
Mathematisches Forschungsinstitut Oberwolfach

Report No. 7/2006

Algorithmic Graph Theory

Organised by
Artur Czumaj (New Jersey)

Friedhelm Meyer auf der Heide (Paderborn)
Klaus Jansen (Kiel)

Ingo Schiermeyer (Freiberg)

February 12th – February 18th, 2006

Abstract. The main focus of this workshop was on mathematical techniques
needed for the development of efficient solutions and algorithms for compu-
tationally difficult graph problems. The techniques studied at the workshhop
included: the probabilistic method and randomized algorithms, approxima-
tion and optimization, structured families of graphs and approximation al-
gorithms for large problems. The workshop Algorithmic Graph Theory was
attended by 46 participants, many of them being young researchers. In 15
survey talks an overview of recent developments in Algorithmic Graph The-

ory was given. These talks were supplemented by 10 shorter talks and by two
special sessions.

Mathematics Subject Classification (2000): 05Cxx.

Introduction by the Organisers

The workshop Algorithmic Graph Theory, organized by Artur Czumaj (New Jer-
sey), Friedhelm Meyer auf der Heide (Paderborn), Klaus Jansen (Kiel) and Ingo
Schiermeyer (Freiberg) was held February 12th–February 18th, 2006. This meet-
ing was attended by 46 participants from a wide range of geographic regions,
many of them young researchers. In the morning sessions survey talks providing
an overview of recent developments in Algorithmic Graph Theory were presented.

• Geometry and Graphs
– Random triangulations of planar point sets (Emo Welzl)
– Dynamic routing in graphs with applications to harbour logistics

(Rolf Möhring)
– Page migration in dynamic networks (Friedhelm Meyer auf der Heide)
– Simple coresets for clustering problems (Christian Sohler)

380 Oberwolfach Report 7/2006

• Graph Algorithms
– Parallel matching algorithms (Stefan Hougardy)
– Scheduling malleable tasks with precedence constraints (Klaus Jansen)
– Coloring random graphs (Lefteris Kirousis)
– Faster approximation algorithms for packing and covering problems

(Daniel Bienstock)
– Algebraic graph algorithms (Piotr Sankowski)

• Game Theory and Graphs
– Graphs, Games and Algorithms (Paul Spirakis)
– Learning wardrop equilibria (Bertold Vöcking)

• Graph Structures
– Phylogenetic Trees and k-leaf powers (Andreas Brandstädt)
– Arbitrarily vertex decomposable graphs (Mariusz Woźniak)
– Precoloring extension (Margit Voigt)
– On exact algorithms for treewidth (Hans Bodlaender)

There were 10 shorter talks and two special sessions on ”Graph Algorithms” (or-
ganized by Christian Sohler) and ”Graph Colouring” (organized by Ingo Schier-
meyer). The contributions showed progress in the field provided in recent years.
Furthermore, several open problems and conjectures were presented, some of them
still far from being resolved. Beyond the program there was plenty of time for the
participants to use the stimulating atmosphere of the Oberwolfach Institute for
fruitful discussions.

Algorithmic Graph Theory 381

Workshop: Algorithmic Graph Theory

Table of Contents

Ingo Schiermeyer (joint with Bert Randerath)
Upper bounds for the chromatic number of a graph . 385

Peter Tittmann
Chromatic Polynomials: Generalizations and Algorithmic Aspects 386

Lefteris M. Kirousis
Coloring Random Graphs: A Short Survey . 387

Dieter Rautenbach
Large Induced Forests in C3- and C4-free Graphs of Maximum Degree at
most 3 . 390

Dieter Kratsch (joint with Fedor V. Fomin, Fabrizio Grandoni)
Exact exponential-time algorithms for NP-hard graph problems:
Domination and Independence . 393

Hanns-Martin Teichert (joint with Martin Sonntag)
Competition structures, hamiltonian digraphs and τ-cycle factors 395

Friedhelm Meyer auf der Heide (joint with Marcin Bienkowski)
Page migration in dynamic networks . 398

Klaus Jansen (joint with Hu Zhang)
Approximation algorithms for scheduling malleable tasks under general
precedence constraints . 401

Van Bang Le (joint with Bert Randerath, Ingo Schiermeyer)
Two remarks on coloring graphs without long induced paths 401

Margit Voigt
Precoloring extensions: distance constraints for list colorings 403

Hans L. Bodlaender (joint with Fedor V. Fomin, Arie Koster, Dieter
Kratsch, Dimitrios M. Thilikos)
On Exponential Time Algorithms for Treewidth . 405

Stefan Hougardy (joint with D. Vinkemeier)
Parallel Matching Algorithms . 406

Berthold Vöcking (joint with Simon Fischer, Harald Räcke)
Learning Wadrop Equilibria . 410

Mariusz Woźniak
Arbitrarily vertex decomposable graphs . 412

382 Oberwolfach Report 7/2006

Anja Kohl
Some notes on L(d, s)−list labellings of trees and cacti 414

Annegret K. Wagler (joint with B. Randerath)
On Sparse Normal Graphs . 417

Christian Scheideler (joint with Kishore Kothapalli, Melih Onus, Andrea
Richa)

Distributed Coloring in Õ(
√

log n) Bit Rounds . 419

Piotr Sankowski
Algebraic Graph Algorithm: From Shortest Paths to Matchings 424

Alantha Newman
On Relaxation for the Maximum Acyclic Subgraph Problem 427

Jochen Könemann (joint with Lisa Fleischer, Stefano Leonardi, Guido
Schäfer)
Simple Cost Sharing Schemes for Multicommodity Rent-or-Buy and
Stochastic Steiner Tree . 429

Emo Welzl (joint with Micha Sharir)
Random triangulations of planar point sets . 432

Rolf H. Möhring (joint with Ewgenij Gawrilow, Ekkehard Köhler, Ines
Spenke, Björn Stenzel)
Dynamic Routing in Graphs with Applications to Harbour Logistics 435

Christian Schindelhauer (joint with Klaus Volbert, Martin Ziegler)
Spanners, Weak Spanners, and Power Spanners . 438

Arnfried Kemnitz (joint with Maria Axenovich, Heiko Harborth, Meinhard
Möller, and Ingo Schiermeyer)
Rainbow colorings of hypercubes . 439

Paul G. Spirakis
Graphs, Games and Algorithms . 440

Hajo Broersma (joint with Doug Bauer, Nathan Kahl, Aurora Morgana,
Ed Schmeichel, Thomas Surowiec)
Tutte sets: algorithmic and structural aspects . 441

Martin Dyer (joint with Leslie Ann Goldberg, Mike Paterson)
On counting homomorphisms to directed acyclic graphs 446

Daniel Bienstock
Faster approximation algorithms for covering and packing problems 448

Andreas Brandstädt (joint with Van Bang Le and R. Sritharan)
Phylogenetic trees and 3- and 4-leaf powers . 451

Christian Sohler (joint with Gereon Frahling)
Simple Coresets for Clustering Problems . 452

Algorithmic Graph Theory 383

Thomas Böhme (joint with Frank Göring, Jens Schreyer, Zsolt Tuza,
Herwig Unger)
Learning in Games . 453

Algorithmic Graph Theory 385

Abstracts

Upper bounds for the chromatic number of a graph

Ingo Schiermeyer

(joint work with Bert Randerath)

1. On Reed’s conjecture about ω, ∆ and χ

For a given graph G, the clique number ω(G), the chromatic number χ(G) and
the maximum degree ∆(G) satisfy ω(G) ≤ χ(G) ≤ ∆(G) + 1. In 1941 Brooks [1]
has shown that complete graphs and odd cycles are the only graphs attaining the
upper bound ∆(G) + 1.

Theorem 1. If a connected graph G = (V, E) is neither complete nor an odd
cycle, then G has a ∆(G)-colouring.

In 1998 Reed [3] posed the following conjecture:

Conjecture 1. For any graph G of maximum degree ∆,

χ(G) ≤ ⌈∆ + 1 + ω

2
⌉.

The Chvátal graph, the smallest 4-regular, triangle-free graph of order 12 with
chromatic number 4, shows that the rounding up in this conjecture is necessary.
In this talk we will present some old and new partial solutions for this conjecture.
In particular we will show that the conjecture is true

(1) for all graphs of order n ≤ 12,
(2) for all graphs with ∆(G) = n − k and α(G) ≥ k for fixed k and
(3) for all graphs with n − 5 ≤ ∆(G) ≤ n − 1.

2. A new upper bound for the chromatic number of a graph

For a connected graph G of order n, the clique number ω(G), the chromatic number
χ(G) and the independence number α(G) satisfy ω(G) ≤ χ(G) ≤ n − α(G) + 1.
We will show that
χ(G) ≤ n+ω+1−α

2 , which is the arithmetic mean of the previous lower and upper
bound.

Theorem 2. [4] Let G be a connected graph of order n with clique number ω(G),
chromatic number χ(G) and independence number α(G). Then χ(G) ≤ n+ω+1−α

2 .
Moreover, if G contains no (Kω+3 − C5) and is not a split graph, then χ(G) ≤
n+ω−α

2 .

386 Oberwolfach Report 7/2006

Combining Theorem 1 and Theorem 2 we obtain the following improved upper
bound for the chromatic number of a graph.

Theorem 3. [4] Let G be a connected graph of order n with clique number ω(G),
chromatic number χ(G), maximum degree ∆(G) and independence number α(G).
Then χ(G) ≤ min{∆(G)+1, n+ω+1−α

2 }. Moreover, if G contains no (Kω+3 −C5)

and is neither a split graph nor an odd cycle, then χ(G) ≤ min{∆(G), n+ω−α
2 }.

References

[1] R. L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941)
194-197.

[2] B. Randerath and I. Schiermeyer, On Reed’s Conjecture about ω, ∆ and χ, Preprint 2004.
[3] B. A. Reed, ω, ∆ and χ, J. Graph Theory 27 (4), (1998), 177-212.

[4] I. Schiermeyer, A new upper bound for the chromatic number of a graph, Preprint 2006.

Chromatic Polynomials: Generalizations and Algorithmic Aspects

Peter Tittmann

The chromatic polynomial P (G, x) of a finite undirected graph G = (V, E) gives
the number of proper vertex colorings of G with x colors. In [1] we introduced a
two-variable polynomial which simultaneously generalizes the chromatic polyno-
mial, the independence polynomial, and the matching polynomial of a graph. The
new polynomial is defined by

P (G; x, y) =
∑

X⊆V

(x − y)|X|P (G − X ; y) .

It may also be considered as an evaluation of Stanley’s chromatic symmetric
function XG [3].
It is known [4] that the computation of the chromatic polynomial is a #P-hard
problem. In [1], we showed that the computation of the generalized chromatic
polynomial P (G; x, y) is in P for graphs of bounded treewidth and for graphs with
a complement of bounded treewidth. This result implies that the computation
of the chromatic polynomial, the matching polynomial, and the independence
polynomial is a polynomial problem within these graph classes.
A partition π of the vertex set V is a clique partition if each block of π induces a
clique in G. Let CG be the set of all clique partitions of G. We denote by ci the
number of partitions of CG with exactly i blocks. The clique partition polynomial
of G is defined by

C(G, x) =
∑

π∈CG

x|π| =

n
∑

i=0

cix
i.

This polynomial is closely related to the adjoint polynomial [2].
Let U be a separating vertex set of G such that the split components with respect
to U are subgraphs G1 and G2 of G. Both polynomials, C (G, x) and P (G, x),

Algorithmic Graph Theory 387

satisfy a splitting formula, that is a representation as a sum with respect to split
components:

f (G, x) =
∑

σ,τ

a (σ, τ) f
(

G1
σ, x

)

f
(

G2
τ , x

)

The sum runs over all partitions σ and τ of U . The polynomial f stands for
either C or P . The function a depends only on σ and τ . The splitting formula
leads to efficient algorithms for the computation of f (G, x) in graphs of bounded
treewidth. There is, in addition, a simple way to obtain the coefficients of P (G, x)
from C

(

Ḡ, x
)

and the coefficients of C (G, x) from P
(

Ḡ, x
)

. Thus we can switch
arbitrarily often to the complement while computing the chromatic polynomial of
a graph. In this way we obtain a graph class permitting an efficient computation of
the chromatic polynomial that generalizes both the class of graphs with bounded
treewidth and those graphs having a complement of bounded treewidth. The open
problem is the characterization of this class by simple properties, forbidden minors,
etc.

References

[1] Klaus Dohmen, Andre Pönitz, Peter Tittmann: A new two-variable generalization of the
chromatic polynomial, Discrete Mathematics & Theoretical Computer Science, Volume 6, n◦

1 (2003), 69-90.
[2] Ruying Liu, Haixing Zhao, Xueliang Li, Ligong Wang: On properties of adjoint polynomials

of graphs and their applications, Australas. J. Combin. 30 (2004) 291-306.
[3] Richard P. Stanley: Enumerative combinatorics, Volume II, Cambridge University Press,

1999.
[4] D.J.A. Welsh: Knots,colourings and counting, Cambridge University Press, Cambridge, 1993.

Coloring Random Graphs
A Short Survey

Lefteris M. Kirousis

RA Computer Technology Institute
and

Department of Computer Engineering and Informatics, University of Patras

The model. Unless otherwise stated, we consider random graphs in the classical
Erdős-Rényi models Gn,p or Gn,m. Although in some respects these two models
are not equivalent between them, for the purposes of this short survey we use
them interchangeably. We consider sparse graphs, i.e. graphs where p = d/n or
alternatively m = dn/2. Average number of edges in G(n, p = d/n) is ∼ dn/2 and
therefore average degree is d. The value d/2 is known as the edge-density.

Phase transitions: non-rigorous results. It was experimentally verified [1]
that or each fixed k (amenable to experimentation), there is a threshold average
degree d∗k such that

388 Oberwolfach Report 7/2006

• If d < d∗k, then a random graph with average degree d is a.a.s. k-colorable,
while

• if d > d∗k then such a graph is a.a.s. non-k-colorable.

NB: “a.a.s.” means with probability approaching 1 asymptotically with the num-
ber of vertices.
Analytic (but non-rigorous) verification of the previous experimental results by
the cavity and replica symmetry breaking methods of Statistical Physics.
For k = 3 experiments and analytic non-rigorous results suggest that d∗3 ≃ 4.69.

The Achlioptas–Friedgut theorem [2]. For all k ≥ 3, there is a sequence d∗k(n)
such that ∀ǫ, a random graph with average degree d∗k(n) − ǫ is a.a.s. k-colorable
and a random graph with average degree d∗k(n) + ǫ is a.a.s. non-k-colorable.
Still open question for k ≥ 3: Does d∗k(n) converge? If yes, to what value?

Corollary 1. Given d, if the probability that a random graph with average degree
d is k-colorable is bounded away from zero, then for any d′ < d, a random graph
with average degree d′ is a.a.s. k-colorable.

Upper bounds. The G(n, m) model is better suited in this case. Reminder:
experimentally, the putative threshold of 3-colorability occurs for edge-density
2.35 (average degree 4.69).

• First upper bound for 3-colorability: 2.71 — observed by several research-
ers independently – Markov’s inequality.

• Current best: 2.427 [3] – typical graphs plus the decimation technique.

Basic technique: Let G be a random graph and C(G) the random class of its
3-colorings. Then

Pr[G is 3-colorable] = Pr[|C(G)| ≥ 1] ≤ E(|C(G)|).
E(|C(G)|) is easy to compute. So we find the values of edge-density for which
it vanishes and thus we get a trivial upper bound, namely 2.71. This method is
improved by two techniques:

• Make C(G) (the set of all 3-colorings) “thinner” by considering rigid 3-
colorings, i.e. colorings where any change of color to a higher one (in the
RGB ordering) destroys the legality [4, 5].

• Examine not the whole space of possible graphs, but a subset of it com-
prised of graphs that are (i) are typical with respect to their degree se-
quence (Poisson) and (ii) have been repetitively depleted of vertices of
degree 2 or less, as these vertices do not interfere with the colorability (the
decimation technique [3]). This gives the current best upper bound.

Lower bounds. To show that d−k is a lower bound for d∗k, consider a simple
algorithm for k-coloring (like list coloring with simple heuristics for the selection
of the next vertex to be colored, and without backtracking) and prove that for
d < d−k , the coloring algorithm a.a.s. succeeds. The best lower bound for 3-Col

obtained in this way: 4.03 [6]. There is evidence that the algorithmic approach
cannot overcome a barrier smaller than the value of the experimental threshold.

Algorithmic Graph Theory 389

Also, this technique gives no improvement over the previously known best lower
bound of 2k ln k − o(k ln k) for d∗k, for arbitrary k. NB: By the first moment
method: d∗k < 2k ln k − ln k. Also known that the chromatic number of graphs in
G(n, p = d/n) ranges a.a.s. within a window of only two possible integer values.
However, no information on these two values. Task: Make the known asymptotic
of the lower bound of d∗k finer so that the two possible values of the chromatic
number are found.

The second moment method. Let X be a non-negative variable (usually a
counting variable) that depends on n. Then:

Pr[X > 0] ≥ (E(X))
2

E(X2)
.

Achlioptas and Naor [7]. Let kd be the smallest integer k such that d < 2k ln k.
Almost all Gn,p=d/n random graphs have chromatic number either kd or kd + 1.
Method of Proof: Second moment where X counts the number of balanced k-
colorings of Gn,p=d/n. Balanced: each color is assigned to an equal number of
vertices.

Random regular graphs. Progress is slower. Was known that the chromatic
number of random regular graphs of degree d a.a.s. ranges in {kd, kd + 1, kd + 2},
where kd is the smallest integer k such that d < 2k ln k. Also, known that almost
all 4-regular graphs have chromatic number 3, and that almost all 6-regular graphs
have chromatic number 4. Moreover, non-rigorous results from physics indicate
that almost all 5-regular graphs have chromatic number 3 but that it would be
difficult to prove this with local search algorithmic techniques. Until recently, the
only rigorous result for 5-regular graphs was that almost all of them have chromatic
number 3 or 4. Finally, second moment fails when X counts 3-colorings, even if
they are balanced.
Indeed, by linearity of expectation and by summing over pairs of 3-colorings we
have:

E(X2) =
∑

i

EiPi,

where Ei is the number of pairs of 3-colorings with a given pattern of color assign-
ments (characterized by a parameter i) (entropy factor) and Pi is the probability
that a fixed pair of color assignments with pattern Ei is legal (energy factor).

Now, the term EiPi that is equal (ignoring sub-exponential factors) to (E(X))
2

is the barycentric term that corresponds to a completely symmetric pattern, but
unfortunately unlike the case of G(n, p) graphs, the barycentric term is not the
prevalent one in the sum. It turns out that an exponentially larger than the
barycentric term is obtained for pairs of colorings that are slightly biased towards
assigning the same color to a vertex.
To eliminate this bias, the authors in [8] considered colorings where each vertex has
neighbors with both the other two legal colors. Thus they proved that a 5-regular
graph is 3-colorable with positive probability independent of its size. Recently
Kemkes and Wormald [9] raised this probability to 1 (asymptotically).

390 Oberwolfach Report 7/2006

References

[1] P. Cheeseman, R. Kanefsky, and W. Taylor, Where the really hard problems are, IJCAI
(1991), 163–169.

[2] D. Achlioptas and E. Friedgut, A sharp threshold for k-colorability, Random Struct. Algo-
rithms 14(1) (1999), 63–70.

[3] O. Dubois and J. Mandler, Unpublished result.
[4] D. Achlioptas and M. Molloy, Almost all graphs with 2.522n edges are not 3-colorable, Electr.

J. Comb. 6 (1999).
[5] A.C. Kaporis, L.M. Kirousis, and Y.C. Stamatiou, A Note on the non-colorability threshold

of a random graph, Electr. J. Comb. 7 (2000).
[6] D. Achlioptas and C. Moore, Almost all graphs with average degree 4 are 3-colorable, J.

Comput. Syst. Sci. 67(2) (2003), 441–471.
[7] D. Achlioptas and A. Naor, The two possible values of the chromatic number of a random

graph, STOC (2004), 587–593.
[8] G. Grammatikopoulos, J. Dı́az, A.C. Kaporis, L.M. Kirousis, X. Pérez, and D.G. Sotiropou-

los, 5-Regular Graphs are 3-Colorable with Positive Probability, ESA (2005), 215–225.
[9] G. Kemkes and N. Wormald, On the chromatic number of a 5-regular random graph, Re-

search Report CORR 2005-22, Faculty of Mathematics, University of Waterloo (2005).

Large Induced Forests in C3- and C4-free Graphs of Maximum Degree
at most 3

Dieter Rautenbach

The Four Color Theorem immediately implies that every planar graph (all con-
sidered graphs are finite, simple and undirected) of order n has an independent set
of order at least n

4 . In view of the complicated proof of the Four Color Theorem
there is interest in simpler proofs of this and similar statements and several related
conjectures have been proposed.
Albertson and Berman [2] conjectured that every planar graph of order n has an
induced forest of order at least n

2 and Akiyama and Watanabe [1] conjectured that

every bipartite planar graph of order n has an induced forest of order at least 5n
8 .

Borodin [5] proved that every planar graph of order n has an induced forest of
order at least 2n

5 and Borodin and Glebov [6] proved that every C3- and C4-free
planar graph can be partitioned into an independent set and an induced forest.
Motivated by this kind of problem, Alon, Mubayi and Thomas [4] study the ex-
istence of large induced forests in K4-free graphs of maximum degree at most 3.
As an essential tool for their result they prove (cf. Lemma 2.1 in [4]) that every
C3-free graph G = (V, E) of order n and size m has an induced forest of order at
least

n − m

4
=

∑

u∈V

(

1 − dG(u)

8

)

.(1)

Here we consider the closely related problem of the existence of large induced
forests in C3- and C4-free graphs of maximum degree at most 3 and present a
best-possible result.

Algorithmic Graph Theory 391

In [3] Alon, Kahn and Seymour [3] studied the existence of large induced d-
degenerate subgraphs (a graph is d-degenerate if every induced subgraph has a
vertex of degree less than d. Note that independent sets and forests correspond
exactly to 1-degenerate and 2-degenerate graphs, respectively.). Generalizing the
lower bound on the independence number due to Caro [7] and Wei [9] they prove
that every graph G = (V, E) has an induced d-degenerate subgraph of order

∑

u∈V

min
{

1, d
dG(u)+1

}

(2)

and explicitely ask for an improvement of this estimate for C3-free graphs. In view
of this question we would like to mention the simple observation that the proof
given by Shearer [8] for his lower bound (Theorem 1 in [8]) for the independence
number in C3-free graphs immediately implies the following.

Proposition 1. Every C3-free graph G = (V, E) has an induced d-degenerate
subgraph of order at least

∑

u∈V

fd(dG(u)) with fd(i) = 1 for 0 ≤ i ≤ d − 1 and

fd(i) =
1+(i2−i)fd(i−1)

i2+1 for i ≥ d.

Sketch of the proof: Clearly, we can assume that G has no vertex of degree less than
d. If we can find a vertex u such that 0 ≤ 1 − fd(dG(u)) − ∑

v∈NG(u) fd(dG(u)) +
∑

w:distG(u,w)=2

(fd(dG(w) − |NG(u) ∩ NG(w)|) − fd(dG(w))), then adding u to a suf-

ficiently large induced d-degenerate subgraph of G[V \ ({u} ∪NG(u))] implies the
desired result by an inductive argument. The existence of such a vertex is estab-
lished by proving - essentially using C3-freeness and properties of fd - that the
sum of the above terms over all vertices u ∈ V is non-negative.

