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Introduction by the Organisers

The workshop Convex and Algebraic Geometry was organized by Klaus Altmann
(Berlin), Victor Batyrev (Tübingen), and Bernard Teissier (Paris). Both title
subjects meet primarily in the theory of toric varieties. These constitute the
part of algebraic geometry where all maps are given by monomials in suitable
coordinates, and all equations are binomial. The combinatorics of the exponents
of monomials and binomials is sufficient to embed the geometry of lattice polytopes
in algebraic geometry. Thus, toric geometry and its several generalizations provide
a kind of section from polyhedral into algebraic geometry. While this reflects only
a thin slice of algebraic geometry, it is general enough to display many important
phenomena, techniques, and methods. It serves as a wonderful testing ground for
general theories such as the celebrated mirror symmetry in its different flavours.
In particular, much of the popularity of toric geometry originates in mathematical
physics.
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The meeting was attended by almost 50 participants from many European
countries, Canada, the USA, and Japan. The program consisted of talks by 23
speakers, among them many young researchers. Most subjects fit more or less into
the following main areas:

• Derived categories, quivers, and (homological) mirror symmetry (Bondal, Craw,
Horja, Maclagan, Perling, Siebert, Ueda)

One of the major discussions during the meeting concerned the existence of
strongly exceptional sequences on toric varieties which consist of line bundles. A
full exceptional sequence provides a kind of “basis” for the derived category. While
Hille and Perling presented an example that does not carry such a sequence of full
length, Bondal suggested a method to link this question to sheaves on the dual
real torus that are constructible with respect to a certain stratification.

In general, one expects to gain exceptional sequences from the universal bundles
on moduli spaces. Using this method, Craw constructs those sequences on smooth
toric Fano threefolds. In this context, Maclagan and Ueda consider the case of
three-dimensional abelian quotient singularities. Ueda investigates the Fukaya
category of the corresponding potential on the dual torus explicitly.

Using mirror symmetry, Horja establishes a connection between the orbifold
K-theory of toric Deligne-Mumford stacks and solutions to GKZ-hypergeometric
D-modules.

• Degenerations and deformations (Brown, Hausen, Siebert, Süss, Vollmert)

Gross and Siebert have developed a program to understand mirror symmetry
as the duality of certain degeneration data. The special fibers split into toric
components, and the degeneration is encoded in a topological manifold B with an
affine and a polytopal structure. Duality is now inherited from discrete geometry,
and the topology of B reflects the topology of the general fiber. In particular, if B
is a (Q-homology) Pn

C, then this construction might lead to (compact) Hyperkähler
varieties.

Considering, in a special case, a certain contraction of the total space of these
families leads to a description of torus actions on algebraic varieties via divi-
sors on their Chow quotients. These divisors carry polytopes or even polyhedral
complexes as their coefficients, compare the talks of Hausen, Süss, and Vollmert.
In a similar setting, but with an explicit manipulation of Pfaffians, Brown and
Reid construct smoothings of certain non-isolated singularities giving rise to four-
dimensional flips.

• Tropical geometry and Welschinger invariants (Itenberg, Shustin, Siebert)

The most rigorous degeneration of a variety is the tropical one. Here, everything
takes place over the so-called tropical semiring, and one ends up with piecewise
linear spaces. In fact, Siebert’s degeneration data mentioned above correspond to
these objects.

Itenberg and Shustin use this approach to calculate the Welschinger invariants,
which are a kind of real version of Gromov-Witten invariants. Along the lines of
the method of Gathmann and Markwig, there is a recursive formula for theses
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invariants. In the case of del Pezzo surfaces, it turns out that both invariants are
(log-)asymptotically equivalent.

• Commutative algebra, GKZ-systems, and polytopes (Bruns, Haase, Hering, Hor-
ja, Miller, Pasquier, Stienstra)

A generalization of toric varieties in a different direction from the torus actions
mentioned above is given by the notion of spherical varieties. Pasquier considers
horospherical Fano varieties and comes up with an adapted notion of (general-
ized, coloured) reflexive polytopes. Bruns, Haase, and Hering deal with ordinary
polytopes and their relations to syzygies of toric varieties.

For an integral matrix A one obtains a semigroup algebra C[NA] (leading to
the usual affine toric variety) and a GKZ-hypergeometric system of differential
equations. The latter depends on a parameter β, and Miller has reported on a
result that relates the set of β where the rank of the system jumps to the set of
those multidegrees where the semigroup algebra C[NA] carries local cohomology.
In particular, the Cohen-Macaulay property is equivalent to the constant rank
condition, answering an old question of Sturmfels.

One of the nighttime discussions gave rise to the suggestion to not include
normality in the definition of a toric variety, thus overcoming the cumbersome
term of a “not necessarily normal toric variety”.

The workshop was closed on Friday night by an informal piano recital by Ben-
jamin Nill and Milena Hering featuring Strawinsky, Liszt, and Chopin.
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Abstracts

Polyhedral Divisors and Algebraic Torus Actions

Jürgen Hausen

(joint work with Klaus Altmann)

This is a report on the paper [1]. There we present a complete description of normal
affine varieties X with an effective action of an algebraic torus in terms of what we
call proper polyhedral divisors on semiprojective varieties. Our approach extends
classical cone constructions of Dolgachev [3], Demazure [2] and Pinkham [5], and
it comprises the theory of affine toric varieties.

Let Y be a normal semiprojective variety, where “semiprojective” merely means
that Y is projective over some affine variety. In order to introduce the notion of a
proper polyhedral divisor on Y , consider a linear combination

D =
∑

∆i ⊗Di

where the Di are prime divisors on Y , the coefficients ∆i are convex polyhedra in
a rational vector space NQ = Q ⊗N with a free finitely generated abelian group
N , and all ∆i have a common pointed cone σ ⊂ NQ as their recession cone.

Let M := Hom(N,Z) be the dual of N , and write σ∨ ⊂ MQ for the dual
cone. Then the above D defines an evaluation map into the group of rational Weil
divisors on Y :

σ∨ → WDiv(Y ), u 7→ D(u) :=
∑

min
v∈∆i

〈u, v〉Di.

We say that D is a proper polyhedral divisor if any evaluation D(u) is a semiample
rational Cartier divisor, being big whenever u belongs to the relative interior of
the cone σ∨.

The evaluation map u 7→ D(u) turns out to be piecewise linear and convex in
the sense that the difference D(u + u′) − D(u) + D(u′) is always effective. This
convexity property enables us to define a graded algebra of global sections:

A :=
⊕

u∈σ∨∩M

Γ(Y,O(D(u))).

This ring turns out to be normal and finitely generated. Thus, it gives rise to a
normal affine variety X := Spec(A), and the M -grading of A defines an effective
action of the torus T := Spec(C[M ]) on X .

Example. Let Y = P1 and N = Z2. The vectors (1, 0) and (1, 12) generate a
pointed convex cone σ in NQ = Q2, and we consider the polyhedra

∆0 =

(
1

3
, 0

)
+ σ, ∆1 =

(
−

1

4
, 0

)
+ σ, ∆∞ = ({0} × [0, 1]) + σ.
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Attaching these polyhedra as coefficients to the points 0, 1,∞ on the projective
line, we obtain a proper polyhedral divisor

D = ∆0 ⊗ {0} + ∆1 ⊗ {1} + ∆∞ ⊗ {∞}.

In this situation, we may even represent our proper polyhedral divisor by a little
picture as follows:

10 ∞

The proper polyhedral divisor D describes the affine threefold X = V (z3
1 + z4

2 +
z3z4) in C4 with the action of T = (C∗)2 given by

t · z = (t41z1, t
3
1z2, t2z3, t

12
1 t

−1
2 z4).

Assigning to the pp-divisor D the affine T -variety X , as indicated, turns out to
be functorial. Moreover, a canonical construction, based on the chamber structure
of the set of GIT-quotients of X , shows that in fact every normal affine variety
with effective torus action arises from a proper polyhedral divisor. These results
can be summarized as follows.

Theorem. The assignment D 7→ X defines an essentially surjective faithful co-
variant functor from the category of proper polyhedral divisors on semiprojective
varieties to the category of normal affine varieties with effective torus action.

After localizing the category of proper polyhedral divisors by the maps coming
from (birational) modifications of the semiprojective base varieties, we even arrive
at an equivalence of categories. This allows in particular to decide whether two
given proper polyhedral divisors define (equivariantly) isomorphic varieties.

First applications of the above result are a description of the orbit decomposition
of an affine T -variety X in terms of its defining pp-divisor D, see [1, Sec. 10] and
a description of the collection of all open T -invariant subsets U ⊂ X admitting a
complete orbit space U/T , see [4].
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Codimension one torus actions

Robert Vollmert

Consider an effective action of T = (C∗)n−1 on an n-dimensional normal affine
variety X . Mumford shows how to associate a toroidal embedding with this situ-
ation [2]. (In fact, for this approach, X need not be affine.) On the other hand,
Altmann and Hausen give a description ofX by a polyhedral divisor on a curve [1].
We will compare the fan of the toroidal embedding with this polyhedral divisor.

A toroidal embedding is a pair (U,X) of a normal variety X and an open subset
U ⊂ X such that for each point x ∈ X , there exists a toric variety (T, Z) with
embedded torus T ⊂ Z which is locally formally isomorphic near some point z ∈ Z
to (U,X) near x. Furthermore, we will assume that the components Ei of X \ U
are normal.

The components of the sets ∩i∈IEi \∪i6∈IEi give a stratification of X . The star

of a stratum Y is defined to be the union of strata Z with Y ⊂ Z. Given a stratum
Y , we have the lattice MY of Cartier divisors on the star of Y with support in
star(Y ) \ U . The submonoid of effective divisors is dual to a polyhedral cone σY

in the dual lattice NY .
If Z ⊂ star(Y ) is a stratum, its cone σZ is a face of σY . The toroidal fan of the

embedding (U,X) is the union of the cones σY glued along common faces.

We now assume T = (C∗)n−1 acts effectively on the n-dimensional affine nor-
mal variety X and describe Mumford’s approach. There is a canonically defined
rational quotient map p : X 99K C to a complete nonsingular curve C. Sufficiently
small invariant open sets W ⊂ X split as W ∼= U × T for some open set U ⊂ C,
where the first projection U × T → U corresponds to p. We will identify U × T
with W .

We define X̃ to be the normalization of the closure of the graph of the rational

map p in X × C. The action of T on X extends to X̃. We may consider U × T
as an open subset of X̃, and the projection to U now extends to a regular map

π : X̃ → C.
After possibly replacing U by an open subset, we are in the following situation:

Let P ∈ C \ U be a point in the complement of U . The sets U , U ′ = U ∪ {P}
and π−1(U ′) are affine with coordinate rings R, R′ and S, respectively. We may
regard S as a subring of R ⊗ C[M ] which is generated by homogeneous elements
with respect to the M -grading. Denoting by s a local parameter at P , the ring S
is generated over R′ by a finite number of monomials skνχuν .

The corresponding semigroup in Z×M defines a toric variety Z; denote its dual

cone Z×N by δP . There is an étale map π−1(U)→ Z, showing that (U × T, X̃)
is a toroidal embedding. Its fan consists of the cones δP glued along the common
face δP ∩ ({0} ×NQ).

Given U ⊂ C, the constructed toroidal fan ∆(X,U) is independent of the choice
of equivariant isomorphism U × T ∼= W . It does however depend on the choice of
U .
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On the other hand, we can associate with the T -variety X a proper polyhedral
divisor D ∈ PPDiv(Y, σ) on a nonsingular curve Y . Denoting by N the lattice of
one-parameter subgroups of T , the cone σ in N is the dual of the weight cone of
the given action. The divisor D can be represented as a sum

∑
∆P ⊗ [P ] where

P ∈ Y are points and ∆P ⊂ NQ are polyhedra with tail cone σ, subject to some
positivity conditions.

For every weight u in the weight monoid, D gives a divisor D(u) on the curve
Y . We can define the sheaf A =

⊕
uOY (D(u)) of M -graded OY -algebras. Then

we can recover X as Spec Γ(Y,A).

Now to compare the two descriptions: Consider the toroidal embedding (U ×

T, X̃) for a suitable U ⊂ Y . As before, let C be the complete nonsingular curve
containing U (and Y ). The fan ∆(X,U) is glued from cones δP for P ∈ C \ U .
We express the polyhedral divisor D as

∑
P∈Y \U ∆P ⊗ [P ].

It turns out that for P ∈ C \ Y , we have δP ∼= {0} × σ ⊂ Q×NQ. For P ∈ Y ,
the cone δP is isomorphic to the homogenization of ∆P , i.e., to the cone in Q×NQ

generated by {0} × σ and {1} ×∆P . Thus, we can describe ∆(X,U) in terms of
D:

Theorem. The toroidal fan obtained by gluing the homogenizations of the coef-
ficient polyhedra ∆P of points P ∈ Y \ U along their common face {0} × σ is
isomorphic to ∆(X,U).
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Glueing polyhedral divisors

Hendrik Süß

(joint work with Klaus Altmann and Jürgen Hausen)

We consider normal varieties X with effective torus action. For affine T -varieties
there exists a partially combinatorial description, namely by polyhedral divisors
introduced in [AH06]. A polyhedral divisor on a variety Y is a finite formal sum∑k

i=1 ∆i ⊗Di where the Di are prime divisors of Y and the ∆i are polyhedra in
a fixed Q vector space N ⊗Q over some lattice N ∼= Zr. We generalise the notion
of these polyhedral divisors in order to cover also the nonaffine case.

In the case of a torus T of same dimension asX we have the well known language
of fans consisting of polyhedral cones describing (normal) toric varieties. In this
language the fan structure reflects the unique open affine T-invariant covering of
X .
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For tori of lower dimension we use the same strategy. We introduce a fan-
like structure consisting of polyhedral divisors and reflecting a (no longer unique)
T -invariant open affine covering of X together with its glueing isomorphisms.

As an example figure 1 shows such a fan-like structure over Y = P1 consisting
of six polyhedral divisors D1, . . . ,D6. The three pictures are associated to the
prime divisors {∞}, {0} and {1} of Y . For every polyhedral divisor Di we can
read off the polyhedral coefficient of the considered prime divisors directly from
the picture.
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b
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5

D
6

{1}

Figure 1. a fan of polyhedral divisors

We can define the intersection Di∩Dj of two polyhedral divisors by intersecting
their coefficients. In our example we get for instance

D1 ∩D4 = ∅ ⊗ {0}+ ∅ ⊗ {∞}+ (0, 0)(1, 0)⊗ {1},

where the divisor is considered on the complement in Y of the points with coef-
ficient ∅. For every prime divisor the resulting coefficient of the intersection is a
face of those of D1 and D4. It turns out that if some extra conditions are satisfied,
such a face relation of the polyhedral divisors defines an open inclusion of the
corresponding affine T -varieties.

We call a set of polyhedral divisors a fan if they intersect in such a way. In this
case the corresponding affine T -varieties glue and we get a T -scheme.

Criteria for separatedness and completeness of the resulting scheme can be
expressed in terms of convex geometry. For instance, it is a necessary condition
for completeness, that for every prime divisor the polyhedral coefficients cover the
whole space. For the fan in figure 1 this condition holds.

