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Introduction by the Organisers

The numerical solution of optimization problems with partial differential equation
(PDE) constraints is vital to a growing number of science and engineering appli-
cations. The development of robust and efficient algorithms for the solution of
these optimization problems presents many challenges that arise out of, e.g., the
intricate mathematical structure of these problems, the complicated interactions
between numerical methods for PDE and optimization, the large-scale of the op-
timization problems, and the increasing complexity of applications. To identify
and overcome these challenges an integrated approach is needed that builds on
a variety of mathematical sub-disciplines, such as theory of PDEs, distributed
parameter systems, numerical solution of PDEs, numerical optimization, and nu-
merical linear algebra. This international workshop has brought together some of
the leading experts in the fast developing field of optimization problems with PDE
constraints to present recent developments in this area as well as to identify open
problems and further research needs.
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Among the themes of this workshop were the design and analysis of approaches
for the solution of PDE constrained optimization problems with additional point-
wise constraints on controls and states (the solution of the governing PDE). State
constrained problems are particularly challenging because of the low regularity
properties of the Lagrange multipliers associated with point-wise constraints on the
states. A second theme was the development of adaptive methods for the solution
of PDE constrained optimization problems and, more generally, the development
of optimization level model reduction techniques for these problems. The goal here
is to develop models (through, e.g., mesh adaptation or proper orthogonal model
reduction) of the PDE constrained optimization problems that capture the relevant
features of the optimization problems with a specified accuracy, but involve as few
degrees of freedom as possible and, hence, are computationally less expensive to
work with. A third theme was The efficient solution of linear systems arising in
optimization algorithms for discretized PDE constrained optimization problems
represented another theme. Finally, a number of talks presented advances and
challenges in the solution of PDE constrained optimization problems arising in
important science and industrial applications.
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Abstracts

Large-scale Optimization Strategies for Simulated Moving Beds

Lorenz T. Biegler

(joint work with Yoshiaki Kawajiri)

1. Introduction

Chemical separations based on fluid-solid equilibrium are becoming increasingly
important for pharmaceutical and fine chemicals industries. Based on a network
of chromatographic columns, Simulated Moving Beds (SMB) represent an efficient
and effective technology for this task. Mathematical models of SMBs consist of
sets of PDEs for mass conservation in solid and fluid phases, along with alge-
braic consitutive equations and periodic boundary conditions; these models have
resisted optimization of realistic processes. This talk presents a full discretization
approach to the optimization of SMBs. With PDEs discretized in space and time,
the resulting nonlinear program (NLP) is solved with a large-scale Newton-based
barrier method. This optimization approach is very efficient and leads to the de-
termination of novel designs and operating strategies. A case study based on the
separation of glucose and fructose is presented to demonstrate this approach.

2. Background on Chromatographic Separations

Separation of chemical species by chromatography has been known for over a
century. After introducing a small amount of mixture onto a tube (or column)
packed with solid adsorbent material followed by a solvent (desorbent) flow, pref-
erential adsorption of each species to the solid causes the mixture to separate into
peaks, which are then withdrawn individually. While chromatographic separations
are commonplace for lab analysis, high volume separations require the develop-
ment of continuously operating systems. Such continuous chromatography-based
systems have been proposed using the concept of true moving beds (TMB). In
TMB, the solid and liquid phases move countercurrently, input streams consist
of the mixture feed and desorbent, output streams consist of product extract and
raffinate, and concentration profiles are established in steady state. However, coun-
tercurrent movement of the solid phase is difficult to realize in practice. Instead,
TMB behavior can be approximated through a switching of valves for the input
and output streams, leading to the concept of simulated moving beds (SMB). As
shown in Figure 1, the nodal valve positions of the four streams are switched inter-
mittently to simulate movement of the solid. Also, columns between these streams
are defined as zones. Note that SMBs are not steady state processes but operate
dynamically with periodic boundary conditions, cyclic steady states, imposed at
each switching time.

Application of SMB processes is growing in the chemical industry. Since their
development by UOP in the 60s for aromatic isomers separations, SMBs are now
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Figure 1. Standard SMB process with two columns in each zone

used in the separation of “close-boiling” hydrocarbons, fructose/glucose separa-
tion to yield high fructose corn syrup, and enantiomeric species in pharmaceutical
processes. Because of their similar molecular properties, most of these species can
only be separated by adsorption. Moreover, as more SMB applications are con-
sidered, a number of innovative designs have been proposed that extend beyond
the structure in Figure 1 (see [1, 2] for a review). However, efficient optimiza-
tion strategies are needed to evaluate these new designs and demonstrate in a
systematic way the advantages offered by each.

3. Optimization Problem Formulation

A typical optimization problem for the design and operation of SMB processes
is given by:

max
uI(t),uII(t),uIII(t),uIV (t),tstep
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ul ≤ um(t) ≤ uu, m = I, II, III, IV(16)

In addition to the objective function (throughput) and inequalities defined for this
problem, equations (2)-(4) describe the jth column model with j = 1, . . . , NColumn
for species i. Here ǫb is the void fraction, Cji (x, t) is the concentration in the liquid

phase, qji is the concentration in the solid phase, um(t) is the superficial liquid

velocity in zone m, Cj,eqi (x, t) is the equilibrium concentration in the liquid phase,
and Kappl i is the mass transfer coefficient. Equations (5)-(8) relate the superficial
velocities uD(t), uE(t), uF (t), uR(t) (flow rates divided by cross sectional area of
column) of the desorbent, extract, feed, and raffinate, respectively, to the zone ve-
locities, along with their respective concentrations. The cyclic state conditions are
given by (9)-(13). Also, tstep is the valve switching interval, or step time, Purmin
and Recmin are the respective purity and recovery requirements for the desired
product k recovered in the extract stream. Finally, uu and ul are upper and lower
bounds on the zone velocities, respectively.

4. Solution Strategy and Results

Problem (1) -(16) can be addressed by a number of strategies. In particular, the
PDEs can be discretized in space, e.g., using the method of lines, and integrated in
time. This single discretization approach leads to DAE-constrained problem that
can be solved with control vector parametrization methods. On the other hand,
discretizing (1)-(16) in time and space leads to a fully algebraic system. With the
full discretization approach, we solve a large NLP with very sparse structure. In
both cases, the cyclic steady state constraints (9)-(13) are incorporated within the
optimization formulation. As described in [1], the single discretization formula-
tion results from applying central differences in the spatial domain; it is solved
with commercial software that couples a DAE- and direct sensitivity solver with
a reduced space Sequential Quadratic Programming (SQP) algorithm. The full
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discretization formulation uses the same spatial discretization and applies Radau
collocation on finite elements in the time dimension. This leads to an NLP that
is over 50 times larger than with the single discretization approach. The NLP is
modeled in AMPL and solved with IPOPT, a large-scale Newton-based barrier
method.

Applied to the separation of glucose and fructose with a product specification of
90 % purity and 80 % recovery of fructose with time-independent zone velocities,
both approaches achieve a maximum throughput of 0.521m/h; this is almost a 50-
fold increase over the base case. For this problem the single discretization approach
requires almost 2 CPU hours (2.8 GHz P4), while the full discretization approach
is almost 75 times faster. Given the efficiency of the full discretization approach,
we have also considered a number of more challenging problems. These include
optimization of time-dependent zone velocities (so-called power feed operation),
which leads to a doubling of the throughput, as well as consideration of nonlinear
isotherms. More information on these formulations can be found in [1]. Moreover,
in [2] we consider a novel superstructure approach which allows the location of
four types of time-dependent streams at all nodes in Figure 1. This optimization
formulation embeds several nonconventional processes including VARICOL and
variable column zone configurations. For the fructose/glucose separation the su-
perstructure formulation leads to novel design with a further 30 % improvement
over the power feed case. Further information on these results can be found in [2].

5. Conclusions and Future Work

SMB processes present a number of challenges for PDE-constrained optimiza-
tion strategies. We summarize a new full discretization approach for this problem
that leads to a large NLP that can be solved efficiently with a Newton-based bar-
rier solver. The approach has been found to be very effective in optimization of
several SMB systems. Moreover, fast solution of the NLP allows the optimization
of SMB superstructures that lead to improved designs over the standard SMB
system.

Future work deals with more challenging optimization problems in addition to
throughput maximization. In recent work multi-objective formulations have been
considered. Also, previous work has assumed symmetric SMB cycles, where cyclic
steady state conditions were written over each time step. This approach is being
extended to optimization over the entire SMB cycle with asymmetric operation
within the cycle. Finally, we intend to investigate the transient operation of SMBs
for startup and transitions to different operating points.
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Ill-conditioned State Estimation due to low Observability Measure:

Analysis and Numerical Preconditioning

Luise Blank

State estimation is an inverse problem and can be formulated based on regu-
larization techniques as an optimization problem where the model equations act
as constraints. Commonly regularization techniques concerning the initial data
are applied additionally. However, we show that this is not necessary and avoid
otherwise possibly occuring bias. Observability of the model system guarantees
the well-posedness of the optimization formulation with respect to the L2− and
L∞−norm. While well-posedness is a qualitative behaviour, we like to discuss also
the quantitive behaviour, namely the conditioning. In this context, we shortly
review on observability and introduce a new, to our opinion more appropriate,
measure of observability based on the concept of condition numbers. In the linear
case we show the context to the well known Gramian matrix, and discuss the quan-
titative dependence of the observability measure on e.g. the length of the horizon
and the eigenvalues of the involved stiffness matrix. Moreover, we derive that the
introduced observability measure gives a lower bound on the conditioning of the
optimization problem. Consequently, inspite of well-posedness a low observability
measure causes bad conditioning.

Either one includes an additional regularization term leading to undesired bias
in the solution or one faces in the numerical solution high, problem inherent con-
dition numbers and an undesirable eigenvalue disctribution. Employing iterative
solvers this leads in general to a very high number of iterations or it may even
happen that iterative solvers cannot be applied without efficient precondition-
ing. While most developed preconditioners deal with the problem of eigenvalues
depending on the frequency, hence depending on the discretization level, only
very few deal with problem inherent ill-conditioning. We introduce and suggest
a Schur-complement based preconditioner, which can be seen as eigenvalue defla-
tion. While typically for eigenvalue deflation knowledge of an invariant subspace
is required the suggested Schur-complement based technique requires the know-
ledge of a subspace containing an invariant subspace. Choosing the appropriate
subspace for the Schur-complement in our application is based on the above ana-
lytical considerations and on the Riesz-basis property of wavelets.

