko)

The research in engineering creep mechanics is focussed on the description of creep
of various materials (i.e. the time-dependent microstructural changes and the phe-
nomenological behavior) and the analysis of structural elements under creep condi-
tions. In this sense one has to take into account creep, relaxation and other effects.
The equations allowing the description of the material behavior and the analysis of
structural elements should be useful in the case of uniaxial and multi-axial stress
states. In addition, the stress states can be inhomogeneous and anisotropic. Up
to now (as was shown earlier [1, 2]) sometimes one gets significant disagreements
between the results of the simplified (engineering) analysis and the improved es-
timations. The explanation of these discrepancies is one of the main research
directions in engineering creep mechanics.
The division of the creep behavior into three states (primary, secondary and ter-
tiary creep) is accepted by the scientific community. During the last years the
materials science based approach was influenced by the publications of Ashby,
Nabarro and others. The structural mechanics approach was summarized, for
example, by Betten, Hayhurst, Skrzypek and Hyde. At present, the induced
anisotropy and non-proportional loading is mostly discussed in the literature.
Our investigations are directed toward the creep-damage behavior of thin-walled
structural elements (beams, plates and shells). The performed numerical calcu-
lations show effects which cannot be described by the classical theory of Euler-
Bernoulli-beams or Kirchhoff-plates. In addition, the calculations based on 2D
finite elements are in a significant disagreement with 3D calculations. The reasons
are the thickness integration, the 3D constitutive and evolution equations and the
2D structural mechanics equations [3, 4].
The state of the art in engineering creep mechanics can be sorted into four groups:

• empirical models (”curve fitting”)
• materials science based models (mechanism related equations)
• micromechanical models (representative volume homogenization)
• continuum mechanics based models (balance equations).

They all show advantages and disadvantages. For example, the first approach is
very simple, but the extension of the models is often impossible. The materi-
als science based models are mostly one-dimensional and based on scalars. The
micromechanical models are founded on an idealized microstructure. The con-
tinuum mechanics models are fruitful, since they are able to represent the three-
dimensional behavior. Using tensors of different ranks the analysis of the creep
damage behavior is possible and the extension, for example, from the full isotropic



194 Oberwolfach Report 4/2006

case to various anisotropic states is possible. As was shown in [5, 6] the contin-
uum mechanics approach allows for a sound theoretical analysis of isotropic and
anisotropic creep-damage.
From the analysis of an example (multi-pass weld metal) and the results of previous
publications the following open questions can be formulated:

• How can the approach used in the analysis of transversally isotropic ma-
terial behavior be extended to the orthotropic case?

• How can the secondary anisotropic equations be extended to the tertiary
creep regime?

• How should the identification procedures be realized?

References

[1] H. Altenbach, J. Altenbach, K. Naumenko, On the prediction of creep damage by bending of
thin-walled structures, Mechanics of Time-Dependent Materials 1 (1997), 181–193.

[2] H. Altenbach, K. Naumenko, Shear correction factors in creep-damage analysis of beams,
plates and shells, JSME-Journal, Series A 45 (2002), 77–83.

[3] H. Altenbach, G. Kolarov, O.K. Morachkovsky, K. Naumenko, On the accuracy of creep-
damage predictions in thinwalled structures using the finite element method, Computational
Mechanics 25 (2000), 87–98.

[4] H. Altenbach, V. Kushnevsky, K. Naumenko, On the use of solid and shell type elements in
creep-damage predictions of thinwalled structures, Arch. Appl. Mech 71 (2001), 164–181.

[5] H. Altenbach, K. Naumenko, P.A. Zhilin, A note on transversely-isotropic invariants, ZAMM
86 (2006), 162–168.

[6] K. Naumenko, H. Altenbach, A phenomenological model for anisotropic creep in a multi-pass

weld metal, Arch. Appl. Mech. (2005), 1–12.

Modeling dislocations and disclinations with finite micropolar
elastoplasticity

Douglas J. Bammann

(joint work with John D. Clayton, David L. McDowell)

Aspects of a constitutive model for characterizing crystalline metals containing
a distribution of dislocation and disclination defects are presented [1, 2, 3, 4].
Kinematics, balance laws, and general kinetic relations are developed from the
perspective of multiscale volume averaging upon examination of a deforming crys-
talline element containing a distribution of displacement discontinuities in the form
of translational and rotational lattice defects, i.e., dislocations and disclinations.
The macroscopic kinematic description is characterized by a three-term multi-
plicative decomposition of the deformation gradient. The micro-level description
follows from an additive decomposition of an affine connection into contributions
from populations of dislocations and disclinations to the distortion of the lattice
directors. Standard balance equations apply at the macroscopic scale, while mo-
mentum balances reminiscent of those encountered in micropolar elasticity (i.e.,
couple stress theory) are imposed at the micro-level on first and second order mo-
ment stresses associated with geometrically necessary defects. Thermodynamic
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restrictions are presented, and general features of kinetic relations are postulated
for time rates of inelastic deformations and internal variables. Micropolar rotations
are incorporated to capture physics that geometrically necessary dislocations stem-
ming from first order gradients of elastic or plastic parts of the total deformation
gradient may alone be unable to reflect, including evolution of defect substructure
at multiple length scales and incompatible lattice misorientation gradients arising
in ductile single crystals subjected to nominally homogeneous deformation.
During large plastic deformations of ductile fcc metals grain subdivision and dis-
location substructure formation substantially affect slip system activity, strain
hardening, stored lattice energy, and texture evolution in single and polycrystals.
Also measured within pure ductile metals and certain alloys at large deforma-
tions and/or high temperatures are long range internal stress fields associated
with misoriented subgrain boundaries. The formation of cells of relatively small
misorientation organized collectively into larger cell blocks, with average misori-
entations between blocks usually significantly greater in magnitude than those
between cells. Upon increasing applied strain, cell block sizes generally decrease
at faster rate than do cell sizes. In the context of our theory, the disclination
concept can be used to capture the gradients of lattice rotation at the cell block
boundaries that arise from the organization and superposition of relatively small
misorientations between the cells, reflected here by geometrically necessary dislo-
cations. Additionally, when the kinetics of evolution of statistically stored defects,
geometrically necessary dislocations, and geometrically necessary disclinations are
properly coupled, cells and cell blocks will emerge in single crystals upon homoge-
neous loading, as observed in the aforementioned experiments, and the subdivided
crystal will attain an energetically favorable configuration (i.e., a local minimum
in free energy over its entire volume). We suggest that a lack of local convexity or,
more precisely, lack of cross-quasiconvexivity in the terminology of Carstensen et
al. [5] stems from the superposition of free energy wells associated with different
mechanisms, in our case associated with generation and interaction of defect densi-
ties of various origins (e.g. populations of geometrically necessary and statistically
stored dislocations and disclinations).
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Modelling martensitic transformation at different length scales

Marcel Berveiller

Transformation induced plasticity (TRIP) occurs when a martensitic phase change
takes place in an elastic-plastic parent phase (so called austenite). Due to internal
stresses produced by the (incompatible) transformation strain, an additional plas-
tic flow occurs (in the austenite as well as inside the martensite). Improvement of
mechanical strength and simultaneously large ductility of TRIP steels are due to
this martensitic (Ms) transformation [1]. The behavior of a Representative Volume
Element undergoing Ms transformation and plastic flow is described from a scale
transition point of view based on classical micromechanics and thermomechanics
of moving boundaries. We present the core of two micromechanical models able
to describe the TRIP phenomenon coupled with plastic flow.
Crystallographic model for TRIP materials: At the microscopic level, the
transformation mechanism is represented by moving boundaries, the boundary
being the interface between the austenitic matrix and growing martensitic do-
mains. Let εt(r) be the transformation field equal to known uniform values:
εt = εti, i = 1 to 24 for 24 variants inside the martensitic domains. The vol-
ume average of the inelastic strain rate εtp(r) over the RVE volume V is given
by:

(1) Ėtp = (1 − f)¯̇εpA + f ¯̇εpM +
∑

i

εtiḟ i ,

where f =
∑
f i is the total volume fraction of martensite and f i represents the

volume fraction of variant i. The evolution equation for the plastic flow (ε̇p) inside
the austenite and the martensite may be deduced from the classical flow rule or
in the frame-work of crystal-plasticity [1], if the corresponding driving forces are
given (Cauchy stress inside austenite and martensite). For the evolution of the
volume fractions, the associated driving forces have to be deduced from a thermo-
dynamical approach. Let w + ϕ be the density of elastic and chemical energies.
The Helmholtz free energy of the whole RVE is given by Φ = 1

V

∫

V

(w + ϕ)dV and

its time derivative is:

(2) Φ̇ =
1

V

∫

V

(ẇ + ϕ̇)dV +
1

V

∫

A

[w + ϕ]ωαnαdA ,

where A is the (moving) interface between austenite and martensite and ωα nα is
the normal velocity of the interface.
Using Hadamard’s condition, [vi] = −[ui,k]nkωαnα, the intrinsic dissipation D is
given by [2]:

(3) D =
1

V

∫

V

σ : ε̇pdV − 1

V

∫

A

1

2

(
(σ+ + σ−) : [εt] + [ϕ]

)
ωαnαdA .
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The volume part corresponds to the dissipation by plastic flow and the second term
represents the surface dissipation. If the martensitic domain can be represented
by an ellipsoidal inclusion with fixed half-axes, the driving force F for a growing
ellipsoidal inclusion is given thanks to Eshelby’s tensor S by [3]:

(4) F = σ− : εt −B(T − T 0) +
1

2
εt : C : (I − S) : εt ,

where σ− is the (uniform) stress inside the inclusion and B(T −T 0) corresponds to
the linearised form of the change of chemical energy. Based on this driving force
and on the resolved shear stress on the slip systems in austenite and martensite,
the behavior of the single crystal and the polycrystal may be deduced by classical
scale transition techniques.
In order to derive a physically well founded simplified model, we propose in a
second part to model the behavior of the (polycrystalline) Representative Volume
Element by considering the material as a non-linear two-phase composite with
evolving microstructure. The behavior of the evolving composite is deduced from
a micromechanical approach (non-linear self consistent approach) in the context of
the deformation theory like Hencky-Mises for plasticity. In that case, the equations
of the problem are given by the field equations div σ = 0 and ε= symgradu and
the behavior σ = lM : (ε − εt) inside the martensite and σA = lA : ε inside the
austenite, where εt describes the mean transformation strain over the volume of
martensite with volume fraction f . The macroscopic behavior Σ = L : (E − Et)
is deduced from a self consistent scale transition model [4], where L and Et are
respectively the overall secant modulus and the global transformation strain. εt

and f are given from thermodynamical considerations.
For isotropic and incompressible behavior (L, lM, and lA depend only on the cor-
responding (non-linear) shear modulus µ, µM, µA and εtkk = 0), two equations for
µ and E are deduced from the model [5]:

(5) f
5µ

3µ+ 2µM
+ (1 − f)

5µ

3µ+ 2µA
= 1 ,

(6) ET
ij =

5µM

3µ+ 2µM
fεtij .

The last formula corresponds to the so called Greenwood-Johnson effect [6], where
the macroscopic strain created by f εt is much larger than f εt, since in general
µM > µ. This relatively compact model is easily to be integrated into a finite
element code.
For both models the theoretical results are in good agreement with the experimen-
tal ones and show the complementarities of the two approaches.
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Texture based material models

Thomas Böhlke

From the numerical point of view, large scale FE computations based on the Tay-
lor model are very time-intensive and storage-consuming, if the crystallographic
texture is approximated by several hundreds of discrete crystals. The presentation
focuses on the problem of approximating a given crystallite orientation distribu-
tion function [3] by a small set of texture components [2]. The equivalence of this
task to a Mixed Integer Quadratic Programming problem (MIQP) is shown [1].
The Taylor model in its standard form [4, 5], which is based on discrete crystal ori-
entations, has the disadvantage that the anisotropy is significantly overestimated,
if only a small number of crystal orientations is used. Therefore a modified Taylor
model is discussed which allows to reduce the overestimation. The peak intensity
is reduced by modeling the isotropic background texture by an isotropic material
law. Furthermore, an extension of the widely used Mises-Hill anisotropic plasticity
model is suggested and discussed. In a first step the Mises-Hill anisotropy tensor -
which specifies the quadratic flow potential - is expressed in terms of the 4th-order
moment tensor of the crystallite orientation distribution function. It is well known
that specific anisotropies of polycrystalline metals generally cannot be modeled by
quadratic flow potentials. Motivated by this fact the concept of anisotropic equiv-
alent stress measures is generalized by incorporating the higher-order moment
tensors in a second step.
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[2] T. Böhlke, G. Risy, A. Bertram, A texture component model for anisotropic polycrystal

plasticity, Comput. Mater. Sci. 32 (2005), 284–293.
[3] H.-J. Bunge, Texture Analysis in Material Science, Cuviller Verlag Göttingen, (1993).
[4] G.I. Taylor, Plastic strain in metals, J. Inst. Metals 62 (1938), 307–324.
[5] P. van Houtte, A comprehensive mathematical formulation of an extended Taylor-Bishop-

Hill model featuring relaxed constraints, the Renouard-Winterberger theory and a strain rate
sensitive model, Textures Microstruct. 8/9 (1988) 313–350.