For a graph G let a(G) denote the maximum order of an induced forest. We
present a lower bound on a(G) for C3- and C4-free graphs of maximum degree at
most 3. The graph whose components are as the graph in Figure 1 clearly shows
that our bound is best-possible. (The vertices that induce a forest of maximum
order are encircled.)

q

q

qc

q

qc

qc

qc

qc

qc

q

qcqc

@
@@
�
�
�C

C
C
�
��

���

@
@@

�
��

XXX

L
L
L
L

```̀

�
�
�
�

    

Figure 1: A cubic C3- and C4-free graph G with
a(G) = 8 = 12 − 18 · 2

9 = n(G) − 2
9m(G).



392 Oberwolfach Report 7/2006

Theorem 2. If G is a C3- and C4-free graph of maximum degree at most 3, then

a(G) ≥ n(G) − 2

9
m(G).

Sketch of the proof: For the proof we choose a counterexample of minimum order
and deduce a contradiction via the analysis of quite a long list of local configura-
tions. In order to convey a flavour of the argument we give just one example.
Assume that G contains the graph in Figure 2 as an induced subgraph such that
deleting the vertices in {xi | 0 ≤ i ≤ 4} and adding the dotted edge y0y4 does not
create a cycle of length less than 5, i.e. G′ = G − {xi | 0 ≤ i ≤ 4} + {y0y4} is C3-
and C4-free.
Since G′ is no counterexample, there is a set F ′ with |F ′| ≥ (n − 5) − 2

9 (m − 9)
such that G′[F ′] is a forest. Since G[F ′ ∪ {x0, x2, x4}] is a forest (cf. Figure 2) of
order at least n − 2

9m − 5 + 9 · 2
9 + 3 = n − 2

9m, we obtain a contradiction. 2

We close with some open problems.
Whereas (1) is best-possible for cubic graphs there seems to be room for im-
provement for 4-regular and 5-regular graphs. Examples in [4] suggest that the
best-possible estimates could be a(G) ≥ 4

7n for 4-regular graphs G of order n and

a(G) ≥ 1
2n for 5-regular graphs G of order n.

What happens with the bound in Theorem 2 if we consider larger girths or do not
restrict the maximum degree? What are the extremal graphs?
Note that the bounds (1), (2) and also the bounds given in Proposition 1 and
Theorem 2 are of a similar form in the sense that every vertex contributes an
amount depending on its degree. In view of this, one could study conditions on
functions g : N0 = {0, 1, 2, ...} → R with the property that every (C3-free) graph
G = (V, E) has an induced forest (induced d-degenerate subgraph) of order at
least

∑

u∈V

g(dG(u)).

qc

x0

q

y0

q

x1 q

y1

qcx2

qy2

qx3

qy3

qc

x4q

y4 @
@@
�
�
�C

C
C
�
��

���

@
@@

�
��

XXX

Figure 2: G′ = G − {xi | 0 ≤ i ≤ 4} + {y0y4}.

References

[1] J. Akiyama and M. Watanabe, Maximum induced forests of planar graphs, Graphs Comb.
3 (1987), 201-202.



Algorithmic Graph Theory 393

[2] M.O. Albertson and D.M. Berman, A conjecture on planar graphs, in: Graph Theory and
Related Topics, J. A. Bondy and U. S. R. Murty, (eds.), Academic Press, 1979, 357.

[3] N. Alon, J. Kahn and P.D. Seymour, Large induced degenerate subgraphs, Graphs Comb.
3 (1987), 203-211.

[4] N. Alon, D. Mubayi and R. Thomas, Large induced forests in sparse graphs, J. Graph
Theory 38 (2001), 113-123.

[5] O.V. Borodin, A proof of Grünbaum’s conjecture on the acyclic 5-colorability of planar
graphs, Sov. Math., Dokl. 17 (1976), 1499-1502.

[6] O.V. Borodin and A.N. Glebov, On the partition of a planar graph of girth 5 into an empty
and an acyclic subgraph, Diskretn. Anal. Issled. Oper., Ser. 1 8 (2001), 34-53.

[7] Y. Caro, New results on the independence number, Technical report, Tel-Aviv University,
1979.

[8] J.B. Shearer, A note on the independence number of triangle-free graphs, II, J. Comb.
Theory, Ser. B 53 (1991), 300-307.

[9] V.K. Wei, A lower bound on the stability number of a simple graph, Bell Laboratories
Technical Memorandum 81-11217-9, 1981.

Exact exponential-time algorithms for NP-hard graph problems:
Domination and Independence

Dieter Kratsch

(joint work with Fedor V. Fomin, Fabrizio Grandoni)

The interest in exact and fast exponential time algorithms solving hard problems
dates back to the sixties and seventies [4, 5]. The last decade has seen an increasing
interest in research in fast exponential-time algorithms. Examples of recently
developed exponential-time algorithms for NP-hard graph problems are algorithms
for Coloring [1, 2] Max-Cut [6] and Treewidth [3].
We refer to the nice survey written by Woeginger. He emphasizes the main tech-
niques to construct fast exponential time algorithms for NP-hard problems, among
them dynamic programming and “branch & reduce” (also called backtracking, and
“cutting the search tree”). Branch & reduce seems to be the most promising ap-
proach for a variety of NP-hard problems, among them various graph problems.
The analysis of such recursive algorithms is based on the bounded search tree
technique: a measure of the size of the subproblems is defined; this measure is used
to lower bound the progress made by the algorithm at each branching step. For the
last 30 years the research on branch & reduce algorithms has been mainly focused
on the design of more and more sophisticated algorithms. However, measures used
in the analysis are usually very simple.

In our research we have shown the power of analysing the worst case running
time of simple branch & reduce algorithms using a sophisticated measure. This
approach has been called “Measure & Conquer” and while it seems useful for the
analysis of most branch & reduce algorithms, the following two results of our work
seem to be particularly striking.



394 Oberwolfach Report 7/2006

(1) We obtained the currently fastest exponential time algorithm to compute
a minimum dominating set of a graph. Our simple branch & reduce algo-
rithm has running time O(20.598 n). (For a long time nothing better than
the trivial O(2n) time algorithm had been known.)

(2) We provide a simple branch & reduce algorithm to solve the well-studied
maximum independent set problem. Its analysis with a sophisticated mea-
sure shows that the running time of the algorithm is O(20.288 n), which is
competitive with the current best time bounds obtained with far more
complicated algorithms (and naive analysis).

Our work suggests possible ways for a better analysis of branch & reduce algo-
rithms based on the right choice of the measure. It also supports the intuition
that the running time of many branch & reduce exponential time algorithms is
overestimated.
This motivated research on lower bounds of the worst case running time for a
particular branch & reduce algorithm. We obtained a lower bound of Ω(20.333n) for
our dominating set algorithm and a lower bound of Ω(20.167 n) for our independent
set algorithm.
The large gap between the upper and the lower bounds of the two algorithms may
suggest that the upper bounds are far from being tight, i.e. the worst case running
time of our algorithms might be (much) better than the upper bounds that we are
able to prove.

References

[1] R. Beigel and D. Eppstein. 3-coloring in time O(1.3289n). Journal of Algorithms 54:168–204,
2005.

[2] J. M. Byskov, Enumerating maximal independent sets with applications to graph colouring,
Operations Research Letters 32 (2004) 547–556.

[3] F. V. Fomin, D. Kratsch, and I. Todinca, Exact algorithms for treewidth and minimum
fill-in, Proceedings of the 31st International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2004), Springer, LNCS vol. 3142, 2004, pp. 568–580.

[4] M. Held and R.M. Karp, A dynamic programming approach to sequencing problems, Journal
of SIAM 10 (1962), 196–210.

[5] R. Tarjan and A. Trojanowski, Finding a maximum independent set, SIAM Journal on
Computing 6 (1977) 537–546.

[6] R. Williams, A new algorithm for optimal constraint satisfaction and its implications, Pro-
ceedings of the 31st International Colloquium on Automata, Languages and Programming
(ICALP 2004), Springer, LNCS vol. 3142, 2004, pp. 1227–1237.

[7] G. J. Woeginger, Exact algorithms for NP-hard problems: A survey, Combinatorial Opti-
mization – Eureka, You Shrink, Springer, LNCS vol. 2570, 2003, pp. 185–207.



Algorithmic Graph Theory 395

Competition structures, hamiltonian digraphs and τ-cycle factors

Hanns-Martin Teichert

(joint work with Martin Sonntag)

All hypergraphs H = (V (H), E(H)), graphs G = (V (G), E(G)) and digraphs D =
(V (D), A(D)) considered here may have isolated vertices but no multiple edges.
Loops are allowed only in digraphs.
In 1968 Cohen [2] introduced the competition graph C(D) associated with a digraph
D = (V, A) representing a food web of an ecosystem. C(D) = (V, E) is the graph
with the same vertex set as D (corresponding to the species) and

E = {{u, w} | u 6= w ∧ ∃ v ∈ V : (u, v) ∈ A ∧ (w, v) ∈ A},
i.e. {u, w} ∈ E if and only if u and w compete for a common prey v ∈ V .
In our paper [8] it is shown that in many cases competition hypergraphs yield
a more detailed description of the predation relations among the species in D =
(V, A) than competition graphs. If D = (V, A) is a digraph its competition hyper-
graph CH(D) = (V, E) has the vertex set V and e ⊆ V is an edge of CH(D) iff
|e| ≥ 2 and there is a vertex v ∈ V , such that e = {w ∈ V | (w, v) ∈ A}.
For a graph G, let us call a collection {C1, . . . , Cp} an edge clique cover of G, if
each Ci ⊆ V (G) generates a clique in G (not necessarily maximal) or Ci = ∅, and
every edge of G is contained in at least one of these cliques.
If M = (mij) is the adjacency matrix of digraph D, then the competition graph
C(D) is the row graph RG(M) (see Greenberg, Lundgren and Maybee [5]). To
find a similar characterization for competition hypergraphs, we defined in [8] the
row hypergraph RH(M). The vertices of this hypergraph correspond to the rows
of M , i.e. to the vertices v1, v2, . . . , vn of D, and the edges correspond to certain
columns; in detail:

E(RH(M)) =
{

{vi1 , . . . , vik
}|k ≥ 2∧∃j ∈ {1, . . . , n} : mij = 1 ⇔ i ∈ {i1, . . . , ik}

}

.

Lemma 1 ([8]). . Let D be a digraph with adjacency matrix M . Then the com-
petition hypergraph CH(D) is the row hypergraph RH(M).

Results for competition graphs of hamiltonian digraphs are given in Fraughnaugh
et al. [4].

Theorem 2 ([4]). A graph G with n vertices is a competition graph of a hamilton-
ian digraph without loops if and only if G has an edge clique cover {C1, C2, . . . , Cn}
with a system of distinct representatives {vn, v1, . . . , vn−1} such that

(1) ∀i ∈ {1, . . . , n} : vi /∈ Ci.

In the same paper [4] it is shown that condition (1) may be omitted in Theorem 2
if D may have loops, Guichard [6] had success in combining both results if G has
n ≥ 3 vertices.



396 Oberwolfach Report 7/2006

Theorem 3 ([6]). A graph G with n ≥ 3 vertices is a competition graph of a hamil-
tonian digraph without loops if and only if G has an edge clique cover {C1, . . . , Cn}
with a system of distinct representatives.

Next we provide some results characterizing competition graphs and competition
hypergraphs which are important for our further investigations.
A graph G with n vertices is the competition graph of digraph which may have
loops if and only if there is an edge clique cover of G containing at most n cliques
(cf. Dutton and Brigham [3]). Moreover, if additionaly G 6= K2 is fulfilled, G is
even the competition graph of a digraph without loops (cf. Roberts and Steif [7]).
Hence the conditions in Theorem 2 and Theorem 3 provide that G is the com-
petition graph of a digraph which may have loops and a digraph without loops,
respectively. This is one reason that the additional condition (1) of Theorem 2
may be omitted in Theorem 3.
For hypergraphs the following results are known.

Theorem 4 ([8]). A hypergraph H with n vertices is a competition hypergraph of
a digraph which may have loops if and only if |E(H)| ≤ n.

Because of the numerous possibilities for edge cardinalities in hypergraphs, the
result for digraphs without loops becomes more complicated. For t ∈ IN we define

Mk = {Mk ⊆ {1, . . . , t}| |Mk| = k} for k = 1, . . . , t.

Theorem 5 ([8]). Let H be a hypergraph with n vertices and E(H) = {e1, . . . , et}.
Then H is a competition hypergraph of a digraph without loops if and only if

∀k ∈ {1, . . . , t} ∀Mk ∈ Mk : |
⋂

j∈Mk

ej | ≤ n − k.

There are two interesting points of view for the investigations of competition hy-
pergraphs of hamiltonian digraphs:

a) The t ≤ n edges of the competition hypergraph CH(D) correspond to certain
cliques of a suitable edge clique cover {C1, . . . , Cn} of the competition graph C(D).
In Theorem 2 and 3 there are conditions for all these n cliques C1, . . . , Cn. In case
of hypergraphs it would be desirable to formulate conditions only for the t ≤ n
edges, and this will be possible.

b) Considering Theorems 2 and 3 the question arises whether in case of loopless
digraphs a condition corresponding to (1) is needed or not?

Our results will show that, unfortunately, the answer to the question b) is yes.
However, if we do not postulate such a condition we can prove a weaker result;
this motivates the following definition. According to Bang-Jensen and Gutin [1] a
system {~c1, . . . ,~cτ} of oriented cycles in a digraph D is called a τ-cycle factor if
every vertex of D is contained in exactly one cycle ~cj ∈ {~c1, . . . ,~cτ}. Clearly, for
τ = 1 the digraph D is hamiltonian.



Algorithmic Graph Theory 397

The following result characterizes competition hypergraphs of digraphs D having
a τ -cycle factor. Note that sometimes τ ≥ 2 is unavoidable.

Theorem 6 ([9]). Let H be a hypergraph with n vertices and E(H) = {e1, . . . , et}.
Then the following conditions are equivalent.

(i) H is the competition hypergraph of a loopless digraph D having a τ-cycle factor.

(ii) ∀ k ∈ {1, . . . , t} ∀Mk ∈ Mk :
∣

∣

⋃

j∈Mk

ej

∣

∣ ≥ k ∧
∣

∣

⋂

j∈Mk

ej

∣

∣ ≤ n − k.

(iii) H is the competition hypergraph of a loopless digraph and E(H) has a system
of distinct representatives.

For the proof of Theorem 6 we use Lemma 1, Theorem 5, Halls Theorem and the
fact that any permutation of rows or columns in a matrix M does not change the
row hypergraph RH(M) (up to isomorphism).

Finally we characterize the competition hypergraphs of hamiltonian digraphs with-
out loops; for this purpose the condition (2) below, which corresponds to (1) in
Theorem 2, is necessary.

Theorem 7 ([9]). A hypergraph H with V (H) = {v1, . . . , vn} and E(H) =
{e1, . . . , et} is the competition hypergraph of a hamiltonian digraph without loops
if and only if there is a subset {j1, . . . , jt} ⊆ {1, . . . , n} of pairwise distinct in-
dices such that {vj1−1, . . . , vjt−1} (indices taken mod n) is a system of distinct
representatives of {e1, . . . , et} and furthermore

(2) ∀i ∈ {1, . . . , t} : vji /∈ ei.

As an immediate consequence we obtain a characterization for the case of hamil-
tonian digraphs with loops allowed.

Corollary 8 ([9]). A hypergraph H is the competition hypergraph of a hamilton-
ian digraph (which may have loops) if and only if E(H) has a system of distinct
representatives.

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: theory, algorithms and applications, Springer,
London, 2001.

[2] J.E. Cohen, Interval graphs and food webs: a finding and a problem, Rand Corporation

Document 17696-PR, Santa Monica, CA, 1968.
[3] R.D. Dutton and R.C. Brigham, A characterization of competition graphs, Discr. Appl.

Math. 6 (1983), 315–317.
[4] K.F. Fraughnaugh, J.R. Lundgren, S.K. Merz, J.S. Maybee and N.J. Pullman, Competition

graphs of strongly connected and hamiltonian digraphs, SIAM J. Discr. Math. 8 (1995),
179–185.

[5] H.J. Greenberg, J.R. Lundgren and J.S. Maybee, Inverting graphs of rectangular matrices,
Discr. Appl. Math. 8 (1984), 255–265.



398 Oberwolfach Report 7/2006

[6] D.R. Guichard, Competition graphs of hamiltonian digraphs, SIAM J. Discr. Math. 11
(1998), 128–134.

[7] F.S. Roberts and J.E. Steif, A characterization of competition graphs of arbitrary digraphs,
Discr. Appl. Math. 6 (1983), 323–326.

[8] M. Sonntag, H.-M. Teichert, Competition hypergraphs, Discr. Appl. Math. 143 (2004), 324–
329.

[9] M. Sonntag, H.-M. Teichert, Competition hypergraphs of digraphs with certain properties,
(2006), to appear.

Page migration in dynamic networks

Friedhelm Meyer auf der Heide

(joint work with Marcin Bienkowski)

Page migration is a basic, simple model for data management in networks: A page
of size D is given that has to be stored in exactly one node of a given network.
The task is to serve a sequence of requests to data items from the page where
each request is described by the issuing processor. The cost of serving the request
is the shortest path length between the issuing processor and the page. The
page migration algorithm has to decide, after each served request, if the page is
migrated, and, in case of ”yes”, where it is migrated to. The cost for migration is
D times the migration distance. As the shortest-path distances in a network form
a metric, we will from now on take the more general view and assume nodes and
distances to be defined by some metric space.
In the online setting, each decision - migrate or not - has to be done without
knowledge about future requests. The quality of such an online algorithm is mea-
sured by its competitive ratio, i.e., the factor by which the online algorithm is
more expensive than an optimal offline algorithm that knows the whole input se-
quence in advance. Page migration is a very well studied online problem, constant
competitive ratio can be achieved, see [1, 2, 3, 4, 14]. Further, more general data
management problems (bounded memory, multiple copies of data items,...) were
investigated, see [5, 12, 13].

The dynamic page migration (DPM) problem.
In this talk, we extend page migration to dynamic networks, where a further input
stream dictates network changes. We assume a ”speed limit” on the nodes, i.e.,
each node can move only within a cycle of diameter one in each step. Like in the
static case, the offline dynamic page migration (DPM) problem can be solved by
an easy dynamic programming approach in polynomial time.
Since the input sequence consists of two streams, one describing the request pat-
terns and one reflecting the changes in network topology, it is reasonable to assume
that they are created by two separate adversarial entities, the request adversary
and the network adversary. This separation yields different scenarios depending
on ways in which these adversaries may act and interact.



Algorithmic Graph Theory 399

The adversarial (cooperative) scenario.
The most straightforward model, which also creates the most difficult task to
solve, arises when both adversaries may cooperate to create the combined input
sequence. For this scenario, in [8] we construct a deterministic strategy which

is O(min{n ·
√

D, D})-competitive. This algorithm is up to a constant factor
optimal, due to the matching lower bound for adaptive-online adversaries, given
in [10]. Further, we show how to randomize this strategy to get a competitive

ratio of O(
√

D · log n, D}) against an oblivious (may not see outcomes of coin
flips) adversary. This result is up to a O(

√
log n) factor optimal as shown in [8].

As shown above, the competitive ratios of the best possible algorithms for the
DPM problem are large, even against the weakest, the oblivious adversaries. It
can be inferred that the poor performance of algorithms for this scenario is caused
by the fact that the network and request adversaries might combine their efforts
in order to destroy our algorithm. However, it is not an easy task to model such a
non-cooperative behavior. Therefore, it was proposed in [6, 9, 10] that the DPM
problem could be analyzed in another extreme case, where one of the adversaries
is replaced by a stochastic process. This leads to the following two scenarios.

The Brownian motion scenario.
In this scenario the mobile nodes perform a random walk on a bounded area of
diameter B, and the request adversary dictates which nodes issue requests during
runtime. However, the adversary is “oblivious”, i.e. it has to create the whole
request sequence (σt)t in advance, without knowledge of the actual configuration
sequence (ct)t induced by a random walk. The definition of competitiveness has
to be adapted appropriately to reflect the fact that the input sequence is created
both by an adversary and a stochastic process. A deterministic algorithm ALG is
R-competitive with probability p, if there exists a constant A, s.t., for all request
sequences (σt)t, it holds that

(1) Pr(ct)t

[

CALG((ct)t, (σt)t) ≤ R · COPT ((ct)t, (σt)t) + A
]

≥ p ,

where the probability is taken over all possible configuration sequences generated
by the random movement.
The main result of [9], based on the preliminary result of [10],is an algorithm

MAJ , which is O(min{ 4
√

D, n} · polylog(B, D, n))-competitive. This result holds

for 1-dimensional areas if B ≤ Õ(
√

D), or for any constant-dimensional areas if

B ≥ Õ(
√

D). The ratio is achieved w.h.p., i.e. , the probability p occurring in (1)
can be amplified to 1 − D−α by setting A = α · A0 for a fixed constant A0.

The stochastic requests scenario.
In this scenario. it is assumed that requests appear with some given frequencies,
i.e. , in step t, σt is a node chosen randomly according to a fixed probability
distribution π. Analogously, a deterministic algorithm ALG is R-competitive with
probability p, if there exists a constant A, s.t. for all possible network topology
changes (configuration sequences) (ct)t and all possible probability distributions



400 Oberwolfach Report 7/2006

π holds

(2) Pr(σt)t

[

CALG((ct)t, (σt)t) ≤ R · COPT ((ct)t, (σt)t) + A
]

≥ p ,

where the probability is taken over all possible request sequences (σt)t generated
according to π.
The Move-To-First-Request algorithm presented in [6] achieves O(1)-competitive
ratio, w.h.p. In this context, high probability means that one can achieve proba-
bility 1 − D−α, if the input sequence is sufficiently long. Moreover, the algorithm
can be slightly modified to handle also the following cost function

(3) ct(va, vb) = (dt(va, vb))
β

+ 1 ,

for any constant β, still remaining O(1)-competitive. For the case of wireless radio
networks, one can choose the parameter β to respect a propagation exponent of
the medium. For example by setting β = 2, the cost definition reflects the energy
consumption used the send the message in the ideally free space along a given
distance. Thus, this result minimizes, up to a constant factor, the total energy
used in the system.

References

[1] D. Achlioptas, M. Chrobak, and J. Noga. Competitive analysis of randomized paging algo-
rithms. Theoretical Computer Science, 234(1–2):203–218, 2000.

[2] B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging for general networks. Journal of
Algorithms, 28(1):67–104, 1998. Also appeared in Proc. of the 7th SODA, pages 574–583,
1996.

[3] Y. Bartal. Distributed paging. In Dagstuhl Workshop on On-line Algorithms, pages 97–117,
1996.

[4] Y. Bartal, M. Charikar, and P. Indyk. On page migration and other relaxed task systems.
Theoretical Computer Science, 268(1):43–66, 2001. Also appeared in Proc. of the 8th SODA,
pages 43–52, 1997.

[5] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data management.
Journal of Computer and System Sciences, 51(3):341–358, 1995. Also appeared in Proc. of
the 24nd STOC, pages 39–50, 1992.

[6] M. Bienkowski. Dynamic page migration with stochastic requests. In Proc. of the 17th ACM
Symp. on Parallelism in Algorithms and Architectures (SPAA), 2005.

[7] M. Bienkowski and F. Meyer auf der Heide. Page migration in dynamic networks. In Proc.
of the 30th International Symposium on Mathematical Foundations of Computer Science
(MFCS), pages 1–14, 2005.

[8] M. Bienkowski, M. Dynia, and M. Korzeniowski. Improved algorithms for dynamic page mi-
gration. In Proc. of the 22nd Symp. on Theoretical Aspects of Computer Science (STACS),
pages 365–376, 2005.

[9] M. Bienkowski and M. Korzeniowski. Dynamic page migration under brownian motion. In

Proc. of the European Conf. in Parallel Processing (Euro-Par), 2005. To appear.
[10] M. Bienkowski, M. Korzeniowski, and F. Meyer auf der Heide. Fighting against two adver-

saries: Page migration in dynamic networks. In Proc. of the 16th ACM Symp. on Parallelism
in Algorithms and Architectures (SPAA), pages 64–73, 2004.

[11] C. Lund, N. Reingold, J. Westbrook, and D. C. K. Yan. Competitive on-line algorithms
for distributed data management. SIAM Journal on Computing, 28(3):1086–1111, 1999.
Also appeared as On-Line Distributed Data Management in Proc. of the 2nd ESA, pages
202–214, 1994.



Algorithmic Graph Theory 401

[12] B. M. Maggs, F. Meyer auf der Heide, B. Vöcking, and M. Westermann. Exploiting locality
for data management in systems of limited bandwidth. In Proc. of the 38th IEEE Symp. on
Foundations of Computer Science (FOCS), pages 284–293, 1997.

[13] F. Meyer auf der Heide, B. Vöcking, and M. Westermann. Caching in networks. In Proc. of
the 11th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 430–439, 2000.

[14] J. Westbrook. Randomized algorithms for multiprocessor page migration. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 7:135–150, 1992.

Approximation algorithms for scheduling malleable tasks under
general precedence constraints

Klaus Jansen

(joint work with Hu Zhang)

In this talk we study the problem of scheduling malleable tasks with precedence
constraints. We are given m identical processors and n tasks. For each task the
processing time is a function of the number of processors alloted to it. In addition,
the tasks must be processed according to the precedence constraints. The goal is
to minimize the makespan (maximum completion time) of the resulting schedule.
The best previous approximation algorithm by Lepere, Trystram, and Woeginger
[1] has a ratio 3 +

√
5 ≈ 5.236. We develop an improved approximation algorithm

with a ratio at most 4.7306 [2]. In addition we study the important case where
the speedup function is concave in the number of processors. In this case the work
function of any malleable task is convex in the processing time. We propose for