To eliminate the dependency of the eigenvalues on the discretization level we ap-
ply in addition appropriate scaling of the wavelets as is known. The optimization
problem is then solved in a nested iteration process for a hierarchy of subprob-
lems. We conclude with numerical examples, which show the drastic reduction
in iteration numbers. In some cases the Schur-complement based preconditioning
only enabled us solving the resulting system.
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Bilinear Systems and Quantum Optimal Control Problems

Alfio Borz̀ı

(joint work with Julien Salomon, and Stefan Volkwein)

Nowadays we witness a large growing interest in controlling quantum phenomena in
a variety of application systems [4, 6]. Present and perspective applications range
from quantum optics and quantum chemistry to semiconductor nanostructures.
In the last few years these research areas have received further impetus from the
emerging fields of quantum computation and quantum communication, aiming at
quantum devices where there is the need to manipulate wavefunctions with highest
possible precision.

This high-fidelity quantum-state engineering can only be achieved putting to-
gether the most sophisticated experimental and theoretical techniques for control
of quantum systems. However, within each field of application one has come up
with its own strategies and it is only recently that a common consensus has arisen
towards the use of optimal control theory [3, 5].

In the optimal control framework, one starts by defining the optimality criteria
in the form of a cost functional. For a desired quantum-state transition, this
functional will depend on the final state, the need to suppress population of certain
states during the control process, as well as other physically motivated constraints,
e.g., limited laser resources. The strategy then is to minimize this cost functional
while satisfying the constraints of the underlying dynamic equations governing the
evolution of quantum states; e.g., the Schrödinger equation. The calculation of the
necessary optimality conditions for this optimization problem results in a system
of coupled equations to be solved once.

While we focus on quantum optimal control problems we argue that many of
the presented results can be extended to general time-dependent bilinear control
problems. Bilinear systems were introduced in the theory of automatic control
in the 1960’s for electrical engineering applications. They represent a class of
nonlinear control strategies with the aim to obtain better system response than
possible with linear control. In general, the solution of most bilinear systems poses
challenging theoretical and computational problems which are open or have been
only partially addressed. This is in particular true for the control of the finite-level
quantum mechanical systems discussed in this talk.

It is the purpose of this talk to present a detailed formulation of a class of
optimal control problems for finite-level quantum systems [1] and to address their
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efficient solution by iterative methods. We prove existence of solutions to the
optimal control problems, and investigate first-order necessary optimality condi-
tions and second-order sufficient optimality conditions. We review state-of-the-
art monotonic iterative schemes and their convergence properties and use these
schemes as benchmark for a new solution procedure that we propose in this paper.
This procedure results from combining our extension of a newly proposed nonlinear
conjugate gradient method [2] with a cascadic acceleration scheme. Convergence
of the proposed nonlinear conjugate gradient method is proved. Numerical results
demonstrate robustness and efficiency of the proposed approach.
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Fast Wavelet Schemes for Control Problems Constrained by Elliptic

PDEs

Carsten Burstedde

(joint work with Angela Kunoth, and Roland Pabel)

The treatment of many tasks in PDE-constrained optimization involves the solu-
tion of linear elliptic subproblems. The areas of applications include heat con-
duction, diffusion, elasticity and superconductivity. Because of the increased
structural complexity compared to the solution of an isolated PDE, highly effi-
cient numerical methods are necessary. A central motivation in this context is
to achieve optimal computational complexity, which means that the effort for the
numerical solution of the problem should be linear in the amount of unknowns,
with preferably small constants. This implies the use of asymptotically optimal
preconditioning schemes.

Thus, our first goal in the recent years has been to develop the wavelet frame-
work towards a level of practicability which is comparable with multigrid finite ele-
ment methods on simple domains in terms of efficiency and the absolute size of the
problem to be treated. In the absence of inequality constraints, we believe to have
achieved this with the development of a working code which is fully functional for



596 Oberwolfach Report 11/2006

uniform discretizations of both distributed and Dirichlet boundary control prob-
lems. It uses inner-outer inexact conjugate gradient iterations combined with a
nested iteration strategy. The wavelet ansatz delivers a preconditioning scheme
which is optimal in the sense of uniform bounds, and optimized with respect to
the absolute values of the constants involved. On a standard computer, results
for up to 6 · 106 unknowns have been obtained (this number does not yet include
the various auxiliary and temporary variables), with linear run-time and memory
requirements [1, 4, 8, 10].

The second goal is then to make systematic use of the strong analytical qual-
ities of wavelets, and their formulation in an infinite-dimensional function space
setting, to provide adaptivity and rigorous error control. A proof for the conver-
gence rates of an adaptive wavelet method for linear elliptic control problems has
been obtained in [7]. This approach has been generalized to Dirichlet boundary
control [9]. While the central element in these proofs are nested Richardson iter-
ations using operators of bounded (and small) condition numbers, the algorithm
implemented in [1] merges the fast conjugate gradient iterations already used in
the framework for uniform discretizations with ingredients from optimal adap-
tive wavelet methods [5]. This implementation permits a quantitative evaluation,
and evidence for superlinear convergence has been found in one to three dimen-
sions [1,3]. Numerical experiments show that this adaptive wavelet scheme resolves
the control, state and adjoint variables with different index sets adapted to their
respective singularities. Also singularities with anisotropic structure are respected
by appropriate distributions of coefficients (this is called dimension-adaptivity in
the sparse grid context).

The wavelet framework is also well-suited for modeling issues related to the
evaluation of Sobolev norms. Since whole ranges of Sobolev scales are numerically
accessible, integer and fractional as well as primal and dual norms can be com-
puted in linear time. This is implemented by the construction of appropriate Riesz
operators. Care has been taken that this unified scheme delivers results identical
to those obtained with standard finite element in the special cases of non-negative
integer norms. Other smoothness classes are interpolated equivalently and cali-
brated by proposing plausible criteria [1, 2].

The third goal is characterized by future plans. Nonlinear constraints are ex-
pected to be tractable by SQP approaches, which reduce to a sequence of linear
control problems of the type covered above. An adaptive analysis and imple-
mentation can be based on [6]. Moreover, inequality constraints are considered,
where bounds on the control are more directly accessible than those on the state.
Concerning the class of primal-dual active set methods, adaptive wavelets are in
principle capable of resolving boundary submanifolds between active and inactive
sets. However, pointwise bounds interfere with the fundamental multilevel char-
acterization based on difference spaces. The class of barrier and interior point
methods is known to have conditioning issues in the limit of zero penalization,
where the norm equivalences available in the wavelet framework may be extend-
able in a way which matches the problem formulation via barrier terms. Currently,
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both approaches are being investigated, since it is not clear which benefits most
from the theoretical background available in the wavelet setting.
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Simulation of an Optimal Design for Maximal Torsion Stiffness with a

Converging Adaptive FEM

Carsten Carstensen

(joint work with Sören Bartels)

1. Overview

The adaptive finite element method (AFEM) is considered for a problem in topol-
ogy optimisation. The optimal design problem for maximal torsion stiffness of an
infinite bar of given geometry Ω × IR aims to describe the unknown distribution
of two materials of prescribed amounts. The relaxation of the associated energy
densities leads to a degenerated convex minimization problem which caused some
attention by [12, 13, 16, 17, 19, 20, 24, 25] amongst others.

The problem is recast in Section 2 and leads to some convexified minimization
problem of the form

E(v) :=

∫

Ω

W (Dv) dx+

∫

Ω

v dx for all v ∈ V := H1
0 (Ω)
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Notice that the right hand side is constant an whence there is no data oscillation.
The edge-oriented AFEM therefore consists of a loop: On each level ℓ, given Vℓ,
do

SOLVE ⇒ ESTIMATE ⇒ MARK ⇒ REFINE

to generate Vℓ+1 based on uℓ := arg minE(Vℓ), f , Vℓ, a posteriori error estimators.

Section 3 analyses the convergence of the algorithm in the spirit of [5,8,15,22,23,
26, 27]

2. Mathematical Modelling

Given a simply-connected bounded 2D Lipschitz domain Ω ⊂ R
2 consider the

infinite cylinder Ω × R under torsion. The dsign Task is to maximise the torsion
stiffness for an optimal composition of the prescribed section Ω with two materials
of reciprocal shear stiffness 0 < µ1 < µ2 <∞ located at Ω1 and Ω2:

Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅.
Side restriction with given 0 < Θ < 1 on the area | · |:

|Ω1| = Θ |Ω| and |Ω2| = (1 − Θ)|Ω|.
Design optimal shear modulus µ(x)−1 distribution (µΘ := Θµ1 + (1 − Θ)µ2)

µ ∈ MΘ := {µ ∈ L∞(Ω) : µ = µ1,2 a.e. in Ω,

∫

Ω

µ(x) dx = µΘ |Ω|}

and then define Ωj := {x ∈ Ω : µ(x) = µj} up to sets of measure zero.
The reciprocal torsion T−1 is also given by a minimisation problem for the 2D
stress vector σ = (σ1, σ2) in the section Ω,

T−1 = inf
σ∈Σ

E/m2

with the elastic energy E and the resulting 2D moment m

E =
1

2

∫

Ω

µ(x)|σ(x)|2 dx and m =

∫

Ω

(x2σ1 − x1σ2) dx

The stress field σ ∈ L2(Ω; R2) satisfies

divσ = 0 in Ω and σ · ν = 0 along ∂Ω

Hence there exists u ∈ V := H1
0 (Ω) s.t.

σ = (−∂u/∂x2, ∂u/∂x1).

This leads to some reformulations in terms of v ∈ V ,

m = −
∫

Ω

(x2∂u/∂x2 + x1∂u/∂x1)
2 dx = 2

∫

Ω

u dx,

and so to the representation

8T−1 = inf
v∈V

∫

Ω µ|Dv|2 dx
(
∫

Ω
v dx)2

.
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Some minimiser u ∈ V is given as the weak solution of

−div(µDu) = 1 in Ω

and this unique u attains the minimum in

− T

16
= min

v∈V

(1

2

∫

Ω

µ|Dv|2 dx−
∫

Ω

v dx
)

.

Select some minimiser u ∈ V as the weak solution of

−div(µDu) = 1 in Ω

and this unique u attains the minimum in

− T

16
= min

v∈V

(1

2

∫

Ω

µ|Dv|2 dx−
∫

Ω

v dx
)

.