Mechanics of Materials 199

Analysis of thin coatings containing two types of transforming
inclusions

Helmut J. Böhm

(joint work with F. Dieter Fischer)

Thin layers are studied that consist of an elastic matrix in which two or more
populations of elastic spheroidal inhomogeneities are embedded. The mechani-
cal contributions to the energetics of the growth and shrinking of the inhomo-
geneities by phase transformations are considered, the latter being described by
phase-wise homogeneous stress-free transformation strains. Mean-field approaches
are an obvious option for estimating the strain energy densities of such systems,
which provide the macroscopic mechanical contribution to the energetics of the
phase transformations. A Mori–Tanaka expression for the strain energy densi-
ties of two-phase systems was given e.g. by Mura [1]. The Transformation Field
Analysis (TFA) of Dvorak et al. [2] is well suited for handling multi-phase trans-
formation problems in a mean field framework, and a version of the TFA employ-
ing Mori–Tanaka approximations [2] is brought to bear on the present problem.
Three types of macroscopic boundary condition are considered, viz. free macro-
scopic deformations, fully constrained macroscopic deformations and “layer like”
constraints. The latter consist of fully constrained in-plane plus free out-of-plane
macroscopic strains and correspond to a thin layer perfectly bonded to a rigid sub-
strate. Whereas the strain energy density pertains to the macroscopic energetics
of phase transformations, the mechanical driving force at the interface contributes
to the evolution of shape of inhomogeneities. On the basis of Eshelby’s expressions
for the fields in dilute matrix–inclusion systems [3, 4] the position-dependent stress
and strain jumps at the interface can be obtained following [5]. These jumps, in
turn, allow the evaluation of the mechanical driving force [6] at any point on the
surfaces of spheroidal inhomogeneities embedded in a matrix [7]. In general, such
formalisms cannot follow the evolution of the shapes of inhomogeneities, because
in most cases they quickly deviate from spheroids. However, “snapshots” can be
generated that point out trends. The method can be extended to non-dilute inho-
mogeneities in a “Mori–Tanaka sense”, in which case it provides estimates on the
ensemble average of the local mechanical driving forces acting on the interfaces.
The TFA-based mean field approach is applied to studying thin layers consisting of
a Ti0.34Al0.66N matrix containing transforming spherical TiN and AlN particles.
For this system the transformation strains of TiN and AlN are of opposite signs
and different magnitudes [8]. “Isotropized” approximations to the elastic moduli
of the phases (all three of which show f.c.c. symmetry) are employed.
For the Ti0.34Al0.66N system the macroscopic boundary conditions markedly influ-
ence the predictions for the dependence of the strain energy density on the phase
volume fractions. The results on the mechanical driving force indicate that (as
expected) initially spherical inhomogeneities remain spherical for free and fully
constrained macroscopic boundary conditions, but become non-equiaxed for the
“layer like” constraints.
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A consistent Eulerian formulation for finite thermo-elastoplasticity

Otto T. Bruhns

Recently it has been demonstrated that, on the basis of the separation D =
De + Dp arising from the split of the stress power and two consistency crite-
ria for objective Eulerian rate formulations, it is possible to establish a consistent
Eulerian rate formulation of finite elastoplasticity in terms of the Kirchhoff stress
and the stretching, without involving additional deformation-like variables labelled
“elastic” or “plastic”. It has further been demonstrated that this consistent formu-
lation leads to a simple essential structure implied by the work postulate, namely,
both the normality rule for plastic flow Dp and the convexity of the yield surface in
Kirchhoff stress space. Here, we attempt to place such an Eulerian formulation on
the thermodynamic grounds by extending it to a general case with thermal effects,
where the consistency requirements are treated in a two-fold sense. First, we pro-
pose a general constitutive formulation based upon the foregoing separation as well
as the two consistency criteria. This is accomplished by employing the corotational
logarithmic rate and by incorporating an exactly integrable Eulerian rate equa-
tion for De for thermo-elastic behaviour. Then, we study the consistency of the
formulation with thermodynamic laws. Towards this goal, simple forms of restric-
tions are derived, and consequences are discussed. It is shown that the proposed
Eulerian formulation is free in a sense of thermodynamic consistency. Namely, a
Helmholtz free energy function may be found such that the restrictions from the
thermodynamic laws can be fulfilled with positive internal dissipation for arbitrary
forms of constitutive functions included in the constitutive formulation. In partic-
ular, that is the case for the foregoing essential constitutive structure in the purely
mechanical case. These results eventually lead to a complete constitutive theory
for coupled fields of deformation, stress and temperature in thermo-elastoplastic
solids at finite deformations.
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Multiscale modelling of defects in crystals

John D. Clayton

Two complimentary approaches to describing the mechanics of crystalline materi-
als containing distributed defects are discussed. In the first approach, a continuum
model of finite micropolar elastoplasticity is formulated to capture the physics of
distributed dislocations and disclinations. In the second approach, asymptotic
homogenization methods permit the calculation of effective mechanical properties
(e.g. strain energy, stress, and stiffness) of a representative crystalline element con-
taining statistically periodic defect structures. Fundamental nonlinear-elastic me-
chanical behavior of crystalline materials at the length scale of a macroscopic con-
tinuum is described, given a-priori a complete characterization of discrete atomic
interactions. The atomistic-continuum scaling technique complements the microp-
olar continuum theory, as the former approach may conceptually be used as a tool
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to develop the latter, specifically to support formulation of free energy potentials
accounting explicitly for the presence of crystal defects.
Our continuum framework [1, 2] is founded upon two major kinematic assumptions,
the first being a three-term decomposition of the average deformation gradient for
a crystal element, with the intermediate term, non-standard in the literature [3],
accounting for the presence of defects that affect the average lattice arrangement
and internal residual stresses within the crystalline volume element. Also intro-
duced in this decomposition are the elastic deformation representing both the
recoverable lattice stretch associated with the average applied stress acting on the
element and rigid-body rotations of the lattice, as well as the plastic deforma-
tion accounting for the partition of fluxes of mobile defects that leaves the lattice
unperturbed.
The second major assumption is an additive decomposition of a linear connec-
tion describing spatial gradients of the slip directions and lattice director vectors
between neighboring crystalline elements. Christoffel symbols of this connection
describe gradients of the director vectors due to first-order gradients in the lattice
deformation, following [4]. A micromorphic variable [5, 6] participates in the con-
nection as well, describing the following physics: a micro-rotation associated with
disclinations, an isotropic micromorphic expansion associated with point defects,
and a general micromorphic strain that may be used to represent arbitrary lat-
tice director deformations when superposed with the other terms. Dislocation and
disclination density tensors then follow from the torsion and curvature, respec-
tively, of the connection, the latter vanishing when the connection is integrable.
Regarding thermodynamics, we make the following general assumption regarding
the dependency of the Helmholtz free energy function for the crystalline volume
element. The covariant elastic strain tensor is included to model the change of
average elastic energy density with a change of external loads. The left stretch
tensor associated with the intermediate deformation map is incorporated to reflect
contributions to the free energy from residual microelasticity within the volume
element, and may be non-negligible when the deformation within the volume ele-
ment is heterogeneous [7]. The elastic energies due to net lattice curvatures in the
volume element induced by geometrically necessary dislocations and disclinations
are reflected, respectively, by the inclusion of the corresponding rank-two tensors
of defect density. Notice that when the intermediate mapping and disclinations
vanish, the formulation agrees with constitutive assumptions made in previous
theories [8] in the absence of disclinations. Scalar parameters are incorporated
to model elastic self-energy of the statistically stored dislocation density and the
statistically stored disclination density. The macroscopic Cauchy stress obeys the
standard linear and angular momentum balances and reflects the average trac-
tion carried by a local crystalline volume element in the current configuration.
Microforces reflect higher-order moments of the microscopic traction distribution
supported by the volume element. Contravariant variations of these forces satisfy
coupled microscopic momentum balances [1], analogous to the micropolar elastic
balance laws suggested by others [5, 9].
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The asymptotic homogenization technique forwarded here [10] falls into the cate-
gory of spatially decoupled multiscale methods. In this approach, discrete calcula-
tions are conducted at the atomistic level, with each characteristic volume element
of atoms subjected to periodic boundary conditions. Asymptotic homogenization
methods [12] are concurrently employed to deduce the macroscopic tangent stiff-
ness associated with the mechanical response of the ensemble. The Cauchy-Born
approximation [12] is invoked for imposition of the bulk continuum deformation,
with the fine-scale deformation of the atoms identified with the inner displace-
ments in the asymptotic solution. The present approach is ideal for addressing the
response of microstructures containing spatially periodically-distributed defects,
in contrast to coupled methods [13] that appear better suited to addressing more
localized defect configurations. This is because only one or a few defects need
be simulated explicitly at the atomistic level within the context of the periodicity
assumption invoked in our homogenization scheme.
Our framework was implemented numerically and applied to study the nonlinear
elastic response of BCC tungsten (W) containing periodically distributed vacan-
cies, screw dislocations, screw dislocation dipoles, and low-angle twist boundaries
(the latter described via disclination concepts [1]). It was found that defect en-
ergies associated with vacancies, screw dislocations, and screw dislocation dipoles
tended to increase with applied uniaxial stretching, while energies of twist bound-
aries tended to decrease with stretch. Elastic stiffness in the direction of stretch
tended to decrease with increasing dislocation content, and increase with twist
grain boundary area. Anisotropy of the elastic constants of W, nominally isotropic,
was also demonstrated in the presence of defects and deformations. The model was
implemented in a limited fashion to study the elastic-plastic response of W contain-
ing fixed distributions of [111](110)-screw dislocations. An oscillatory stress-strain
response due to motion of atomic planes across Peierls barriers was demonstrated,
and influences of dislocations on elastic moduli and strain energy densities were
apparent from the multiscale calculations.
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Multiscale modelling in materials: atomic/continuum, dynamic, and
discrete/continuum methods

William A. Curtin

Direct coupling of different modelling methods corresponding to different spatial
resolutions can be necessary for problems in which a phenomenon at a small scale,
e.g. crack growth by atomic-scale material separation, must be retained with full
resolution in some local region of space but where driving forces for that phenom-
enon are caused by behavior in the surrounding regions, e.g. stresses generated by
arrays of dislocations, where a less-detailed description is an acceptable approx-
imation. The less-detailed description involves fewer overall degrees of freedom,
leading to computational tractability, but must faithfully retain the important
physical phenomena that influence the smaller-scale behavior. The key in such
modelling is to create seamless interfaces between different methods and different
scales. The interfaces must of course transmit the proper mechanical forces. In
addition, mobile material defects – point defects, dislocations, etc. – must be
able to move from one region to another without the introduction of artifacts.
However, the methods typically have different constitutive behaviors or energy
functionals, reflecting the different degrees of freedom involved, and can be non-
linear, non-local, long-ranged, and/or dynamic. The coupling is thus more subtle
than merely “grading” the system from one energy functional to another over some
region. And, without attention to detail the coupling can often create artifacts
that strongly limit the ability of the multiscale model to be useful and predictive.
Here, we describe a hierarchical set of coupling methodologies for problems in the
mechanics of materials with the ultimate goal of coupling atomistic, mesoscale
dislocations, and continuum crystal plasticity within a single framework.
The first method is the coupling of a full atomistic region to a hyperelastic con-
tinuum region within a quasistatic framework without artifacts at the coupling
interface [1]. This problem has been tackled by many workers in the last decade,
with a variety of elegant formulations. However, many such formulations lead to
artifacts/defects at the interface, the origins of which lie in the local/non-local
mismatch between atomistic and continuum energy functionals. Methods to avoid
artifacts inevitably sacrifice the existence of a single energy functional for the
coupled system in favor of force-based analyses. This method is then augmented
to seamlessly couple an atomistic region to a continuum region containing dis-
crete dislocation plasticity, including the ability to pass dislocations across the
atomistic/continuum boundary from one region to the other [2]. The discrete
dislocation method eliminates all atomistic degrees of freedom but retains the dis-
location cores as defects residing within an elastic continuum. Plasticity in the
continuum then stems from motion of the dislocations, rather than through ef-
fective viscoplastic constitutive laws. Although current methods are reasonably
successful for 2d plane strain models, in which the dislocations remain straight and
are effectively point defects in 2d, the development of 3d models is a challenge.



Mechanics of Materials 205

The second method is atomistic/continuum coupling for finite-temperature, dy-
namic problems. Here, equilibrium and non-equilibrium phenomena are in direct
competition. Dynamic events, such as crack growth or dislocation emission, gen-
erate non-equilibrium deformation waves that must propagate out of the atomistic
regime and into the continuum without reflection at the interface, which would
lead to artificial heating of the atomistic region. However, in the absence of such
events, maintenance of equilibrium conditions in a canonical ensemble is critical for
obtaining both the correct thermodynamics and the correct thermally-activated
nucleation rate of the dynamic events. Elegant methods to handle seamless wave
propagation have been developed and applied to a number of problems, but only
at 0K and often for specialized atomic interactions. Methods to effectively thermo-
stat a coupled atomistic/continuum domain have also been developed, but they do
not prevent interface reflections. The use of an atomistic boundary region obeying
Langevin dynamics is shown to address both problems adequately and also permit
a decoupling of time scales [3], at the expense of suppression of wave propagation
in the continuum.
The fourth method is the coupling of a discrete-dislocation plasticity region to
a continuum crystal plasticity region. Discrete dislocation models can represent
regions of material up to 10s of microns in size, but larger scales remain com-
putationally prohibitive at present. However, the size scales at with dislocation
models are necessary to account for “plasticity size effects” are on the order of 10
microns, suggesting that crystal plasticity at larger scales could be an adequate
approximation. In this coupling, however, the transition is from a discrete system
of defects (the dislocations) to a set of field equations for the plastic strains. It
can be envisioned that suitably averaging can be done to relate a dislocation flux
to a plastic strain rate, allowing for coupling of the defect flow. However, the loss
of the dislocations is accompanied by a loss of their long-range stress fields and
hence the problem has significant subtleties. As a precursor to full solution of this
problem, we investigate the coupling of discrete diffusion to continuum diffusion,
where discrete entities are tied to a field equation but the diffusing entities do
not carry long range stress fields or singularities. We consider the specific case
of kinetic Monte Carlo modeling of diffusion on a lattice coupled to a region de-
scribed by the continuum diffusion equation. With the existence of a field equation,
traditional domain decomposition ideas emerge as feasible, but with one discrete
domain wherein suitable averaging of concentrations and fluxes yields boundary
conditions for the continuum domain. We present one possible approach to this
type of problem, along with appropriate convergence criteria and minimization of
domains over which iterative approaches are needed [4].
In summary, multiscale modeling is a rich area at the intersection of physics,
mechanics, mathematics, and materials science. We have identified relevant classes
of multiscale problems that are attractive to materials scientists but that currently
pose various theoretical difficulties that may be overcome by the construction of
a broader mathematical framework for multiscale modeling.
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Asymptotic homogenization for elastic media with evolving
microcracks

Cristian Dascalu

(joint work with E. Agiasofitou, G. Bilbie)