As an application of our language we describe the projectivations P(E) → XΣ

of equivariant rank 2 bundles E on toric varieties XΣ. In this case, Y is P1. For a
cone σ ∈ Σ the restriction E|Uσ

is generated by two global sections gσ
0 , g

σ
1 . We can

consider them as elements of
⊕

m∈M k2 [Per02, Kly90], thus as elements of k2 with
associated weights mσ

0 ,m
σ
1 . For every maximal cone σ we obtain two polyhedral

divisors by cutting σ with an affine hyperplane orthogonal to mσ
0 −m

σ
1 and using

the resulting pieces as coefficients of the prime divisors g⊥0 , g
⊥
1 ∈ P1. Here, g⊥i is
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the one dimensional subspace of k2 orthogonal to gi and thus an element of P1.
To be precise we define the polyhedra

∆+
σ (m) = {n ∈ N | 〈2m−mσ

0 −m
σ
1 , n〉 ≥ 1} ∩ σ

∆−
σ (m) = {n ∈ N | 〈2m−mσ

0 −m
σ
1 , n〉 ≤ 1} ∩ σ

and the polyhedral divisors D+
σ ,D

−
σ on Y = P1 with

D+
σ = {g⊥0 } ⊗∆+(m0) + {g⊥1 } ⊗∆+(m1)

D−
σ = {g⊥0 } ⊗∆−(m0) + {g⊥1 } ⊗∆−(m1).

The set {D±
σ | σ ∈ Σmax} of all these polyhedral divisors is in fact a fan and

encodes P(E). For the cotangent bundle ΩP1/k on P1 we get the fan of figure 1.
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Moduli of representations of the McKay quiver

Diane Maclagan

(joint work with Alastair Craw, Rekha R. Thomas)

The McKay correspondence originated in the observation of McKay [9] that there is
a tight connection between the representation theory of a finite groupG ⊆ SL(2,C)
and the minimal resolution of the quotient singularity Cn/G. Specifically, if
σ : G → SL(2,C) is the given faithful two-dimensional representation of G then
we define the McKay quiver to be the quiver (oriented graph) that has vertices
the irreducible representations of G, and an arrow from representation ρ to rep-
resentation ρ′ if ρ appears in σ ⊗ ρ′. For finite G ⊆ SL(2,C), this quiver is a
doubly-oriented extended Dynkin diagram of type A, D, or E. McKay’s observa-
tion is that this is the extended Dynkin diagram of the graph that arises in the
consideration of resolutions of the DuVal singularity C2/G. In this graph the ver-
tices are the irreducible components of the exceptional divisor of the resolution
Y → C2/G, and the edges represent intersection of components.

One philosophy that has emerged over the past two decades from consideration
of this unexpected connection is that if G ⊆ SL(n,C), the geometry of a crepant
resolution of Cn/G should be determined by the representation theory of G, par-
ticularly as evidenced in the McKay quiver. An example of this is the result of
Batyrev [1] that the Euler number of any crepant resolution of Cn/G is equal to
the number of vertices of the McKay quiver. See [11] for details.

For G ⊆ SL(2,C) or G ⊆ SL(3,C) it follows from [2], [7], [8] that Nakamura’sG-
Hilbert scheme [10] is always a crepant resolution of C3/G. In [2] the stronger result
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is shown that the derived category of coherent sheaves on G-Hilb is equivalent to
the derived category of G-equivariant sheaves on C3. For n > 3, Cn/G need not
have a crepant resolution, and even when it does G-Hilb need not be one. See [6]
for more information about families of G where a crepant resolution is known to
exist. This motivates the search for other sources of resolutions of Cn/G.

One source of such examples are the moduli spaces Mθ of θ-stable representa-
tions of the McKay quiver. While these are not smooth or irreducible in general,
when G is abelian they do have a distinguished irreducible component that is bi-
rational to Cn/G. In joint work with Alastair Craw and Rekha R. Thomas ([4],
[5]) we give an explicit description of this distinguished component Yθ.

In this case the McKay quiver has n|G| arrows, n from each vertex labeled
1, . . . , n, so representations of the McKay quiver of dimension vector (1, . . . , 1)
correspond to points of An|G|. We consider representations satisfying certain com-
muting relations, which correspond to points of a subscheme Z ⊆ An|G|. The
moduli of such representations is then the GIT quotient Mθ = Z //θ T , where

T ⊆ (C∗)n|G| is a (|G| − 1)-dimensional torus acting on Z, and θ is a character of
T corresponding to a choice of linearization.

Let C be the augmented vertex-edge incidence matrix of the McKay quiver.
This is a (|G| + n) × (n|G|) matrix whose columns correspond to arrows in the
quiver. The first |G| rows are the vertex-edge incidence matrix, and the last n
rows record the label of the edge.

Theorem 1 (Craw–Maclagan–Thomas [4]). The not-necessarily-normal toric va-
riety V = Spec C[NC] is a T -invariant irreducible component of the scheme Z ⊂
An|G|. In addition:

(1) For θ ∈ Θ, the GIT quotient Yθ := V //θ T is a not-necessarily-normal
toric variety that admits a projective birational morphism τθ : Yθ → Cn/G
obtained by variation of GIT quotient.

(2) For generic θ ∈ Θ, the variety Yθ is the unique irreducible component of
Mθ containing the T -orbit closures of the points of Z ∩ (C∗)nr.

(3) Let π : Z|G|+n → Z|G| be the projection onto the first |G| coordinates. The
toric fan of Yθ is the inner normal fan of the polyhedron Pθ obtained as
the convex hull of the set P ∩ π−1(θ).

One application of Theorem 1 is an algorithm to determine whether there is a
parameter θ for which Mθ is a crepant resolution of Cn/G. Another consequence
is local equations for G -Hilb, which lets us construct an example of a nonnormal
G -Hilb, answering a question of Nakamura [10].

Theorem 2. There is a G ⊆ GL(6,C) isomorphic to (Z/5Z)4 for which G -Hilb
is not normal.

The example of Theorem 2 was found after extensive computer search, but can
be verified without a computer.

Finally, the theorem allows us to describe explicitly the quiver representations
corresponding to torus-fixed points of Yθ, using Gröbner bases (see [5]).
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In [3] Craw and Ishii show that for abelian G ⊆ SL(3,C) every relatively pro-
jective crepant resolution of C3/G is isomorphic to Yθ for some θ. We are hopeful
that the technology developed above will allow us to decide whether the same is
true for arbitrary G ⊆ SL(n,C) when Cn/G admits a crepant resolution.
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Toric varieties are fine moduli spaces

Alastair Craw

(joint work with Gregory G. Smith)

For a smooth projective toric variety X , the bounded derived category of coherent
sheaves Db(Coh(X)) has been the focus of tremendous interest in recent years, yet
it has been calculated explicitly for relatively few examples. For projective space,
the line bundles OPn , . . . ,OPn(n) freely generate Db(Coh(Pn)) by the celebrated
result of Bĕılinson [1]. More generally, Bondal [2] observed that if line bundles
L0, . . . , Lr freely generate Db(Coh(X)), then the functor

(1) RHomOX
(⊕iLi,−) : Db(Coh(X)) −→ Db(mod-A)

is an equivalence of triangulated categories, where mod-A is the category of finite-
dimensional right modules over the algebra A = End(⊕iLi). King [5] exhibited
appropriate collections of line bundles on the Hirzebruch surfaces Fn and the
smooth Fano toric surfaces, and hence established derived equivalences as in (1)
above. As part of this construction, King showed that each of these toric surfaces
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is a fine moduli space of θ-stable representations of a quiver with relations, Q
whose path algebra is the endomorphism algebra A. The tautological bundles
of the moduli construction are precisely the line bundles L0, . . . , Lr that freely
generate Db(Coh(X)).

Here we describe the results from Craw–Smith [3] generalising King’s moduli
construction to projective toric varieties of arbitrary dimension. As an application,
we construct an equivalence as in (1) for each smooth Fano toric 3-fold.

To construct the quivers that arise, let L0, L1, . . . , Lr be a collection of effective
line bundles on X . The Bondal quiver of the collection is the quiver Q with one
vertex for each Li, and one arrow from Li to Lj for each element of Hom(Li, Lj)
that does not factor through some other Lk. The relations in Q are introduced
to ensure that the path algebra of the quiver modulo the ideal of relations is
isomorphic to the algebra

A =
⊕

0≤i,j≤r

Hom(Li, Lj).

This quiver is conveniently encoded in the quiver matrix C = C(Q): for the arrow
from Li to Lj arising from s ∈ Hom(Li, Lj), the corresponding column records
the head with +1, the tail with -1, and the effective divisor of zeroes div(s) of the
defining section s ∈ Γ(Lj ⊗ L

−1
i ). Thus, C is the incidence matrix of the quiver

augmented with additional rows that record the divisors labeling the arrows.
The matrix C naturally defines a toric ideal IC = (zu − zv : u − v ∈ ker(C))

in the polynomial ring R with one variable for each arrow, and hence defines an
affine toric variety1 V := Spec(R/IC). Let T denote the algebraic torus whose
character lattice is generated by the columns of the incidence matrix of Q. Then
T acts naturally by change of basis on Spec(R), and restricts to give an action on
the affine variety V .

For any character θ ∈ T ∗, the GIT quotient V //θ T is a toric variety, but it need
not coincide with X in general. However, this proves to be the case if we restrict to
quivers arising from geometric collections of line bundles. This means that there
exist θ1, . . . , θr ∈ Z>0 such that, for L := Lθ1

1 ⊗ · · · ⊗ L
θr
r , we have:

(1) L is ample and normally generated; and
(2) the multiplication map

H0(L1)
θ1 ⊗ · · · ⊗H0(Lr)

θr −→ H0(L)

is surjective.

If we set θ0 := −θ1−· · ·−θr, then the parameter θ := (θ0, θ1, . . . , θr) is a character
of T , so the GIT quotient V//θT is well defined.

Theorem 1. Let L0, . . . , Lr be any geometric collection of line bundles on a pro-
jective toric variety X. Then X is isomorphic to the geometric quotient V//θT .

1Here we adopt the convention agreed upon by the participants of this Oberwolfach conference,
whereby toric varieties are not assumed to be normal!
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Since it is straightforward to construct geometric collections on projective toric
varieties, this gives a wealth of new GIT constructions of toric varieties.

The second result relates V//θT to moduli of quiver representations. The re-
lations in the quiver cut out a binomial subscheme Z ⊂ Spec(R), and the GIT
quotient Mθ := Z//θT parametrises S-equivalence classes of θ-semistable quiver
representations satisfying the relations. The parameters θ ∈ T ∗ arising from geo-
metric collections are generic, so the work of King [4] shows that Mθ is the fine
moduli space of θ-stable representations satisfying the given relations. The quo-
tient V//θT is isomorphic to a closed subscheme of Mθ, but the inclusion may be
strict even within a given component of the moduli space.

We introduce a complex of modules F • over the homogeneous coordinate ring
Cox(X ×X) of the product X ×X , and prove that the variety V is an irreducible
component of the scheme Z whenever the complex is exact at the F 1-term. This
leads to the second main result.

Theorem 2. Let L0, . . . , Lr be a geometric collection on X for which the complex
F • is exact at F 1. Then X ∼= V//θT is isomorphic to a component of the fine
moduli space Mθ, and the induced tautological bundle on X is

⊕r
i=0 Li.

By sheafifying F •, we obtain a complex of sheaves F• → O∆, where ∆ ⊂
X ×X is the diagonal. For collections satisfying the hypotheses of Theorem 2, we
have exactness at F1, and it is natural to ask whether the complex is actually a
resolution of O∆. For smooth Fano threefolds X , we construct strong exceptional,
geometric collections of line bundles L0, . . . , Lr for which F• is a resolution. This
shows that, in addition to the moduli construction of Theorem 2, we obtain the
derived equivalence (1) in these cases.

References
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Toward a new, “tropical” construction of Calabi-Yau varieties

Bernd Siebert

(joint work with Mark Gross)

A classical construction, due to Mumford, produces a degeneration of toric varieties
out of an integral polyhedral decomposition P of Rn. This works by simply taking
the fan Σ in Rn+1 defined by the closures of the cones R≥0 · (Ξ × {1}) over the
cells Ξ ∈ P ; the projection to the last coordinate defines a map of this fan to
the fan of A1, hence a toric morphism of toric varieties π : X = X(Σ) → A1.
General fibers of π are isomorphic to the toric variety given by the asymptotic
fan {limt→0 t · Ξ |Ξ ∈ P} of the polyhedral decomposition. The central fiber
X0 = π−1(0) can also readily be read off from P as follows. To a vertex v of
the polyhedral decomposition is associated the complete, n-dimensional fan with
cones R≥0 · (Ξ − v) generated by corners of the cells Ξ ∈ P containing v. The
corresponding toric varieties are the irreducible components of X0. They are glued
pairwise by identifying toric prime divisors torically.

This construction was one of the motivations for my joint program with Mark
Gross (UCSD) for a comprehensive explanation of the mirror phenomenon [GrSi1].
The central idea is to view mirror symmetry as a duality of degeneration data as-
sociated to maximal, toric degenerations. These exist for large classes of varieties,
including Calabi-Yau varieties. The central fiber of a toric degeneration is a union
of toric varieties glued along toric divisors just as in the Mumford construction
above. Rn is now replaced by a topological manifold B, which is still obtained by
gluing polyhedra Ξ ∈ P by integral affine maps. Moreover, the fans defining the
toric components of X0 provide a neighbourhood of each vertex with an integral
affine structure that is compatible with the affine structures on the cells. In agree-
ment with recent developments in “tropical algebraic geometry” this discrete part
of our degeneration data is what one may call a “tropical Calabi-Yau variety”, in
case B is compact. This is the arena where according to our program mirror sym-
metry should be understood. The mirror transformation itself is a discrete version
of the Legendre transformation. This requires a polarization on X0, giving rise to
a (multi-valued) convex, piecewise affine function ϕ on B. The triple (B,P , ϕ) is
the complete set of discrete degeneration data. Results on cohomology and base
change [GrSi2] relate the topology of B with the topology of the general fiber of
the degeneration. For example, for a toric degeneration of Calabi-Yau varieties
B is a Q-homology sphere, while for a degeneration of Hyperkähler manifolds B
is a Q-homology complex projective space (these statements require a technical
hypothesis on maximality of the degeneration).

While possibly not absolutely necessary for the investigation of mirror symme-
try, it is natural to ask if one can revert the logic and construct a toric degeneration
for any given (B,P)? The paper [GrSi1] already goes a long way toward this aim
by establishing a one-to-one correspondence between certain cohomological data
on B and spaces X0 glued from complete toric varieties together with a log-smooth
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structure. Such log-structures allow to work with non-normal spaces in many re-
spects as if they were smooth [Ka]. Log-smooth deformation theory (or Friedman’s
smoothability result for “d-semistable K3-surfaces” [Fr]) now implies that the an-
swer to our question in dimension two is affirmative. In higher dimensions there is
first a problem in applying known results off the shelves because the log structures
itself have singularities and because many of the results are only available for the
normal crossings case. These problems can be overcome [GrSi2]. However, in the
non-normal crossings case there is still a problem with non-vanishing obstruction
groups that does not seem to have a solution within this technique.

This talk was about a different idea that we first pursued in the first half of
2004. Deformation theory usually relies on patching thickenings of an open affine
cover to produce a k-th order deformation Xk over Spec C[t]/(tk+1). However,
for reducible, reduced X0 the (unique) primary decomposition for Xk exhibits
the deformation by gluing k-th order thickenings of the irreducible components of
X0. This suggests a closed cover approach to deformation theory as opposed to
the traditional open cover approach. These thickenings are not flat deformations
itself, so much care has to be taken. Nevertheless, the Mumford construction above
does have a neat interpretation in these terms; in this case the naive thickenings
provided by the polyhedral decomposition are indeed consistent. In the more
“non-linear” Calabi-Yau world this is not true anymore and corrections become
necessary. This means that we have to change the gluings of the thickenings by
(log-) automorphisms. Unfortunately, the automorphisms tend to affect also the
other gluings, with the affected number of gluings increasing with k. The natural
setup to study these effects is the dual picture, where (B,P , ϕ) is interpreted as
(polarized) intersection complex. The rings to be glued can then be interpreted as
monoid rings given locally by integral points in Rn+1 lying above the graph of ϕ,
in an integral affine chart.