this case an approximation algorithm with improved ratio 3.2919 [3].

References

[1] R. Lepere, D. Trystram and G. Woeginger, Approximation algorithms for scheduling mal-
leable tasks under precedence constraints, International Journal of Foundations of Computer
Science 13, 2002, 613-627.

[2] K. Jansen, H. Zhang, An approximation algorithm for scheduling malleable tasks under gen-
eral precedence constraints, Proceedings of the 16th International Symposium on Algorithms
and Computation, ISAAC 2005, 236-245.

[3] K. Jansen, H. Zhang, Scheduling malleable tasks with precedence constraints, Proceedings
of the 17th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2005,
86-95.

Two remarks on coloring graphs without long induced paths

Van Bang Le

(joint work with Bert Randerath, Ingo Schiermeyer)

Given an integer k ≥ 1, a k-coloring of a graph is an assigment of k colors 1, . . . , k,
to the vertices of the graph such that adjacent vertices receive different colors.
Given a graph G, the k-Coloring problem asks whether G admits a k-coloring.
A path on t vertices is denoted by Pt. Graphs without induced Pt are called
Pt-free.



402 Oberwolfach Report 7/2006

For t ≤ 3, k-Coloring on Pt-free graphs is trivial. On P4-free graphs (also called
cographs), it is well-known that k-Coloring is solvable in linear time (see, e.g.,
[1].) Recently, the following results have been obtained:

Theorem 1 ([5, 2]). 3-Coloring is solvable in polynomial time on P5-free graphs.

Indeed, 3-Coloring can be solved on P5-free graphs in time O(nα); see the recent
survey paper [3] for more information (n and m are the vertex, respectively, edge
number of the input graphs, O(nα) is the time needed to perform an n×n matrix
multiplication; currently, α ≈ 2.376.)

Theorem 2 ([4]). 3-Coloring is solvable in time O(mnα) on P6-free graphs.

Theorem 3 ([5]). 4-Coloring is NP-complete on P12-free graphs, and 5-Color-

ing is NP-complete on P8-free graphs.

My first remark is, by modifying a reduction given in [5], the first part in Theorem 3
can be improved to:

Theorem 4. 4-Coloring is NP-complete on P9-free graphs.

Hence, for all k ≥ 4 and all t ≥ 9, k-Coloring is NP-complete on Pt-free graphs.
The computational complexity of 4-Coloring, however, is still unknown on P5-
free graphs.
My second remark is that a first nontrivial result in this direction can be obtained
as follows:

Theorem 5. 4-Coloring is solvable in polynomial time on (P5, C5)-free graphs.

Where Cℓ denotes the cycle on ℓ vertices. The main part of the proof of Theorem 5
is when the graph G in question contains an induced C7. In this case, deciding
if G is 4-colorable can be polynomially reduced to deciding if a P5-free graph is
3-colorable, and if a certain 2Sat instance can be satisfied.
Below is the current status of the computational complexity of k-Coloring on
Pt-free graphs.

k \ t 4 5 6 7 8 9 10 11 . . .

3 LIN O(nα) O(mnα) ? ? ? ? ? . . .
4 LIN ? ? ? ? NP-c NP-c NP-c . . .
5 LIN ? ? ? NP-c NP-c NP-c NP-c . . .
6 LIN ? ? ? NP-c NP-c NP-c NP-c . . .
7 LIN ? ? ? NP-c NP-c NP-c NP-c . . .
...

...
...

...
...

...
...

...
...

...
Table 1. LIN, NP-c, ‘?’ means that the complexity status of the
corresponding k-Coloring problem on Pt-free graphs is linear,
NP-complete, unknown, respectively.



Algorithmic Graph Theory 403

References

[1] D.G. Corneil, Y. Perl, and L.K. Stewart, Cographs: recognition, applications, and algo-
rithms, Congressus Numer. 43 (1984), 249–258.

[2] B. Randerath, I. Schiermeyer, M. Tewes, Three-colourability and forbidden subgraphs.II:
polynomial algorithms, Discrete Math. 251 (2002), 137–153.

[3] B. Randerath, I. Schiermeyer, 3-Colorability in P for P6-free graphs, Discrete Appl. Math.
136 (2004), 299–313.

[4] B. Randerath, I. Schiermeyer, Vertex coloring and forbidden subgraphs – A survey, Graphs
Combinatorics 20 (2004), 1–40.

[5] G.J. Woeginger, J. Sgall, The complexity of coloring graphs without long induced paths,
Acta Cybern. 15 (2001), 107–117.

Precoloring extensions
distance constraints for list colorings

Margit Voigt

1. Problem

Let G be a simple graph and L(v) a set of available colors for every v ∈ V . The set
L(v) is also called a list of v and the collection of all lists is called a list assignment
L of G. The graph G is L-list colorable if for a given L a proper coloring of the
vertices exists where every vertex gets a color from its list.
Now we assume additionally that there is a subset W ⊆ V of the vertex set
which is already precolored. Denote by d(W ) the minimum distance between two
components of W in G. We would like to extend the precoloring of W to a proper
coloring of the whole vertex set. Clearly the existence of such an extension depends
on d(W ) and the number of available colors for an ordinary coloring or the length
of the lists of the list assignment, respectively. First results in this direction where
given by Albertson 1998 [1] answering a question of Thomassen from 1997. He
stated that if G is k-colorable and W is independent with d(W ) ≥ 4 then every
(k+1)-coloring of W can be extended to a proper (k + 1)-coloring of V . In the
last years there are several papers, [2] - [8] and [11], dealing with this topic from
different points of view.

2. Extension of Brooks’ Theorem

Let us consider simple graphs G = (V, E) with maximum degree k = ∆(G) ≥ 3.
The well-known theorem of Brooks [9] states that such a graph is k-colorable if it
does not contain Kk+1 as a component. This theorem can be generalized in several
directions. Among others in [10, 12] a Brooks-type theorem is proved saying that
a graph G with maximum degree k = ∆(G) ≥ 3 is L-list colorable for every
k-assignment L if G does not contain Kk+1 as a component.
Here we ask for the extension of a precoloring of W to a proper list coloring if every
vertex has a list of k = ∆(G) colors. Axenovich [8] and Albertson, Kostochka
and West [5] proved that for independent W , k = ∆(G) ≥ 3 and d(W ) ≥ 8



404 Oberwolfach Report 7/2006

such an extension is always possible if G does not contain a Kk+1 as subgraph.
Furthermore they give an example showing that the bound 8 is sharp. Remarkably,
the mentioned example is a 1-connected graph. For 2-connected graphs the bound
d(W ) is improved in [15] and [16].

Theorem 1. If G = (V, E) is 2-connected, |L(v)| = ∆ ≥ 4 ∀v ∈ V and d(W ) ≥ 4
then every L-list coloring of W can be extended to an L-list coloring of V .

Theorem 2. If G = (V, E) is 2-connected, |L(v)| = ∆ = 3 ∀v ∈ V and d(W ) ≥ 6
then every L-list coloring of W can be extended to an L-list coloring of V .

Moreover there are given examples showing that the above bounds are sharp. The
main tool for proving the theorems is the investigation of an L-list assignment
with |L(v)| ≥ d(v) where d(v) is the degree of v in G. It is pointed out that there
is a polynomial algorithm which decides whether an arbitrary graph G is L-list
colorable for such an assignment. If there is an L-list coloring then the algorithm
finds such a coloring. Obviously we can also apply this algorithm to find list
coloring extensions mentioned in the theorems.

3. Forbidden minors

Let G be a graph not containing Kk+1 as minor with χ(G) = k and assume that
G[W ] is s-colorable.
Hutchinson and Moore [11] gave the following bounds for d, where d is the mini-
mum d(W ) such that every (k + s − 1)- coloring of W (each component of G[W ]
is s-colored) extends to a (k + s − 1)- (ordinary) coloring of all of G.

k\s 2 3 4 5
2 5 − − −
3 7, 8 5 − −
4 7, 8 7 6 −
5 7, 8 7, 8 7 6

Dealing with the problem k = 3, s = 2 we investigated the subclass of outerplanar
graphs and obtained in [14] the following result for list colorings.

Theorem 3. Let G be an outerplanar graph, G[W ] is bipartite, d(W ) ≥ 7 and
|L(v)| = 4 for all v ∈ V \W . Then every coloring of W , where each component of
G[W ] is two-colored, extends to a proper list coloring of V .

Moreover there is a polynomial algorithm to find such an extension.

4. Planar bipartite graphs

Assume that G is a planar bipartite graph and |L(v)| ≥ 3 for all v ∈ V . The
problem is to decide whether a precoloring of W extends to a proper list coloring
of V . If |W | is at most 2 then a precoloring is always extendable and the list
coloring can be found in polynomial time. The problem is open for W with at least
3 vertices. However there are some related results. From a result of Kratochv́ıl



Algorithmic Graph Theory 405

and Tuza [13] follows that the mentioned extension problem is NP-complete if W
is independent and d(W ) ≥ 4.
Question: What happens if W is independent and d(W ) ≥ 5?
A related result dealing with ordinary colorings without requirement of planarity
is proved in [11] (table given above, k = s = 2).

References

[1] M.O.Albertson, You can’t paint yourself into a corner, J. Combinatorial Theory Ser. B, 73
(1998), 189-194

[2] M.O.Albertson, J.P. Hutchinson, Extending colorings of locally planar graphs, J. Graph
Theory 36 (2001), 105-116

[3] M.O.Albertson, J.P. Hutchinson, Graph color extensions: when Hadwiger’s conjecture and
embeddings help, Elect. J. Comb. 9 (2002), # R18

[4] M.O.Albertson, J.P. Hutchinson, Extending precolorings of subgraphs of locally planar
graphs, European J. Comb., 25 (2004), 863-871

[5] M.O. Albertson, A.V.Kostochka, D.B.West, Precoloring extension of Brooks’ Theorem,
SIAM J. Discr. Math. 18 (2004), 542-553

[6] M.O.Albertson, E.H.Moore, Extending graph colorings, J. Combinatorial Theory Ser. B,
77(1999), 83-95

[7] M.O.Albertson, E.H.Moore, Extending graph colorings using no extra colors, Discrete Math.
234 (2001), 125-132

[8] M.Axenovich, A note on graph coloring extensions and list colorings, Electronic J. Comb.
10 (2003) #N1

[9] R.L.Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941),
194-197

[10] P.Erdős, A.L.Rubin, H.Taylor, Coosability in graphs, Proc. West Coast Conference on Com-
binatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif. 1979),
Comgress. Numer. XXVI (Utilitas Math., Winnipeg, 1980), 125-157

[11] J.P. Hutchinson, E.H. Moore, Distance Constraints in Graph Color Extensions, manuscript,
2005

[12] A.V.Kostochka, M.Stiebitz, B.Wirth, The colour theorems of Brook’s and Gallai extended,
Discrete Math. 162 (1996), 299-303

[13] J. Kratochv́ıl, Zs. Tuza, Algorithmic complexity of list colorings, Discrete Applied Math. 50
(1994), 297-302

[14] A. Pruchnewski, M. Voigt, Precoloring extension for outerplanar graphs, manuscript 2005
[15] M. Voigt, Precoloring extension for 2-connected graphs, submitted, SIAM J. Discr. Math.
[16] M. Voigt, Precoloring extension for 2-connected graphs with ∆(G) = 3, manuscript 2005

On Exponential Time Algorithms for Treewidth

Hans L. Bodlaender

(joint work with Fedor V. Fomin, Arie Koster, Dieter Kratsch, Dimitrios M.
Thilikos)

In this talk, algorithms that compute the treewidth of graphs are discussed. The
main results are twofold. First, we give a dynamic programming algorithm that
computes the treewidth of a graph with n vertices in O∗(2n) time. (The O∗-
notation suppresses polynomial factors.) The dynamic programming algorithm is
based upon a characterization of treewidth in terms of a cost measure associated to



406 Oberwolfach Report 7/2006

linear orderings (inspired by the fact that treewidth can be written as the minimum
over all chordal supergraphs of the maximum clique size, and that chordal graphs
have a perfect elimination scheme.) The resulting algorithm has a structure that
is similar to the famous Held-Karp dynamic programming algorithm for treewidth
[2].
The dynamic programming algorithm is not a theoretical improvement on existing
algorithms: the algorithm of Fomin et al [1], and the recent improvement on it
by Villanger [3] have a smaller constant at the base of the exponent. However,
the dynamic programming algorithm is easy to implement, and experiments show
that it works well for graphs with sizes between 30 and 80 vertices.
The experiments also show that the use of memory is often a bottleneck: the al-
gorithm also uses worst case Θ(2n) time; when the data for the program do no
longer fit into main memory, the program becomes very slow, spending most of its
time on obtaining data from and writing data to secondary memory. Thus, our
second result deals with exponential time algorithms for treewidth with polynomi-
ally bounded memory. We give a recursive algorithm that computes the treewidth
of a graph exactly, and that uses O∗(2.9978n) time and polynomial memory. Our
algorithm is based upon a divide and conquer approach, and uses results from the
theory of potential maximal cliques, and the existence of balanced separators of
the size the treewidth of the graph.
Similar algorithms exist also for related problems, e.g., the same time bounds can
be obtained for the minimum fill-in problem.

References

[1] F. V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for treewidth
and minimum fill-in. In Proceedings of the 31st International Colloquium on Automata,
Languages and Programming, pages 568–580, 2004.

[2] M. Held and R. Karp. A dynamic programming approach to sequencing problems. J. SIAM,
10:196–210, 1962.

[3] Y. Villanger. Counting and listing all potential maximal cliques of a graph. Reports in
Informatics 302, Department of Informatics, University of Bergen, Bergen, Norway, 2005.

Parallel Matching Algorithms

Stefan Hougardy

(joint work with D. Vinkemeier)

1. Introduction

The class NC is the class of all problems that are computable in polylogarithmic
time with polynomially many processors. Uehara and Chen [8] have shown that
there exists an NC approximation algorithm for the weighted matching problem
that achieves an approximation ratio of 1

2−ǫ. We improve this result by presenting
a 1 − ǫ NC approximation algorithm for the weighted matching problem.



Algorithmic Graph Theory 407

2. Preliminaries

A matching M in a graph G = (V, E) is a subset of the edges E of G such that
no two edges in M have a vertex in common. Let G = (V, E) be a graph and
w : E → R+ be a function which assigns a positive weight to each of the edges
of G. Then the weight w(F ) of a subset F ⊆ E of the edges of G is defined as
w(F ) :=

∑

e∈F w(e). The weighted matching problem is to find a matching M in
G that has maximum weight.
The model of computation we use is the CREW PRAM (concurrent reads exclusive
writes parallel random access machine). In this model there exists a sequence
of indexed random access machines, each of which knows its own index. The
processors synchronously execute the same central program, communicating with
one another through a shared random access memory. CREW means that several
processors can concurrently read a particular memory address but at most one
processor can write to a single memory address in each step. See [6, 7] for more
background on parallel algorithms.
The quality of an approximation algorithm for the weighted matching problem is
measured by its so-called approximation ratio. An approximation algorithm has
an approximation ratio of c, if for all graphs it finds a matching with a weight of
at least c times the weight of an optimal solution.

3. The Ranked Augmentation Graph

The main idea of our algorithm is to start with some (possibly empty) matching
and to allow each processor to make some local changes of this matching to improve
its weight. The local changes made by different processors need to be independent
of each other. To achieve this we construct from the given graph a new graph which
we call the augmentation graph. In this augmentation graph an independent set of
vertices corresponds to a set of pairwise independent local changes of the matching
in the given graph. As we aim to increase the weight of a given matching by a
set of local changes by as much as possible, we will rank all possible local changes
for a given matching. This means that we partition the set of all possible local
changes of a matching into classes such that the local changes within each class
achieve a similar increase in weight. Instead of computing an independent set in
the augmentation graph the idea is to compute an independent set in each of the
classes of the partition. The augmentation graph together with the ranking of its
vertices will be called the ranked augmentation graph. We are going to describe
the construction of this graph in more detail in the following.
Given a graph G = (V, E) and a matching M ⊆ E let an augmentation with respect
to the matching M be any matching S ⊂ E \M . If the matching M is known from
the context we will simply say that S is an augmentation. Let M(S) denote all
edges in M that have a vertex in common with an edge in S. Then (M \M(S))∪S
is again a matching. We say that (M \M(S))∪S is the matching that is obtained
by augmenting M by S. If S is an augmentation with respect to M then the
gain of augmenting M by S is defined as gainM(S) = w(S) − w(M(S)). Thus
the gain is the difference of weight between the matching M and the matching



408 Oberwolfach Report 7/2006

(M \M(S))∪S. Our definition allows augmentations that have negative gain, but
our algorithm will only consider augmentations that have positive gain, i.e., that
increase the weight of the matching M .
The size of an augmentation S is simply the number of edges contained in S. Let
G = (V, E) be a graph, M ⊆ E be a matching and l > 0 be an integer. Then
the augmentation graph G′ = G′(G, M, l) is defined as follows. The vertices of G′

are all augmentations with respect to M of size at most l. Two such vertices are
connected by an edge if the corresponding augmentations have at least one vertex
of G in common.
All augmentations which are vertices of G′ will be ranked according to their gains
as follows (this is very similar to the ranking of the edges that Uehara and Chen [8]
used in their algorithm). First find the augmentation of V (G′) with the largest
gain denoted by gainmax. For each vertex S in V (G′) we define its rank r(S) as
follows (n denotes the number of vertices in G)

• If gain(S) ≤ gainmax

l·n then r(S) = 0
• Otherwise r(s) = i > 0 where i is the smallest integer for which it is true

that gain(S) ≤ 2i · gainmax

l·n .

This definition implies that for constant l the rank of an augmentation is an integer
of size O(log n).
We call the augmentation graph G′ together with the ranking of its vertices the
ranked augmentation graph of G. This graph can be computed using O(n4l) proces-
sors and O(log n) time.

4. The Algorithm

Our algorithm for computing a 1−ǫ approximation of a maximum weight matching
starts with the empty matching and makes c calls to the algorithm
ImproveMatching for some constant c which depends only on ǫ. The algorithm
ImproveMatching is shown in Figure 1. This algorithm takes as input a weighted
graph G and a matching M and returns a new matching M ′. It starts by calculat-
ing out of G and M the ranked augmentation graph G′ as described in Section 3.
Within the graph G′ a maximal independent set is calculated in the following way.
Let Vi be the vertices of G′ that have rank i. Then starting from the highest
rank a maximal independent set ALGi is calculated in the subgraph of G′ that is
induced by the vertices of Vi which have not yet been removed from G′ (using for
example the algorithm from [5]). All neighbors of vertices of ALGi are removed
to ensure that the union of all sets ALGi is an independent set of G′. The process
considers all vertices from the highest rank down to those of rank 1. Vertices of
rank 0 are thrown away. The set ALG is the union of all the sets ALGi and is by
construction a maximal independent set in G′ \V0. ALG is used as an augmenting
set for M to obtain the new matching M ′ which is returned by the algorithm
ImproveMatching.
The main statement about the weight of the matching M ′ that is returned by the
algorithm ImproveMatching is as follows:



Algorithmic Graph Theory 409

ImproveMatching: G = (V, E), w : E → R+, matching M

Output: matching M ′

1 ALG = ∅
2 calculate the ranked augmentation graph G′

3 for i = rankmax downto 1 do
4 calculate a maximal independent set ALGi in the graph G′

i := (V ′

i , E′

i)
that is induced by all vertices still in G′ that have rank i

5 remove all vertices from G′ that have neighbors in ALGi

6 ALG = ALG ∪ ALGi

7 M ′ = M augmented by all augmentations in ALG

Figure 1. An NC algorithm for improving the weight of a match-
ing M .

Theorem 1. If the algorithm ImproveMatching gets a matching M as input then
it returns a matching M ′ such that

w(M ′) ≥ w(M) +
1

4l
·
(

l − 1

l
· w(M∗) − w(M)

)

.

Using this result we can show that we get an NC algorithm that finds a matching
of weight at least (1 − ǫ) · w(M∗) by making a constant number of calls to the
algorithm ImproveMatching.

Theorem 2. For every ǫ > 0 there exists an NC algorithm that finds in a weighted
graph a matching of weight at least (1 − ǫ) · w(M∗).

Our algorithm needs nO( 1
ǫ ) processors. This is the same amount of processors that

is needed in the 1 − ǫ NC-approximation algorithm for the unweighted case [4].

References

[1] D.E. Drake, S. Hougardy, Improved linear time approximation algorithms for weighted
matchings, In: Approximation, Randomization, and Combinatorial Optimization, (Ap-
prox/Random) 2003, S.Arora, K.Jansen, J.D.P.Rolim, A.Sahai (Eds.), LNCS 2764, Springer
2003, 14–23.

[2] D.E. Drake, S. Hougardy, A linear time approximation algorithm for weighted matchings in
graphs, ACM Transactions on Algorithms 1 (2005), 107–122.

[3] S. Hougardy, D.E. Vinkemeier, Approximating weighted matchings in parallel, to appear in
Information Processing Letters.

[4] T. Fischer, A.V. Goldberg, D.J. Haglin, S. Plotkin, Approximating matchings in parallel,
Information Processing Letters 46 (1993), 115–118.

[5] M. Goldberg, T. Spencer, A new parallel algorithm for the maximal independent set problem,
SIAM Journal on Computing 18:2 (1989), 419–427.

[6] J. Jájá, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, Massachusetts
1992.

[7] M. Karpinski, W. Rytter, Fast Parallel Algorithms for Graph Matching Problems, Clarendon
Press, Oxford 1998.

[8] R. Uehara, Z.-Z. Chen, Parallel approximation algorithms for maximum weighted matching
in general graphs, Information Processing Letters 76:1-2 (2000), 13–17.



410 Oberwolfach Report 7/2006

Learning Wadrop Equilibria

Berthold Vöcking

(joint work with Simon Fischer, Harald Räcke)

Recent contributions in the field of algorithmic game theory have provided much
insight into the structure of Nash equilibria for routing in networks that lack central
coordination. Prominent results include bounds on the price of anarchy measuring
the performance loss due to selfishness in relation to the centrally optimized solu-
tion [1, 4, 6, 13, 17, 18], and questions regarding how to design networks such that
equilibria induced by selfish agents coincide with the globally optimal solution,
e. g. by imposing taxes [5, 10] or by introducing a global instance that controls
a small fraction of the traffic [11, 16]. These static analyses of Nash equilibria
disregard the question of how an equilibrium is actually reached. Classical game
theory does also not give an answer to this question. It justifies Nash equilibria
with idealistic assumptions like unbounded rationality and global knowledge that,
however, are rarely fulfilled in a real-world networks like the Internet.
We study the question of how a large population of agents can compute or learn
an equilibrium efficiently based on simple sampling and adaption policies. Our
motivation is twofold. On the one hand, we want to support the previous analyses
of Nash equilibria by showing that a population of agents following simple, myopic,
and reasonable rules quickly converges to a Nash equilibrium. On the other hand,
we think that our analysis may contribute to the design of distributed adaptive re-
routing protocols that quickly converge to stable routing allocations. Our study is
based on the well known traffic model of Wardrop [19] (see also [18]) in which the
traffic is modelled in form of an infinite number of agents each of which responsible
for an infinitesimal amount of traffic. We imagine that the agents play a repeated
game in rounds. In each round, each agent may compare the latency of his current
route with the latency of another route and switch to the other route if it promises a
better latency. The problem with this natural approach is that other agents might
switch simultaneously to the same route so that the latency of an agent may not
improve or even get worse instead of better. This way, the game may get stuck in
oscillations. This phenomenon is also well known in the networks community and
the instabilities due to oscillations observed within the ARPANET project are one
of the major reasons why the Internet does not support adaptive routing, see e.g.
[12, 14, 15].
In [8], it was shown that such oscillation effects can be avoided by letting the agents
sample alternative routes at random and migrate with a probability depending on
the observed latency difference. The weakness of the routing protocols presented
in [8] is that the migration policy depends heavily on the first derivatives of the
latency functions: In order to avoid oscillations the probability to switch to another
path is scaled down by a factor that is linear in the maximum first derivative over
all latency functions. While this is effective in avoiding oscillation effects it also
slows down the routing process in a drastic way. For example, when assuming
linear latency functions the obtained bounds on the convergence time depend



Algorithmic Graph Theory 411

in a pseudopolynomial way on the ratio between the largest and the smallest
coefficient over all latency functions. Remarkably, similar techniques to ensure
convergence are used in well established heuristics for convex optimization. For
example, Bertsekas and Tsitsiklis [2] describe a distributed algorithm for non-linear
multicommodity flow in which the amount of flow that is moved in a step from one