In this work, an asymptotic homogenization technique is used to describe the
overall behavior of a damaged elastic body with a locally periodic distribution of
growing micro-cracks that is loaded in tension. The microstructural deterioration
is represented, at the macroscopic level, by a local internal variable which is the
micro-crack length. An evolution damage law is deduced, through asymptotic
homogenization, by assuming a microscopic fracture criterion of Griffith type.
Finite element solutions are presented in order to illustrate this new approach. We
show that the model leads to damage localization and macro-fracture nucleation.
Many papers have been devoted to the overall behavior of micro-fractured solids
(see for instance Nemat-Nasser and Horii [1] for a review). Almost all these works
are confined to the case of stationary cracks. As exceptions one can cite Prat
and Bazant [2] or Caiazzo and Constanzo [3], which take into account the fracture
evolution. Our aim is to model such phenomena by using a different method, with a
good mathematical basis, that of asymptotic homogenization [5]. This method has
been used for stationary micro-cracks by Leguillon and Sanchez-Palencia [4]. Our
work is an extension of their results for evolving micro-cracks. We consider tension
loadings and parallel micro-cracks oriented normal to the direction of loading. The
mean orientation of a real system of micro-cracks, which are activated by such
loadings is expected to be close to the normal direction. We assume traction-free
conditions on crack faces.
Starting from the energy balance over elementary volumes we deduce a macro-
scopic damage evolution law, in which the micro-crack length naturally appears
as a damage variable. The equilibrium equations are coupled with the damage
evolution law, in a quasi-static system. In order to allow the classical homoge-
nization procedure, we consider explicit time integration of the damage law, so
the system becomes discrete in time and at every time instant the equilibrium
equations are linear. For the corresponding time-continuous system we obtain an
explicit expression of the tangent matrix and we analyze failure indicators, like
the loss of ellipticity of the equilibrium equations. It is proved that the overall
response involves softening for large micro-crack lengths.
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Finite element solutions are obtained for two-dimensional geometries. The in-
fluence of the micro-cracks evolution on the homogenized mechanical response is
analyzed through the obtained numerical solutions. We show that damage local-
ization occurs prior to macro-crack nucleation. The macroscopic model involves
an internal length (cell size), so mesh-independence is expected for the numerical
solution. Extended proofs and more results will be presented in a future paper of
the authors [6].
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Two-phase deformations of elastic solids: constitutive equations,
strains, equilibrium and stability

Alexander B. Freidin

(joint work with Leah Sharipova, Elena Vilchevskaya, Yibin Fu, Igor Korolev)

In the talk we give a brief summary of the results obtained by our ‘phase transitions
team’ during last years. Some of the recent publications are listed below. If phase
transformations take place in a deformable body, the interface between two differ-
ent phases can be viewed as a surface across which the displacement is continuous
but the deformation gradient suffers a discontinuity. Equilibrium interfaces can
exist not in any elastic material: it is known that a strain energy function must be
nonconvex in some meaning. Another limitation is put on deformations. The fact
that the conditions on the interface can be satisfied not for any deformations leads
to the notion of phase transition zones (PTZs) formed by all strains which can
exist on the equilibrium phase boundaries in a given material. The PTZ is deter-
mined entirely by the material properties, i.e. by the strain-energy function. The
PTZ construction allows us to categorize strain-energy functions with respect to
the existence of two-phase deformations and the type of interfaces in dependence
on strain state. The PTZ can be used as a guide in searching for the appropriate
constitutive equations, if the interfaces appearing for different deformation paths
are known from experiments.
We examine a number of strain energy functions in both finite and small strains
cases and construct corresponding PTZs. We show what types of the interfaces
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are possible and demonstrate a variety of phase transformation behaviors as well
as common features. We develop a procedure to examine the stability of two-
phase deformations. Considering examples of spherically-symmetric two-phase
deformations in various non-linear elastic materials, we study non-uniqueness and
stability of the solutions obtained within the frameworks of the PTZs.
Then the nucleation of new phase areas is studied considering the case of small
strains. We show that nuclei of different shape can appear on different deforma-
tion paths as well as at loading and unloading paths. We construct nucleation
(transformation) surfaces and relate them with the PTZs. A model is developed
for heterogeneous deformation due to multiple appearance of new phase areas.
Two cases are examined dealing either with ellipsoidal nuclei or with newly ap-
pearing phase layers. An effective field approach is used to take into account the
interaction of ellipsoidal nuclei at the initial stage of the transformation. Parame-
ters of two-phase structure are found in dependence on average strains. Average
stress-strain diagrams depending on the path of the phase transformation are con-
structed. Average and local strains are related with the PTZ.
We also study phase transformations in an inclusion under external stresses trans-
mitted by a linear elastic matrix. Energy preferences of various two-phase states
and one-phase states are investigated in dependence on the type of boundary con-
ditions, the relative size of the inclusion, and relationships between the elastic
moduli of the phases. Finally, the interaction between a crack and the phase
transforming inclusion is discussed.
This work is supported by RFBR (Grant No. 04-01-0431) and INTAS (Grant
No. 03-55-1172).
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Microstructure design using statistical correlation functions

Hamid Garmestani

A methodology for microstructure design is developed and applied to multi-phase
microstructures using statistical continuum mechanics theory linking mechanical,
magnetic, and transport properties to microstructures represented by statistical
correlation functions. Texture and composite volume fractions are considered as
one-point functions and grain boundary character distribution and particle to par-
ticle and the effect of precipitates can be introduced using pair correlation func-
tions and higher order statistics. In this work, homogenization techniques based
on statistical continuum mechanics are used to calculate effective properties on
the knowledge of the N-point Distribution Functions. The evolution of the mi-
crostructure using the two-point correlation functions is compared to experimental
results. The effect of second phase/particle and pore distribution is also shown to
be well-represented by these distribution functions. The results are presented in
the form of texture evolution for each of the phases and for the distribution of the
multi-phase materials for a variety of initial conditions and deformation modes.
Microstructure Sensitive Design: Prior work produced results for elastic and
inelastic properties for composites and polycrystalline materials [1, 2, 3, 4]. A
framework for Microstructure Sensitive Design for textured polycrystalline mate-
rials using one-point orientation distribution function [5]. This formulation was
extended to composites using pair correlation functions [6].
Recently a methodology was developed by Adams et. al. [1] that uses a spec-
tral representation as a tool to allow the mechanical design to take advantage of
the microstructure as a continuous design variable. This new approach, called
microstructure-sensitive design (MSD) uses a set of Fourier basis functions to rep-
resent the microstructure (e.g. single orientations) as the material set [1]. The
combination of all these elements of microstructure states can be used to con-
struct the property enclosure for any particular structure. The procedure in this
methodology can be summarized in the following:

• Microstructure representation: The microstructure and its details are rep-
resented by a set of orthogonal basis functions χn .

(1) F (χn, Cn) =
∑

n

Cnχn ,

where Cn are the coefficients, determined for each individual microstruc-
ture.

• Properties and constraints: The properties and constraints are represented
in the same orthogonal space

(2) P (χn, pn) =
∑

n

pnχn .

• Coupling: The properties and constraints can represent hyper planes in
the property enclosure which is defined as a universe of all variation in the
inter relation among several properties for the same microstructure.
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• Designer materials: Intersection of these planes defines the universe of all
materials and microstructure (distributions) appropriate for design. This
is similar to how Ashby’s diagrams are being used in design [2].

In a related work, a complete investigation was performed in the use of two-
point correlation functions for microstructure representation and reconstruction
in nano-composite materials [7]. Two-point correlation functions are measured
using both microscopy (Transmission Electron) and scattering techniques. The
use of scattering techniques can provide 3-dimensional information on two-point
statistics; whereas, in the case of microscopy, such information can only be ob-
tained through the tedious task of serial sectioning. Scattering data (as opposed
to imaging techniques) suffers from the basic disadvantage in that it does not pro-
vide a micrograph from the microstructure. A methodology for microstructure
reconstruction has been reevaluated and optimized to provide an image from the
two-point correlation functions. Microstructures of co-polymer nano-composites
have been analyzed using both microscopy and x-ray scattering techniques to eval-
uate the distribution of the nano-cobalt particles. Empirical forms of the two-point
probability functions for two-phase composites are also investigated in this work.
Additionally, alternate forms of the two-point correlation functions were intro-
duced that incorporate both periodicity and randomness. A modified form of the
probability function is introduced that can provide a tool to examine the degree of
randomness and periodicity. The results show the potential of these functions in
the evaluation of microstructures and acquiring higher order details not available
previously. These functions are then used to reconstruct the microstructure of
these composites. The methodology introduces a revolutionary advance in the use
of two-point functions from scattering techniques: Not only two-point correlations
functions are measured and evaluated using simple empirical forms, a methodol-
ogy is introduced that the corresponding microstructures can be reconstructed.
The present form of the formulation can only address the statistical isotropic mi-
crostructures. The potential for such techniques to be extended in a self-consistent
procedure to address the anisotropic forms of the microstructures are discussed.

References

[1] H. Garmestani, S. Lin, B.L. Adams, S. Ahzi, Statistical Continuum Theory for Texture
Evolution of Polycrystals, Journal of the Mechanics and Physics of Solids 49 (2001), 589–
607.

[2] H. Garmestani, S. Lin, Statistical Continuum Mechanics Analysis of an Elastic Two-

Isotropic-Phase Composite Material, Journal of Composites: Part B 31 (2000), 39–46.
[3] S. Lin, B.L. Adams, H. Garmestani, Statistical continuum theory for inelastic behavior of

two-phase medium, Int. J. Plasticity 14 (1998), 719–731.
[4] S. Lin, H. Garmestani, B. Adams, The Evolution of Probability Functions in an Inelastically

Deforming Two-Phase Medium, International Journal of Solids and Structures, 37 (2000),
423–434.

[5] B.L. Adams, A. Henrie, B. Henrie, M. Lyon, S. R. Kalidindi, H. Garmestani, Microstructure-
Sensitive Design of A Compliant Beam, J. Mech Phys. Solids 49 (2001), 1639–1663.



Mechanics of Materials 211

[6] G. Saheli, H. Garmestani, B.L. Adams, Microstructure Design of a Two Phase Composite
using Two-point Correlation Functions, International Journal of Computer Aided Design,
11 (2004), 103–115.

[7] G. Jefferson, H. Garmestani, R. Tannenbaum, E. Todd, Two-point probability distribution
functions: application to block co-polymer nanocomposites, International Journal of Plas-
ticity 21 (2005), 185–198.

Computational models for spatial and temporal multi-scale modeling
of composite and polycrystalline materials

Somnath Ghosh

Understanding the role of the material microstructure, at the length scale of con-
stituent heterogeneities like grains, polycrystalline aggregates, fibers and inclu-
sions, on the deformation and failure characteristics of the material is critical to
the reliable design of components. Such an understanding requires an analysis
framework that can predict inhomogeneities in time-dependent plastic flow under
fatigue and creep conditions. Naturally, that sets a requirement for represent-
ing the real microstructure and defects, within the analysis tools. A robust design
methodology must also link variabilities involved at all length scales that can affect
the components in service performance.
A multiple scale computational model is developed for composite materials to
concurrently predict evolution of variables at the structural and microstructural
scales, as well as to track the incidence and propagation of microstructural dam-
age [1, 2, 3]. The microscopic analysis is conducted with the Voronoi cell finite
element model (VCFEM) while a conventional displacement based FEM code exe-
cutes the macroscopic analysis [4, 5, 6, 7]. Adaptive schemes and mesh refinement
strategies are developed to create a hierarchy of computational sub-domains with
varying resolution. Such hierarchy allow for differentiation between non-critical
and critical regions, and help in increasing the efficiency of computations through
preferential zoom-in regions. Coupling between the scales for regions with peri-
odic microstructure is accomplished through asymptotic homogenization, whereas
regions of nonuniformity and non-periodicity are modeled by true microstructural
analysis with VCFEM. An adaptive Voronoi cell finite element model is also devel-
oped for micromechanical analysis. Microstructural damage initiation and prop-
agation in the form of debonding and particle cracking are incorporated. Error
measures, viz. a traction reciprocity error and an error in the kinematic relation,
are formulated as indicators of the quality of VCFEM solutions. The complete
process improves convergence characteristics of the VCFEM solution.
In the second part of this contribution, a computational technique for multi-time
scaling of the crystal plasticity is developed for prediction of deformation sub-
ject to multi-cycle loading. The crystal plasticity model involves microstructural
characterization and incorporation of crystallographic orientation distribution to
models, based on accurate microstructural data obtained by orientation imaging
microscopy. The crystal plasticity models use thermally activated energy theory
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for plastic flow, self and latent hardening, kinematic hardening, as well as yield
point phenomena. The multi-time scaling is based on a homogenized with the
asymptotic expansion method that is generally introduced for spatial homogeniza-
tion for heterogeneous materials. In the formulation, the governing equations are
divided into two initial-boundary value problems with two different time scale. One
is a long time scale problem for describing the smooth averaged solution (global
problem) and the other is for the remaining oscillatory potion (local problem).
In the global problem, long time increments, which are longer than a single cycle
period can be used and this multi-time scaling becomes an effective integrator.
Several numerical examples seve to validate this work.
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Configurational forces in ferroelectrics - interaction between defects
and domain walls

Dietmar Gross

(joint work with Ralf Mueller)

The applicability of ferroelectric materials under cyclic loading is limited by the
so-called electric fatigue effect. Macroscopically, electric fatigue is characterized
by a gradual decrease of the mechanical output for a fixed cyclic electric excita-
tion which may lead to a total electric failure of a component. Its origins on the
microscale are suspected in electro-mechanical mechanisms which are not yet fully
understood. Experimental observations support the hypothesis that the most im-
portant micro mechanism is the blocking of domain walls, i.e. hindered domain
switching, by defects of different kind, such as point defects and their agglomer-
ates or volume defects. In case of point defects, oxygen vacancies are probably the
sources which interact with the domain wall and the external loads. Since a direct
experimental verification of this hypothesis is difficult, numerical simulations may
provide a qualitative and quantitative understanding of interaction effects between
defects and domain walls. In order to model this scenario, configurational forces
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acting on the defects and vice versa on the domain wall are introduced and ex-
plained as an appropriate theoretical concept which can be realized numerically.
Once the coupled field equations are solved by Finite Elements, the configurational
forces are calculated to investigate possible motions of the defect and the domain
wall, respectively. Various numerical simulations are presented which demonstrate
the effect of the kind of defect, the defect position and concentration on the driving
force acting on the domain wall. The results are in qualitative good agreement
with experiments and indicate that the defects in fact form a barrier which, if high
enough, leads to a blocking of the domain wall. In order to overcome these ob-
stacles, higher external fields are necessary to move the domain wall again. Other
examples show the effect of repeated domain switching on the defect distribution.
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Multiscale modelling of shape memory alloys

Klaus Hackl

In order to formulate a physically well motivated mechanical model for shape-
memory alloys, it is required to gain deeper understanding of the material due
to its complexity. This means primarily not only to account for the macroscopic
characteristic along with their phenomenological description, but to take care of
the behavior on microscopic scales as well. Within our work we consider four
scales: the atomic scale determines the number of martensite variants and the
corresponding transformation strains to be taken into account. On the microscopic
scale we assume a laminated martensitic microstructure within a single-crystalline
domain.
On the mesoscopic scale we combine a large number of single-crystals with different
crystallographic orientations to define a polycrystal. Here the texture defined
by the orientation-distribution of the various martensitic domains constitutes the
fundamental quantity which has to be modeled. Finally the meso-macro transfer
is done via appropriate averaging techniques.
In all cases we use energetic formulations based on the free energy Ψ(F,K) of

the material and on a dissipation-functional ∆(K, K̇). Here F is the deformation-
gradient and K denotes a specific set of internal variables describing the actual
crystallographic variant, i.e transformation-strain, chemical energy and so on. We
determine the evolution of K via minimization of the sum of elastic power and
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dissipation.

