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Introduction by the Organisers

The fifth conference with the title The Arithmetic of Fields, organized by Wulf-
Dieter Geyer (Erlangen), Moshe Jarden (Tel Aviv), and Florian Pop (Philadel-
phia), was held February 5–11th, 2006. In contrast to the fourth conference held
in February 3–9th, 2002, this conference was a “full” one, namely as many partici-
pants were invited as the Institute could host. Due to support from the European
Union, more young people were invited in the last few weeks prior to the confer-
ence, so that the total number of participants reached 54. The participants came
from 13 countries: Germany (20), USA (10), Israel (7), France (7), Denmark (2),
Austria (1), Brazil (1), Canada (1), Hungary (1), Japan (1), Romania (1), Rus-
sia (1), and South Africa (1). Among the participants there were 9 graduate
students and 8 young researchers. Six women attended the conference.

The organisers asked four people before the conference to give surveys of one
hour on recent progress made by other colleagues in Field Arithmetic.

Tamás Szamuely (Budapest) reported on the solution by János Kollár of a
Problem due to Ax from 1968: Every PAC field of characteristic 0 is C1. The case
where the characteristic is positive remains open.
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Alexandra Shlapentokh (Greenville) described the progress Bjorn Poonen made
on Hilbert’s Tenth Problem: There exists a recursive set T1 of prime numbers of
natural density 0 and a set T2 of prime numbers of natural density 1 such that
T1 ⊆ T2 and for each set S with T1 ⊆ S ⊆ T2 Hilbert’s Tenth Problem for OQ,S

has a negative solution. Here OQ,S is the ring of all rational numbers whose
denominators are divided only by primes in S. Whether Hilbert’s Tenth Problem
for Q has a negative solution is still open.

Alexander Prestel (Konstanz) presented a theorem of Jochen Koenigsmann: If
a p-Sylow extension P of a field K is Henselian and P is neither separably closed
nor real closed, then K itself is Henselian.

Pierre Dèbes (Lille) surveyed Fried’s problem on Modular Towers. He men-
tioned that the main conjecture is close to completion in the case of 4 branch
points (Bayley-Fried). He also reported on a result of Anna Cadoret: The dihe-
dral group has a regular realization over Qab with only inertia groups of order 2.

In addition to these survey talks seventeen participants were invited to report
on their own achievements in 45 minutes talks. Altogether, the talks presented
the impressive progress made in Field Arithmetic in recent years. The reader may
find here extended abstracts of all talks. We hope they will be to the benefit of
all of the participants as well as the fans of Field Arithmetic.

The organisers: Wulf-Dieter Geyer, Moshe Jarden, Florian Pop
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Abstracts

Diamond theorem for a finitely generated free profinite group

Lior Bary-Soroker

Haran gives, in [Ha2], a general sufficient condition for a closed subgroup of an
infinitely generated free profinite group to be free:

Theorem A. Let m be an infinite cardinal. Let F = F̂m be the free profinite
group of rank m, M1, M2 closed normal subgroups of F , and M a closed subgroup

of F satisfying M1 ∩M2 ≤ M and Mi 6≤ M for i = 1, 2. Then M ∼= F̂m [FrJ,
Thm. 25.4.3].

Problem 25.4.9 of [FrJ] asks for a generalization of Theorem A to the case where
m is finite and at least 2. A first step toward the solution of that problem is taken
in [Jar]. Proposition 1.3 of [Jar] proves an analog of a theorem of Weissauer for
finitely generated profinite groups:

Theorem B. Let F = F̂e with e ≥ 2 an integer, M a closed subgroup of F of an
infinite index, N a closed normal subgroup of F contained in M , and M0 an open
subgroup of M which does not contain N . Then M0

∼= F̂ω.

In this talk we explain how, building on Theorems A and B, to settle Problem
25.4.9 of [FrJ], by proving a diamond theorem for free profinite groups of finite
rank:

Theorem C. Let F = F̂e with e ≥ 2 an integer, M1, M2 closed normal subgroups
of F , and M a closed subgroup of F with (F : M) =∞, M1 ∩M2 ≤M , M1 6≤M ,

and M2 6≤M . Then M ∼= F̂ω [B-S].

The proof of Theorem A (at least in the case m = ℵ0) is reduced to solving a
finite embedding problem

(φ : F → G, α : AwrG0
G→ G),

where G is a finite group, A is a finite nontrivial group, G0 is a subgroup of G
acting on A, and AwrG0

G is the twisted wreath product. This embedding problem

has a solution because every finite embedding problem for F̂ω has a solution. The
same is true in the case F = F̂e, with e an integer, if e ≥ rank(AwrG0

G). However,
in general, this inequality does not hold.

We observe that rank(AwrG0
G) ≤ |G|+rank(A). So, if we replace F by an open

subgroup E containing M , then by Nielsen-Schreier rank(E) increases (linearly
depending on (F : E)). The main problem is that replacing F by E changes the
embedding problem (φ, α). In this change the order of G may increase and with
it also |G| + rank(A). We can control the growth of the order of G if there are
“many” subgroups between F and M . In this case we say that M is an “abundant
subgroup of F”.



322 Oberwolfach Report 6/2006

It may happen that there are not enough closed subgroups between F and one
of the subgroups M , MM1, or MM2, in which case, the corresponding subgroup
is called “sparse”. More precisely, a closed subgroup M of a profinite group is
called sparse if for all m, n ∈ N there exists an open subgroup K of F containing
M such that (F : K) ≥ m, and for every proper open subgroup L of K containing
M we have (K : L) ≥ n. In this case, the above proof does not work, so we prove

that M ∼= F̂ω directly or by using either Theorem A or Theorem B.
We also generalize Theorem C to pro-C groups, where C is a Melnikov forma-

tion [FrJ, Page 343] of finite groups, i.e., C is closed under taking quotients, normal
subgroups, and extensions.

Historically the first diamond theorem was about a sufficient condition for an
extension of Hilbertian field to be Hilbertian (See [Ha2]). We also transfer Theorem
C to the theory of Hilbertian fields and prove the following result:

Theorem D. Let K be a PAC field with a finitely generated free absolute Galois
group of rank at least 2. Let M1 and M2 be Galois extensions of K. Then every
infinite extension M of K in M1M2 which is contained neither in M1 nor in M2

is a Hilbertian field.

Acknowledgement: The author is grateful to D. Kelmer, E. Paran, and I. Sur-
din for their help in preparation of this talk.
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Teichmüller curves and triangle groups

Irene I. Bouw

(joint work with Martin Möller)

Let Mg be the moduli space of curves of genus g ≥ 2 and let Tg be the Teichmüller
space. Write ΩTg → Tg for the total space of the pullback of the Hodge bundle
to Tg. We have a natural action of SL2(R) on the complement ΩT ∗g of the zero
section in ΩTg. Namely for A ∈ SL2(R) and (X, ω) ∈ ΩT ∗g postcompose the charts

with the action of A on C ≃ R2. If the image, C, of an SL2(R)-orbit in Mg is
closed, we call C a Teichmüller curve.
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The fibers of ΩTg → Tg are fixed by the action of SO2(R). Therefore a pair
(X, ω) as above induces a map

H ≃ SL2(R)/ SO2(R)→ Tg →Mg.

It is known that a pair (X, ω) defines a Teichmüller curve if and only if the stabilizer
Γ := Stab(X, ω) ⊂ SL2(R) of (X, ω) is a lattice. The group Γ is called the affine

group of a Teichmüller curve C.
It is a natural question to ask which groups Γ may occur as the affine group

of a Teichmüller curve. For simplicity, we only consider the image of the affine
group in PSL2(R). Our main result completely solves this question for the case
of triangle groups. Veech ([4]) showed that every Teichmüller curve has at least
one cusp. Therefore we only need to consider triangle groups ∆(n, m,∞) with
n, m ∈ Z>1 ∪ {∞} satisfying 1/n + 1/m < 1.

Theorem 1. Let Γ = ∆(n, m,∞) be a triangle group, as above. Then there exists
a Teichmüller curve C with (projective) affine group Γ.

The theorem, proved in [1], generalizes results of Veech ([4]) and Ward ([5])
who constructed Teichmüller curves whose affine group is ∆(2, n,∞), ∆(n, n,∞)
or ∆(3, n,∞). These results are formulated in the language of billiards. McMullen
([2]) showed that there exist Teichmüller curves whose affine group is not a triangle
group.

The proof of the theorem relies on a Hodge-theoretical characterization of Teich-
müller curves, due to Möller ([3]). I sketch the definition of the family of curves
of genus g corresponding to the triangle group ∆(n, m,∞) in the special case that
n, m are finite and relatively prime. The general case is similar, but somewhat
more involved.

Let N = 2nm and consider the family of (projective smooth) curves Y defined
by the Kummer equation

yN = xa1(x− 1)a2(x− t)a3 ,

where {a1, a2, a3, a4} = {nm ± n ±m}. Here a4 corresponds to the ramification
above ∞. We write f : Y → C ⊂ C̄ := P1

t for the corresponding family of curves
parameterized by t. Let H = R1f∗CY⊗COC for the relative de Rham cohomology,
and H1 for the eigenspace of the automorphism ϕ(x, y) = (x, ζNy) with eigenvalue
ζN . Here ζN ∈ C is a primitive Nth root of unity. One can show that H1 is a rank-
2 local system whose projective monodromy group is Γ. Write S = {0, 1,∞} ⊂ C̄
for the set of t for which the fiber Yt is singular.

There exists a finite cover π : D̄ → C̄, exactly branched at S, such that the
pullback YD of Y to D̄ has unipotent monodromy. The automorphism group of
YD contains a subgroup G := Z/N ⋊ (Z/2 × Z/2). We choose H ≃ Z/2 × Z/2
such that the fibers of X := YD/H have minimal genus. Then X → D̄ defines a
Teichmüller curve.
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Zp-embeddability of cyclic p-class fields

David Brink

The talk is a report on some results from my Ph.D. thesis (2006).
Denote by Zp the additive group of p-adic integers. By a result of Iwasawa, any

Zp-extension of an algebraic number field is unramified outside p. The lower steps
of a such extension may very well be unramified also at p. This motivates the
following question: If the p-Hilbert class field of the imaginary quadratic number
field K is non-trivial and cyclic over K, is it then embeddable into a Zp-extension
of K? We have the following result (a criterion in the case p = 3 is known):

Theorem 1. (a) The imaginary quadratic fields K whose 2-class field is non-
trivial and embeddable into a Z2-extension of K are exactly the fields K = Q(

√
−l)

with a prime l ≡ 5 (mod 8), the fields K = Q(
√
−2l) with a prime l ≡ 3, 5 (mod 8),

and the fields K = Q(
√
−ll′) with two primes l ≡ 5 (mod 8) and l′ ≡ 3 (mod 8).

(b) Assume p > 3 and let K be imaginary quadratic. Suppose that K and K(ζ)
have the same non-trivial p-class numbers where ζ is a primitive p’th root of unity.
Then the p-Hilbert class field of K is non-trivial cyclic over K and embeddable into
a Zp-extension of K.

When the above theorem does not apply, Zp-embeddability can be determined
by computing the structure of a certain ring class group. For example, it can be
shown that the 5-class field of K = Q(

√
−166) is a Z/5-extension of K which is not

Z5-embeddable (it is not even embeddable into a Z/25-extension of K unramified
outside 5) even though it is Z/5n-embeddable for every n ∈ N.

Consider an imaginary quadratic number field K and a prime p. K has a
unique Zp-extension which is prodihedral over Q. We call it the anti-cyclotomic
p-extension of K. We give laws for the decomposition of primes q in the anti-
cyclotomic extension. These laws involve representation of some power qh by
certain quadratic forms. Using Gauss’ theory of composition of forms, we show
that it suffices instead to represent q by some form. The whole story becomes
particularly simple when each genus of forms the same discriminant as K consists
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of a single class. This happens for 65 discriminants closely connected to Euler’s
numeri idonei or convenient numbers. As an application, we show that the split-
ting field of f = X5 + 5X2 + 3 is the first step of the anti-cyclotomic 5-extension
of K = Q(

√
−15), and that f splits into linear factors modulo a prime number

q 6= 3, 5 if and only if q is of the form x2 + 5xy + 100y2 or 3x2 + 15xy + 50y2.
As a final example, we use prime decomposition in the anti-cyclotomic 2-

extensions of Q(
√
−1) and Q(

√
−2) to show:

Theorem 2. Put K = Q(
√
−l) and K ′ = Q(

√
−2l) with a prime l ≡ 1 (mod 8).

Let h and h′ be the class numbers of K and K ′, respectively. (It is then known
that h and h′ are both divisible by 4). Now 8 | h⇔ 8 | h′ for l ≡ 1 (mod 16), and
8 | h⇔ 8 ∤ h′ for l ≡ 9 (mod 16).

Descent theory for covers and rational points on Hurwitz spaces

Anna Cadoret

Convention: We always denote by k a field of characteristic 0 and assume a com-
patible system of primitive roots of unity (ζn)n≥1 (ζm

mn = ζn, m, n ≥ 1) is given

in a fixed algebraic closure k of k.

Given a finite group G and an r-tuple C of non trivial conjugacy classes of G,
let H(C)(k) denote the set of all G-covers of the projective line defined over k,
with group G and inertia canonical invariant C. The set H(C)(k) can be equipped
with two structures of groupoids:

• The G-structure, where an isomorphism between (f1 : X1 → P1
k, α1) and

(f2 : X2 → P1
k, α2) is a k-isomorphism u : X1→̃X2 such that f2 ◦ u = f1

and α1(g1) = α2(ug1u
−1), g1 ∈Aut(f1).

• The G/PGL2-structure, where an isomorphism between (f1 : X1 → P1
k, α1)

and (f2 : X2 → P1
k, α2) is a pair (u, v) with v ∈PGL2(k) and u a G-cover

isomorphism between (v ◦ f1, α1) and (f2, α2).

The groupoid of G-covers admits a coarse moduli space - called Hurwitz space
Ψ : H(C)→ Ur which is a finite etale cover of the configuration space Ur of order
r subsets of the projective line and is defined over an explicitly computable cyclo-
tomic number field QC. The action of PGL2 over H(C) modulo G-isomorphism
produces an algebraic action of the affine reductive QC-group PGL2 on the affine
QC-varieties H(C) and Ur for which the ramification divisor map Ψ is invariant.
Hence, via geometric invariant theory, the quotient spaces exist in the category of
affine QC-varieties

H(C)
Π

//

Ψ

��

Hrd(C)

Ψrd

��

Ur
Πr

// Jr
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and the reduced Hurwitz space Hrd(C) is the coarse moduli spaces for G/PGL2-
covers.

When r = 4, reduced Hurwitz spaces are curves. Via topology, one can compute
their geometrically irreducible components and for each such component Ord the

ramification data of the normalized cover O
rd → P1. Thus, according to Riemann-

Roch theorem, this provides an effective method to find geometrically irreducible
components defined and birational to P1 over QC. However, in view of the regular
inverse Galois problem, the significant Hurwitz space is not the reduced one but
the non-reduced one. This motivates:

Problem: Given prd ∈ Hrd(C)(k), find an optimal upper bound for

mk(prd) := min{[k(p) : k]}p∈Π−1(prd)

Reformulating this problem in moduli terms led me to construct a cohomo-
logical obstruction, that is a cohomological object Ik(prd) ⊂H1(k, PGL2(k)) such

that Res
Γk0

Γk
(Ik(prd)) contains the trivial cohomology class if and only if Π−1(prd)

contains a k0-rational point. The construction of Ik(prd) rests on the following

classification result for finite subgroups of PGL2(k).