For µ ∈ M and v ∈ V := H1
0 (Ω) set

F (µ, v) :=
1

2

∫

Ω

µ|Dv|2 dx−
∫

Ω

v dx.

Then, the optimal design problem for the maximal torsion stiffness reads:

(M) inf
µ∈MΘ

inf
v∈V

F (µ, v).

Solutions exists in terms of Young measures and can be recovered from:

(S) sup
λ∈R

inf
v∈V

G(λ, v)

with

G(λ, v) =

∫

Ω

gλ(|Dv|) dx+

∫

Ω

v dx+ λµΘ|Ω|

One Theorem by Kohn&Strang shows (M) ⇔ (S).
Since gλ is nonconvex the infimum may in fact be not attained. Infimal value
computable with degenerated convex minimisation problem for

E(v) :=

∫

Ω

W (Dv) dx+

∫

Ω

v dx for all v ∈ V := H1
0 (Ω)

where gλ is replaced by its convex hull W (·) := g∗∗λ (| · |)

g∗∗λ (t) :=







µ2(t
2/2 − λ) für t ≤ t1,

√
t1t2µ1µ2 t− λ(µ1 + µ2) for t1 ≤ t ≤ t2,

µ1(t
2/2 − λ) für t2 ≤ t.

(t1 :=
√

2λµ1/µ2 and t2µ1 := µ2t1)



600 Oberwolfach Report 11/2006

3. Convergence of AFEM

The numerical analysis of this degenerated minimization problem is delicate for
possibly multiple primal variables u but unique derivatives σ := DW (∇u). A
refined a posteriori error estimate still suffers from the reliability-efficiency gap.
However, it motivates a simple edge-based adaptive mesh-refining algorithm
(AFEM) that is not a priori guaranteed to refine everywhere. Its convergence
is based on energy estimates and some refined convexity control. Numerical ex-
periments illustrate even optimal convergence rates of the proposed AFEM.
This section ends with a few remarks on the convergence proof. This is based on
some Refined convexity control in the sense of

|DW (A) −DW (B)|2 . W (A) −W (B) −DW (A) · (B −A)

An application with A = Duℓ and B = Du yields

‖σ − σℓ‖L2(Ω)
2

+ δℓ . Rℓ(u− uℓ)

with

δℓ := E(uℓ) − E(u) and Rℓ(v) :=

∫

Ω

(v + σℓ ·Dv)dx

In the next steo oone proves a reliabile estimate of ‖Rℓ‖V ∗ as for linear problems

‖Rℓ‖2
V ∗ .

∑

E∈Eℓ

η2
E

The bulk criterion in the step MARK leads (as for linear problems)

‖Rℓ‖2
V ∗ .

∑

E∈Mℓ

η2
E

Discrete local efficiency with inner node property for E ∈Mℓ as in the work [3,27]
allows the proof of

η2
E . ‖σℓ+1 − σℓ‖L2(ωE)

2

A second application of refined convexity control leads to

‖σℓ+1 − σℓ‖L2(Ω)
2

. δℓ − δℓ+1

which is actually known from [12,13]. Altogether one deduces

‖σ − σℓ‖L2(Ω)
4
+ δ2ℓ . δℓ − δℓ+1

The preceeding arguments allow a proof of the following theorem:
Theorem: ∃κ < 1 s.t.

κ ‖σ − σℓ‖L2(Ω)
4

+ δℓ+1 ≤ (1 − κδℓ)δℓ.

More details and numericla examples shall appear in [2].
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Optimal Motions of Multibody Systems in Resistive Media

Felix L. Chernousko

Various non-conventional principles of motion of multibody systems in resistive
media are considered. These principles do not imply using wheels, legs, tracks,
screws, propellers, jets, and other devices and are based on relative motions of
some parts of the moving bodies in the presence of external resistance forces.
Namely, two kinds of motions are investigated:

— snake-like locomotion of multilink systems;
— progressive movement of a body caused by internal motions of a mass inside

this body.
Both types of motion are possible only in the presence of external resistance forces
such as Coulomb’s dry friction or viscous resistance.
For the snake-like locomotion, multilink mechanisms equipped with actuators in-
stalled at the joints are considered. The mechanism can move along a horizontal
plane in the presence of Coulomb’s dry friction between the mechanism and the
plane. The locomotion is a result of periodic twisting of the mechanism at its joints
controlled by the actuators. For two-link and three-link systems, these periodic
motions consist of alternating slow and fast phases. Multilink mechanisms with
more than four links can perform smooth wave-like locomotion.
Optimal geometrical and mechanical parameters of the multilink mechanisms as
well as optimal parameters of their periodic motions are obtained that maximize
the average speed of locomotion. The optimization is carried out numerically. It is
shown that the optimization leads to a considerable gain in the locomotion speed.
The results of optimization are compared with the experimental data. The results
of computer simulation, animation and videofilms are presented.
Another kind of motion is caused by a periodic displacement of a certain mass
inside the moving body. Here, various types of external resistance forces are exam-
ined: Coulomb’s dry friction, linear and quadratic resistance forces depending on
the velocity of the body. Both symmetric (isotropic) and asymmetric (anisotropic)
cases of resistance are considered; in the latter case, the resistance force for the
forward and backward motions of the body are different.
Optimal relative periodic motions of the internal mass are obtained that result
in the maximum average speed of the moving body. The analytical and numeri-
cal results of the optimization are presented. Experiments confirm the obtained
theoretical results. Videofilms of experiments are demonstrated.
The obtained results are of interest with respect to mobile robotic systems, espe-
cially, for mini-robots that can move inside tubes or in liquids.
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Shape Optimization for Elliptic PDE: Coercivity, Convergence and

Stability of Numerical Methods

Karsten Eppler

(joint work with Helmut Harbrecht)

We consider the numerical solution of the following simple class of problems. For
a sufficiently large closed “security set” D ⊂ IRn we consider the set of all simply
connected (more general: with a fixed finite number of connected components) and
bounded domains Ω ⊂ intD with sufficiently regular boundary Γ = ∂Ω, Γ ∈ C2,α,
for example. Then, for a given elliptic second order operator L with associated
boundary operator B, an optimization problem is investigated as follows

J(Ω;uΩ) =

∫

Ω

j(x, uΩ,∇xuΩ)dx→ min, subject to

Lu = f in Ω, Bu = g on Γ,
∫

Ω

hi(x)dx ≤ ci, i = 1(1)n,

∫

Γ

hjdσ ≤ cj , j = 1(1)m.

Here, the data f, g, hi and j are defined on D and D× IRn+1, respectively. Typical
domain and boundary integral constraints in applications are the Volume V (Ω)
and the perimeter P (Ω) of the domain. Contrary to classical control problems, the
domains itself, resp. their boundaries Γ now serve as the optimization variable(s).

Based on a related shape calculus [1, 16], the aim is to develop efficient opti-
mization algorithms for the solution of these problems with particular emphasis on
second order methods. Complete boundary integral representations for the shape
gradient and the shape Hessian provides uptdate rules directly for the bound-
ary [2, 3]. In some specific cases, integral equation methods using wavelet com-
pression techniques turn out to be a powerful tool [15]. In particular, applications
have been investigated from planar elasticity [4, 5], from exterior electromagnetic
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shaping of liquid metals [6,8], from shape identification in electrical impedance to-
mography [9,10] as well as from free boundary problems in electrochemical process-
ing [11]. Furthermore, efficient and accurate numerical algorithms are developed
by using either BEM and/or FEM/BEM-coupling tools for compactly supported
integral objectives with applications in fluid dynamics and magnetostatics [12,13].

Moreover, accuracy and efficiency of computations in shape optimization were
substantially increased during the last years for several other approaches as well by
using advanced numerical methods. Nevertheless, despite of improved accuracy, es-
sentially different behaviour of optimization algorithms was observed for formally
(almost) similar classes of problems. We will illustrate this for the abovemen-
tioned examples. It is shown in the talk, that the different behaviour of numerical
algorithms heavily depends on the nature of the underlying shape problem, char-
acterized by the coercivity properties of the shape Hessian at stationary domains.
Finally, a concept is discussed for proving convergence of optimal solutions of fi-
nite dimensional auxiliary problems to the optimal shape of the original problem
in case of well-posed problems [14].
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Numerical Shape Optimization for Aircraft Design - Status and

Future Challenges

Norbert Kroll and Nicolas R. Gauger

This presentation is a survey lecture about the activities in aircraft design at the
Institute of Aerodynamics and Flow Technology of DLR and in particular about
adjoint based methods.

There are many ingredients required to establish an efficient and flexible numer-
ical optimization capability for aircraft design. These include suitable techniques
for geometry parametrization, handling of geometrical and physical constraints,
meshing and mesh deformation as well as mesh adaptation methods, efficient and
accurate flow solvers as well as a flexible tool-set containing both deterministic
and non-deterministic optimization strategies [1].

Over the last years, numerical shape optimization is one of the major issues of
the Institute of Aerodynamics and Flow Technology at DLR. The presentation will
focus on both algorithmic developments as well as realistic applications. Several
applications including cruise and high-lift flight configurations will be shown.

One key activity is the derivation and implementation of continuous [2] and
discrete [3] adjoint approaches for the DLR flow simulation software MEGAFLOW
[4] based on the solution of the compressible Euler and Navier-Stokes equations.
There are the MEGAFLOW solvers FLOWer, coded in Fortran and working on
structured meshes, as well as TAU, coded in C and working on hybrid meshes.
Initial activities are launched for the automated generation of discrete adjoint
solvers by the use of AD tools. For the FLOWer code the AD tool TAF [5] is used
and ADOL-C [6] for the TAU code.

Current status and future needs in algorithmic development for large scale opti-
mization problems will be discussed. One of the future challenges in aircraft design
addresses multi-objective and multi-disciplinary optimization. In this context, a
coupled aero-structure adjoint formulation for efficient multi-disciplinary wing op-
timization and its application for maximum aircraft range will be presented [7].
As further future challenges we identify the efficient calculation of Pareto fronts in
multi-objective design, as well as the efficient evaluation of numerical uncertainties
and robust design cases.