(1) L =
d

dt
Ψ + ∆ → min .

The microstructure of a single crystal as well as the texture of a polycrystal can
now be described by a probability-distribution, a so-called Young-measure, λK of
the internal variables and additional quantities p, which define the geometry of
the microstructure. Via a subsequent minimization process it is now possible to
obtain relaxed potentials Ψrel(F, λK,p) and ∆rel(λK,p, λ̇K, ṗ). The argument in
(1) yields now evolution equations of the form

(2) qK = −∂Ψrel

∂λK

∈ ∂∆rel

∂λ̇K

, q = −∂Ψrel

∂p
∈ ∂∆rel

∂ṗ
,

where qK and q are the corresponding thermodynamical driving-forces.
The models are capable of reproducing all essential effects in the material behavior
of shape memory alloys such as pseudo elasticity and pseudo plasticity. Comparing
our models to results from synchrotron diffraction experiments good agreement is
observed between experimentally and analytically obtained orientation distribu-
tion functions.
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Theory of materials: experimental facts and constitutive modelling

Peter Haupt

The theory of materials includes the experimental identification of material prop-
erties, the material modelling and test calculations in order to verify and validate
the constitutive equations. A material model is a relation between strain and
stress processes. In view of the experimental identification, a basic problem arises
at this point: it is only possible to control and measure finite displacements; strains
and stresses cannot be measured directly. That means: only a quite incomplete
picture of the multidimensional world of continuum mechanics is experimentally
observable. Common solutions to this problem are experiments on test specimen
of very simple geometry and loading, such as tension tests on bars with constant
cross section or tension and torsion of thin-walled tubes. In these situations ho-
mogeneous states of stress and strain occur and are directly controllable. Before
constructing a constitutive model, the experimental data can be classified from
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a general point of view. Four possibilities can be distinguished [1]: the observed
material behavior may be

• rate-independent without a hysteresis
• rate-independent with a hysteresis
• rate-dependent without an equilibrium hysteresis
• rate-dependent with an equilibrium hysteresis.

In view of the construction of material models these 4 categories correspond to 4
different theory classes of material behaviour, namely

• Elasticity
• Plasticity
• Viscoelasticity
• Viscoplasticity.

These 4 classes of constitutive theories are related to different kinds of material
memory, which characterizes the influence of the past history of the input process
on the present response of a material body: An elastic material body is not able to
memorize the process history except its reference configuration. Viscoelastic and
plastic materials show fading and permanent memory properties, respectively. As
the general case, the response of a viscoplastic material depends on the process
history in such a way that both effects of fading as well as permanent memory
occur. These general arguments suggest representation techniques to set up stress
functionals. The theory of materials provides general methods and special tools to
design quite simple or more detailed constitutive models within these 4 categories.
The further development of those methods and tools is a still ongoing process.
In this context the technique, usually applied to represent the different grades of
memory behaviour is the theory of internal variables.
A constitutive model contains material parameters; their numerical values quantify
the intrinsic material properties. The material parameters must be determined
from experimental data. In some special cases the material parameters can be
directly identified according to their physical meaning. In general, however, they
must be identified indirectly utilizing methods of nonlinear optimization.
The conception of a constitutive model on the basis of experimental data is ex-
plained as an example for the application of the general theory of materials. For
the underlying research project see [2] and [3].
To collect an appropriate set of experimental data, experiments of tension, tor-
sion and combinations of tension and torsion are carried out. The investigated
material is a black-filled rubber, industrially applied in tires. Under the general
assumption of incompressibility and isotropy, which is realistic in this case, the
applied deformation (tension and torsion of a circular cylinder) is a solution of the
local equilibrium conditions for any particular material behavior. Therefore, the
performed one- and two-dimensional experiments are qualified to give information
about the intrinsic material properties.
The experimental results suggest rate-dependence and a very small equilibrium
hysteresis which can be neglected. Thus, a material model of nonlinear viscoelas-
ticity is designed on the basis of a rheological model, consisting of nonlinear spring
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and damping elements. Following the experimental data, process-dependent vis-
cosities are introduced. This leads to the possibility to represent nonlinear rate-
dependence and to model the influence of the deformation process on the relaxation
during subsequent hold times.
Numerical simulations on the basis of identified material parameters demonstrate
the success of the identification process and the ability of the constitutive model
to reproduce the phenomena, which are experimentally observed.
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Some new relations in wave motion

George Herrmann

(joint work with Reinhold Kienzler)

G.B. Whitham [1] has developed a variational approach to study linear and also
nonlinear wavetrains and its many ramifications and applications in a variety of
fields, including modulation theory. The essence of Whitham’s approach consists in
postulating a Lagrangian function for the system under consideration, specializing
this function for a slowly varying wavetrain, averaging the Lagrangian over one
period and, finally, to derive variational equations for this averaged Lagrangian.
Since the average variational principle is invariant with respect to a translation in
time, the corresponding energy equation was derived, and since it is also invariant
to a translation in space, the ’wave momentum’ equation was also established.
Kienzler and Herrmann [2] have shown that the two relations may be derived also
by calculating the time rate of change of the average Lagrangian and the spatial
gradient of the same function. It is also possible to obtain the energy equation
and the three ’wave momentum’ equations through a simple operation by applying
the grad operator in four dimensions of space-time. This has been carried out for
elastodynamics by Kienzler and Herrmann [3].
The purpose of this contribution is to consider not only the grad operator as ap-
plied to the average Lagrangian, but additionally also the div and curl operator to
a 4-dimensional Lagrangian Vector. In the first of these two cases a conservation
law for the wave virial was derived, while in the second case merely a balance equa-
tion for the wave curl was obtained because it did not appear possible to remove
a non-vanishing source term, when rotation in space and time was considered.
Rotation in space, whilst keeping the time axis fixed, led to a conservation law for
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isotropic materials. To illustrate the general relations, several two-dimensional (in
t, x ) examples were presented.
It is recalled that the grad operator (translation) leads in fracture mechanics to
the J-integral, the div operator (self-similar expansion) yields the M -integral and
the curl operator (rotation) results in the L-integral, as discussed in [2, 3]. Details
of the derivation may be found in [4].
Whitham has shown that his variational formulation of dispersive wave motion
for linear uniform problems may be extended to non-uniform (nonhomogeneous
and/or time-dependent) media and also to non-linear problems. It would indeed
be a tempting task to extend the essential contents of the present contribution
along those two directions cf., e. g., [5].
As regards the value and usefulness of conservation and balance laws in a gen-
eral way, reference may be made to an evaluation of such laws by Olver [6]. It
may suffice to mention here the applicability of conservation (and balance) laws in
numerics. Being incorporated into various algorithms, the accuracy of the numer-
ical results can be validated by checking whether or not the conservation laws are
satisfied identically. If the equations are not satisfied, so-called spurious material
nodal forces occur in finite-element calculations, which can be used to improve
the finite-element mesh by shifting the nodes in such a way as to eliminate the
spurious forces, cf. Braun [7], Müller and Maugin [8], Steinmann et al. [9].

References

[1] G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974).
[2] R. Kienzler, G. Herrmann, Mechanics in Material Space, Springer, Berlin (2000).
[3] R. Kienzler, G. Herrmann, On conservation laws in elastodynamics, In. J. Solids Structures

41 (2004), 3595–3606.
[4] G. Herrmann, R. Kienzler, On new relations in dispersive wave motion, Wave motion 42

(2005), 274–284.
[5] G.A. Maugin, Nonlinear Waves in Elastic Crystals, Oxford University Press, Oxford (1999).
[6] P.J. Olver, Applications of Lie Groups to Differential Equations, 2nd ed., Graduate Texts in

Mathematics, Springer, New York (1993).
[7] M. Braun, Configurational forces induced by finite-element discretization, Proc. Estonian

Acad. Sci. Phys. Math. 46 (1997), 24–36.
[8] R. Müller, G.A. Maugin, On material forces and finite element discretizations, Comp. Mech.

29 (2002), 52–60.
[9] P. Steinmann, D. Ackermann, F.J. Barth, Application of material forces to hyperelastostatic

fracture mechanics. II. Computational setting, Int. J. Solids Structures 38 (2001), 5509–5529.

Description of industrially used rubber materials within the finite
element method

Jörn Ihlemann

Industrially used filled rubber materials show large deformation capability, highly
nonlinear material behavior as well as complicated inelastic effects, namely hys-
teresis even in stationary cycles, and a distinct softening induced by the loading-
history, which is called Mullins effect. These characteristics entail high efforts of
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an efficient description in the framework of continuum mechanics. Thus, the de-
velopment of models suitable for those materials and the implementation of those
models into the finite element method are complicated.
Moreover, the Mullins effect is sensitive to the relative orientation of the direc-
tions of the prestraining in the past and the present straining. Thus, the material
evolves a distinct strain-induced anisotropy. This attracts attention even in the
case of the simple shear deformation mode, provided that a loading sequence ac-
cording to Muhr [1] is carried out. In contrast to multiaxial tension tests such
a shear experiment is a reliable and easily feasible way to detect strain-induced
anisotropy. Those shear processes indicate, that anisotropy occurs in the simula-
tion of many industrial components with shear deformations as the most typical
deformation mode and affects those applications considerably. If the component is
loaded periodically with positive as well as negative shear angles but with different
intensities in these two directions, the shear stiffness is expected to be different in
the two shear directions. Of course, the extent of anisotropy depends on the used
material and the intensity of the loading.
Considering the demands of an important class of industrial applications, the
so called MORPH constitutive model (MOdel of Rubber PHenomenology [2]) is
used to simulate rubber material behavior within the frame of the finite element
method. The model focusses on stationary processes of technical components with
inhomogeneous distributions of stress and strain.
The physical motivation of the model is the so called theory of self-organizing
linkage patterns [3]. This approach is based on the theory that, during an external
deformation, a self organization process of physical linkages starts on the molecular
level. This leads to a separation of comparatively spacious, stiffened areas with to
a great extend softened layers in between. Such a distribution of physical linkages
is called linkage pattern and it is interpreted as the origin of the influence of the
loading history to the momentary material behavior.
In its simplest form the MORPH constitutive model contains eight material con-
stants. Their identification works fast and automatically. The strong nonlinearities
as well as the hysteresis and even the softening effects are simulated reliably and
close to reality.
To describe the anisotropic Mullins effect a tensorial history function is defined
[4], which is based on second-order tensors, which are calculated using ellipsoid
representations of all right Cauchy-Green tensors in the past, belonging to the
same material point. This way, the anisotropic softening is reproduced in good
correspondence to the experimental data.
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Constitutive modelling of anisotropic hyperelastic materials by
polyconvex strain energy functions

Mikhail Itskov

(joint work with Alexander E. Ehret)

Soft biological tissues as well as many engineering materials, as for example fiber-
reinforced or calendered rubber-like elastomers, are characterized by strong ani-
sotropy and are able to undergo large elastic deformations. In the constitutive
modeling these features should be taken into account in an adequate manner. In
the present contribution we discuss various hyperelastic anisotropic constitutive
models with the focus mainly on the issue of polyconvexity of anisotropic strain
energy functions [1]. Polyconvexity ensures ellipticity or the so-called Legendre-
Hadamard condition. It implies positive definiteness of the acoustic tensor so that
the speed of displacement waves is always real for any direction of propagation.
Furthermore, in combination with coercivity, polyconvexity guarantees the exis-
tence of the global minimizer of the total elastic energy of the body which is of
decisive importance in the context of a boundary value problem [2]. To benefit
from these positive features we propose a class of polyconvex anisotropic strain
energy functions. They are given by a series represented by some convex scalar
functions. Each term of this series a priori satisfies the condition of the energy
and stress free natural state so that no additional restrictions have to be imposed.
Special cases of the proposed hyperelastic model based on power [3] and expo-
nential [4] function representations show very good agreement with experimental
data.

References

[1] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat.
Mech. Anal. 63 (1977), 337–403.

[2] J.M. Ball, F. Murat W1,p-quasiconvexity and variational problems for multiple integrals, J.
Funct. Anal. 58 (1984), 225–253.

[3] M. Itskov, N. Aksel, A class of orthotropic and transversely isotropic hyperelastic constitutive
models based on a polyconvex strain-energy function, Int. J. Solids Struct. 41 (2004), 3833–
3848.

[4] M. Itskov, A.E. Ehret, D. Mavrilas A polyconvex anisotropic strain-energy function for soft
collagenous tissues, Biomech. Model. Mechanbiol. (2006), in print.