Theorem: PGL2(k) contains a Γk-invariant copy of Cn, n ≥ 1, D2n, n ≥ 3, V4,
A4, S4, A5 and any finite subgroup of PGL2(k) is conjugate to one of these groups.

To any G-cover f defined over k, associate the base group of f that is the sta-
bilizer Ef of the G-isomorphism class of f in PGL2(k). Provided r ≥ 3, which we
will always assume in the following, Ef is finite. Hence it is conjugate to one of
the Γk-invariant subgroups of the above theorem, which we denote by E0

f and call

the normalized base group of f . A normalized representative f0 of f is a G-cover
G/PGL2-isomorphic to f such that Ef0 = E0

f . Now, assume that f has field of

moduli k as G/PGL2-cover and pick a normalized representative f0 of f . Then,
for any σ ∈ Γk there exists a G/PGL2-isomorphism (uσ, vσ) between f0 σ and f0.
Furthermore, the fact E0

f is Γk-invariant forces vσ to lie in the normalizer N0
f of

E0
f in PGL2(k). Denote by Q0

f the resulting quotient (non-abelian) Γk-module

N0
f /E0

f then

Lemma: The map cf0 : Γk → Q0
f

σ → vσE0
f

is a well-defined 1-cocycle. Further-

more the corresponding cohomological class [cf ] ∈ H1(k, Q0
f) is independent of the

choice of the normalized representative f0.

The cohomology class Res
Γk0

Γk
([cf ]) is trivial if and only if there is a normalized

representative f0 of f with field of moduli k0 as G-cover. However, there is no
reason why normalized representative should behave better than other representa-
tives with respect to the field of moduli problem. Hence, the “good” cohomological



The Arithmetic of Fields 327

object is the cohomological obstruction of f over k defined by

Ik(f) := i(p−1(Ĩk(f))) ⊂ H1(k, PGL2(k))

where, p and i are the natural map induced by functoriality

H1(k, N0
f )

i→ H1(k, PGL2(k)) and H1(k, N0
f )

p→ H1(k, Q0
f ).

Now, the lifting problem amounts to studying the vanishing of Ik(f), that is –
essentially – to non-abelian Galois cohomology computations.

1- Fields of cohomological dimension ≤ 1:

1-1 If cd2(k) ≤ 1 then the natural map H(C)(k) → Hrd(C)(k) is surjective. If,
furthermore, cd(k) ≤ 1 then the natural map H(C)(k)→ Hrd(C)(k) is surjective
(or, in other words, any G-cover with field of moduli k as G/PGL2-cover is defined
over k) 1.

1-2 Using that a number field is an intersection of field of cohomological dimension

≤ 1, one gets in particular that QC(prd) =
⋂

p∈Π−1(prd)

QC(p), for any prd ∈ Hrd(C)(Q).

2- p-adic fields:

2-1 Let k/Qp be a p-adic field. As Γk is finitely generated, H1(k, PGL2(k)) is
finite and, in particular, there exists an integer d(k) ≥ 1 depending only on k such
that mk(prd) ≤ d(k), for any prd ∈ Hrd(C)(k).

2-2 Using that, for a number field k/Q, H1(k, PGL2(k)) satisfies the Hasse prin-
ciple and that when f has trivial base group |Ik(f)| = 1, one obtains a restricted
Hasse principle. For any prd ∈ Hrd(C)(k) corresponding to a G-cover with trivial

base group, Π−1(prd) contains a k-rational point if and only if it contains a k̂v-
rational point for each place v of k.

3- The general case: Here, things depend widely on whether the base group is
trivial or not.

3-1 Let prd ∈ Hrd(C)(k) corresponding to a G-cover with

(i) base group S4, A5, D2n, n ≥ 3 odd (resp. Cn, n ≥ 2,D2n, n ≥ 3, A4, resp. V4)
then mk(prd) = 1 (resp. mk(prd) ≤ 2, resp. mk(prd) ≤ 6).

(ii) trivial base group then mk(prd) ≤ r!c(r), where c(r) denotes the maximal
order of a stabilizer of an order r subset of the projective line.

1The difficult part of this statement is to ensure that Ik(f) 6= ∅. This is where the condition
cd2(k) ≤ 1 is necessary.
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3-2 One can also prove that for any projective system of k-rational points (prd
n )n≥0

∈ lim
←−
Hrd(Cn)(k) there exists a finite field extension k0/k (depending on (prd

n )n≥0)

such that (prd
n )n≥0 can be lifted to a projective system (pn)n≥0 ∈ lim

←−
H(Cn)(k0).

3-3 (Application to hyperelliptic curves). A ramification divisor version of 3-1
(where stabilizers play the part base groups) yields the following result for hyper-
elliptic curves. Given an integer g ≥ 2, there exists an integer d(g) ≥ 1 such that
any genus g hyperelliptic curve X can be defined over a degree ≤ d(g) extension of
its field of moduli. Furthermore, if Aut(X)/ < i > is non-cyclic then X is defined
over its field of moduli and if Aut(X)/ < i > is cyclic non trivial then X is defined
over a quadratic extension of its field of moduli (where i denotes the hyperelliptic
involution).

3-4 When r = 4 and k is a number field, the natural map Π4 : U4(k) → J4(k) is
always surjective because any elliptic curve is defined over its field of moduli. As
a result, for any prd ∈ Hrd(C)(k) corresponding to a G-cover with ramification
divisor t and normalized base group E, if j(t) = 1 and E = C4, D8 or if j(t) 6= 0, 1
and E = V4 then mk(prd) = 1.

Combining this with the fact that one can read the base group out of the Nielsen
class in a purely group theoretical way (regarding the stabilizer of a ramification
divisor as a subgroup of the mapping class-group, which allows to identify it with a
subgroup of the Hurwitz braid group acting on the Nielsen class) provides group-
theoretical effective new rigidity and genus 0 criteria to realize regularly finite
groups over Q.
Examples:

• The alternating groupA7 with inertia canonical invariant (5A, 5A, 5A, 5A)
over Q (rigidity).
• The projective special linear group L2(19) with inertia canonical invariant

(3A, 3A, 3A, 3A) over Q (genus 0).
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Galois theory and the arithmetic of hyperbolic 3-manifolds

Ted Chinburg

1. Introduction

This talk was motivated by an analogy appearing in a paper of Sunada [5] be-
tween prime closed geodesics P on a compact Riemannian manifold M of negative
curvature and non-zero prime ideals P of the ring of integers OK of a number
field K. In this analogy, the quantity N(P ) = elength(P ) corresponds to the norm
N(P) = [OK : P ]. One can define zeta functions

ζM (s) =
∏

P

(1−N(P )−s)−1 and ζK(s) =
∏

P

(1−N(P)−s)−1

for s having sufficiently large real part, where the products are over all the free
homotopy classes of prime closed geodesics P on M in the first case, and over all
(non-zero) prime ideals P of OK in the second case.

A method of Perlis [4] constructs non-isomorphic number fields K and K ′ such
that ζK(s) = ζK′(s). Sunada observed that the same method leads to examples of
non-isometric manifolds M and M ′ such that ζM (s) = ζM ′ (s). (Examples in which
M and M ′ are hyperbolic surfaces had been constructed earlier by Vigneras [6],
following earlier examples of Milnor [3] involving flat tori.) However, the methods
of Perlis, Sunada and Vigneras always lead to M and M ′ which are commensurable,
in the sense that they have isometric finite unramified covers. This leads to the
following question, which has been of some interest to differential geometers:

Question 1. If M and M ′ are compact Riemannian manifolds of negative curva-
ture, and ζM (s) = ζM ′(s), must M and M ′ be commensurable?

In case M and M ′ are locally symmetric, their zeta functions both determine
and are determined by the spectrum of their Laplacian operators. So one could
paraphrase this question in this case as being whether one can hear the shape of
a commensurability class.

This talk was about the following results, which are a joint work with Emily
Hamilton, Darren Long and Alan Reid.

Theorem 1. (CHLR [1]) If M and M ′ are arithmetic hyperbolic 3-manifolds and
ζM (s) = ζM ′ (s) then M and M ′ are commensurable.

The proof hinges on the following result in Galois theory:

Theorem 2. (CHLR [1]) Suppose F and F ′ are two number fields each having
exactly one complex place and the same normal closure N over Q. Then either F ′

is isomorphic to F or to a quadratic extension of a totally real subfield F+ of F
such that [F : F+] = 2.

It is possible that F ′ and F are not isomorphic. For each n > 2 such that n ≡ 2
mod 4, there is an example in which Gal(N/Q) is a semidirect product of the
symmetric group Sn/2 with (Z/2)n/2, where Sn/2 acts on (Z/2)n/2 by permuting
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the factors. Thus far, all of the examples we have constructed in which F and F ′

are not isomorphic have the property that ζF (s) 6= ζF ′(s); it would be interesting
to see whether this must always be true.

Concerning arithmetic counterparts of Question 1, one could consider replacing
M and M ′ by smooth projective varieties X and X ′ over Q. Let ζHW

X (s) be the
Hasse-Weil zeta function of X . One could ask:

Question 2. (CHLR [1]) If ζHW
X (s) = ζHW

X′ (s), must X and X ′ have a common
finite branched cover?

For example, if X and X ′ are abelian varieties, it is a consequence of Falting’s
Theorem ([2, Cor. 2]) that ζHW

X (s) = ζHW
X′ (s) implies X and X ′ are isogenous.

2. Proofs

The proof of Theorem 2 involves analyzing the subgroups H of G = Gal(N/Q)
which contain no non-trivial normal subgroup of G and for which NH has exactly
one complex place. Let π : G → Sn be the permutation representation resulting
from letting G act on the n = [F : Q] embeddings of F into C. Define the
conjugation graph C(H) to have vertices {1, 2, . . . , n} and an edge between i and
j if and only if the transposition (i, j) ∈ Sn is a complex conjugation in π(H). We
show that there is an integer k such that either

i. k > 2 and C(H) is the disjoint union of n
k −1 complete graphs on k vertices

with a complete graph on k − 1 vertices, or
ii. k = 2 and C(H) is the disjoint union of either n

2 or n
2 − 1 complete graphs

on 2 vertices.

Using this description of C(H) we can limit the possibilities for H up to conjugacy,
leading to Theorem 2. For example, in case (i), one shows that H equals the
stabilizer of the one vertex of C(G) which is not joined by an edge of C(H) to
another vertex.

The proof of Theorem 1 reduces to showing the following statement concerning
quaternion algebras B over a number field F such that F has exactly one complex
place and B ramifies over all the real places of F . One needs to show that F
and B are determined up to isomorphism by the set S of square absolute values
|λ|2 ∈ C of eigenvalues λ of matrices which are the images of elements of B under
an embedding B → Mat2(C).

The key step is to show F is determined by S. The field N in Theorem 2 is
the intersection of the Galois closures over Q of the fields Q(|λ|2) associated to
|λ|2 ∈ S, so N is determined by S. In the first case of Theorem 2, F is determined
up to isomorphism by N . When one has the second case of Theorem 2, one needs
some further arguments, taking advantage of more information than N . In this
second case, one shows there is a |λ|2 ∈ S such that the Galois closure L of Q(|λ|2)
over F+ is a dihedral extension of F+ of degree 8. Then F turns out to LJ when
J is the unique non-cyclic order 4 subgroup of Gal(L/F+) which does not contain
Gal(L/Q(|λ|2)).
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On Fried’s modular towers

Pierre Dèbes

Modular towers have been introduced by Michael Fried [Fr1]. They are towers
H(p, G, C) : (Hn+1 → Hn)n≥0 of Hurwitz spaces. Levels Hn (n ≥ 0) correspond

to some characteristic quotients G̃n (given by some universal construction) of the

p-universal Frattini cover pG̃ of a fixed finite group G; p is a prime divisor of |G|
such that G is p-perfect, i.e., generated by its elements of prime-to-p order; C
is at each level the unique lift of some given tuple of conjugacy classes of prime-

to-p order of G0 = G; Hn = Hn(G̃n, C) is then the Hurwitz moduli space of

G-covers of P1 with group G̃n and ramification type C and the map Hn+1 → Hn

is induced by the natural surjection G̃n+1 → G̃n. There is an abelianized variant

H(p, G, C)ab (introduced in [Ca]) for which the groups G̃n are replaced by some
abelian quotients Gn obtained by abelianizing the kernel of the natural projection

pG̃ → G, and there are reduced variants of these towers for which covers are
considered modulo the action of PGL2 on the base space P1.

The following conjecture is a main goal of the modular tower program.

Main Conjecture on Modular Towers: For every number field k, there
are no k-rational points on suitably high levels of the reduced abelianized modular
tower (and consequently of any other variant of modular tower).

The tower of modular curves X1(pn) (n > 0) is the original example: the group
G is then the dihedral group Dp given with its involution conjugacy class repeated
4 times. In this case the conjecture is a classical result on modular curves, or in
other words, on torsion of elliptic curves.

The Main Conjecture has significant implications for the Regular Inverse Galois
Problem.

Theorem (Fried-Kopeliovich [FrKo], Cadoret [Ca]): Given r0 ≥ 3, suppose

each characteristic quotient G̃n (resp. each Gn) can be regularly realized over
Q(T ) with no more than ro branch points. Then there exist r ≤ r0 and an r-tuple
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C of conjugacy classes of prime-to-p order of G such that each G̃n (resp. each
Gn) can be regularly realized over Q(T ) with ramification type C, or, in other
words, such that the modular tower H(p, G, C) (resp. the abelianized modular

tower H(p, G, C)ab) has Q-rational points at every level. As a consequence, under
the Main Conjecture, only finitely many groups Gn can be regularly realized over
Q(T ).

Genralizing the orginal dihedral example, a bridge has been established between
the non abelian Galois world of Modular Towers and the arithmetic of Abelian
Varieties: rational points on modular towers are connected to torsion points on
abelian varieties. In particular, it was proved by A. Cadoret that the

Strong Torsion Conjecture: Given g, d ≥ 1, there exists n(d, g) ≥ 1 such
that there is no abelian variety of dimension ≤ g defined over a number field of
degree ≤ d and carrying a k-rational torsion point of order n ≥ n(d, g).

implies the Main Conjecture on modular towers. Using the same connection, one
can also prove a first stage of the Main Conjecture:

Theorem 1 (Bayley-Fried[BaFr], Cadoret [Ca], Kimura[Ki]) Given any number
field k, there is no projective system of k-rational points on the reduced abelianized
modular tower.

This result was recently improved:

Theorem 2 (Cadoret [Ca]) Let k be a number field, F a function field of one

variable over k and G̃ a profinite extension of a finite group by a free pro-p group

with at least a Zp quotient. Then there is no regular realisation of G̃ over F .

The link with abelian varieties goes both ways. Using results of Flynn on
existence of Q-rational points of arbitrarily large order on jacobians of hyperelliptic
curves, A. Cadoret proved the following statement:

Theorem 3 (Cadoret [Ca]) For every integer n ≥ 2, the dihedral group Dn can

be regularly realized over Qab with only inertia groups of order 2.

There is a significant special case of the general program which seems close to
completion: the case of 4 branch points covers. Levels of reduced modular towers
then are curves and due to Faltings’ theorem we have this conclusion:

Proposition (Bayley-Fried [BaFr]): The Main Conjecture for modular towers
holds for r = 4 provided that the genus gets ≥ 2 in every Projective System of
irreducible Components in the modular tower.