Acknowledgements. The authors acknowledge the contributions of their col-
leagues at DLR, namely J. Brezillon, O. Brodersen, R. Dwight, A. Fazzolari, T.
Gerhold, U. Herrmann, W. Khier, J. Raddatz, T. Schwarz, D. Vollmer, M. Wid-
halm and J. Wild. Furthermore, the authors acknowledge the contributions of R.
Giering and T. Kaminski from FastOpt, F. Deister and W. Haase from EADS-M
as well as A. Walther from TU Dresden.
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A Posteriori Estimates for Optimal Control Problems with Control

Constraints

Alexandra Gaevskaya

(joint work with Ronald H.W. Hoppe, and Sergey I. Repin)

In this talk, we present two approaches to a posteriori analysis of optimal control
problems associated with elliptic type partial differential equations with control
constraints. The analysis is performed for distributed and boundary control prob-
lems of the following form:
Problem 1. Given ψ ∈ L∞(Ω), yd ∈ L2(Ω), ud ∈ L2(Ω), f ∈ L2(Ω), and
a ∈ IR+, consider the distributed control problem

minimize J(y(u), u) :=
1

2
‖y − yd‖2 +

a

2
‖u− ud‖2

over (y, u) ∈ Y := H1
0 (Ω) × L2(Ω) ,

subject to −∆ y = u+ f a.e. in Ω ,

u ∈ K := {v ∈ L2(Ω) | v ≤ ψ a.e. in Ω} .



Numerical Techniques for Optimization Problems with PDE Constraints 607

Problem 2. Given ψ1, ψ2 ∈ L∞(ΓN ) , yd ∈ L2(Ω), ud ∈ L2(ΓN ), f ∈ L2(Ω),
and a ∈ IR+, consider the boundary control problem

minimize J(y(u), u) :=
1

2
‖y − yd‖2 +

a

2
‖u− ud‖2

L2(ΓN )

over (y, u) ∈ Y := H1
0,ΓD

(Ω) × L2(ΓN ) ,

subject to −∆ y = f a.e. in Ω ,

∂y

∂n
= u on ΓN ,

u ∈ K := {v ∈ L2(ΓN ) |ψ1 ≤ v ≤ ψ2 a.e. on ΓN} .

The first approach is based on residual-type a posteriori error estimators and
incorporates data oscillations. In the framework of this approach, we construct an
adaptive finite element method that consists of successive loops of the sequence

SOLVE → ESTIMATE → MARK → REFINE

Here, the step SOLVE stands for the numerical solution of the finite element dis-
cretized problem, whereas the following three steps include the implementation of
the residual-type estimator (ESTIMATE), appropriate marking strategy (MARK),
and refinement process (REFINE). Up to data oscillations, the residual-type error
estimator does provide an upper and a lower bound for the errors in the state,
the co-state, the control, and the co-control (see, e.g., [1–3]). In [1], we provide
convergence of the adaptive scheme based on the residual-type estimator in terms
of guaranteed error reduction in the state, the co-state, the control, and the co-
control for the case of distributed control problem.

The second approach involves the so-called functional type a posteriori error
estimates that provide sharp upper bounds for the error with respect to any feasible
approximation of the state (see, e.g., [4], [5]). Using functional type estimates, we
obtain directly computable upper bounds for the cost functionals of the respective
optimal control problems (the majorants). It is proved that a numerical strategy
based upon using the majorants produces sequences of control and state functions
which provide a value of the cost functional as close to the optimal value as it is
required. Moreover, the respective sequences of control and state functions tend
to the desired solution of the original problem (see [6]). We further note that the
majorants can be used to find guaranteed and easily computable upper bounds for
the cost functional when the optimization problem is solved by known methods.

At the end, we present results of numerical experiments that illustrate the
performance of both approaches.
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Efficient Methods for Aerodynamic Shape Optimization

Ilia Gherman

(joint work with Subhendu Hazra, Volker Schulz, Joël Brezillon and
Nicolas Gauger)

We consider the general optimization problem

min J(u, q)

subject to c(u, q) = 0
(1)

where u is the state variable, q the design variable, and J the cost function. The
constraint function c is such that ∂c

∂u =: Cu is invertible. Our main application
field is geometric design of an aircraft. Hence, in our applications, c represents the
flow-equations (e.g., Euler-flow). The cost function J is usually the drag, and the
designs q are some parameterization of the geometry.

Our aim is to construct optimization methods based on already existing flow-
solvers such that the overall optimization effort is equal to just several simulations.
In [2, 3], a one-shot method was presented and efficiently applied to drag mini-
mization of an RAE 2822 airfoil. The one-shot method is based on the ideas of
reduced SQP methods. The overall optimization effort is of factor 4 compared to
one simulation.

An important issue within the one-shot algorithm is the approximation of the
reduced Hessian B. In [1,2], we investigate different choices of the reduced Hessian
approximations. Our conclusion is that the approximation of the reduced Hessian
should be consistent with the solution of the forward and the adjoint equations.
In [3], we use two approximations of the reduced Hessian:

(B1) B = βI, where β is a constant;
(B2) B = βkI, where βk depends on the gradient information from the last

iteration step.

In problem (1), there are no additional state constraints. In practical appli-
cations, drag minimization without additional constraints can lead to a solution
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with very low lift- and pitching moment values. Such a solution is physically not
meaningful. Hence, the aerodynamic constraints have to be stated explicitly. We
now consider the problem

min J(u, q)

subject to c(u, q) = 0

ℓ(u, q) ≥ 0,

(2)

where ℓ(u, q) ≥ 0 represents the scalar constraint of maintaining constant lift [5].
The one-shot algorithm is extended to handle the additional constraint. Here, an
additional adjoint equation has to be solved in order to compute reduced gradient
with respect to lift. Similar to the “unconstrained” version, the one-shot method
for the constrained problem is based on partially reduced SQP methods. A further
extention is the use of L-BFGS updates with m stages for the approximation of the
reduced Hessian. The choice of B as in (B2) above corresponds now to a L-BFGS
update of the reduced Hessian with m = 0 stages.

Applying our method to the constrained drag minimization of an RAE 2822
airfoil, after design-update step we need to perform a back projection step for the
design variables in order to fulfill the lift constraint [5]. This is due to the curvature
in the constant-lift manifold.

The overall optimization effort for the constrained case is of factor 7 compared
to one simulation. Very similar results are achieved imposing pitching moment
constraint. Also, the “constrained” version of one-shot can be easily extended to
handle both lift and pitching moment constraints [5].

The use of L-BFGS updates with m > 0 stages reduces the number of opti-
mization iterations compared to other choices of the approxmations of the reduced
Hessian.

The developed one-shot method was further applied to a 3D case [4]. There, the
wing and the body of a Supersonic Commertial Transport aircraft were optimized
with additional constraint of constant lift. The optimization effort is about 8
simulation runs.

Comparing the performance of the one-shot method in applications to existing
black-box steepest descent methods we see a considerable reduction of the overall
computational effort.
Acknowledgments. This research has been supported under the MEGADESIGN
Project by the German Federal Ministry of Economics and Technology (BMWi).
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Iterative Solvers for PDE Constrained Optimization

Philip E. Gill

(joint work with Randolph E. Bank, Anders Forsgren, and Joshua Griffin)

The “all-in-one” approach for PDE-constrained optimization involves the so-
lution of a finite-dimensional optimization problem in the finite-difference, finite-
element or finite-volume variables. This approach has the benefit that the PDE
needs to be solved accurately only in the final stages of the optimization. In ad-
dition, the resulting optimization problem is smooth, with both first and second
derivatives available at little cost. These benefits come at the price of an extremely
large finite-dimensional optimization problem—possibly with millions of variables
and constraints. It is vital, therefore, that the optimization method exploits the
PDE structure by using parallel adaptive multilevel PDE techniques.

Here we focus on general nonconvex PDE-constrained problems. The discretized
problem is written in the form

min
x∈ℜn

f(x) subject to c(x) = 0, l ≤ x ≤ u,

where x denotes the vector of primal variables, c denotes the vector of nonlinear
constraint functions. The Jacobian of c(x) has the form J = (J1 J2 ), where
J1 is an invertible sparse matrix with PDE structure. The Lagrange multipliers
(i.e., dual variables) associated with the constraints c(x) = 0 and l ≤ x ≤ u
are denoted by λ and z respectively. A range of algorithms and software exist
for general-purpose nonconvex optimization. In many cases, these algorithms are
guaranteed to converge to a local minimizer of the problem with few assumptions
on the problem. These general-purpose algorithms are based on a combination
of sophisticated line-search, trust-region and filter techniques (see, e.g., [2, 3, 12]).
The challenge is to develop methods that have the same reliability on the huge
structured problems that arise from PDE discretizations.

If there are no inequality constraints we may solve a sequence of unconstrained
minimization problems, each parameterized by an approximate multiplier vector
λe and a scalar penalty parameter 1/µ. The objective function is the primal-dual

augmented Lagrangian:

M(x, λ) = f(x) − c(x)Tλe +
1

2µ
‖c(x)‖2

2 +
1

2µ
‖c(x) + µ(λ− λe)‖2

2.

Unlike the conventional augmented Lagrangian, this function is minimized with
respect to both x and λ. If µ is sufficiently small and λe is the optimal multiplier
vector λ∗, then the primal-dual solution is an unconstrained minimizer of M(x, λ).



Numerical Techniques for Optimization Problems with PDE Constraints 611

(We allow λe 6→ λ∗ for regularization purposes, but then require that µ → 0.)
When inequality constraints are present we include the upper and lower bounds in
the objective as a primal-dual barrier term. This gives an unconstrained objective
function M(x, λ, z) that now involves x and the dual variables (λ, z) associated
with both the equality and inequality constraints (see [4]).

It can be shown that if Newton’s method is used to minimize M(x, λ, z), the
Newton equations are equivalent to a KKT saddle-point system Bx = b of the
form

(1)

(
H −AT
A D

)(
x1

x2

)

=

(
b1
b2

)

,

where x1, x2 denote generic vectors of variables, H is the Lagrangian Hessian, and
A and b depend on the derivatives of f and c. The matrix D is positive definite
but inherently ill-conditioned, i.e., Dii = O(µ) and 1/Djj = O(µ) for some i and
j. The function M is not generally convex but it may be minimized by line-search
and trust-region Newton methods based on finding an approximate solution of
linear systems with the same structure as in (1).

The approximate solver must satisfy three requirements. First, it must treat
the inherent ill-conditioning in D. Second, the solver must be able to detect if the
underlying Newton system is not positive definite. This is required by methods
that generate iterates converging to points satisfying the second-order necessary
conditions for optimality. If the underlying Newton system is positive definite,
then H + AD−1AT is positive definite, and the matrix B of (1) is said to have
correct inertia. If B does not have correct inertia, then the solution of (1) is of
no interest and an alternative system is solved. The third requirement is that the
solver generates iterates with increasing norm. This monotonicity property is a
vital ingredient of many trust-search and trust-region methods based on Krylov-
based iterative solvers (see, e.g., [13, 14]).