220 Oberwolfach Report 4/2006

Fatigue strength calculations based on the weakest-link concept

Frank Jablonski

Surface hardened steel, e.g. case-hardened or laser-hardened, is widely used in the
field of machine building, especially when low abrasion is required. The experimen-
tal determination of the strength of surface-hardened parts under cyclic loading is
quite cost intensive due to the expenditure of material and testing time. The influ-
ence of material, load type, stress multiaxiality, size effect, mean stresses, residual
stresses and surface properties causes a broad scatter of the fatigue strength of
these parts. This scatter can be described by means of the Weibull distribution.
To reduce the number of experiments, a calculation method is developed which is
based on Weibull’s weakest link concept [1]. This method allows to compute the
failure probability and the failure location of machine parts which are loaded in
the transition region to the fatigue limit. Fatigue failure of machine parts with
inhomogeneous material properties under inhomogeneous stress conditions may
occur either at the material’s surface or inside the material. Therefore, a separate
treatment of the surface and the volume of the material is necessary. Moreover,
the effects of residual stresses and mean stresses are to be considered.
The essential quantities in the presented model are the distribution of Vicker’s
hardness and the exponents of the Weibull distribution of the surface and the
volume. Also the residual stress state is important. Due to the fact that the
experimental determination of residual stresses - e.g., with X-ray diffractometry
- is only possible at free surfaces, an additional numerical iteration is needed to
obtain an equilibrium state for the residual stresses. The surface roughness and
surface oxidation depth are included by means of diminution factors for the surface
strength. The local strength is characterized with Murakami’s relation between
hardness and fatigue limits [2, 3]. The multiaxiality of the stress state is considered
by equivalent stresses; for example von Mises, Tresca or Dang Van’s criterion [4].
By integrating the survival probabilities of the surface and the volume, the survival
probability of the entire part is calculated, which allows to compute the fatigue
limit. The necessary parameters have to be determined from reference specimens.
The model is successfully examined by comparing experimental and calculated re-
sults for case-hardened and laser-hardened specimen established with both smooth
and notched specimen under different loading conditions. Details of the procedure
presented may be found in [5] and [6].
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Mechanics of ion-bombardment of semiconductor materials

Harley T. Johnson

Ion-bombardment is a widely used processing tool in microelectronics, and it is
increasingly used as a fabrication tool for nanotechnology. The target material,
often a semiconductor such as silicon or germanium, is significantly affected me-
chanically by the incident ion irradiation. While the process has been studied in
detail experimentally, computationally studies are needed to fully investigate the
mechanisms behind these effects. In the present work, molecular dynamics (MD)
is used to reveal detailed mechanisms underlying the effects of ion-bombardment.
The results of the MD studies are interpreted spatially and temporally over many
orders of magnitude. Interpreting the results in this way, and connecting the
atomistic data to continuum experimental observations, presents many challenges
that can be related more generally to a range of important mechanics problems;
here the analysis is applied to study two specific mechanics problems associated
with ion-bombardment. First, the simulations are used to explain the role of
ion-bombardment in developing near-surface stress in the target material. Sec-
ond, the results are applied to investigate the self-assembly of nanoscale surface
features under the appropriate ion-bombardment conditions.
Stress development due to ion bombardment arises from several atomistic mech-
anisms that are readily observed by computer simulation. Experimentally, stress
is measured in ion-bombarded thin film structures through wafer curvature mea-
surements, which sense an in-plane stress averaged over the thickness of the film
[1]. Direct MD simulations of the ion-bombardment process show that the actual
stressed layer in the target material is only a few nanometers thick [2]. In this
stressed layer, the material is heavily damaged and even amorphous when the
process is carried out at temperatures in the range of room temperature or lower.
The results of the MD work show that the damage itself contributes to the devel-
opment of stress in the material, since the amorphous material, unconstrained by
the underlying crystalline material, would have a lower density. In addition to the
microstructural changes, the effect of ion implantation contributes significantly to
the development of stress: the added material itself causes additional compres-
sive stress. The simulations reveal one other interesting but transient feature of
stress development in ion-bombarded materials: the initial stress that develops is
tensile in nature, due to the tendency of the topmost atoms in the nearly single-
crystalline target to reconstruct. Finally, the simulations reveal the onset of steady
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state stress in the system. In the few-nanometer-thick damaged layer at the sur-
face, the stresses in a medium energy ion-bombarded semiconductor material are
on the order of several GPa.
Under certain ion-bombardment conditions, the spontaneous formation of nano-
scale ripples and dots is observed experimentally [3, 4]. In the present work,
molecular dynamics simulations are used together with continuum surface evolu-
tion models to uncover the atomistic origins of this behavior. The instability yields
reproducible, uniform, ordered arrays of nanostructures, including either well de-
fined lines or dots on semiconductor surfaces that may be useful in nanoelectronics,
optoelectronics, or nanomechanical applications requiring surface patterning. Un-
til now, only phenomenological continuum models have been used to interpret the
widely seen experimental results, [5, 6], and no models have achieved the predic-
tive ability needed to shed light on the basic physics and mechanics or to bring the
process into use as a potential nanomanufacturing method. Here, a large database
of molecular dynamics results as a function of variables including temperature,
stress, incident angle, energy, and surface characteristics is collected; the results
are then incorporated into continuum surface evolution models. The studies reveal
the atomistic mechanisms by which medium energy ions incident on an initially
flat surface preferentially amplify surface roughness, even as thermally activated
mass transport tends to smoothen surfaces out to longer length scale features [7].
Numerous possible stabilizing and ordering mechanisms occurring at the atomistic
scale are considered including viscous relaxation, sputtered atom redeposition, and
other short time scale correlations between change in surface height and spatial
derivatives of the local surface morphology. The key conclusion is that existing
models fail to include the effects of mass redistribution due to individual ion im-
pacts; this subtle, local feature leads to significant long range effects, such as the
experimentally observed saturation in ripple amplitudes that occurs after extended
sputter erosion of a surface.
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Zanaboni’s treatment of Saint-Venant’s principle

Robin J. Knops

(joint work with P. Villaggio)

A simplified proof is presented of a basic inequality employed by Zanaboni in his
treatment [2, 3, 4] of Saint-Venant’s principle for an arbitrary shaped anisotropic
linear elastic body in equilibrium under zero body force and self-equilibrated loads
distributed over a part of an otherwise free surface. Of his main conclusions, those
of interest here may roughly be expressed as:

(1) The stored energy in the part of the body sufficiently remote from the load
surface tends to zero.

(2) The decay rate for cylindrical bodies is exponential.

Basic inequality: Let Ω1, a bounded three-dimensional region with Lipschitz
smooth boundary ∂Ω1, be occupied by a linear anisotropic nonhomogeneous elastic
material in equilibrium subject to zero body-force and self-equilibrated loads Pi
over a part Γ ∈ ∂Ω1 of the otherwise free surface. A second body Ω2 of the
same elastic material is bonded to Ω1 across the interfacial surface Σ ⊂ ∂Ω1 \
Γ, so that the resulting displacement and traction are continuous across Σ and

∂Ω2 \ Σ is free. Let Ω = Ω1 ∪ Ω2 and suppose that u
(1)
i , e

(1)
ij , σ

(1)
ij and ui, eij , σij

are the displacement, strain, and stress in Ω1 and Ω respectively. Denote the
corresponding internal energy in Ω1 when isolated by:

(1) VΩ1
(u(1)) =

1

2

∫

Ω1

cijkle
(1)
ij e

(1)
kl dx,

where the elastic moduli cijkl , common to both Ω1 and Ω, possess both major and
minor symmetries and are positive-definite.
The principle of minimum strain energy applied to Ω1 regarded as an isolated
body yields:

∫

Γ

Piu
(1)
i dS =

∫

Ω1

cijkle
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ij e

(1)
kl dx
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∫

Γ

Piui dS −
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=

∫

Ω
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∫
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≥
∫

Γ

Piui dS,(3)

where the last inequality,which demonstrates that additional material stiffens a
body, was derived by Zanaboni but again by a different method.
Zanaboni’s basic inequality is given by (2) which for later purposes may equiva-
lently be written:

(4) VΩ2
(u) ≤ VΩ1

(u(1)) − VΩ(u).
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Positive-definiteness of the elasticities and (4) imply that:

(5) VΩ(u) ≤ VΩ1
(u(1)).

Zanaboni completed the proof of Conclusion 1 by successive bonding of a sequence
of further bodies to Ω subject to the same load on Γ. This generates a monotonic
non-decreasing bounded below sequence of energies that by Cauchy’s theorem
leads to the desired result.
Decay in cylindrical bodies: For convenience, we suppose that the surface Γ is
planar and enclose within Ω1 a prismatic cylinder C1 of length l with Γ as its base;
while Ω is enclosed within a prismatic cylinder C2 of length L whose base contains
Γ. The cylinders C1, C2 are subject to the loads Pi over Γ but are otherwise free.
From (5) and dual extremum principles with L→ ∞ we obtain the decay estimate:

VΩ2
(u) ≤

∫

Γ

PiPi dS exp{−2µ
1

2

2 l}
[

c0µ
1

2

2

(

1 − exp{−2µ
1

2

2 l}
)]−1

,

where µ2 is the second eigenvalue in the free membrane problem for Γ and co is
a positive constant. This represents the required estimate derived without using
differential inequalities.
Concluding remarks: Insofar as the method relies upon dual extremum prin-
ciples it may be extended to other theories possessing analogous properties. Fur-
thermore, while the above treatment compares internal energies between bod-
ies of different sizes, a possible alternative approach involves enlarging a body
through accretion of additional material and investigation of the roles of the
energy-momentum tensor and chemical potential.
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Residual stress and machining distortion

Christian Krempaszky

To obtain materials/components covering a wide range of conditions with charac-
teristic mechanical properties, quenchings in connection with special heat treat-
ments are of particular engineering importance. In addition to strength demands,
a reduction of the production costs of forged parts by eliminating processing steps
is essential. In this course a direct age version of IN 718 has been proposed for
which an increase of strength is possible by precipitation strengthening during
cooling from the forging temperature. The mechanical and thermal treatments
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inevitably result in residual stresses and distortions in the treated parts, which
result from coupled thermo-mechanical interactions during the usually rapid cool-
ing from sufficiently high temperatures down to room temperature [1, 2]. Due to
the macroscopic portion of the residual stress state, machining of slender forged
components may lead to severe distortion of the component. In the worst case,
the dimensional accuracy of the pre-finished component is not achieved.
Within the scope of the presentation, the residual stresses in forged plate-like com-
ponents are investigated with the focus on the distortion of the component during
machining. To predict the transient thermal stresses during quenching and the
resulting residual stress state a semi-analytical plate model is set up following the
ideas of Landau et al. [3]. Based on these results the redistribution of the residual
stresses and the corresponding distortion due to machining are estimated. Addi-
tionally, an approximative solution of the plate approach is proposed using the
finite element method. To verify the theoretical predictions of the residual stress
state and the corresponding distortion resulting from machining, the component
distortion is determined by experiment considering turbine disks of the Ni-base
superalloy IN 718.
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Determination of ductile damage parameters from measured
deformation fields

Meinhard Kuna

(joint work with M. Springmann, M. Scherzer)

Ductile damage mechanics describes the non-linear deformation process, failure
and fracture within the framework of a continuum theory. For its application
and acceptance it is of great importance to determine the abundant number of
material parameters in such models. The material parameters of damage models
are usually gained from the force-displacement curves of simple tensile experi-
ments via empirical (best fit) methods. However, the complexity of the problem
requires more comprehensive information from the experiment than a simple force-
displacement curve. On this account more advanced identification algorithms are
needed to exploit supplementary information, which may be obtained from mea-
sured inhomogeneous deformation fields. Furthermore, to identify the damage
parameters of ductile materials, experiments with homogeneous stress and strain
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distributions are neither capable nor sufficient. A significant influence of the dam-
age parameters occurs only after large deformations, which lead unavoidable to
inhomogeneous stress and strain fields, as e. g. in necking regions.
This work comprises the development, implementation and application of meth-
ods for the parameter identification of damage mechanical constitutive laws. Duc-
tile damage is described by extension of the von Mises yield condition with the
Gurson-Tvergaard-Needleman as well as with the Rousselier model. The classical
Rousselier model is complemented by accelerated void growth and void nucleation.
The non-linear initial boundary value problem for hyperelastic-plastic large defor-
mations is solved by the finite element system SPC-PMHP, which was developed
in the frame of the special research program SFB393 on parallel computers [1, 2].
The aim is, to identify the material parameters from locally measured displace-
ment fields and measured force-displacement curves. For this purpose, the inverse
boundary value problem has to be solved. A non-linear optimization algorithm is
used, which renders a suitable multi-objective function to a minimum by means
of the gradient based method of Levenberg & Marquardt. The gradients with re-
spect to the material parameters are implicitly calculated by means of a sensitivity
analysis (Mahnken & Stein) from the current finite element solution. Furthermore,
the point of localization of deformation in the specimen is compared with the loss
of ellipticity of the boundary value problem in the numerical analysis. For this
reason, during the FEM-computations the acoustic tensor is monitored in the
whole specimen during the deformation process. Several numerical experiments
are performed in order to check the efficiency of the identification algorithms. A
useful strategy to identify the material parameters was found by careful numerical
studies [3, 4].
A special experimental set-up was developed to perform tensile experiments with
notched flat bar tension specimens. In order to measure the local displacement
fields at the specimen surface, the object grating method was used. The method
was applied to the steel StE 690. The hardening and damage parameters for both
damage models could be identified. More detailed information can be found in the
PhD-thesis of M. Springmann [5].
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On the kinetics of the pseudoelastic hysteresis loop

