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Abstract. A three-volume book on all aspects of the European reception of
Isaac Newton’s work is in preparation, for publication in 2008 by Continuum
Press (London). This workshop involved the important subset of contribu-
tors working on Newton’s pure and applied mathematics and aspects of his
physics, and almost all of the participants are to be authors of one of the
chapters. The meeting gave everyone an opportunity not only to rehearse
their contributions as far as they had developed them, but also to discuss
and sort out overlaps and divisions of labour between their respective chap-
ters, as well as with many other chapters to be written by authors who were

not present. The ease and intensity of these exchanges would not have been
possible by emails alone, however many of them were sent; the personal con-
tact was crucial. In other words, pure Oberwolfach.
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Introduction by the Organisers

“‘Helpful” is not quite the word that comes to mind
when considering Isaac Newton’. (Alan Shapiro)

A widely known legend is encapsulated by Alexander Pope’s famous two-liner:
‘Nature, and Nature’s laws lay hid in night. God said, let Newton be! and all
was Light.’ The built in claim is somewhat oversimplified even for Britain; and
it certainly does not capture the complex web of enthusiasm, acceptance, doubt,
emulation, objection and opposition that characterises the Continental reactions.
The need to consider the actual states of affairs within Newtonianism in general is
especially significant, since from the 1740s onwards Britain became breathtakingly
mediocre in mathematical research, so that almost everything that mattered was
done in Europe.
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The purpose of the workshop was to outline and study the details of these
complexities. The summaries below show that we divided up the post-Newtonian
corpus largely by subject matter and topic. Two presentations dealt with impor-
tant contemporaries; Leibniz, and the Bernoulli family with Hermann: the book
will contain more chapters of this kind. In addition, only one chapter tackled a
community as such, namely the French mathematicians from 1780 to 1830: several
chapters of the book will be of this type.

While we tried to take Newton’s own contributions to be more or less known
and clear, Newton’s own presentations of his theories, often cryptic in the extreme,
forced us back to his texts on many occasions. An important hierarchy of inter-
pretation was exposed: what we today think that Newton was (not) saying, and
what we today think that Newton’s successors thought that he was (not) saying.

The mini-workshop brought together 15 participants from seven countries, in-
cluding the two editors of the book. Funds made available by the US Junior Ober-
wolfach Fellows Funds allowed one of our younger members to take part. Most
sessions lasted 75 minutes, including up to 30 minutes of discussion. The measure
of further consultation in the evenings and on afternoon walks was considerable.
Some subsets of us were already quite well known to each other, but all of us made
new contacts and friendships, which will help signally in the preparation of the
book over this and the next year.
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Abstracts

The reception of Newton’s method of fluxions in Europe

N. Guicciardini

Newton’s impact on eighteenth-century European calculus is usually judged nega-
tively in comparison with Leibniz’s achievement. For instance, according to Morris
Kline:

Excessive reverence for Newton’s geometrical work in the Prin-

cipia, reinforced by the enmity against the Continental mathe-
maticians engendered by the dispute between Newton and Leibniz,
caused the English mathematicians to persist in the geometrical
development of the calculus. But their contributions were trivial
compared to what the Continentals were able to achieve using the
analytical approach ([1], 392).

The received view is not altogether wrong, but after recent research is in need of
revision and better qualification.

First of all, it is apparent that the work carried on by some of Newton’s disci-
ples was far from being purely geometrical and remote from European algorithmic
style. One can think about works by Roger Cotes, Brook Taylor, James Stirling,
Abraham de Moivre and Thomas Simpson as examples of a way of doing mathe-
matics well attuned with European contemporary work. Their work was noted and
used in Europe. Even Colin Maclaurin – the great champion of geometrical rigour
– devoted the second book of his Treatise of fluxions (1742) to the ‘computations
in the method of fluxions’[2].

The active presence of a group of ‘analytical’ fluxionists in Britain, who prac-
ticed infinite series manipulations in a formal style which one usually attributes
to Euler and who dealt with quadrature techniques which demanded considerable
skill in manipulating symbols, should not be a surprise to those who are aware of
the tensions inherent in Newton’s mathematical work.

While in the Principia (1687) Newton gave prominence to a geometrical style
to which he is usually associated, several of his tracts in new analysis, such as the
De quadratura (1704) and the Methodus differentialis (1711), were carried on in
terms which are symbolical.

One has further to recognize that the communities of European and British
mathematicians were fragmented in a complex way: any attempt to reduce them
to two well-defined opposing groups is refuted by historical evidence[3]. One can
think about the role played by French mathematicians such as Pierre Varignon
and Pierre Rémond de Montmort who acted as intermediaries between Newton
and the Basel group.

Once we have a clearer idea of the complexities of the Newtonian heritage we
can move on and consider the impact of the results achieved by the Newtonians on
European mathematics. In my chapter I will chart the influence of certain results
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on integration achieved by Newton, Cotes, de Moivre, Saunderson, and of several
results due to Maclaurin.

Further, I will consider the reception of fluxions in France. Here we find two
topics of interest. The former is Buffon’s translation (1740) of Newton’s Method

of series fluxions, the latter is the initiatives of a group of Jesuits active in Paris
at the mid of the century who promoted translations of works on fluxions by
Edmund Stone and Maclaurin. These philo-British initiatives were opposed by
academicians around Fontenelle. These debates illustrate that endorsing or op-
posing Newton’s method was a question that polarized the French communities
around contrasting ideas on how a mathematical natural philosophy should be
framed[4][5][6].

I will then move to Italy. I will compare the French Jesuits’ campaign in favour
of fluxions with the more moderate acceptance of Newton’s method by the Italian
mathematicians who worked with, or were influenced by, Jacopo Riccati. It seems
that these Italian mathematicians (Suzzi, Vincenzo Riccati, Girolamo Saladini,
Maria Gaetana Agnesi) did not want to renounce to the advantages of the notations
in terms of differentials and integrals, while adopting a foundational outlook which
opened to some of Newton’s typical concepts. Their motivations for doing so—as
the social and academic context in which they operated reveal–might be related
to a desire to affirm autonomy from the Basel school, which had dominated the
Chair of mathematics in Padua from 1707 to 1719[7][8][9].

In order to complete my research project I have to devote more work on the
French and Italian groups. I have to pay attention to other countries as well. It
has been also agreed that Newton’s work on series and its European reception
will be dealt with in the chapter on algebra, as this classification adheres more
strictly to the disciplinary boundaries then in use. There is a smooth transition
from my chapter, which will cover the period until ca. 1770, to Grattan-Guinness’
chapter on French science. It would be also very profitable if I could co-ordinate
my chapter with the chapters on Leibniz and on the Bernoullis—since the priority
dispute was the arena which allowed Europeans to make a first encounter with
Newton–and with the chapter on the development of Newtonianism in France—
since J. B. Shank might want to consider the role played by Castel and his polemic
with Fontenelle.
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Newton’s Algebra

J. Stedall

During 1669 Newton made extensive annotations to the Algebra ofte Stel-Konst

(1661) of Gerard Kinkhuysen. The notes were never published, but in 1683–84
Newton used them again in compiling his Lucasian lectures. It is unlikely that
these lectures were ever actually delivered, but the notes for them were edited and
published by William Whiston in 1707 as the Arithmetica universalis. Thus the
Arithmetica universalis follows quite closely the structure and content of Kinkhuy-
sen’s Algebra, a typical seventeenth-century textbook on equation-solving, based
on sixteenth-century material with the addition of a few new ideas from Descartes
and van Schooten. This gives Newton’s Arithmetica universalis the appearance
of being much more elementary than in fact it is. To the traditional ideas ex-
pounded by Kinkhuysen, Newton added some far reaching insights of his own.
Often, however, he described rules or procedures without explanation, giving rise
to extensive commentary later on. The first discussion of Newton’s material ap-
peared in Leibniz’s review in the Acta eruditorum in 1708, which was eventually
followed by several continental editions of the Arithmetica universalis in which the
commentary far exceeded the original material. In this lecture I provided a pre-
liminary survey of editions, commentary, and discussion of Newton’s text during
the eighteenth century, but much more research still remains to be done.