A method satisfying all three requirements may be defined by observing that
(1) is equivalent to the doubly-augmented system:

(
H + 2ATD−1A AT

A D

) (
x1

x2

)

=

(
b1 + 2ATD−1b2

b2

)

.

This system is positive definite if B has correct inertia and exhibits the monotonic-
ity property when solved using a preconditioned conjugate-gradient method. The
ill-conditioning is treated using constraint preconditioning (see, e.g., [9–11]). As
preconditioner we use the matrix

(2) P =

(
M + 2ATD−1A AT

A D

)

,
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where M is some simple positive-definite matrix that approximates H . The equa-
tions Pv = r used to apply the preconditioner are solved by exploiting the equiv-
alence of the systems:

(
M + 2ATD−1A AT

A D

) (
v1
v2

)

=

(
r1
r2

)

,(3)

(
M −AT
A D

) (
v1
v2

)

=

(
r1 − 2ATD−1r2

r2

)

, and(4)

(M +ATD−1A)v1 = r1 −ATD−1r2, v2 = D−1(r2 −Av1).(5)

This equivalence allows us to compute the solution of (3) by solving either (4) or
(5). In [5] it is shown that the preconditioner (2) provably removes the inherent
ill-conditioning in B.

Unlike standard constraint preconditioners it is not necessary to solve the pre-
conditioning equations Pv = r exactly. In particular, a second-level precondi-
tioned iterative method may be used to find approximate solutions of Pv = r.
The requirements for the second-level solver are less restrictive because it is un-
necessary to enforce monotonicity on the iterates or detect incorrect inertia of
the preconditioner equations. For this reason, any conventional parallel multigrid
and or multigraph preconditioner may be applied to the system Pv = r (see,
e.g., [1, 7–9]). The system Pv = r is ill-conditioned, but since approximate solu-
tions of the preconditioning equations need not satisfy the monotonicity property,
the ill-conditioning may be eliminated using an appropriate diagonal similarity
transformation (see, e.g., [6, p. 576]).
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Nested Checkpointing in Optimal Control of Evolutions

Andreas Griewank

(joint work with Julia Sternberg)

We consider a discretized evolution with m-dimensional control over l time-steps
on a state space of dimension n. Given an initial state we wish to minimize an
objective defined as a function of the final state, by first or second order methods.
The computation of total objective gradients with respect to the time-variant
control vector requires a forward simulation of the evolution followed by a ’reverse’,
or ’adjoint’ sweep. On nonlinear problems the reverse sweep is defined in terms of
the forward trajectory, which is usually stored in a data structure of size l×n . If
we wish to apply a second order method of Newton type a third sweep becomes
necessary and the storage requirement grows by the factor n to the order l×n2. To
avoid these potentially prohibitive memory requirements we propose to replace the
full storage/retrieval scheme by checkpointing strategies that repeatedly reexecutes
the first forward and second reverse sweep in pieces. It is shown that the resulting
operations count and storage requirement grow for the first order gradient and
second order Newton method only by the factors log(l) and log2(l), respectively.
We report numerical results from an application to laser hardening of steel.
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Hierarchical Matrices

Wolfgang Hackbusch

1. Introduction

1.1. Dense Large-Scale Matrices. Partial differential equations lead to large
systems of equations. In particular, the boundary element method (cf. [31]) pro-
duces fully populated (dense) matrices. For large n, it is not possible to store all
entries of a dense n×n-matrix. Therefore, one needs data-sparse representations,
which reduce the storage requirement to O(n logq n) for some q ≥ 0 (and intro-
duce an additional approximation error). The second requirement is that matrices
represented in this format can easily multiplied by a vector. Such techniques are
the panel clustering method (cf. [29]), which includes the multipole method as a
spacial case, and compression techniques in the case of wavelets bases (cf. [12]).

The new feature of hierarchical matrices is the fact that they support all matrix
operations, i.e., matrix addition, matrix multiplication, matrix inversion and the
LU decomposition. This is also of interest for the sparse matrices from FEM, since
the inverse matrix, which in general is completely dense, can be computed. The
mentioned matrix operations are performed only approximately.

1.2. Construction of Hierarchical Matrices. The main idea in the construc-
tion of hierarchical matrices is the combination of two steps.

Step I: The matrix is partitioned into certain blocks defining the partition P .
For this purpose, for a given index set I “cluster tree” T (I) and a block cluster
tree are constructed which define the underlying hierarchical structure. A so-called
admissibility condition is used to select the blocks of partition P , typically contains
small blocks along the diagonal and to large blocks far from the diagonal.

Step II: We fill all blocks in the partitioning P from above by rank-k matrices,
i.e., the matrix block M |b = (Mij)i∈τ,j∈σ (for b = τ × σ ∈ P) must satisfy

rank(M |b) ≤ k. Each of these matrix blocks is represented by two matrices Ab ∈
R

#τ×k, Bb ∈ R
#σ×k so that

M |b = AbB
⊤
b .

The storage costs of Ab, Bb are (#τ + #σ) k instead of #τ ∗ #σ for the naive
method. The resulting definition of hierarchical matrices of local rank k (more
precisely ≤ k) is

H(k,P) :=
{
M ∈ R

I×I : rank(M |b) ≤ k for all b ∈ P
}
.

A similar construction is possible for rectangular matrix from R
I×J .

Introductory papers on hierarchical matrices are [23], [8], [26], [14], [24]. Details
of the construction are explained in [18].
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1.3. Accuracy and Costs. The stiffness matrices from the boundary element
method as well as the inverse of the finite element stiffness matrix (for elliptic
boundary value problems) have the following property: Let A be the exact ma-
trix. The singular values of A|b for b ∈ P (not of the whole matrix A) decay
exponentially. This allows to approximate A|b up to an error ε with a rank-k
matrix where k = O(logq 1

ε ) where often q is the spatial dimension. Hence, A can
be well approximated by some AH ∈ H(k,P).

In the BEM case, this follows easily from the smoothness of the fundamental
solution. Concerning the inverse FEM stiffness matrix, this result is proved in [2]
and holds even for nonsmooth coefficients.

Concerning the costs the following asymptotics hold for k ≪ n = #I.

• The storage of hierarchical matrices from H(k,P) requires O(nk logn)
units.

• The matrix-vector multiplication (A ∈ H(k,P), x ∈ R
I 7→ Ax) is exact

and requires O(nk logn) arithmetical operations.
• The matrix-matrix addition (A,B ∈ H(k,P) 7→ C ≈ A+B) computes the

approximate sum in O(nk2 logn) operations.
• The matrix-matrix multiplication (A,B ∈ H(k,P) 7→ C ≈ A∗B) computes

the approximate product in O(nk2 log2 n) operations.
• The same cost estimate holds for the matrix inversion (A ∈ H(k,P) 7→
C ≈ A−1).

The details and, e.g., characterisations of the constants involved in O(·) are to be
found in [18].

2. Application Fields

BEM matrices: The first goal in the boundary element method (BEM) is to
generate a data-sparse approximation A′ to the dense system matrix A in order to
reduce the storage requirements. The error should be comparable with the already
existing discretisation error. This can be achieved with hierarchical matrices of
the local rank k = O(log n). For the solution phase, one constructs a rougher
approximation A′′ by a further data compression step (cf. [17]) and approximates
the LU factors which are used to build a fast iteration. The observation is that
the solution phase is much faster than the generation phase (cf. [1]).

FEM preconditioning: Since any rough approximation B to A−1 is a good
preconditioner, one can either compute the inverse of A in H(k,P) or the LU
decomposition. The most effective LU approach is described in [21], [32].

Solution operator and Schur complements: The elliptic solution operator
S (mapping the right-hand side and boundary data into the solution) is given
by the inverse matrix, which is available in H(k,P). In optimisation calculations,
often Schur complements of the form ASB appear, where e.g. B maps the control
into the right-hand side and/or the boundary data and A extracts data from the
solution. Such products are computable in H(k,P). Schur complement also appear
during the solution of saddle point problems.



616 Oberwolfach Report 11/2006

Matrix equations: The Lyapunov equation AX + XA = C or the nonlin-
ear Riccati equation A⊤X + XB − XFX + G = 0 appear in control problems.
Traditional methods try to solve for the n2 unknown entries of X, which in the
best case costs O(n2) operations. Representing X in H(k,P), one can solve these
equations in almost linear time, provided that the coefficient matrix A arises from
an elliptic operator (as in control problems with a state governed by an elliptic
boundary value problem). Details can be found in [15], [19] and [20].

Matrix functions: For parabolic problems the matrix exponential function
exp(−tA) is of interest, where A is the positive definite discretisation of an elliptic
operator. The method proposed and analysed in [13] represents exp(−tA) by a
Cauchy integral. Replacing the integral by a numerical quadrature, we are able to
compute exp(−tA) with accuracy ε with a cost of order O(n logp 1

ε logq n). Another
interesting function is the sign-function sign(A) (see [20]).

Problems in high spatial dimensions: Related techniques be applied to
problems in high spatial dimensions when Kronecker products of matrices can be
used. An example is given in [16]: The discrete Laplace operator A in [0, 1]d

corresponding to n = 1024 nodal points in each direction and d = 2048 is an
N × N -matrix of size N = 10242048 ≈ 1.2 × 106165. Nevertheless the inverse can
be computed with high accuracy in 5 minutes (see [16] for older results).