However checking that the genus grows along a modular tower is extremely
difficult. The genus is given by the Riemann-Hurwits formula but the group action
involved — a braid action — is quite intricate. One should control the growth of
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the ramification indices, notably at points above∞ — the cusps — on the tower.
There are both a profinite group-theoretic aspect and a geometric aspect and one
should understand the interaction. This part of the theory has been M. Fried’s
current work [Fr2].

Over ℓ-adic fields, the situation is interestingly quite the opposite.

Theorem 4 (Dèbes-Deschamps [DeDes] & Dèbes-Emsalem [DeEm]) Assume C
is Q-rational and of Harbater-Mumford (HM) type: C = {C1, C

−1
1 , . . . , Cs, C

−1
s ).

Let k be a henselian field of characteristic 0, of residue characteristic ℓ ≥ 0 and
containing all N th roots of 1 with N = l.c.m.(ord(C1), . . . , ord(Cs)).

(a) There exist projective systems of k-rational points on the modular tower.
(b) If in addition C is “HM-g-complete”, such projective systems can be found

on a HM Projective System of Components defined over Q.

For ample fields however, the analog of statement (a) is unclear.

The Modular Tower program is still at a growing stage. It has revealed some
deep diophantine obstructions to the Regular Inverse Galois Problem but has also
provided some tools to understand them.
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in Groupes de Galois arithmétiques et différentiels (Luminy 2004; eds. D. Bertrand and
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Geometric Galois representations and the inverse Galois problem

Michael Dettweiler

The convolution

f ∗ g (y) :=

∫
f(x)g(y − x)dx

of sufficiently integrable functions plays an important role in many areas of math-
ematics and physics.

Suppose that the functions f and g are solutions of meromorphic connections
on the complex affine line A1. Then f and g can be viewed as sections of the
solution sheaves of these connections. The comparison theorem between singular
cohomology and de Rham cohomology shows that the integral

∫

γ

f(x)g(y0 − x)dx, where y0 ∈ A1 ,

can be seen as a cohomology class in the sheaf cohomology on A1. This suggests
the following generalization from the convolution of functions to the convolution
of sheaves V1, V2 on A1:

V1 ∗aff V2 := R1pr2∗(V1 ◦ V2) .

Here, pr2 : A2 → A1 denotes the second projection of A2 = A1
x×A1

y, R1pr2∗ is the
first higher direct image of the functor pr2∗, and

V1 ◦ V2 := pr∗1(V1)⊗ d∗(V2) ,

where pr1 : A2 → A1 is the first projection and d : A2 → A1 is the difference map
(x, y) 7→ y − x.

Let us assume that V1 and V2 are sheaves on A1 which are pushforwards of
local systems on open subsets of A1. Such sheaves naturally arise as the sheaves
of solutions of connections on A1. Then the “affine” convolution V1 ∗aff V2 contains
a canonical subsheaf

im
(
R1pr2!(V1 ◦ V2) −→ R1pr2∗(V1 ◦ V2)

)
,

where R1pr2! denotes the first higher direct image with compact supports. The
latter sheaf is canonically isomorphic to R1pr2∗(j∗(V1 ◦ V2)), where j : A2 →
P21 × A1 denotes the natural inclusion and pr2∗ : P1 × A1 → A1 is the second
projection. We set

(0.1) V1 ∗ V2 := R1pr2∗(j∗(V1 ◦ V2)) .

Following Katz (Rigid Local systems, Ann. Math. Studies 139 (1996)), we call
the sheaf V1 ∗ V2 the middle convolution of V1 and V2. (In loc. cit., Katz gives
a similar construction in a more general category of complexes of sheaves.) The
term middle indicates the fact that there is a natural interpretation of V1 ∗V2 as a
middle direct image, i.e., one obtains the middle convolution by taking the image
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of the cohomology with compact supports in the cohomology.

The formulation of the convolution in terms of sheaf cohomology has the advan-
tage that this construction works similarly also in different categories, e.g., in the
category of étale local systems. The latter category corresponds to the category
of Galois representations of étale fundamental groups (this yields the connection
of the middle convolution to the inverse Galois problem).

The relevance of the middle convolution for the inverse Galois problem was
first noticed by S. Reiter and the speaker of the talk (An algorithm of Katz and
its application to the inverse Galois problem, J. Symb. Comb. 30 (2000)). Also, it
turned out that most of the older results on Galois realizations of classical groups
(including the famous results of Belyi) can easily be derived using the middle
convolution. A similar approach is given by Völklein’s braid companion functor
(The braid group and linear rigidity, Geom. Dedicata 84 (2001)).

Although the middle convolution is, up to date, the strongest tool to realize
classical groups regularly as Galois groups over Q(t), the existing methods have
some limitations: Most of the time only the topological information is available
and it is not possible to obtain more precise information (like the determination
of Frobenius elements acting on specializations). Also, in many cases the exist-
ing methods fail to produce simple groups like the projective special linear groups
PSLn(Fq) as Galois groups over Q(t). The problem is that if the index of PSLn(Fq)
in PGLn(Fq) is > 1, then it is usually impossible to bound the arithmetic part of
the underlying Galois representations.

Based on methods of Katz and on previous work of S. Wewers (Variation of local
systems and parabolic cohmology, to appear in Israel J. Math.) and the speaker, in
the Habilitation Thesis of the speaker (Galois realizations of classical groups and
the middle convolution, Heidelberg (2005)), there is given a geometric approach to
the middle convolution in order to overcome the above mentioned limitations of the
existing methods. This approach gives a geometric (motivic) interpretation of ℓ-
adic sheaves which are obtained via the middle convolution process, by considering
higher direct images of fibre products of Galois covering maps of the punctured
Riemann sphere.

Using this approach, one obtains valuable information on the occurring deter-
minants, leading to new Galois realizations of special linear groups. Moreover,
computation of Frobenius elements for many of the known Galois realizations of
classical groups is now possible. Together with a deep theorem of Henniart on
the algebraicity of one-dimensional compatible systems and the theory of Hecke
characters, one obtains the following result:
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Theorem I. Let F1, F2, F3, G be irreducible and non-trivial Eλ-valued étale local
systems on punctured affine lines over Q having finite monodromy. Let

V = ((F1 ∗ F2)⊗G) ∗ F3 ,

and let ρV : πgeo
1 (S) ⋊ GQ → GL(V ) be the Galois representation associated to

V. Assume that the geometric monodromy is irreducible and infinite. Then the
determinant of ρV is of the form

det(ρV ) = det(ρV )|πgeo
1 (S) ⊗ χm

ℓ ⊗ ǫ .

Here, χℓ : GQ → Qℓ denotes the ℓ-adic cyclotomic character, m is an integer, and
ǫ : GQ → E× is a finite character.

The description of the determinant in Thm. I is crucial for the next result:

Theorem II. Let Fq be the finite field of order q = ℓk, where k ∈ N. Then the
special linear group SL2n+1(Fq) occurs regularly as Galois group over Q(t) if

q ≡ 5 mod 8 and n > 6 + 2ϕ((q − 1)/4)

(ϕ denoting Euler’s ϕ-function).

Thm. II implies that, under the conditions of the theorem, the simple group
PSL2n+1(Fq) occurs regularly as Galois group over Q(t). The latter result is the
first result on regular Galois realizations of the groups PSLn(Fq) over Q(t), where

(n, q − 1) = [PGLn(Fq) : PSLn(Fq)] > 2 .

The idea of the proof of Thm. II is the following: By our assumptions, the finite
field Fq is generated over its prime field Fℓ by an element of odd order m. Let

E := Q(ζm + ζ−1
m , i) ,

where m = (q−1)/4, where ζm denotes a primitive m-th root of unity, and where i
is a primitive fourth root of unity. Let λ be a prime of E lying over ℓ. One considers
Eλ-valued étale local systems F1, F2, F3, G associated to Galois representations
with values in the dihedral group of order 2m and to Galois representations with
values in cyclic groups of order 2 and 4. Then one forms their convolution

V = ((F1 ∗ F2)⊗G) ∗ F3 ∈ LSét
Eλ

(S) .

Let ρV : πét
1 (S) → GL(V ) be the Galois representation associated to V and let

Oλ be the valuation ring of Eλ. Using analytification and reduction modulo λ, one
can show that the image of the geometric fundamental group under ρV is, up to
scaling, isomorphic to SL2n+1(Oλ). Here, n depends on m, enforcing the condition
n > 6+2ϕ(m). Since m is odd, the only roots of unity which are contained in E are
fourth roots of unity. It then follows from Thm. I that the occurring determinants
which arise from GQ ≤ πét

1 (S) are, up to a twist with the cyclotomic character,
contained in the group of fourth roots of unity. Thus by a twist with a suitable
finite character of order four, one can assume that the image of the whole étale
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fundamental group πét
1 (S) is equal to SL2n+1(Oλ). The result then follows from

reduction modulo λ and from the interpretation of πét
1 (S) as a factor of GQ(t).

A generalization of Marshall’s equivalence relation

Ido Efrat

Let p be a prime number, let F be a field of characteristic 6= p, and let GF (p) =
Gal(F (p)/F ) be its maximal pro-p Galois group. One of the rare cases where the
group-theoretic structure of GF (p) is completely understood is when p = 2, F is
Pythagorean, and GF (2) is finitely generated as a pro-2 group (recall that F is
Pythagorean if every sum of squares in F is already a square). This is by striking
results of B. Jacob [4], which are based on a decomposition theory for the so-called
“spaces of orderings”, due to M. Marshall [5].

Specifically, let XF be the set of orderings on F , i.e., all additively closed
subgroups of F× of index 2. Call P1, P2 ∈ XF Marshall–equivalent if P1 = P2, or
there exist P3, P4 ∈ XF such that P1, P2, P3, P4 are distinct, and the intersection
of any three of them equals the intersection of all four; as shown in [5] this is
indeed an equivalence relation on XF .

For F Pythagorean and for a Marshall-equivalence class C in XF one associates
a closure F ⊆ F̂ ⊆ F (2) as follows: When C consists of a single ordering P we take

F̂ to be a Euclidean closure of F at P , i.e., a relative real closure of (F, P ) inside
F (2). When 1 < |C| < ∞ there exists a valuation v on F with non-2-divisible
value group, such that C consists of all orderings containing the 1-units of v. We
then take F̂ to be a decomposition field of v inside F (2). When |C| = ∞ one

takes F̂ to be an intersection of a (well-chosen) collection of decomposition fields
of such valuations corresponding to subsets of C (see [1]).

The Jacob–Marshall theory shows that for F Pythagorean with GF (2) finitely
generated, the partition of XF into equivalence classes corresponds to a free pro-
2 product decomposition of GF (2) as follows (see [1] for a generalization to the
infinite rank case):

(1) if F̂ is a closure of F at an equivalence class C, then GF̂ (2) cannot be
decomposed as a free pro-2 product in a nontrivial way;

(2) there exist closures F̂1, . . . , F̂n of F at the distinct equivalence classes of
XF such that GF (2) = GF̂1

(2) ∗2 · · · ∗2 GF̂n
(2);

(3) if H1, . . . , Hn are closed subgroups of GF (2) with GF (2) = H1 ∗2 · · · ∗2 Hn,

then each Hi is generated by subgroups of the form GF̂ (2), where F̂ is a
closure of F at some equivalence class;

(4) if C is a Marshall-equivalence class in XF with closure F̂ , then C is the

image of the restriction map XF̂ → XF , P̂ 7→ F ∩ P̂ .

Now the structure of the free pro-2 factors in (2) is known; namely, when |Ci| =
1, GF̂i

(2) ∼= Z/2. When |Ci| > 1, the valuation yielding F̂i has a real Pythagorean

residue field F̄i. By the Galois theory of valued fields, GF̂i
(2) ∼= Zm

2 ⋊ GF̄i
(2)
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where m = dimF2
(v(F×)/2v(F×)) and where the action of GF̄i

(2) on Zm
2 is given

by multiplication by the cyclotomic character. Since GF̄i
(2) is generated by fewer

elements than GF̂i
(2), we inductively obtain in this way a complete group-theoretic

description of GF (2)
In our talk we explained how to generalize this theory from the case of orderings

on Pythagorean fields to the case of arbitrary subgroups of F× of index p, where
F is an arbitrary field of characteristic 6= p containing the pth roots of unity. Our
generalized equivalence relation is defined by valuation-theoretic means. In this
generalized set-up, (1), (3) and (4) extend to free pro-p decompositions of GF (p).
Further, one can handle the infinite rank case by “iterated” decomposition fields,
as above. The expected generalization of (2) turns out to be equivalent to the
arithmetic pro-p version of the “Elementary Type Conjecture” (see [2], Question
4.8). This conjecture says that if GF (p) is finitely generated then it is a free pro-
p product of subgroups which are isomorphic to Zp, Z/2 (when p = 2), or are
decomposition groups of valuations with nontrivial inertia group. Various variants
of this conjecture were studied in numerous works over the past 25 years, and it
is known to hold, e.g., for global fields, fields of transcendence degree ≤ 1 over
a local field, and fields of transcendence degree ≤ 1 over a PAC field. It implies
a group-theoretic description of the finitely-generated groups GF (p) for fields F
containing a pth root of unity, similarly to the Pythagorean case discussed above.

These results will appear in [3]
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Continuity of roots over valued fields

Yuri Ershov

Let F be a field, R be an henselian valuation ring over F , R̄ be the extension of
R given by the algebraic closure F̄ of F , v be the valuation of F̄ defined by R̄.

Basic Proposition (BP). Let f ∈ F [x] be a monic polynomial, a ∈ F and let
α ∈ F̄ be a zero of f nearest to a, i.e.

v(a− α) = max{v(a− α′) | f(α′) = 0, α′ ∈ F̄}.
Then the following is true:

a) The inequalities vf(a) ≤ v(a−α)+vf ′(a), vf(a) ≤ v(a−α)+vf ′(α) hold;
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b) if α is unique, i.e. f ′(α) 6= 0 and v(a − α) > v(a − α′) for all α′ 6= α,
f(α′) = 0, then α ∈ F and vf(a) = v(a− α) + vf ′(a), vf ′(a) = vf ′(α).

If f(x) =
∏

i<n(x− αi), put σf,αi
:= vf ′(αi) + max{v(αi − αj) | i 6= j}.

Corollary. Let a ∈ F and α ∈ F̄ as in BP; if vf(a) > σf,α then case b) of BP
holds and v(a− α) = vf(a)− vf ′(a) > v(α− α′) for any α′ 6= α, f(α′) = 0.

Put σf := max{σf,αi
| i < n}, κf := max{v(αi − αj) | i < j < n} and

∆f := max{vf ′(αi) | i < n}.
Then σf,αi

≤ σf ≤ κf + ∆f ≤ vδf , where δf is the discriminant of f .

Theorem 1. Let f ∈ F [x] be a monic separable polynomial and a ∈ F be such that
vf(a) > σf . Then there is a root α of f in F such that v(a−α) = vf(a)−vf ′(a) >
v(a− α′) for any α′ 6= α, f(α′) = 0.

Proof. Take α as in BP, then use the corollary.

Theorem 2. Let f, g ∈ R[x] be monic polynomials, n = deg f = deg g, f separable
and v(f − g) > δ = ε + ∆f , ε ≥ σf . Then g is separable, σg = σf , ∆g = ∆f ,
and if α0, . . . , αn−1 are all roots of f then it is possible to enumerate the roots
β0, . . . , βn−1 of g in such a way that v(αi − βi) > ε.