The Arithmetica universalis is entirely concerned with the traditional subject
matter of algebra, namely equation-solving. Hence the title, ‘universal arithmetic’,
or ‘symbolic’ or ‘specious’ arithmetic. However, in the course of the seventeenth
century, algebra had come to acquire another meaning, usually described by the
phrases ‘analytic art’, or ‘analysis’. In this meaning, algebra was understood not
as simply a technique, but as a powerful tool for analysing mathematical problems.
Newton’s ‘De analysi’ of 1669 took up this new meaning, and applied it by means
of infinite series, or as Newton described them, infinite equations.

It can be argued that the discovery of the general binomial theorem and infinite
series was as important to the progress of seventeenth-century mathematics as the
calculus itself. Further, in ‘De analysi’, Newton moved mathematics irrevocably
away from the old geometric methods towards a new algebraic language, in which
all well known mathematical quantities - sines and logrithms, for example - could
be expressed algebraically. Any study of Newton’s algebra and its influence must
therefore take into account not only his work on equations, as set out in Arithmetica

universalis, but also the new insights of De analysi, and their consequences.
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Once again, Leibniz was the first to recognize the importance of Newton’s dis-
coveries, when he first encountered them in letters from Newton in 1676. By the
early eighteenth century, several continental mathematicians, Euler in particular,
were using the binomial theorem and infinite series freely in their work, and later
Lagrange attempted to use them as the foundation of the calculus itself. Again,
there is a story here that requires considerable further research if we are to tease
out the detail of Newton’s influence.

Celestial Mechanics and Gravitational Theory

M. Nauenberg

In 1687 the first edition of Newton’s Principia appeared and completely trans-
formed the contemporary understanding of celestial mechanics and gravitation.
In Book 1, he gave, for the first time, a complete physical and mathematical de-
scription for the origin of Kepler’s three empirical laws for planetary motion which
were based on the careful observations of Tycho Brahe summarizing the knowledge
of astronomers at the time. To accomplish this great feat Newton had to extend
thee geometrical methods developed by the Greeks, particularly Euclid and Apol-
lonius, to encompass the limit of ratios of vanishingly small quantities which in
the Principia were represented by short lines and by arcs of curves. To justify his
celebrated 1666 ‘moon test’ (Prop. 4 Book 3), which compared the gravitational
force of the earth on the moon to the force of gravity on the earth, he applied
the law of universal gravitation, a centrepiece of the Principia, to show that a
spherical distribution of mass acts as if the total mass is concentrated at its centre
(Props. 72–74 , Book 1).

In Book 3 of the Principia, Newton applied his mathematical theory of orbital
mechanics to the motion of planets and satellites to establish the validity of the
universal theory of gravitation in astronomy. He showed that the best available
data at the time for the periods and major axis of the planets and the Jovian
and Saturnian satellites were in agreement with Kepler’s third law (Phenomenon
2–4, Book 3), and then applied Cor. 6 of Prop 4, Book 1, to show that ‘if the
periodic times are as the three half powers of the radii, the centripetal force will
be inversely as the squares of the radii’. In addition, he applied Cor. 1 of Prop. 45
of Book I to show that the near immobility of the aphelia of the planets (Prop. 14,
Book 3) also implied a gravitational inverse square force between the planets and
the sun. Next, he proceeds to calculate subtle deviations from Kepler’s laws which
had been found by astronomical observations in the motion of the planets and
the moon. He considers various approximate mathematical methods to treat the
perturbations due to solar gravity on the motion of the moon around the earth,
and the effects of the interactions between the planets rotating around the sun.
Although he succeeds in many cases, he failed, in spite of considerable efforts, to
account for the precession of the apsides of the moon orbit by a factor of two.
This failure became the first major challenge for the early mathematicians and
astronomers who read the Principia.
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When European mathematicians like Bernoulli, Hermann, Varignon, Huygens,
Leibniz and others first read the Principia, however, they had considerable diffi-
culties understanding Newton’s novel mathematical ideas which combined geomet-
rical quantities with his concept of limits, the fundamental basis of his calculus.
These mathematicians had been introduced to a similar calculus by Leibniz, and
they had to translate first Newton’s mathematical language into their own before
they could understand it and make further progress. Thus, Hermann, for exam-
ple, applied the result of Newton’s derivation of Kepler’s area law to provided a
solution of for the elliptical orbit of a body acted on by a central inverse square
force in terms of the solution of what we call a differential equation. Likewise
Bernoulli, who criticized the incompleteness of Hermann’s solution, also derived
the elliptic orbit by integrating Newton’s expression in Prop. 41 Book 1 of the
Principia for the case of an inverse square force. Remarkably, Newton had left
out this important solution from the Principia and this has caused considerable
confusion which remains to the present time. Some British mathematicians like
Gregory were able to contact Newton, and get help from him to overcome obstacles
in understanding the Principia, but this appears not to have been the case with
European mathematicians. Bernoulli, for example, criticized the incompleteness of
the fundamental Cor. 1 of Prop. 13 Book 1, were Newton claimed to have a proof
of the solution of the inverse problem: given the gravitational force to show that
the resulting orbit is a conic section. He also communicated to Newton an error
he had found in Prop. 10 of Book 2. In both cases Newton made corrections in the
next edition of the Principia (1713) without acknowledging Bernoulli’s important
contributions.

Relations with the Bernoulli and his school were further aggravated when the
priority dispute on the invention of the calculus between Newton and Leibniz
erupted in 1711. By the 1740s, serious reservations arouse regarding the general
validity of the inverse square law for gravitational force because of the failure
of Newton’s approximation of the solar perturbation to account for the rate of
precession of the lunar apside. The first to question on this ground the validity
of this law was one of the foremost mathematicians in Europe, Leonhard Euler.
He remarked that ‘having first supposed that the force acting on the Moon from
both the Earth and the Sun are perfectly proportional reciprocal to the squares
of the distances, I have always found the motion of the apogee to be almost
two times slower than the observations . . . ’, and concluded that ‘the centripetal
forces in the heavens do not follow exactly the law established by Newton’. The
French mathematician Alexis-Claude Clairaut proposed that an additional force
which varied with distance inversely as the fourth power, possible due to Cartesian
vortices, was also in effect. Ultimately the French Academy of Sciences proposed
a prize for the solution of this problem, and both D’Alembert and Clairaut solve it
around 1746 by considering higher order contributions to the solar perturbation.

The importance of this result can hardly be overestimated. In admiration Euler
declared in a letter to Clairaut that ‘. . . the more I consider this happily discovery,
the more important it seems to me. For it is very certain that it is only since this
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discovery that one can regard the law of attraction reciprocally proportional to
the squares of the distance as solidly established, and on this depends the entire
theory of astronomy’. For the next 100 years mathematicians worked primarily
in developing more powerful methods to solve the many body problems discussed
in Newton’s Principia. Lagrange and Euler introduced the method of variation of
orbital parameters which was applied successfully to many astronomical problems.
Originally this method had been developed by Newton, but it was left mostly un-
published (see Portsmouth papers in Whiteside’s Newton’s Mathematical Papers,
vol 6, edited by D. T. Whiteside) except for some succinct remarks in Cor. 3 and
4, Prop 17 Book 1. By the late 1700s Lagrange and Laplace had written major
treatises on Celestial Mechanics summarizing the mathematical progress that had
been made. Questioned by Napoleon where God entered in his celestial scheme,
Laplace famously responded that ‘ I do not need this hypothesis’. Newton had
claimed that from time to time, God needed to interfere in order to maintain the
stability of the solar system, but Laplace claimed that he had been able to give a
proof of this stability mathematically. Later, however, this proof was shown to be
flawed by the work of Henry Poincare.

Lunar Tables

N. Kollerstrom

In the early decades of the 18th century, Isaac Newton’s recipe for obtaining the
longitude of the moon came to be adopted by various European Ephemeris–makers.
It soon became evident that these were more accurate than the earlier procedures.
They flourished until the continental theories of Mayer and Euler developed, which
were superior. Was Newton’s lunar theory deduced from his theory of gravity?
That was always hard to answer. He first published the theory in 1702, and then
in 1713 with the 2nd Edition of his Principia claimed that its equations could be
derived from gravity theory. It took a while before anyone tried to use it, because it
was so much more complicated than other methods, having many more equations.