At this point Kontsevich and Soibelman gave a rigid-analytic version of our two-
dimensional reconstruction theorem mentioned above [KoSo]. While technically a
very different approach, which works on the affine manifold with singularities B
alone and with a choice of Riemannian metric, it developed a picture of automor-
phisms propagating along (curvilinear) rays and producing new rays whenever two
rays intersect. Possibly infinitely many new rays are inserted in such a way that
the product of automorphisms along a small loop about the intersection point is
the identity.

Translated to our language the relevant automorphisms fix the rings over a local
affine hyperplane (a wall) in B. These automorphisms propagate along the walls,
with the affected order measured by the change of slope of ϕ. The rule to generate
new walls follows from a decomposition lemma for a group of automorphisms of
the relevant ring just as in [KoSo]. The picture that one obtains is a refinement of
the polyhedral decomposition of B by parts of such hyperplanes, which becomes
more and more complicated when we increase the order. It is then possible to
construct a k-th order thickening of X0 by taking a copy of the relevant ring for
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each cell of this refined decomposition and glue them via the automorphisms of
those hyperplanes that a connecting path crosses.

While there is a convergence issue presently left it seems that we will soon have
a complete solution to our reconstruction problem in any dimensions along these
lines. Among other things, this gives the exciting perspective of constructing new
Hyperkähler manifolds in dimension 4 by the construction of affine structures on
CP2 minus a codimension two locus.
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Tropical enumeration of real rational curves

Ilia Itenberg

(joint work with Viatcheslav Kharlamov and Eugenii Shustin)

The talk is devoted to an enumeration of real rational curves interpolating fixed
collections of real points in a real surface Σ, more precisely, to the following ques-
tion: given a real divisor D and a generic collection w of c1(Σ) ·D− 1 real points
in Σ, how many of the complex rational curves in the linear system |D| passing
through w are real ? By rational curves we mean irreducible genus zero curves and
their degenerations, so that they form in |D| a projective subvariety S(Σ, D); this
subvariety is called the Severi variety. A curve on a real surface Σ is called real,
if the curve is invariant under the involution c : Σ→ Σ defining the real structure
of Σ.

While, under mild conditions on Σ and D, the number of complex curves in
question is the same for all generic collections w (it is equal to the degree of
S(Σ, D)), it is no more the case for real curves (except few very particular situa-
tions).

J.-Y. Welschinger [7, 8] discovered a way to attribute weights ±1 to real solu-
tions so that the number of solutions counted with weights is independent of the
configuration of real points. As an immediate consequence, the absolute value of
the Welschinger invariant WΣ,D provides a lower bound on the number RΣ,D(w)
of real solutions: RΣ,D(w) ≥ |WΣ,D|.
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In some cases (for example, in the case of toric Del Pezzo surfaces) the Welschin-
ger invariant can be calculated or estimated using Mikhalkin’s approach [4, 5]
which deals with a corresponding count of tropical curves. In tropical geom-
etry, complicated non-linear algebro-geometric objects are replaced by simpler
piecewise-linear ones. For example, tropical plane curves are piecewise-linear
graphs whose edges have rational slopes. Tropical curves can be seen as algebraic
curves over the tropical semiring (max,+).

Tropical (idempotent) semirings have been used since the 1990s in optimiza-
tion, control theory, and max-plus operators. The recent rapid development of
tropical geometry was initiated in much extent by O. Viro [6] who linked the trop-
ical semirings with real algebraic geometry, by M. Kapranov [2] who introduced
non-Archimedean amoebas and showed that they represent tropical varieties, and
by M. Kontsevich (see [3]) who predicted applications of tropical geometry in enu-
merative geometry. Kontsevich’s prediction was confirmed by G. Mikhalkin [4, 5]
who established a correspondence theorem and found a combinatorial algorithm
for computing Gromov-Witten type invariants of toric surfaces. Informally speak-
ing, Mikhalkin’s correspondence theorem deals with complex nodal curves in a
given linear system and of a given genus which pass through some fixed points in
general position in a toric surface, and states, in particular, that the number of
these curves can be calculated via the count (with appropriate multiplicities) of
their tropical analogs passing through certain points in general position in R2.

Using the tropical approach, we prove (see [1]) the logarithmic equivalence for
the Welschinger and Gromov-Witten invariants of any toric Del Pezzo surface
equipped with its standard real structure, i.e., the real structure that comes to-
gether with the toric one.

Theorem 1 (see [1]). Let Σ be a toric Del Pezzo surface equipped with its stan-
dard real structure, and D an ample divisor on Σ. The sequences logWΣ,nD and
logGWΣ,nD, n ∈ N, of the Welschinger invariants and the corresponding Gromov-
Witten invariants are asymptotically equivalent. More precisely, logWΣ,nD =
logGWΣ,nD +O(n) and logGWΣ,nD = (c1(Σ) ·D) · n logn+O(n).

In particular, Welschinger’s bound implies that asymptotically in the logarith-
mic scale all the complex rational curves of degree n which pass through given
3n− 1 points in general position in the real projective plane are real.

We also prove the logarithmic equivalence for the Welschinger and Gromov-
Witten invariants in the case of several toric Del Pezzo surfaces equipped with a
non-standard real structure. In particular, we proved the following statement.

Theorem 2. Let Σ be P1×P1 equipped with the real structure (z1, z2) 7→ (z2, z1).
The sequences logWΣ,(n,n) and logGWΣ,(n,n), n ∈ N, of the Welschinger and
Gromov-Witten invariants in bi-degree (n, n) are asymptotically equivalent.
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Recursive formulas for tropical and algebraic Welschinger invariants

Eugenii Shustin

(joint work with Ilia Itenberg and Viatcheslav Kharlamov)

Let Σ be a real Del Pezzo surface with a connected real part. The Welschinger
invariantWm(Σ, D), wherem ≥ 0, D ⊂ Σ is an ample divisor, is the number of real
rational curves C in the linear system |D| on Σ, passing through −DKΣ − 1− 2m
generic real points and throughm pairs of conjugate imaginary points, and counted
with weights w(C) = (−1)s, where s is the number of isolated real nodes of C
[10]. In spite of a clear geometric analogy with Gromov-Witten invariants, so
far no formulas for the Welschinger invariants have been found, and the tropical
enumerative geometry is the only way to compute them [4, 5, 6, 7, 8, 9], and as
results the Welschinger invariants were expressed as the total weights of certain
combinatorial objects. We present here the first recursive formula for Welschinger
invariants, which is a version of the Caporaso-Harris formula [1].

Let Σ be a real toric Del Pezzo surface with the standard real structure (i.e.,
the plane, or the quadric as the product of two real lines, or the plane blown up
at k = 1, 2, 3 real generic points), L one of the toric divisors. Denote by Pic(Σ, L)
the set of positive-dimensional base-point free complete linear systems |D| on Σ
such that D is nef and DL > 0. An element |D| ∈ Pic(Σ, L) is called terminal if
D2 ≤ 1. If |D| is not terminal, we define |D : L| ∈ Pic(Σ, L) to be the base-point
free part of the linear system |D−L|. Introduce the integers NΣ,|D|(α, β, δ), where
|D| ∈ Pic(Σ, L), δ ∈ Z, and

(1)

{
α = (α1, α2, ...) ∈ Z∞, β = (β1, β2, ...) ∈ Z∞, αi, βi ≥ 0,

Iα+ Iβ :=
∑

i≥1(2i− 1)αi +
∑

i≥1(2i− 1)βi = DL,

defined by the following conditions:

(i) NΣ,|D|(α, β, δ) = 0 if δ < 0,
(ii) if |D| is terminal, then NΣ,|D|(α, β, 0) = 1 as

∑
i β2i = 0, in other cases

NΣ,|D|(α, β, δ) = 0,
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(iii) if |D| is not terminal, then

(2) NΣ,|D|(α, β, δ) =
∑

k≥1
βk>0

NΣ,|D|(α+ ek, β − ek, δ)

+
∑

α′,β′,δ′

(
α
α′

) (
β′

β

)
NΣ,|D:L|(α

′, β′, δ′),

where ek ∈ Z∞ is the k-th unit vector,
(
α
α′

)
=

∏

i≥1

(
αi

α′
i

)
,

(
β′

β

)
=

∏

i≥1

(
β′

i

βi

)
, Iβ′−β =

∏

i≥1

iβ
′
i−βi ,

and α′, β′, δ′ are subject to the restrictions

α′
i ≤ αi, β

′
i ≥ βi, i ≥ 1, Iα′ + Iβ′ = (D : L)L, δ′ ≤ δ ,

δ − δ′ +
∑

i≥1

(β′
i − βi) = (D : L)L .

The initial conditions (i), (ii), and the recursive formula (2) determine all the
numbers NΣ,|D|(α, β, δ) uniquely.

Now, on the set S of quadruples (|D|, α, β, δ), where |D| ∈ Pic(Σ, L), δ ≥ 0,
and α, β satisfy (2), we define the operation

(|D|, α, β, δ) + (|D′|, α′, β′, δ′) := (|D +D′|, α+ α′, β + β′, δ + δ′ +DD′) ,

and then introduce the numbers N irr
Σ,|D|(α, β, δ), where |D| ∈ Pic(Σ, L), δ ≥ 0, and

α, β satisfy (1), by the following relations:

(3) NΣ,|D|(α, β, δ) =
∑ α!

α(1)!...α(s)!
·

n!

n1!...ns!

s∏

k=1

N irr
Σ,|Dk|

(α(k), β(k), δ(k)) ,

where the sum is taken over all unordered splittings in S

(|D|, α, β, δ) =
s∑

k=1

(|Dk|, α
(k), β(k), δ(k)) ,

and

n =
D2 −DKΣ

2
−δ−DL+|β|, nk =

D2
k −DkKΣ

2
−δ(k)−DkL+|β(k)|, k = 1, ..., s .

The equations (3) uniquely determine the numbers N irr
Σ,|D|(α, β, δ) out of the se-

quence NΣ,|D|(α, β, δ).

Theorem 1. Let Σ be a toric Del Pezzo surface with the standard real structure,
D an ample divisor on Σ, L one of the toric divisors of Σ, then

W0(Σ, D) = N irr
Σ,|D|(0, (DL), δ0), δ0 = (D2 +DKΣ)/2 + 1 .

The proof is based on the correspondence between real rational curves and
rational tropical curves as defined in [6, 7, 8], and uses the work by Gathmann and
Markwig [2, 3], who suggested a tropical version of the Caporaso-Harris formula.
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Recursive formulas (2) and (3) allow one to compute the Welschinger invari-
ants much easier than by means of the Mikhalkin’s algorithm of counting tropical
curves.

Corollary 1. For the projective plane,

W0(P
2, 1) = W0(P

2, 2) = 1, W0(P
2, 3) = 8, W0(P

2, 4) = 240,

W0(P
2, 5) = 18264, W0(P

2, 6) = 2845440.

The first five values have been computed using the lattice path algorithm [5],
and the last value as a consequence of formulas (2), (3) and Theorem 1.

References

[1] L. Caporaso and J. Harris, Counting plane curves of any genus. Invent. Math. 131 (1998),
no. 2, 345–392.

[2] A. Gathmann and H. Markwig, The numbers of tropical plane curves through points in
general position. Preprint arXiv:math.AG/0504390.

[3] A. Gathmann and H. Markwig, The Caporaso-Harris formula and plane relative Gromov-
Witten invariants. Preprint arXiv:math.AG/0504392.

[4] I. Itenberg, V. Kharlamov, and E. Shustin, Welschinger invariant and enumeration of real
rational curves. Internat. Math. Res. Notices 49 (2003), 2639–2653.

[5] I. Itenberg, V. Kharlamov, and E. Shustin, Logarithmic equivalence of Welschinger and
Gromov-Witten invariants. Russian Math. Surveys 59 (2004), no. 6, 1093–1116.

[6] G. Mikhalkin, Counting curves via the lattice paths in polygons. Comptes Rendus Math.
336 (2003), no. 8, 629–634.

[7] G. Mikhalkin, Enumerative tropical algebraic geometry in R2. J. Amer. Math. Soc. 18

(2005), 313–377.
[8] E. Shustin, A tropical approach to enumerative geometry. Algebra i Analiz 17 (2005), no.

2, 170–214.
[9] E. Shustin, Welschinger invariants of toric Del Pezzo surfaces with non-standard real struc-

tures. Preprint MPI no. 44, 2005.
[10] J.-Y. Welschinger, Invariants of real rational symplectic 4-manifolds and lower bounds in

real enumerative geometry. C. R. Acad. Sci. Paris, Sér. I, 336 (2003), 341–344.

Quantum marginal problem, flag varieties, and representations of the

symmetric group

Alexander Klyachko

The quantum marginal problem is about the relation between reduced states ρA,
ρB, ρC of a pure state ψ ∈ HA ⊗ HB ⊗ HC of a three (or multi) component
quantum system. In plain language it can be stated as follows:

Under what conditions do three Hermitian matrices ρA, ρB, ρC

of orders ℓ, m, n coincide with the Gram matrices formed by the
Hermitian dot products of parallel slices of a complex cubic matrix
ψ = [ψαβγ ] of the format ℓ×m× n?
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Clearly the compatibility depends only on the spectra

λA = Spec(ρA), λB = Spec(ρB), λC = Spec(ρC).

An equivalent version of the problem seeks for a relation between the spectra of
the Hermitian operator ρAB : HA ⊗ HB → HA ⊗ HB and its reduced operators
ρA : HA → HA and ρB : HB → HB. The reduction ρAB 7→ ρA is known to
mathematicians as contraction, e.g. the Ricci curvature operator Ric : T → T is
the contraction of the Riemann curvature R : T ∧ T → T ∧ T .

The problem has a long history. Its fermionic version dealing with a skew
symmetric state ψ ∈ ∧NH is known in quantum chemistry since the early 60s as
the N -representability problem. A couple of years ago it came into focus again,
now in the framework of quantum information theory.

Here I outline a solution of the problem given by linear inequalities governed by
the topology of flag varieties and establish its connection with representations of
the symmetric group. As an example I write down explicitely inequalities between
the spectra of the Riemann and Ricci curvatures of a 4-manifold. One can find
more details in [2, 3] and references therein.

Theorem. All constraints on the spectra

λAB = Spec(ρAB), λA = Spec(ρA), λB = Spec(ρB),

are given by linear inequalities of the form
∑

i

aiλ
A
u(i) +

∑

j

bjλ
B
v(j) ≤

∑

k

(a+ b)↓kλ
AB
w(k),

where

a : a1 ≥ a2 ≥ · · · ≥ am, b : b1 ≥ b2 ≥ · · · ≥ bn,
∑

ai =
∑

bj = 0,

are “test” spectra, (a+b)↓ is the sequence ai +bj arranged in decreasing order, and
u ∈ Sm, v ∈ Sn, w ∈ Smn are permutations subject to the topological condition
cwuv(a, b) 6= 0 explained below.

Consider the flag variety Fa(HA), understood as set of Hermitian operators
XA : HA → HA of spectrum a, and the natural morphism

ϕab : Fa(HA)×Fb(HB) → F(a+b)(HA ⊗HB),

XA ×XB 7→ Xa ⊗ 1 + 1⊗XB.