Khanh Chau Le

Shape memory alloys such as NiTi or CuZnAl, due to their specific crystal lat-
tices, may have more than one stable equilibrium state. In these materials the
coexistence of phases (or phase mixing) is possible under particular thermal or
loading conditions. If the resistance to the nucleation and motion of phase in-
terfaces is negligible and hence the dissipation is zero, phases are arranged in a
microstructure that minimizes energy of the system. However, in real materials,
there are many barriers and obstacles hindering the creation and motion of phase
interfaces, and, if their resistance is large, the low energy states may not be at-
tained at all. This resistance to the creation and motion of phase interfaces can
only be overcome at some energy expenses. Consequently, the rearrangement of
phases and the accompanying energy dissipation should be governed by the laws of
non-equilibrium thermodynamics. It is commonly argued in the material science
community that, in order to describe the drastic phase rearrangement during the
yield or the recovery, additional kinetic relations governing the evolution of phases
are needed.
Abeyaratne and Knowles [1] were among the first to have proposed an initiation
criterion and a kinetic relation in addition to the well-known balance equations of
continuum mechanics. Within the one-dimensional model of quasi-static motion
of bars under tension, the proposed relations close the system of equations govern-
ing the evolution of phases and are consistent with the laws of thermodynamics.
Unfortunately, this theory is unable to describe many well-known features of the
hysteresis loops observed in experiments. This is due to its two deficiencies: i)
the free energy does not include the surface energy (or the coherency energy) of
phase interfaces, ii) the dissipation potential is not a homogeneous function of
the first order with respect to the volume fraction rate, so the theory is not rate-
independent. The proposed initiation criterion associated with the Maxwell line
is neither confirmed by experiments on internal yield or recovery [2].
A fundamental understanding of the initiation of phase transition has been a-
chieved by Fu et al. [2] and Huo and Müller [3]. By including the coherency
energy of phase interfaces into the free energy of the system, the correct formula
for the driving force was derived. This leads to the diagonal line connecting the
upper left with the lower right corner of the hysteresis loop, at which the nucleation
of new phase begins. The existence of this line was confirmed by the experiments
reported in [2]. However, since the kinetic equation is absent in [2, 3], it is not
clear why does the stress-strain curve prefer moving along the horizontal yield
or recovery line for the given loading path. The explanation based lonely on the
energy consideration and stability requirement was not convincing.
The aim of this short note is to fill the logical gap in the above mentioned stud-
ies [2, 3]. We propose a simple kinetic relation consistent with the second law of
thermodynamics. This relation is obtained from the dissipation potential which is
proportional to the magnitude of the volume fraction rate times the newly formed
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volume fraction. We will show that the theory is rate-independent, but history
dependent, and that it can describe all features of hysteresis loops observed in
experiments. For simplicity, the analysis of hysteresis is provided for the piece-
wise linear stress-strain curve and simple loading paths. However, it will be clear
from this analysis that hysteresis loops can be simulated for a rather general non-
monotone stress-strain curve and arbitrary loading programs.
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Open and recently answered questions in the configurational
mechanics of solids

Gerard A. Maugin

Mechanics of materials on the material manifold, also called “ configurational” or
“Eshelbian” mechanics (after J.D.Eshelby) provides a natural and safe basis for the
formulation of the thermomechanics of forces driving evolving defects and material
inhomogeneities [1, 2, 3, 4, 5]. Fully expressed on this material manifold, it exploits
a parametrization of space-time in terms of material coordinates X and Newtonian
time t. A strong and vivid scientific and engineering activity has developed in this
modern framework including a rationalization of the construction of driving forces
and new computational techniques [6] where the notion of spurious material forces
is fully exploited. Like in all rapidly developing fields (this, essentially since the
late 1980s) with many faceted applications , a large number of questions is raised,
some of them having already received a definite answer and others still waiting for
the most reasonable answers. Five of these questions recur on the scientific scene
mainly due to a lack of common understanding These questions have been briefly
enunciated and answered.
The main ingredient in the material mechanics of materials is the statement of the
“balance of material (also called canonical or pseudo) momentum”, and its related
jump relation at a discontinuity surface. Hence the first question.
Question 1: Can we formulate the balance equation of canonical momentum
without specifying the energy density? Some school (M.E. Gurtin and co-workers)
claims that that equation can be postulated independently of the usual balance
equations of continuum physics, including that of linear momentum and indepen-
dently of any specified material behavior, and thus granting to that equation the
status of a “new law” of physics. Another, more modest view (held by the author
and many others) is that the balance of canonical momentum is intimately related



Mechanics of Materials 229

to a basic invariance of physics (translational invariance on the material manifold,
in other words the property of material homogeneity): the existence of material
forces reflects a breaking of this symmetry. Material inhomogeneity per se, but
also field singularities and some dissipative effects “materialize” in this breaking
of symmetry. We may speak of pseudo-inhomogeneity effects [7]. The latest works
by the author (e.g. [8]) show how far one can go in the formulation of the balance
of canonical momentum; As a matter of fact, it is possible, even in the presence
of complex dissipative effects, to formulate simultaneously canonical expressions
for the balance of material momentum and of a special energy density (product
of thermodynamic temperature and entropy) without specifying the explicit de-
pendence of the free energy density, thus for an infinitely large class of material
behaviors. Though, these equations are not formally independent of the usual
balance equations written in most general terms. The same holds good a priori
for the associated jump relations. QED.
Question 2: What is the energy to be considered in the Eshelby stress? In
many practical problems one distinguishes between different thermodynamical sit-
uations, among these, isothermal evolution and adiabatic conditions are the most
common ones. This is critical in studying various discontinuity surfaces (phase-
transition fronts, shock waves). But the Eshelby stress tensor which provides the
“flux” in the balance of canonical momentum involves such an energy. Accord-
ingly, one must pay special attention to which energy density (e.g., free or internal)
the Eshelby stress incorporates, as a pseudo-material force of different types may
appear as a source in the balance of canonical momentum and its associated jump
relation [9, 10].
Question 3: Is there any confusion in the literature between the conservation of
material momentum and an equation governing a microstructure? Brief answer:
Yes!
Question 4: Are equations governing evolving surfaces independent of the bal-
ance of canonical momentum? Answer: no, evolving interfaces break translational
material symmetry!
Question 5: What happens in the dual space of wavelike solutions where relevant
entities are the material wave vector K and the angular frequency ω, remembering
that a phase is naturally defined by the invariant relation (K.X-ωt)? Answer in a
forthcoming work [11].
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Atomistic simulations of disclination structures and evolution in fcc
metals

David L. McDowell

(joint work with D.E. Spearot, K.I. Jacob, M.A. Tschopp)

The role of interfaces (e.g., grain boundaries) in continuum level defect field the-
ory is often minimized. In order to incorporate low and high angle boundaries
(grain and sub-grain), it is necessary to develop appropriate kinematics (tangent
spaces and deformation mappings for characteristic defects), thermodynamics (free
energy) and kinetics (evolution). Treatment of the disclination character of high-
angle boundaries can be rigorously pursued as an undergirding element of general-
ized dislocation-disclination defect field theory of crystals, starting with atomistic
calculations. In this work we explore the structure of grain boundaries in fcc Al
and Cu bicrystals using a 0 K conjugate gradient energy minimization of EAM
potentials, with equilibration of an NPT ensemble at finite temperature for a
full range of <001> and <110> misorientation axis symmetric tilt boundaries.
Both CSL character and disclination structural units are identified. Emission of
the first dislocation is characterized for each boundary misorientation. For disso-
ciated grain boundaries (low to moderate stacking fault energy, e.g., Cu), a new
mechanism is found for eradication of the extended intrinsic stacking fault (discon-
nection). It is found that for some boundaries, secondary rather than primary slip
systems are activated first. Finally, possible directions for informing continuum
models are briefly discussed. A simple model for grain boundary strength (first
dislocation emission event) is found that depends not only on misorientation an-
gle and favorable lattice orientation (primary dependence), but also on a measure
of nanoporosity or free volume obtained by averaging the solution over a certain
interface strip. A general kinematic and thermodynamic framework for coupled
disclination and dislocation defect populations is briefly discussed, based on our
recent works [1, 2, 3]. A strategy is suggested for informing such a continuum the-
ory based on microscopic phase field models and discrete dislocation-disclination
dynamics. Outstanding issues include:

(1) rendering of dislocations
(2) dislocation/disclination interactions
(3) forms of interaction terms in thermodynamic free energy
(4) mobility characteristics and single defect/many body kinetics
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Explanation: Understanding of the role of grain boundaries in deformation and
fracture of polycrystalline metals is still incomplete. Numerous authors have sug-
gested over the years that coincident site lattice (CSL) boundaries, special bound-
aries with characteristically lower excess energy, may contribute to enhanced de-
formation and fracture resistance. However, attempts to quantify dependence of
mechanical behaviors in terms of the CSL boundary index (number of overlapping
atoms in the unit cell of interpenetrating lattices with misorientation) have not
provided satisfactory generality of correlation with strength or fracture resistance.
Moreover, studies of the dependence of dislocation nucleation mechanisms on CSL
boundaries have typically been limited in scope.
Molecular statics (0 K) calculations of grain boundary structure have been per-
formed in this study using a sequence of lattice translations, atom extraction to
avoid overlap, conjugate gradient energy minimization, followed by finite temper-
ature equilibration to achieve stable, minimum energy structures. Comparisons
with HRTEM experiments and ab initio results confirm the algorithm. The embed-
ded atom potential (EAM) is used for both both fcc Cu and Al [4]. Certain high
angle boundaries in low stacking fault energy metals show a dissociated structure,
with extended intrinsic stacking faults (ISFs) emanating from disclination struc-
tural units. The dissociated structure of such boundaries is typical of low intrinsic
stacking fault energy fcc crystals, and limits applicability of the structural unit
model proposed by Sutton and Vitek [5] which estimates grain boundary energies
for special and intermediate boundaries based on the energies of summations of
repeating structural units. We show [6, 7, 8, 9] that these dissociated structural
units, otherwise labeled as “disconnections” by Hirth et al. [10] possess certain dis-
tinct characteristics in terms of dislocation nucleation. Specifically, it is found for a
53.1 deg. Near Σ11 CSL symmetric tilt boundary about the <110>misorientation
axis in Cu that under tensile load, the ISF must constrict towards the interface
until a pair of partial dislocations separated by an extrinsic stacking faulty (ESF)
is emitted from the interface at the intersection of the ISF with the structural
unit. Subsequently, a pair of partial dislocations is emitted on the opposite side of
the interface; finally, following emission of the trailing partial dislocation, the ISF
is eradicated. In this way, the disconnection is removed [8].
A model for strength of grain boundaries is developed that combines lattice ori-
entation (with non-Schmid effects on dislocation nucleation after Ogata et al. [11]
and interface structure (expressed through a coordination number-based measure
of nanoporosity) to propensity to nucleate a dislocation [9]. The importance of
this result is that CSL both misorientation and grain boundary structure must
be considered. The model does not appear to work for a <110> boundaries
with a very high misorienation angle, but suffices for all others. This indicates
that a disclination-based representation of grain boundaries is critical to framing
physically-based polycrystalline plasticity theories.
It is contended that such results may contribute necessary thermodynamic charac-
terization and understanding of kinematical mechanisms to continuum phase field
and other continuum field theories for combined dislocation-disclination kinematics
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and kinetics. A comprehensive kinematical defect field theory that reflects both
disclinations and dislocations has been recently developed that may ultimately
accept these results (cf. [1, 2, 3]).
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Computational modelling of growth and remodelling of biological
tissues

Andreas Menzel

Biological tissues posses various substructures on different scales of observation.
Apart from highly anisotropic response, the adaptation of these materials results
in reorientation of such substructures according to the applied loading directions.
Different continuum theories have been proposed in the literature to capture re-
lated growth and remodelling phenomena; the reader is referred to the contribu-
tions [1, 6, 11] and references cited therein. Special emphasis on the incorporation
of effects stemming from additional mass sources and mass fluxes as well as on
numerical applications has been placed in [2, 3, 7, 8]. Here, we are particularly
interested in the modelling of fibre reorientation during growth and remodelling of
soft tissues loaded under tension. Two orthogonal fibre families are thereby incor-
porated into a continuum model and allow interpretation as phenomenologically
representing bundles of collagen fibres. As such, the proposed framework extends
previously developed formulations accounting for transversally isotropic response;
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see [4, 5] where stress-driven models are developed or the kinematics-based ansatz
in [9, 10]. The overall framework is inspired by the works [12, 13], namely that
the fibres are aligned in a time dependent manner so that both fibre families re-
orient with respect to principal stretch directions - the strain energy accordingly
approaching an extreme value. The developed algorithm fits nicely into, for ex-
ample, common nonlinear finite element codes. Concerning future research, the
following (open) problems - among other related topics - might be of interest:

(i) design of relevant experimental setups and comparison of measured data
with simulation results

(ii) numerical elaborations on different fibre reorientation models
(iii) analysis of (deformation dependent states of) commutative stress and

stretch tensors for fibre family directions which do not coincide with prin-
cipal stretch directions

(iv) further investigations on the incorporation of residual stresses
(v) comparison of stress-driven growth formulations with energy-driven growth

approaches
(vi) incorporation of forces related to inhomogeneities of the material into

growth evolution equations.
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Phase diagrams modified by interfacial penalties

Ingo Müller

The conventional forms of phase diagrams are constructed without consideration
of interfacial energies and they represent an important tool for chemical engineers
and metallurgists. If interfacial energies are taken into consideration, it is intu-
itively obvious that the regions of phase equilibria must become smaller, because
there is a penalty for the formation of interfaces. We investigate this phenome-
non qualitatively for a one-dimensional model, in which the phases occur as layers
rather than droplets or bubbles. The modified phase diagrams are exhibited for
the case of full miscibility in the low temperature phase and for the case of a
miscibility gap in the liquid phase.

Modeling of spinodal decomposition and coarsening in AgCu: a
quantitative approach

Wolfgang H. Müller

(joint work with Thomas Böhme)

Experimental investigations show that the microstructure of solders changes over
time. In order to estimate the reliability and the lifetime of microelectronics it
is important to predict the rate of microstructural changes. Starting with an
overview on coarsening phenomena as observed in lead-free solder alloys this pa-
per concentrates on the theoretical description of phase separation and subsequent
phase growth that occurs in various solid binary alloys. Here the mixture decom-
poses into its equilibrium mass concentrations cα/β which are determined by the

common tangent rule: ∂ψ(c,T )
∂c |c=cα/cβ

=
ψ(cβ ,T )−G(cα,T )

cβ−cα
. Furthermore phase sep-

aration can be distinguished into two different processes, namely nucleation and
spinodal decomposition, which are defined by aspects of thermodynamical stability
[1]. Indeed, one can find three areas of stability in the Gibbs free energy density
curve ψ(c, T ):

(1)
∂2ψ(c, T )

∂c2







< 0 , unstable

> 0 ∧ c ∈ {[cα, csp1 ] ∨ [csp2 , cβ]} , metastable

> 0 ∧ c /∈ {[cα, csp1 ] ∨ [csp2 , cβ]} , stable

.