H2-Matrices: Besides the hierarchy in the cluster tree, one can install a second
hierarchy. Instead of the general rank-k matrices for the matrix blocks one requires
the matrix blocks M |b (b = τ × σ) to belong to a fixed tensor space Vτ × Vσ (i.e.,
M |b = AbB

⊤
b with range(Ab) ⊂ Vτ and range(Bb) ⊂ Vσ). In addition one needs a

compatibility condition for Vτ and Vτ ′ when τ ′ is the son of τ in the cluster tree.
The arising H2-matrices lead to lower cost in two aspects. First, the log-factor
can be avoided, i.e. storage and cost are of order O(n). Second, the constants in
the O(. . .) estimate becomes smaller. The H2-technique has first been presented
in [28] and then worked out by S. Börm [3], [4], [5], [6], [9], [25].
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Feasible and Non-Interior Path-following in constrained minimization

with low multiplier regularity

Michael Hintermüller

The efficient numerical solution of inequality constrained minimization prob-
lems in function space with low Lagrange multiplier regularity is still a significant
challenge. Prototype problems include optimal control problems with pointwise
state constraints, boundary control problems where the control has to satisfy point-
wise constraints on the boundary, or classes of control problems with ”solutions
très faibles” (in the sense of Lions). The common feature is low regularity of the
Lagrange multipliers associated with the pointwise constraints. This has an imme-
diate effect when characterizing optimality of solutions. Indeed, in the presence of
inequality constraints first order optimality conditions typically involve a so-called
complementarity system (see, e.g., [4]) which in turn is influenced by the regularity
of the Lagrange multiplier associated with the inequality constraint. To be spe-
cific, let us assume that x1 ∈ X1 has to satisfy the pointwise (almost everywhere)
constraint

(1) x1 ≤ ψ,

where X1 denotes a Hilbert space continuously embedded into L2(ω) and ω ⊂
R
m is a bounded domain. Further ψ ∈ L2(ω), and ≤ represents the natural

ordering in L2(ω). Let λ ∈ X∗
1 denote the Lagrange multiplier associated with the

constraint (1), whereX∗
1 is the topological dual space of X1. First order optimality

characterizations include the complementarity condition

(2) x1 ≤ ψ, 〈λ, x1 − ξ〉X∗

1 ,X1
≥ 0 for all ξ ≤ ψ, ξ ∈ X1,

at an optimal solution x1 with associated Lagrange multiplier λ. Without addi-
tional regularity, system (2) does not admit a pointwise interpretation, which is
frequently crucial for numerical algorithms.

In fact, solution techniques and their (local) convergence behavior often hinge
on the multiplier regularity. Classical active set methods, for instance, require a
pointwise (almost everywhere) interpretation of λ for the active set estimation. In
the case of pointwise constraints, techniques like the projected gradient methods
will not work without modification since the sum of the iteration variable and the
gradient of the objective, which coincides with the negative multiplier, is needed
for the update. Since they have different regularity properties this is not feasi-
ble in general. An analogous comment applies for projected Newton techniques.
Recently it was found that semismooth Newton methods are highly efficient in solv-
ing certain classes of constrained optimization problems in function space [1–5].
These methods rely on a pointwise almost everywhere interpretation of the com-
plementarity system (2) and smoothing properties of the control-to-adjoint-state
mapping. In fact, the pointwise interpretation allows to express (2) equivalently
as

(3) λ− max (0, λ+ c(x1 − ψ)) = 0,
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for some arbitrarily fixed c > 0, and the smoothing of the control-to-adjoint-state
operator typically implies that the mapping

θ : x1 7→ λ(x1) + c(x1 − ψ)

can be considered as θ : X1 → Lq(ω) with q > 2. The norm gap between Lq(ω)
and the space L2(ω), in which the inequality (1) is posed, is crucial in proving
generalized differentiability of

x1 7→ max(0, θ(x1));

and in arguing well-definedness and locally superlinear convergence of the gener-
alized (semismooth) Newton method for solving the underlying nonsmooth first
order optimality system; see [4] for details. Again, the low multiplier regularity
may prevent the pointwise interpretation and/or the smoothing of the control-to-
adjoint-state mapping.

We consider the following problem class: Let X1, X2 and W be real Hilbert
spaces with X1 →֒ L2(ω) →֒ X∗

1 , where X∗
1 denotes the dual of X1 and ω a

bounded domain in R
m. Further set X = X1 × X2 and let x = (x1, x2) denote

a generic element in X . Let E ∈ L(X,W ), f ∈ W , and ψ ∈ X1. Further let
J : X → R denote a quadratic functional satisfying

(4) 〈J ′(x) − J ′(y), x− y〉X∗,X ≥ α|x− y|2X
whenever E(x − y) = 0 for x, y ∈ X , for some α > 0. Here 〈·, ·〉X∗,X , at times
denoted by 〈·, ·〉, stands for the duality pairing between X and X∗. We set

C :=

(
E

(I, 0)

)

: X → W ×X1

and assume that C is surjective. The problem under consideration is

minimize J(x) over x ∈ X

subject to Ex = f,

x1 ≤ ψ,

(P)

where ≤ denotes the ordering in L2(ω). Note that (P) covers state constrained
optimal control problems for which it is known that the Lagrange multiplier asso-
ciated with the pointwise inequality constraint is a Borel measure only. In order
to have a regular approximation of this Lagrange multiplier we consider the regu-
larized problems

minimize J(x, γ) := J(x) +
1

2γ

∫

ω

|
(
λ̄+ γ(x1 − ψ)

)+ |2dw over x ∈ X

subject to Ex = f,
(Pγ)

where γ > 0 represents a relaxation (or regularization) parameter and λ̄ ∈ L2(ω) is
an optional shift-parameter. Further, (·)+ = max(·, 0). Let xγ denote its solution
with pγ ∈ W ∗ the corresponding adjoint state and

λγ = (λ̄+ γ(x1,γ − ψ))+ ∈ L2(ω).
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The regularization parameter γ induces a primal-dual path

C = {(xγ , pγ , λγ) ∈ X ×W ∗ ×X∗
1 : γ ∈ (0,∞)}.

We show that the path is bounded, that it converges to a solution of the origi-
nal problem, and that it is locally Lipschitz continuous. Further, under a strict
complementarity assumption, it is (strongly) differentiable w.r.t. γ.

We also consider the primal-dual path-value functional

γ 7→ V (γ) = J(xγ) +
1

2γ

∫

ω

|(λ̄ + γ(x1,γ − ψ))+|2dw

defined on (0,∞). It is differentiable with the first derivative satisfying

V̇ (γ) = − 1

2γ2

∫

ω

|(λ̄+ γ(x1,γ − ψ))+|2 +
1

γ

∫

ω

(λ̄+ γ(x1,γ − ψ))+(x1,γ − ψ).

Further it can be shown, again under a strict complementarity assumption, that
it is twice differentiable w.r.t. γ. For λ̄ = 0 it follows that for γ ≥ 0

V̇ (γ) > 0 and V̈ (γ) < 0

whenever the unconstrained solution does not solve (P). For certain problem
classes (like obstacle problems) it can be shown that there exists λ̄ ≥ 0 such that
xγ is feasible for (P). In this case we infer

V̇ (γ) < 0 and V̈ (γ) > 0

whenever the unconstrained solution does not solve (P). These properties are
utilized for defining model functions of V (γ) which are then the basis for an efficient
update strategy of γ in an algorithmic framework. Further, for every γ > 0 the
corresponding regularized problem is efficiently solved by a class of semismooth
Newton methods, or equivalently primal-dual active set strategies, which converge
locally superlinearly in function space.

In our numerical practice the overall solution algorithm exhibits a mesh-in-
dependent behavior and compares favorably with primal-dual path-following inte-
rior point methods.

For proof details and a report on extensive numerical tests including a compar-
ison with interior point methods and the blending with a nested iteration concept
for speed-up we refer to [6].
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Convergence of a Finite Element Approximation to a State

Constrained Elliptic Control Problem

Michael Hinze

(joint work with Klaus Deckelnick)

In this talk we discuss a finite element discretization of a control problem with
pointwise state constraints. Let Ω ⊂ R

d (d = 2, 3) be a bounded, convex domain
with a smooth boundary. For a given function u ∈ L2(Ω) we denote by y = G(u)
the solution of the Neumann problem

−∆y + y = u in Ω,
∂νy = 0 on ∂Ω.

Here ν denotes the outward pointing unit normal to ∂Ω. It is well known that
y ∈ H2(Ω) and

(1) ‖y‖H2 ≤ C‖u‖L2.

We now consider the following control problem

(2)
min

u∈L2(Ω)
J(u) =

1

2

∫

Ω

|y − y0|2 +
α

2

∫

Ω

|u− u0|2

subject to y = G(u) and y(x) ≤ b(x) in Ω.

Here, α > 0 and y0, u0 ∈ H1(Ω) as well as b ∈ W 2,∞(Ω) are given functions. We
denote by M(Ω̄) the space of Radon measures which is defined as the dual space
of C0(Ω̄) and endowed with the norm

‖µ‖M(Ω̄) = sup
f∈C0(Ω̄),|f |≤1

∫

Ω̄

fdµ.

The analysis of (2) is well understood for the problem under consideration.
Since the state constraints form a convex set and the cost functional is quadratic
it is not difficult to establish the existence of a unique solution u ∈ L2(Ω) to this
problem. Moreover,
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Theorem 1. A function u ∈ L2(Ω) is a solution of (2) if and only if there exist

µ ∈ M(Ω̄) and p ∈ L2(Ω) such that with y = G(u) there holds
∫

Ω

p
(
−∆v + v

)
=

∫

Ω

(y − y0)v +

∫

Ω̄

vdµ ∀v ∈ H2(Ω) with ∂νv = 0 on ∂Ω(3)

p+ α(u − u0) = 0 a.e. in Ω(4)

µ ≥ 0, y(x) ≤ b(x) a.e. in Ω, and

∫

Ω̄

(b− y)dµ = 0.(5)

The study of (2) is complicated by the presence of the measure µ on the right
hand side of (3). As a consequence, the solution p of this problem is no longer in
H1(Ω) but only in W 1,s(Ω) for all 1 ≤ s < d

d−1 . This fact also accounts for the

form of the weak formulation (3).

In this talk we develop a finite element approximation of problem (2). The
underlying idea consists in approximating the cost functional J by a sequence of
functionals Jh where h is a mesh parameter related to a sequence of triangulations.
The definition of Jh involves the approximation of the state equation by linear finite
elements and enforces constraints on the state in the nodes of the triangulation.

We shall prove that the minima uh of Jh converge in L2 to the minimum u
of J as h → 0 and that the states yh convergence strongly in H1 as well as
uniformly to the corresponding optimal state y. Furthermore, we shall prove that
the associated discrete adjoint states ph converge strongly in L2 to p, and that the
discrete multipliers µh converge weakly in M(Ω̄) to µ. Finally we carry out an
error analysis in the two– and three–dimensional case and obtain

‖u− uh‖L2, ‖y − yh‖H1 = O(h2− d
2
−ǫ) (h→ 0) (ǫ > 0 arbitrary).