The coefficients cwuv(a, b) are defined in terms of the induced morphism of coho-
mology

ϕ∗
ab : H∗(F(a+b)(HA ⊗HB))→ H∗(Fa(HA))⊗H∗(Fb(HB))

written in the basis of Schubert cocycles σw

ϕab : σw 7→
∑

u,v

cwuv(a, b)σ
u ⊗ σv.
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Remark. The coefficients cwuv(a, b) depend only on the order in which the quantities
ai + bj appear in the spectrum (a + b)↓. The order changes when the pair (a, b)
crosses one of the hyperplanes

Hij|kl : ai + bj = ak + bl

which cut the set of pairs (a, b) into a finite number of pieces called cubicles. For
each cubicle one has to check the inequalities of the theorem for its extremal edges
only. Hence the marginal constraints amount to a finite system of inequalities.

Example. For two qubits dimHA = dimHB = 2 the theorem amounts to the
Bravyi inequalities [1]

λA ≥ λ
AB
3 + λAB

4 , λB ≥ λ
AB
3 + λAB

4 ,

λA + λB ≥ λ
AB
2 + λAB

3 + 2λAB
4 ,

|λA − λB | ≤ min(λAB
3 , λAB

2 − λAB
4 ),

where λA and λB are minimal eigenvalues of ρA and ρB, respectively.
Marginal constraints in the next dimension dimHA = dimHB = 3 are given by

a system of 387 independent inequalities which can’t be reproduced here.

The QM problem can be restated in terms of decomposition of the tensor prod-
uct of irreducible representations of the symmetric group SN

Sλ ⊗ Sµ =
∑

ν

g(λ, µ, ν)Sν ,

which are parameterized by Young diagrams treated here as integral spectra

λ : λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0,
∑

i

λi = N.

The multiplicities g(λ, µ, ν) are known as Kronecker’s coefficients. There is no
simple way to calculate them and some authors consider this as the last unsolved
problem in the complex representation theory of SN .

Theorem. The following conditions on Young diagrams λ, µ, ν are equivalent

(1) g(nλ, nµ, nν) 6= 0 for some n > 0.
(2) There exists ψ ∈ HA ⊗ HB ⊗ HC with reduced matrices ρA, ρB, ρC of

spectra λ, µ, ν.

The tensor product of irreducible representations with two row diagrams can
be described pretty explicitly, and one may recover Bravyi inequalities in this way.
On the other hand, as we’ve seen above, a similar decomposition for three row
diagrams is shaped by 387 inequalities. This may be the reason why all attempts
to understand the combinatorics of this decomposition failed.

A similar result holds in the fermionic settings for spectra of the operator ρ : ∧n

Hr → ∧NHr and its one point reduced operator ρ(1) : Hr → Hr, dimHr = r.
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Theorem. All constraints on the spectra ν = Spec ρ and λ = Spec ρ(1) are given
by inequalities

∑

i

λv(i) ≤
1

n

∑

j

(∧na)j νw(j)

where a : a1 ≥ a2 ≥ · · · ≥ ar,
∑

i ai = 0 is the test spectrum, ∧na = {ai1 + ai2 +

· · · + ain
|i1 < i2 < · · · < in}

↓, and v ∈ Sr, w ∈ S(r

n)
are permutations subject to

the topological condition cwv (a) 6= 0 described below.

The coefficients cwv (a) are defined via the morphism of flag varieties

ϕa : Fa(Hr)→ F∧na(∧nHr), X 7→ X(n),

where X(n) : α1∧α2∧ . . .∧αn 7→
∑

i α1∧α2∧ . . .∧Xαi∧· · ·∧αn, and the induced
morphism of cohomology is

ϕ∗
a : H∗(F∧na(∧nHr))→ H∗(Fa(Hr)), σw 7→

∑

v

cwv (a)σv

written in the basis of Schubert cocycles σw.

Example. For the system ∧2H4 one gets the following inequalities, which can
be seen as constraints on the spectra of the Riemann and Ricci curvatures of a
4-manifold.

2λ1 ≤ ν1 + ν2 + ν3
2λ4 ≥ ν4 + ν5 + ν6

2(λ1 − λ4) ≤ ν1 + ν2 − ν5 − ν6
λ1 + λ2 − λ3 − λ4 ≤ ν1 − ν6
λ1 − λ2 + λ3 − λ4 ≤ min(ν1 − ν5, ν2 − ν6)
|λ1 − λ2 − λ3 + λ4| ≤ min(ν1 − ν4, ν2 − ν5, ν3 − ν6)

2 max(λ1 − λ3, λ2 − λ4) ≤ min(ν1 + ν3 − ν5 − ν6, ν1 + ν2 − ν4 − ν6)
2 max(λ1 − λ2, λ3 − λ4) ≤ min(ν1 + ν3 − ν4 − ν6, ν2 + ν3 − ν5 − ν6,

ν1 + ν2 − ν4 − ν5).
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Crystals, quivers and dessins d’enfants

Jan Stienstra

Recently, physicists (in particular A. Hanany and co-authors) working on the
AdS/CFT correspondence found a way to associate quivers with certain planar
lattice polygons [2]. At closer inspection, the method, which they describe through
examples, turns out to start like N.G. de Bruijn’s method of constructing Penrose
tilings and quasi-crystals [4]. While the latter uses grids ‘parallel’ to the sides of
a regular pentagon, the former uses grids ‘parallel’ to the sides of the given lattice
polygon. The method yields crystals (periodic rhombus tilings) if the slopes of the
polygon’s sides are rational, and quasi-crystals (non-periodic rhombus tilings) if
the slopes are irrational. Our present interest is in lattice polygons.

So, let P be a polygon in R2 with vertices in Z2. Let v1, . . . ,vN be a collection
of (distinct) lattice points on the boundary ∂P of P , including all vertices, ordered
according to their appearance as one walks along ∂P counterclockwise. Let bi =
vi+1 − vi for i = 1, . . . , N , vN+1 = v1. Think of these as column vectors. Let
µ = 1

6N(N − 1)(N − 2) and index the coordinates of Rµ by strictly increasing
triples i < j < k ∈ {1, . . . , N}. Associated with these data is the linear map

P : RN → Rµ , P (γ1, . . . , γN ) =

(
det

(
bi bj bk

γi γj γk

))

ijk

.

The kernel of P is the linear 2-plane in RN spanned by the rows of the matrix
(b1, . . . ,bN ). The matrix for P is just made from the Plücker coordinates of this
linear 2-plane in RN . For every c in the image of P the set P−1(c) is an affine
2-plane in RN . In RN one also has the standard N -grid formed by the hyperplanes
Hi,m = {xi = m} for 1 ≤ i ≤ N , m ∈ Z. Intersecting this standard N-grid with
P−1(c) gives an N-grid in the plane. Next consider the map

F : RN → ZN , F (γ1, . . . , γN ) = (⌊γ1⌋ . . . , ⌊γ1⌋) ,

where ⌊x⌋ for a real number x denotes the largest integer ≤ x. The map F is
constant on the connected components of the grid complement in P−1(c) and
takes different values on different components. For c in the image of P we now let
Sc denote the piecewise linear surface in RN which is the union of the 2-dimensional
squares with sides of length 1 and vertices in the set F (P−1(c)). An appropriate
projection mapW : RN → R2 makes Sc appear as a rhombus tiling of the plane R2;
for this the columns ofW must be vectors of length 1 and for the angles between the
columns there are some restrictions. The choice of W corresponds to the ‘isoradial
embeddings and R-charges’ in [2] §3. The piecewise linear surface Sc is invariant
under translations by vectors from the lattice L = ZN ∩ kerP . Let φ : RN → R

denote the map which assigns to a vector the sum of its coordinates. It is invariant
under translations by vectors from L, because

∑
i bi = 0. Summarizing: for every

c in the image of P we have

the torus Sc/L , the map φ : Sc/L→ R ;
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the torus is equipped with a piecewise linear structure given by a tiling with squares
and the map is piecewise linear.

A very special and beautiful situation arises when φ takes only three values on
the set F (P−1(c)). These values are then three consecutive integers, but since the
numerical values are irrelevant for what follows, we call them R, W, B, with R
being the maximum and B the minimum. Every square in the tiling on Sc/L then
has one R, two W and one B vertex and its diagonals are R-B and W-W. We give
the W-W diagonal an orientation so that the R vertex is on its right hand side.

���

HHH

HHH

���

t dR B

W

W
?

t d ���

HHH

HHH

���

t d

Figure 1. Rhombus and its diagonals.

The oriented W-W diagonals from the tiling on the torus Sc/L form the quiver,
mentioned in the title of this report. The R-B diagonals in the tiling of the plane,
on the other hand, form a periodic bipartite graph. Let me emphasize here that
this story tells only what I think I read in the physics literature.

A new aspect I want to add are the dessins d’enfants : these are the triangula-
tions of the torus Sc/L one obtains from the squares-tiling by dividing each square
into two triangles by cutting it along the R-B diagonal. Each triangle has one R,
one W and one B vertex. According to the general theory of dessins d’enfants
[5, 1] this observation implies that Sc/L can be given the structure of an elliptic
curve together with a morphism ψ : Sc/L → P1, everything defined over some
number field, such that ψ is unramified outside the R,W,B points and sends all R
points to∞, all W points to 1, all B points to 0. In the triangulation on Sc/L the
cells are given as the ψ-inverse image of the upper- or lower hemisphere, the R-W
edges are in ψ−1([1,∞)), the B-W edges are in ψ−1([0, 1]), the R-B edges are in
ψ−1((∞, 0]).
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Figure 2. Polygon (left), Dessin (middle) and Quiver (right).
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Figure 2 shows, as an example, the polygon, dessin and quiver for what in the
physics literature is known as Model I for the Del Pezzo surface dP3 (i.e. P2 with
three points blown up). This dessin can be realized on the elliptic curve E with
equation y2 = x3 − 1 by the composite of the following three maps:

curve: E −→ P1 −→ P1 −→ P1

affine coordinate: x, y x t s
branched covering: y2 = x3 − 1 x3 = t+1

t−1 t2 = s
s−1

The elliptic curve E is in fact the Fermat cubic.

Remark. I am still working on a program to construct all periodic rhombus tilings
with periodicity and collection of tiles specified by the initial lattice polygon. From
the thus constructed data set one can then easily select the quivers and dessins. I
expect that this, for instance, will also yield Models II, III, IV of dP3.

Remark. In the evenings of the workshop Alastair Craw, Lutz Hille, Markus
Perling, Duco van Straten and I discussed possible relations between the quivers
in my talk and those in the talks of Perling and Bondal. A few days later the
paper [3] by Hanany, Herzog and Vegh appeared, which deals with the same issues
and (partly) answers our questions.
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Intersection cohomology of hypertoric varieties and Gale duality

Tom Braden

(joint work with Nicholas Proudfoot)

We study hypertoric varieties, sometimes also called toric hyperkähler varieties.
They were first considered by Bielawski and Dancer [3] as hyperkähler analogues
of toric varieties. If a d-dimensional quasiprojective toric variety can be expressed
as a GIT quotient Cn//αT0 of an affine space by a diagonal action of an algebraic

torus T0
∼= (C∗)n−d, then the corresponding hypertoric variety is a hyperkähler

quotient (T ∗Cn)////(α,0)T0 of the cotangent bundle of Cn by the induced action. It

is 2d-dimensional, and carries a residual action of the torus T = (C∗)n/T0.
The structure of a hypertoric variety is governed by an arrangementH of hyper-

planes in t∗ whose angles are determined by the torus action and whose positions
within their parallelism classes are determined by the auxiliary parameter α. This
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is analogous to the situation for toric varieties, which are described by a polyhe-
dron obtained by intersecting certain half-spaces bounded by the hyperplanes.

When the arrangement H is simple, meaning that all hyperplanes intersect
transversely, then the corresponding hypertoric variety XH is an orbifold. If H is
not simple, then XH has an orbifold resolution of singularities X eH → XH where

H̃ is a “simplification” of H obtained by moving the hyperplanes until they are
transverse.

The cohomology and T -equivariant cohomology of smooth and orbifold hyper-
toric varieties was computed in [5, 6, 7, 9, 10]. The Betti numbers of a hypertoric
orbifold X eH are the h-numbers of the “independence complex” ∆ eH – the sim-

plicial complex whose simplices are subsets of hyperplanes in H̃ with nonempty
intersection. In fact, the cohomology ring H∗(X eH; R) is canonically isomorphic to
the face ring R[∆ eH] modulo a set of linear forms, while the face ring itself gives
the T -equivariant cohomology ring of X eH.

In the most singular case where the arrangement H is central, Proudfoot and
Webster [12] showed that the intersection cohomology Betti numbers of XH are
the h-numbers of a subcomplex ∆bc

H of the independence complex of the simplifi-

cation H̃. This complex, called the “broken circuit” complex, is a familiar object
in matroid theory. It depends on the choice of an ordering of the hyperplanes
(although its h-numbers do not), so its face ring is not a suitable functorial model
for IH∗(XH). Proudfoot and Speyer [11] defined a canonical ring which deforms
flatly to each face ring R[∆bc

H] for any choice of ordering, so their ring has the right
Betti numbers to give the intersection cohomology. Proudfoot and Webster [12]
showed that this ring satisfies expected functorialities if and only if the deformed

arrangment H̃ is unimodular (this holds if and only if X eH is smooth). It is still
not clear, however, how this ring relates to intersection cohomology; in particular
intersection cohomology usually does not carry a canonical ring structure.

We present a canonical functorial computation of the T -equivariant intersection
cohomology IH∗

T (XH), along the lines of the theory discovered by Barthel, Bras-
selet, Fieseler, and Kaup [1, 2] and Bressler and Lunts [4]. Let L = LH be the
lattice of flats of H, whose elements are all possible intersections of hyperplanes,
endowed with the order topology. We can put a sheaf of rings A on it by declaring
the stalk AF at a flat F to be the symmetric algebra over the quotient of V by
the linear span of F . A minimal extension sheaf L is a sheaf of modules over A
satisfying

• LV
∼= R

• LF is a free AF -module for each flat F ,
• L is flabby: L(L)→ L(U) is surjective for any open set U ⊂ L,

and which is minimal with respect to these conditions. In fact, the construction
for toric varieties in [1, 2, 4] is exactly the same, except with the lattice of flats
replaced by the lattice of faces of the corresponding polyhedron.
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Theorem. A minimal extension sheaf L exists and is unique up to a scalar auto-
morphism. Fixing a generator of LV

∼= R, there are canonical isomorphisms

L(LH) ∼= IH∗
T (XH)

and

L(LH)/V L(LH) ∼= IH∗(XH).

The definition of L makes sense even for non-rational arrangements, which
do not define a hypertoric variety. The resulting groups still have the expected
dimensions, and in general they behave exactly as if they were the intersection
cohomology of the non-existent variety XH. For instance, the decomposition the-
orem for the map X eH → XH can be stated and proved purely combinatorially,
with no rationality hypothesis on H. This is analogous to the Hard Lefschetz
theorem that Karu proved for minimal extension sheaves on fans in [8], although
the hypertoric story seems to be much less deep.

As an application, we use this to construct a canonical dual pairing

Hd(X eH; R)× IHn−d(XH∨ , X+
ρ )→ R.

Here H∨ is the central arrangement in t0 which is Gale dual to H, and X+
ρ ⊂ XH∨

is the open subset of points x for which the limit limt→0 ρ(t)x does not exist, where
ρ is a generic cocharacter C∗ → T∨ of the torus which acts on XH∨ .
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Derived categories of toric varieties

Alexey Bondal

Our purpose is to relate toric geometry to topology of some stratification S on
a real torus T. The real torus is, basically, dual to the one that acts on a toric
variety X . We adopt the point of view in which the geometry of X is captured
by the bounded derived category, D(X), of coherent sheaves on X . We establish,
under some restrictions on the defining fan of the toric variety, an equivalence
between D(X) and the derived category D(T,S) of sheaves on the real torus, the
sheaves being constructible with respect to the stratification. The basic tool is the
theory of exceptional collections. We construct a canonical set of line bundles on
X and show that under the restrictions mentioned above this set is an exceptional
collection. The construction allows a variation which depends on an element of
the Picard group. Both the the set of line bundles and the stratification of the
real torus come from the action of the Frobenius on line bundles.