Newton obtained his lunar theory from Flamsteed, who had obtained it from
north-country astronomers around the young Jeremiah Horrocks. This theory
was Keplerian, that is, using elliptical motion, whereas the Moon as pulled more
strongly by the Sun than by the Earth does not adhere at all well to a Kepler-ellipse
model. The centre of the lunar ellipse was placed on an epicycle, and the upshot
was that both its eccentricity and its apse line position oscillated approximately
once per six months. This major oscillation replaced what had been called the
‘evection’ and to it Newton added various other equations. Altogether he devised
a seven-step procedure, as was much used in lunar tables of the eighteenth-century.

In Paris, Pierre Lemonnier produced some fine tables in 1743, using this the-
ory. Edmond Halley played apart in getting the Newtonian theories transmitted
to the Continent. The great theorists such as d’Alembert were always sceptical
as to whether gravity theory had played any part in deriving this theory, even
while they had to concede that it worked fairly well. They just could not believe
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that epicycle-wheels, such as Newton’s Principia had displayed in its 2nd edition
lunar section (Book III, Prop. 37) belonged to gravity theory. They were able to
demonstrate analytically, that is, algebraically that which Newton had expressed
in a geometric format. There was agreement that the inequality known as the vari-
ation (discovered by Tycho Brahe) had been well derived by Newton from gravity
theory, but of other components people were less confident.

Newton in 1687 deduced the relative mass of the Moon as 1

20
that of the Earth

whereas it is actually 1

81
, that is, he made it enormously too heavy. This was

somewhat corrected in the 2nd edition of 1713 to 1

40
, where he reduced his error

to merely a 100 percent overestimate of the lunar mass. As the largest error in
the Principia this had some major implications for its Book III, for example in his
Precession of the Equinoxes computation. The error derived from his attempt to
estimate the tidal-pull ratio of Sun and Moon, which he obtained as 1 to 4.5, with
the Moon pulling more strongly. Daniel Bernoulli in 1740 estimated this ratio as
more like 1 to 2.5 which is much nearer the modern value. Thereby d’Alembert
was able to obtain a much more exact estimate of the Earth to Moon mass ratio.

Newton’s instructions for finding lunar longitude were written out in words,
that is, he was not able to or never did express them as trigonometric equations,
as did d’Alembert and Clairaut. Memory of the existence of any Newtonian recipe
for finding longitude soon disappeared from the history books, maybe because
the Horroxian model he had used was kinematic and too evidently not derivable
from his inverse-square law of gravity, not reappearing until the 1975 essay by
D. T. Whiteside. In the 1750s lunar theories were derived on the Continent, exact
enough to win Britain’s longitude prize (they were exact to one arc minute of lunar
longitude). The lunar tables of Edmond Halley published in 1749 were the last of
the ‘Newtonian’ ones and these soon became out of date.

The Influence of Newton’s Principia on the Development of Continuum

Mechanics and Rigid Body Dynamics on the Continent

G. K. Mikhailov

Newton’s Principia does not touch practically Continuum Mechanics in its modern
sense, but includes some investigations in the hydraulic theory of fluid motion that
can be considered as related to Continuum Mechanics. In the second book of the
first edition of Principia (1687) Newton gave basic ideas of the similarity theory,
developed corpuscular models of hydroaerodynamic drag suffered by bodies in rare
and dense fluids, the first (wrong) approach to a hydraulic theory of water efflux
from vessels (with a corresponding jet reaction force), the first theory of sound
and water wave propagation and water oscillations in vertical tubes, proposed a
continuous model for a viscous fluid. The third book of Principia includes also
his theory of tides and notion of the spheroidal form of liquid celestial bodies (the
Moon).
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In the second edition (1713) Newton improved his theory of water efflux and jet
reaction, introduced the notion of jet contraction and slightly changed the analysis
of the sound propagation.

A sharp discussion on Newton’s theory of water efflux from vessels occurred on
the Continent during the first half of the 18th century (especially by Johann I and
Daniel Bernoulli). Johann Bernoulli and Daniel in his early work (1724) supported
the first (wrong) variant of Newton’s theory. However, Daniel developed later a
thorough system of theoretical hydraulics on the basis of the principle of living
forces (1738) and confirmed Newton’s improved theory of jet reaction under water
efflux from vessels. Investigations on the jet contraction were advanced during the
18th century, mainly in Italy and later also in France. Newton’s well-known error
in solving the problem on rotation of a viscous fluid was corrected by D. Bernoulli
(and repeatedly by G. G. Stokes a century later).

Newton based his theory of sound on a vague idea concerning propagation of
pulse in an elastic medium and for the first time applied here the momentum
principle to an infinitesimal element of a continuous medium. However, Newton
expounded his theory in such an obscure way that Cotes did not understand it
and even interchanged two fundamental Propositions (47 and 48) in the second
edition of Principia (Only recently, in 1981, Cannon and Dostrovsky showed that
this change was wrong.) Nevertheless, Newton obtained correctly a formula for
the sound velocity corresponding to the wrong assumption of isothermal sound
propagation (the adiabatic process of the sound propagation was discovered by
Laplace only a century later).

Systematic application of Newton’s law of dynamics written in fixed Cartesian
coordinates increased the possibility of solving various problems of mechanics. We
find such formulations of the laws of motion in some papers from the end of the
1730s. However, it was probably Maclaurin who first evaluated the importance
of such a use of Newton’s law, announcing it as a general principle (Treatise of

fluxions, Book I, §466– §469, printed in 1737, but published first in 1742). The
next fundamental step toward the foundation of continuum mechanics was made
by Euler who proposed to apply Newton’s law of dynamics written in fixed Carte-
sian coordinates directly to an infinitesimal element of a continuous (fluid or rigid)
body. It was his famous ‘Nouveau principe de mécanique’ (Mémoires de Berlin,
1750–52) that allowed him to construct the modern hydrodynamics of an ideal
fluid (Mémoires de Berlin, 1755–57). It is interesting that an English magazine
published an abstract of Euler’s memoir under the title ‘On the general and fun-
damental principle of all mechanics’, whereon all other principles relative to the
motion of solids or fluids should be established, and called it a grand principle.

Using his principe nouveau and Segner’s detection of three principal axes of ro-
tation of rigid bodies, Euler established also the dynamics of rigid bodies (Theoria

motus corporum solidorum seu rigidorum, 1765). In one of the following papers
(‘Nova methodus motum corporum rigidorum determinandi’, Novi commentarii
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Acad. sci. imp. Petrop., 1775–76) Euler formulated a system of six equations de-
termining the motion of any body, that covers both the principles of linear momen-
tum and of moment of momentum, and thus completed the construction of general
equations of dynamics. Truesdell called these equations Euler’s fundamental laws
of mechanics.

Newton’s ‘Axiomata sive leges motus’: Some General Remarks on

their Reception and Development in 18th Century’s Mathematical

Physics and Philosophy

H. Pulte

From J. L. Lagrange and J. E. Montucla to E. Mach and even to T. S. Kuhn
it has been a commonplace in the history of science that Newton inaugurated
a ‘revolution’ not only in celestial mechanics (especially by his theory of grav-
itation), but also in rational mechanics in general (that is, with respect to the
principles of mechanics). Newton, however, did not claim that his axiomata sive

leges motus, either separately or in conjunction, were really new. (Indeed, he
summed up his discussion of these principles with the comment: ‘Hactenus Prin-

cipia tradidi a mathematicis recepta & experientia multiplici confirmata’.) But
he did emphasize their axiomatic status, that is, he wanted to make clear that
his natural philosophy–in contrast to the ‘hypothetical philosophy’ of Descartes,
Leibniz and others–was built upon true and unshakeable mathematical principles.
While Newton’s ‘classical image’ of science (‘Euclideanism’, as Lakatos called it)
was generally shared by scientists and philosophers throughout the 18th century,
the ‘Newtonian’ axiomatization of mechanics (as it is labelled nowadays) was by
no means understood asNewton’s achievement within the continental reception:
In general, Newton’s first law was not attributed to Newton at all, but to Galilei,
Descartes, Huygens or others. The third law was also not understood as a genuine
Newtonian one, and we know today that earlier formulations can be found in the
works of Marci, Hobbes, Digby, White and others.

Therefore, the second law deserves special attention: either this law was under-
stood as original, or the special combination of the three laws, or the (modern)
claim that Newton axiomatized rational mechanics was unfamiliar to the conti-
nental reception.