path to another depends in a linear way on the reciprocal of the second derivative
of the latency functions. This algorithm can also be applied to compute Nash
equilibria in the Wardrop model in a distributed way in which case the slowdown
is again linear in the first derivative. An alternative approach for computing Nash
equilibria based on methods from online learning is presented by Blum et al. [3].
Interestingly, their upper bounds on the convergence time depend in a polynomial
way on the first derivative of the latency functions as well.
In this work, we show that the first derivative of the latency functions is not the
limiting factor in the speed of convergence towards Nash equilibrium. We will
provide upper and lower bounds that identify the “relative slope” instead of the
first derivative as the relevant parameter that determines the convergence time
of adaptive routing policies. This parameter is a generalization of the polyno-
mial degree of a function. Our approach enables us to obtain the first polynomial
bounds on the convergence time of adaptive rerouting policies for classes of latency
functions with bounded relative slope, especially for latency functions defined by
positive polynomials. Remarkably, some of our upper bounds are completely in-
dependent of any parameter reflecting the size or the structure of the network but
depend only on a parameter describing the behavior of the latency functions, that
is, they depend in a linear fashion on the maximum relative slope over all latency
functions. A more detailed presentation of our analysis can be found in [9].

References

[1] Baruch Awerbuch, Yossi Azar, and Amir Epstein. The price of routing unsplittable flow. In
Proc. 37th Ann. ACM. Symp. on Theory of Comput. (STOC), 2005.

[2] Dimitri P. Bertsekas and John N. Tistiklis. Parallel and Distributed Computing: Numerical
Methods. Athena Scientific, 1989.

[3] Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret, 2005. in prepa-
ration.

[4] George Christodoulou and Elias Koutsoupias. The price of anarchy of finite congestion
games. In Proc. 37th Ann. ACM. Symp. on Theory of Comput. (STOC), 2005.

[5] Richard Cole, Yevgeniy Dodis, and Tim Roughgarden. Pricing network edges for heteroge-
neous selfish users. In Proc. 35th Ann. ACM. Symp. on Theory of Comput. (STOC), pages
521–530, 2003.

[6] Artur Czumaj and Berthold Vöcking. Tight bounds for worst-case equilibria. In Proc. of the

13th Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA), pages 413–420, 2002.
[7] Simon Fischer and Berthold Vöcking. On the evolution of selfish routing. In Susanne Al-

bers and Tomasz Radzik, editors, Proc. 12th Ann. European Symp. on Algorithms (ESA),
number 3221 in Lecture Notes in Comput. Sci., pages 323–334, Bergen, Norway, September
2004. Springer-Verlag.

[8] Simon Fischer and Berthold Vöcking. Adaptive routing with stale information. In Mar-
cos Kawazoe Aguilera and James Aspnes, editors, Proc. 24th Ann. ACM SIGACT-SIGOPS
Symp. on Principles of Distributed Computing (PODC). ACM, July 2005.



412 Oberwolfach Report 7/2006

[9] Simon Fischer, Harald Räcke, and Berthold Vöcking. Fast Convergence to Wardrop Equi-
libria by Adaptive Sampling Methods. In Proce. of the 38th Annual ACM Symposium on
Theory of Computing (STOC), 2006.

[10] Lisa Fleischer. Linear tolls suffice: New bounds and algorithms for tolls in single source
networks. In Proc. 31st Int. EATCS Coll. on Automata, Languages and Programming
(ICALP), pages 544–554, 2004.

[11] Alexis Kaporis, Efpraxia Politopoulou, and Paul Spirakis. The price of optimum in Stack-
elberg games. Technical report, Electronic Colloquium on Computational Complexity
(ECCC), 2005.

[12] Atul Khanna and John A. Zinky. The revised ARPANET routing metric. In Proc. ACM
SIGCOMM, pages 45–56, September 1998.

[13] Elias Koutsoupias, Marios Mavronicolas, and Paul G. Spirakis. Approximate equilibria and
ball fusion. Theory Comput. Syst., 36(6):683–693, 2003.

[14] James F. Kurose and Keith W. Ross. Computer Networking, a top down approach featuring
the Internet, 3rd ed. Addison-Wesley Longman, 2004.

[15] Jennifer Rexford. Handbook of Optimization in Telecommunications, chapter Route opti-
mization in IP networks. Kluwer Academic Publishers, 2005.

[16] Tim Roughgarden. Stackelberg scheduling strategies. In Proc. 33rd Ann. ACM. Symp. on
Theory of Comput. (STOC), pages 104–113, 2001.

[17] Tim Roughgarden. How unfair is optimal routing? In Proc. 13th Ann. ACM–SIAM Symp.
on Discrete Algorithms (SODA), pages 203–204, 2002.

[18] Tim Roughgarden and Éva Tardos. How bad is selfish routing? J. ACM, 49(2):236–259,
2002.

[19] John Glen Wardrop. Some theoretical aspects of road traffic research. In Proc. of the Institute
of Civil Engineers, Pt. II, pages 325–378, 1952.

Arbitrarily vertex decomposable graphs

Mariusz Woźniak

Let G = (V, E) be a graph of order v. A sequence (ai) of positive integers is called
admissible if

∑

i

ai = v.

Let W be a family (hence a property) of graphs. We say that an admissible
sequence (ai) is realizable by graphs from W , if there exists a partition of the
vertex set V into subsets (Ai) such that for each i = 1, . . . , k

• |Ai| = ai,
• the induced subgraph G[Ai] belongs to W .

A graph G is called k-decomposable with respect to W if every admissible sequence
of k integers is realizable (by graphs from W ). Naturally, the problem is nontrivial
if k ≥ 2.
A graph G is arbitrarily vertex decomposable (AVD) with respect to W if every
admissible sequence is realizable (by graphs from W ).
The subject of our interest is the class of connected graphs, although some results
concerning other properties are also known. ¿From now on, we assume that the
property W means connectivity of graphs, and we will omit the phrase ”with
respect to W”.



Algorithmic Graph Theory 413

It is worth noticing that investigating arbitrarily decomposable graphs is closely
related to constructions of computer networks. Namely, the problem of partition-
ing of the vertex set of a graph corresponds to the problem of partitioning of
a large network into smaller parts used by some groups of users that can easily
communicate one with another.
First results concerning k-decomposability were obtained by E. Győri [4] and,
independently, by L. Lovász [8].

Theorem 1. Every k-connected graph is k-decomposable into connected parts.

AVD trees were investigated, at the beginning independently, by a group of French
computer scientists (cf.[1]), and by M.Horňák and M.Woźniak, who conjectured in
[6] that the maximal degree of every AVD tree T is at most four. This conjecture
was proved by D.Barth and H.Fournier [2].
Consequently, studying AVD trees has concentrated on relatively simple structures
(e.g. caterpillars) making attempts to characterize AVD ones among them (cf. [5],
[3]). Recently, some other simple structures, like unicyclic graphs, were studied.
(cf. [7])
In the general case, every traceable graph (i.e. having a Hamilton path) is evidently
AVD. Recently, the following Ore-type theorem has been obtained by A. Marczyk
[9].

Theorem 2. If G is a two-connected graph on n vertices with the independence
number at most ⌈n/2⌉ and such that the degree sum of any pair of nonadjacent
vertices is at least n − 3, then G is arbitrarily vertex decomposable.

It would be interesting to find other sufficient conditions for graphs to be AVD
which do not imply traceability. Hitherto attempts failed; these two properties
occurred close each to other. Anyway, investigating relations between them seems
interesting. Also the problem of k-decomposability seems interesting.
Among a couple of algorithmic aspects of the above-mentioned problems, let us
mention finally the on-line versions of them, if they have sense. For instance,
the on-line version of the problem of partitioning of a tree into subtrees can be
described as follows. An admissible sequence (ai) is not given in whole at once,
but we are acquainted with it element by element. At each step we have to fix a set
Ai corresponding to the element ai, and cannot change this set later. It occurred
that, as opposed to the ordinary version of the problem, a full characterization of
on-line AVD trees is possible (a paper of M. Horňák, Zs. Tuza and M. Woźniak,
submitted). Let’s observe that the on-line version is also sensible for the problems
of k-decomposability starting with k = 3.

References

[1] D. Barth, O. Baudon, J. Puech, Network sharing: a polynomial algorithm for tripodes,
Discrete Applied Mathematics, 119 (2002).

[2] D. Barth, H. Fournier, A Degree Bound on Decomposable Trees, Preprint (2004).
[3] S. Cichacz, A. Görlich, A. Marczyk, J. Przyby lo, M. Woźniak, Arbitrarily vertex decompos-

able caterpillars with four or five leaves, Preprint MD 010 (2005), www.ii.uj.edu.pl/preMD/.



414 Oberwolfach Report 7/2006

[4] E. Győri, On division of graphs to connected subgraphs, Colloq. Math. Soc. János Bolyai,
18 (1978), 485-494.

[5] M. Horňák, M. Woźniak, On arbitrarily vertex decomposable trees, Preprint MD 001 (2004),
www.ii.uj.edu.pl/preMD/.

[6] M. Horňák, M. Woźniak, Arbitrarily vertex decomposable trees are of maximum degree at
most six, Opuscula Mathematica 23 (2003), 49-62.

[7] R. Kalinowski, M. Piĺsniak, M. Woźniak, I.A. Zio lo, Arbitrarily vertex decomposable suns
with few rays, Preprint MD 015 (2005), www.ii.uj.edu.pl/preMD/.

[8] L. Lovász, A homology theory for spanning trees of a graph, Acta Math. Acad. Sci. Hungar.
30 (1977), 241-251.

[9] A. Marczyk, A note on arbitrarily vertex decomposable graph, Preprint MD 018 (2005),
www.ii.uj.edu.pl/preMD/.

Some notes on L(d, s)−list labellings of trees and cacti

Anja Kohl

A special type of Frequency Assignment Problem (for more information we refer
to [7]) are T−colorings. These are vertex colorings such that the absolute value of
the difference between any two colors assigned to adjacent vertices does not belong
to a prescribed set T of nonnegative integers including 0. An often studied case
are T−colorings where T is a so-called r−initial set, i.e. T = {0, 1, . . . , r}.
The distance constrained labellings of graphs are a variation of that model. These
labellings consider not only adjacent vertices but all pairs of vertices with a
certain distance to each other. An often studied type of such labellings are
the L(2, 1)−labellings that first arose in 1992. The more general concept of
L(d, k)−labellings − which is the non-list version of L(d, s)−list labellings − was
introduced by Georges and Mauro [5] and was further investigated during the last
decade. A good survey on this problem is [2].
Tesman [10] introduced the list version of T−colorings already in 1993. So it was
a natural development to consider the list version of L(d, k)−Labellings as well.
The first steps in this direction were made among others by Fiala et al. [3],[4] and
Kohl et al. [8].
Throughout this abstract let G = (V, E) be a simple graph with maximum degree
∆, and for all v ∈ V let L(v) be a set of labels assigned to v. This L(v) is called
the list of v, and the set of all lists is called the list assignment L. A k-assignment
is a list assignment where all lists have the same cardinality k, that is |L(v)| = k
for all v ∈ V . We assume that the labels are natural numbers.

Definition 1. For a given list assignment L = {L(v) | v ∈ V } and nonnegative
integers d, s, (d ≥ s) an L(d, s)−list labelling of G is a function f that assigns a
label to every vertex of G, such that:

1. ∀v ∈ V : f(v) ∈ L(v)
2. |f(v) − f(w)| ≥ d, if dist(v, w) = 1
3. |f(v) − f(w)| ≥ s, if dist(v, w) = 2

χd,s
ℓ (G) is the smallest integer k, such that every k-assignment admits an L(d, s)−

list labelling of G.



Algorithmic Graph Theory 415

First let us consider L(d, 0)−list labellings. It is easy to see that χd,0
ℓ (G) ≤ d∆+1

since we can label G from lists of that length by a greedy algorithm, using in each
step the smallest label occurring in the union of the lists of uncolored vertices.
This bound is obviously sharp for complete graphs and odd cycles. Waller [11]

proved a Brooks-type theorem stating χd,0
ℓ (G) ≤ d∆ for all connected graphs G

distinct from a complete graph and an odd cycle. Tesman [10] determined χd,0
ℓ

for all trees Tn with n vertices and he also gave in another paper the exact value

of χd,0
ℓ for odd cycles. Alon and Zaks [1] presented a lower bound for even cycles,

which was shown to be sharp by Sitters [9]. For a path Pn and a cycle Cn with n
vertices the formula is

χd,0
ℓ (Tn) =

⌊

2d(n−1)
n

⌋

+ 1, χd,0
ℓ (Cn) =

{

2d + 1 , if 2 ∤ n
⌊

2d(1 − 1
2n−1 )

⌋

+ 1 , if 2 | n
(1)

The result for trees can also be obtained as a corollary of the following theorem:

Theorem 2. Let Tn be a tree with n vertices. Moreover, define σd(Tn) to be the
smallest natural number, such that there is an L(d, 0)−list labelling of Tn for every
list assignment L = {L(v) | v ∈ V (Tn)} with the properties

∑

v∈V (Tn)

|L(v)| ≥ σd(Tn) and ∀v ∈ V (Tn) : |L(v)| ≤ 2d.

Then it holds σd(Tn) = 2d(n − 1) + 1.

Next let us consider cacti. A cactus is a finite, connected graph such that every
edge belongs to at most one cycle. For cacti containing at least one cycle we have:

Theorem 3. Let C be a cactus of order n and girth g ≥ 3. If C contains exactly

one cycle, then χd,0
ℓ (C) = 2d + 1 if g is odd and 2d + 1 − min{⌈ 2d

n ⌉, ⌈ 2d
2g−1⌉} ≤

χd,0
ℓ (C) ≤ 2d if g is even. If C has at least two cycles, then χd,0

ℓ (C) ≤
⌈

2dg−1
g−1

⌉

.

For L(d, s)−list labellings where s > 0 only a few results are known so far, e.g.

the exact value of χ2,1
ℓ for paths and cycles given by Fiala and Škrekovski [3]:

χ2,1
ℓ (Pn) =







3 , if n = 2
4 , if n = 3, 4
5 , if n ≥ 5

, χ2,1
ℓ (Cn) = 5.(2)

Moreover, for stars it holds χ1,1
ℓ (K1,n) = n + 1 and if d ≥ 2:

(i) χd,s
ℓ (K1,n) ≤ 2d − 1 + s(n − 1), (Voigt [8])

(ii) χd,s
ℓ (K1,n) ≥

⌊

2dn
n+1

⌋

+ 1, (Tesman [10])

(iii) χd,s
ℓ (K1,n) ≥ d + s(n − 1) + 1, (Georges and Mauro [5])

(iv) χd,1
ℓ (K1,n) ≥

⌈

(2d − 1) a
a+1

⌉

+ n − 1 for a :=
⌊

n
2d

⌋

. (Tuza [8])

Theorem 4. If n ≥ ⌈ 2a
(d−a−1)⌉(d + a) + 1 for an a ∈ {0, 1, . . . , d − 2}, then

χd,1
ℓ (K1,n) ≥ d + a + n.



416 Oberwolfach Report 7/2006

Theorem 5. If d ≥ s, then χd,s
ℓ (K1,n) ≤

⌊

[2d+s(n−1)]n
n+1

⌋

+ 1.

For paths we have
⌊2d(n−1)

n

⌋

+ 1 ≤ χd,1
ℓ (Pn) ≤

⌊ 2d(n−1)
n

⌋

+ 3 (Voigt [8]). Further-

more, it holds χd,s
ℓ (Pn) ≤ 2d + 2s− 1 that can be achieved by a greedy algorithm.

By constructing specific list assignments we can further prove

Theorem 6. For a path Pn, n ≥ 3 it holds χd,d
ℓ (Pn) >

⌊

3d
(

1 − 1
n

)⌋

.

Our intuition says that this lower bound is already best possible, so we pose the
following conjecture:

Conjecture 2. χd,d
ℓ (Pn) =

⌊

3d
(

1 − 1
n

)⌋

+ 1.

A second conjecture that is related to the previous one is

Conjecture 3. χd,s
ℓ (Pn) ≤

⌊

(2d + s)
(

1 − 1
n

)⌋

+ 1.

For all trees T and d, s ≥ 1 it holds χd,s
ℓ (T ) ≤ s∆ + 2d − 1, proved by Voigt [8].

Thus, χ2,1
ℓ (T ) ≤ ∆ + 3. For the non-list version of L(2, 1)−list labellings that can

be obtained by using the list assignment that assigns the list {1, 2, . . . , k} to every
vertex v ∈ V (T ) we already know that k =: χ2,1(T ) ≥ ∆+2 (Griggs and Yeh [6]).

Conjecture 4. For every tree T it holds χ2,1
ℓ (T ) = χ2,1(T ).

This conjecture is obviously true for stars and paths, but we could also verify it
for comets (i.e. trees of radius 2) and specific caterpillars.
For cacti we investigated L(d, 1)−list labellings and obtained the results:

Theorem 7. If ∆ = 3 and the cactus C contains a cycle of length 5, then
χ1,1

ℓ (C) = 5. Otherwise χ1,1
ℓ (C) = ∆ + 1 for ∆ ≥ 3.

Theorem 8. Let C be a cactus with maximum degree ∆ ≥ 3, girth g ≥ 3 and

d ≥ 2. Define a :=
⌊

2d−2
g−3

⌋

. Then

χd,1
ℓ (C) ≤



































∆ + 3d − 2 , if g = 3
∆ + 2d − 1 , if g = 4 ∧ ∆ ≥ 2d + 1
⌊

8d+2∆
3

⌋

, if g = 4 ∧ ∆ ≤ 2d
∆ + 2d − 1 , if g ≥ 5 ∧ ∆ ≥ 4 + a
∆ + 2d , if g ≥ 5 ∧ ∆ = 3 + a
⌊

2dg+2∆−6
g−1

⌋

+ 3 , if g ≥ 5 ∧ ∆ ≤ 2 + a

.

References

[1] N. Alon, A. Zaks, T -choosability in graphs, Discrete Applied Math. 82 (1998), 1–13.
[2] T. Calamoneri, The L(h, k)−Labelling Problem: a Survey, Tech. Rep. 04/2004, Dept. of

Comp. Sci. Univ. of Rome ”La Sapienza”.
[3] J. Fiala, R. Škrekovski, List distance-labelings of graphs, Discrete Applied Math. 148 (1)

(2005), 13-25.

[4] J. Fiala, D. Král, R. Škrekovski, A Brooks-type Theorem for the Generalized List
T−Coloring, SIAM Journal on Discrete Mathematics 19 (3) (2005), 588-609.



Algorithmic Graph Theory 417

[5] J.P. Georges, D.W. Mauro, Generalized Vertex Labelings with a Condition at Distance Two,
Congressus Numerantium 109 (1995), 141-159.

[6] J.R. Griggs, R.K. Yeh, Labelling Graphs with a Condition at Distance 2, SIAM J. Disc.
Math. 5 (4) (1992), 586-595.

[7] W.K. Hale, Frequency assignment: theory and applications, Proc. IEEE 68 (1980), 1497-
1514.

[8] A. Kohl, J. Schreyer, Zs. Tuza, M. Voigt, List version of L(d, s)−labelings, Theoretical
Computer Science 349 (1) (2005), 92-98.

[9] R.A. Sitters, A short proof of a conjecture on the Tr−choice number of even cycles, Discrete
Applied Math. 92 (1999), 243-246.

[10] B.A. Tesman, List T−colorings of graphs, Discrete Applied Math. 45 (1993), 277-289.
[11] A.O. Waller, Some results on list T−colourings, Discrete Math. 174 (1997), 357-363.

On Sparse Normal Graphs

Annegret K. Wagler

(joint work with B. Randerath)

A graph G is called normal if G admits a clique cover Q and a stable set cover S
such that every clique in Q intersects every stable set in S.
Figure 1 presents two normal graphs (the bold edges are the clique covers and
{{1, 3, 5}, {1, 4, 6}, {2, 4, 5, 7}} resp. {{0, 2, 4, 6}, {0, 3, 5, 7}, {1, 3, 6}} the cross-
intersecting stable set covers).

27

36
36

1

0

27

455 4

1

Figure 1. Two normal graphs

The interest in normal graphs is caused by the fact that they form a weaker variant
of the well-known perfect graphs by, e.g., means of co-normal products [3] and
graph entropy [2]. Perfect graphs have been recently characterized as those graphs
without odd holes C2k+1 and odd antiholes C2k+1 as induced subgraphs (Strong
Perfect Graph Theorem [1]). In analogy, Körner and de Simone [4] conjectured
that every (C5, C7, C7)-free graph is normal (Normal Graph Conjecture).
The Normal Graph Conjecture is asymptotically true since already almost all
C5-free graphs are perfect according to Prömel and Steger [5] who proved that
graphs with middle edge densities almost surely contain a C5 as induced subgraph.
Therefore, a graph is with high probability perfect only if it is too sparse or, due
to the invariance of perfectness by complementation, too dense to contain a C5.



418 Oberwolfach Report 7/2006

As this result could also imply that there are not many more normal than perfect
graphs, we shall relate the two classes, starting by studying sparse graphs. Such
graphs typically consist of many small 1-tree components, that are connected
graphs with as many edges as nodes. Thus, we start with 1-trees. Moreover,
as adding random edges to such sparse graphs links different 1-trees to larger
components, we extend our study to so-called cacti, obtained by linking 1-trees
together.
A 1-tree can be obtained from a (chordless) cycle and certain trees by a sequence
of node-identifications. Since all trees and all cycles different from C5 and C7 are
normal and node-identification preserves normality [8], this already implies:

Corollary 1. The Normal Graph Conjecture is true for 1-trees and their comple-
ments.

Let G1 +v G2 denote the graph obtained from G1 and G2 by identification in the
node v. We fully characterize the normal 1-trees as follows:

Theorem 2. A 1-tree G is not normal iff one of the following holds.

(i) G = C5.
(ii) G = C5 +v T where T is a tree.
(iii) G = (C5 +v T ) +v′ T ′ where T, T ′ are trees and v, v′ are two nodes of the

C5 at distance two.
(iv) G = C7.

This implies in particular that there are many more normal than perfect 1-trees,
since a 1-tree is perfect if and only if its only cycle is even or a triangle, whereas
almost all 1-trees are normal.
We extend this result further to the larger class of cacti. A cactus is a connected
graph whose cycles are all edge-disjoint. Thus, a cactus G = (V, E) with k cycles
can be considered as a graph obtained from a tree by adding k edges in a certain
way (thus cacti admit |V | − 1 + k edges and are still sparse). Alternatively, every
cactus can be obtained from several 1-trees by a sequence of node-identifications.
Thus, we can apply our characterization of the normal 1-trees and our knowledge
on the behavior of normal graphs under node-identification from [8] in order to
figure out which cacti are normal. Since all (C5, C7)-free 1-trees are in particu-
lar normal by Theorem 2 and node-identification preserves normality [8], we can
already infer:

Corollary 3. The Normal Graph Conjecture is true for cacti and their comple-
ments.

Obviously, there also exist normal cacti containing a C5 or a C7 as induced sub-
graph, for instance the graph obtained by identifying the two graphs from Figure
1 in a node.
We develop an algorithm that decides in polynomial time whether a given cactus
G is normal: As a first step, we decompose G accordingly into as many 1-trees as
G has cycles by choosing an appropriate set of cut-nodes in G. As a second step,
we decide with the help of Theorem 2 whether the resulting 1-tree components of



Algorithmic Graph Theory 419

G are normal or not. As main step, we succesively identify two such components of
G in their common node and decide whether this yields a normal graph (note that
we can obtain a normal graph G1 +v G2 by node-identification if G1 is normal but
G2 not [8], for instance the normal graphs in Figure 1 are obtained by identifying
a non-normal graph and an edge in a node).
Our results imply that almost all sparse graphs are normal; we conclude that there
are many more normal than perfect sparse graphs. First results on classes of denser
graphs verify the Normal Graph Conjecture for circulants [7] and line graphs [6]
and show that they contain more normal than perfect graphs as well. However,
it is open with which probability random graphs with middle edge density are
normal.

References

[1] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The Strong Perfect Graph
Theorem, to appear in Annals of Mathematics.

[2] I. Cziszár, J. Körner, L. Lovász, K. Marton, and G. Simonyi. Entropy splitting for antiblock-
ing corners and perfect graphs, Combinatorica 10 (1990) 27–40.

[3] J. Körner, An Extension of the Class of Perfect Graphs, Studia Math. Hung. 8 (1973)
405–409.

[4] J. Körner and C. de Simone, On the Odd Cycles of Normal Graphs, Discrete Appl. Math.
94 (1999) 161–169.

[5] H.J. Prömel and A. Steger, Almost all Berge graphs are perfect, Combinatorics, Probability,
and Computing 1 (1990) 53–79.

[6] H.O. Schülzke, The Normal Graph Conjecture for line graphs. Diplomarbeit, TU Berlin,
2006.

[7] A. Wagler, The Normal Graph Conjecture is true for circulants, to appear in: Proceedings
of GT04, Birkhäuser.

[8] A. Wagler, Constructions for Normal Graphs and some Consequences, submitted to Discrete
Applied Mathematics.

Distributed Coloring in Õ(
√

log n) Bit Rounds

Christian Scheideler

(joint work with Kishore Kothapalli, Melih Onus, Andrea Richa)

We consider the well-known vertex coloring problem: given a graph G, find a
coloring of the vertices so that no two neighbors in G have the same color. It is
trivial to see that every graph of maximum degree ∆ can be colored with ∆ + 1
colors, and distributed algorithms that find a (∆ + 1)-coloring in a logarithmic
number of communication rounds, with high probability, are known since more
than a decade. This is in general the best possible if only a constant number of
bits can be sent along every edge in each round. In fact, we show that for the n-
node cycle the bit complexity of the coloring problem is Ω(log n). More precisely,
if only one bit can be sent along each edge in a round, then every distributed
coloring algorithm (i.e., algorithms in which every node has the same initial state
and initially only knows its own edges) needs at least Ω(log n) rounds, with high
probability, to color the cycle, for any finite number of colors. But what if the



420 Oberwolfach Report 7/2006

edges have orientations, i.e., the endpoints of an edge agree on its orientation
(while bits may still flow in both directions)? Edge orientations naturally occur
in dynamic networks where new nodes establish connections to old nodes. Does
this allow one to provide faster coloring algorithms?
Interestingly, for the cycle in which all edges have the same orientation, we show
that a simple randomized algorithm can achieve a 3-coloring with only O(

√
log n)

rounds of bit transmissions, with high probability (w.h.p.). This result is tight
because we also show that the bit complexity of coloring an oriented cycle is
Ω(

√
log n), with high probability, no matter how many colors are allowed. The

3-coloring algorithm can be easily extended to provide a (∆ + 1)-coloring for all
graphs of maximum degree ∆ in O(

√
log n) rounds of bit transmissions, w.h.p., if

∆ is a constant, the edges are oriented, and the graph does not contain an oriented
cycle of length less than

√
log n. Using more complex algorithms, we show how

to obtain an O(∆)-coloring for arbitrary oriented graphs of maximum degree ∆
using essentially O(log ∆ +

√
log n) rounds of bit transmissions, w.h.p., provided

that the graph does not contain an oriented cycle of length less than
√

log n.
In this abstract, we only give details about selected aspects of our work. More
details and related work can be found in [1]. In Section 1 we define our model,
in Section 2 we present the lower bound and in Section 3 we present the upper
bound for distributed coloring in oriented graphs.

1. Model and Definitions

We model the distributed system as a graph G = (V, E) with V representing