Let X be a smooth proper toric variety of dimension n over an algebraically
closed field k. Thus, an n-dimensional torus T ≃ k∗n acts on X . Also we assume
fixed an embedding of T in X . Let M be the group of characters of T and N the
group of homomorphisms k∗ → T . Since X is smooth, both M and N are known
to be free abelian groups of finite rank, and Hom(N,Z) = M .

Denote by PicT (X) the T -invariant Picard group of X . This group is a free
abelian group with the preferred basis of T -invariant irreducible effective divisors
{Di, i = 1, . . . , N} on X .We have the standard exact sequence:

(1) 0→M → PicT (X)→ Pic(X)→ 0

If D =
∑
aiDi with ai ∈ R, then we use notation:

D/l :=
∑

(ai/l)Di

and
[D] =:

∑
[ai]Di,

where [ai] stands for the integer part of ai.
Consider the Frobenius map Fl : T → T , l ∈ N, given in toric coordinates

(x1, . . . , xn) by the formula:

Fl(x1, . . . , xn) = (xl
1, . . . , x

l
n).

We denote by the same symbol its extension to a morphism X → X . Fl is the
factorization map with respect to the action of the group Gl of l-torsion in T . This
implies a decomposition of the push-forward Fl∗E for an arbitrary Gl-equivariant
(in particular for a T -equivariant) sheaf E:

Fl∗E = ⊕Eχ

where the sum is taken over the group of characters χ ∈ G∧
l = M/lM .

One finds for a T -equivariant line bundle L = O(D), D =
∑
aiDi, that Lχ is a

line bundle:
Lχ = O([(D − Cχ)/l])
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where Cχ is an arbitrary representative for χ ∈ M/lM in M . M is in turn
interpreted as the subgroup of principal divisors in PicT (X).

Now we embed M/lM into the real torus T = (M ⊗ R)/M by multiplying by
1/l. Thus, characters of Gl are interpreted as points in T whose coordinates are
rational with denominator l.

Take L = O. The function G∧
l → Pic(X) defined by χ 7→ Oχ can be extended

to a well-defined function Φ : T→ Pic(X) (which does not depend on l):

Φ(
∑

aiDi) := −
∑

[ai]Di.

The torus T can be identified with the group of U(1)-local systems on the torus
T (here we assume k = C) or, equally, with the U(1)-flat connections on T . Then
the map Φ has an interpretation in terms of Deligne extension of flat connections
from T to X . We extend the corresponding smooth D-module on T to a D-module
with logarithmic singularities on X and take the underlying line bundle on X (i.e.
forgetting the connection).

The function Φ has a finite image in Pic(X). Denote this image by B. One can
show that B generates the category D(X).

Let us see when B has no higher Ext-groups:

Exti(Fl∗O, Fl∗O) = Exti(F ∗
l Fl∗O,O) =

∑
Exti(F ∗

l Oχ,O) = Hi(F ∗
l (Oχ)∗).

The pull-back F ∗
l acts on Pic(X) by multiplication by l. A vanishing theorem for

toric varieties claims that higher cohomology of a nef divisor are trivial. Therefore,
Exti(Fl∗O, Fl∗O) = 0, if all the (Oχ)∗ are nef.

Let C be an irreducible toric curve in X . Denote by (D1, . . . , Dn−1) the ir-
reducible toric divisors that contain C and by (a1, . . . , an−1) the corresponding
intersection numbers with C. Then one can check that all (Oχ)∗ are nef if for
every curve C

(2) all a′is are ≥ −1 and no more than one is = −1.

Under this condition on the toric variety the set of line bundles B is a complete
strong exceptional collection. The conditions are satisfied, in particular, for all
smooth toric Fano threefolds except for two.

Examples of exceptional collections on toric varieties were constructed by Alt-
mann and Hille [1]. Kawamata proved existence of a complete exceptional collec-
tion of sheaves (but not line bundles) on an arbitrary projective toric variety by
means of minimal model theory [2]. The proof is inherently implicit.

Now define the strata in T as the level sets of Φ. Every stratum is given by a
system of linear inequalities. In fact, the stratification encodes all the information
about the algebra of homomorphisms among the line bundles in B. Consider the
path algebra of the stratification: choose a point xS on each stratum S and define
morphisms from one such a point x to another one y as the homotopy classes
of oriented paths from x to y which are compatible with the stratification in the
following sense: if z is a point in a stratum which belongs to its boundary, then
a path can meet this point on the way inside the stratum and not the other way
around.



286 Oberwolfach Report 5/2006

Denote by LS the line bundle in B corresponding to a stratum S. Then
HomX(LS1

, LS2
) is identified with the morphisms between xS1

and xS2
in the

path algebra A of the stratification. The transfer from a stratum to another stra-
tum corresponds to an effective toric divisor (which is not always irreducible).
More precisely, under the condition (2) we have an equivalence of triangulated
categories:

(3) D(X) = D(mod−A),

where D(mod − A) is the bounded derived category of finite dimensional right
modules over A.

Consider the derived category D(T,S) of sheaves on the torus which are con-
structible with respect to the stratification. One can easily see that all the strata
are contractible and have a good behavior near the boundary of the other strata.
It follows that the category D(T,S) has a complete exceptional collection whose
elements are constructible sheaves numerated by strata. These exceptional sheaves
correspond to the irreducible projective modules over the path algebra of the strat-
ification. This implies that under the condition (2) we have an equivalence:

(4) D(X) = D(T,S),

thus giving a precise description of the geometry of the toric variety X in terms
of the topology of the stratification.

Note that we considered the stratification corresponding to the decomposition
of Fl∗(O). We get a new stratification when decomposing Fl∗(L) for another line
bundle L. When we vary L in the Picard group of X the real torus transforms to
a torsor over T and the topology of the stratification transforms too.

Further understanding of the derived equivalence (4) can be obtained in the
framework of mirror symmetry. This is a joint project with Wei-Dong Ruan.
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The K-theory of toric Deligne-Mumford stacks and mirror symmetry

R. Paul Horja

(joint work with Lev A. Borisov)

In the approach proposed by Kontsevich in his ICM 1994 presentation [7]. mirror
symmetry is viewed as a categorical equivalence between “Fukaya’s A∞ category”
of a Calabi–Yau variety and the bounded derived category of coherent sheaves of
the mirror Calabi–Yau variety. The general conjecture remains rather mysterious;
nevertheless, it has been generalized in various directions which turned out to have
remarkable implications, both in geometry, and in string theory, in connection
with the physics of D-branes. In particular, a better understanding of the various
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categorical structures that appear in mirror symmetry and string theory (like the
derived category of coherent sheaves) is needed. The hope is that such abstract
structures can be used as new methods for solving classical problems in birational
and symplectic geometry, and singularity theory.

In recent joint works with Lev Borisov [3], [4], we showed how Chen-Ruan
(orbifold) cohomology and the K-theory of toric Deligne-Mumford stacks provide
appropriate tools for the study of Fourier-Mukai transforms and their mirror inte-
gral analytic continuation transformations. Borisov, Chen and Smith [2] defined
the notion of a smooth toric DM stack as a natural generalization of a toric vari-
ety. They also gave a combinatorial description of the orbifold Chow ring which
is the algebraic version of the Chen–Ruan cohomology ring. In the paper [3], we
proved a Stanley–Reisner type description of the Grothendieck K-theory ring of
a smooth toric DM stack and defined an analog of the Chern character. We also
calculated K-theory pushforwards and pullbacks for weighted blowups of reduced
smooth toric DM stacks.

In the spirit of mirror symmetry, in the work [4], we constructed series solutions
to the GKZ system [5] with values in a combinatorial version of the Chen-Ruan
(orbifold) cohomology and in the K-theory of the associated DM stacks. By em-
ploying algebro-geometric, combinatorial and analytic methods, we showed that
the K-theory action of the Fourier-Mukai functors associated to basic toric bira-
tional maps of DM stacks (of the type first analyzed by Bondal and Orlov [1], and
later by Kawamata [6]) are mirrored by analytic continuation transformations of
Mellin-Barnes type. This work naturally incorporates stacky K-theory and orb-
ifold cohomology in the mirror symmetry story. In the same way as toric varieties
served as prime examples and provided tools for investigating various powerful geo-
metric conjectures made by physicists, the machinery that we developed should
considerably extend the reach of the toric methods in mirror symmetry. It also
opens the possibility of performing mirror symmetry checks for equivalences of
derived categories, not just self-equivalences.
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Quadratic Gröbner Bases for Smooth 3× 3 Transportation Polytopes

Christian Haase

(joint work with Andreas Paffenholz)

A lattice polytope P ⊂ Rd defines an ample line bundle LP on a projective toric
variety XP . If XP is smooth (the normal fan of P is unimodular), then LP is very
ample, and provides an embedding XP →֒ Pr−1, where r = #(P ∩ Zd). So we
can think of XP as canonically sitting in projective space. Let us start with two
conjectures.

• The following question [Stu97, Conj. 2.9], [Cox97, Conj. 5.6] about the defining
equations of XP ⊂ Pr−1 has been around for quite a while, but its origins are
hard to track (cf. [BCF+05]).

Question 1. Let P be a lattice polytope whose corresponding projective toric
variety is smooth. Is the defining ideal IP generated by quadrics?

There are two variations of this question (of strictly increasing strength).

− Is the homogeneous coordinate ring RP = k[X ]/IP Koszul?

− Does IP have a squarefree quadratic Gröbner basis?

The last version has a combinatorial interpretation. It asks for the existence of
very special, “quadratic” triangulations of P .

• Knudsen, Mumford, and Waterman showed that high integral multiples n · P
have regular unimodular triangulations [KKMSD73]. We call the smallest such
number the KKMS-number n(P ) of P .

Question 2. Is there a constant n = n(d) that works for all d-dimensional
polytopes? Does every large enough factor do the trick?

Even in dimension 3, both questions are not completely settled. Presumably,
polytopes that admit unimodular triangulations are rare. One way to approach
the problem is to restrict the class of polytopes one is looking at (e.g., smooth
polytopes, or high multiples of polytopes). Another approach would be to vary
the ‘unimodular triangulation’ property.

Using the following hierarchy of properties, one can formulate a hierarchy of
conjectures for, say, smooth polytopes, or for high multiples.

P has a quadratic
triangulation

⇒
P has a regular uni-

modular triangulation
⇓ ⇓

IP has a quadratic
Gröbner basis

P has a uni-
modular triangulation

⇓ ⇓

RP is Koszul
P has a uni-

modular cover
⇓ ⇓

IP is generated
by quadrics

RP is normal
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A principal obstacle to theoretical progress is a serious lack of well understood
examples. The examples we do have are mostly sporadic. (Compare [OH99,
Ohs02, FZ99, BGT02, BG99, BGH+99].) These examples show that the converse
to some of the above implications does not hold. But they do not tell us “why”
this is case, or how we can recognize or construct more such examples.

On the positive side, we know a few classes of polytopes that admit nice tri-
angulations: dicing polytopes, smooth 0-1-polytopes, products of nice polytopes
(and more [DHZ01, HP, KS03, BG02]).

Simple transportation polytopes provide a large family of smooth polytopes.
Yet, the 3 × 3 Birkhoff polytope B3 is a (non-simple) transportation polytope
whose ideal is not quadratically generated. So we thought that we might find a
counterexample in this class. We do no longer think that.

Proposition. If P is a 3×3 transportation polytope 6= B3, then IP is quadratically
generated. If P is not an odd multiple of B3, then IP has a squarefree quadratic
Gröbner basis.
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On the unimodality of h-vectors

Winfried Bruns

(joint work with Tim Römer)

Let P ⊂ Rn−1 be an integral convex polytope and consider the Ehrhart-function
given by E(P,m) = |{z ∈ Zn−1 : z

m ∈ P}| for m > 0 and E(P, 0) = 1. It is well-
known that E(P,m) is a polynomial in m of degree dim(P ) and the corresponding
Ehrhart-series EP (t) =

∑
m∈NE(P,m)tm is a rational function

EP (t) =
h0 + h1t+ · · ·+ hdt

d

(1 − t)dim(P )+1
.

We call h(P ) = (h0, . . . , hd) (where hd 6= 0) the h-vector of P . This vector was
intensively studied in the last decades. In particular, the following questions are
of interest:

(1) For which polytopes is h(P ) symmetric, i.e. hi = hd−i for all i?
(2) For which polytopes is h(P ) unimodal, i. e. there exists a natural number

t such that h0 ≤ h1 ≤ · · · ≤ ht ≥ ht+1 ≥ · · · ≥ hd?

Let us sketch Stanley’s approach to Ehrhart functions via commutative algebra.
The results we are referring to can be found in [3] or [9]. The Ehrhart function of
P can be interpreted as the Hilbert function of an affine monoid algebra K[E(P )]
(with coefficients from an arbitrary field K). Namely, one considers the cone C(P )
generated by P ×{1} in Rn, and sets E(P ) = C(P )∩Zn. The algebra K[E(P )] is
graded in such a way that the degree of a monomial x ∈ E(P ) is its last coordinate,
and so the Hilbert function of K[E(P )] coincides with the Ehrhart function of P .
Since P is integral, K[E(P )] is a finite module over its subalgebra generated in
degree 1.

However, in general E(P ) is not generated by its degree 1 elements. If it is, then
we say that P is normal, and simplify our notation by setting K[P ] = K[E(P )].

The monoid E(P ) is always normal, and by a theorem of Hochster, K[E(P )]
is a Cohen–Macaulay algebra. It follows that hi ≥ 0 for all i = 1, . . . , d. Using
Stanley’s Hilbert series characterization of the Gorenstein rings among the Cohen–
Macaulay domains, one sees that h(P ) is symmetric if and only if K[E(P )] is a
Gorenstein ring. In terms of the monoid E(P ), the Gorenstein property has a
simple interpretation: it holds if and only if E(P )∩intC(P ) is of the form x+E(P )
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for some x ∈ E(P ). This follows from the description of the canonical module of
normal affine monoid algebras by Danilov and Stanley.

It was conjectured by Stanley that question (ii) has a positive answer for the
Birkhoff polytope P , whose points are the real doubly stochastic n × n matrices
and for which E(P ) encodes the magic squares. This long standing conjecture was
recently proved by Athanasiadis [1]. (That P is normal and K[P ] is Gorenstein in
this case is easy to see.)

Questions (i) and (ii) can be asked similarly for the combinatorial h-vector
h(∆(Q)) of the boundary complex ∆(Q) of a simplicial polytope Q, and both
have a positive answer. The Dehn–Sommerville equations express the symmetry,
while unimodality follows from McMullen’s famous g-theorem (proved by Stan-
ley [8]): the vector (1, h1 − h0, . . . , h⌊d/2⌋ − h⌊d/2⌋−1) is an M -sequence, i. e. it
represents the Hilbert function of a graded artinian K-algebra that is generated
by its degree 1 elements. In particular, its entries are nonnegative, and so the
h-vector is unimodal.