An examination of the relevant sources both on the mathematical principles of
rational mechanics and on their philosophical interpretation reveals that the third
alternative applies to most of the scientists and philosophers who were interested
in the ongoing foundational debate about rational mechanics. Continental math-
ematicians usually traced back the second law to Galilei, and later to Varignon or
Hermann. One of the main obstacles to accept the second law as a universal prin-
ciple of mechanics was Newton’s own doctrine of (perfectly) hard bodies in nature.
This doctrine excluded the application of force as the rate of change of momentum
to the collision of hard bodies (because this would imply infinite forces), and it
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had to be conquered before the modern form of ‘Newton’s second law’ could gain
the status of a general principle of mechanics.

It was not before 1750, when Euler published his ‘Découverte d’un nouveau
principe de mécanique’, that the so-called second law of Newton was introduced
as a ‘unique fundament’ (Euler) in this sense, expressed with second derivatives
and in Cartesian coordinates. Euler, however, never accepted Newton’s concept
of a directive force as a primary one. Throughout his life, he tried to base a quasi-
Newtonian mathematical theory of mechanics on a (by and large) Cartesian theory
of matter: It was one of the leading principles of his scientific metaphysics that
matter is basically passive, and that all changes in nature have to be explained
by ‘matter and motion’ alone, that is, without introducing Leibnizean or New-
tonian forces. In Euler’s case, this restriction is based on ontological arguments,
in other cases (like Maupertuis’, or d’Alembert’s, for example) the concept of force
is rejected on epistemological grounds.

In general, the continental reception of Newton’s Principia within mathemati-
cal physics up to Lagrange shows no inclination to stress originality with respect
to the principles of mechanics. An examination of German academic philosophy,
as far as it was interested in the foundations of mechanics, reveals a similar pic-
ture: Newton’s second law plays no role in the philosophical discussions on the
foundations of mechanics, and the Principia is not understood as an important
contribution to this discussion. This holds true (and is not very surprising) for
Leibniz’s adherent and transformer Wolff, but also for philosophers like Bilfinger,
Reusch, Thimmig and others as well as the physics textbooks inspired by them:
Newton’s three laws were not perceived as an original or even final axiomatization
of mechanics in general. Kant, in his Metaphysische Anfangsgründe der Naturwis-

senschaft (1786), perpetuates this view, though this work is frequently described
as an attempt to give a metaphysical foundation of Newton’s Principia: The ax-

iomata sive leges motus are not presented as a ‘synthetical’ basis of the science of
motion, and the second law is neither ‘deduced’ philosophically nor mentioned at
all. It is the Kantian Fries who, in his work Die mathematische Naturphilosophie

nach philosophischer Methode bearbeitet (1822) for the first time tried to give a
philosophical foundation of mechanics that did justice to Newton’s original foun-
dation of the principles of mechanics.

To sum up: Though Newton’s Principia was obviously most successful as a
textbook on rational mechanics in an empirical respect, it was neither perceived
during the 18th century as a unique achievement with respect to its foundational
claims, nor were the principles formulated in the Principia understood as sufficient
to solve all problems of mechanics. That the Principia inaugurated a ‘revolution’
of rational mechanics is a legend which came about at the end of the century with
Lagrange and Montucla and was perpetuated in the later textbooks of the Laplace-
Poisson tradition. From here it seeped into philosophy of science and also into
history of science, and Kuhn accepted it with gratitude as an outstanding example
of his own historiography. This, however, does not improve the legend. Truesdell,
Hankins, Grattan-Guinness and others have shown during recent decades, that
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the dichotomy of ‘revolutionary science’ and ‘normal science’ is at best misleading:
with respect to the foundations of mechanics, the 18th century was not ‘normal’,
because the 17th century (including Newton’s Principia) was not ‘revolutionary’.
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The Reception of Newton’s Theory of Light and Colour

A. E. Shapiro

The story of the reception of Newton’s theory of light and colour is a long and
complex one. It can be divided into roughly four periods, assimilation from 1672
to 1704, acceptance from 1704 through the 1720s, dominance for the next 100
years, and post-wave theory from about 1830. Here I will focus on the first two
periods.

The period of assimilation, 1672–1704, focused exclusively on Newton’s initial
publication, ‘A new theory about light and colours’, in the Philosophical Trans-

actions in 1672 and the extensive correspondence concerning the theory published
there through 1676. Three issues concerned Newton’s critics, almost all of whom
were in France: (1) the nature of colour, in particular, the nature of whiteness,
primary or simple colours, and colour mixing; (2) unequal irrefrangibility; and (3)
the nature of light, that is, whether it consists of emitted corpuscles, as Newton
evidently believed, or a disturbance in a medium. Newton always insisted that
one must distinguish between his scientific theories and hypotheses, such as his
support of the emission theory of light. It was only in the acceptance phase im-
mediately after the publication of the Opticks that the nature of light was not an
issue, and Newton’s distinction was accepted. Afterwards, it gradually collapsed.
The French Jesuit Ignace Gaston Pardies and Christiaan Huygens in 1672 and
1673 were concerned with all these issues. Huygens never accepted Newton’s idea
that colours were innate to sunlight, but he quickly accepted the idea that it con-
sisted of rays of different refrangibility and even helped to propagate that idea.
During the course of this period the concept of unequal refrangibility was gradu-
ally accepted, especially among mathematical scientists and the Scottish. Leibniz
was initially opposed to Newton’s theory, but he soon inclined to accepting it. He
was troubled by Edme Mariotte’s experiment that showed that Newton’s primary
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colours were not immutable as he had claimed (1681). The initial diffusion of
Newton’s theory on the Continent was hindered by its publication in English.

The period of acceptance centered on the Opticks (1704) and its Latin transla-
tion, Optice (1706), and papers published by John T. Desaguliers in collaboration
with Newton in the Philosophical Transactions in 1717 and 1722. The theory was
rapidly accepted in Italy: Giovanni Poleni tested and taught it in 1707, and in
1707–08 Celestino Galiani and Francesco Bianchini confirmed it. Acceptance in
Germany was almost as quick: Leibniz in 1704 provisionally accepted the theory
until Mariotte’s experiment was tested. Johann Bernoulli confirmed and supported
it by 1710, and in that same year Christian Wolff endorsed it in his textbook. A
crucial event in the acceptance of Newton’s theory was Christian Wolff’s anony-
mous call in 1714 in Acta eruditorum for Newton to respond to Mariotte’s exper-
iment. In 1714 Desaguliers, under Newton’s direction, demonstrated that a ray
of a single colour remains unchanged after a second refraction, thereby refuting
Mariotte’s claim. In 1716 Desagulier’s experiment was published in Philosophical

Transactions together with an unsigned introduction by Newton. In 1717 Wolff
announced Desagulier’s confirmation in Acta eruditorum thereby making the result
widely known.

Acceptance came more slowly in France because of the high regard for Mariotte’s
experimental work. In 1712 Nicolas Malebranche adopted Newton’s theory of
colour in his Recherche de la vérité. In 1715 a delegation from the Académie des

Sciences witnessed Desagulier’s experiment, and in 1716 and 1717 Jean-Jacques
Dortous de Mairan published a confirmation of Newton’s theory. The acceptance of
Newton’s theory in France can be marked by the publication of a French translation
Traité d’Optique in 1720 and 1722.

Newton’s theory was also quickly accepted in the Netherlands. In 1708 Her-
man Boerhaave, the influential Professor of medicine at the University of Leyden,
endorsed it. However, the most influential Dutchmen in propagating Newton’s
theories were Willem Jacob ’sGravesande and Petrus van Musschenbroek who, in
a sequence of widely read and translated textbooks from the 1720s to the 1760s,
advocated an experimental, Newtonian natural philosophy.

The widespread acceptance of Newton’s theory should not obscure the persistent
opposition to it. The case of Giovanni Rizzetti shows how after the early 1720s such
opponents were isolated from the mainstream. Rizzetti criticized Newton’s theory
and experiments in a paper in 1721 and a book in 1727. Desaguliers responded to
them in the Philosophical Transactions in 1722 and 1728. Rejection of Rizzetti’s
work was widespread: Georg Friedrich Richter in Leipzig in 1724, Nicolas Gauger
in Paris in 1728, and Francesco Maria Zanotti and Francesco Algarotti in Bologna
in 1729. The nature of this widespread opposition not only to Newton’s theory
but to Newtonian natural philosophy must be investigated; it included the French
Jesuit Louis-Bertrand Castel (1735), Jean-Paul Marat (1779) and Goethe (1791).
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The Newtonian Optics of Moving Bodies

J. Eisenstaedt

Since the time of Galileo, the relativity of motion is a central issue in physics.
But how does it apply to light? From Bradley’s account of aberration in the first
part of the 18th century, the velocity of light has been observed to be independent
of the velocity of the source and, later on, of that of the observer. As well the
usual interpretation of Newton’s dynamics supposes that the velocity of light is
constant, a result which implies that light would be neither subject to Galileos’s
kinematics nor to Newton’s dynamics. Thus the usual status of light is incoherent
with Newton’s theory which must then be completed.