the set of computing entities, or processors, and E ⊆ V × V representing all the
available communication links. We assume that all the communication links are
undirected and hence bidirectional. All the processors start at the same time and
time proceeds in synchronized rounds. We let n = |V |. The degree of node u is
denoted du and by ∆ we denote the maximum degree of G, i.e., ∆ = maxu∈V du.
When there is no confusion, du will also be used to refer to the number of uncolored
neighbors of node u. By Nu we denote the set of neighbors of node u and when
there is no confusion, we use Nu to refer to the set of uncolored neighbors of u.
We do not require that the nodes in V have unique labels of any kind. For our
algorithms to work, it is enough that each node knows a constant factor estimate of
the logarithm of the size of the network apart from its own degree and neighbors.
When we consider graphs of constant degree, no global knowledge is required for
our algorithm and it suffices that each node knows its own degree.
Let us denote by [x] the set {1, 2, . . . , x} if x ∈ IN. If x ∈ IR+, then [x] would be
the set {1, 2, . . . , ⌈x⌉}. Given a graph G = (V, E) a vertex coloring is a mapping
c : V → [C] such that if {u, v} ∈ E then c(u) 6= c(v), i.e., no two adjacent vertices
receive the same color. Here C denotes the number of colors used in the coloring.
We say that a coloring is a local coloring if every node u with degree du has a color
in [ǫdu] when the coloring uses ǫ∆ colors.
In our model, the measure of efficiency is the number of bits exchanged. We
also refer to this as the bit complexity. We view each round of the algorithm as



Algorithmic Graph Theory 421

consisting of 1 or more bit rounds. In each bit round each node can send/receive
at most 1 bit from each of its neighbors. We assume that the rounds of the
algorithm are synchronized. The bit complexity of algorithm A is then defined as
the number of bit rounds required by algorithm A. We note that, since the nodes
are synchronized, each round of the algorithm requires as many bit rounds as the
maximum number of bit rounds needed by any node in this round. In our model,
we do not count local computation performed by the nodes. This is reasonable as
in our algorithms nodes perform only simple local computation.
In our model, we assume that the edges in E have an orientation associated with
them. That is, for any two neighbors v, w exactly one of the following holds for the
edge {v, w}: {v, w} is oriented either v → w or as w → v. In the former we also
call v superior to w and vice-versa in the latter. Having orientation on the edges
is a property that has not been studied in the context of vertex coloring though
it is a natural property since networks usually evolve and for every connection
there is usually a node that initiated it. We show that algorithms for symmetry
breaking can be greatly improved provided that the underlying graph is oriented.
The exact way in which orientation is used for symmetry breaking is explained in
Figure ??. As shown, if nodes v and w choose the same color during any round
of the algorithm, in the existing algorithms, both nodes remain uncolored as in
Figure ??(b) and have to try in a later round. With orientation, if the edge {v, w}
is oriented as v → w, then node v can retain its choice provided that there is no
edge {u, v} oriented u → v and u also chooses the same color.
One parameter that will be important for our investigations is the length of the
shortest cycle in the orientation. We formalize this notion in the following defini-
tion.

Definition 1 (ℓ–acyclic Orientation). An orientation of the edges of a graph is
said to be ℓ–acyclic if the minimum length of any directed cycle induced by the
orientation is at least ℓ. Note that this is not the girth of the given graph.

2. The lower bound

In this section we establish lower bounds on the bit complexity of finding a proper
vertex coloring. Recall that a Las Vegas algorithm is a randomized algorithm that
always produces a correct result, with the only variation being its runtime. Notice
that the lower bound holds for any finite number of colors.

Theorem 2. For every Las Vegas algorithm A there is an infinite family of ori-
ented graphs s.t. A has a bit complexity of at least Ω(

√
log n) on this family, with

high probability, to compute a proper vertex coloring.

Proof. Consider the cycle of n nodes in which all the edges are oriented in the
same direction. Let Sℓ = (uℓ, . . . , u1, v1, . . . , vℓ) be the set of nodes along a path of
length 2ℓ of the cycle. Initially, every node in Sℓ is in the same state s0. Associated
with s0 is a fixed probability distribution P0 = (p0

x,y)x,y∈{−,0,1} for sending bit x
along the left edge and bit y along the right edge, where “−” represents the case
that no bit is sent. Since P0 has only nine probability values, there must be an



422 Oberwolfach Report 7/2006

x0 and y0 with p0
x0,y0

≥ 1/9. Let E1 be the event that all nodes in Sℓ choose
that option. Then all nodes in Sℓ−1 = (uℓ−1, . . . , u1, v1, . . . , vℓ−1) receive the same
information and must therefore be in the same state s1. Associated with s1 is a
fixed probability distribution P1 = (p1

x,y)x,y∈{−,0,1} for sending bit x along the left
edge and bit y along the right edge. Since P1 has only nine probability values,
there must be an x1 and y1 with p1

x1,y1
≥ 1/9. Let E2 be the event that all nodes

in Sℓ−1 choose that option. Then all nodes in Sℓ−2 receive the same information
and must therefore be in the same state s2.
Continuing with this argumentation, it follows that there are events E1, . . . , Eℓ

with Ei having a probability of at least (1/9)2(ℓ−i+1) for all i so that all nodes in
Sℓ−i are in the same state si. Since these nodes are neighbors, algorithm A cannot
terminate within ℓ bit exchanges if E1, . . . , Eℓ are true because whatever proba-
bility distribution A chooses on the colors, the probability that two neighboring
nodes choose the same color is non-zero, which would violate the assumption that
A is a Las Vegas algorithm.

The probability that E1, . . . , Eℓ are true is at least
(

1
9

)

Pℓ
i=1

2(ℓ−i+1) ≥
(

1
9

)ℓ2/2
and

when choosing ℓ =
√

2 log9(n/2 log2 n), this results in a probability of at least

(2 log2 n)/n. Moreover, notice that E1, . . . , Eℓ only depend on the nodes in Sℓ

because information can only travel a distance of ℓ edges in ℓ rounds. Hence, we
can partition the n-node cycle into n/2ℓ many sequences S where each sequence

has a probability of at least 2 log2 n
n of running into the events E1, . . . , Eℓ that is

independent of the other sequences. Hence, the probability that all node sequences
can avoid the event sequence E1, . . . , Eℓ, which is necessary for A to terminate,

is at most
(

1 − 2 log2 n
n

)n/2ℓ

≤ 1/n , which implies that A needs Ω(
√

log n) bit-

rounds, with high probability, to finish. �

3. The upper bound for constant degree graphs

In this section we present and analyze the algorithm for (∆+1)–coloring constant
degree oriented graphs. The algorithm for vertex coloring constant degree oriented
graphs is given in Figure 1. In the algorithm, the parameter Cu refers to the
number of colors used in the coloring by node u. Each node executes the algorithm
Color-Random until it gets colored.

Theorem 3. Given a
√

log n–acyclic oriented graph G = (V, E) of maximum
degree ∆, if ∆ is a constant, a (∆ + 1)–vertex coloring of G can be obtained in
O(

√
log n) bit rounds, with high probability.

Proof. The analysis below cuts the time into two phases. Phase I ends once every
simple oriented path of length ℓ =

√
log n has at least one colored node, and phase

II ends once all nodes are colored. We show that phase I takes at most r = 4
√

log n
rounds, with high probability. For Phase II, the proof uses the

√
log n–acyclic

orientation to argue that a further
√

log n rounds suffice to color all nodes. For
simplicity, we set Cu = 2∆ for every node u, but the analysis works, with minor
modifications, for Cu = ∆ + 1, as long as ∆ is a constant.



Algorithmic Graph Theory 423

Algorithm Color-Random(Cu)
While u is not colored do

1. Node u chooses a color cu from the available colors in [Cu]
uniformly at random.

2. Node u communicates its choice cu, from step 1, to all of its
uncolored neighbors that have a lower priority over u, i.e.
to nodes v such that u → v.

3. If node u does not receive a message from any of its neighbors
w with w → u and cw = cu, then node u gets colored with
color cu. Otherwise node u remains uncolored.

4. If u is colored during step 3 of the current round, then u
informs all of its uncolored neighbors about the color of u.

5. Node u updates the list of available colors according to colors
taken up by u’s neighbors.

Figure 1. Coloring constant degree oriented graphs by random choices.

Consider any simple oriented path P of length ℓ. For any node u ∈ P with C′
u

remaining colors and d′u remaining uncolored neighbors, the probability that it
chooses a color that is identical to the choice of any of its uncolored neighbors is

at most
∑d′

u
j=1 1/C′

u ≤ d′u/(2∆ − (du − d′u)) ≤ 1/2 as C′
u = 2∆ − (du − d′u) and

d′u ≤ du.
For any i ≥ 1, denote by EP,i the event that all nodes in P have a color conflict in
round i. Since each node chooses the color independently and uniformly at random,
and P is oriented, one can identify a distinct witness for each color conflict so as
to upper bound Pr[EP,i | ∩i−1

j=0EP,j ] as Pr[EP,i | ∩i−1
j=0EP,j ] ≤ (1/2)ℓ.

Denote by EP the event that the event EP,i occurs for r consecutive rounds. Then,

Pr[EP ] = Pr[

r
⋂

i=1

EP,i] = Πr
i=1 Pr[EP,i | ∩i−1

j=1EP,j ] ≤ (1/2)ℓr.

Let E denote the event that for some simple oriented path P the event EP occurs.
The number of simple oriented paths of length ℓ is at most n∆ℓ by choosing the
first vertex from n available choices and choosing each of the next ℓ vertices from
the at most ∆ available choices. Thus,

Pr[E] = Pr[
⋃

P

EP ] ≤ n∆ℓ Pr[EP ] ≤ 1/n2.

for the above value of r since ∆ = O(1). This completes Phase I of the analysis.
Consider connected components of uncolored nodes. At the end of Phase I, since
any simple oriented path of length ℓ has at least one colored node, each such com-
ponent only has simple oriented paths of length less than ℓ, with high probability.
Moreover, the input graph does not have oriented cycles of length less than

√
log n

which implies that each such component can be organized into less than
√

log n
layers with oriented edges going only from a node in a lower-numbered layer to a



424 Oberwolfach Report 7/2006

node in a higher numbered layer. This layering can be achieved by the following
process. Nodes with no superiors are assigned to layer 0. After removing these
nodes, nodes in the rest of the component with no superiors are assigned to layer 1,
and so on, until there are no nodes left. Such a procedure terminates in less than√

log n rounds, implying that the layer number of any node is less than
√

log n.
Otherwise, there must exist either a simple oriented path of length at least

√
log n

or an oriented cycle of length less than
√

log n. Both of these conditions result in
a contradiction and hence the layering process must terminate in less than

√
log n

rounds.
Now, in Phase II, during every round the uncolored nodes assigned to the lowest
layer number presently get colored as the nodes assigned to the lowest layer can
always retain their color choice from Step 1. This implies that Phase II can finish
in less than

√
log n rounds.

Since in each round each uncolored node has to exchange O(log ∆) = O(1) bits,
the bit complexity of the algorithm Color-Random is O(

√
log n). �

We note that the same proof also holds for 3–coloring cycle graphs, with any ori-
entation, with minimal changes. Coupled with the lower bound result in Theorem
2, our analysis for the case of constant degree graphs is tight with respect to the
bit complexity, up to constant factors. The algorithm and the analysis can be
modified easily to achieve a local coloring also.

References

[1] K. Kothapalli, M. Onus, A. Richa and C. Scheideler, Distributed Coloring in Õ(
√

log n) Bit
Rounds, In Int. Parallel and Distributed Processing Symposium (IPDPS), 2006.

Algebraic Graph Algorithm: From Shortest Paths to Matchings

Piotr Sankowski

In this paper we consider the problem of finding maximum weighted matchings
in bipartite graphs with nonnegative integer weights. The presented algorithms
for this problems work in Õ(Wnω) time, where ω is the matrix multiplication
exponent, and W is the highest edge weight in the graph. The best bound on
ω ≤ 2.376 is due to Coppersmith and Winograd [2].
The weighted matching problem is one of the fundamental problems in combi-
natorial optimization. The first algorithm for this problem in the bipartite case
was proposed in the fifties of the last century by Kuhn [12]. His result has been
improved several times since then, the results are summarized in the Table 1.

The bold font indicates an asymptotically best bound in the tables. In particular
the presented here algorithm is faster than the algorithm of Gabow and Tarjan [6]
and the algorithm of Edmonds and Karp [4] in the case of dense graphs with small
integer weights. Note, that in the above summary there are no algorithms that use
matrix multiplication. However, in the papers studying the parallel complexity of



Algorithmic Graph Theory 425

Complexity Author

O(n4) Khun (1955) [12] and Munkers (1957)
[16]

O(n2m) Iri (1960) [8]

O(n3) Dinic and Kronrod (1969) [3]

O(nm) Edmonds and Karp (1970) [4]

O(n
3
4 m log W ) Gabow (1983) [5]

O(
√

nm log(nW )) Gabow and Tarjan (1989) [6]

O(
√

nmW ) Kao, Lam, Sung and Ting (1999) [10]

O(nω

W ) this paper

Table 1: The complexity results for the bipartite weighted matching problem.

the problem [11, 15], such algorithms are implicitly constructed. These results
lead to O(Wnω+2) sequential time algorithms. In this paper we improve the com-
plexity by factor of n2. The improvement in the exponent by 1 is achieved with
use of the very recent results of Storjohann [19], who had shown faster algorithms
for computing polynomial matrix determinants. Further improvement is achieved
by a novel reduction technique, that allows us to reduce the weighted version of
the problem to unweighted one. The four steps of the reduction are schematically
presented on Figure 1. As a step of the reduction we also compute the bipartite
weighted cover of the graph. The unweighted problem is then solved with use
of the O(nω) time algorithms developed last year by Mucha and Sankowski [14].
Storjohann’s result can also be used to compute the maximum weight of a per-
fect matching in general graphs. However, the problem of finding such matching
remains unsolved.

Figure 1. The scheme of the reduction from weighted to un-
weighted matchings.



426 Oberwolfach Report 7/2006

The weighted matching problem is not only interesting by itself, but also it can be
used to solve many other problems in combinatorial optimization. In particular,
the presented algorithm for finding maximum weighted perfect matchings can be
used to find minimum weighted perfect matching, as well as, maximum and min-
imum weighted matchings. Moreover, the minimum weighted perfect matching
algorithm can be used for computing the minimum weight of k vertex disjoint s-t
paths, whereas the minimum weighted vertex cover can be used to solve the single
source shortest paths (SSSP) problem with negative edge weights. The complex-
ity of the algorithms for computing the minimum weight of k vertex disjoint s-t
paths, follow exactly the results in Table 1. The author is not aware of any special
algorithms for this problem. The complexity results for the SSSP problem with
negative edge weights are summarized in Table 2.

Complexity Author

O(n4) Shimbel (1955) [18]

O(n2mW ) Ford (1956) [9]

O(nm) Bellman (1958) [1], Moore (1959) [13]

O(n
3
4 m log W ) Gabow (1983) [5]

O(
√

nm log(nW )) Gabow and Tarjan (1989) [6]

O(
√

nm log(W )) Goldberg (1993) [7]

Õ(nω

W ) Sankowski (2005) [17], Yuster and Zwick
(2005) [20], this paper

Table 2: The complexity results for the SSSP problem with negative weights.
The bold font indicates an asymptotically best bound in the table.

References

[1] R. Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16(1):87–90, 1958.
[2] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. In

Proceedings of the nineteenth annual ACM conference on Theory of computing, pages 1–6.
ACM Press, 1987.

[3] E.A. Dinic and M. A. Kronrod. An Algorithm for the Solution of the Assignment Problem.
Soviet Math. Dokl., 10:1324–1326, 1969.

[4] J. Edmonds and R.M. Karp. Theoretical Improvements in Algorithmic Efficiency for Net-
work Flow Problems. J. ACM, 19(2):248–264, 1972.

[5] H.N. Gabow. Scaling Algorithms for Network Problems. J. Comput. Syst. Sci., 31(2):148–
168, 1985.

[6] H.N. Gabow and R.E. Tarjan. Faster Scaling Algorithms for Network Problems. SIAM J.

Comput., 18(5):1013–1036, 1989.
[7] Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. In SODA ’93:

Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, pages
222–231. Society for Industrial and Applied Mathematics, 1993.

[8] M. Iri. A new method for solving transportation-network problems. Journal of the Opera-
tions Research Society of Japan, 3:27–87, 1960.

[9] L.R. Ford Jr. Network Flow Theory. Paper P-923, The RAND Corperation, Santa Moncia,
California, August 1956.



Algorithmic Graph Theory 427

[10] M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F. Ting. A decomposition theorem for maxi-
mum weight bipartite matchings with applications to evolutionary trees. In Proceedings of
the 7th Annual European Symposium on Algorithms, pages 438–449, 1999.

[11] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in random nc.
Combinatorica, 6(1):35–48, 1986.

[12] H.W Kuhn. The Hungarian Method for the Assignment Problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

[13] E. F. Moore. The Shortest Path Through a Maze. In Proceedings of the International Sym-
posium on the Theory of Switching, pages 285–292. Harvard University Press, 1959.

[14] Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimination. In Pro-
ceedings of the 45th annual IEEE Symposium on Foundations of Computer Science, pages
248–255, 2004.

[15] K. Mulmuley, U.V. Vazirani, and V.V. Vazirani. Matching is as easy as matrix inversion. In
STOC ’87: Proceedings of the nineteenth annual ACM conference on Theory of computing,
pages 345–354. ACM Press, 1987.

[16] J. Munkres. Algorithms for the Assignment and Transportation Problems. Journal of SIAM,
5(1):32–38, 1957.

[17] P. Sankowski. Shortes paths in matrix multiplication time. In Proceedings of the 13th Annual
European Symposium on Algorithms, LNCS 3669, pages 770–778, 2005.

[18] A. Shimbel. Structure in Communication Nets. In In Proceedings of the Symposium on
Information Networks, pages 199–203. Polytechnic Press of the Polytechnic Institute of
Brooklyn, Brooklyn, 1955.

[19] Arne Storjohann. High-order lifting and integrality certification. J. Symb. Comput., 36(3-
4):613–648, 2003.

[20] R. Yuster and U. Zwick. Answering distance queries in directed graphs using fast matrix
multiplication. In In Proceedings of the 46th Annual Symposium on Foundations of Com-
puter Science, pages 90–100. IEEE, 2005.

On Relaxation for the Maximum Acyclic Subgraph Problem

Alantha Newman

Given a directed, weighted graph G = (V, A), the maximum acyclic subgraph
problem is to find a maximum weight subset of the edges that is acyclic. If we
require that all edge weights are non-negative, then this problem is equivalent
to the linear ordering problem, which is to find a linear ordering of the vertices
that maximizes the weight of the forward edges. And edge (i, j) is forward with
respect to a vertex ordering if i precedes vertex j in the ordering. The max acyclic
subgraph problem is NP-hard to approximate to within better than 65/66 [7]. It
has a simple 1

2 -approximation: take an arbitrary ordering of the vertices. Either
the set of forward edges or the set of backwards edges contains at least half of
the total edge weight and each set is acyclic. Improving upon the factor of 1

2 is a
challenging open problem.
The aforementioned approximation algorithm uses a trivial upper bound of the
total edge weight. In order to improve upon the factor of 1

2 , we first need to be
able to compute an accurate upper bound for graphs, for example, in which the
maximum acyclic subgraph has weight close to half the total edge weight. Classical
linear programming relaxations, based on cycle constraints, can give bounds on
the optimal value of a solution that are as much as a factor of 2 larger than the



428 Oberwolfach Report 7/2006

value of an actual optimal solution. In other words, there exists infinitely many
graphs which have a maximum acyclic subgraph close to half the edges, but for
which the classical linear programming relaxations yield objective values close to
the all the edges.
Semidefinite programming relaxations were first used in approximation algorithms
by Goemans and Williamson [1]. They applied it to the maximum cut problem to
obtain algorithms that yielded a much better approximation ratio than the ratio
obtainable via known linear programming relaxations. For many years, it was
an open problem to obtain a better-than-half approximation for the maximum
cut problem. The work of Delorme, Poljak and Rendl provided hope that such
an approximation could be achieved by demonstrating experimentally that the
so-called eigenvalue bound yielded more accurate upper bounds on the value of
an optimal cut for classes of graphs on which the classical linear programming
relaxations performed poorly [2, 3, 4].
We discuss semidefinite programming formulations for the maximum acyclic sub-
graph problem. These formulations are based on using semidefinite constraints to
model assignment constraints, whose integral solutions represent permutations. In
other words, the SDP formulation we consider is a relaxation of a quadratic integer
program whose feasible solutions are all permutations of the vertices. This is in
contrast to the classical linear programming formulations, which are relaxations
of integer programs whose feasible solutions are all acyclic subsets of the edges.
Our main theorem is that these SDP relaxations of the maximum acyclic subgraph
problem do “well” on the class of graphs used to demonstrate an integrality gap
of 2 for the classical linear programming relaxations. In particular, graphs from

the class G(n, p) with p equal to approximately 2
√

log n/n (and each edge (i, j)
randomly directed from i to j or j to i with equal probability) were used to
demonstrate an integrality gap of 2 [7]. We show that for a graph from G(n, p)
(with the edges directed in either direction with equal probability) where p = ω(1),
our semidefinite relaxation has integrality gap at most 1.64 with high probability.
The main idea of the proof is that this semidefinite relaxation provides a “good”
bound on the value of a maximum acyclic subgraph if it has no small roughly
balanced bisection. With high probability a random graph with uniform edge
probability contains no such small balanced bisection.

References

[1] Michel X. Goemans and David P. Williamson, Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming, Journal of the ACM

42 (1995), 1115–1145.
[2] Charles Delorme and Svatopluk Poljak, The performance of an eigenvalue bound in some

classes of graphs, Discrete Mathematics 111 (1993), 145–156.
[3] Svatopluk Poljak, Polyhedral and eigenvalue approximatoins of the max-cut problem, Sets,

Graphs and Numbers, Coll. Math Soc. Janos Bolyai 60 (1992), 569–581.
[4] Svatopluk Poljak and Franz Rendl, Computing the max-cut by eigenvalues, Discrete Applied

Mathematics 62(1–3) (1995), 249–278.
[5] Alantha. Newman, Algorithms for string and graph layout, Ph.D. Thesis, M.I.T. (2004).



Algorithmic Graph Theory 429

[6] Alantha Newman, Cuts and orderings: on semidefinite relaxations for the linear ordering
problem, Proceedings of the 7th Workshop on Approximation Algorithms (2004), 195–206.

[7] Alantha Newman and Santosh Vempala, Fences are futile: on relaxations for the linear
ordering problem, Proceedings of the Conference on Integer Programming and Combinatorial
Optimization (2001), 333-347.

Simple Cost Sharing Schemes for Multicommodity Rent-or-Buy and
Stochastic Steiner Tree

Jochen Könemann

(joint work with Lisa Fleischer, Stefano Leonardi, Guido Schäfer)

1. Introduction

Multicommodity Rent-or-Buy. In the multi-commodity rent-or-buy problem
(MRoB) we are given an undirected graph G = (V, E), terminal pairs R =
{(s1, t1), . . . , (sk, tk)} ⊆ V × V , non-negative costs ce for all edges e ∈ E, and
a parameter M ≥ 0. The goal is to install capacities on the edges of G such that
for all (si, ti) ∈ R we can simultaneously route a given amount of flow fi from si

to ti. We can either rent capacity on an edge e at cost λ(e) ·c(e), where λ(e) is the
flow traversing edge e, or buy infinite capacity on edge e at cost M · c(e). Bought
edges have no incremental, flow-dependent cost. The overall objective is to find a
feasible solution of smallest total cost.
The MRoB problem generalizes a number of fundamental optimization problems.
For M = ∞, an optimum solution for an MRoB instance can be found by con-
necting each pair of terminals by their shortest path.
For M = 1, MRoB reduces to the Steiner forest problem. The Steiner forest
problem is to compute a minimum-cost forest that contains an si, ti-path for all 1 ≤
i ≤ k. It is well-known that this problem is NP-hard [9] and even Max-SNP hard
[7]. The best known approximation algorithm achieves a performance guarantee of
2− 1/k and is due to Agrawal, Klein and Ravi [3]. Goemans and Williamson [15]
generalize these results to a larger class of network design problems.