The complete analysis is presented in [1].
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Modelling and Identification of Hysteresis in PDEs

Barbara Kaltenbacher

Memory effects such as rate independent hysteresis appear in a number of phys-
ical phenomena modelled by PDEs. We here focus on the classical example of
magnetics as well as a model problem in piezoelectricity, the first one leading to a
parabolic PDE,

(1) µ0~ut + P[~u]t + ∇× ∇× ~u = f ,

the second to a hyperbolic one

(2) ρutt = P[ux]x .
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In both cases, hysteresis can be modelled in a very general way by Preisach opera-
tors P appearing in place of coefficients within the respective differential operator.
An important task in material characterization is the identification of the operator
P in (1) or (2), respectively, from overposed boundary data.

Hysteresis Operators. The most simple example of a hysteresis operator is a
hysteretic relay with up- and down- switching thresholds α and β, respectively,
given by

Rβ,α[v](t) =

{
+1 if v(t) > α or (w(ti) = +1 ∧ v(t) > β
−1 if v(t) < β or (w(ti) = −1 ∧ v(t) < α

t ∈ [ti, ti+1] ,

where t0, t1, . . . , tN a monotonicity partition of the time interval, i.e., chosen such
that v is monotone on [ti, ti+1], i = 0, . . . , N − 1. Another example is the mechan-
ical play, described by the recursion

(3) Fr[v](t) = w(t) = max{v(t) − r,min{v(t) + r, w(ti)}} t ∈ [ti, ti+1] .

These two simple examples serve as building blocks in a very general hysteresis
model, the Preisach operator, that is a weighted superposition of elementary relays:

P[v](t) =

∫∫

α,β∈S

℘(β, α)Rβ,α[v](t) d(α, β)

=

∫∫

α,β∈S+(t)

℘(β, α) d(α, β) −
∫∫

α,β∈S−(t)

℘(β, α) d(α, β)

= w0 + 2

∫ ∞

0

∫
Fr[v](t)

0

℘(s− r, s+ r) ds dr(4)

where the latter identity holds due to the fact that the interface between the sets
S+(t), S−(t) of up and down switched relays moves according to the rules of the
mechanical play. It is essential for the efficient numerical simulation of hysteretic
processes (especially in the context of PDEs, where each space point has its own
memory), that Preisach operators forget certain passages in the past according
to deletion rules (monotone deletion, Madelung rule, wipe out). Therewith, to
compute the output at a some time instance t̄, not the whole input (v(t))t∈[0,t̄] is
required, but only a (short) string of values v(ti)i∈{1,...,N} that have “survived”
deletion. The actual computation of the output can then efficiently be done via a
finite sum

P[v](t) =

∫∫

α,β∈S

℘(β, α)Rβ,α[v](t) d(α, β) = P[v0] +
N∑

i=1

E(v(ti), v(ti+1))

with a precomputed Everett (or shape) function E

E(v∗, v
∗) = 2

∫∫

v∗≤β≤α≤v∗
℘(β, α) d(α, β) if v∗ < v∗ E(−v∗,−v∗) = E(v∗, v

∗) .

Under certain conditions on the weight function ℘ or the shape function E, the
operator P is Lipschitz continuous from C(0, T ) into itself, and has some coercivity
and convexity properties. However, P is not differentiable, even for smooth ℘ and



624 Oberwolfach Report 11/2006

E, and P is not a monotone operator. Therefore, well-posedness proofs for (1), (2)
use techniques different from the usual arguments for nonlinear evolution equations
with monotone operators (cf. e.g. Zeidler 1998), see [1], [3], and the references
therein, especially Visintin 1994, Krejč́ı, 1996.

Hysteresis Identification. To discuss some numerical methods for the recon-
struction of ℘ in PDEs from additional boundary measurements, we concentrate
on a hyperbolic model problem

(∗)







PDE : ρutt − (P[ux])x = 0 x ∈ [0, L], t ∈ [0, T ]

boundary conditions: u(0, t) = f0(t) u(L, t) = fL(t)

initial conditions: u(x, 0) = u0(x) ut(x, 0) = u1(x)

(∗∗) measurements: (P[ux]) (L, t) = g(t)

Since P appears not only in the PDE but also in the measurement boundary condi-
tion, a most straightforward approach for recovering P is the following alternating

iteration: In each step

• solve PDE (*) for u
• solve measurements (**) for P.

This amounts to a fixed point method whose convergence at least theoretical im-
poses restrictions on the magnitude of the excitation. To avoid this, we apply
Newton type methods to (**) considered as an operator equation F (P) = g, where
the forward operator F contains solution of (*). In doing so, we have to take into
account the fact that P is not differentiable in a classical sense. Hence, we propose
to choose one of the following strategies:

i) Approximate P by a superposition operator S

ii) Semismooth Newton: Find slanting function G for P

iii) Broyden’s method

ad i) The main loop of a hysteresis operator can be approximated by its center-
line or alternatively by the so-called the commutation curve (i.e., the virgin curve
and its prolongation into the lower half plane). Either of these two curves can be
explicitely expressed via the shape function E and used to define a superposition
operator S. Replacing P′ (which does not exist in a classical sense) in the defin-
ition of a Newton step by S′, we arrive at an iterative identification method for
P.

ad ii) The slope approximation derived from the centerline or commutation
curve may be poor in minor loops, that are usually much flatter than the main
loop. Moreover, superposition operator approximations of the Preisach operator
neglect its memory. To avoid these two drawbacks, we also study a generalized
differentiability concept, namely slant differentiability (cf., e.g., Chen, Nashed
and Qi 1997, Hintermüller, Ito, and Kunisch 2002, M. Ulbrich 2003). Using the
representation of the Preisach operator via the mechanical play (4), the recursion
(3), as well as the slant derivative of the max and the min function together with
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the chain rule, we arrive at a slanting function G (i.e., “P′”) as follows:

(G[v]h)(tm) =
m∑

i=0

h(ti)

∫ ∞

0

℘(wrm − r, wrm + r)1IRi[v](r) dr

where wri = Fr[v](ti) and Ri[v] = {r ∈ IR+ | wri 6= wri−1 ∧ wri = wri+1 = · · · = wrj}.
for v piecewise linear with breakpoints at tm, m = 1, . . . ,M . However, the efficient
implementation of this generalized derivative in a semismooth Newton method for
hysteresis identification is still an open problem, due to the arising integral as well
as the computationally costly case distinctions in the definition of the sets Ri.

ad iii) Broyden’s method, that approximates F ′(P) according to a rank one
update formula, has the advantage of only involving values of F . For well-posed
problems, convergence of Broyden’s method even for operators that are only Lip-
schitz continuous has been established by Griewank, 1987. In the here relevant
ill-posed situation, these results can not directly be carried over; Still a regular-
izing effect due to the finite rank update procedure can be observed and made
rigorous under certain conditions (cf. BK 1998).

In a series of numerical tests we investigated convergence of the above sketched
methods both with exact and with noisy data, for different types of hysteresis oper-
ators (with narrow and with broad main loop, respectively, as well as incorporating
saturation), cf. [2].
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Model Reduction for Nonlinear Least Squares

C. Tim Kelley

(joint work with Dan Sorensen, Jill Reese, and Corey Winton)

1. Introduction

We propose a model reduction method for moderately sized nonlinear least
squares problems for which the evaluation of the residual requires the solution
of a partial differential equation on a large grid. Using POD [1] as a model,
we manufacture snapshots of the solution of the PDE and use the singular value
decomposition to build a low-dimensional Galerkin basis to reduce the dimension
of the PDE solve.

At this stage the research is speculative, and we offer only simple one dimen-
sional computational studies to support our assertions.
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Suppose we have a vector p ∈ RN of N design parameters, and seek to fit M
data points to minimize

f(p) =
1

2
R(p)TR(p) =

1

2

M∑

i=1

(Si(p) − di)
2

where d ∈ RM are the data, and S : RN → RM is the model.
The target problems will have large residuals, and the least squares problems

themselves are very poorly scaled. We can remedy the scaling problems with a
logarithmic change of variables.

One example is for Si(p) = u(p)(xi), where u is the solution of a PDE, and xi
is a spatial data point. In any case, we will assume that in order to evaluate S
you have to solve a linear, for now, discretized PDE

(1) L(p)w = g

on a spatial mesh with Mx points. We assume that

(2) S(p) = S(w(p))

depends on p through w.
We follow the POD paradigm, and see to generate a sequence of solutions

{wk}Kk=1 for various values of p. We let W be the Mx ×K matrix with the uk’s
as its columns. We let

UΣV T = W

be the SVD of W , and take the first MS columns of U to be our reduced basis.
The next step is to change the way the least squares residual is computed. We

define a coarse mesh model Sc as follows. We begin by solving the reduced PDE

(3) UTL(p)Uwc = UT p,

which we will assume is a well-posed problem. Notice the notation, wc ∈ RMK is
the vector of coefficients of the solution Uwc ∈ RMx of the reduced PDE. We’ve
reduced the number of unknowns in the PDE from Mx to Mk in this way.

Then we simply define

(4) Sc(p) = S(Uwc(p)),

and

(5) Rc(p) = Sc(p) − d.

The reduced problem is to minimize

1

2

M∑

i=1

(Sci (p) − di)
2.
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2. Example

These problems are badly scaled. We remedy this with a logarithmic change
of variables. We solve the optimization problem with a Gauss-Newton pseudo-
transient continuation scheme [2].

We consider the boundary value problem

(6) −(k(p)w′)′ = g, w(0) = w0, w(1) = w1,

where k(p) is a piecewise constant function taking values {pj}Nj=1. We assume that

k(p) ∈ [10−6, 10−2],

and w0, w1 ∈ [105, 107]. We’ll use

w0 = 105 and w1 = 106

in this example.
The exact data are

ke(p) = pei+1 for xei < x < xei+1, 0 ≤ i ≤ 4,

where the exact interface points are xei = i/4. The exact conductivities are

pe = (10−4, 10−3, 10−2, 10−5)T .

I’ll let ue ∈ RMx be the solution of (6). We will generate the data from ue and
perturbations of ue.