At the end of the 18th century, a natural extension of Newton’s dynamics to
light was developed but immediately forgotten. A body of works completed the
Principia with a relativistic optics of moving bodies, the discovery of the Doppler-
Fizeau effect some sixty years before Doppler, and many other effects and ideas
which represent a fascinating preamble to Einstein relativities.

It was simply supposed that ‘a body-light’, as Newton named it, was subject to
the whole dynamics of the Principia in much the same way as were material par-
ticles; thus it was subject to the Galilean relativity and its velocity was supposed
to be variable. Of course it was subject to the short range ‘refringent’ force of the
corpuscular theory of light —which is part of the Principia— but also to the long
range force of gravitation which induces Newton’s theory of gravitation. The fact
that the ‘mass’ of a corpuscle of light was not known did not constitute a problem
since it does not appear in the Newtonian (or Einsteinian) equations of motion.

It was precisely what John Michell (1724–1793), Robert Blair (1748–1828),
Johann G. von Soldner (1776–1833) and François Arago (1786–1853) were to do
at the end of the 18th century and the beginning the 19th century in the context
of Newton’s dynamics. Actually this ‘completed’ Newtonian theory of light and
material corpuscle seems to have been implicitly accepted at the time. In such
a Newtonian context, not only Soldner’s calculation of the deviation of light in a
gravitational field was understood, but also dark bodies (cousins of black holes). A
natural (Galilean and thus relativistic) optics of moving bodies was also developed
which easily explained aberration and implied as well the essence of what we call
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today the Doppler effect. Moreover, at the same time the structure of — but also
the questions raised by— the Michelson experiment was understood.

Most of this corpus has long been forgotten. The Michell-Blair-Arago effect,
prior to Doppler’s effect, is entirely unknown to physicists and historians. As to
the influence of gravitation on light, the story was very superficially known but had
never been studied in any detail. Moreover, the existence of a theory dealing with
light, relativity and gravitation, embedded in Newton’s Principia was completely
ignored by physicists and by historians as well. But it was a simple and natural
way to deal with the question of light, relativity (and gravitation) in a Newtonian
context.

Einstein himself did not know of this Newtonian theory of light and he did
not rely on it in his own research. But he was not very far from these ideas:
he wrote to Freundlich in 1913 that ‘it was rather natural that the idea of a
bending of light appeared at the time of the theory of emission’. But it was
not his way to his relativity. This theory will not bring us to the ‘Einsteinian
relativities’ but it is still a most interesting and simple approach to it. It brings
us to several qualitative effects that have been obtained —and verified— in the
context of Einstein’s theories of relativity whose context of discovery is anyway
essentially the evolution of electrodynamics in the 18th century.
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The Persistence of Mechanical Imagery: ‘Newtonian’ Ideas about

Electricity and Magnetism

R. W. Home

Newton never wrote a systematic treatise on either electricity or magnetism, but
it is clear from both the occasional references to these subjects in his published
works and the much more extensive references to them in his unpublished man-
uscripts that he had a life-long active interest in them both. The unpublished
manuscripts make it clear that his understanding of both categories of phenomena
much more closely resembled that of seventeenth-century mechanical philosophers
than it did that which modern discussions of eighteenth-century ‘Newtonianism’
would lead us to expect. For most if not all of his life, Newton assumed that the
spaces between the particles of which ordinary bodies were composed was filled
by a subtle elastic fluid analogous in some ways to the pneuma of the Stoics. He
saw ‘electricity’—that is, the attraction that substances such as glass or amber
exert, after they have been rubbed, on nearby light objects, which was the only
known electrical phenomenon until the later years of Newton’s life—as a conse-
quence of the subtle matter within the rubbed body being agitated by the rubbing
and driven out into the space surrounding the body. Any light objects that this
matter encountered would be swept along as the agitation weakened and the sub-
tle matter collapsed back into the body from which it had originated. Newton’s
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most extensive discussions date from the first years of the eighteenth century and
were prompted by some dramatic experiments devised by Francis Hauksbee that
considerably expanded the range of known electrical phenomena. In Newton’s
opinion, Hauksbee’s experiments demonstrated the existence and activity of the
subtle matter, not only in bringing about the attraction but in the production of
light and perhaps also in several other important categories of natural phenomena.
So far as magnetism was concerned, Newton followed Descartes in ascribing the
attractions and repulsions exerted by magnets on each other or on pieces of iron,
and also the directive power whereby a freely suspended magnet orientated itself
in relation to other nearby magnets, to circulating streams of a peculiar subtle
matter that passed axially through a magnet from one pole to the other and then
returned through the external air.

Though Newton’s published references to electricity and magnetism were brief
and scattered, they would have been enough to reveal to his eighteenth-century
audience that his views on these subjects were as just described and so were very
similar to those generally accepted at the time. Hence their impact would have
been limited to perhaps reinforcing, through the intellectual authority Newton
wielded, a style of thinking that we do not generally associate with him.

At a more general level, Newton’s methodological prescriptions did have a dis-
cernable effect. Faithful to Newton’s dicta, various eighteenth-century physicists
tried to discover the laws according to which the forces of electricity and magnetism
acted. Unfortunately, nature proved unkind, and not until late in the century, in
the work of Coulomb, did they achieve success. Earlier attempts to determine the
law in the magnetic case, most notably the definitive efforts of the Dutch physicist,
Musschenbroek, foundered through taking gravity too literally as an analogy and
trying as a result to measure the force exerted by one whole magnet on another,
rather than (as Coulomb eventually did) the force between two isolated magnetic
poles. Musschenbroek from his measurements could only conclude that there was
no general law covering the action of one magnet on another! In the electrical case,
all efforts to fix a law were beset by problems resulting from leakage of charge.
There was also much uncertainty over the physical meaning of degree of electri-
fication and over the conditions that needed to be reproduced in order to obtain
comparable measurements. Until the 1750s or even later, most people continued
to attribute both electricity and magnetism to flowing streams of subtle matter,
in the way that Newton had done. Meanwhile, a range of striking new phenom-
ena associated with electricity, including its transmissibility along conducting lines
and, most dramatically, the powerful shocks delivered by the Leyden jar, cried out
for explanation. Following the work of Benjamin Franklin, Aepinus developed a
theory of electricity that much more closely followed Newtonian methodology than
did Newton’s own ideas about electricity. Aepinus’s theory retained the idea that
ordinary matter was pervaded by a subtle matter responsible for the phenomena
of electricity, but assumed that this was composed of particles that exerted forces
on each other and on particles of ordinary matter at a distance, while the latter
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were also assumed to exert forces on each other. In order to render the theory con-
sistent with the commonest of phenomena, Aepinus had to assume that the force
between particles of ordinary matter was a repulsion rather than an attraction.
He made no attempt to explain any of the forces he invoked, or any assumptions
about the laws according to which they varied with distance, he simply added up
the forces acting between static accumulations of fluid in a variety of situations.
By doing so, he managed to provide coherent, semi-mathematical explanations for
all the principal phenomena of eighteenth-century electrical science.

In his great treatise published in 1759, Aepinus went on to develop a theory of
magnetism analogous to his theory of electricity. In this case, too, he was able to
account in a coherent manner for all the principal known phenomena. Once again,
the theory assumed various forces acting at a distance, this time involving particles
of a second subtle fluid that he supposed pervaded iron and other magnetic bodies.
Once again, Aepinus offered no explanation for these forces. Instead, he quoted
Newton’s methodological dictum about first discovering the forces that acted in
the world, before worrying about the causes of those forces.