Athanasiadis proved Stanley’s conjecture for the Birkhoff polytope P by show-
ing that there exists a simplicial polytope P ′ with h(∆(P ′)) = h(P ). More gen-
erally, his theorem applies to compressed polytopes, i. e. integer polytopes all
of whose pulling triangulations are unimodular. (The Birkhoff polytope is com-
pressed [7, 9].) We generalize Athanasiadis’ theorem as follows:

Theorem. Let P be an integral polytope such that P has a regular unimodular
triangulation and K[P ] is Gorenstein. Then the h-vector of P satisfies the inequal-
ities 1 = h0 ≤ h1 ≤ · · · ≤ h⌊d/2⌋. More precisely, the vector (1, h1−h0, . . . , h⌊d/2⌋−
h⌊d/2⌋−1) is an M -sequence.

Our strategy of proof (see [4] for the details) is to consider the algebra K[M ] of
a normal affine monoid M for which K[M ] is Gorenstein. We relate the Hilbert
series of K[M ] to that of a simpler affine monoid algebra K[N ] which we get
by factoring out a suitable regular sequence of K[M ]. In the situation of an
algebra K[P ] for a normal polytope P , the regular sequence is of degree 1, and
we obtain a normal and, up to a translation, reflexive polytope such that h(P ) =
h(Q). (However, note that Mustaţa and Payne [6] have given an example of a
nonnormal reflexive polytope with a nonunimodal h-vector.) If P has even a
regular unimodular triangulation, we can find a simplicial polytope P ′ such that
the h-vector of the boundary complex of P ′ coincides with the one of K[P ]. Then
it only remains to apply the g-theorem to P ′.

Without the condition on regularity of the triangulation we can only conclude
that P ′ can be chosen as a simplicial sphere. If the g-theorem can be generalized
from polytopes to simplicial spheres, then our theorem holds for all polytopes with
a unimodular triangulation.

As a side effect we show that the toric ideal of a Gorenstein polytope with
a square-free initial ideal has also a Gorenstein square-free initial ideal. For a
detailed discussion of special cases of this result see [5].

We are grateful to Christian Haase for pointing out to us during the Oberwolfach
lecture that the hypothesis regular of the theorem cannot be omitted.
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Fano Horospherical Varieties

Boris Pasquier

I will always consider projective algebraic varieties over C. Such a variety X is
called Fano if X is normal and its anticanonical divisor is Cartier and ample. It
is known that in each dimension, there are only finitely many families of smooth
Fano varieties. These families are all known up to dimension 3 but not in higher
dimension.

Toric varieties give a large number of examples of Fano varieties. In fact, Fano
toric varieties correspond bijectively to reflexive polytopes, i.e., lattice polytopes
with the origin in their interior and such that the dual polytope satisfies the same
properties. It follows, by a theorem of D. Hensley [4], that there are only finitely
many isomorphism classes of Fano toric varieties, in each dimension. For example
there are 16 isomorphism classes of reflexive polytopes in dimension 2, and 5 of
them correspond to smooth Fano varieties.

My work consists in generalizing the theory of Fano toric varieties to a larger
class of varieties with group action. Let G be a connected reductive algebraic
group, B a Borel subgroup of G and U the unipotent radical of B, then a normal
variety X is called horospherical if G acts on X with an open orbit isomorphic to
G/H where H is a subgroup of G containing U . In this case we also say that X
is a G/H-embedding.

Examples include toric varieties (where G = (C∗)n and H = {1}) and flag
varieties G/P (where P is parabolic subgroup of G). Moreover, flag varieties are
smooth Fano varieties.
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For an arbitrary subgroup H ⊃ U , the normalizer of H in G is a parabolic
subgroup P of G and P/H is a torus (C∗)n, where n is called the rank of G/H
(and of G/H-embeddings). Such a G/H is a particular spherical homogeneous
space, so by D. Luna and Th. Vust [6], the G/H-embeddings are classified with
colored fans in Rn, generalizing the fans of toric varieties.

Then I have found a smoothness criterion for G/H-embeddings in terms of
colored fans.

I have also found a bijective correspondence between Fano G/H-embeddings
and a new class of rational polytopes in Rn called G/H-reflexive polytopes. In
fact, there is a finite set E of rational points in Rn (only dependent on G/H) such
that a polytope of Rn is G/H-reflexive if it satisfies the following conditions:

(i) its vertices are lattice points or are in E,
(ii) its dual polytope is a lattice polytope,
(iii) it contains E.

Using a generalization of Hensley’s theorem by J. Lagarias and G. Ziegler [5], I
have obtained an effective version of a result of V. Alexeev and M. Brion [1]: there
are finitely many isomorphism classes of Fano G/H-embeddings.

It is interesting to note that the dimension n of the G/H-reflexive polytopes are,
except in the toric case, smaller than the dimension of the associated varieties X .
For example, (SL2 × SL2)/U -reflexive polytopes are of dimension 2 whereas the
corresponding Fano varieties are of dimension 4. There are exactly 39 isomorphism
classes of (SL2 × SL2)/U -reflexive polytopes which correspond to smooth Fano
varieties. The SL3/U -reflexive polytopes are the same as (SL2×SL2)/U -reflexive
polytopes, but the dimension of the corresponding Fano varieties is 5 and only 27
of these polytopes correspond to smooth Fano varieties.

Further geometric properties of a horospherical Fano variety can be read on its
associated G/H-reflexive polytope, for example, the degree is linked to the volume
of the polytope, and the Picard number is linked to the number of its vertices (the
degree of a Fano variety X is the intersection number (−KX)d of the anticanonical
divisor, where d is the dimension of X , and the Picard number ρ(X) is the rank
of the Picard group).

O. Debarre has bounded the degre of smooth Fano toric varieties in terms of
their dimension and Picard number [3], and C. Casagrande has recently bounded
the Picard number of smooth Fano toric varieties in terms of their dimension [2].
I have obtained similar results in the case of horospherical varieties:

Theorem 1. Let X a smooth Fano horospherical variety of dimension d, then
ρ(X) ≤ 2d.

Theorem 2. Let X a smooth Fano horospherical variety of dimension d, and rank
n.
If ρ(X) > 1 then (−KX)d ≤ d! ddρ(X)+n, hence (−KX)d ≤ d! d3d2

.
If ρ(X) = 1, then (−KX)d ≤ d! (d+ 1)d+n, hence d! (d+ 1)2d.
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These theorems hold more generally for locally factorial Fano horospherical
varieties.
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Homological Mirror Symmetry and McKay Correspondence

Kazushi Ueda

Let A be a finite abelian subgroup of SL3(C). A has a natural action on C3

and the quotient C3/A has the crepant resolution A-Hilb C3 by Nakamura [4].
By Bridgeland, King, and Reid [3], there exists an equivalence of triangulated
categories

Dbcoh0A-Hilb C3 ∼= DbcohA
0 C3

between the derived category of coherent sheaves on A-Hilb C3 supported on the
exceptional set and the derived category of A-equivariant coherent sheaves on C3

supported at the origin.
The quotient C3/A has a structure of a toric variety, determined by a fan whose

one-dimensional cones are generated by elements of Z3 of the following forms:

v1 = (v1,1, v1,2, 1), v2 = (v2,1, v2,2, 1), v3 = (v3,1, v3,2, 1).

Here, vi = (vi,1, vi,2), i = 1, 2, 3, are elements of Z2. We assume that the convex
hull of {vi}3i=1 contains at least one lattice point in its interior. Such vi’s can be
normalized by the actions of SL2(Z) and translations to

(1) v1 = (n− 1,−1), v2 = (−1, n− 1), v3 = (−1,−1),

for n = 3, 4, . . ., or

(2) v1 = (n, 0), v2 = (0, n), v3 = (−na,−nb)

for a, b, n = 1, 2, . . .. Now take a generic Laurent polynomial W in two variables
x and y whose Newton polygon is the convex hull of {vi}3i=1, and endow (C×)2

with a symplectic structure by ω = d arg x ∧ d|x|/|x| + d arg y ∧ d|y|/|y|. Then
W considered as a map from (C×)2 to C is an exact Lefschetz fibration in the
sense of Seidel [8], and one can define its directed Fukaya category Fuk

→W whose
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objects are vanishing cycles and whose morphisms are Lagrangian intersection
Floer cohomology [6].

Although Fuk
→W is not an honest category but merely an A∞-category in

general, it turns out to be a differential graded category with a trivial differential
for the above W and a suitable choice of a distinguished basis of vanishing cycles.
Then, one can consider its trivial extension category FukW as in [9], (10a). Define
the derived category DbFukW of FukW by using twisted complexes [2].

Theorem 1. In the above situation, we have an equivalence of triangulated cate-
gories

DbFukW ∼= DbcohA
0 C3.

The proof is given by choosing an explicit correspondence between generators
of both sides and comparing morphisms between them.

The generators of DbcohA
0 C3 are given by the structure sheaf of the origin

tensored with irreducible representations of A, and morphisms between them can
be computed by the Koszul resolution of the origin. In DbFukW , we can draw
the pictures of the vanishing cycles of W and compute their Floer cohomologies
by “painting triangles.”

When vi’s are as in (2), drawing vanishing cycles of W and computing Floer
cohomologies among them can be reduced by the n2-fold cover (C)2 ∋ (x, y) 7→
(xn, yn) ∈ (C) to the case of n = 1, which are treated by Seidel [7] when a = b = 1
and by Auroux, Katzarkov and Orlov [1] in the general case. The case when vi’s
are as in (1) requires a separate treatment. See [5] for the case when n = 3.

Theorem 1 can be used to compute the Stokes matrix for certain hypergeometric
series of Gelfand-Kapranov-Zelevinsky type [5].
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Searching for strongly exceptional sequences of line bundles on toric

varieties

Markus Perling

(joint work with Lutz Hille)

We are interested in the question whether there exists a generalization of Beilin-
son’s theorem [Bei78] for toric varieties. Such a generalization would be interesting
from several points of view. On the one hand, as for projective spaces, it would
be a very important practical tool for working with vector bundles over toric vari-
eties. On the other hand, Beilinson’s theorem and its generalizations (see below)
have been of relevance in physics in the context of D-branes (see [Kon95], [Dou01],
[Hor05], [Asp04]). The theorem by now is classical and one of the most impor-
tant tools in the study of vector bundles over projective space. It states that
Db(Pn), the bounded derived category of coherent sheaves over Pn is equivalent
to Kb

[0,n](Λ), the homotopy category of free modules, which are graded in degrees

0, . . . , n, over the exterior algebra in n+1 variables. The proof involves an explicit
resolution of the diagonal, i.e. of the structure sheaf O∆ of the diagonal on Pn×Pn

and the composition of functors Rp2∗(O∆ ⊗L Lp∗1). The corresponding spectral
sequence [OSS80] often allows rather explicit investigation of vector bundles; this
kind of analysis by now is very well understood (see [EFS03]).

Based on work of Drezet and Le Potier ([DL85]), Beilinson’s theorem has been
generalized as follows. Let X be some smooth projective variety, and let T be a
so-called tilting sheaf on X , which means that ExtiX(T , T ) = 0, the endomorphism
algebra A := End(T ) has finite global dimension, and T generates Db(X). Then
the functor

RHom(T , . ) : Db(X) −→ Db(A−mod)

induces an equivalence of derived categories between Db(X) and Db(A−mod) (see
[Rud90], [Bon90]). So the general problem, from this point of view, is to find a
suitable Tilting sheaf. In most of the examples considered so far, T is a direct sum⊕r

i=1 Ti, and the sheaves Ti form a so-called strongly exceptional collection, i.e.

dimEnd(Ti) = 1 and Extk(Ti, Tj) = 0 for all i, j and all k > 0. The existence of a
strongly exceptional collection, generating Db(X), implies that the Grothendieck
group of X must be finitely generated and free, which excludes the existence of
such collections in general. And even in the cases where the Grothendieck group is
finitely generated and free, it is an open problem in whether such collections exist.
For toric varieties, there is a very strong conjecture which has first been stated by
King:

Conjecture ([Kin97], [AKO04]). Let X be a smooth compact toric variety. Then
X has a tilting bundle which is a direct sum of line bundles.

Note that the summands here form a strongly exceptional sequence of line
bundles L1, . . . , Ln, where n is the rank of the Grothendieck group of X . So
far, many positive results in support of this conjecture have been obtained (see
[CM04], [Hil04], [Kaw05], [BP05], [CS05]).
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In our approach we try to understand the combinatorics of the cohomology
regions in the Picard group of a toric variety and to increase the number of inter-
esting examples, with help of numerical methods. The advantage of toric varieties
here is that King’s conjecture can be formulated as a purely combinatorial prob-
lem und thus it is straightforwardly accessible for combinatorial search. Although
the complexity of the involved combinatorics makes this searching problem in-
tractable in general, it is nevertheless possible to produce examples for strongly
exceptional sequences in many interesting cases, including many toric surfaces,
higher dimensional toric Fanos, as well as examples of compact, but not projec-
tive, toric varieties.

However, computer experiments do not always have positive outcome, and in-
deed, we have verified that there exists a counterexample to King’s conjecture.
This example is a toric surface which can be obtained by iteratively blowing up
the Hirzebruch surface F2 three times. The picture shows the fan associated to
this surface.

1

3

4

56

7

2

In coordinates, the primitive vectors of the rays are given by (1,−1), (2,−1),
(3,−1), (1, 0), (0, 1), (−1, 2), (0,−1) in counterclockwise order, starting with ray
number 1. The proof is done by a somewhat elaborate but quite elementary
computation. It consists of two steps. As we are dealing with line bundles here,
we can assume without loss of generality that, if a strongly exceptional sequence
L1, . . . ,L7 exists, then this sequence contains the structure sheaf. This puts a
strong condition of cohomology vanishing on the Li, namely it is necessary that
Hk(X,Li) = Hk(X,L∗i ) = 0 for all i and all k > 0 (here L∗i denotes the dual
bundle). In the first step we classify all line bundles which have this condition of
cohomology vanishing. In the second step we show by inspection of the obtained
classification that there does not exist a strongly exceptional sequence of length 7.
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Diptych varieties and semistable Mori flips

Gavin Brown

(joint work with Miles Reid)

We construct families of 6-dimensional Gorenstein affine varieties VABLM that ad-
mit an action of a 4-dimensional torus. These varieties contain two 4-dimensional
toric varieties VAB and VLM on which the torus acts as the open orbit and which
meet along mutual toric 2-strata. Regarding these toric subvarieties as two panels
hinged along their 2-strata, we call our 6-folds diptych varieties. The combined
combinatorics of the toric panels guide the construction of VABLM .
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1. Diptych varieties

1.1. Tents and toric deformations. A tent is a union of four affine toric surfaces
S1, . . . , S4 that meet transversely along their toric 1-strata to form a closed cycle
of surfaces with a common 0-stratum. We always restrict to the case where S1 =
S3 = C2, while S2 and S4 may, at first, be arbitrary cyclic quotients of C2.

For example, consider the case S2 = S4 = 1
5 (1, 3). Then S2 can be embedded

in C4 with coordinates x0, . . . , x3 and equations

(1) x0x2 = x2
1, x1x3 = x3

2 and x0x3 = x1x
2
2.

As in [9], the ‘short’ equations xi−1xi+1 = xai

i are determined by the tags ai

appearing as coefficients of a continued fraction expansion [3, 2] = 5
5−3 ; the other

‘long’ equations can be deduced using syzygies.
Similarly using y0, . . . , y3 for S4, the tent T = S1 ∪ S2 ∪ S3 ∪ S4 embeds in C8

with equations (1) (and the same in the yi) together with ‘cross equations’

(2) xiyj = 0 for all (i, j) 6= (0, 0), (3, 3).