Here csp1/2 denote the so called spinodal concentrations determined by the inflec-

tion points ∂2ψ(c, T )/∂c2 = 0. According to Eq (1) classical Fickean diffusion,
spinodal decomposition or nucleation occurs if the initially (homgeneous) mass
concentration c is outside or within the unstable/metastrable area.

In order to simulate phase separation and coarsening an extended diffusion
equation of the phase field type is presented which can be interpreted as a gen-
eralization of the well known Cahn-Hilliard equation. It takes diffusion of the
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Fickean type, surface tensions along the phase boundaries as well as local me-
chanical stresses into account, [2]:

∂c

∂t
=

∂

∂Xi

[

Mij
∂

∂Xj

(∂ψ

∂c
− 2Akl

∂2c

∂Xk∂Xl
− ∂Akl

∂c

∂c

∂Xk

∂c

∂Xl

−2
∂Akl
∂εmn

∂c

∂Xk

∂εmn
∂Xl

− ∂2akl
∂εop∂εmn

∂εop
∂Xk

∂εmn
∂Xl

− ∂akl
∂εmn

∂2εmn
∂Xk∂Xl

)]

.(2)

The symbols Xi and t denote the reference position and the time. Furthermore
the required material parameters ψ, Mij , Akl, akl and Cijkl must be specified
for a chosen material and can be determined either from the literature/databases
or from calculations based on the embedded atom method which is suitable for
describing atomic interactions in metals [3]. Note that the stiffness coefficients
Cijkl yield the strains εkl solving the elastic problem.

In a first step of investigations it is considered the one-dimensional and stress-
free case, where Eq (2) reduces to

(3)
∂c

∂t
=

∂

∂X

[

M(c)
∂

∂X

(

∂ψ(c)

∂c
− 2A(c)

∂2c

∂X2
− ∂A(c)

∂c

(
∂c

∂X

)2
)]

.

Eq (3) represents a nonlinear partial differential equation of 4th order which de-
scribes the temporal development of different equilibrium phases in a binary alloy.
As an example this equation is (numerically) solved by means of discrete Fourier

transforms [4], and results are illustrated for the FCC-structured lead-free solder
alloy AgCu.

Finally we turn attention to the formation of scallop-shaped intermetallic com-
pounds observed at the interface between solder material and substrate. A LSW-
based ansatz is used [5], and evaluated for various solders (SnAgCu + In, SnAgCu
+ In + Nd), that allows the prediction of the development of the mean grain radius
followed by exemplary results for Cu6Sn5 scallops on Cu substrate.
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Extraction of constitutive properties of composite panels in
interlaminar shear

Jonas M. Neumeister

A doubly notched specimen is used to test shear properties in the test region
between the notches. This configuration produces non-uniform stress fields. By
superimposing bending moments over each notch giving equally poor stress fields,
but of opposite sign, the net stress remains unchanged, but very uniform (com-
bined) stress fields are obtained. Treating the notches as sharp cracks, appropriate
combination of normal (N) and bending (M) loading is achieved for cancellation
of the arising stress intensity factor, i.e. Ktot

I = KN
I + KM

I = 0. This is accom-
plished by a fixture with two specimen holders loading it isostatically where the
mutual proportion of loadsets (N & M) is adjusted by varying the angle between
specimen and external load. This Inclined Double Notch Shear test (IDNS) is
used to study the strengths, moduli and general constitutive behavior of several
composite laminates. Its advantages over existing shear tests are confirmed, and
very uniform strainfields are monitored optically. By using tilted notches even the
(minor) KII component is minimized.
Cyclic loading with increasing peak shear strain of a carbon-epoxy composite re-
veals non-linearity already at low stresses, notable inelastic strains, widening hys-
teresis loops, large failure strains (> 7 %), high strength (> 120MPa) and a decay-
ing elastic (reloading) modulus (by 12%) quite early in the tests. Such material
behavior could not be observed previously in shear, since no test could provide
equally uniform conditions in a test region.

How big is big enough?

Martin Ostoja-Starzewski

While the entire field of continuum solid mechanics relies on the separation of
scales, there is a need for definite statements regarding the size of the Representa-
tive Volume Element (RVE). In the relatively much smaller, but rapidly growing
field of stochastic solid mechanics there is a need for results on the connection
of the Statistical Volume Element (SVE) to the relevant microstructural length
scale, and on the formulation of random fields. Strictly speaking, the SVE should
involve a scale-dependent homogenization carried out on a mesoscale, an inter-
mediate scale separating the microscale (level of micro-heterogeneities) from the
macroscale (level of macroscopic response). As the mesoscale grows, the SVE
tends to the RVE. This occurs in terms of two hierarchies of bounds stemming
from Dirichlet and Neumann boundary value problems on the mesoscale, respec-
tively [1, 2]. Since, generally, there is no periodicity in real random/heterogeneous
media, the RVE can only be approached approximately (e.g. within 5% accu-
racy) on mesoscales, i.e. length scales finite relative to the microscale. The key
question is: On what mesoscale is the RVE attained within a prescribed accu-
racy for a specific type of a random microstructure? We review recent results and
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outstanding challenges in this field, using first-order continuum approximations,
in the settings of linear elasticity, physically nonlinear elasticity, finite elastic-
ity, elasto-plasticity, rigid-plasticity, thermoelasticity, and permeability in random
composites [3, 4, 5, 6]. More information can be contained in such a homoge-
nization process when a higher-order continuum is employed, and this, of course,
comes at a cost of greater complexity, e.g. [7].
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Computation methods for higher-order continua

Jerzy Pamin

The higher-order continuum theories are necessary to explain and simulate the
physical behaviour of materials with microstructure. In particular, size effects
evidenced at all levels of observation as well as localization and softening phe-
nomena, which have their origin in the micro/meso-structure of materials, but are
revealed in the macroscopic response, require enhanced continuum theories. The
theories incorporate intrinsic length parameters and the gradient terms represent
the microstructural interactions in phenomenological modelling.
A review of numerous gradient-enhanced models is performed for instance in
[1, 2, 3]. The theories can be classified in two groups: 1) models based on Mindlin
gradient continuum, involving higher order stresses in balance and evolution equa-
tions, e.g. [4], and 2) models in which the classical equilibrium/motion equations
are augmented by an additional differential equation of plastic consistency or vari-
able averaging, e.g. [5, 6].
Computational implementation of the gradient theories requires a proper lineariza-
tion and discretization of two- or three-field governing equations written in a weak
format. The approximation functions must satisfy increased continuity require-
ments. Finite element methods based on continuous or discontinuous Galerkin



238 Oberwolfach Report 4/2006

approximation [7, 8] as well as meshless methods can be used. It is noted that
discretization itself does not regularize the mathematical model.
In the research the attention is limited to linear kinematics and isothermal condi-
tions. Finite element and element-free Galerkin implementation of the gradient-
dependent plasticity theory [5, 9] is presented among others in [10, 11, 12], while
computational gradient-enhanced damage theories are covered e.g. in [6, 13, 14].
Simulations of strain localization and failure in quasi-brittle and geotechnical ma-
terials (concrete, soil) under static and dynamic loading can then be performed.
Benchmark examples include the simulation of static failure and standing localiza-
tion waves in tensile bars, shear band formation in biaxially compressed specimens,
slope stability analysis, the Brazilian split test, cracking in plain and reinforced
concrete beams under monotonic and reversed loading and three-dimensional frac-
ture tests.
The lack of pathological discretization sensitivity is verified. It is noticed that
in the regularization of localization problems strain-like quantities should be av-
eraged. The future of localized failure simulations seems to belong to gradient-
enhanced models combined with extended finite elements to model displacement
discontinuities (macrocracks), cf. [15].
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Modelling of new materials in medical technology and biomechanics

Stefanie Reese

(joint work with Markus Böl)

General concept. It is well-known that rubber-like polymers consist of long-
chain macromolecules which are attached to each other at certain points. Several
authors have studied the material behavior of this network by means of molecular-
dynamics (micro mechanical) simulations (see e.g. [1]). Such a procedure is, how-
ever, extremely expensive from the computational point of view and makes the
numerical investigation of engineering structures practically impossible. For this
reason we follow here a so-called meso-mechanical approach based on the finite
element method. In comparison to a classical continuum mechanical modelling
this has the advantage that the physical understanding of the material behavior
and the knowledge about that from other disciplines (e.g. chemistry, physics) can
be much better incorporated.
The proposed concept uses the idea of representing the polymer network by means
of an assembly of non-linear truss elements (see also [2]). Each truss element
models the force-stretch behavior of a certain group of chains. The truss elements
are configured in such a way that six of them form a cell of tetrahedral shape. The
embedded tetrahedral elements serve to model the hydrostatic pressure built up
in the network. Applying a random assembling procedure we are in the position
to model arbitrary geometries. Alternative finite element-based approaches have
been suggested e.g. in [3].
The total Helmholtz free energy function (per reference volume) upon which the
finite element formulation is constructed reads

(1) W =
K

4
(J2 − 1 − 2 lnJ)

︸ ︷︷ ︸

Wtetr

+

6∑

j=1

fchain

A0j L0j
k nj θ

(
λ

√
nj

βj + ln
βj

sinhβj

)

︸ ︷︷ ︸

Wtruss j

Here K refers to the macroscopic bulk modulus. J is a short hand notation for
the determinant of the deformation gradient F. It can be concluded that the
first part of W is or purely macro mechanical nature. It suffices to model the
near-incompressible behavior of rubber with sufficient accuracy. fchain = N/Ntruss

(ratio of number of chains with respect to number of trusses per reference volume)
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is a measure for the size of the chain bundle, nj the number of chain links, θ
the absolute temperature, k Boltzmann’s constant and βj the inverse Langevin
function. Usually fchain is an extremely high number, e.g. 1015. The micro-macro
transition happens at the point where it is assumed that the stretch λ of the truss
is equal to the stretch of the corresponding chain (bundle). It is important to
emphasize that due to this assumption the length and the cross-section of the
truss cancel out of the formulation. They do not have any influence on the final
result. In comparison with classical continuum mechanically-based finite element
simulations the new approach does not require more degrees-of-freedom.
Soft tissue. Biomaterials, e.g. soft tissue, are certainly different from rubber.
However, it is accepted that the micro structure of these materials, whether they
are artificial or natural, is very similar to the one of rubber-like polymers. It
therefore suggests itself to use and extend the proposed model in the context of
biomechanics and medical technology.
Muscle. A good example for that is a skeletal muscle which can be considered as
a fibre-reinforced soft tissue. The muscle contraction mechanism has been already
investigated in the mentioned fields. Authors of these disciplines (see e.g. [4])
usually develop one-dimensional relations for the active force (contraction force)
in dependence of length or stretch, time and contraction velocity:

(2) Fact = Fiso fλ ft fv

The isometric force Fiso is determined by means of experimental results. It can be
referred to the total muscle or to a single muscle fibres. One of the most difficult
points is the realistic modelling of muscle activation which is linked to the Calcium
concentration and finally to the state of the muscle action potential. Obviously
the Calcium concentration is not homogeneous in the muscle. Despite of this fact
many authors model the activation process simply by means of a function of time.
This alone shows that the numerical simulation of muscle contraction must be
much further developed. In the present work we enrich the soft tissue network
by additional truss elements which stand for muscle fibre bundles. We implement
the above relationship into these elements. The fibre and “chain” elements are
attached to each other only at the nodes. This is already sufficient to model the
interaction between active (muscle fibres) and passive (soft tissue) forces. Future
work should be directed into a much more realistic mathematical description of
the activation processes which can be e.g. performed by considering the diffusion
process of the Calcium ions inside the muscle. Further it has to investigated in
which way the active force depends on the stretch which can be interpreted here
as ratio between the sarcomere length in the deformed configuration with respect
to the sarcomere length in the undeformed configuration.
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Postbuckling response and ultimate strength of a rectangular elastic
plate using a 3-D Cosserat brick element

Miles B. Rubin

Use is made of a 3-D Cosserat brick element [1] which admits full material and
geometric nonlinearity to determine the postbuckling response of a rectangular
plate and its ultimate strength. Examples are discussed which show that existing
approximate solutions are more limited than originally anticipated.
Buckling of plates and shells has been a topic of great interest for a number of years.
Although the determination of the bifurcation (onset of buckling) of plates is well
known, for the postbuckling response the deformed shape must be treated as a
curved shell even when the reference shape was a flat plate. Moreover, the nonlin-
ear equations also include the influence of bending on the membrane stresses that
are the primary cause for buckling. The main objective of this work is to analyze
the postbuckling response of a square plate and the ultimate strength of a rec-
tangular plate. Specifically, it is shown that the approximate analytical solutions
discussed in Timoshenko and Gere [2] are more limited than originally anticipated
and that the postbuckling process associated with the ultimate strength of the
plate is different from that presumed in the simple analysis.
Here, attention is focused on an isotropic elastic rectangular plate with length L,
width W and thickness H. The plate is modeled using 3-D Cosserat brick elements
[1]. The Cosserat element has 8 nodes with 24 degrees of freedom, it includes
both material and geometric nonlinearities and it is invariant under superposed
rigid body motions. The main difference between the Cosserat point approach
and standard finite element formulations appears in the constitutive equations
for the element. In the Cosserat approach these equations are hyperelastic with
the intrinsic director couples being determined by algebraic equations in terms of
derivatives of a strain energy function. In contrast with standard finite element
formulations, the Cosserat approach needs no integration through the element
region to determine the constitutive response.
The first example considers axial compression of a square plate with no lateral
deformation. The results of the Cosserat element show that the approximate
analytical expression discussed in [1] is more limited than originally anticipated.
Specifically, the Cosserat solution predicts a snap-through phenomena as the mode
shape changes abruptly.
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The second example shows that as a rectangular plate is compressed in uniaxial
stress the development of lateral tension causes the plate to divide into subdivisions
which are rectangular instead of square, as predicted by the linearized theory. The
ultimate strength of the plate occurs when the subdivision yields before the plate
further subdivides elastically. This postbuckling process is different from that
presumed in the simple analysis described in [1].
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On anisotropic formulations for finite strain plasticity and the plastic
spin

Carlo Sansour

The multiplicative decomposition of the deformation gradient into elastic and in-
elastic parts can be considered nowadays as classical. A closer look at the liter-
ature, however, reveals that applications of the decomposition at a macroscopic
level have been popular in the purely isotropic case. It is only recently that some
anisotropic formulations are emerging. In fact, when it comes to anisotropy, the
decomposition gives rise to ambiguities and can be a source of confusion. These
ambiguities start with issues like the adequate formulation of the strain energy
function and the choice of the so-called structural tensors which identify the an-
isotropy at hand. They continue with the question whether invariance conditions
are to be imposed on such a function. Likewise, it is not evident from the outset,
which stress quantity should be considered in the flow rule.
Let F be the deformation gradient and F = FeFp its multiplicative decomposition.