Aepinus’s work initially had little influence, but in the 1780s his ideas were
taken up by Coulomb, Volta and others, and quickly became the basis for math-
ematically formulated sciences of electricity and magnetism analogous in many
ways to Newton’s account of the planetary motions. In the process, Newton’s
own, very different ideas about electricity and magnetism were left far behind.
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The Reception of Newton’s Views of Space and Time

R. DiSalle

Newton saw the physical world as unfolding against the background of ‘absolute
space’ and ‘absolute time’, and he held that the laws of motion could determine the
‘absolute motions’ of bodies against this background. Most of his greatest scientific
contemporaries, on a number of scientific and philosophical grounds, held that
motion, space, and time are essentially relative. Yet Newton’s view eventually
succeeded over their objections, and was never seriously threatened again until
physics itself underwent a fundamental change, with the work of Einstein. One
reason was, undoubtedly, the empirical success of universal gravitation, and the
increasing plausibility, in consequence, of the notion that space is nearly empty of
matter—not, in particular, filled by the fluid vortex by which Newton’s opponents
had hoped to explain planetary motion. An equally important reason, I suggest,
was the growing recognition that the relativistic view was not compatible with
the basic principles of mechanics, as then understood. Newton’s most influential
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defenders, including Leonhard Euler, emphasized and developed a point urged by
Newton himself, namely, that concepts of inertia and force employed in mechanics
presuppose certain conceptions of space and time. This was a view which, perhaps
surprisingly, transcended serious differences with Newton over other prominent
metaphysical questions, such as the possibility of a vacuum or the plausibility of
action at a distance. Philosophical objections to the reality of space and time
faded from prominence until the late 19th century, when they arose again as part
of a general epistemological critique of the Newtonian laws of motion.

A major part of the history of the reception of Newton’s ideas, then, is the
increasing predominance, at least in scientific literature, of physical considerations
over the philosophical considerations that had originally motivated the relativist
view. But another part concerns the connection of the theory of space and time
with broader metaphysical issues, including the epistemological foundations of
geometry, the origins and structure of the physical universe, and the place of
theological ideas in the scientific understanding of space. Newton’s ideas had
particular implications concerning God’s presence in physical space, and these
had an obvious and significant impact on continental discussions that went well
beyond the controversy over absolute and relative motion, and reached an audience
well beyond those with a technical understanding of Newton’s physics.

Leibniz and Newton

H. Breger

Mathematics: In 1676 and 1677 there was an exchange of letters between Leibniz
and Newton on mathematics. This correspondence became famous later during
the priority dispute. Newton as well as Leibniz communicated only results (most
of which had already been known before); both retained their methods. Newton
probably failed to understand that there was a unified method behind Leibniz’s
particular results. Mistakes in copying the letters and delay in their communication
led to suspicions later in the priority dispute. As for the question whether Newton
influenced Leibniz concerning the foundation of the calculus, the point has to be
made that there was no foundational problem in Leibniz’s analysis: We have to
take into account that the meaning of analysis changed since the 17th century. As
far as I know Leibniz did never talk about an infinitesimal synthesis; his claim that
all results could be proved with the Archimedean method is true. In fact there
was not really a conceptual opposition between Leibniz’s and Newton’s version
of the calculus; it was pretty easy to translate one into another. Newton did
not mind that his calculus uses a notion of physics in mathematics. Leibniz as a
philosopher with a strong interest in a characteristica universalis aimed from the
very beginning at a higher level of abstraction; this was the deeper reason for his
development of an appropriate notation.

Physics: Leibniz’s reception of the Principia is the main issue here. According
to Leibniz, he read a review of Newton’s Principia, when he was on his journey
through South Germany, Austria and Italy. He immediately reacted with three



574 Oberwolfach Report 10/2006

articles in the journal Acta Eruditorum. Only some months later, when he was
in Rome, he saw Newton’s book. This claim made by Leibniz has been drawn
into doubt in 1993. In one of the three articles, Leibniz developed a theory of
planetary motion based on the idea of a vortex surrounding the sun. No doubt,
Leibniz had received the stimulus for his theory by Newton’s Principia. Given
the achievements of Galileo (on uniformly accelerated motion) and Huygens (on
centrifugal force) and taking into account that the inverse-square law had already
been quoted in the review, Leibniz’s achievement was to show that the vortex
theory was still a possible explanation, although there were some difficulties.

Newton’s and Leibniz’s correspondence: The direct correspondence between
Newton and Leibniz was continued in 1693; in these letters, there was no real
controversy and no substantial exchange, but rather mutual politeness and es-
teem. In 1692, Leibniz stated in one of his letters that Newton was one of the
first geniuses of the century. Throughout Leibniz’s correspondence there is quite a
high esteem for Newton. The atmosphere changed only at the end of Leibniz’s life,
when he heard about the composition of the Commercium epistolicum. During
that period Leibniz as well as Newton said some things which were not fair.

The Leibniz-Clarke debate: This debate started in November 1715 and ended
only with Leibniz’s death in November 1716. Clarke discussed his letters with
Newton; so it is in fact a Newton-Leibniz correspondence in disguise. The cor-
respondence was several times translated and reprinted during the 18th century;
in that period the correspondence provided a kind of philosophical foundation for
the priority dispute. Leibniz defended a theory of relational (not relative) time
and relational space as well as the relativity of motion against Newton’s theory
of absolute time and absolute space and absolute rotational motion. The bucket
experiment did not play a role in this debate. Clarke argued for repeated inter-
vention by God in the course of nature in order to restore motion which had been
destroyed previously by friction, whereas Leibniz argued for the conservation of
what we call kinetic energy. This gave rise to a discussion on miracles and natural
laws; Leibniz argued for the principle of sufficient reason, whereas Clarke claimed
that God as well as human beings could change the course of nature by free de-
cisions. Finally it was discussed whether there is a mechanical explanation for
gravitation or not.

The Bernoullis

D. O’Mathuna

(joint work with D. Speiser)

The part of the Bernoulli story of concern to us covers a period lasting over a
century (1672–1782). It begins in 1672 when Jacob I made his commitment to
investigations in Mathematics and Mechanics and ends with the death of Daniel
(Jacob’s nephew) in 1782—almost a century after the appearance of the Prin-

cipia. In this survey our attention will be focused on works of Johann I, Nicolaus
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I, Daniel and Jacob Hermann, a disciple of Jacob I, whose work, especially that on
Newtonian mechanics, cannot be separated from that of the Bernoullis. The deci-
sion to exclude discussion of the Newton—Leibniz controversy, in which Johann I
played such a prominent role, will be adhered to.

Though there is no evidence of any Newtonian influence in his work, we must
start the story with Jacob I (1654–1705). Over the last twenty years of is life he
was the pioneer in the development of Leibniz’s ideas both in Calculus and in Me-
chanics. His proudest achievement in calculus was what he termed his ‘Theorema
aureum’, the curvature formula, while in mechanics, his main work was his analy-
sis of the elastic beam, involving a general form of the constitutive relation and
an independent derivation of the angular momentum law. But it is through his
students, Johann I, his much younger brother whom he early initiated into Leib-
nizian Calculus and his favored student, Jacob Hermann, that interaction with
Newtonian ideas is to be sought.

It would be misleading to think of Johann I (1667–1748) solely as an adversary
of Newton. Perhaps the most significant extension of Newtonian mechanics in the
first half of the eighteenth century was the introduction and application by Johann
I of the Newtonian Law at the local level in the treatment of fluid Mechanics. The
significance of this development in Johann’s basic Hydraulica was recognized at
once by Euler (his former student)—and in our time was rediscovered by Truesdell.
In spite of his many contributions in the field, Johann remained uncomfortable
with the concept of gravitation namely, action at a distance without a plausible
mechanism of transmission. That Newton was also uncomfortable with the idea
was something Johann appears to have been unaware of. Another landmark in his
Newtonian work will be noted below.

Closer to Newton in many respects was Nicolaus I (1687–1759) a nephew of
both Jacob and Johann, who also learned his mathematics from Johann. In his
reading of the Principia he noted an error in the solution calculated by Newton for
one of the problems he had posed. On a visit to London in 1712 he communicated
with Newton to draw his attention to this. Newton immediately acknowledged the
error and incorporated the correction in the second (1713) edition of the Principia.
Newton remained on cordial terms with Nicolaus I and had him elected a Fellow
of the Royal Society. An invitation to the honor of FRS was also extended to
Johann.