1.2. Toric smoothings and pre-classification of diptych varieties. The tent
T is singular along the four axes where the toric surfaces meet. We determine
certain toric smoothings of T along these 1-strata. This is more-or-less well-known
toric geometry. Along the x3 axis, T is the hypersurface singularity x2y3 = 0.
With a smoothing parameter A, this node can be smoothed by x2y3 = xa

3A, for
any a ∈ Z. Picking other parameters b, B for the y3 axis in T , one can show that
there is a (Gorenstein, irreducible, normal, affine) toric variety

VAB ⊂ C10 = C8 × C2(A,B)

with T = (A = B = 0) ⊂ VAB if and only if one of the two continued fraction
expansions [3, a, b, 3, 2] or [2, 3, a, b, 3] equals 0. (The projection VAB → C2(A,B)
realises the deformation of T , although we only use the total space VAB in what
follows rather than the map.) The only solution is {a, b} = {1, 2}, which gives a
choice of two toric 4-folds containing T .

Similarly, we can smooth the nodes along the x0 and y0 axes by choosing para-
meters there: the tags {1, 3} together with smoothing parameters L,M determine
another toric variety VLM . In [2], we classify tents that admit at least two such
toric smoothings, one smoothing at each end. There are four infinite families, each
depending on 2 or 3 parameters.

1.3. Construction by serial unprojection. Using the tent described above,
one choice of a pair of toric deformations at the corners are

In VAB: x2y3 = x2
3A, x3y2 = y3B,

In VLM : x1y0 = x3
0L, x0y1 = y0M.

Toric calculations show that the VLM smoothing of the x0 and y0 axes has local
equations along the x3 and y3 axes as follows:

x2y3 = L2M5, x3y2 = x2
2LM

2.
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The first step to construct V = VABLM is to combine these equations along the x3

and y3 axes in what appears to be a rather naive way: simply write the equations

x2y3 = x2
3A+ L2M5 and x3y2 = y3B + x2

2LM
2.

Regarding this as a deformation of VAB, we must deform the remaining equations
of VAB while preserving the syzygies. The two equations above can be mounted
as two of the maximal Pfaffians of a skew 5 × 5 matrix (from which I omit the
diagonal zeroes and the lower skew half):




x2 −LM3 −x3A x1

x3 −LM2 −B
y3 −x2

2

y2


 .

The remaining 3 Pfaffians give equations that include x1, namely

x1x3 = x3
2 +BLM3, x1y3 = x2

2x3A+ y2LM
3, x2y2 = x3AB + x1LM

2.

We can generate equations involving y1 by eliminating y3 from this system to leave
2 equations in 6 variables, and then playing a similar Pfaffian trick to include y1.
Continuing in this way, we compute many of the equations we need; we think of
these as being the ‘short’ equations of the diptych.

The order in which we include and eliminate the variables follows from a pro-
jection argument. The step of including the variable x1 is a kind of unprojection
(in the sense of [7]). It is the first step in an induction that includes all variables
one at a time. An extended example of this calculus can be seen in [8], Section 10.

1.4. Open questions. Diptych varieties are codimension 2 T-varieties in the
sense of [3], and from that point of view the immediate task is to identify the
corresponding surface and rank 4 lattice. Specialising VABLM as we do when
constructing flips below can reduce the question to codimension 1.

We would like to know what the versal deformation space of a tent is—in the
example above, is there a larger variety still containing all four toric deformations?
There is the bigger problem of computing deformations of cycles of toric surfaces
more generally than tents. The toric analysis seems similar to ours above, but we
have little idea how extensions to larger varieties might work in the absence of
straightforward projection calculus.

2. Semistable Mori flips

2.1. Mori’s result. A Mori flip is a diagram X− → X ← X+ of birational
morphisms of projective 3-folds satisfying various conditions. (See [6] or [1] for
details and examples.) In particular, each map contracts a curve to a point p ∈ X .
Considering the flip in an analytic neighbourhood of p, the linear system | −KX |
contains an element S ∋ p which has a DuVal (or Kleinian or ADE) singularity at
p by [6]. A flip is called semistable when this singularity is of type An.
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Given a Mori flip, one can construct its canonical cover:

A = Spec
⊕

n∈Z

H0(X,−nKX).

The variety A has a C∗ action, determined by the grading of its defining coordinate
ring, and the variation of GIT quotient of this action recovers the flip.

In [5], Mori classifies (the main case of) semistable flips by describing a Euclid-
ean algorithm in the Picard group of X−. He computes equations for X+ by find-
ing appropriate divisors using this algorithm This both proves that X+ exists—a
motivating problem in the 1980s before [4]—and classifies these flips according to
continued fraction solutions of Pell-like equations such as 3x2 + 6xy + 2y2 = 1.

2.2. The link to diptych varieties. Our main claim is that certain diptych
varieties V , including the example constructed above, have specialisations and a
choice of C∗ action which are the canonical covers of certain flips.

If V is the diptych variety above, there are many C∗ actions on V for which
x0, y0 have negative weight while x3, y3 have positive weight. The variation of such
GIT quotients describes varieties and maps in the same configuration as a Mori
flip. Specialising A,B,L,M equivariantly to functions of two variables reduces the
dimension to 3; generic choices ensure the technical conditions for a flip.

By [5], for a general s ∈ OX,p vanishing at p, the germ p ∈ (s = 0) is also a
cyclic quotient singularity. Thus the 3-fold germ p ∈ X contains two toric surface
germs. This is the motivation for the two panels VAB and VLM : one to cover S,
the other (s = 0). The choice of 4-sided tents and of C2 at the ends relate to the
special case when the preimage of p ∈ X on each side of the diagram is a P1.

2.3. Open questions. PhD students are working on the Dn and E6 cases. In
other directions, it would be interesting to find other deformation problems for
which diptych varieties are key varieties. A characteristic property of diptychs is
the two toric sections, and this may hint at some candidates.
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Arcs and jets on toric singularities and quasi-ordinary singularities

Pedro Daniel González Pérez

(joint work with Helena Cobo Pablos)

We denote by (S, 0) a reduced irreducible equidimensional germ of algebroid sin-
gularity of dimension d defined over C, an algebraically closed field of zero charac-
teristic. A formal arc on the germ (S, 0) is a morphism of germs h : (D, 0)→ (S, 0)
where D := Spec C[[t]]. If we fix an embedding (S, 0) ⊂ (Cn, 0) and local coordi-
nates (x1, . . . , xd) at 0 then the arc h is given by n power series in C[[t]]: xi(t) =

a
(i)
1 t + a

(i)
2 t2 + · · ·+ a

(i)
r tr + · · · , i = 1, . . . , n, such that F (x1(t), . . . , xn(t)) = 0,

for any F in the ideal of (S, 0). The set of arcs H on (S, 0) can be seen as an affine

subscheme of Spec C[a
(i)
1 , a

(i)
2 , . . . ]ni=1. An s-jet on the germ (S, 0) is a morphism

of germs h : (Ds, 0)→ (S, 0) where Ds = Spec C[[t]]/(t)s+1. The set Hs of s-jets

on (S, 0) is an affine subscheme of Asn
C

:= Spec C[a
(i)
1 , . . . , a

(i)
s ]ni=1.

Any arc h ∈ H has a s-jet js(h) ∈ Hs. A theorem of Greenberg implies
that the set js(H) ⊂ Hs is a constructible set of Hs for every s ≥ 0. It has
an image [js(H)] in the Grothendieck ring K0(VarC) of C-varieties. This ring
is generated by the symbols [X ] for X an algebraic variety, subject to relations:
[X ] = [X ′] if X is isomorphic to X ′, [X ] = [X −X ′] + [X ′] if [X ′] is closed in X
and [X ][X ′] = [X ×X ′]. If X is an algebraic variety the map X ′ 7→ [X ′], for X ′

closed in X extends to constructible subsets W of X , W 7→ [W ] in a unique way
if [W ∪W ′] = [W ] + [W ′]− [W ∩W ′], see [2].

The geometric Poincaré series Pgeom(T ) :=
∑

s≥0[j
s(H)]T s ∈ K0(VarC)[[T ]].

is an invariant of the germ (S, 0). We denote by L the class L = [A1
C

] of the affine
line and by MC the ring K0(VarC)[L−1]. A theorem of Denef and Loeser states
that the series Pgeom(T ), when viewed in MC[[T ]], is a rational function, i.e.,
it belongs to MC[T ] (see [2]). The proof of this deep result concerns quantifier
elimination for semi-algebraic sets of power series in zero characteristic, the theory
of motivic integration introduced by Kontsevich and the existence of resolution of
singularities of varieties over a field of zero characteristic. The invariants of (S, 0)
encoded by this series are not well understood, see Nicaise work for some particular
cases [6]. Lejeune and Reguera gave an explicit description of this series in the
case of an affine normal toric surface, see [4]. We describe the classes [js(H)]
associated to a quasi-ordinary hypersurface singularity or to a germ of affine toric
variety, needless to say non necesarily normal, in terms of the convexity properties
of certain monomial ideals which we associate to the singularity, if the singularity
is locally unibranched along the singular locus. Rond [9] studies inductively the
the series Pgeom(T ) in the quasi-ordinary case.
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1. Toric case

Let M be a rank d lattice, N its dual lattice and Λ ⊂ M a submonoid generated
by e1, . . . , en, such that the cone σ∨ := R≥0e1 + · · ·+ R≥0en ⊂MR := M ⊗R is
strictly convex of dimension d. Denote by σ ⊂ NR the dual cone of σ∨ ⊂MR. If
e ∈ Λ we denote by χe ∈ C[Λ] the corresponding monomial. We denote the affine

toric variety SpecC[Λ] by ZΛ. The toric morphism Zσ∨∩M → ZΛ corresponding
to the inclusion Λ ⊂ σ∨ ∩M is the normalization map. The embedding ZΛ ⊂ Cn,
defined by xi = χei for i = 1, . . . , n, is equivariant.

We study the class [js(H)] if (S, 0) = (ZΛ, 0). An arc h ∈ H has its generic point
in the torus if and only if χm ◦h 6= 0, ∀m ∈M . We expand χm ◦h = tνh(m)uh(m),

where uh(m) is a unit in C[[t]]. It follows that νh ∈
◦
σ ∩N . Denote by H∗ the set

of arcs h ∈ H with generic point in the torus.

Lemma. If S is locally unibranched along its singular locus and if then we have
js(H) = js(H∗), for s ≥ 0 (see [7] in the normal toric case).

We have a partition H∗ = ⊔
ν∈

◦
σ∩N

H∗
ν where H∗

ν := {h ∈ H∗/νh = ν}. It

follows that js(H) = js(H∗) = ∪
ν∈

◦
σ∩N

js(H∗
ν ), but this union is non-finite and

non-disjoint since different arcs h ∈ H∗
ν and h′ ∈ H∗

ν′ may have the same s-jet.
We follow the strategy of Lejeune and Reguera [4]: we show that js(H∗

ν ) is locally
closed in Hs and we compute the class [js(H∗

ν )]; then we exhibit a finite subset

Ξ(s) of
◦
σ ∩N determining a partition js(H) = ⊔ν∈Ξ(s)j

s(H∗
ν ). This description

is given in terms of a sequence of monomial ideals of the local ring C[[σ∨ ∩M ]].
In the case of Lejeune and Reguera these ideals are the maximal ideal and the
logarithmic jacobian ideal, which determines the Nash modification of S, see [4].

Let us define the following subsets of Γ, for k = 1, . . . , d:

(1) Jk := {ei1 + · · ·+ eik
/ei1 , . . . , eik

linearly independent }1≤i1<···<ik≤d.

If J ⊂ σ∨ ∩ M we denote also by J the corresponding monomial ideal of
C[[σ∨∩M ]]. The Newton polyhedron N (J ) of the monomial ideal J is the convex
hull of J +σ∨. We denote by ordJ the support function of the polyhedron N (J ),
defined by: ordJ : σ → R, ν 7→ infω∈N (J )〈ν, ω〉. We use the following notations:
φ1 := ordJ1

, φ2 := ordJ2
− ordJ1

, . . . , φd := ordJd
− ordJd−1

. We have that

φ1 ≤ φ2 · · · ≤ φd on σ (point-wise). For any s ≥ 0, we have a partition of
◦
σ ∩N :

ρ0(s) := { µ ∈
◦
σ ∩N / s < φ1(µ) }

ρ1(s) := { µ ∈
◦
σ ∩N / φ1(µ) ≤ s < φ2(µ) }

. . . . . . . . . . . .

ρd−1(s) := { µ ∈
◦
σ ∩N / φd−1(µ) ≤ s < φd(µ) }

ρd(s) := { µ ∈
◦
σ ∩N / φd(µ) ≤ s }.

Theorem 1. If s ≥ 0 and ν ∈
◦
σ ∩N , let k be the unique integer such that ν ∈ ρk(s)

then we have that if k = 0 the jet space js(H∗
ν ) is equal to {0} otherwise it is

isomorphic to (C∗)k ×A
sk−ordJk

(ν)

C
.
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Remark. The ideal Jd gives the Nash modification of a normal (S, 0), see [4].

We define an equivalence relation∼ in the set ρk(σ) for any s > 0 and 1 ≤ k ≤ d:

ν ∼ ν′ ∈ ρk(s)⇔

{
ν and ν′ define the same face of N (Jj)

and ordJj
(ν) = ordJj

(ν′).

}
for 1 ≤ j ≤ k.

We denote by ν̄ the class of ν. The quotient set ρk(s)/ ∼ is finite.

Corollary 2. If S is locally unibranched along its singular locus the class of js(H)
in the Grothendieck ring is of the form:

[js(H)] = 1 +
∑d

k=1

∑
ν̄∈ρk(s)/∼(L− 1)kLks−ordJk

(ν).

2. Quasi-ordinary hypersurface case

An equidimensional germ (S, 0) is quasi-ordinary (QO) if there exists a finite pro-
jection π : (S, 0)→ (Cd, 0) which is a local isomorphism outside a normal crossing
divisor. The class of QO-singularities contains curve singularities and simplicial
toric singularities; it is important in Jung’s approach to resolution of singulari-
ties, see [5]. The normalization of a QO-singularity is a toric singularity, see [8].
A QO-hypersurface (S, 0) has an equation f = 0, where f ∈ C[[x1, . . . , xd]][y] is
the minimal polynomial over C[[x1, . . . , xd]] of a especial type of fractional power

series ζ ∈ C[[x
1/m
1 , . . . , x

1/m
d ]] possessing a finite set λ1, . . . , λg ∈ Qd of charac-

teristic exponents, see [1] and [5]. This series generalizes Newton-Puiseux expan-

sions. The normalization is the toric singularity Zσ∨∩M where σ∨ := Rd
≥0 and

M :=
∑d+g

i=1 Zei, for xi = χei , i = 1, . . . , d; and ed+j := λj , j = 1, . . . , g, see [3].
The strategy is similar to the toric case, though proofs are more involved. We
denote by H∗ the set of arcs h ∈ H such that π ◦ h has its generic point in the

torus, we set H∗
ν analogously for ν ∈

◦
σ ∩N . We define the sets for k = 1, . . . , d:

(2) Jk := {
∑k

r=1 eir
/ei1 , . . . , eik

linearly independent }
ik−1<ik≤d+g
1≤i1<···<ik−1≤d,.

Theorem 3. With the notations and hypothesis analogous to those of section 1,
the statement of Theorem 1 and Corollary 2 holds with respect to the ideals (2).
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Thom polynomials of singularities

András Szenes

(joint work with Gergely Bérczi)

In joint work with Gergely Bérczi, we compute the so-called Thom polynomials
[6] of a family of Boardman singularities. Broadly speaking, this is an expression
describing the fundamental class of a singularity in the space of jets of functions.
In more detail, let N,n, k be three positive integers; we will assume that n ≤ k.
We can model the jet space of holomorphic maps (Cn, 0) → (Ck, 0) up to degree
N as the direct sum

J (N) = ⊕N
l=1Hom(SymlCn,Ck),

or equivalently, as the set

J (N) = {(P1, . . . , Pk); Pi ∈ C[x1, . . . , xn], Pi(0) = 0, degPi ≤ N}

This is a linear space with the action of the substitution group D = Diff(Cn, 0)×
Diff(Ck, 0); we will be interested in the subgroup of linear substitutions G =
GLn ×GLk.