The MRoB problem is a generalization of the single-commodity rent-or-buy prob-
lem (SRoB). Here, in addition to the input given in an instance of the MRoB
problem, one also has a root node r ∈ V . The root r is part of every terminal
pair, i.e., r ∈ {si, ti} for all 1 ≤ i ≤ k. Gupta et al. [11] gave a randomized
3.55-approximation algorithm for the problem.
Kumar, Gupta and Roughgarden [16] give the first constant-factor approximation
algorithm for the MRoB problem. Based on the techniques used by Gupta et
al. [11] for the single-commodity rent-or-buy problem, Gupta et al. [10] present a
12-approximation algorithm for the MRoB problem. Becchetti et al. [6] recently
obtained the currently best known 6.828-approximation algorithm for this prob-
lem.
The MRoB problem is a special case of the multicommodity buy-at-bulk (MBaB)
problem. The input in this problem is as in the MRoB problem, except for an



430 Oberwolfach Report 7/2006

additional sub-additive monotone function l : Z+ → R+. A feasible solution
consists of a vector x ∈ Z+

|E| of edge-capacities that allows for fi units of flow to be

routed between si and ti, for all (si, ti) ∈ R simultaneously, and feasibly. The cost
of installing capacities x is

∑

e∈E l(xe)ce and the goal is to find a feasible capacity
installation x of minimum total cost.
In [2], Awerbuch and Azar present an O(α)-approximation for MBaB, assuming
that any metric can be probabilistically approximated by a family of tree metrics
with an expected distortion at most α. In [4], Bartal shows α = O(log2 n) and
improves this bound in [5] to α = O(log n log log n). More recently, Fakcharoenphol
et al. [8] show that α = O(log n). Recently, Andrews [1] shows that the results in
[2] and [8] are best possible up to constant factors unless NP ⊆ ZPTIME(npolylog(n)).
Stochastic Steiner Tree. The stochastic Steiner tree problem (SST) we consider
here is the Steiner tree problem in the model of two-stage stochastic optimization
with recourse. In stage one, there is a known probability distribution π on subsets
of vertices and we can chose to buy a subset of edges at a given cost. In stage two,
a subset of vertices T from the prior known distribution is realized, and additional
edges can be bought at a possibly higher cost. The objective is to buy a set of edges
in stages one and two so that all vertices in T are connected, and the expected
cost is minimized.
We make no assumptions about the distribution π on the subset of vertices, ex-
cept that we have access to it via a sampling oracle: on request, the oracle out-
puts a subset of vertices T drawn from the distribution. Gupta and Pál give a
12.6-approximation for SST [12]. Prior to their work, there were constant factor
guarantees for the problem when all of the possible subsets realized in stage two
contain a fixed root terminal [13, 14].
Common Framework. Our work uses a common framework developed in Gupta
et al. [10] for MRoB and extended by Gupta and Pál in [12] for SST. This
framework first chooses a random subset S ⊆ R of the set of terminal pairs. It
then computes an approximate Steiner forest FS for S using an adaptation of the
primal-dual algorithm for Steiner forests and buys its edges. Finally, this forest is
augmented to a feasible solution for R by renting additional edges in a cheapest
possible way such that all remaining terminals in R \ S are connected.
The performance of the above framework depends strongly on a certain stability
property of the Steiner forest algorithm used to compute FS . For a forest F in
G, let G|F denote the graph resulting from contracting all trees of F . We use
cG|F (u, v) to denote the minimum cost of any u, v-path in G|F . For a parameter
β > 0, Gupta et al. [10] define the notion of β-strict algorithms for the minimum-
cost Steiner forest problem:

Definition 1. An algorithm ALG for the Steiner forest problem is β-strict if there
exist cost shares ξst for all (s, t) ∈ R such that

(1)
∑

(s,t)∈R ξst ≤ optR, where optR is the minimum cost of a Steiner forest

for R, and
(2) cG|F−st

(s, t) ≤ β · ξst for all (s, t) ∈ R, where F−st is a Steiner forest for
terminal set R−st = R \ {(s, t)} returned by ALG.



Algorithmic Graph Theory 431

Gupta et al. [10] then show that using an α-approximate and β-strict Steiner forest
algorithm in their framework yields an (α + β)-approximation algorithm for the
MRoB problem. The authors devise a 6-approximate and 6-strict algorithm for
Steiner forests which yields a 12-approximate algorithm for MRoB. Their analysis
can be tightened to achieve an 8-approximation. Becchetti et al. [6] reduced the

approximation ratio to 6.828 by devising a (2 +
√

2)-approximate and (2 +
√

2)-
strict primal-dual Steiner forest algorithm.
The notion of strictness defined above assumes that R is a set of terminal pairs.
To extend this framework to handle SST, Gupta and Pál extend the notion of
strictness to a set R of terminal subsets of arbitrary size, called groups. For a
group g ∈ R, let cG|F (g) denote the minimum cost of connecting all terminals of
g in G|F .

Definition 2. An algorithm ALG for the Steiner forest problem is β-group-strict
if there exist cost shares ξg for all g ∈ R such that

(1)
∑

g∈R ξg ≤ optR, where optR is the minimum cost of a Steiner forest for
R, and

(2) cG|F−g
(g) ≤ β · ξg for all g ∈ R, where F−g is a Steiner forest for terminal

set R−g = R \ {g} returned by ALG.

The algorithms in [6], [10], and [12] all adapt the primal-dual Steiner forest algo-
rithm from [3]. In these papers, strictness is achieved by adding extra edges into
the Steiner forest produced by the standard primal-dual algorithm. This worsens
the approximation ratio but reduces the cost of augmenting a feasible forest F−g

into a feasible forest for R.
Our Results. We show that the primal-dual algorithms for Steiner forest [3, 15]
are 3-strict and 4-group-strict with appropriate cost sharing rules. We summarize
our main contribution in the following theorem:

Theorem 3. There exists a primal-dual 2-approximate algorithm for the Steiner
forest problem that is 3-strict and 4-group-strict.

This implies a 5-approximation for MRoB and a 6-approximation for SST using the
framework in [10, 12]. Moreover, this also implies a 5-approximation algorithm for
the 2-stage stochastic Steiner forest problem in the independent decisions model
[13].
This is the first algorithm to show that the unmodified primal-dual Steiner forest
algorithm has constant strict or group-strict cost shares. Finally, we present an
example instance that shows that the natural primal-dual Steiner forest algorithm
is not (8

3 − ǫ)-strict for any ǫ > 0, therefore showing that the two-stage analysis of
Gupta et al. given in [10] is nearly tight for MRoB.

References

[1] M. Andrews. Hardness of buy-at-bulk network design. In Proceedings, IEEE Symposium on
Foundations of Computer Science, pages 115–124, 2004.

[2] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In Proceedings, IEEE Symposium
on Foundations of Computer Science, pages 542–547, 1997.



432 Oberwolfach Report 7/2006

[3] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for the
generalized Steiner problem in networks. SIAM J. Comput., 24:440–456, 1995.

[4] Y. Bartal. Probabilistic Approximation of Metric Spaces and its Algorithmic Applications.
In Proceedings, IEEE Symposium on Foundations of Computer Science, pages 184–193,
1996.

[5] Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proceedings, ACM Sym-
posium on Theory of Computing, pages 161–168, 1998.

[6] L. Becchetti, J. Könemann, S. Leonardi, and M. Pál. Sharing the cost more efficiently: Im-
proved approximation for multicommodity rent-or-buy. In Proceedings, ACM-SIAM Sym-
posium on Discrete Algorithms, pages 375–384, 2005.

[7] M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. Inform. Process.
Lett., 32(4):171–176, 1989.

[8] J. Fakcharoenphol, S. Rao and K. Talwar. A tight bound on approximating arbitrary metrics
by tree metrics. In Proceedings, ACM Symposium on Theory of Computing, pages 448–455,
2003.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, San Francisco, 1979.

[10] A. Gupta, A. Kumar, M. Pál, and T. Roughgarden. Approximation via cost-sharing: A sim-
ple approximation algorithm for the multicommodity rent-or-buy problem. In Proceedings,
IEEE Symposium on Foundations of Computer Science, pages 606–617, 2003.

[11] A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better approximation algorithms for
network design. In Proceedings, ACM Symposium on Theory of Computing, pages 365–372,
2003.

[12] A. Gupta and M. Pál. Stochastic Steiner trees without a root. In Proceedings, International
Colloquium on Automata, Languages and Programming, pages 1051–1063, 2005.

[13] A. Gupta, M. Pál, R. Ravi, and A. Sinha. Boosted sampling: Approximation algorithms for
stochastic optimization. In Proceedings, ACM Symposium on Theory of Computing, pages
417–426, 2004.

[14] A. Gupta, R. Ravi, and A. Sinha. An edge in time saves nine: LP rounding approximation
algorithms. In Proceedings, IEEE Symposium on Foundations of Computer Science, pages
218–227, 2004.

[15] M. X. Goemans and D. P. Williamson. A general approximation technique for constrained
forest problems. SIAM J. Comput., 24:296–317, 1995.

[16] A. Kumar, A. Gupta, and T. Roughgarden. A constant factor approximation algorithm for
the multicommodity rent-or-buy problem. In Proceedings, IEEE Symposium on Foundations
of Computer Science, pages 333–344, 2002.

Random triangulations of planar point sets

Emo Welzl

(joint work with Micha Sharir)

Given a set S of n points in the plane, a triangulation is a maximal crossing-free
geometric graph on S (in a geometric graph the edges are realized by straight
line segments). Here we consider random triangulations, where “random” refers
to uniformly at random from the set of all triangulations of S. We are primarily
interested in the degree sequences of such random triangulations.
To be precise, we assume that S is a set of n + 3 points in general position in
the plane so that the convex hull of S is a triangle. For such a set and i ∈ N,
we let v̂i denote the expected number of interior points of degree i in a random



Algorithmic Graph Theory 433

triangulation. While—for n large enough—the number of vertices of degree 3 in a
triangulation may be any integer between 0 and roughly 2n

3 , we show that
n
43 ≤ v̂3 ≤ 2n+3

5

and, for all i ≥ 3, δi ∈ R
+

exists so that v̂i ≥ δin, provided n is large enough. Our
proofs use charging schemes among vertices in triangulations that heavily build
on the structure imposed by edge flips on the set of all triangulations (see below).
General position is essential for the lower bound on v̂3. Con-
sider the case where the n interior points lie on a common
line containing one of the extreme points in S. Then there is
a unique triangulation and this triangulation has one interior
point of degree 3; hence, v̂3 = 1.
We relate these results to the question about the maximum
and minimum possible number of triangulations in a set of n points in the plane.
We show that the number of triangulations of any such set is at most 43n, thereby
improving on a previous bound of 59n by Santos and Seidel [13]. We can also use
the upper bound on v̂3 to infer a lower bound of roughly 2.5n on the number of
triangulations every set of n + 3 points in general position with triangular convex
hull has. However, this is inferior to the recent Ω(2.63n)-bound in [7].
Little seems to be known about random triangulations of (fixed) point sets, al-
though the generation of random triangulations has raised some interest (see, e.g.,
[1, Section 4.3]). Moreover, it is a folklore open problem to determine the mixing
rate of the Markov process that starts at some triangulation and keeps flipping a
random flippable edge; see [10, 9] where this is treated for points in convex posi-
tion. For abstract graphs there are results about random planar graphs, see, e.g.,
[6, 8, 5] (here one has to discriminate between the labeled and the unlabeled case).
Number of Triangulations—History. David Avis was perhaps one of the first
to ask whether the maximum number of triangulations of n points in the plane is
bounded by cn for some c > 0, see [3, page 9]. This fact was established in 1982
by Ajtai et al. [3], who show that there are at most 1013n crossing-free graphs on
n points—in particular, this bound holds for triangulations.
Further developments have yielded progressively better upper bounds for the num-
ber of triangulations in [16, 4, 14]. Interest in this question was also motivated
by the related practical question (from geometric modeling [16]) of how many bits
it takes to encode a triangulation of a point set. These investigations have so far
culminated in the previously mentioned 59n bound [13] in 2003. This compares to
Ω(8.48n), the largest known number of triangulations for a set of n points, recently
derived by Aichholzer et al. [2].
For n points in convex position, the number of triangulations is known to be Cn−2,
where Cm := 1

m+1

(

2m
m

)

= Θ(m−3/24m), m ∈ N0, is the mth Catalan number.
Other Crossing-free Graphs. Besides the intrinsic interest in obtaining bounds
on the number of triangulations, they are useful for bounding the number of other
kinds of crossing-free geometric graphs on a given point set, exploiting the fact
that any such graph is a subgraph of some triangulation. For example, the best
known upper bound on the number of crossing-free straight-edge spanning trees



434 Oberwolfach Report 7/2006

on a set of n points in the plane is O((5.3̇ τ)n), if τn is a bound on the number of
triangulations; with τ = 43 this is now O(229.3̇

n
). This follows from a result by

Ribó and Rote, [11, 12], who show that any planar graph on n vertices contains
at most 5.3̇

n
spanning trees. Similar results have been observed for crossing-free

spanning cycles, where a bound of O((
√

6τ)n) = O((2.45 τ)n) can be obtained,
as communicated by Raimund Seidel; the resulting bound of O(105.33n) falls still
short of the bound of O(86.81n) for cycles given in [15], though. The total number
of crossing-free planar graphs on n points is at most 23n−6τn < (8 τ)n. So this is
now improved to 344n (from 472n).
Tutte’s Number of Rooted Triangulations. Let us briefly discuss a classical
result from 1962 by Tutte in his census-series in the Canadian Journal of Math-
ematics [17]. He considers so-called rooted triangulations, i.e., maximal planar
graphs, with a fixed face with vertices a, b, and c and n additional vertices. Two
such triangulations are considered to be equal if there is an isomorphism between
them, which maps each of the points a, b, and c to itself, though. The number of
such triangulations is easily seen to be 1 for n = 1 and 3 for n = 2. Based on an
ingenious analysis employing generating functions, Tutte shows that for n ≥ 2 the
number of such triangulations is exactly 2

n(n+1)

(

4n+1
n−1

)

= Θ
(

1
n5/2 9.481

n)

.

How does this relate to the number of triangula-aa

b b
cc

tions of given n + 3 points? On the one hand,
Tutte’s model counts more triangulations, because
there are fewer constraints: “The interior points
can be moved arbitrarily.” On the other hand, dis-

tinct triangulations in the geometric setting may be equal in Tutte’s; see Figure.
(Dis-)Charging. The notion of “charging” rings a bell in the context of planar
graphs. The proof of the celebrated Four-Color-Theorem employs Heesch’s idea
of discharging (Entladung) in order to prove that certain configurations are un-
avoidable in a maximal planar graph. There one initially puts charge 6 − i on
each vertex of degree i in a maximal planar graph—thus the overall charge is 12.
Now vertices of positive charge push their charge to other vertices (they discharge)
without changing the overall charge. Given that a certain set of configurations L
does not occur, one proves that all vertices can discharge with a nonpositive charge
in the end—a contradiction and thus the configurations in L are unavoidable.
Our scheme differs in two respects. First of all we need a quantitative version.
We let every vertex have a value of 7 − i, in this way we can make sure that the
overall value in a maximal planar graph is at least n and there is at least 1 for
every vertex on the average. Secondly, the “discharging” goes across a family of
planar graphs, the set of all triangulations of a given point set. We show that the
charge can be redistributed so that no vertex of degree exceeding 3 has positive
charge, and degree-3 vertices have charge at most 43. This allows us to conclude
that at least 1

43 of all vertices over all triangulations have degree 3.



Algorithmic Graph Theory 435

References

[1] O. Aichholzer, The path of a triangulation, Proc. 15th Ann. ACM Symp. on Computational
Geometry (1999), 14–23.

[2] O. Aichholzer, T. Hackl, H. Krasser, C. Huemer, F. Hurtado, and B. Vogtenhuber, On
the number of plane graphs, Proc. 17th Ann. ACM-SIAM Symp. on Discrete Algorithms
(2006), 504–513.

[3] M. Ajtai, V. Chvátal, M. M. Newborn, and E. Szemerédi, Crossing-free subgraphs, Annals

Discrete Math. 12 (1982), 9–12.
[4] M.O. Denny and C.A. Sohler, Encoding a triangulation as a permutation of its point set,

Proc. 9th Canadian Conf. on Computational Geometry (1997), 39–43.
[5] O. Giménez and M. Noy, The number of planar graphs and properties of random planar

graphs, Proc. International Conf. on Analysis of Algorithms, Discrete Mathematics and
Theoretical Computer Science proc. AD (2005), 147–156.

[6] V.A. Liskovets, A pattern of asymptotic vertex valency distributions in planar maps, Journal
of Combinatorial Theory, Ser. B 75 (1999), 116–133.

[7] P. McCabe and R. Seidel, New lower bounds for the number of straight-edge triangulations
of a planar point set, Proc. 20th European Workshop Comput. Geom. (2004).

[8] C. McDiarmid, A. Steger, and D.J.A. Welsh, Random planar graphs, Journal of Combina-
torial Theory, Ser. B 93 (2005), 187–205.

[9] L. McShine and P. Tetali, On the mixing time of the triangulation walk and other Catalan
structures, Randomization Methods in Algorithm Design, in: DIMACS Series in Discrete
Mathematics and Theoretical Computer Science 43 (1998), 147–160.

[10] M. Molloy, B. Reed, and W. Steiger. On the mixing rate of the triangulation walk, Random-
ization Methods in Algorithm Design, in: DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 43 (1998),179–190.

[11] A. Ribó, Realizations and Counting Problems for Planar Structures: Trees and Linkages,
Polytopes and Polyominos, Ph.D. thesis, Freie Universiät Berlin, 2005.

[12] G. Rote, The number of spanning trees in a planar graph, Oberwolfach Reports 2 (2005),
969-973.

[13] F. Santos and R. Seidel, A better upper bound on the number of triangulations of a planar
point set, Journal of Combinatorial Theory, Ser. A 102:1 (2003), 186–193.

[14] R. Seidel, On the number of triangulations of planar point sets, Combinatorica 18:2 (1998),
297–299.

[15] M. Sharir and E. Welzl, On the number of crossing-free matchings (cycles, and partitions),
Proc. 17th Ann. ACM-SIAM Symp. on Discrete Algorithms (2006), 860–869.

[16] W.S. Smith, Studies in Computational Geometry Motivated by Mesh Generation, Ph. D.
Thesis, Princeton University, 1989.

[17] W.T. Tutte, A census of planar triangulations, Canadian J. of Math. 14 (1962), 21–38.

Dynamic Routing in Graphs with Applications to Harbour Logistics

Rolf H. Möhring

(joint work with Ewgenij Gawrilow, Ekkehard Köhler, Ines Spenke, Björn
Stenzel)

In modern logistic systems Automated Guided Vehicles (AGVs) are used for trans-
portation tasks. An appropriate control of these AGVs is crucial for efficient trans-
portation. They need to be assigned collision free routes in such a way that the
throughput of goods is maximized. The determination of these routes is an on-
line routing problem (nothing known about future requests) and also a real-time



436 Oberwolfach Report 7/2006

problem, because fast answers are required (should be less than one second in
practice).
We present an algorithm for this problem which avoids collisions, deadlocks, live-
locks and other conflicts already at the time of route computation (conflict-free
routes). We thus extend approaches of Huang, Palekar and Kapoor [2] and Kim
and Tanchoco [3], respectively. In particular, we take physical properties of the
AGVs into consideration in a more exact and flexible way.
The time dependent behavior of the AGVs is modeled by time-windows on the arcs
of the routing graph(implicit time-expansion). Each time-window represents a free
time slot at the corresponding arc depending on the routes of the AGVs that are
already computed (see Fig. 1). The real-time computation for each routing request
consists of the determination of a shortest path with time-windows (routing) and
a subsequent readjustment of the time-windows (blocking).

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

1 11

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

1 11

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

1 11

(a) (b) (c)

Figure 1. Real-time computation. (a) shows the situation before
the new request arrives. There is a graph with some blockings
(black) and some time-windows (white). The task is to compute
a quickest path that respects the time-windows. This is illustrated
in (b). The chosen path is blocked afterwards (see (c)).

The Shortest Path Problem With Time-Windows is NP-hard in general [1], but in
this special case where cost correlates with elapsed time (travel time plus waiting
time), our algorithm solves the problem in polynomial time (in the size of the
graph and the number of time-windows) using a generalized Dijkstra algorithm
algorithm that maintains an interval in each label (the expansion of such a label
is shown in Fig. 2). In contrast, we can show that the problem without waiting is
weakly NP-hard, while the multicommodity case turns out to be strongly NP-hard.
Our routing algorithm shows very good computational times in practice and can
also handle additional features such as a prescribed orientation of the AGVs at
their destination. On a network with more than 30.000 arcs and up to 100 AGVs
routing and blocking together take not more than some hundredth of a second on
the average1 (see Table 2).

1Hardware: AMD-Athlon 2100+ (1,7 Mhz) with 512 MB RAM.



Algorithmic Graph Theory 437

21 1

 0

9

6

5

8

1

0

10 10

2

10 10 10 10 10

0 0 0 0 0

21 1

 0

9

2

6

5

10

8

1

0

10 10 10 10

2

10 10

0 0 0 0 0

(a) (b)

21 1

 0

9

2

6

5

10

8

1

0

5

4

8

10 10 10 10

2

10 10

0 0 0 0 0

21 1

 0

9

2

6

5

10

1

0

5

4

5

8

10 10 10 10

8

10 10

0 0 000

8

2

(c) (d)

Figure 2. Label Expansion in the generalized Dijkstra algo-
rithm. The label intervals are represented by grey bars (nodes).
The blockings are colored black (arcs). The white intervals be-
tween these blockings are the time-windows. The figures (a) to
(d) show the successive expansion of the label intervals.

In comparison with a static routing approach, in which collision avoidance is done
at run time and not at route computation time, our algorithm shows a clear
advantage w.r.t. total travel time for high traffic densities.

References

[1] Desrosiers et al., (1986) Methods for routing with time windows, European Journal of Op-
erational Research 23 (1986), 236–245

[2] Huang, J., Palekar, U. S., Kapoor, S., A labeling algorithm for the navigation of automated
guided vehicles, Journal of engineering for industry 115 (1993), 315–321

[3] Kim, Ch. W., Tanchoco, J. M. A., Conflict-free shortest-time bidirectional AGV routing,
International Journal of Production Research 29(12) (1991), 2377–2391



438 Oberwolfach Report 7/2006

Table 2. Computational times (in seconds).

Scenarios Comp. per request Search Readjustment

maximal � maximal � maximal �

25-1G-L (25 AGVs) 0.35 0.10 0.32 0.08 0.04 0.02

25-1G-S (25 AGVs) 0.14 0.06 0.11 0.04 0.03 0.02

25-2G-L (25 AGVs) 0.24 0.06 0.24 0.05 0.03 0.01

25-2G-S (25 AGVs) 0.25 0.06 0.24 0.05 0.02 0.01

25-3G-L (25 AGVs) 0.29 0.06 0.27 0.05 0.04 0.01

25-3G-S (25 AGVs) 0.23 0.06 0.18 0.05 0.04 0.01

25-4G-L (25 AGVs) 0.18 0.04 0.16 0.03 0.03 0.01

25-4G-S (25 AGVs) 0.18 0.05 0.16 0.04 0.02 0.01

50-1G-L (50 AGVs) 0.35 0.10 0.31 0.08 0.04 0.02

50-1G-S (50 AGVs) 0.23 0.07 0.20 0.05 0.04 0.02

50-2G-L (50 AGVs) 0.32 0.06 0.30 0.05 0.04 0.01

50-2G-S (50 AGVs) 0.16 0.06 0.13 0.04 0.04 0.01

100G-L (100 AGVs) 0.26 0.06 0.23 0.05 0.05 0.01

100G-S (100 AGVs) 0.23 0.06 0.20 0.04 0.05 0.01

Spanners, Weak Spanners, and Power Spanners

Christian Schindelhauer

(joint work with Klaus Volbert, Martin Ziegler)

For c ∈ R, a c-spanner is a subgraph of a complete Euclidean graph satisfying
that between any two vertices there exists a path of weighted length at most c
times their geometric distance. Based on this property to approximate a complete
weighted graph, sparse spanners have found many applications, e.g., in FPTAS,
geometric searching, and radio networks. In a weak c-spanner, this path may
be arbitrary long but must remain within a disk of radius c-times the Euclidean
distance between the vertices. Finally in a c-power spanner, the energy consumed
on such a path must be at most c-times the one consumed on a direct link. Such
graphs have important implications for wireless networks regarding congestion and
energy efficiency.
While it is known that any c-spanner is also both a weak C1-spanner and a C2-
power spanner (for appropriate C1, C2 depending only on c but not on the graph
under consideration), we show that the converse fails: There exists a family of
c1-power spanners that are no weak C-spanners and also a family of weak c2-
spanners that are no C-spanners for any fixed C (and thus no uniform spanners,
either). However the deepest result of the present work reveals that any weak
spanner is also a uniform power spanner. We further generalize the latter notion