With Jacobs favorite student, Jacob Hermann (1678–1733) two roadmarks need
to be highlighted. In 1716 he had published his book on mechanics titled Phorono-

mia. This book, which is also considered the first textbook in mechanics, shows
heavy influence from Newton and the Principia. It is divided into two parts, the
first devoted to the mechanics of solid bodies and the second to that of fluids,
where there are many direct references to the Principia. Prior to that, in 1710,
Hermann had published the first recorded analytic approach to the Kepler prob-
lem. His analysis was to integrate directly the second order differential equation
expressing Newton’s Law of Motion. The analysis was perfectly valid but deficient
in that he had omitted the first constant of integration. This was immediately
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rectified in the response from Johann Bernoulli, who then went on to perform an
analysis of the problem in its full generality. Hermann’s paper would appear to be
the first systematic integration of a second order differential equation of motion,
thereby proving that under Newtons gravitational law the orbits are conic sections.
Whether Newton had actually ‘proved’ this, is still being argued. What is clear is
that Newtons derivation was based on geometrical considerations rather than on
an integration of a differential equation.

In the general analysis of Johann Bernoulli, he derived what we now call the first
integrals of energy and angular momentum, and introduced the new independent
variable, later to be known as the true anomaly, reflecting the angle subtended
by the planet at the focus of the orbit, with the baseline pointing to perihelion.
The solution is expressed in terms of trigonometric functions of the true anomaly
— the form in use ever since. His approach may be considered the beginning of
analytical mechanics.

With Daniel Bernoulli (1700–1782) we may consider the year 1728 as a turning
point. In his early work prior to that, there is what may be considered a certain
aloofness in respect to Newton. The first item of Daniel wherein there is reference
to Newton, is the paper dealing with the parallelogram law for the composition
of forces. However the question dealt with, is an axiomatic one with no analytic
content. Following the publication of his treatise Exercitationes . . . in Venice in
1724, Daniel with his brother, Nicolaus II, arrived in St. Petersburg in 1725 to join
the Academy. In 1727 Euler arrived. At a meeting of the Academy in March 1728
Daniel responded to a discourse with De Lisle on a basic question in astronomy.
In the course of that discussion he shows that for him the treatment of such issues
is primarily a mechanical problem based on Newtons Laws—of gravitation and
of mechanics. He goes further to say, inter alia: ‘. . . mais nous en devons l’entier
developement à Mr. Newton, cet illustre Anglois, qui toutes les nations nomment
l’ornament de notre siècle. . . ’. When taken with his prior aloofness, this enconium
to Newton can be considered as a ‘conversion’ which can safely be attributed to
Euler.

This incident preceded Daniel’s two very productive decades when he was in
constant interaction with Euler. In his book Hydrodynamica, as well as in his
prize winning Essays to the Paris Academy, the spirit of Newton is pervasive.
His essay on tides (as well as those of Euler and Maclaurin) was included in the
reissue of the Principia in Geneva in 1742. This reissue was done at the instigation
of Prospero Lambertini then serving as Pope Benedict XIV. A striking example
showing inspiration from Newton, was Daniel’s conjecture of the inverse square
law for electrostatics—later confirmed by Coulomb.

Thus the Newton-inspired work of Daniel Bernoulli belongs to the first phase
of Newtonian influence between the publication of the Principia (1687) and the
appearance of Euler’s paper of 1750 where Newton’s Second Law is stated, using
Cartesian coordinates in a inertial frame as we know it today. This would also
mark the shift of the center of Newtonian influence from Western Europe to St.
Petersburg.
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Newton in the Encyclopédie

K. Maglo

By the middle of the 18th century, the reception of Newton’s science on the Con-
tinent had changed dramatically, particularly, in the work of mathematicians and
experimentalists. The old generation that rejected Newton’s theory of gravitation
disappeared and a fresh generation of scientists emerged with new ideas including
a synthesis of the by-then available knowledge about the world. D’Alembert, for
one, was not only the editor of the mathematical part of the Encyclopédie, but he
was also, together with Euler and Clairaut, a key player in the transformation of
the science emerging in Newton’s Principia. In his famous ‘Discours Préliminaire’
to the Encyclopédie, d’Alembert saluted Bacon, Descartes, Newton and Locke as
the four ‘main geniuses which the human mind should recognize as its masters
and to which the Greeks would have certainly built statues, even if to achieve
this, they would have had to demolish those of some conquerors.’ On very specific
issues, however, Newton was the primus inter pares. It was he, for example, who
deepened the experimental philosophy, merely foreseen by Bacon and Descartes,
and thus created, with his experiments both in optics and his mathematics-based
explanation of ‘the system of the world’, a scientific field of immense potentialities
for new generations of scientists (Article ‘Experimental’). He was the destroyer of
the Cartesian vortex account of gravity which in itself is ‘one of the most beautiful
and ingenious hypotheses ever imagined in science’. (Discours Préliminaire)

But there is no univocal description of Newton in the Encyclopédie, just as
there is no monolithic view of Descartes. Various articles present different images
of Newton according to the scope of his contribution, or lack thereof, to a specific
subject. In some entries, Newton, the giant among the giants, is also the one
who left his revolution incomplete, who made mistakes or systematically failed,
for instance, in fluid mechanics. In others, he is the giant on the ‘shoulders’ of
Huygens and Barrow who are said to have cleared the way for him, respectively, in
the development of the theory of central forces and the theory of fluxions. The En-
cyclopedists seem to conceive of their project not only as a means of popularizing
science but also as a way of intellectually transmitting a legacy to posterity. De-
spite their polemical tone and biases here and there, they appear to show concerns
about fairness in contrasting Newton’s achievement with that of his predecessors,
contemporaries and successors: ‘The Encyclopédie, conceived with the goal of
communicating to posterity the history of the discoveries of our own century’, de-
clared d’Alembert in the article Lune, ‘must for this very reason do justice to every
one . . . ’. Actually, the perceptions and interpretations of Newton’s achievement in
the Encyclopédie is very often mediated by the work of Newtonians such Whiston,
Boerhaave, s’Gravesande, Pemberton, Cotes, Le Seur, and Jacquier, Maclaurin,
Voltaire, Maupertuis and Mme du Chatelet. On key controversial issues, the En-
cyclopedists tend to distance themselves from ‘Newtonians’.

In many instances, the Encyclopédie seems to have created for the new ‘Société
de Gens de Lettres’ the opportunity to attempt to redefine Newtonianism. Thus
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it will be fruitful to reconstruct Newton’s reception in the Encyclopédie by con-
sidering the five following points: 1) what was perceived as the core of Newton’s
doctrine and which determines the meanings of Newtonianism; 2) the loose ends
and certain aspects of Newton’s theories; 3) the points of contention in his teach-
ings; 4) his errors, failures and limits; 5) the philosophy of theory-change brought
about by his science. It is worth noticing, however, that the heterogeneous portray-
als and occasional implicit and explicit criticisms of Newton in the Encyclopédie

are far from overshadowing the great admiration for the man; even behind his
mistakes and failures shines forth ‘an ingenious and resourceful mind that no one
ever before him has possessed to such a high degree’ (D’Alembert, article ‘Fluide’).

References

[1] Denis Diderot, Jean le Rond d’Alembert, L’Encyclopédie ou Dictionnaire Raisonné des
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French Mathematics and Mathematical Physics, 1780–1830

I. Grattan-Guinness

1. Context. The French dominated mathematics from the early 1780s after the
deaths of Euler, d’Alembert and Daniel Bernoulli. The revolution of 1789 helped
the situation in that science and especially engineering institutions were re-formed
and extended. They were joined by the new École Polytechnique (1794); while not
a research school, many of the figures mentioned below taught and/or examined
there, and most of the new generation were also students there. By the time
under consideration here Newton’s main works had been in print for nearly a
century; so it is important to distinguish his active influence, positive or negative,
upon French work from the presence of his ideas as uncontroversial parts of the
pertaining furniture.

2. The calculus. The dominant theory was Leibniz’s differential and integral
calculus together with Euler’s differential coefficient. Especially from 1790s on-
wards some attention was given to Lagrange’s algebraic dependence upon Taylor
series, from which the derived functions of a given function were defined from the
coefficients. Newton’s theory was known on the Continent, and the French were
polite about limits; but (like Newton himself) they only used limits as a notion,
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and his kinematic reading of them were usually ignored. Some authors used lim-
its mixed in with other theories: for example Carnot (1796), Ampère (1806) and
especially Lacroix (1797+) who as an encyclopédiste liked to present all available
theories. Cauchy’s new formulation of the calculus during the 1820s is founded
upon a theory of limits, and does not seem to owe much to Newton.