Pseudo-S closed extensions of Hilbertian fields

Dan Haran

(joint work with Moshe Jarden, Florian Pop)

This is a report on a work in progress.
Let K be a countable Hilbertian field of characteristic 0 (e.g. a finitely generated

extension of Q) and S a finite set of inequivalent absolute values of K. For each

v ∈ S let K̂v be the completion of K at v. Assume that the fields K̂v with v ∈ S as
well as the algebraic closure K̃ of K are embedded in a common algebraically closed
field. Then let Kv = K̃ ∩ K̂v. Thus, Kv is a real closure or the algebraic closure
of K at v, if v is metric, and a Henselian closure of K at v, if v is ultrametric.
Let τ = (τ1, . . . , τe) ∈ Gal(K)e. Denote by L = Ktot,S [τ ] the maximal Galois
extension of K contained in all the Kv and fixed by τ1, . . . , τe.

Our aim is to describe the absolute Galois group Gal(Ktot,S [τ ]) of this field.
More exactly, we want to prove

Theorem A. For almost all τ (in the sense of the Haar measure on Gal(K)e)

Gal(Ktot,S[τ ]) ∼= F̂ω ∗
∏
∗

v∈S

∏
∗

σ∈Σv

Gal(Kσ
v ). (1)

For this purpose we are firstly interested in case e = 0, which reads as follows:

Theorem B. Let Ktot,S be the field of totally S-adic numbers, that is, the
maximal Galois extension of K in which each v ∈ S totally splits. Then

Gal(Ktot,S) =
∏
∗

v∈S

∏
∗

σ∈Σv

Gal(Kσ
v ). (2)

for some closed subsets Σv of Gal(K).
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Pop [1] proves this result (under more general assumptions). However, that
proof is indirect – and hence does not lead to (1):

Let S′ = S ∪{v′}, where v′ is an absolute value of K inequivalent to any of the
absolute values of S. Then the field Ktot,S′ is a Galois extension of K which is
properly contained in Ktot,S . One can choose a Hilbertian extension L of Ktot,S′

in Ktot,S such that LKv′ is the algebraic closure of K.
Now, Ktot,S′ is pseudo closed with respect to the family {Kσ

v | v ∈ S′, σ ∈
Gal(K)}. Therefore L is pseudo closed with respect to {LKσ

v | v ∈ S′, σ ∈
Gal(K)}. As LKσ

v = Kσ
v for v ∈ S and LKv′ is the algebraic closure of K,

we get that L is pseudo closed with respect to {Kσ
v | v ∈ S, σ ∈ Gal(K)}. This

has two consequences:

(a) Gal(L) is projective with respect to {Gal(Kσ
v ) | v ∈ S, σ ∈ Gal(K)}

and
(b) every finite split embedding problem over L has a solution over L(t).

But L is Hilbertian, hence
(c) every finite split embedding problem over L has a solution (over L).

A heavy Iwasawa-like argument then allows to deduce from (a) and (c) that

Gal(L) ∼= F̂ω ∗
∏
∗

v∈S

∏
∗

σ∈Σv

Gal(Kσ
v ), (2)

where Σv is a closed system of representatives of Gal(K)/Gal(Ktot,S). It is now
possible to recognize Gal(Ktot,S) in Gal(L) as the second factor of the free product
on the right hand side. Thus we get (2).

As a first step in our programme, we supply a direct proof of Theorem A:
Put L = Ktot,S . Then (a) , (b) hold. Also —instead of (c)—

(c’) L is “S-Hilbertian”: Consider an embedding problem

E = L(t) M(t) P

L M

Gal(L)

∃γ

xx ��

Gal(P/E) // Gal(M/L)

on the right, which arises from the diagram of fields on the left; here M/L
and P/E = L(t) are finite Galois extensions such that M ⊆ P . Then
there exists a homomorphism γ which solves the embedding problem on
the right handed side such that

γ({Gal(Kσ
v ) | v ∈ σ ∈ Gal(K)}) = {Gal(P/P ∩Eτ

w) | v|w, v ∈ S, τ ∈ Gal(E)}.

In particular, if Gal(P ) is generated by the right handed side, then γ must
be an epimorphism.
Use (a),(b) to deduce from (c’):
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(d) Consider an embedding problem

Gal(L)
γ

||

ϕ

��

B // A

such that Gal(Kσ
v )

γ0

zz ��
B0,v,σ

≤B
// A0

≤A

in which B = 〈B0,v,σ | vσ〉. Then there is an epimorphism γ : Gal(L)→ B
such that α ◦ γ = ϕ and γ({Gal(Kσ

v ) | v, σ}) = {B0,v,σ | vσ}.
Finally, we use an analog of Iwasawa Theorem:

(e) (1) There is a unique second countable profinite group, which, together
with a distinguished family of closed subgroups, satisfies (d).

(2) The group
∏∗ v∈S

∏∗ σ∈Σv
Gal(Kσ

v ) satisfies (d), hence Gal(L) is iso-
morphic to it.

The proof of our type of Iwasawa’s theorem relies heavily on the assumption
that the local groups are finitely generated. This restricts K in our result to be of
characteristic 0.
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Local Galois theory in dimension two

David Harbater and Katherine F. Stevenson

This talk proves a generalization of Shafarevich’s Conjecture, for fields of Laurent
series in two variables over an arbitrary field. This result says that the absolute
Galois group GK of such a field K is quasi-free of rank equal to the cardinality
of K, i.e. every non-trivial finite split embedding problem for GK has exactly
cardK proper solutions. We also strengthen a result of Pop and Haran-Jarden on
the existence of proper regular solutions to split embedding problems for curves
over large fields; our strengthening concerns integral models of curves, which are
two-dimensional.

Let k be a field and let K = k((x, y)) with absolute Galois group GK =
Gal(Ksep/K). For this field, the inverse Galois problem asks which finite groups
G occur as Galois groups over K, or equivalently as images of surjective homo-
morphisms α : GK → G. The answer is that all finite groups occur in this way
[8]. Thus it is natural to ask how these surjections “fit together.” To make the
question more precise we consider embedding problems for GK . A finite embedding
problem (FEP) for GK is a pair of surjections (α : GK → G, f : Γ→ G). A weak
solution to (α, f) consists of a homomorphism λ : GK → Γ such that f ◦λ = α. A
solution is called proper if it is surjective. Notice that a proper solution to (α, f)
corresponds to a Γ-Galois field extension of K that dominates the given G-Galois
extension corresponding to α.
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A finite embedding problem (α, f) for which there is a splitting s : G → Γ of
f is called a finite split embedding problem (FSEP). Notice that every finite split
embedding problem has a weak solution given by s ◦ α. A profinite group Π is
called projective if every FEP for Π has a weak solution. This is equivalent to
saying that every FEP is dominated by a FSEP.

Theorem 1 (Chatzidakis, Melnikov [2]). Given a profinite group Π and an infinite
cardinal m, Π is free of rank m if and only if every non-trivial finite embedding
problem has exactly m solutions.

One application of this theorem appeared in the result of Harbater [4] and Pop
[9] that if k is an algebraically closed field then Gk(x) is free of rank card k(x).
This proof used that that Gk(x) is projective (being of cohomological dimension 1),
along with patching techniques for curves over k((t)), to build a proper solution
from the weak solution (provided by projectivity). For k = F̄p, this result is the
geometric (function field) case of the following conjecture of Shafarevich.

Conjecture 1 (Shafarevich). If K is a global field then GKcycl is free of countable
rank.

The arithmetic (number field) case of this conjecture remains open.
Given an embedding problem E = (α, f) for a profinite group Π, let PS(E) be

the set of all proper solutions to E . If λ : Π→ Γ is a weak solution to E with image
G′, we get a FSEP E ′ = (λ : Π→ G′, f ′ : Γ×G G′ → G′) for Π that dominates E .
We prove the following lemma.

Lemma 1 ([6]). The natural map PS(E ′)→ PS(E) is an injection.

Using this lemma and Theorem 1 we prove the following result.

Theorem 2 ([6]). Let Π be a profinite group and m an infinite cardinal. The
group Π is free of rank m if and only

(1) Π is projective and
(2) Every non-trivial FSEP for Π has exactly m solutions.

Definition 1. For m an infinite cardinal, a profinite group Π is quasi-free of rank
m if every non-trivial FSEP has exactly m proper solutions.

This definition suggests a generalization of the Shafarevich conjecture for fields K
for which GK is not projective: Is GKcycl quasi-free?

We consider the case K = k((x, t)), for k arbitrary. There GK is not projective
(and hence not free) since its cohomological dimension is greater than 1. (In [5],
there is an explicit example of a FEP for GK with no weak solution.) Even without
taking the maximal cyclotomic extension of K, we obtain:

Theorem 3 ([6]). The profinite group Gk((x,t)) is quasi-free of rank cardk((x, t)).

This result holds without any restrictions on the field k. It strengthens and
generalizes the result in [5] for the case k = C. That proof relied heavily on the
fact that C is algebraically closed and characteristic zero, so that all covers of
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C((x)) are tame and cyclic and Abhyankar’s Lemma applies. Theorem 3 shows
that Gk((x,t)) is “as free as possible” given that it is not projective. Moreover it
supports a conjecture of Debes and Dechamps that states that if F is Hilbertian
(as k((x, t)) is) then every FSEP for GF has a proper solution [1].

Idea of proof: Let X∗ = Spec k[[x, t]]. Let E = (α : GK → G, f : Γ→ G) be a
FSEP for GK . Then α corresponds to a G-Galois cover Y ∗ → X∗. After a change
of variables, we may assume that it is unramified at the generic point of (t = 0).
Let Y ∗0 → X∗0 be the fibre over (t = 0). Using the Katz-Gabber result [7], there is
a (disconnected) G-Galois cover Y0 → X0 := P1

k that agrees with Y ∗0 → X∗0 over
k((x)). By formal patching there is a G-Galois cover Ȳ → X̄ = P1

k[[t]] with this

closed fibre away from (x = 0), such that its pullback to the complete local ring
at (x = t = 0) is Y ∗ → X∗. Taking the open fibre, we have a split embedding
problem for curves over k((t)), which can be solved by a result of Pop [10] and
Haran-Jarden [3]. We then wish to normalize that solution over X̄ and restrict
to X∗ to obtain a solution to the given embedding problem (in fact we want
m := cardk((x, t)) solutions). A difficulty is to guarantee irreducibility of this
restriction. So we prove a strengthening of the result of Pop and Haran-Jarden,
for models of curves over k[[t]], saying that a finite split embedding problem has
m proper solutions Z̄ → Ȳ → X̄ such that Z̄ → Ȳ is totally ramified at a given
point of Ȳ . Applying this in our case with the point over (x = t = 0), we obtain
the desired local irreducibility and hence the result.

Recall from [10] that a field F is called large (or ample) if every smooth F -curve
with an F -point has infinitely many F -points. The field k((t)) is large, and the
result of Pop and Haran-Jarden holds more generally for split embedding problems
for curves over arbitrary large fields F . This can be proven by using the result for
F ((t)), descending to a finite type subalgebra of F ((t)), and then specializing to
an F -point using that F is large. Similarly, our strengthened version, which was
used in the above proof, carries over to arbitrary large fields:

Theorem 4 ([6]). Let F be a large field and let X be a smooth projective connected
F -curve, with function field K.

(1) Every finite split embedding problem (α : GK → G, f : Γ→ G) for K has
card(F ) proper solutions Z → Y → X. These may be chosen so that Z is
totally split over a given finite closed subset of the G-Galois cover Y .

(2) Hence the absolute Galois group of K is quasi-free.

The cardinality assertion in Theorem 4 is a bit stronger than as stated in ref-
erence [6], and it uses

Theorem 5 (Pop). If F is a large field of (infinite) cardinality m and X is a
smooth F -curve with an F -point P , then the cardinality of X(F ) is m.

Proof. It suffices to prove card(X(F )) ≥ m. We easily reduce to the case that
(0, 0) ∈ X ⊂ A2

F , with X defined by a polynomial f such that ∂f/∂y 6= 0 at (0, 0).
It suffices to construct an injection i : F →֒ X(F ) × X(F ). For a ∈ F , define
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Va ⊂ X×X ⊂ A4
F by f(X1, Y1) = 0, f(X2, Y2) = 0, X1−aX2 = 0, where A4

F has
coordinates X1, Y1, X2, Y2. The origin is a smooth point of Va, and its irreducible
component Ca is a curve. Since F is large, there exists i(a) := (x1, y1, x2, y2) ∈
Ca(F ) with x2 6= 0. Note a = x1/x2. So this map i is injective.
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Profinite HNN–constructions

Wolfgang Herfort

(joint work with Pavel A. Zalesskii)

There are various embedding theorems in profinite group theory. A. Lubotzky
and J. Wilson [4] proved the profinite analog of the Higman, Neumann and Neu-
mann theorem [5] asserting that every topologically countably generated profinite
group embeds in a two generated profinite group. However, their construction did
not allow to control the torsion. So Z. Chatzidakis [1] returned to the original
construction of Higman, Neumann and Neumann to make it work in the profinite
(resp. pro-p) case to prove that one can embed a countably generated profinite
(respectively, pro-p) group in a two generated profinite (respectively, pro-p) group
E such that every torsion element is conjugate to an element of G. The same con-
struction has been used in [10] to embed any cyclic subgroup separable group in a
two generated cyclic subgroup separable group and in [2] to prove the existence of a
2-generated torsion free residually p-group whose pro-p completion contains every
finite p-group. In the present paper we use an HNN-construction in the category
of pro-C groups with the objective to deminish torsion in a virtually torsion free
pro-C groups. Our result is in the spirit of the Higman, Neumann and Neumann
theorem stating that any countable group can be emebedded in a countable group
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in which all elements of the same order are conjugate.
More precisely, we prove the following

Theorem 1. Let C be a class of finite groups closed under forming subgroups,
products, and, extensions. Let G be a virtually torsion free pro-C group and F a
torsion free open subgroup of G. Then G can be embedded in a semidirect product
G̃ = E×G/F such that every finite subgroup of G̃ is conjugate to a subgroup of
G/F . Moreover, the cohomological dimensions cd(F ) = cd(E) coincide.

The precise reformulation of the Higman Neumann Neumann result can not hold
for infinite profinite groups. First, every infinite profinite group is non-countable,
so one has to talk about second countable profinite groups. Secondly, a p-element
of infinite order in a profinite group can not be conjugate to its p-power, since its
image and the pth power of it in some finite quotient have different orders. So,
a profinite version of the Higman Neumann Neumann result can be stated only
for elements of infinite order. However even then the profinite version of it does
not hold (see the Example at the end of the report). Nevertheless, the profinite
analog of the Higman Neumann Neumann result is valid for virtually torsion free
profinite groups.

Corollary 1. Let G be a any virtually torsion free profinite group. Then G em-
beds into a profinite group G̃ where all elements of the same order are conjugate.
Moreover, virtual homological dimensions, vcd(G) and vcd(G̃) coincide.

Our Theorem has in part been motivated by a result of C. Scheiderer [9] – a
homological version reads as follows:

Theorem 2. Let G be a profinite group of virtual cohomological dimension d <∞
and suppose that G does not contain subgroups isomorphic to Z/pZ×Z/pZ. Let T
be the set of all finite subgroups of G on which G acts from the right by conjugation.
Then ⊕

t∈T

Hn(G, IFp[[tG]]) −→ Hn(G, IFp)

is an isomorphism for all n > d.