by considering (c, δ)-power spanners where the sum of the δ-th powers of the



Algorithmic Graph Theory 439

lengths has to be bounded; so (·, 2)-power spanners coincide with the usual power
spanners and (·, 1)-power spanners are classical spanners. Interestingly, these (·, δ)-
power spanners form a strict hierarchy where the above results still hold for any
δ ≥ 2; some even hold for δ > 1 while counterexamples exist for δ < 2. We show
that every self-similar curve of fractal dimension d > δ is no (C, δ)-power spanner
for any fixed C, in general.

References

[1] Christian Schindelhauer, Klaus Volbert, Martin Ziegler, Spanners, Weak Spanners, and
Power Spanners, Proceedings of the 15th Annual International Symposium on Algorithms
and Computation (ISAAC 04), 805-821, 2004

Rainbow colorings of hypercubes

Arnfried Kemnitz

(joint work with Maria Axenovich, Heiko Harborth, Meinhard Möller, and Ingo
Schiermeyer)

Let Qn be a hypercube of dimension n, that is, a graph whose vertices are binary
n-tuples and two vertices are adjacent if and only if the corresponding n-tuples
differ in exactly one position. A coloring of the edges of a graph H is called
rainbow if no two edges of H have the same color, that is, in a rainbow coloring
the edges are totally multicolored. Given a host graph G and a subgraph H ⊆ G,
a coloring of the edges is called H-anti-Ramsey iff every copy of H in G has at
least two edges of the same color. Denote by f(G, H) the maximum number of
colors such that there is no rainbow copy of H in some coloring of the edges of G
with f(G, H) colors (which is of course the maximum number of colors to be used
in an H-anti-Ramsey coloring of G). Equivalently, any coloring of the edges of G
with at least rb(G, H) = f(G, H) + 1 colors contains a rainbow copy of H . The
number rb(G, H) will be called rainbow number and f(G, H) anti-Ramsey number
of graphs G and H .

This anti-Ramsey problem was introduced by Erdős, Simonovits and Sós [1]. They
conjectured rb(Kn, Cp) = n

(

p−2
2 + 1

p−1

)

+ O(1) which was recently proved by

Montellano-Ballesteros and Neumann-Lara [2].

One of the less studied directions in this area is the investigation of the anti-
Ramsey function f(G, H) when G is not complete. We present some results for
f(G, H) in case that G and H are hypercubes Qn and Qk.

The following result provide general lower and upper bounds for f(Qn, Qk).

Theorem 1.

n 2n−1 −
⌊n

k

(

2n−1 − k + 1
)

⌋

≤ f(Qn, Qk) ≤ n 2n−1

(

1 − n − k

(n − 1)k2k−2

)

.



440 Oberwolfach Report 7/2006

For fixed k, the lower and upper bounds on f(Qn, Qk)/(n2n−1) by Theorem 1 tend
to 1 − 1

k and 1 − 1
k2k−2 , respectively, as n → ∞.

Setting k = 2 in Theorem 1 we immediately obtain the following result.

Corollary 2.

n 2n−2 +
⌈n

2

⌉

≤ f(Qn, Q2) ≤ (n + 1) 2n−2.

For k = n − 1 we determine the exact value of f(Qn, Qk). It turns out that all
edges except three can be colored differently if n ≥ 6.

Theorem 3. f(Qn, Qn−1) =

{

n 2n−1 − 4 for n = 3, 4, 5,
n 2n−1 − 3 for n ≥ 6.

¿From Corollary 2 we obtain 18 ≤ f(Q4, Q2) ≤ 20. The lower bound is attained.

Theorem 4. f(Q4, Q2) = 18.

With a lot of case analysis we could determine the exact value of f(Q5, Q3).

Theorem 5. f(Q5, Q3) = 68.

References

[1] P. Erdős, M. Simonovits and V.T. Sós, Anti-Ramsey theorems, Infinite and finite sets (Col-
loq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, pp. 633–643.
Colloq. Math. Soc. Janos Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.

[2] J.J. Montellano-Ballesteros and V. Neumann-Lara, An Anti-Ramsey Theorem on Cycles,
Graphs and Combinatorics 21 (2005), 343–354.

Graphs, Games and Algorithms

Paul G. Spirakis

The theory of noncooperative strategic games has had a remarkable growth in
the last 50 years. However, its intersection with Computer Science remained re-
markably small till 5-6 years ago. This has changed recently due to the efforts
of (mainly) CS theorists to understand the effect of antagonism and cooperation
on the growth and dynamics of the Internet. As a result, a new field has been
born, i.e. that of Algorithmic Game Theory. A natural consequence of this fact is
the appearance of an interaction between Game Theory and Algorithmic Graph
Theory.
We have encountered examples of such an interaction in our examination of net-
work congestion games, where the pure strategies of the players are paths in a
directed graph. Some of our results indicate that the structure of the network
graph is crucial for (a) the efficient decision of existence of e.g. Pure Nash Equi-
libria and (b) their efficient computation when they exist. In fact, we have already
a partial characterization of network graphs for which a sequence of best responses
converges fast to a pure equilibrium.



Algorithmic Graph Theory 441

The role of graph structure with respect to equilibria existence and finding seems
to be strong also in games that are not in the class of congestion games. We have
some evidence of this in situations of confrontation-type games in graphs.
An important class of games where the welfare of a player depends directly only
on a few other players is that of Graphical Games (defined by Kearns, Littman
and Singh). Here the graph models the dependencies between each player’s pay-
off and the strategies of the other players that affect this player directly. Quite
surprisingly, the existence and the finding of Pure Nash Equilibria in such games
strongly relates to the clique structure of such dependency graphs.
A major part of our current research is the examination of such connections of
the Complexity of pure (and also mixed) equilibria and the structure of graphs
associated to the strategic game.

Tutte sets: algorithmic and structural aspects

Hajo Broersma

(joint work with Doug Bauer, Nathan Kahl, Aurora Morgana, Ed Schmeichel,
Thomas Surowiec)

A well-known formula of Tutte and Berge expresses the size of a maximum match-
ing in G in terms of what is usually called the deficiency of G. A subset X of G for
which this deficiency is attained is called a Tutte set of G. While much is known
about maximum matchings, less is known about the structure of Tutte sets. In
this report, we study the structural and algorithmic aspects of maximal Tutte sets
in a graph G. For details we refer to [1] and [2].

1. Introduction and preliminary results

Given a graph G, let ω(G) (resp., ω0(G)) denote the number of components (resp.,
odd components) of G. An important result in matching theory is due to Tutte
[8].

Theorem 1. (Tutte’s Theorem) A graph G has a perfect matching if and only if
ω0(G − X) ≤ |X | for all X ⊂ V (G).

In 1958, Berge [4] extended Tutte’s Theorem to give the exact size of a maxi-
mum matching in a graph G. Define the deficiency of G, denoted def(G), by
maxX⊂V (G){ω0(G−X)− |X |}, where the maximum is taken over all proper sub-
sets of V (G). It can be shown that def(G) is the number of vertices unmatched
by a maximum matching in G, and thus we have the following.

Theorem 2. (Tutte-Berge Formula) The maximum size of a matching in a graph

G is |V (G)|−def(G)
2 .

Motivated by the above formula, we define a Tutte set (called barrier in [7]) in
G as a proper subset X ⊂ V (G) such that ω0(G − X) − |X | = def(G).



442 Oberwolfach Report 7/2006

Although much is known about matchings in graphs, less is known about Tutte
sets. In this report, we will be particularly interested in the structure of maximal
Tutte sets. By the well-known Edmonds-Gallai decomposition, studying maximal
Tutte sets in general graphs reduces to the study of maximal Tutte sets in graphs
with perfect matchings.

2. The structure of maximal Tutte sets

In this part of the report we study the structure of Tutte sets and their relation to
extreme sets and independent sets in D-graphs, which will be introduced shortly.
We give two characterizations of maximal Tutte sets. One characterization involves
the closely related concept of an extreme set in a graph, introduced in [7].
Let X ⊂ V (G). It is immediate that def(G−X) ≤ def(G)+|X |. We call X ⊂ V (G)
an extreme set in G if def(G − X) = def(G) + |X |. It is easy to see that every
Tutte set of G is an extreme set, but not conversely.
However we have the following result, which implies Lemma 3.3.8 in [7].

Theorem 3. Let G be a graph. A maximal extreme set in G is a maximal Tutte
set in G, and conversely.

The definitions of the concepts of a Tutte set and of an extreme set both involve a
technical equality related to the matching structure of the graph. These concepts
are related as we have seen above. In order to relate them to the easier, e.g. less
technical, concept of an independent set, we next introduce the auxiliary concept
of the D-graph, D(G), of a graph G. Assume for now that G contains a perfect
matching M . The graph D(G) is then defined as follows: V (D(G)) = V (G), and
E(D(G)) = {(x, y) | G−{x, y} contains a perfect matching }. In particular, every
edge in M is an edge in D(G).
It will be useful to give an alternative definition of E(D(G)). Let M be a perfect
matching in G. We denote by PM [x, y] an M -alternating-path in G joining x and
y, which begins and ends with an edge in M . (Similarly, we denote by PM (x, y) an
M -alternating-path in G joining x and y, which begins and ends with an edge not
in M ; the M -alternating-paths PM [x, y) and PM (x, y] are defined analogously).
By a theorem of Berge [3], (x, y) ∈ E(D(G)) if and only if there exists a path
PM [x, y] in G. One easily checks that this definition of E(D(G)) is independent
of the choice of the perfect matching M .
We next establish an important connection between extreme sets in G and inde-
pendent sets in D(G).

Theorem 4. Let G be a graph with a perfect matching, and let X ⊆ V (G). Then
X is an extreme set in G if and only if X is an independent set in D(G).

Combining Theorems 3 and 4, we obtain

Theorem 5. Let G contain a perfect matching, and let X ⊆ V (G). Then the
following are equivalent.

• X is a maximal Tutte set in G
• X is a maximal extreme set in G



Algorithmic Graph Theory 443

• X is a maximal independent set in D(G).

We note that we can extend Theorem 5 to graphs which do not contain a perfect
matching by using the Edmonds-Gallai decomposition of G. In the remaining part
of the report we concentrate on graphs that have a perfect matching.

3. Iterated D-graphs

The results of the previous section show that there is an intimate relation between
Tutte sets and extreme sets in graphs and independent sets in D-graphs. Motivated
by this, in this section we will proceed with studying D-graphs and iterated D-
graphs. Let us take D0(G) = G, and recursively define Dk(G) = D(Dk−1(G)), for
k ≥ 1. We begin with an easy observation.

Theorem 6. For any graph G with a perfect matching, G is isomorphic to a
spanning subgraph of D(G), denoted G � D(G).

Corollary 7. For any graph G with a perfect matching, G ⊆ D2(G).

Consequently, Dk(G) � Dk+1(G), for any k ≥ 0. This, together with the fact that
each Dk(G) has vertex set V (G), implies Dl(G) ∼= Dl+1(G), for some finite integer
l. We define the level of G (denoted level(G)) to be the smallest such integer l.
In order to characterize graphs G with Dk+1(G) ∼= Dk(G), k ∈ {0, 1, 2}, we
introduce the following concepts.
Let M be a perfect matching in G. If for all edges [a, a

′

] ∈ M and all (not

necessarily distinct) paths PM (x, a), PM (a
′

, y) in G, with x, a, a
′

, y distinct, we
have either [x, y] ∈ M or the edge (x, y) in G, we call G edge-closing; if we
always have either [x, y] ∈ M or a path PM (x, y) in G, we call G path-closing;
if we always have either [x, y] ∈ M or a walk WM (x, y) in G, we call G walk-

closing. (Since PM (x, a) o [a, a
′

] o PM (a
′

, y) is already a walk WM (x, y), we see
that every graph is trivially walk-closing.)
Our main result in this section is that

(1) D(G) ∼= G if and only if G is edge-closing
(2) D2(G) ∼= D(G) if and only if G is path-closing
(3) D3(G) ∼= D2(G) if and only if G is walk-closing.

The last statement implies that for every graph G with a perfect matching,
D3(G) ∼= D2(G).

4. Characterizing D-graphs

Recall that a graph G is a D-graph if G = D(H), for some graph H . It would be
interesting to find a good characterization of D-graphs. In fact it would suffice to
characterize level 1 D-graphs, since a level 0 graph is always a D-graph (of itself),
and a level 2 graph is never a D-graph (or H would have level 3).
Although finding a good characterization of D-graphs may be difficult in general,
it is easy for the class of bipartite graphs.



444 Oberwolfach Report 7/2006

Theorem 8. Let G be a bipartite graph with a perfect matching. Then G is a
D-graph if and only if level(G) = 0.

In particular, a tree T is a D-graph if and only if level(T ) = 0 (i.e., D(T ) � T ,
hence D(T ) ∼= T ). It is easy to characterize trees T with D(T ) ∼= T .

Theorem 9. Let T be a tree on n vertices with a perfect matching. Then D(T ) ∼=
T if and only if T has the form of a tree T

′

on n/2 vertices and a Kn/2 joined by
a perfect matching.

5. Algorithmic results on Tutte sets

In this part of the report we consider the problem of finding maximal or maximum
Tutte sets in graphs. Whereas the first problem is polynomially solvable, the
second problem is NP-hard in general but polynomially solvable for graphs with
level 0 or level 1.
Consider the following decision problem.

MAXIMUM TUTTE SET
INSTANCE: Graph G, integer k ≥ 0.
QUESTION: Does G contain a Tutte set X with |X | ≥ k?

Theorem 10. MAXIMUM TUTTE SET is NP -complete.

We used a polynomial reduction from the following well-known NP -complete prob-
lem [6].

INDEPENDENT SET
INSTANCE: Graph G, integer k ≥ 0.
QUESTION: Is α(G) ≥ k?

We first thought that a larger connectivity would cause the problem to become
polynomially solvable, but this is not the case.

Theorem 11. MAX TUTTE SET is NP -complete for k-connected graphs, for
any k ≥ 1.

Since INDEPENDENT SET is NP-complete for the class of 2-connected planar
graphs with a perfect matching, we also get:

Theorem 12. MAX TUTTE SET is NP-complete for the class of 2-connected
planar graphs.

Since INDEPENDENT SET remains NP-complete for triangle-free graphs [6], we
also get:

Theorem 13. MAX TUTTE SET is NP-complete for triangle-free graphs.



Algorithmic Graph Theory 445

In contrast to the NP -completeness results, we now consider several interesting
classes of graphs in which maximum Tutte sets can be found in polynomial time.
We first note the following result.

Theorem 14. MAX TUTTE SET ∈ P for the class of graphs with level 0 or 1.

A graph G is called elementary if it contains a perfect matching and if the edges
which occur in a perfect matching in G induce a connected subgraph.
The following can be deduced from results in [7].

Theorem 15. A graph G is elementary if and only if D(G) is a complete multi-
partite graph.

Since finding a maximum independent set in a complete multipartite graph is
trivial, we can obtain the following result.

Theorem 16. MAX TUTTE SET ∈ P for the class of elementary graphs.

A graph G is called 1-tough if ω(G−X) ≤ |X | for all non-empty X ⊆ V (G). We
obtained the following result.

Theorem 17. MAX TUTTE SET ∈ P for the class of 1-tough graphs.

Corollary 18. MAX TUTTE SET ∈ P for the following classes of graphs:

(a) hamiltonian graphs,
(b) 2-connected claw-free graphs,
(c) k-regular, k-edge-connected graphs, for any k ≥ 1.

6. Open problems

We conclude with some open problems.

(1) We know that MAX TUTTE SET can be solved in polynomial time for
graphs of level 0 or 1, elementary graphs, and 1-tough graphs. Are there
other interesting classes of graphs for which MAX TUTTE SET can be
solved in polynomial time?

(2) We know that MAX TUTTE SET is NP-complete for 2-connected pla-
nar graphs and polynomial for 4-connected planar graphs. What is the
complexity of MAX TUTTE SET for 3-connected planar graphs?

(3) MAX TUTTE SET can be solved in polynomial time for 1-tough graphs,
and hence for planar 1-tough graphs. Given ǫ > 0 , is MAX TUTTE SET
polynomial for planar (1 − ǫ)-tough graphs? We think we can prove that
MAX TUTTE SET is NP-complete for (1 − ǫ)-tough general graphs.

(4) The class of D-graphs has been useful in our study of Tutte sets. But
it remains an open problem whether level 1 D-graphs can be recognized
in polynomial time (the problem is uninteresting for level 0 or 2 graphs).
This recognition problem becomes trivial for the class of bipartite graphs.



446 Oberwolfach Report 7/2006

References

[1] D. Bauer, H. J. Broersma, N. Kahl, A. Morgana, E. Schmeichel, and T. Surowiec. Tutte
sets in graphs II: the complexity of finding maximum Tutte sets. Preprint, 2005.

[2] D. Bauer, H. J. Broersma, A. Morgana, and E. Schmeichel. Tutte sets in graphs I: maximal
Tutte sets and D-graphs. Preprint, 2005.

[3] C. Berge. Two theorems in graph theory. Proc. Nat. Acad. Sci. USA, 43:842 – 844, 1957.
[4] C. Berge. Sur le couplage maximum d’un graphe. C. R. Acad. Sci. (Paris), 247:258 – 259,

1958.
[5] J. R. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. J Res Nat Bur

Standards, pages 125 – 130, 1965.
[6] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, San Francisco, CA,

1979.
[7] L. Lovász and M. D. Plummer. Matching theory. In Ann. Discrete Math. North-Holland,

Amsterdam, 1986.
[8] W. T. Tutte. The factorization of linear graphs. J. London Math. Soc., 22:107 – 111, 1947.

On counting homomorphisms to directed acyclic graphs

Martin Dyer

(joint work with Leslie Ann Goldberg, Mike Paterson)

We give a dichotomy theorem for the problem of counting homomorphisms to
directed acyclic graphs. H is a fixed directed acyclic graph. The problem is, given
an input digraph G, how many homomorphisms are there from G to H . We give a
graph-theoretic classification, showing that for some digraphs H , the problem is in
P and for the rest of the digraphs H the problem is #P-complete. An interesting
feature of the dichotomy, which is absent from related dichotomy results, is that
there is a rich supply of tractable graphs H with complex structure. Our result
is a dichotomy theorem for the problem of counting homomorphisms to directed
acyclic graphs.
A homomorphism from a (directed) graph G = (V, E) to a (directed) graph H =
(V , E) is a function from V to V that preserves (directed) edges. That is, the
function maps every edge of G to an edge of H .
Hell and Nešetřil [7] gave a dichotomy theorem for the decision problem for undi-
rected graphs H . In this case, H is an undirected graph (possibly with self-loops).
The input, G, is an undirected simple graph. The question is “Is there a homo-
morphism from G to H . They showed that the decision problem is in P if the
fixed graph H has a loop, or is bipartite. Otherwise, it is NP-complete. Dyer
and Greenhill [3] established a dichotomy theorem for the corresponding counting
problem in which the question is “How many homomorphisms are there from G
to H”. They showed that the problem is in P if every component of H is either
a complete graph with all loops present or a complete bipartite graph with no
loops present1. Otherwise, it is #P-complete. Bulatov and Grohe [1] extended the

1The graph with a singleton isolated vertex is the degenerate complete bipartite graph with
no loops.



Algorithmic Graph Theory 447

counting dichotomy theorem to the case in which H is an undirected multigraph.
Their result will be discussed in more detail below.
In this paper, we consider the related counting problem for directed graphs. First,
consider the corresponding decision problem. H is a fixed digraph, and the prob-
lem, given an input digraph G, is “Is there a homomorphism from G to H?”
It is conjectured [8, Conjecture 5.12] that there is a dichotomy theorem for this
problem, in the sense that, for every H , the problem is either polynomial-time
solvable or NP-complete. (See also [2].) Currently, there is no graph-theoretic
conjecture stating what the two classes of digraphs will look like. Obtaining such
a dichotomy may be difficult. Indeed (see [Theorem 5.14][8]), Feder and Vardi have
shown [5, 6] that the resolution of the dichotomy conjecture for digraphs would
also resolve their long-standing dichotomy conjecture for constraint satisfaction
problems. There are some known dichotomy classifications for restricted classes
of digraphs, however, the problem is open [8] even when H is restricted to be an
oriented tree.
In this paper, we give a dichotomy theorem for the corresponding counting prob-
lem, for the class of digraphs in which H can be any acyclic directed graph. An
interesting feature of this problem, which is different from the previous dichotomy
theorems that we have mentioned, is that there is a rich supply of tractable
graphs H with complex structure.
The formal statement of our dichotomy is given below. Here is an informal descrip-
tion. First, the problem is #P-complete unless H is a layered digraph, meaning
that the vertices of H can be arranged in levels, with edges going from one level to
the next. We show that the problem is in P for a layered digraph H if the following
condition is true (otherwise it is #P-complete). The condition is that, for every
pair of vertices x and x′ on level i and every pair of vertices y and y′ on level
j > i, the product of the graphs Hx,y and Hx′,y′ is isomorphic to the product of
the graphs Hx,y′ and Hx′,y. The details of the product that we use (from [4]) are
given below. The notion of isomorphism is the usual (graph-theoretic) one, except
that certain short components are dropped, as described below. The precise defin-
ition of Hx,y is given below, but the reader can think of it as the subgraph between
vertex x and vertex y. Some fairly complex graphs H satisfy this condition, and
for these graphs H the counting problem is in P.
The hardness side of our dichotomy proof relies on two fundamental results of Bu-
latov and Grohe [1] and Lovász [9], and on the layered cross product (LCP) [4] of
layered digraphs. Our algorithm for counting graph homomorphisms for tractable
digraphs H is based on factoring under the LCP. A difficulty is that the rele-
vant algebra lacks unique factorisation. We deal with this by first multiplying by
“preconditioners”.

References

[1] A. Bulatov and M. Grohe, The complexity of partition functions, in Automata, Languages
& Programming: 31st International Colloquium, Lecture Notes in Computer Science 3142,
pp. 294–306, 2004.



448 Oberwolfach Report 7/2006

[2] A. Bulatov and V. Dalmau, Towards a dichotomy theorem for the counting constraint sat-
isfaction problem, in Proc. 44th IEEE Symposium on Foundations of Computer Science,
IEEE, pp. 562–572, 2003.

[3] M. Dyer and C. Greenhill, The complexity of counting graph homomorphisms, Random
Structures & Algorithms 17 (2000), 260–289.

[4] S. Even and A. Litman, Layered cross product: a technique to construct interconnection
networks. Networks 29 (1997), 219–223.

[5] T. Feder and M. Vardi, Monotone monadic SNP and constraint satisfaction, 25th STOC
1993 612–622.

[6] T. Feder and M. Vardi, The computational structure of monotone monadic SNP and con-
straint satisfaction: a study through Datalog and group theory, SIAM J. Comput. (28)
(1998) 57–104.

[7] P. Hell and J. Nešeťril, On the complexity of H-coloring, Journal of Combinatorial Theory
Series B 48 (1990), 92–110.

[8] P. Hell and J. Nešeťril, Graphs and homomorphisms, Oxford University Press, 2004.
[9] L. Lovász, Operations with structures, Acta. Math. Acad. Sci. Hung., 18 (1967), 321–328.

Faster approximation algorithms for covering and packing problems

Daniel Bienstock

During the last twenty-plus years we have witnessed many significant advances
in the theory and practice of linear programming. These advances, reinforced by
large improvements in computing platforms, have lead to major speedups in the
solution of linear programs. It is routinely claimed that we can now solve large
linear programs thousands of times faster than just fifteen years ago [5].
Nevertheless, difficult linear programs remain. The prototypical example of a
difficult linear program arises in the context of network routing applications. Here,
we are given a network with capacities, and a list of “point-to-point” demands to
be routed. The routing allows fractional amounts of flow to be sent along edges
of the network, but the key constraint is that all the demands must be routed
simultaneously without exceeding the capacities.
In one class of versions of this problem, we are given a per-unit flow cost for
each edge of the network: here we must route all demands, constrained as in the
preceding paragraph, at minimum cost. This is nothing other than the standard
minimum-cost multicommodity flow problem [1].
A version of the problem of perhaps greater practical impact (at least in networking
applications) is the so-called maximum concurrent flow problem.Here we know in
advance that it is impossible to route all demands without exceeding capacities.
Instead, we would like to route a common fraction, θ, of every demand while not
exceeding capacities – and we would like to maximize θ. The maximum, θ∗, is
called the throughput of the network.
In experiments reported in [2] it was shown that the running time of state-of-
the-art commercial implementations of linear programming algorithms, can grow
cubically with the number of variables, when running concurrent flow problems.
On networks with roughly one thousand nodes, several thousand edges, and where
(say) half of the nodes are source nodes for demands, the running time becomes



Algorithmic Graph Theory 449

prohibitively expensive (of the order of months of CPU time) even on a fast com-
puter. An additional complicationis the large amount of memory required by
commercial solvers.
These facts are not new – at least in qualitative form, they have been known in
the networking community for at least thirty years. It is no surprise that the first
algorithmic attempt at circumventing the difficult linear programs arose from this