We can define two inelastic rates by Ḟp = L̃pFp = FpLp. lp = FLpF
−1 =

FeL̃pFe

−1
. Further, let C and Ce be tensors of the right Cauchy-Green type.

Further a structural tensor is defined as M = v ⊗ v, where v is a privileged
direction of the material. Now, let ψ define the free energy function. It is evident
that ψ must depend on the elastic strain tensor Ce. The anisotropy must be
included through appropriately defined structural tensors. If we assume ψ to

depend on Ce and M as well: ψ = ψ̂(Ce,M), then contribution of the stresses to
the reduced dissipation inequality takes the form:

(1) D = τ : lp = Ξ : Lp = Ξ̃ : L̃p,

where τ is the Kirchoff stress tensor, Ξ is the material Eshelby-like tensor, and Ξ̃ is

Mandel’s stress defined at the intermediate configuration. However, ψ = ψ̂(Ce,M)
is not invariant to superimposed rotations on Fp.
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Such an invariance can be achieved by transforming the structural tensors to the
intermediate configuration. A reasonable transformation is a mixed-variant one as
proposed in [1]:

(2) M̃i
e = FpM

i
eF

−1
p , i = 1, 2, 3 .

The invariance requirement, however, alters the form of the mechanical contribu-
tion to the reduced dissipation equation. Eq. (1) will be modified. If we write the
new equation in the form

(3) D = Γ : Lp = Γ̃ : L̃p = γ : lp,

where Γ is a material stress-like tensor, and Γ̃ and γ are its counter parts defined
at the intermediate and the current configurations. It can be shown that Γ̃ retains
symmetry.
In addition, the fact that the stress tensors under consideration, in general, need
not be symmetric necessitates a special treatment of the flow function, where rep-
resentation theorems of tensor valued function with non-symmetric arguments are
invoked. It is shown that the corresponding resulting rate, as defined at the actual
configuration, is not symmetric any more. Accordingly, the rate naturally includes
a plastic material spin. Moreover, we deal with the theoretically interesting ques-
tion of how to define spin-free rates. It is also demonstrated that the flow function
must depend not only on the stress tensor together with adequate structural ten-
sors, but also on the deformation itself in form of one of the right Cauchy-Green
tensors C or Ce. However, this surprising dependency, which must obey a specific
form, can be justified as physically meaningful. Various numerical examples of
large plastic deformations of structural components are presented, that underpin
the capabilities of the formulations. Numerical examples of large scale anisotropic
computations of structural components will be presented as well.
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Multi-scale modelling of Pb-free solders

Vadim V. Silberschmidt

(joint work with Jicheng Gong, Changqing Liu, Paul P. Conway)

Miniaturization of SnAgCu solder joints for electronic package results in the di-
minishment of the number of grains within a single joint, sometimes down to only
one or two grains per joint. In this case, solder joints exhibit an anisotropic creep
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behavior. Moreover, the crystal structure of beta-Sn (matrix of SnAgCu eutec-
tics and Sn dendrites) is a contracted version of a diamond cubic, one leading to
a body-centered tetragonal structure, which enhances this non-uniform character.
These factors affect the character of creep and consequently determine reliability of
solder joints for electronic packages. In this study, a crystal visco-plasticity model
is developed to capture an anisotropic behavior of SnAgCu solder joints in cases
of single-, bi- and multi-crystals. In order to simulate responses of solder joints
under thermal cycling, a multi-scale finite element modelling is performed. In a
global model, responses of joints in a flip chip package are simulated. Then results
for displacements are adopted in the sub-model of a single joint. The obtained
results are compared with those based on the traditional isotropic constitutive
descriptions.
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Non-local modeling of crack propagation in metal matrix composites

Bob Svendsen

(joint work with Frederik Reusch, Christian Hortig)

The numerical analysis of ductile damage and failure in engineering materials and
metal matrix composites is often based on a micromechanical description of the
damage and failure process [1, 2, 3]. In particular, such failure involves (i), void
nucleation at second-phase inclusions, (ii), growth of nucleated and existing voids
via inelastic deformation of the matrix, (iii), void coalescence leading to crack
initiation, and (iv) crack growth leading to specimen fracture. In the current
work, we discuss a recently developed ductile damage formulation based on the
modeling of void coalescence as a statistical process. The statistics here are in
turn based on a Green distribution for the likelihood of coalescence of two voids
[4, 5], with void nucleation and growth representing the corresponding point source
processes. Averaging over this distribution leads to a non-local model of ductile
damage and in particular void coalescence depending on the statistical average
separation between neighboring voids. This model has been implemented into a
finite element simulation of crack initiation and propagation in two- and three-
dimensional metal matrix composites. A stability analysis of the corresponding
boundary-value problem for the standard and non-local damage models allows
the determination of the region of parameter space where the statistical non-local
approach yields a regularization of the boundary-value problem. This in turn can
be used as a criterion for adaptive mesh refinement. Application of this approach
to the simulation and prediction of ductile crack propagation in Al-SiC metal
matrix composites demonstrates its efficiency, robustness and reliability.
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Mechanical models for the analytical determination of the
macroscopic material behaviour of textile reinforced concrete

Bernd W. Zastrau

(joint work with Mike Richter)

Textile reinforced concrete (TRC) is a composite of a so called fine grained concrete
matrix and a textile reinforcement which is used in the field of civil engineering for
the fabrication of new structural elements and the strengthening of existing con-
structions [1]. The textile reinforcement consists of rovings. A roving is a bundle
of huge number of continuous filaments. The failure mechanisms of TRC are very
complex. Most important are the matrix cracking, the debonding of the roving
from the matrix and the breaking of the filaments and rovings [6]. The macro-
scopic material behaviour can be classified in a linear elastic part for low loadings,
the micro cracking and the macro cracking. The final failure of the composite
occurs by the breaking of the rovings. To model this complex material behaviour
the heterogeneous structure of TRC is analysed on the mesoscopic level. Then
the macroscopic material behaviour, characterised by the overall elasticity tensor
C, is obtained by the process of homogenisation. In this paper only analytical
approaches are discussed.
For a low macroscopic loading the material behaviour is approximately linear
elastic. Basis of the analytical determination of the overall elasticity tensor is the
micro mechanical solution of the average strain in a single inclusion embedded in
an elastic matrix according to Eshelby [2]. This solution leads to an equation for
the overall elasticity tensor C:

(1) C = C +
n∑

α=1

fα
(
(Cα − C)−1 + Sα : D

)−1
.

Herein are C the elasticity tensor of the concrete matrix, Cα the elasticity tensor
of the inclusion α and D the compliance tensor of the matrix. Sα is the Eshelby

tensor and fα the volume fraction of the inclusions α. This solution neglects any
interactions between the inclusions and is called the solution for dilute distributions
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or simple the dilute solution. In extension of the presented dilute solution for multi
directional reinforcements an effective field approximation (EFA) is used [3]. This
approach considers the interaction between the different orientated rovings in an
average sense. Now the different orientated rovings are assumed to be in a matrix
with the still unknown average matrix strain εm. This problem can be solved
analytically and leads to an equation for the direct computation of the overall
elasticity tensor [6]:
(2)

C = C +

n∑

α=1

fα (Cα − C) :






Kα +

n∑

β=1,β 6=α

fβ
(
Kβ − fβ1

)−1
: (Kα − fα1)







−1

with

(3) Kα = (fm + fα) 1− fmSα : (1 − D : Cα) .

Compared to eq. (1) in eq. (2) now the differently oriented rovings are coupled.
fm is the volume fraction of the matrix.
If the matrix stress exceeds a critical value micro cracks are developing. The
additional strain due to the micro cracks ε c can be expressed by the definition of
a forth order tensor Jc and the prescribed macroscopic strain ε0 [4]. In the sense of
the analytical homogenisation it is assumed, that there are no direct interactions
between the micro cracks among themselves and between micro cracks and rovings,
but the application of the effective field approximation allows the consideration
of these interactions in an average sense. Hence, the additional strain due to the
micro cracks is given as

(4) ε c = Jc : εm.

The coordinates of Jc can be obtained by integration over the crack opening dis-
placement [6] which is known from fracture mechanical solutions.
For the characterisation of the actual state we define a model parameter fc, called
crack density parameter as the product of the total number of cracks per unit area
and the squared half crack length [4, 6]. Therewith we can describe the evolution
of the micro cracks with only one parameter, and the tensor Jc depends on fc.
Using this parameter we don’t need to know the lengths and the distribution of
the cracks. However, the calculation of stress singularities is not possible.
In the mechanical model it is assumed, that the micro cracks cumulate to macro
cracks if the micro crack density reaches a critical value. After initiation of the
macro cracking the bond behaviour between roving and matrix dominates the
overall macroscopic material behaviour. For the modelling of the bond behaviour
a slip based bond model with a multiple linear shear stress-slip relation is used
[5, 6]. A multiple linear approach allows the closed form analytical solution of
the bond problem. At least three linear sections are necessary to consider the
perfect bond zone, the partly damaged bond zone and the complete debonded
zone. The exact function of the shear stress-slip relation can be determined by
pullout experiments.
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Dislocation dynamics

Hussein M. Zbib

Bridging the gap between dislocation physics and continuum theories has become
possible with the advancement in computational technology with bigger and faster
computers. To this end, over the past two decades various discrete dislocation dy-
namics models have been developed. The early discrete dislocation models were
two-dimensional and consisted of periodic cells containing multiple dislocations
whose behavior was governed by a set of simplified rules (e.g. Lepinoux and Ku-
bin, 1987 and Needleman and van der Giessen, 2001). These simulations, although
served as a useful conceptual framework, were limited to two-dimensional space
and, consequently, could not directly account for such important features in dis-
location dynamics as slip geometry, line tension effects, multiplication, certain
dislocation intersections and cross-slip. During the 90’s, development of new com-
putational approaches of dislocation dynamics (DD) in three-dimensional space
generated hope for a principal breakthrough in our current understanding of dislo-
cation mechanisms and their connection to continuum theories (e.g. Kubin, 1993,
Zbib et al. 1996, 1998). In these new models, dislocation motion and interactions
with other defects, particles and surfaces are explicitly considered. The discrete
dislocation dynamics model we have developed has been utilized by a number of
researchers to investigation many complicated small-scale crystal plasticity phe-
nomena that occur under a wide range of loading and boundary conditions (Zbib
and Khraishi 2005), and covering a wide spectrum of loading and boundary con-
ditions. Some of the major phenomena that we have addressed include:

• The role of dislocation mechanisms in strain hardening (Hiratani and Zbib
2002).

• Strength in nanolaminates and nanocomposites (Zbib et al. 2005).
• Dislocation-defect interaction problems, including dislocation–void inter-

action, and dislocation-SFT/void-clusters interaction in irradiated mate-
rials (Diaz de la Rubia, Zbib et al. 2000; Khraishi, Zbib et al. 2002, Wirth
et al. 2001; Hiratani and Zbib, 2003).
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• The effect of particle size on hardening in metal-matrix composites (Khra-
ishi and Zbib, 2002).

• The role of various dislocation patterns such geometrically necessary
boundaries (GNB’s) in hardening phenomena (Khan, Zbib et al. 2001,
2003).

• The role of dislocation mechanisms in increased strength in nano-layered
structures (Zbib and Diaz de la Rubia 2002).

• High Strain Rate Phenomena and shock wave interaction with dislocations
(Shehadeh et al., 2002-2005).
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Universtitätsstr. 150
44801 Bochum

Prof. Dr. Peter Haupt

Institut für Mechanik
Universität Kassel
Mönchebergstr. 7
34125 Kassel

Prof. Dr. George Herrmann

Ortstr. 7
CH-7270 Davos-Platz

Dr.-Ing. Jörn Ihlemann

Institut für Mechanik
Universität Hannover
Appelstr. 11
30167 Hannover

Prof. Dr. Mikhail Itskov

RWTH Aachen
Kontinuumsmechanik
Eifelschornsteinstr. 18
52062 Aachen

Dr. Frank Jablonski

Universität Bremen
FB 4/ FG 15
-IW3-
Postfach 330 440
28334 Bremen

Prof. Dr. Harley T. Johnson

Dept. of Mechanical and Industrial
Engineering, University of Illinois
at Urbana-Champaign
1206 West Green Street
Urbana IL 61801
USA

Prof. Dr. Reinhold Kienzler

Universität Bremen
IW3
Postfach 330440
28334 Bremen

Prof. Dr. Robin John Knops

Dept. of Mathematics
Heriot-Watt University
Riccarton
GB-Edinburgh, EH14 4AS

Dr.-Ing. Christian Krempaszky

Lehrstuhl für Werkstoffkunde und
Werkstoffmechanik
Technische Universität München
Boltzmannstr. 15
85747 Garching

Prof. Dr. Meinhard Kuna

TU Bergakademie Freiberg
Institut für Mechanik und
Fluiddynamik
Lampadiusstr. 4
09596 Freiberg

Prof. Dr. Khanh Chau Le

Lehrstuhl für Allgemeine Mechanik
Ruhr-Universität Bochum
Fakultät für Bauingenieurwesen
Universtitätsstr. 150
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