Now one would like to apply Shapiro’s lemma to express the homology of G in
terms of the homologies of centralizers of torsion elements, but one needs to do it
continuously and that requires a continuous section T/G −→ T . Such a section
does not always exists (see [8], example 5.6.9 ). For virtually free pro-p groups as
well as for Kurosh subgroup theorem the existence of a continuous section is even
more important (see [11], [6], [3]. So it is desirable to embed G coherently into a
profinite group with similar structure where the corresponding continuous section
would exist. To illustrate this we apply our result to deduce the following

Theorem 3. Let G be a pro-p group having free pro-p subgroup F such that
G/F ∼= Cpn with F maximal with respect to this property. Then G embeds into a

free product G̃ = CG̃(Cp) ∐H of a free pro-p group F and the centralizer CG̃(Cp)
of a group Cp of order p. Moreover,



346 Oberwolfach Report 6/2006

(i) G̃ possesses a free pro-p subgroup F̃ such that G̃/F̃ ∼= Cpn ;

(ii) The quotient group CG̃(Cp)/Cp has a structure similar to G̃ with the
inductive continuation.

We introduce a pro-C analogue of the concept of an HNN-group, see [5], p. 180.
This generalizes the concept of pro-C HNN-extension (see [8], 9.4).

Definition 1. Let G be a pro-C group and ∂0, ∂1 : (G, T )→ G a fiber monomor-
phisms. A specialization of (β, β1) : (G, φ, T ) −→ K of a triple (G, φ, T ) into
a C-group K consists of a homomorphism β : G −→ K and a continuous map
β1 : T −→ K such that for t ∈ T and g ∈ G(e), one has β(g) = β(∂0(g)) and
β(∂0(g)) = β1(t)

−1β(∂1(g))β1(t).

The pro-C HNN-group is then a pro-C group HNN (G,G, T ) having a specializa-
tion (υ, υ1) : (G,G, T ) −→ HNN (G,G, T ), with the following universal property:
for every pro-C group K and every specialization (β, β1) : (G,G, T ) → K, there
exists a unique homomorphism

ω : HNN (G,G, T ) −→ K,

such that ωυ1 = β1 and β = ωυ.
The following criterion for embedding a pro-C group G as a base group into a

pro-C HNN-extension HNN (G, A, f), whose proof is based upon the ideas of Zoé
Chatzidakis in [1] turns out essential.

Theorem 4. Let H be a pro-C group and f : A −→ B an isomorphism between
two closed subgroups of H. Form the pro-C HNN-extension

G := HNN (H, A, f, t) := 〈H, t | relations: f(a)−1at, a ∈ A〉.
Then the HNN-extension is proper, i.e., the natural embedding of φ : G −→ H is
mono, if and only if for every open normal subgroup U of H there exists an open
normal subgroup V of G contained in U such that

f(A ∩ V ) = f(A) ∩ V

and the abstract HNN-extension HNN abs(H/V, AV/V, fV ) is residually C, where
fV : AV/V −→ BV/V is the isomorphism induced by f .

Example. Let G =
∏

Ci an infinite cartesian product of groups Ci of order 2.
Choose a sequence of elements gn different from 1 that converges to 1. Suppose
G̃ embeds into a profinite group where all elements of equal order are conjugate.
Then g0 is conjugated to all of gn in G̃ and so by continuity has to be conjugate
to 1, a contradiction.
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New aspects of anabelian geometry

Jochen Koenigsmann

1. The main result presented in this talk is that, in most cases, a field K can be
recovered from the absolute Galois group of the rational function field K(t) over
K.

To be more precise, we call a field K almost arbitrary (a.a) if K is neither
separably closed nor real closed, and if in characteristic p > 0 the absolute Galois
group GK of K is not a pro-p group. So K is a.a. iff l2 | ♯GK for some prime
l 6= char K.

Main Theorem Let K and K ′ be perfect fields and assume that K is a.a.
Then

GK(t)/K
∼= GK′(t)/K′ ⇐⇒ K ∼= K ′

Here we denote by GK(t)/K or, more generally, by GK(C)/K for any smooth
projective curve C over K with function field K(C), the canonical projection (re-
striction map) prC/K : GK(C) →→ GK , and we write GK(C)/K

∼= GK′(C′)/K′ if there
is an isomorphism φ : GK(C) → GK′(C′) of profinite groups inducing via restriction

an isomorphism φ : GK → GK′ and a commutative diagram

GK(C)
φ−→ GK′(C′)

↓ ↓
GK

φ−→ GK′

Without the assumption of K being a.a. or of K and K ′ being perfect the Main
Theorem becomes false.

The Main Theorem is a special case of a rather general conjecture of birational
anabelian geometry:
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Conjecture Let K be a.a. and perfect, and let C be a smooth projective curve
over K. Then K(C) is up to isomorphism encoded in GK(C)/K : if K ′ is another
perfect field, C′ a smooth projective curve over K ′ then

GK(C)/K
∼= GK′(C′)/K′ ⇐⇒ K(C)/K ∼= K ′(C′)/K ′.

Here K(C)/K ∼= K ′(C′)/K ′ means that there is an isomorphism K(C)→ K ′(C′)
of fields inducing via restriction an isomorphism K → K ′.

The conjecture has been proved for finitely generated fields by Pop ([P]) and
for sub-p-adic fields by Mochizuki ([M]) (building on work by Nakamura and Tam-
agawa - cf. [MNT]). An analogue for higher dimensional varieties over fields con-
taining all roots of unity was proved by Bogomolov and Tschinkel ([BT]).

2. The proof of the Theorem is based on a purely group theoretic interpretation
of K-rational points of a smooth projective curve C over K inside GK(C)/K :

Main Lemma (for K a.a., perfect and, for simplicity, non-henselian, cf. [K],
Theorem 4.1)
The map

δ : C(K) → {conj. classes of max. geom. subgps. D ≤ GK(C) over GK}
P 7→ [DP ]

is a bijection.

Here DP denotes a decomposition subgroup of GK(C) w.r.t. P , and a subgroup
D ≤ GK(C) is called geometric over GK if it is of the form D ∼= R ⋊ (C ⋊ G),
where prC/K |G: G → GK is an isomorphism (i.e. G is the image of a section of
prC/K) and

R = 1 and C ∼= Ẑ if char K = 0
R 6= 1 is pro-p and C ∼=

∏
q 6=p Zq if charK = p > 0

(We should emphasize that GK(C)/K sees the characteristic of K, so the image of
δ is given in purely group theoretic terms.)

If K is henselian, δ is still injective but, in general not onto. In this case the
group theoretic description of the image becomes more complicated.

The Main Lemma which remains true over finite extensions of K is used to
obtain a Galois code for the group of divisors and the group of principal divisors
of C over K respecting the Galois action. If C = P1

K (so K(C) = K(t) as in the
Main Theorem) this provides a Galois code for K ∪ {∞}. One then recovers the
field operations of K from GK(t)/K by a Galois code for the group law on a suitable
choice of elliptic curves over K (using the Galois code for the principal divisors of
these curves).

3. The Main theorem can be modified into a Galois axiomatization for any a.a.
perfect field via the elementary theory of GK(t)/K in a suitable first order language
for profinite groups. This is a many sorted language which, following Cherlin,
van den Dries, Macintyre and Chatzidakis, talks about the ‘finite quotients’ of
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GK(t)/K . It gives a dictionary translating the elementary theory of a field K into
the elementary theory of GK(t)/K :

Theorem Let K and K ′ be a.a. perfect fields. Then

(1) K ≡ K ′ ⇐⇒ GK(t)/K ≡ GK′(t)/K′

(2) K and GK(t)/K are bi-interpretable

In particular, decidability of K is equivalent to decidability of GK(t)/K .
As a consequence, an altogether new approach to longstanding questions of

decidability presents itself. The hope is to prove this way undecidability of C(x)

and decidability of Fp((t)) or at least of Fp((t))
perf. The method may also apply

to Hilbert’s 10th problem over Q.
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Iterative Differential Equations and Finite Groups

Bernd Heinrich Matzat

It is an old question to characterize those differential equations or differential
modules, respectively, whose solution spaces consist of functions which are alge-
braic over the base field. The most famous conjecture in this context is due to
A. Grothendieck and relates the algebraicity property with the p-curvature which
appears as the first integrability obstruction in characteristic p. Here we prove a
variant of Grothendieck’s conjecture for differential modules with vanishing higher
integrability obstructions modulo p – these are iterative differential modules – and
give some applications.

1. Pseudo Picard-Vessiot Rings over Number Fields

To fix our notation let F/K be a function field of one variable over a number
field K with a derivation ∂F normalized by ∂F (t) = 1 for some t ∈ F . Then F/K(t)
is a finite field extension, and ∂F is the unique extension of ∂t := d

dt to F . Any
linear differential equation over F defines a finite dimensional differential module
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(D-module) M over F . This is an F -vector space equipped with a derivation
∂M : M →M which is an additive map with

∂M (x · a) = ∂M (x) · a + x · ∂F (a) for x ∈M, a ∈ F.

With respect to some basis B = {b1, ..., bm} of M the derivation is given by a
matrix A ∈ Fm×m.

Now we are interested in finding a minimal differential extension field E/F
such that the solution space SolE(M) of M in E, defined by ∂E(y) = A · y for

y = (y1, . . . , ym)tr ∈ Em, has dimension m. Such a field can be constructed in
the following way (compare [7], Ch. 1.3): The coordinate ring of the affine group
GLm over F

U := F [GLm] = F [xij , det(xij)
−1]mi,j=1

becomes a differential ring (D-ring) by defining ∂U (X) = A ·X for X = (xij)
m
i,j=1.

Then the residue ring R of U by a maximal differential ideal P ⊳ U is a D-ring
and a domain containing a matrix Y ∈ GLm(R) with ∂R(Y ) = A · Y and ∂R

obtained from ∂U . Thus R contains a fundamental solution matrix of M , and for
E := Quot(R) holds dimK(SolE(M)) = m.

In order to find an R without new constants we assume that F/K contains a
prime ℘ of degree one which is regular for M , i. e., ℘ is a regular point. Since M
has only finitely many singular points, such a ℘ always exists in the case F = K(t)
or after a finite extension by constants. Choosing a local parameter u ∈ F for
℘, the D-module M possesses a fundamental solution matrix Y ∈ GLm(K[[u]])
which can be normalized by Y (℘) ∈ GLm(K). Denoting by P the kernel of
the differential homomorphism π : U → K((u)) defined by π(X) = Y , the D-
ring R := U/P is regular over K. Obviously all fundamental solution matrices
Y ∈ GLm(K[[u]]) with Y (℘) ∈ GLm(K) only differ by matrices C ∈ GLm(K).
Hence R is uniquely determined up to differential isomorphisms by the property
above. It further depends neither on the chosen local parameter nor on the chosen
regular rational point ℘. In the following the D-ring (R, ∂R) is called a pseudo
Picard-Vessiot ring (PPV-ring) and its field of fractions (E, ∂E) a PPV-field.

The F -automorphisms of E commuting with ∂E form a group AutD(E/F ) and
define an affine group scheme G ≤ GLm over K with G(K) ∼= AutD(E/F ), called
the Galois group scheme of E/F . In case the fixed field EG(K) equals F , the ring
R/F or E/F respectively are called Picard-Vessiot ring (PV-ring) or PV-field, and
G(K) =: GalD(E/F ) is the differential Galois group of E/F . It is well known
that for connected groups the notion of a PPV-ring and a PV-ring coincide.

By the assumptions above we obtain the following variant of T. Dyckerhoff of
the differential Galois correspondence due to E. Kolchin valid over number fields:

Theorem 1. ([2]): Let (F, ∂F ) be a D-field of one variable over a number field K
and (M, ∂M ) be a D-module over F with regular rational point ℘ in F . Then the
following hold:

(a) There exists a PPV-field E/F for M without new constants. E/F is
uniquely determined by Y (℘) ∈ GLm(K) up to differential isomorphisms.
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(b) There exists a Galois correspondence between the subgroup schemes of the
Galois group scheme G and the differential intermediate fields of E/F .

2. Grothendiecks p-Curvature Conjecture

By the first section the algebraicity of the solutions of a D-module, the algebraic-
ity of the corresponding PPV-field E/F and the finiteness of GalD(E/F ) are equiv-
alent. In case E/F and thus E/K(t) are algebraic, the property ∂p

t ≡ 0 (mod p) of
K(t) implies ∂p

E ≡ 0 (mod p) for almost all primes. According to A. Grothendieck
(1970), this property should be characteristic. To be more precise, let (M, ∂M ) be
a D-module over F . Then the p-curvature of M is the p-th iterate ∂p

M of ∂M . It
is called trivial in the case ∂p

M ≡ 0 (mod p).

P-Curvature Conjecture. Let (F, ∂F ) be a D-field of one variable over a
number field K and (M, ∂M ) be a D-module over F . Then the following are equiv-
alent:

(1) M admits a full system of algebraic solutions.
(2) The p-curvature of M is trivial for almost all primes p.

An equivalent condition has been detected by P. Cartier using reduction. For
this purpose let p denote a prime divisor (place) dividing p in K, pt its Gauss
extension to K(t) and P a place F extending pt. Then the reduction FP of F
modulo P is a function field with finite field of constants. In case (M, ∂M ) is a
D-module over F with representing matrix A ∈ Fm×m of ∂M , for almost all P the
reduced matrix AP ∈ Fm×m

P exists and defines the derivation of a D-module MP

over FP. The same procedure works for any of the matrices A(k) corresponding to

the higher derivation ∂
(k)
M := 1

k!∂
k
M . Fortunately these can be computed iteratively

using the so-called Taylor recursion:

A(0) = I, A(1) = A, kA(k) = ∂F

(
A(k−1)

)
+ A(k−1) · A.

In the case ∂p
M ≡ 0 (mod p), the formulas above show that

YP := (

p−1∑

k=0

A
(k)
P (−u)k)−1 ∈ GLm(FP)

is a fundamental solution matrix of the reduced D-module MP, i.e., MP is trivial
over FP.

Lemma of Cartier: Let (F, ∂F ) be a D-field of one variable over a number
field K and (M, ∂M ) be a D-module over F . Then (2) is equivalent to:

(3) The reduced D-module MP is trivial for almost all P.

The Lemma of Cartier shows that in this way D-modules over F with algebraic
solutions are reduced to D-modules over FP with rational (=trivial) solutions.
Comparing with algebraic field extensions this property looks quite unnatural.
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3. Iterative Differential Modules

In order to preserve by reduction the degree of algebraicity we have to use in

addition higher derivations. But then we have to work with infinitely many ∂
(k)
F

and A(k) and thus to give more care on our D-rings. For this purpose let P′K ⊆ PK

be a cofinite set of primes p in K and O′K the intersection of their valuation rings
Op. Further let P′F be the set of all places P in F extending the Gauss valuation
pt in K(t) for p ∈ P′K . Then O′F :=

⋂
P∈P′

F

OP is a Dedekind ring in F . It is called

a global iterative differential ring (ID-ring) if

∂
(k)
F (O′F ) ⊆ O′F and ∂

(k)
F (P) ⊆ P for all k ∈ N and P ∈ P′F .

Obviously any function field of one variable F/K contains infinitely many such
global ID-rings. In a similar way we define global ID-modules M to be free O′F -

modules of finite rank with higher derivations ∂
(k)
M := 1

k!∂
k
M : M →M .