Now, let A be an Artinian ring, and consider the subspace

J
(N)
A = {(P1, . . . , Pk) ∈ J (N); C[x1, . . . , xn]/〈P1, . . . , Pk〉 ∼= A},

where 〈. . . 〉means “the ideal generated by”. This subset is D-invariant, and thus it
isG-invariant. Thus one can consider its equivariant Poincaré dual, a homogeneous
polynomial ePA in n+k variables λ1, . . . , λn, θ1, . . . , θk, which is symmetric in the

λs and θs separately. The degree of ePA equals the codimension of J
(N)
A in J (N).

This polynomial stabilizes for large N , and thus this stable version only depends
on A, n and k.

In this talk, we consider the case A = C[t]/td+1. For this algebra, one can
choose N = d. This singularity is known as the Ad singularity, or the Boardman
singularity of index 1d. There has been considerable amount of work done on
this case [2, 5, 4, 3, 1]. The known cases are the cases of d = 1, d = 2, with
a conjectural formula for d = 3, and results for any d in the case n = k. We,
motivated by localization theory, give a unified approach for arbitrary n, k and d,
with the dependence on n and k completely separated, and thus the computation
is reduced to an object depending on d only. This object turns out to be trivial
for d = 1, 2 and 3, may be computed by hand for d = 4, 5, and can be computed
by computer for d = 6, 7.

It is also compatible with the following result of Thom:
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Proposition 1. Consider the infinite sequence of elements ci, deg ci = i, defined
by the generating series

c(z) = 1 + c1z + c2z
2 + · · · =

∏k
m=1(1− θmz)∏n
i=1(1− νiz)

.

Then the equivariant Poincaré dual ePA is a polynomial in the classes ci.

This statement holds in greater generality, not just for A = C[t]/td+1. Now we
can introduce the Thom polynomial via

ThA(c1, c2, . . . ) = ePA(λ1, . . . , λn, θ1, . . . , θk)

The final result may be described as follows.

Theorem 2. Let Bd be the space group of d-by-d upper-triangular matrices, with
Td ⊂ Bd the torus of diagonal matrices. Then there exists a representation Vd of
Bd, and a vector v1 ∈ Vd such that

ThA=C[t]/td+1 = Res
zd,z1,z2,...,zd−1

Qd

∏
i<j(zi − zj)∏

i≤j, i+j≤l≤d(zi + zj − zl)

d∏

i=1

c(zi) dzi

zk−n+1
i

,

where Qd the equivariant Poincaré dual of the orbit of the point v1 on the repre-
sentation Vd, the zis are the weights of the action of Td, and the iterated resiudes
are taken at infinity.

The representation Vd and the vector v1 may be described explicitly, and are
related to the symmetric square of the fundamental representation.

The proof is based on a careful study of the model of Porteous and Ronga. This

characterizes the elements of J
(N)
A , as the (jets of) those maps ψ : Cn → Ck for

which there exists a test curve C in Cn such that the first d derivatives of ψ(C)

vanish at the origin. This allows one to fiber J
(N)
A over a partial flag variety. The

fibers themselves have the structure of a linear fibration which suggest a natural
compactification. Finally, the theorem is obtained after applying two localization
principles, a variant of the Berline-Vergne equivariant localization theorem and a
global residue principle.
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Homological methods for hypergeometric families

Ezra Miller

(joint work with Laura Felicia Matusevich and Uli Walther)

This abstract is taken nearly verbatim from the introduction to [MMW05].
In the late 1980s, Gelfand, Graev, and Zelevinsky introduced a class of systems

of linear partial differential equations that are closely related to toric varieties
[GGZ87]. These systems, now called GKZ systems, or A-hypergeometric systems,
are constructed from a d × n integer matrix A of rank d and a complex para-
meter vector β ∈ Cd, and are denoted by HA(β). We assume that the columns
of A lie in a single open halfspace. A-hypergeometric systems arise in various
instances in algebraic geometry. For example, solutions of A-hypergeometric sys-
tems appear as toric residues [CDS01], and special cases are mirror transforms of
generating functions for intersection numbers on moduli spaces of curves [CK99],
the A-hypergeometric systems there being Picard–Fuchs equations governing the
variation of Hodge structures for Calabi–Yau toric hypersurfaces.

The first fundamental results about the systems HA(β) were proved by Gelfand,
Graev, Kapranov, and Zelevinsky. These results concerned the case where the
semigroup NA generated by the columns of A gives rise to a semigroup ring C[NA]
that is Cohen–Macaulay and graded in the standard Z-grading [GGZ87, GKZ89].
In geometric terms, the associated projective toric variety XA is arithmetically
Cohen–Macaulay. The above authors showed that, in this case, the system HA(β)
gives a holonomic module over the ring D of polynomial C-linear differential oper-
ators in n variables, and hence HA(β) has finite rank ; that is, the dimension of its
holomorphic solution space is finite. Furthermore, they showed that this dimension
can be expressed combinatorially, as the integer vol(A) that is d! times the Euclid-
ean volume of the convex hull of the columns of A and the origin 0 ∈ Zd. The
remarkable fact is that their rank formula holds independently of the parameter β.

Even if C[NA] is not Cohen–Macaulay or Z-graded, Adolphson showed that
HA(β) is always a holonomic ideal [Ado94]. He further proved that, for all pa-
rameters outside of a closed locally finite arrangement of countably many ‘semi-
resonant’ affine hyperplanes, the characterization of rank as volume still holds.

It came as quite a surprise when in [ST98] an example was given showing that
if C[NA] is not Cohen–Macaulay then not all parameters β have to give the same
rank. Thus the set EA of exceptional parameters β ∈ Cd, for which the rank does
not take the expected value, can be nonempty. Nearly at the same time, the case of
projective toric curves was discussed completely in [CDD99]: the set EA of excep-
tional parameters is finite in this case, and empty precisely when C[NA] is Cohen–
Macaulay; moreover, at each β ∈ EA the rank exceeds the volume by exactly 1.

It was shown soon after in [SST00] that the rank can never be smaller than the
volume as long as C[NA] is Z-graded, and it was established in the same book that
EA is in fact contained in a finite affine subspace arrangement. More recently, the
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much stronger fact emerged that EA is a finite union of Zariski locally closed sets by
means of Gröbner basis techniques [Mat03]. While rank-jumps can be arbitrarily
large [MW04], the absence of rank-jumping parameters is equivalent to the Cohen–
Macaulay property for Z-graded C[NA] when either C[NA] has codimension two
[Mat01], or if the convex hull of A is a simplex [Sai02], or if C[NA] is a polynomial
ring modulo a generic toric ideal [Mat03].

Encouraged by these results, which suggest an algebraic structure on the set
of exceptional parameters, it was conjectured in [MM05] that the obstructions
to the Cohen–Macaulayness of C[NA] and the set of exceptional parameters are
identified in an explicit manner. To be precise, let H<d

m
(C[NA]) be the direct

sum of all the local cohomology modules supported at the maximal homogeneous
ideal m of C[NA] in cohomological degrees less than d. Then define the set EA

of exceptional quasidegrees to be the Zariski closure in Cd of the set of Zd-graded
degrees α such that H<d

m (C[NA]) has a nonzero element in degree −α. With this
notation, our motivating result is the following.

Theorem. For any rank d matrix A ∈ Zd×n as above, the set EA of exceptional
(that is, rank-jumping) parameters equals the set EA of exceptional quasidegrees.

We note that there is no assumption on C[NA] being Z-graded. The Z-graded
simplicial case of this result was proved in [MM05] using results of [Sai02].

Methods and results. The first step in our proof of the Theorem is to construct
a homological theory to systematically detect rank-jumps. To this end, we study
rank variation in any family of holonomic modules over any base B, and not just A-
hypergeometric families over B = Cd. The idea is that under a suitable coherence
assumption, holonomic ranks behave like fiber dimensions in families of algebraic
varieties. In particular, we prove that rank is constant almost everywhere and can
only increase on closed subsets of B. We develop a computational tool to check
for rank-jumps at a smooth point β ∈ B: since the rank-jump occurs through a
failure of flatness at β, ordinary Koszul homology detects it.

The second step toward the Theorem is to construct a homological theory for
D-modules that reproduces the set EA of exceptional quasi-degrees, which a priori
arises from the commutative notion of local cohomology. Our main observation
along these lines is that the Euler–Koszul complex, which was already known
to Gelfand, Kapranov, and Zelevinsky for Cohen–Macaulay Z-graded semigroup
rings [GKZ89], generalizes to fill this need. Adolphson [Ado99] recognized that
when the semigroup is not Cohen–Macaulay, certain conditions guarantee that
this complex has zero homology. Here, we develop Euler–Koszul homology for
the class of toric modules, which are slight generalizations of Zd-graded modules
over the semigroup ring C[NA]. For any toric module M , we show that the set of
parameters β for which the Euler–Koszul complex has nonzero higher homology is
precisely the analogue for M of the exceptional quasi-degree set EA defined above
for M = C[NA].

Having now two cohomology theories, one being a D-module theory to recover
local cohomology quasi-degrees for hypergeometric families, and the other being
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a geometric theory to detect rank-jumping parameters for general holonomic fam-
ilies, we link them in our central result: for toric modules, these two theories
coincide. Consequently, we obtain our motivating Theorem as the special case
M = C[NA] of a result that holds for arbitrary toric modules M . From there,
we deduce the equivalence of the Cohen–Macaulay condition on C[NA] with the
absence of rank-jumps in the GKZ hypergeometric system HA(β).

As a final comment, let us note that we avoid the explicit computation of
solutions to hypergeometric systems. This contrasts with the previously cited
constructions of exceptional parameters, which rely on combinatorial techniques
to produce solutions. It is for this reason that these constructions contained the
assumption that the semigroup ring C[NA] is graded in the usual Z-grading, for
this implies that the corresponding hypergeometric systems are regular holonomic
and thus have solutions expressible as power series with logarithms, with all the
combinatorial control this provides. Our use of homological techniques makes our
results valid in both the regular and non-regular cases.
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Syzygies of toric varieties

Milena Hering

(joint work with Hal Schenck, Greg Smith)

Understanding the equations defining an algebraic variety in projective space is a
classical question in algebraic geometry. In the 1980’s, Green realized that classical
results by Castelnuovo, Noether, Petri and Fujita on the equations defining an
algebraic curve generalize to higher syzygies and he and Lazarsfeld uncovered a
beautiful connection between syzygies and geometry in the form of property Np.

Let L be a globally generated line bundle on a normal projective variety X , let
R =

⊕
H0(X,Lm) be the section ring associated to L, and let S = Sym•H0(X,L).

Then R is a finitely generated S-module and it admits a minimal free graded res-
olution over S, E• → R. We say that L satisfies N0 if E0

∼= S and that L satisfies
Np if E0

∼= S and Ei
∼=

⊕
S(−i − 1) for 1 ≤ i ≤ p. Hence L satisfies N0 if and

only if it gives rise to a projectively normal embedding, and L satisfies N1, it and
only if the ideal of this embedding is generated by quadratic equations. Moreover,
L also satisfies N2 if and only if the first syzygies of these equations are linear.

Green [8] showed that sufficient powers of ample line bundles satisfy Np, but
exact bounds are not even known in the case of Veronese embeddings or curves. In
a paper with H. Schenck and G. Smith [11] we obtain sufficient criteria for ample
line bundles on toric varieties by exploiting the connection of the regularity of a
line bundle with Np.

Let L be a globally generated line bundle on a toric variety X corresponding to
a lattice polytope P . Then L satisfies N0 if and only if P is normal, i.e., if for every
m, every lattice point in mP can be written as a sum of m lattice points in P . P
gives rise to a polytopal semigroup SP and the associated semigroup ring k[SP ]
is naturally isomorphic with the section ring R associated to L. A k-algebra R is
called Koszul, if TorR

i (k, k)m = 0 for i 6= m, i.e., k admits a linear resolution over
R. Then if R is Koszul, L satisfies N1. The converse is not true (see Sturmfels
[21]), but evidence suggests that when a line bundle L has a natural reason to
satisfy N1, then the associated section ring is Koszul.

Theorem 1 ([11, Corollary 1.2.]). Let L be an ample line bundle on a toric variety
of dimension n. Then Ln−1+p satisfies Np for p ≥ 0.

The case p = 0 is the well known fact that for a polytope of dimension n,
(n−1)P is normal (cf. [4], [13] and [1]) and Bruns, Gubeladze and Trung [1] show
that k[SnP ] is Koszul which implies the case p = 1. Recently Ogata [14] proved
that when n ≥ 3, Ln−2+p satisfies Np for p ≥ 1.

Using information of the Hilbert polynomial, we obtain the following general-
ization.
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Theorem 2 ([11, Corollary 1.3.]). Let L be an ample line bundle on a toric variety
of dimension n. If r denotes the number of integer roots of the Hilbert polynomial
of L, then Ln−r−1+p satisfies Np for p ≥ 1, unless L ∼= OPn(1).

In fact, if L is a globally generated line bundle on a toric variety corresponding to
a lattice polytope P , then the number of integer roots r of the Hilbert polynomial
of L coincides with the largest integer r such that rP does not contain any lattice
points in its interior. This motivates the following theorem.

Theorem 3 ([11, Corollary 1.4.], [10, Corollary IV.28]). Let P be a lattice polytope
of dimension n, and let r be the largest integer such that rP does not contain any
interior lattice points. Then

(i) (n− r)P is normal, and
(ii) K[S(n−r)P ] is Koszul.

A natural question generalizing Green’s result on curves and extending Fujita’s
conjectures is whether adjoint line bundles of the form KX ⊗An+2+p for an ample
line bundle A satisfy Np. Ein and Lazarsfeld [3] have shown that KX ⊗ An+p

satisfies Np for a very ample line bundle A on a smooth projective variety X ≇ Pn.
We have a similar result for Gorenstein toric varieties.

Theorem 4 ([11, Corollary 1.6.]). Let X be a Gorenstein projective toric variety
of dimension n, and let B1, . . . , Br be the minimal generators of the nef cone of
X. Let A be an ample line bundle such that for all i, A⊗B−1

i is globally generated
and assume that A ≇ OPn(1). Then KX ⊗An+p satisfies Np for p ≥ 1.

When X is a smooth toric surface, a formula due to Schenck [20] and Gallego
and Purnaprajna [6] implies the following precise criterion.

Theorem 5 ([10, Corollary IV.23]). Let L be an ample line bundle on a smooth
toric surface X corresponding to a lattice polygon P . Then L (KX) satisfies Np if
and only if

|∂P ∩M |+ |{vertices of P}| ≥ p+ 15.

Our methods also apply to Segre-Veronese embeddings. Green [9] proved that
the Veronese embeddingOPn(d) satisfiesNd. Ottaviani and Paoletti [15] conjecture
that for d ≥ 3 and n ≥ 2, OPn(d) satisfies N3d−3, and they show the necessity
of this condition. This conjecture is known for n = 2. We have the following
generalization of Green’s theorem to Segre-Veronese embeddings.

Corollary 6 ([11, Corollary 1.5.]). Let X = Pn1×· · ·×Pnr . Then OX(d1, . . . , dr)
satisfies Nmin{d1,...,dr}.

In fact, the Segre-embedding OX(1, . . . , 1) satisfies N3; see Lascoux [12] and
Pragacz-Weyman [17] for r ≤ 2 and Rubei [18, 19] for r ≥ 3.
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