3. Algebra. Books appeared quite regularly, including from principal textbook
authors such as Bézout and Lacroix. Universal arithmetic was not adopted, but
Newton’s book was translated in 1802 by N. Beaudeux. Newton’s innovations were
noted, especially for the general binomial theorem, sums of powers of roots, and
approximation to roots; he had become part of the furniture in algebra.

4. Mechanics. Three traditions were evident by the late 18th century; Newton’s
three laws and inverse square; energy conservation and energy / work exchange;
and ‘analytic’ (algebraic), using d’Alembert’s, least action, and virtual velocities
principles. D’Alembert’s principle was usually deployed to make Newton’s F =
ma into a theorem, not an assumption. Newton was most effective in celestial
and planetary mechanics, but aided by Euler’s trigonometric series expansions as
the main method to develop perturbation and orbit theory. His mechanics also
served quite well in terrestrial mechanics; for example, projectiles. Newton was
credited especially for his law of universal gravitation (Laplace Exposition (1796+),
and other writers). Great interest fell upon equipotential surfaces and attraction
theory: Newton (and Maclaurin) were known as pioneers, but analytical methods
were preferred (especially by Laplace and Legendre), for their greater generality.

5. Optics. In the 18th century various people used both Newton’s corpuscular
theory and wave theories. Newton was mentioned concerning his approach, and in
particular over the issue of the number of prinary colours in the visible spectrum.
Laplace adopted his kind of theory from 1805 (initially for atmospheric refraction),
as part of his new general programme of raising the status of physics by devel-
oping a mathematicised molecular version of it. Malus was the best theorist (for
example, in polarisation). But by the mid 1820s this approach was being eclipsed
by Fresnel’s wave theories: while mechanics in general inspired several of Fresnel’s
moves (decomposition, conservation of energy, and so on), Newton’s optics was
then going out of use.

6. Heat diffusion. Biot (1804) and especially Fourier (1807+) used ‘Newton’s
law of cooling’ as the basis for heat diffusion, as refined by figures such as Amontons
and Rumford. Fourier (1833) acknowledged Newton and the successors; but he
was positivist (in Comte’s later sense) over the nature of heat, rejecting speculation
as to its nature.

7. Sound. In 1802 Laplace picked up Newton’s fudge over ‘correcting’ the
speed of sound, and gave this problem to his followers. The main results were due
to Poisson (1807) on velocity, and especially to Laplace (1816, 1821) on the two
specific heats of a gas. The influence of Newton here was rather negative.

8. Electrostatics and magnetism. Coulomb (1785+) adopted both central forces
and an inverse square law of attraction and repulsion, emulations doubtless inpired
by Newton’s mechanics. Poisson acted much the same (1812+), relying much
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on Coulomb; he also took a comparable stance over magnetism (1824 +), even
beginning with a mention of Newton. When Ampère took up in 1820 the new
electromagnetism and especially discovered electrodynamics, once again central
forces and inverse squaredom formed parts of his emulation. However, he said
little about Newton until strongly praising him in the opening of his book (1826).

9. General and historical sources. The main general history was by Montucla
but completed by Lalande as Histoire des mathématiques; the most relevant volume
is 3 (1802). They mentioned Newton fairly frequently, and quite warmly; for
example, fluxions ‘sont à la vérité plus exactes’ than indivisibles, although it was
contaminated with kinematics. There was quite a lot on infinite series, both British
and continental. Newton’s mechanics was noted but not strongly, and the part
of Principia on hydrodynamics was judged to be the weakest. Lalande treated
astronomy in volume 4 (1802), praising for Newton on the flattening of the Earth,
precession and lunar theory. The section on optics was large, but with little on
mathematics and only a few pages at the end on theories (where Lalande was
neutral). Bossut’s various chatty historical writings were quite objective about
Newton, even neutral over the priority dispute. The main texts are his ‘Discours
préliminaire’ to the Encyclopédie méthodique (1784) and his two general Histoires

(1802, 1809). In his report on the progress of science since 1789 Delambre (1809)
praised Newton, as with Laplace especially for universal gravitation. He gave more
details especially in his Histoire de l’astronomie au dix-huitième siècle (1827).

Biot developed a strong partisanship for Newton. He even found the treatment
of sound to be ‘a sort of inspiration’ ! In his Essai on science since the French
Revolution (1803) he praised universal gravitation as usual. Later he also produced
a 70-page biographical article on Newton for Michaud’s Biographie universelle

(1822), which was translated into English in 1833. He helped his grandson-in-law
Lefort to make an edition of the ‘Commercium epostolicum’ in 1856, though partly
for Lefort to dispute Newton’s conclusions about Leibniz’s dishonesty!
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Fatio and the Principia

S. Mandelbrote

This talk considered the relationship between Isaac Newton and Nicolas Fatio de
Duillier (1664–1753), through the prism of Fatio’s involvement in the editing of
the Principia (first published in 1687). It noted that eighteenth-century historians
of philosophy and Newtonianism had themselves remarked on Fatio’s part in the
history of gravitational theories. In particular, the Genevan natural philosopher
and critic of Newton, George-Louis Le Sage played an important role in the re-
discovery of Fatio’s books and manuscripts, which interested him because of his
concern with accommodating modern theories to ancient notions of gravitation.
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The remarkable intellectual precocity of Fatio, and his early collaborations with
Cassini (in the study of zodiacal light) and Huygens (on a number of mathematical
and physical topics) were sketched. By the time that Fatio came to England in
summer 1687, he was fêted as a result of the part that he had played in foiling an
attempt by French spies to seize the Dutch stadhouder, William of Orange. Fatio’s
reception in England between 1687 and 1689 have to be placed in the context of
the revolutionary debates of those years, which culminated in the Dutch invasion
of autumn 1688 and the establishment of William on the throne of England. Al-
though Fatio initially acted as a go-between for Huygens and prominent English
scientists, his links with the Royal Society soon focussed on the question of gravita-
tion, made prominent by the recent publication of the Principia. It was suggested
that the appeal of Fatio to Newton was the prospect that he offered of finding a
fully mechanical account of the causes and working of gravity. At the same time,
Fatio was one of few contemporaries who had successfully acquired facility with
the calculus and was capable of following the mathematics of the Principia. He
also proved useful to Newton as a translator of French alchemical works. This
intellectual collaboration, rather than any emotional attraction, formed the basis
for the work that Fatio embarked on with Newton in the early 1690s. At the heart
of that endeavour, was Fatio’s offer to edit a new edition of the Principia and the
work that he undertook towards doing so. This represented a response to some
of the problems of incompleteness and unclarity that were apparent in the first
edition. Fatio worked through several propositions, correcting minor errors and,
most interestingly, adding references that brought out the relationship between
Newton’s arguments and ancient sources. In this respect, his editorial work was
of a piece with Newton’s work in the early 1690s to clarify the parallels between
his own understanding of celestial mechanics and that possessed by Greek mathe-
maticians and Stoic philosophers. The breakdown of Fatio’s work on the Principia

was attributed to developments in Fatio’s own career, rather than to changes in
his relationship with Newton. It was pointed out that new evidence suggested the
continuing cordiality of Fatio and Newton, and drew attention to Fatio’s continu-
ing role in the propagation of Newtonian ideas, in particular through the calculus
controversy.

The example of Fatio provided a case study that highlighted several concerns
that might affect a project on the reception of Newtonian ideas. In particular, it
drew attention to the role of personal contacts and friendships in the making of
Newton’s initial reputation. It showed the importance of the European community
of natural philosophers, and the networks of exchange and discussion that had
developed within it, for the first reception of Newton’s work. This took place
as much through correspondence, conversation, and semi-public meetings as it
did through publication. It was marked by a competitive environment, not only
between natural philosophers who considered themselves to be Newton’s rivals,
but also between challengers for the intellectual affection of the new philosophical
star. Above all, the early reception of the Principia was shaped by the perceived
incompleteness of that work’s arguments and by the problems that it seemed
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to raise for the form and history of mathematics and natural philosophy. At a
later stage, when the careers of Fatio and Newton diverged again, the place of
a variety of institutions and media in shaping the image of Newton and the role
of his followers could also be identified. Discussion of this longer history of the
relationship of Newton and Fatio raised the question of the importance of skill
in shaping responses to Newton, and the problem of keeping up with the pace of
philosophical change that his work provoked.
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