Under these assumptions we can follow Section 1 in order to construct a PPV-
ring R for M now over the global ID-ring O′F with a fundamental solution matrix
Y ∈ GLm(R) and with Y (℘) ∈ GLm(O′K) for some regular prime ℘ of degree one

of F/K. Since by definition all matrices A(k) belong to (O′F )m×m, this PPV-ring

R is equipped with an iterative derivation
(
∂

(k)
R

)

k∈N
and thus is itself an ID-ring.

In all we obtain the following ID-analogue of Theorem 1.

Theorem 2. ([4]): Let (O′F , ∂F ) be a global ID-ring and (M, ∂M ) be a global ID-
module over O′F with regular rational prime ℘ in O′F /O′K . Then there exists a
PPV-ring RM over O′F with ring of constants O′K . Moreover RM is unique up to
D-isomorphisms by assuming Y (℘) ∈ GLm(O′K).

If in addition the spezialized matrix A(℘) belongs to (O′K)m×m - this can be

reached by removing a finite set of primes P from P′F - then A(k)(℘) ∈ (O′K)m×m

holds for all k ∈ N by Taylor recursion. This leads to

Corollary 1. Assuming in addition A(℘) ∈ (O′K)m×m, the Taylor expansion of
Y for a local parameter u for ℘ belongs to GLm(O′K [[u]]).

In particular, the Taylor expansions in u of the entries yij of Y are globally
bounded in the sense of G. Christol (compare [1], Ch. 4.1). It should be mentioned
that any finite Galois extension E/F without new constants can be obtained as
field of fractions of a PPV-ring RM of some global ID-module M over a global
ID-ring O′F . Thus any finite group appears as differential Galois group of such a
global ID-module.

4. Reduction of Global ID-Modules.

Let (M, ∂M ) be a global ID-module over a global ID-ring (O′F , ∂F ). Then by
Theorem 2 there exists a PPV-ring RM/O′F for M . As before, for all P ∈ P′F the
residue field FP := O′F /P is a function field of one variable over the finite field
Kp := O′K/p and the residue ring (RM )P := RM/RMP is an FP-algebra.
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On the other side the reduced matrices A
(k)
P ∈ Fm×m

P define an iterative deriva-

tion (∂
(k)
MP

)k∈N on some FP-vector space MP. Thus MP is an ID-module over FP

as studied for example in [5], Ch. 5. By [5], Prop. 6.1, there exists a PV-ring for
MP⊗Kp

Kp over FP⊗Kp
Kp. In case FP contains a regular point ℘̃ of degree one

for MP , an argument like the one given in Section 1 shows that there exists an
iterative PPV-ring RMP

over FP without new constants. Further RMP
is uniquely

determined up to ID-isomorphisms by the property that a fundamental solution
matrix YP of MP in RMP

at ℘̃ has initial values in GLm(Kp). The next theorem
shows that for almost all P ∈ P′F the reduced PPV-ring (RM )P and the PPV-ring

RMP
constructed from the reduced matrices A

(k)
P coincide.

Theorem 3. ([4]): Let (M, ∂M ) be a global ID-module over a global ID-ring
(O′F , ∂F ). Then for almost all P ∈ P′F the reduced PPV-ring (RM )P and the
PPV-ring of the reduced ID-module MP are isomorphic as ID-rings.

The proof of Theorem 3 relies on the compatibility of the Taylor expansions
in different characteristics based on the globally boundedness. By the Generic
Flatness Lemma then follows

Corollary 2. For almost all P ∈ P′F holds

dim(RMP
) = dim(RM )− 1 = dim(RM/O′F ).

Thus Corollary 2 proves the last conjecture statet in [5]. A D-module is called
algebraic if it admits a full system of algebraic solutions over the base ring.

Theorem 4. ([4]): Let (M, ∂M ) be a global ID-module over a global ID-ring
(O′F , ∂F ). Then the following hold:

(a) M/O′F is algebraic if and only if the reduced ID-modules MP/FP are al-
gebraic for almost all P ∈ P′F .

(b) GalD(RM/O′F ) is a finite group G if and only if GalID(RMP
/FP) ∼= G for

almost all P ∈ P′F .

For global ID-modules this theorem refines Cartier’s Lemma in Section 2

5. The Link with Grothendieck’s Conjecture

According to Grothendieck’s conjecture the following conjecture should be true:

Conjecture 1. Any global ID-module (M, ∂M ) over a global ID-ring (O′F , ∂F ) is
algebraic.

To prove Conjecture 1, by Theorem 4 it would be enough to show that reduc-
tions modulo P lying in Kp[[u]] of globally bounded solutions of linear differential
equations at a regular point are algebraic over Kp(u).

The truth of Conjecture 1 would already imply an interesting algebraicity cri-
terion for formal power series over number fields.

Eisenstein’s Algebraicity Criterion. Let f =
∑

k∈N aktk be a formal power
series over a number field K. Then the following are equivalent:
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(a) f is algebraic over K(t),
(b) f is regularly differentially finite and globally bounded.

Here an element f ∈ K[[t]] is called regularly differentially finite if it is a solution
of a linear differential equation over K(t), which is regular at 0. The proof that (a)
implies (b) is due to G. Eisenstein (reported in [3]). Eisenstein’s intention was to
develop at least a necessary condition for the algebraicity of solutions of differential
equations. The converse implication (b) to (a) would follow from Conjecture 1.
It is known that the property being globally bounded is not sufficient at singular
points.

The link with Grothendieck’s p-curvature conjecture would then be given by
the following second conjecture:

Conjecture 2. Let (M, ∂M ) be a global D-module over a global D-ring (O′F , ∂F )
with vanishing p-curvature for almost all primes p ∈ Z. Then the solutions of M
near a non singular prime ℘ of degree one in F for M are given by locally bounded
power series over the field of constants K of F .

Obviously Grothendieck’s p-curvature conjecture follows from Conjecture 1 and
2. Thus these two conjectures could indicate a way of approaching its proof.
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Solvable points on projective algebraic curves

Ambrus Pál

Let X be a quasi-projective variety over a field F . We say that X has a solvable
point over F if X has a rational point defined over a solvable extension of F .

Theorem. Let F be a local field such that the absolute Galois group of its
residue field has quotients isomorphic to a finite list of groups (S5 × S7, S5 × S8,
PSL3(F2) and PSL3(F3)). Then there is a smooth, geometrically irreducible pro-
jective curve defined over F of genus g without solvable points (over the perfection
of F ) when g is equal to 6, 8, 10, 11, 15, 16, 20, 21, 22 or it is at least 24. �
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The structure of the proof of the theorem is the following. First we construct a
connected, but geometrically reducible stable curve of arithmetic genus g without
solvable points over the residue field using the assumption on its absolute Galois
group. This construction is essentially combinatorial in nature. Then we use
classical results of Deligne and Mumford on the deformation theory of stable curves
to construct a flat projective curve over the spectrum of the discrete valuation ring
of F such that its generic fiber is smooth and geometrically irreducible and its
special fiber is the stable curve above. The generic fiber will be of genus g without
solvable points.

On the other hand there are natural numbers g such that there are not any
smooth, geometrically irreducible projective curves of genus g defined over an
arbitrary field without solvable points:

Theorem. Let F be any field and let X be a smooth, geometrically irreducible
projective curve defined over F such that its genus is 0, 2, 3 or 4. Then X has a
solvable point. �

There is a similar result for surfaces. We will call a variety X defined over a
field F geometrically rational if it is irreducible and rational over the algebraic
closure of F . The theorem is the following:

Theorem. Let F be any field and let X be a smooth, geometrically rational
projective surface defined over F . Then X has a solvable point. �

These results are proved by examining the canonical linear system on X in order
to construct zero-dimensional cycles on X of low degree defined over a solvable
extension of F . In order to prove the second theorem we will also show that the
Merkurjev-Suslin theorem implies that every Brauer-Severi variety defined over an
arbitrary field has a solvable point.
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On the rank of abelian varieties over large fields

Sebastian Petersen

Let A be a non-zero abelian variety over a number field K. Then A(K) is finitely
generated by the Mordell-Weil theorem and it is well-known that rk(A(K)) =∞.
Interesting problems arise if we ask for the rank of A in other infinite algebraic
extensions of K. Frey and Jarden posed the following question in their 1974 paper
[1].

Question: (Frey, Jarden) Is rk(A(Kab)) =∞ for any non-zero abelian variety
over a number field K? Here Kab denotes the maximal abelian extension of K.
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We use a specialization theorem [8, Prop. 3.1] (see also [7] and [5]) to establish
the following abstract condition for infinite rank over infinite algebraic extensions.

Theorem. Let K be a Hilbertian field, T |K a smooth variety, T0 ⊂ T and U ⊂
An non-empty open subsets and A|K an abelian variety. Let p : T0 → U be a
finite étale morphism of degree d. Suppose that there is a non-constant morphism
f : T → A. Then there is a sequence of geometric points (tj)j∈N ⊂ T (K) with the
following properties:

a) p(tj) ∈ U(K) is K-rational and K(tj)|K is a finite, separable extension
of degree d.

b)
⊗
j∈N

K(tj) is a field.

c) The image of f(tj) in
A(K(tj))

A(K) is of infinite order.

Let Ω =
∏

j∈N K(tj) be the composite field of the residue fields of the points tj.

Then rk(A(Ω)) =∞.
If p is a Galois cover with group Γ, then the extensions K(tj)|K are Galois with
group Γ and Ω|K is Galois with group

∏
j∈N Γ. If in addition Γ is abelian, then

rk(A(Kab)) =∞.

We can derive the following partial answer to the abovementioned question of Frey
and Jarden from this theorem.

Corollary. Let T |P1 be a smooth, geometrically integral Galois cover with group
Γ. Let B be an arbitrary non-zero quotient of the Jacobian JT . Then there is a
Galois extension Ω|K with group

∏
j∈N Γ such that rk(B(Ω)) =∞. If Γ is abelian,

then rk(B(Kab)) =∞.

This corollary generalizes the results in [1], [4], [6], [11], [10] on the question of
Frey and Jarden. Among these papers the work [10] of Rosen and Wong offers
the most general result, namely that the statement of the above corollary is true
provided K is a number field, Γ is cyclic and JT

∼= B. The proof in [10] is totally
different from ours.

Unfortunately we do not know whether any abelian variety can be realized as a
quotient of the Jacobian JT of an abelian Galois cover T |P1. This question seems
to be a difficult open problem.

The above theorem can be used to obtain infinite rank results over fields which
are large in the sense that their Galois group is finitely generated. Fix an integer
e ≥ 1. For σ ∈ Ge

K denote by Ks(σ) the fixed field of the closure of the group
〈σ1, · · · , σe〉 ⊂ GK generated by the components of the vector σ. We can slightly
generalize a classical result in [1].

Corollary. Let A|K be a non-zero abelian variety. Then rk(A(Ks(σ))) = ∞ for
almost all σ ∈ Ge

K (in the sense of Haar measure on Ge
K).

The only novelty here is that we do not assume K to be a finitely generated
Hilbertian field. Our proof, however, is different from the proof in [1] and in our
opinion quite simple. In the proof of this corollary we apply the theorem with
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T = A and f = Id and make use of the lemma of Borel-Cantelli. M. Jarden
recently proved that one may replace Ks(σ) by the maximal Galois extension
Ks[σ] of K in Ks(σ) in the above corollary. This strenghtens a result in [3]. We
want to mention a third corollary.

Corollary. Suppose that A admits a projective embedding of degree d. Let Ω be
the composite field of all extension fields of K of degree d. Then rk(A(Ω)) =∞.

In [10] Rosen and Wong have shown this with the composite field Ω′ of all exten-
sions of K of degree ≤ d(4 dim(A) + 2) instead of Ω.

A detailed discussion of the material1 mentioned so far can be found in [8].

The author suspects that the answer to the question of Frey and Jarden mentioned
at the beginning is yes. He even conjectures:

Conjecture. Let A|Q be a non-zero abelian variety. For D ∈ Q×/2 denote by

AD|Q the twist of A by the extension Q(
√

D)|Q. Then rk(AD(Q)) ≥ 1 for infinitely
many D ∈ Q×/2.

Note that there is an isomorphism

A(Q(
√

∆))

A(Q)
⊗ Z[

1

2
] ∼=

⊕

D∈∆\{1}

AD(Q)⊗ Z[
1

2
]

for any subgroup ∆ ⊂ Q×/2. Hence the following statements are equivalent:

a) The above conjecture holds true.
b) Any non-zero abelian variety A|Q acquires infinite rank over the maximal

Kummer extension Q(
√
Q×)|Q of exponent 2.

There is some of work in progress relating the author’s conjecture to a suitable
version of the conjecture of Birch and Swinnerton-Dyer (denoted by BSD in the
sequel). We briefly describe the main idea: For an abelian variety B|Q denote
by W (B) the root number of B. Note that W (B) can be defined as a product
of local terms without assuming any conjectures. Presumably W (B) is the sign
in a conjectured functional equation for the L-series of B. If the BSD-conjecture
holds true, then W (AD) = −1 implies rk(AD(Q)) ≥ 1. There is a formula [9]
of Rohrlich relating W (AD) to W (A) provided A is an elliptic curve. Sabitova2

recently found an analoguous formula for abelian varieties of arbitrary dimension.
This formula suggests that, in fact, W (AD) = −1 for infinitely many D ∈ Q×/2.
We have, however, not yet checked the details.

1The author is indebted to his supervisor C. Greither and also to M. Jarden for very helpful
suggestions while this work was done.

2The author wants to thank T. Chinburg for bringing Sabitova’s work to his attention during
the workshop in Oberwolfach.
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On the elementary theory of function fields

Florian Pop

First let us recall/introduce notations as follows:

• For a field K, we denote by Th(K) its elementary theory, i.e., the set of all
first order sentences ϕ which are true in K.

•We say that fields K and L are elementarily equivalent if they have the same
elementary theory, i.e., Th(K) = Th(L).

Clearly, if K and L are isomorphic, then they are elementarily equivalent. The
converse of this assertion is wrong, but the following well known model theoretical
fact is a very good substitute for that:

K and L are elementarily equivalent if and only if there exist ultra-powers KI/U
and LJ/V which are isomorphic as fields.

Main Question. What information about K is encoded in Th(K) in arith-
metical/geometrical significant situations, i.e., when K are function fields over
some “reasonable” base fields k?

Part of this question is actually the following:

Conjecture (Elementary equivalence versus Isomorphisms). Let K|k and L|l
be regular function fields over reasonable base fields k and l. Suppose that K and
L are elementarily equivalent. Then k and l are elementarily equivalent, and if
k ∼= l, then K ∼= L as fields.
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The notation of a reasonable base field k is not completely clarified, but the
prime fields Q, Fp, and the so called large fields should be reasonable base fields.

• Arithmetic situation: In this case K is a function field over its prime field
k0; or equivalently, if K is a finitely generated field, and its field of constants k is
finite over k0.

• Geometric situation: In this case K is a function field over an algebraically
closed field k.

• More general, we will speak about the anti-Mordellic situation, if K is a
function field over a large field k satisfying further conditions.

Some results

In my talk I first mentioned some old results by Duret, Pierce, Vidaux, con-
cerning the the elementary theory of function fields K|k of curves in the geometric
situation: The isomorphy type of K is encoded in Th(K) if K is not the function
field of a CM elliptic curve of some special type. And the very striking result
by Rumely saying that for every global field K there exists a sentence ϕK which
distinguishes the isomorphy type of K among the global fields: If L is another
global field, then ϕK holds in L if and only if K ∼= L as fields.