community. This is the so-called flow deviation method [6] for the maximum con-
current flow problem. This method uses a combination of two simple ideas: first,
it maintains a strictly feasible flow, and, at each iteration, it increases throughput
by scaling all flows by a common constant. The new flow will be more congested
– we “decongest” it by solving a nonlinear programming problem. This is the
second idea. Where uij is the capacity of arc (i, j), and fij is the total combined
multicommodity flow on arc (i, j), the nonlinear function to be minimized is

∑

(i,j)

fij

uij − fij
.

This function is minimized using a first-order (Frank-Wolfe) algorithm, starting
from the current flow, and subject to keeping the throughput constant. The mini-
mizer, or an approximate minimizer, will have substantially lower congestion levels,
and the scaling step can now be repeated.
A modern analysis of this algorithm [4] shows that it has good theoretical prop-
erties: for any ǫ > 0 it computes a flow with throughput at least (1 − ǫ)theta∗ in
a number of iterations that grows (at most) proportional to ǫ−2 and polynomial
factors. The flow deviation method remains popular in the networking community
because it is “lightweight” and simple to implement: each iteration can be reduced
to a number of shortest path computations.
Shahrokhi and Matula [18] independently developed a different methodology for
the concurrent flow problem. In their approach, one routes 100% of each com-
modity, and instead the maximum load of any edge is to be minimized. Here,
the load of an edge (i, j) under a multicommodity flow f equals fij/uij. It can
be seen that the maximum throughput problem and the minimum load problem
are equivalent (maximum throughput = inverse of minimum load). Sharokhi and
Matula’s approach seeks to minimize a potential function of the form

∑

(i,j)

exp(α
fij

uij
).

Their approach is closely related to first-order methods and also entails shortest
path computations. They showed that their algorithm has complexity O(ǫ−5)
times polynomial factors.
Following Sharokhi and Matula’s work, a large volume of research was produced
by the theoretical computer science community ( see [12], [9], [10], [11],[16], [15],
[17], [8], [7] among others). This work gradually improved and generalized the
results of [18], in the end producing algorithms that require O(ǫ−2) iterations for
solving minimum cost “fractional packing” or “covering” problems, a significant



450 Oberwolfach Report 7/2006

generalization over multicommodity flow problems. Further, these methods can
prove efficient in practice [2].
A major contribution in this area has recently been made by Nesterov [14]. To
cast his result in the context of this abstract, Nesterov produced an algorithm for
the concurrent flow problem that generates, for any ǫ > 0, a flow with throughput
at least θ∗ − ǫ, by solving a sequence of separable convex quadratic minimum-cost
flow problems. The number of iterations in Nesterov’s algorithm grows as ǫ−1 –
times possibly non-polynomial factors. Also, notice that a priori we do not know
the order of magnitude of θ∗, so a relative error guarantee is what is needed.
By adapting some techniques from [9], recently [3] we were able to improve this
result so that (a) the approximate flow has throughput at least (1 − ǫ)θ∗ (i.e., a
relative error guarantee) and the number of iterations grows proportional to ǫ−1

times polynomial factors, thus matching a lower bound of Khachiyan. Further-
more, each iteration can be reduced to a number of shortest path computations.
Some recent work of Nemirovski [13] appears promising. It may be the case that
this work can also be adapted to produce provably good approximation algorithms.

References

[1] R. Ahuja, T. L. Magnanti, and J. Orlin, Networks Flows: Theory, Algorithms, and Practice,
Prentice Hall. 1993.

[2] D. Bienstock, Potential Function Methods for Approximately Solving Linear Programming
Problems, Theory and Practice, Kluwer, Boston. 2002.

[3] D. Bienstock and G. Iyengar. Solving fractional packing problems in O*(1/epsilon) itera-
tions. Proc. 26th Ann. Symp. Theory of Computing (Chicago, 2004) 146-155.
Asymptotic analysis of the flow deviation method for the maximum concurrent flow problem.
Math. Prog. 91:379–492, 2002.

[4] D. Bienstock and O. Raskina. Asymptotic analysis of the flow deviation method for the
maximum concurrent flow problem. Math. Prog. 91:379–492, 2002.

[5] R. Bixby, personal remark.
[6] L. Fratta, M. Gerla and L. Kleinrock, The flow deviation method: an approach to store-

and-forward communication network design. Networks 3:97-133, 1971.
[7] L@.K. Fleischer. Approximating fractional multicommodity flow independent of the number

of commodities. SIAM J. Disc. Math., 13:505-520, 2000.
[8] N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow and

other fractional packing problems. Proc. 39th Ann. Symp. on Foundations of Comp. Sci.
(FOCS), 300-309, 1998.

[9] M.D. Grigoriadis and L.G. Khachiyan. Fast approximation schemes for convex programs
with many blocks and coupling constraints. SIAM J. Optim., 4:86-107, 1994.

[10] M.D. Grigoriadis and L.G. Khachiyan. An exponential-function reduction method for block-
angular convex programs. Networks 26:59-68, 1995.

[11] M.D. Grigoriadis and L.G. Khachiyan. Approximate minimum-cost multicommodity flows

in Õ(ǫ−2KNM) time. Math. Prog., 75:477-482, 1996.
[12] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos and S. Tragoudas. Fast approx-

imation algorithms for multicommodity flow problems, Proc. 23nd Ann. ACM Symp. on
Theory of Computing, 101-111, 1999.

[13] A. Nemirovski. Prox-method with rate of convergence O( 1

t
) for variational inequalities with

Lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
(2003)



Algorithmic Graph Theory 451

[14] Y. Nesterov. Smooth minimization of non-smooth functions. CORE Discussion Paper,
CORE, UCL, Belgium. (2003).

[15] S. Plotkin and D. Karger. Adding multiple cost constraints to combinatorial optimization
problems, with applications to multicommodity flows. In Proceedings of the 27th Annual
ACM Symposium on Theory of Computing, 18-25, 1995.

[16] S. Plotkin, D.B. Shmoys and E. Tardos. Fast approximation algorithms for fractional packing
and covering problems, Math. Oper. Res. 20:495-504, 1995.

[17] T. Radzik. Fast deterministic approximation for the multicommodity flow problem. Proc.
6th ACM-SIAM Symp. on Discrete Algorithms (SODA), 1995.

[18] F. Shahrokhi and D.W. Matula. The maximum concurrent flow problem. J. ACM 37:318-
334, 1991.

Phylogenetic trees and 3- and 4-leaf powers

Andreas Brandstädt

(joint work with Van Bang Le and R. Sritharan)

Motivated by the search for underlying phylogenetic trees, Nishimura, Ragde and
Thilikos [5] defined the notion of k-leaf power as follows: An undirected finite
graph G is the k-leaf power of a tree T if its vertices are leaves of T such that two
vertices are adjacent in G if and only if their distance in T is at most k. Then T is
a k-leaf root of G. In [5], a (very complicated) O(n3) time recognition algorithm
for 3- and for 4-leaf powers is given. For k ≥ 5, characterization and recognition
of k-leaf powers is an open problem.
Recently, Dom, Guo, Hüffner, Niedermeier [3] characterized 3-leaf powers in terms
of forbidden subgraphs. We show in [1] that a connected graph is a 3-leaf power if
and only if it results from a tree by substituting cliques into its vertices. Another
characterization in [1] leads to linear-time recognition of 3-leaf powers.
Moreover, Rautenbach [6] (see also [4]) characterized 4-leaf powers without true
twins in terms of forbidden subgraphs. We give new characterizations for 4-leaf
powers and, as a byproduct and important tool, for squares of trees. As a conse-
quence, we obtain linear time recognition of 4-leaf powers.

References

[1] A. Brandstädt, V.B. Le, Structure and linear time recognition of 3-leaf powers, accepted for
Information Processing Letters.

[2] A. Brandstädt, V.B. Le, R. Sritharan, Structure and linear time recognition of 4-leaf powers,
Submitted for publication.

[3] M. Dom, J. Guo, F. Hüffner, R. Niedermeier, Error compensation in leaf root problems, In:
Proceedings of 15th ISAAC, LNCS 3341, 389-401, 2004; To appear in Algorithmica.

[4] M. Dom, J. Guo, F. Hüffner, R. Niedermeier, Extending the tractability border for closest
leaf powers, In: Proceedings of 31st Workshop on Graph-Theoretic Concepts in Computer
Science WG 2005, LNCS 3787, 397–408, 2005.

[5] N. Nishimura, P. Ragde, D.M. Thilikos, On graph powers for leaf-labeled trees, J. Algorithms
42 (2002), 69–108.

[6] D. Rautenbach, Some remarks about leaf roots, manuscript (2004).



452 Oberwolfach Report 7/2006

Simple Coresets for Clustering Problems

Christian Sohler

(joint work with Gereon Frahling)

Clustering is the computational task to partition a given input into subsets of
equal characteristics. These subsets are usually called clusters and ideally consist
of similar objects that are dissimilar to objects in other clusters. This way one
can use clusters as a coarse representation of the data. We loose the accuracy of
the original data set but we achieve simplification (this is somewhat comparable
to lossy compression). When we deal with large data sets clustering the data may
be the only possibility to visualize the structure of the data set as visualizing the
whole set is typically not possible.
Clustering has many other applications in different areas of computer sciences such
as computational biology, machine learning, data mining and pattern recognition.
Since the quality of a partition is rather problem dependent, there is no general
clustering algorithm. In this talk we consider k-means clustering, which is a widely
used formulation of clustering. In this problem we are given a set P of n points in
the Euclidean space Rd. The goal is to find a set C of k points (called centers),
such that

∑

p∈P

(d(p, C))2

is minimized, where d(p, C) denotes the distance of point p to the nearest point in
C.
In this talk, we want to develop a simple coreset construction for k-means clustering
[1]. A coreset is a small weighted points sets (point weights stand for multiplicities
of points) such that for any set of k centers the cost of the coreset is within (1± ǫ)
times the cost of the original point set. The coreset we compute has size in O(log n)
for constant ǫ and d. We present a dynamic data structure (e.g., one supporting
insertions and deletions) that maintains in poly(log n) space such a coreset for a
sequence of n insertions and deletion of points. Once we have computed such a
coreset we can use an arbitrary algorithm to obtain a good clustering.
In the second part of this talk we show how to use these coresets to obtain a
fast implementation of Lloyd’s algorithm [4], which is one of the most widely used
heuristic for k-means clustering and clustering in general [2]. We start with a small
coreset and run a variant of this algorithm on it. Then we move to a coreset of
bigger size and run our variant on it using the solution from the previous coreset
as starting solution. We continue this process until our coreset equals the whole
point set. The variant of Lloyd’s algorithm we use is a variant of the KMHybrid
algorithm [3, 5].

References

[1] G. Frahling and C. Sohler. Coresets in Dynamic Geometric Data Streams. Proceedings of
the 37th Annual ACM Symposium on Theory of Computing (STOC’05), pp. 209–217, 2005.



Algorithmic Graph Theory 453

[2] G. Frahling and C. Sohler. A fast k-means implementation using coresets. to appear in
Proceedings of the 22nd ACM Symposium on Computational Geometry (SoCG’06), 2006.

[3] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Wu. An Efficient
k-Means Clustering Algorithm: Analysis and Implementation. IEEE Trans. Pattern Anal.
Mach. Intell. 24(7): 881-892, 2002.

[4] S. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on Information Theory,
28: 129–137, 1982.

[5] D. Mount. A Testbed for k-Means Clustering Algorithms. Available at
http://www.cs.umd.edu/mount/Projects/KMeans/km-local-doc.pdf.

Learning in Games

Thomas Böhme

(joint work with Frank Göring, Jens Schreyer, Zsolt Tuza, Herwig Unger)

The results sketched in this talk are motivated by the following problem. Consider
finitely many agents acting in an unknown environment. Each agent seeks to
attain a certain goal. To this end it can choose from finitely many actions. The
problem we are concerned with is to analyze whether the agents can learn (by
trial and error) to choose the right actions to accomplish their respective goals.
We concentrate on the special case that there is no direct communication between
the agents, i.e. the only information an agent can use in the learning process is
the list of actions applied in the past and the respective outcomes. We model this
situation by a variation of repeated games (cf. [3]). We consider two different
kinds of stage games: games played on directed graphs and a variation of games
in strategic form.
Games on graphs Let G be a finite graph, x0 a vertex of G (called the terminal
vertex), and I = {1, . . . , n} a set of players. For the sake of simplicity we restrict
consideration in what follows to directed graphs without directed cycles. The
vertex set of G is partitioned into n + 1 classes X0, X1, . . . , Xn where X0 consists
of all vertices with no out-going edges. (These vertices are called terminal vertices.)
Each terminal vertex t ∈ X0 is associated with a subset W (t) ⊆ I. At the
beginning of a game a token is placed at the initial vertex x0. If the token is
at a vertex u ∈ Xp, player p chooses an edge uv starting at u and moves the token
from u to the vertex v. (In this case we say that player p has touched the vertex
u.) The game ends if and only if the token is moved to a terminal vertex. (The
condition that G has no directed cycles ensures that every game ends after finitely
many steps.) If the game ends at terminal vertex t, the players in W (t) win the
game and all other players lose it. A strategy for a player p is a function f from
Xp into the edge set of G such that f(x) is an edge starting at x for every vertex
x ∈ Xp. A strategy f for player p is said a winning strategy if p wins every play
in which he/she applies strategy f .
Consider a sequence of such games. We say that player p applies a deterministic
k-learning rule in this sequence if her strategy si

p in the ith game is uniquely deter-
mined by his/her strategies in the preceding k games and the respective outcomes.



454 Oberwolfach Report 7/2006

(The strategies of p in the first k plays are arbitrary.) We consider the following
special deterministic 1-learning rule. For its definition we assume that for each
vertex x the set of edges starting at x is stored as a linear list equipped with the
successor operator σx. (If e is the last element in this list, then σx(e) := NIL is
defined to be a dummy symbol.)

LNWP algorithm (Latest Not Winning Position). We say that a player
p ∈ P applies the learning rule of Latest Losing Position — LNWP, for short —
if the strategy si+1

p of p in the i + 1st game is determined by the preceding game
as follows:

si+1
p (x) =















σx(si
p(x)) if p does not win the i-th game and x is the last vertex

with σx(si
p(x)) 6= NIL touched by p in the ith game

si
p(x) otherwise

for each x ∈ Xp and i ≥ 1.

We mention, that if the learning rule LNWP is applied to a game with just one
player p, then it visits the positions in the same order as depth-first search until
the first terminal vertex t with p ∈ W (t) (if there is any) has been found.
The following theorems are slightly simplified versions of results proved in [1].

Theorem 1. Let γ1, γ2, . . . a sequence of games in which player p applies the
learning rule LNWP, and let m denote the number of edges of G.

(a) If p has a winning strategy, then there are less than m games γi such that
p does not win γi.

(b) If p does not win γi and σx(si
p(x)) = NIL for all x touched by p in the

game γi, then p has no winning strategy.

Theorem 1 does not imply that there is a number L (depending on G only) such
that if player p has a winning strategy, then he/she will win every game γi after
having played at least L games. For example, p may win the first 10,000 games
without using a winning strategy, and none of the other players changes his/her
strategy. Then, in the 10,001st game some of the other players change their strate-
gies and p loses this game. Our next theorem shows that there is such a bound,
provided the other players also apply some kind of learning rule.

Theorem 2. For every integer k there is an integer L(k) (depending on the graph
G) such that if player p has a winning strategy and γ1, γ2, . . . is a sequence of
games in which p applies the learning rule LNWP and every other player applies
some k-learning rule, then player p wins every game γi with i > L(k).

It is worth mentioning that neither Theorem 1 nor Theorem 2 guarantee that the
player applying the learning rule LNWP will find a winning strategy. (A player



Algorithmic Graph Theory 455

may win every game in a sequence without using a winning strategy just because
the other players do not use all their strategies.)
We generalize the notion of a winning strategy as follows. Let Q ⊆ I be a set
of players. A family {fq | q ∈ Q} of strategies is called a collaborative winning
strategy for Q if each player in Q will win every game in which every player p ∈ Q
apply the strategy fq. There are examples of games (played on a suitable directed
graph) with three players {1, 2, 3} such that no player has a winning strategy, every
2-element set of players has a collaborative winning strategy, and the set {1, 2, 3}
has no collaborative winning strategy. Furthermore, even if all players apply the
learning rule LNWP in an infinite sequence of such games, it may happen that
every player loses infinitely many games. This motivates our second result.

Strategic-Form Games A game in strategic form (cf. [3]) consists of a set
of players I = {1, . . . , n}, a family {Si | i ∈ I} of strategy sets, and a family
{ui | i ∈ I} of pay-off functions. Each pay-off function ui is a real-valued function
defined on S1 × · · · × Sn. We restrict consideration to strategic-form games with
the property that all pay-off functions ui take their values in {0, 1}. (Henceforth,
such games are called 0-1-games.) In case of a 0-1-game, we say that player i wins
the game if ui = 1 and loses it if ui = 0. Adopting this notation, we can apply the
notions k-learning rule and collaborative winning strategy defined in the previous
section analogously to 0-1-games. We also say that a player applies a randomized
k-learning rule in a sequence of games if the distribution of his/her strategy in
the ith game is uniquely determined by the his/her strategies in the preceding k
games and the respective outcomes.
Consider a sequence γ1, γ2, . . . of such games, and denote the strategy of player p
in the ith game by si

p. Suppose that every player applies the following randomized

2-learning rule. If si−1
p = si−2

p and p wins the (i − 2)nd and the (i − 1)st game, p

keeps his/her strategy in the ith game, i.e. si
p = si−1

p = si−2
p . In all other cases

p chooses his/her strategy si
p in the ith game uniformly at random. It is proved

in [2] that if some subset of players has a collaborative winning strategy and each
strategy set Si has at least three elements, then the probability that for some
subset Q′ ⊆ I of players all players q ∈ Q′ apply a collaborative winning strategy
in all games γi with i > n converges to 1 with n tending to ∞. A closely related
result about almost sure convergence to Nash equilibria was proved by S. Hart and
A. Mas-Colell [4]. It also follows from a result in [4] that no randomized 1-learning
rule guarantees almost sure convergence to a collaborative winning strategy (see
also [2]).

References

[1] T. Böhme, F. Göring, Zs. Tuza, and H. Unger Learning of Winning Strategies for Terminal
Games with Linear-Size Memory, in preparation.

[2] T. Böhme and J. Schreyer Learning to cooperate with almost no communication, submitted
to ICML-2006.

[3] D. Fudenberg and J. Tirole, Game Theory, The MIT Press Cambridge, Massachustes; Lon-
don, England (1993).



456 Oberwolfach Report 7/2006

[4] S. Hart and A. Mas-Colell, Stochastic uncoupled dynamics and Nash equilibrium, Technical
report, The Hebrew University of Jerusalem, 2005

Reporter: Stephan Matos Camacho



Algorithmic Graph Theory 457

Participants

Prof. Dr. Evripidis Bampis

IBISC
CNRS FRE 2873
Universite d’Evry Val-d’Essone
F-91025 Evry Cedex

Dr. Daniel Bienstock

Dept. of Industrial Engineering and
Operations Research, Columbia Univ.
Seeley W., Mudd Building
500 West 120th Street
New York, NY 10027
USA

Dr. Hans Bodlaender

Department of Computer Science
Utrecht University
P. O. Box 80. 089
Padualaan 14
NL-3508 TB Utrecht

Dr. Thomas Böhme

Institut für Mathematik
Technische Universität Ilmenau
Helmholtzplatz 1
98693 Ilmenau

Prof. Dr. Andreas Brandstädt

Institut für Informatik
Universität Rostock
18051 Rostock

Dr. Stephan Brandt

Institut f. Mathematik
Technische Universität Ilmenau
Weimarer Str. 25
98693 Ilmenau

Prof. Dr. Hajo Broersma

Dept. of Computer Science
University of Durham
South Road
GB-Durham DH1 3LE

Florian Diedrich

Institut für Informatik und
Praktische Mathematik
Christian-Albrechts-Universität
Olshausenstr. 40
24098 Kiel

Prof. Dr. Martin E. Dyer

The School of Computing
University of Leeds
GB-Leeds LS2 9JT

Dr. Frank Göring

Fakultät für Mathematik
Technische Universität Chemnitz
Reichenhainer Str. 39
09126 Chemnitz

Prof. Dr. Mirko Hornak

P.J. Safarik University
Institute of Mathematical Sciences
Jesenna 5
040 01 Kosice
Slovakia

Dr. Stefan Hougardy

Institut für Informatik
HU-Berlin
Unter den Linden 6
10099 Berlin

Prof. Dr. Klaus Jansen

Institut für Informatik
Universität Kiel
Olshausenstr. 40
24118 Kiel



458 Oberwolfach Report 7/2006

Prof. Dr. Arnfried Kemnitz

Institut Computational Mathematics
Technische Universität Braunschweig
Pockelstraße 14
38106 Braunschweig

Prof. Dr. Lefteris M. Kirousis

University of Patras
Computer Eng. & Informatics Dept.
University Campus
26504 Patras
GREECE

Prof. Dr. Jochen Könemann

Dept. of Combinatorics and
Optimization
University of Waterloo
200 University Avenue West
Waterloo, Ont. N2L 3G1
CANADA

Dipl.Math. Anja Kohl

Fak. für Mathematik und Informatik
Bergakademie Freiberg
09596 Freiberg

Prof. Dr. Dieter Kratsch

Universite de Metz
LITA
Ile du Saulcy
F-57045 Metz Cedex 01

Dr. Van Bang Le

Institut für Theoretische
Informatik, FB Informatik
Universität Rostock
Albert-Einstein-Straße 21
18051 Rostock

Prof. Dr. Tomasz Luczak

Zaklad Matematyki Dyskretnej
Wydzial Matematyki i Informatyki
Uniwersytet im. Adama Mickiewicza
61-614 Poznan
POLEN

Stephan Matos Camacho

Fakultät für Mathematik und
Informatik; Technische Universität
Bergakademie Freiberg
Prüferstr. 1
09599 Freiberg

Prof. Dr. Friedhelm Meyer auf der
Heide

Heinz-Nixdorf Institut &
Institut für Informatik
Universität Paderborn
Fürstenallee 11
33102 Paderborn

Prof. Dr. Rolf Möhring

Institut für Mathematik - Fak. II
Technische Universität Berlin
Sekr. MA 6-1
Straße des 17. Juni 136
10623 Berlin

Dr. Alantha Newman

Max-Planck-Institut für Informatik
Geb. 46
Stuhlsatzenhausweg 85
66123 Saarbrücken

Prof. Dr. Harald Räcke

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3890
USA

Dr. Bert Randerath

Institut für Informatik
Universität zu Köln
Pohligstr. 1
50969 Köln



Algorithmic Graph Theory 459

Prof. Dr. Dieter Rautenbach

Forschungsinstitut für
Diskrete Mathematik
Universität Bonn
Lennestr. 2
53113 Bonn

Prof. Dr. Zdenek Ryjacek

Department of Mathematics
University of West Bohemia
Univerzitni 22
306 14 Pilsen
Czech Republic

Dr. Piotr Sankowski

Institute of Informatics
Warsaw University
ul.Banacha 2
02-097 Warsaw
Poland

Prof. Dr. Christian Scheideler

Department of Computer Science
Johns Hopkins University
3400 N. Charles Street
Baltimore, MD 21218-2682
USA

Prof. Dr. Ingo Schiermeyer

Fakultät für Mathematik und
Informatik; Technische Universität
Bergakademie Freiberg
Prüferstr. 1
09599 Freiberg

Dr. Christian Schindelhauer

Heinz-Nixdorf Institut &
Institut für Informatik
Universität Paderborn
Fürstenallee 11
33102 Paderborn

Ulrich Michael Schwarz

Institut für Informatik
Universität Kiel
Olshausenstr. 40
24118 Kiel

Christian Sohler

Heinz-Nixdorf Institut &
Institut für Informatik
Universität Paderborn
Fürstenallee 11
33102 Paderborn

Prof. Dr. Martin Sonntag

Fakultät für Mathematik und
Informatik; Technische Universität
Bergakademie Freiberg
Prüferstr. 1
09599 Freiberg

Prof. Dr. Paul Spirakis

Research & Academic Computer
Technology Institute (RACTI)
N. Kazantzaki Str.
P.O.Box 1122, Rion
265 00 Patras
GREECE

Prof. Dr. Endre Szemeredi

Department of Computer Science
Rutgers University
Hill Center, Busch Campus
New Brunswick, NJ 08903
USA

Dr. Hanns-Martin Teichert

Institut für Mathematik
Universität Lübeck
Wallstr. 40
23560 Lübeck



460 Oberwolfach Report 7/2006

Prof. Dr. Peter Tittmann

Fachbereich Mathematik, Physik
und Informatik
Hochschule Mittweida
Technikumplatz 17
09648 Mittweida

Prof. Dr. Berthold Vöcking

Lehrstuhl für Informatik I
RWTH Aachen
Ahornstr. 55
52074 Aachen

Dr. Margit Voigt

Fachbereich Informatik
Hochschule für Technik und
Wirtschaft
Friedrich-List-Platz 1
01069 Dresden

Dr. Annegret Wagler

Institut für Mathematische
Optimierung
Universität Magdeburg
Universitätsplatz 2
39106 Magdeburg

Prof. Dr. Emo Welzl

Theoretische Informatik
ETH-Zürich
ETH-Zentrum
CH-8092 Zürich

Prof. Dr. Peter Widmayer

Institut für Informatik
ETH-Zürich
ETH-Zentrum
CH-8092 Zürich

Prof. Dr. Gerhard Woeginger

Department of Mathematics
Eindhoven University of Technology
P.O.Box 513
NL-5600 MB Eindhoven

Prof. Dr. Mariusz Wozniak

Department of Applied Mathematics
AGH University of Science and
Technology
Al. Mickiewicza 30
30-059 Krakow
POLAND