The main focus of my talk was on the following newer results by Pop, Poonen,
and Poonen-Pop:

Pop (2002):

Arithmetic situation

(1) For every characteristic p there exists a sequence of sentences ϕd, where
d ≥ 0, such that given a finitely generated field K with char(K) = p one has: ϕd

is true in K if and only if tr.deg.(K|k) = d.

In particular, tr.deg.(K|k) is encoded in Th(K).

(2) Moreover, for every characteristic p there exist a formula φ(t1, . . . , tr) with
parameters t1, . . . , tr such that given a finitely generated field K with char(K) = p,
and a system (a1, . . . , ar) of elements of K, one has: φ(a1, . . . , ar) is true in K if
and only if (a1, . . . , ar) is part of a separable transcendence basis of K|k.

In particular, if K and L are finitely generated fields which are elementarily
equivalent, then K and L are isogeneous, i.e., there exist separable field embed-
dings K →֒ L and L →֒ L.

Therefore, if K and L are as at 2) above, and K is the function field of a variety
of general type, then K ∼= L as fields.

Geometric situation

(1) There exists a sequence of sentences ϕd such that for every function field
K|k as at 3) above one has: ϕd is true in K if and only if tr.deg.(K|k) = d.

Moreover, (for every characteristic p) there exist a formula φ(t1, . . . , tr) (de-
pending on p) with parameters t1, . . . , tr such that given a finitely generated field
K (with char(K) = p), and a system (a1, . . . , ar) of elements of K, one has:
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φ(a1, . . . , ar) is true in K if and only if (a1, . . . , ar) is part of a (separable) tran-
scendence basis of K|k.

(2) From this one deduces that if K|k and L|k are elementary equivalent, and
K|k is the function field of a k-variety of general type, then K and L are isomorphic
as function fields.

Poonen (2005):

(1) There exists a predicate p(t) such that given a finitely generated field K one
has: The constant field k of K is definable by p(t) inside K, in other words one
has k = {a ∈ K | p(a) true in K}.

(2) There exists a formula φr(t1, . . . , tr) such that given a finitely generated
field K, and a system (a1, . . . , ar) of elements of K, one has: φ(a1, . . . , ar) is true
in K if and only if (a1, . . . , ar) are algebraically independent over the prime field
of K.

Poonen-Pop (2005):

(1) There exists a predicate p(x) such that given a function field K|k with k
large and relatively closed in K one has: k is definable inside K by p(x), i.e.,
k = {a ∈ K | p(a) true in K}.

(2) One has similar results as at Poonen, 2) above, but a little bit more technical.

Methods of proof

The main new insight is that using the properties of Pfister quadratic forms
and their generalizations, one can detect algebraic dependence. (Here the main
ingredients are the Galois cohomological characterization of the algebraic indepen-
dence, combined with the Milnor’s Conjecture, proved by Voevodsky et al, Rost,
etc. See e.g. [3] and [4], where more can be found.)

Example: Let K|Q be a function field. Then tr.deg.(K|Q) = d if and only if
the following holds: Every (d + 3) fold Pfister form over K becomes isotropic over
K[
√
−1], and there exist (d + 2) fold Pfister forms over K which are not isotropic

over K[
√
−1].

In his proofs, Poonen does also uses in a subtle way Rumely’s result as well as
facts about the the relation between the rational points E(K) and E(k) of some
special elliptic curves E, etc.
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Henselian valued fields

Alexander Prestel

In this talk we give a brief summery of the “going down” properties of henselian
valuation rings on fields.

Let (K, O) be a field together with a valuation ring O of K. We say that (K ′, O′)
extends (K, O) if K ′ is a field extending K and O′∩K = O. A valued field (K, O)
is called henselian if the valuation ring O of K has a unique extension to the
separable closure Ks of K. Equivalently, (K, O) is henselian if every polynomial
f ∈ O[X ] that has a simple root modulo the maximal ideal M of O, has a root in K.

Let V (K) be the set of valuation rings O  K. Two valuation rings O1, O2 ∈
V (K) induce the same topology on K if and only if the composition O1O2 also be-
longs to V (K). Thus the totality of valuation rings of K inducing a fixed topology
forms a tree by the partial ordering of inclusion. For the set H(K) of henselian
valuation rings O  K even more can be said.

Let H1(K) be the set of valuation rings O(K) such that O/M is not separably
closed, while H2(K) is the set of those O ∈ H(K) such that O/M is separably
closed. Now H1(K) is linearly ordered and sits on top of the tree formed by H2(K).
If H2(K) = Ø, then H1(K) has a smallest element O∗, called the canonical valua-
tion ring of K. If H2(K) 6= Ø, then H2(K) has a maximal element O∗ which now
is called the canonical valuation ring. Let H∗(K) = H1(K) ∪ {O∗}. With these
notations the following theorems hold:

Theorem 1. Let K ′/K be a normal extension (finite or infinite). Then every
henselian O′ ∈ H∗(K ′) restricts to a henselian O = O′ ∩K ∈ H∗(K).

Theorem 2. Let K ′/K be a finite extension with K ′ not being separably closed.
Then O′ ∈ H∗(K ′) implies O = O′ ∩K ∈ H∗(K).
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Theorem 3 (Koenigsmann). Let p be a rational prime and K ′ the fixed field
of a p-Sylow subgroup of the absolute Galois group G(Ks/K) of K. Then every
henselian O′ ∈ H∗(K ′) restricts to a henselian O = O′∩K ∈ H∗(K), unless p = 2
and O′/M ′ is real closed.

The proofs of the above theorems can be found in [1].
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Hilbert’s tenth problem, Mazur’s conjectures and Poonen’s theorem

Alexandra Shlapentokh

At the beginning of the XX century David Hilbert ask the following question:

Is there an algorithm which can determine whether or not an arbitrary polyno-
mial equation in several variables has solutions in integers?

Using modern terms one can ask if there exists a program taking coefficients
of a polynomial equation as input and producing “yes” or “no” answer to the
question “Are there integer solutions?”. This question became known as Hilbert’s
Tenth Problem because it was the problem # 10 on the list of problems some of
which were presented by Hilbert at the International Congress of Mathematicians
in 1900.

The question of Hilbert was answered negatively (with the final piece in place
in 1970) in the work of Martin Davis, Hilary Putnam, Julia Robinson and Yuri
Matijasevich. Actually a much stronger result was proved. It was shown that the
recursively enumerable subsets of integers are the same as the Diophantine subsets
of integers. (See [2] and [3] for more details.)

The question asked by Hilbert can of course be asked about any recursive ring
R. In other words we can ask if there is an algorithm which, if given an arbitrary
polynomial equation in several variables with coefficients in R, can determine
whether this equation has solutions in R. This question is still open for R = Q
and R equal to the ring of integers of an arbitrary number field.

One way to answer the question negatively for a ring R of characteristic 0 is
to construct a Diophantine definition of Z over R or more generally to construct
a Diophantine model of Z over R. Unfortunately, some conjectures formulated by
Barry Mazur and a theorem of Gunther Cornelissen and Karim Zahidi indicate
that this line of the attack on Hilbert’s Tenth Problem over Q is not likely to
succeed. (See [1], [5], [6], [7], [8], for more details on these conjectures and their
consequences.)
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Given the difficulty of resolving the Hilbert’s Tenth Problem over Q one could
attempt to consider the problem over some “intermediate ” rings between Z and
Q. We defined these rings below for an arbitrary number field.

Let K be a number field and let S be an arbitrary set of its non-archimedean
primes. Then let OK,S be the following ring

{x ∈ K : ordpx ≥ 0 for all p 6∈ S}
If S is finite, we call the corresponding ring a small ring, and we call the ring a
big one otherwise.

Using some ideas of Julia Robinson originally needed for a first-order definition
of rational and algebraic integers over number fields (see [10] and [11]), and a
proposition of Denef on definability of non-zero elements over subrings of number
fields (see [4]), we can give a Diophantine definition of Z in any small subring of
rational numbers. Thus we know that Hilbert’s Tenth Problem is undecidable of
these rings.

Over large rings the situation proved to be much more complicated. While we
have some Z-definability results for big rings for non-trivial totally real extensions
of Q and their extensions of degree two (see [12], [13], [14], [15]), we don’t have a
Diophantine definition of Z over any large subring of rational numbers.

However, just as one can consider Diophantine definability of Z over subrings
of Q, one could also consider a version of Mazur’s conjectures and Diophantine
models over these rings. In pursuing this line of investigation Poonen proved the
following theorem in [9].
Theorem.
There exist recursive sets of rational primes T1 and T2, both of natural density
zero and with an empty intersection, such that for any set S of rational primes
containing T1 and avoiding T2, the following hold:

• There exists an affine curve E defined over Q such that the topological
closure of E(OQ,S) in E(R) is an infinite discrete set. Thus the ring
version of Mazur’s conjecture does not hold for OQ,S .
• Z has a Diophantine model over OQ,S .
• Hilbert’s Tenth Problem is undecidable over OQ,S .
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Anabelian properties of the moduli spaces of smooth projective curves

Jakob Stix

The talk delivered at the meeting and the report below contain a survey of the
results obtained by the author in [3].

1. Rational curves

In [2] Oort constructs non-constant maps P1(k) → Mg(k) for large, suitable g
by exploiting ‘Parshin’s trick’. Here k is an algebraically closed field and Mg is
the coarse moduli variety of smooth, projective, geometrically connected curves of
genus g. In contrast, the fine moduli stack Mg parametrising families of smooth,
projective, geometrically connected curves of genus g ≥ 2 does not contain rational
curves. In characteristic 0 this follows for example from the uniformisation of
(Mg)

an by Teichmüller space which is a ball and the simply connectedness of P1.
Indeed, any map f : T → (Mg)

an from a simply connected complex variety T
must lift to Teichmüller space and hence is forced to be constant if T is proper or
by Liouville for T the complex plane. The Brødy hyperbolicity of (Mg)

an follows.
The moduli space of principally polarised abelian varieties Ag,1 behaves similar

at first sight. It is uniformised by the Siegel upper half plane. But, again in [2],
Oort constructs rational families of abelian varieties in positive characteristic, es-
sentially by using rational families of maps from αp to a given abelian variety with
p-rank exceeding 1. This raises the question of the existence of simply connected
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subvarieties of Mg in positive characteristic and in particular of an algebraic rea-
soning.

2. Anabelian Geometry

Anabelian geometry deals with the arithmetical/geometrical content of the pro-
finite étale fundamental group of a variety. In homotopy theory, for X an Eilenberg-
MacLane K(π, 1) space, the fundamental group π1X = π determines all maps up
to homotopy from CW-spaces with target X . One consequence is that group co-
homology of π with coefficients in F computes the singular cohomology of X with
coefficients in the associated locally constant sheaf F .

We define an algebraic K(π, 1) space to be a variety over an algebraically
closed field, such that the canonical map

γ∗ : H∗(πét
1 X, F )→ H∗(Xét, F )

is an isomorphism for all finite F and associated F . In general, we call the
cohomology classes in the image of γ∗ group theoretic cohomology classes.

One difference between Mg and Ag,1 consists in the pro-finite properties of their
respective analytic fundamental groups: the Mapping class group is conjectured
to be good in the sense of Serre, whereas Sp2g(Z) is definitely not good. This
might explain why the ‘analytic K(π, 1) behaviour’ of Ag,1 does not carry over to
the algebraic and moreover positive characteristic setting.

3. Constant maps

Theorem 1. Let k be an algebraically closed field and X/k a quasi-projective,
connected variety such that for some prime ℓ different from the characteristic and
for all n ∈ N all classes in H2(X,Z/ℓnZ) are group theoretic. Let f : T → X be
a regular map from a proper, reduced and connected variety T/k such that π1f is
the trivial map. Then f must be constant.

Proof: One just notices that f is constant if and only if it contracts all proper
curves in T , which is a numerical condition. The pullback of an ample numerical
class can be computed via group cohomology, hence vanishes, and we are done.

In order to apply Theorem 1 to the moduli space of smooth, projective curves
we either need to prove that the mapping class group is good in cohomological
degree 2 (announced by Boggi) or find different means. The alternative proof
deals only with some quotient of the fundamental group of Mg. Thus it yields
a much stronger theorem also strengthening the characteristic 0 case, which for
the full fundamental group follows from the analytic argument given above as the
mapping class group is residually finite.

Let X/S be a family of smooth, projective, geometrically connected curves of
genus g ≥ 2 with S connected. Let L be a set of primes invertible on S. Then one
can proof, see [3] and the comments in loc. cit., that the homotopy sequence

π1(fibre)→ π1X → π1S → 1
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yields an outer monodromy representation ρ : π1S → Out
(
πL

)
where πL is the

pro-L completion of the fundamental group of a geometric fibre of X/S. The
construction is compatible with pullback, hence comes by composition with the
characteristic map from the universal outer representation

ρuniv : π1

(
Mg ⊗ Z[

1

L
]
)
→ Out

(
πL

)
.

Theorem 1bis. Let T be a reduced, connected variety over an algebraically closed
field k. Let f : T → Mg, g ≥ 2, be a map such that for the associated curve
the outer pro-L representation ρ : π1T → Out

(
πL

)
is the trivial homomorphism

for one of the following collections of sets of prime numbers L and additional
conditions on k:

(A) L = {ℓ} for some prime number ℓ and k is of characteristic 0, or
(B) L = {ℓ1, ℓ2} for all pairs of sufficiently large prime numbers ℓ1, ℓ2 invertible

in k and k is of positive characteristic.

Then f is constant in the sense that the corresponding T -curve X/T ∈ Mg(T )
comes by base extension from a curve in Mg

(
Spec(k)

)
.

The basic idea of the proof is to look at the corresponding family of Jacobians
which has constant L-primary torsion by the condition of the theorem. Then use
the Torelli theorem. This explains the easier condition in characteristic 0.

But this approach fails in positive characteristic. We only deduce that our
Jacobians all have the same p-rank. A construction of auxiliary covers following
Tamagawa (after Raynaud) that has already been exploited by Säıdi allows nev-
ertheless to deduce the theorem. It is in the construction of the auxiliary covers
that condition (B) on the sets L comes up.

4. Monodromy controls good reduction

There are several known criteria for good reduction that ask for unramified Galois
action. Galois action is nothing but monodromy action in the arithmetic case.
The question of good reduction turns out to be the question of extendibility for
the representing map to the respective moduli space. Put together, these ideas
indicate that extending a map f : U → Mg from some open dense subscheme

U ⊂ S in the normal scheme S to a map f̃ : S →Mg is controlled by monodromy.

Theorem 2 (Moret-Bailly). The above f always extends uniquely for S regular
and S \ U of codimension at least 2.

This is the purity result for smooth, projective curves of Moret-Bailly in [1]. If
we combine Zariski–Nagata’s purity of the branch locus, Moret-Bailly’s theorem
above and the following criterion for good reduction from [4], Thm 5.3,

Theorem 3 (Oda–Tamagawa). Let S be the spectrum of a discrete valuation ring,
and U be the generic point. Then a curve of genus g ≥ 2 over U extends uniquely
over S iff the associated outer pro-ℓ monodromy representation is unramified, i.e.,
factors over GalK = π1 Spec(K)→ π1S, for some ℓ invertible in K.
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we obtain the case of regular bases S of the following monodromy criterion of good
reduction of smooth, projective curves.

Theorem 4. Let U be a dense open subscheme of a normal, connected, excellent
scheme S. Let X/U be a U -curve in Mg(U) for some g ≥ 2. Then X/U extends
to an S-curve in Mg(S) if and only if the pro-L monodromy representation

ρ : π1

(
U ⊗ Z[

1

L
]
)
→ Out

(
πL

)

factors over π1

(
U ⊗ Z[ 1

L
]
)
→ π1

(
S ⊗ Z[ 1

L
]
)

for one of the following collections of
sets of prime numbers L and additional conditions on S:

(A) L = {ℓ} for some prime number ℓ and S is of characteristic 0, or
(B) L = {ℓ1, ℓ2} for all pairs of sufficiently large prime numbers ℓ1, ℓ2 and no

additional conditions on S.

For the proof and details on the matter of this report see [3].
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The ex-Ax conjecture (after Kollár)

Tamás Szamuely

A field k is called a C1-field if every homogeneous polynomial f ∈ k[x0, . . . , xn] of
degree d ≤ n has a nontrivial zero. More generally, it is a C′1-field if every system
of homogeneous polynomials f1, . . . , fs ∈ k[x0, . . . , xn] whose degrees di satisfy∑

di ≤ n has a nontrivial common zero. Classical examples of C′1-fields are finite
fields (Chevalley), function fields of curves over an algebraically closed field (Tsen),
and Laurent series fields over an elgebraically closed field (Lang). The notion of
C1-fields stems from E. Artin, who called them quasi-algebraically closed, because
their Brauer group is trivial (i.e. there are no nontrivial finite dimensional central
division algebras over them). For more on these fields, see e.g. [3], Section 6.2.

On the other hand, k is called a PAC (pseudo-algebraically closed) field if every
geometrically integral k-variety has a k-point. This notion was introduced in [1];
see [2] for an exhaustive and up-to-date treatment. It is known that every PAC
field has cohomological dimension one, and hence trivial Brauer group; the same
is true of C1-fields. The converse is false in both cases.

In his paper [1] cited above, Ax asked whether every perfect PAC field is C1.
This conjecture is now a theorem in characteristic 0 thanks to recent work of J.
Kollár:
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Theorem 1. (Kollár [4]) Every PAC field of characteristic 0 is C′1.

My lecture at Oberwolfach presented the proof of this theorem.

Step 1. The first idea is to observe that it is enough to prove that the Zariski closed
subset X ⊂ Pn defined as the zero locus of a system of polynomials f1, . . . , fs as
in the C′1 condition contains a geometrically integral k-subvariety.

Step 2. For a system of sufficiently general fi’s the subset X above is a smooth
complete intersection variety, and in particular geometrically integral, thus we are
done. Otherwise by an easy deformation argument one finds a fibration over P1

that contains X as a special fibre, and whose generic fibre is is a smooth complete
intersection variety defined by polynomials gi of the same degree as the fi. It then
suffices to prove:

Theorem 2. Let k be a field of characteristic 0, C a smooth projective k-curve, Z
an irreducible, projective k-variety and g : Z → C a proper surjective morphism.
Assume that the generic fibre is

(1) smooth,
(2) geometrically connected, and
(3) Fano (that is, its anti-canonical class is ample).

Then every fibre g−1(c) contains a k(c)-subvariety which is geometrically integral.

Note that a smooth complete intersection in Pn defined by polynomials satis-
fying the degree condition

∑
di ≤ n is always a Fano variety.

Step 3. Theorem 2 follows from the following variant of the Kollár–Shokurov
connectedness theorem:

Theorem 3. Let Y be a smooth, projective variety, C a smooth projective curve
and f : Y → C a proper surjective morphism with geometrically connected fibres.
Let D =

∑
aiPi be a Q-divisor on Y such that

(1) Supp(D) has simple normal crossings,
(2) Supp(D) is contained in finitely many fibres of f , and
(3) −(KY + D) is ample, where KY is the canonical divisor of Y .

Then every fibre of f : Supp(D≥1)→ C is geometrically connected.

The proof of this theorem is based on the fundamental Kawamata-Viehweg van-
ishing theorem, itself a variant of the Kodaira vanishing theorem. These vanishing
theorems are false in positive characteristic.

The theorem is applied via the following corollary:

Corollary 3. Let Y , C and f be as above, and let D =
∑

aiPi be a Q-divisor on
Y such that

(1) Supp(D) + (any fibre of f) has simple normal crossings,
(2) Supp(D) is contained in finitely many fibres of f ,
(3) −(KY + D) is ample.

Then for every c ∈ C the fibre f−1(c) contains a k(c)-irreducible component which
is geometrically integral.
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One derives the corollary by fixing first c ∈ C, and then adding to D a suitably
chosen vertical Q-divisor so that the Q-divisor D′ thus obtained still satisfies
conditions 1–3, and moreover its only component with coefficient ≥ 1 contained
in f−1(c) is an irreducible component of f−1(c) (which is smooth by definition).
Then the theorem applies to D′ and yields the corollary. To guarantee condition
3 for D′ one uses the Kleiman ampleness criterion.

Step 4. To derive Theorem 2 from the above corollary, one first observes that if
h : Z ′ → Z is a dominating morphism of varieties over C and the conclusion of
Theorem 2 holds for Z ′, then it holds for Z. Hironaka’s desingularization theorem
shows that after blowing up Z finitely many times one finds such a morphism h
with Z ′ smooth, projective, and having normal crossing fibres over C. It remains
to secure a suitable divisor D, which one finds, again after suitable blowups, using
condition 3 of Theorem 2.
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Stable reduction of Lubin–Tate spaces of dimension one

Stefan Wewers

The Lubin–Tate tower Let F be a local field. We denote by O its ring of
integers, by ℘ its maximal ideal and by k = O/℘ its residue class field. Note that
k is a finite field; we write q for the cardinality and p for the characteristic of k.

Fix an integer h ≥ 1. To F and h one can associated a certain projective system

X(℘∞) =
(
· · · → X(℘2)→ X(℘)→ X(1)

)

of rigid analytic spaces over the field F̂ nr, called the Lubin–Tate tower. At a fixed
level n ≥ 0, the rigid analytic space X(℘n) is smooth of dimension h− 1. At the
bottom level, X(1) is (non-canonically) isomorphic to an open polydisk.

Our notation (which is not the standard one) suggests a relation to modular
curves. And indeed, in the special case F = Qp and h = 2 the space X(℘n) can
be identified with a certain open subset of the rigid space over Qnr

p associated to
the classical modular curve X(pnm), for some m ≥ 3 which is prime to p. In the
general case, X(℘n) is an example of a Rapoport–Zink space, which is a sort of local
analogue of a Shimura varity.

Non-abelian Lubin–Tate theory A recent theorem of Harris and Tay-
lor [2] states that the étale cohomology of the tower X(℘∞) realizes the local
Langlands correspondence and the Jacquet–Langlands correspondence for super-
cuspidal representations of the group GLh(F ). For h = 1 this is nothing but a
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restatement of classical Lubin–Tate theory, i.e. the construction of the reciprocity
map F× → Gal(F ac/F )ab in terms of division points of certain formal groups. For
h = 2 the theorem of Harris–Taylor had been proved earlier by Carayol, extending
work of Deligne. It was also Carayol who formulated the general conjecture for
h > 2, see [1].

To be a bit more precise we have to introduce some notation. Let G := GLh(F ),
WF the Weil group of F and B the division algebra of dimension h2 over F with
invariant 1/h. The group Γ := G × B× ×WF has a surjective morphism onto Z
such that the kernel Γ0 of this map acts, in a natural way, on the tower X(℘∞).
So

H := IndΓ
Γ0
H0, H0 := lim−→

n

Hh−1
et (X(℘n)F̂ ac , Q̄ℓ)

defines an (infinite dimensional) representation of Γ. Fix a quasicharacter χ :
F× → Q̄×ℓ and letHχ denote the subspace ofH where G acts with central character
χ. Then the main theorem of non-abelian Lubin–Tate theory says the following.
For every irreducible supercuspidal representation π of G with central character χ
we have an isomorphism

(1) HomG(π,Hχ) ∼= JL(π)∨ ⊗ L(π)′

of representations of B××WF . Here JL(π) denotes the supercuspidal representa-
tion of B× corresponding to π under the Jacquet–Langlands correspondence and
L(π)′ is, up to normalization, the two-dimensional irreducible representation of
WF corresponding to π under the local Langlands correspondence.

Stable reduction of X(℘n) From now on, we suppose that h = 2. Then
the spaces X(℘n) are smooth of dimension one and occur naturally as an étale
GL2(O/℘n)-torsor of the open unit disk X(1). We call a rigid space of this form
an open analytic curve; one can see this as a non-archimedian analogue of a com-
pact Riemann surface with finitely many closed disks removed. An easy extension
of the usual semistable reduction theorem shows that the spaces X(℘n) have an
(essentially unique) stable model X (̟n). More precisely, there exists a finite ex-

tension Kn/F̂ nr and an integral model X (̟n) of X(̟n)Kn
with the following

properties. Firstly, the special fiber X̄(℘n) := X (℘n)s of X (℘n) is isomorphic
to the formal completion Y |Ẑ of a semistable curve Y over kac along a proper
closed subset Z ⊂ Y . Secondly, X (̟) is the minimal integral model satisfying
this condition. We call X̄(℘n) the stable reduction of X(℘n).

Quite recently, the author of these lines has managed to determine the stable
reduction of X(℘n), for all local fields F and all integers n ≥ 1. In particular,
he has obtained a description of the graph of components of X̄(℘n) and explicit
equations for each irreducible component of X̄(℘n). All this follows quite easily
from the results of [3] and [5].

In the special case F = Qp one can deduce (using also results of Katz and
Mazur) a description of the stable reduction at the prime p of the classical modular
curve X(N), for every integer N . So far, such a description was only known
for N = pm, (m, p) = 1. (In the case N = p2m some partial results can be
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deduced from a recent preprint of Coleman and McMurdy, which concerns the
stable reduction of X0(p

3)).

A local approach to non-abelian Lubin–Tate theory Having a hand
on the stable reduction of X(℘n), a natural question to ask is: what is the

minimal field extension Kn/F̂ nr over which this stable reduction occurs? Let

IF := Gal(F̂ ac/F̂ nr) denote the inertia group of F . Then Kn is the fixed field of
the kernel of the natural monodromy action IF → Aut(X̄(℘n)). Instead of the
monodromy action itself it actually suffices to look at the induced action of IF on
the étale cohomology group H1

et(X̄(℘n), Q̄ℓ). But this action is determined (ad-
mittedly in a rather indirect way) by Equation (1). In other words: the extension
Kn can be determined by non-abelian Lubin–Tate theory.

Somewhat surprisingly, this argument can be reversed. The methods used in [5]
(on which the computation of X̄(℘n) relies) do not yield any concrete information
on the extension Kn. However, once X̄(℘n) is known, it is possible to determine
the monodromy action IF → Aut(X̄(℘n) (one uses the distribution on X(℘n) of
the CM-points associated to quadratic extensions E/F , together with classical
Lubin-Tate theory for the local field E). Even better: one can also determine the
action of the subgroup Γ0 ⊂ Γ = G × B× ×WF on lim←−n

X̄(℘n). If the residue

characteristic p is odd then it is not very hard to deduce Equation (1) from this
knowledge. In other words: for p 6= 2 the results of [5] can be used to give a new
and purely local proof of Carayol’s theorem, i.e. of non-abelian Lubin–Tate theory
for GL2(F ).

The case p = 2 still presents some difficulties, due to the fact that the local
Langlands correspondence is not so easy to make explicit in this case. But the
author expects to be able to treat the case p = 2 in the near future as well.

It would be very interesting if one could give a local proof of Harris and Taylor’s
theorem for h > 2. A partial result in this direction (the part which only concerns
the first level X(℘) of the Lubin–Tate tower) has been achieved by T. Yoshida [6].
To treat higher levels as well, a natural approach would be to extend the results of
[5] to the case h > 2. The author thinks that this is a non-trivial but interesting
problem.
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Class field theory of arithmetic schemes

Götz Wiesend

Let F be a number field and S a finite set of places of F , including the infinite
places. Define the abelian topological group

CS := coker(F× →
⊕

v 6∈S

Z⊕
⊕

v∈S

F̂×v )

where F̂v is the completion of F at v.
Classical class field theory describes abelian extensions of F unramified outside

S. Let FS be the maximal algebraic extension of F unramified outside S. The
reciprocity map

CS → Gal(FS |F )ab

is surjective and its kernel is the connected component of 0.
We generalise this result to the higher dimensional case. Let F be the function

field of an arithmetic scheme, i.e. an integral, regular, separated scheme flat and
of finite type over Spec Z. Then π1(X) (= πét

1 (X)) classifies finite extensions of F
unramified over X . Note, if dimX = 1, then π1(X) = Gal(FS |F ), where S is the
set of places of F not related to X .

In [3] K. Kato and S. Saito describe π1(X)ab by higher dimensional Milnor

K-theory. Instead of the completions F̂v they use higher dimensional local fields
associated to X by a flag of subschemes of X .

A. Schmidt [5] uses this theory in the unramified case and deduces a presentation
of π1(X)ab, tame without K-theory.

W. Hofmann and I [2] give a desciption of πab
1 (X) for dimX = 2 which also

covers the wild case. We need no K-theory. Here this independent approach is
generalized to higher dimensions.

Let X be a separated scheme of finite type over Spec Z. A curve C on X is an
integral, closed subscheme of X of dimension 1. The function field κ(C) of C is a
global field. Denote by C∞ the (finite and infinite) places of κ(C) which do not
correspond to points of the normalisation. I associate to X the abelian topological
group

CX := coker(
⊕

C⊆X

κ(C)× →
⊕

x∈X

Z⊕
⊕

C⊆X

⊕

v∈C∞

κ̂(C)
×

v )

Here κ̂(C)v is the completion of κ(C) at v. Note that for dimX = 1 the group
CX equals the above CS , where S = X∞.

CX is a covariant functor from the category of separated schemes of finite type
over Spec Z to abelian topological groups. Using classical local and global class
field theory we construct a continuous natural transformation

ρX : CX → πab
1 (X)

of covariant functors.
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Main Theorem. Let X be regular, integral and flat over Spec Z. Then

ρX : CX → πab

1 (X)

is surjective and its kernel is the connected component of 0. It induces a bijection
between the open subgroups of πab

1 (X) and the open subgroups of CX .

Now let X be regular and flat and proper over Spec Z. The main theorem
implies that there is an exact sequence of finite groups

r⊕

i=1

Z/2→ πab
1 (X)→ CH0(X)→ 0

where r is the number of connected components of X(R) and CH0(X) is the Chow
group of zero cycles on X . In particular this gives an independent and elementary
proof of the finiteness of CH0(X), originally proved by Bloch, Kato and Saito ([1],
[3, Theorem 9.10], [4, Chapter 5]).

Now let X be integral and regular. I prove: For a finite, étale Galois cover
Y |X there is an isomorphism

CX/NY |XCY
∼= Gal(Y |X)ab.

Let X be integral and regular, let n be an integer which is invertible on X .
There is an isomorphism

CX/n ∼= πab
1 (X)/n.

The proof of the main theorem is based on the paper [6]. Consider the following
data: For each curve C on X is given a connected abelian étale covering, such
that the inertia degrees are equal at the points of intersection. It is shown in [6]
that there exists a unique connected abelian, étale covering of X compatible with
this data.
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