We will try to approximate p for fixed choices of the interfaces.
In all cases mx = 210 − 1. We discretize with standard finite elements with

mx = 210 − 1 interior nodes.
We generate the data by solving

A(ptrue)utrue = b(ptrue)

and then letting the data be

dj = utruejk

for 1 ≤ j ≤M , where the sequence {zk} = {xjk} is a subset of the grid.
To make sure that p stays within sensible limits, we imposed simple bound

constraints

10−6 ≤ pi ≤ 10−2,

so −6 ≤ qi ≤ −2.
To generate the reduced basis we take a few Euler steps for p′ = −R′(p)TR(p)

to build the snapshots.
The algorithm we used in the example was
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Begin with an initial iterate p
for i = 1,. . . , isweep do

Build the reduced basis.
Take lots of iterations on f c (reduced model).
Take 3 iterations on f (full model).

end for

Take 10 iterations on f .

We consider one test case. We perturb the data by 1% with a random vector,
and change the interfaces. The interface for the unknown conductivity is now
xei = i/3. So the number and locations of the interfaces have changed. In Table 1
we tabulate the errors in log(p) and the residuals as functions of the number of
isweep, the number of times we rebuild the reduced basis. isweep = 0 is the result
of using the full model. The table illustrates that isweep = 1 is a reasonable choice.

Table 1. Case 3 results

isweep 0 1 2 3 4
f 3.16e-02 3.16e-02 3.16e-02 3.16e-02 1.11e-01

E(log(p)) 0.00e+00 1.09e-07 1.16e-07 1.29e-07 3.92e-01
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Optmization with Partial Differential Equations on Graphs

Günter Leugering

We consider partial differential equations defined on networked domains, such as
graphs or more generally multi-linked domains. In particular, we consider elliptic,
hyperbolic and Petrowski-type systems on such networks subject to controls at
the boundary or in the coefficients. Optimal control or optimization problems
in general for such systems appear frequently in modern technologies on various
scales, such as traffic-, water-, gas-networks and flexible structures on the macro-
scale, micro-mechanical structures, blood-flow, neuronal networks on the micro-
scale, photonic crystals, nano-tubes on the meso- and nano-scale. The first problem
to address is the proper modeling of the PDE-systems on networks. While there are
still interesting and challenging questions in this respect, in particular for traffic-
networks, there is meanwhile an extensive literature available. Spectral analysis,
optimization, optimal control and the optimization of networks all by themselves
are, however, a major focus of current research. In the talk presented we consider
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on periodic networks as being used in nano-tubes and photonic crystals. One
considers Maxwell’s equations, or wave-equations in locally 1-d situation, as well as
Schrödinger equtations with varying potentials. Bilinear controllability is a major
concern from a mathematical point of view. Optimal control of such systems is
the subject of Quantum Control. In case of very fine structures the question of
homogenization comes into play, therefore we discuss an average model residing
in a 2-d or 3-d domain which is the limit in the sense of two-scale convergence
for a special product topology applied to Kuratowski’s set-convergence. See [2]
The homogenization procedure pursued here uses supports of singular measures
as being representative for the edges of the graph in a typical cell. The novelty
lies with inclusion of optimization into the procedure. The point of view taken
here is the direct method of calculus of variations. Thus, we do not homogenize
optimality systems, but rather the optimization problem itself. We also discuss
the role of the Bloch-Floquet theory and Bloch-expansions in order to diagonalize
the operators on the ǫ-scale.The second major focus of the talk is devoted to the
concept of topological gradients developed by J. Sokolwoski. We present a new
concept for graphs [1]. In this concept one mimics the situation for 2-d domains,
in that one considers the possibility of replacing a multiple node with high edge
degree by a cycle of new nodes having smaller edge degree. Thus one ’digs a hole’
of ’size’ ρ into the graph. An energy functional is considered parametrized by ρ,
and an asymptotic analysis is given which gives rise to a proper definition of a
topological gradient. This will make it possible to systematically treat shape and
topology optimization problems on networks.
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On Two Applications of PDE Constrained Optimization

Hans Josef Pesch

(joint work with Verena Petzet, Kati Sternberg, and Kurt Chudej)

Two challenging application problems of PDE constrained optimization are inves-
tigated and presented with their associated numerical results.

First, a parameter optimization problem for the optimal positioning and dimen-
sioning of laser beams in multi-beam laser welding techniques is investigated. The
objective function to be minimized is a quantification of the likelihood of hot crack
initiation which constitutes a severe problem in laser welding technology. The op-
timization problem is subject to several constraints. One is given in form of a
boundary value problem for an elliptic PDE, the others are inequality constraints
including also a state variable inequality constraint. The solution of the PDE can
here be obtained semi-analytically, i. e. parts of the solution formulae in form of
an absolutely convergent series must be computed numerically, here by evaluating
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modified Bessel functions. Experimental results show that the computed optimal
design of the multi-beam laser configuration indeed avoids the arising of hot cracks.

The second problem, deals with molten carbonate fuel cells. Such fuel cells
allow an efficient and environmentally friendly energy production by converting
the chemical energy contained in the fuel gas. Their dynamical behavior can be
described by a large scale system of 2D quasilinear partial differential algebraic
equations (PDAEs) of dimension 28. They are of mixed parabolic-hyperbolic type
with integral terms in the right hand side and initial and nonlinear boundary
conditions, the latter governed by a system of ordinary differential algebraic equa-
tions. Numerical results of simulations including of optimal control of the fuel cell
through certain boundary conditions in case of almost time optimal load changes
are presented.

Acknowledement: These research projects have been supported by the Bay-
erische Forschungsstiftung and the German Federal Ministry of Education and
Research.
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Adaptive Solution of PDE-Constrained Optimal Control Problems

Rolf Rannacher

(joint work with Roland Becker, Boris Vexler, Malte Braack, and Dominik
Meidner)

This invited survey lecture discusses various aspects of mesh adaptation in solving
PDE-constrained optimal control problems. Within the framework of a Galerkin
discretization mesh adaptation can be based on a posteriori error estimation follow-
ing the general concept of the ‘Dual Weighted Residual’ method (‘DWR’ method)
developed in [3] and [1]. By the Lagrangian formalism the optimization problem
is reformulated as a saddle-point boundary value problem, the so-called KKT sys-
tem, which is discretized by a Galerkin finite element method. The accuracy of
the discretization is controlled by residual-based a posteriori error estimates. This
paves the way toward model reduction in PDE-constrained optimal control.

We consider an optimal control problem (OCP) in the abstract setting

J := J(u, q) → min, A(u, q) = 0(1)

where u is the state and q the control, which are required to satisfy a stationary or
nonstationary PDE system. In solving this problem numerically, one is confronted
with the following fundamental questions:

• What is the appropriate notion of admissibility of states u = u(q) ?
– Discretization introduces perturbation of state equation.
– Since accuracy in the solution of PDEs is expensive, the work should

be reduced by adaptive discretization.
– Accuracy requirements should observe intrinsic problem sensitivities

and are a modeling issue.
• How to measure admissibility?

– In PDEs the choice of error measures is a delicate matter.
– Error estimates should not rely on unknown or worst-case oriented

stability properties of the underlying PDE model.

The DWR method offers a universal approach for dimension reduction which is
based on computationally generated sensitivity information and can be applied for
general PDE systems and any Galerkin-type discretization in space or space-time.
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Adaptivity in optimal control may aim at error control w.r.t. the cost functional,

|Jh − J | ≤ η(uh, qh, λh) :=
∑

K∈Th

ηK ,(2)

Jh := J(uh, qh) , and mesh adaptation driven by the local error indicators ηK ,

ηK ≫ δ ⇒ refine, ηK ≈ δ ⇒ keep, ηK ≪ δ ⇒ coarsen

Other relevant error measures may be given by certain norms of state ‖u − uh‖
and control ‖q − qh‖ .

Functional-oriented a posteriori error estimates can be derived by the general
approach of the DWR method. The frame is the Galerkin discretization of the
abstract optimal control problem (1) in subspaces Vh×Qh ⊂ V ×Q,

J(uh, qh) = min! a(uh, qh)(ψh) = 0.(3)

Using the Lagrangian functional L(u, q, λ) := J(u, q)−a(u, q)(λ) , with the adjoint
variable λ , the discrete first-order optimality condition (KKT system) reads







J ′
u(uh, qh)(φh) − a′u(uh, qh)(φh, λh)
J ′
q(uh, qh)(χh) − a′q(uh, qh)(χh, λh)

−a(uh, qh)(ψh)






= 0 ∀{φh, χh, ψh}.(4)

with the corresponding residuals

ρ∗(λh)(·) := J ′
u(uh, qh)(·) − a′u(uh, qh)(·, λh)

ρq(qh)(·) := J ′
q(uh, qh)(·) − a′q(uh, qh)(·, λh)

ρ(uh)(·) := −a(uh)(·)
Then, adopting the natural concept of error control w.r.t. the cost functional, an
abstract argument yields the following a posteriori error representation

Jh − J = 1
2 ρ

∗(λh)(u−Ihu)
︸ ︷︷ ︸

dual residual

+ 1
2 ρ

q(qh)(q−Ihq)
︸ ︷︷ ︸

control residual

+ 1
2 ρ(uh)(λ−Ihλ)︸ ︷︷ ︸

primal residual

+Rh,(5)

for arbitrary Ihu, Ihλ ∈ Vh and Ihq ∈ Qh. The remainder Rh is cubic in the
errors eu := u−uh , eq := q−qh , and eλ := λ−λh .

For prototypical examples, such as Neumann boundary control in the stationary
semi-linear diffusion problem (for details see [5])

−∆u+ s(u) = f in Ω ⊂ R
2, ∂nu|ΓN

= 0, ∂nu|ΓC
= q,(6)

with the cost functional (ū ≡ 1, α ≥ 0)

J(u, q) = 1
2‖u− ū‖2

ΓO
+ 1

2α‖q‖2
ΓC

→ min!(7)

the error representation (5) can be converted into an error estimate of the form

|Jh − J | ≤ ηω :=
∑

K∈Th

{
ρuK ω

λ
K + ρλK ω

u
K + ρqK ω

q
K

︸ ︷︷ ︸

ηK (refinement indicators)

}
,(8)

Here, the residual terms and weights are given in the usual form by ρuK := ‖f +

∆uh − s(uh)‖K + h
−1/2
K ‖[∂nuh]‖∂K and ωλK := ‖λ−Ihλ‖K + h

1/2
K ‖λ−Ihλ‖∂K ,

respectively, and similarly for the other terms. The weights may be approximated
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by local post-processing, e.g., simply by patch-wise higher-order interpolation,

(λ−Ihλ)|K ≈ (I
(2)
2h λh−λh)|K . The mesh adaptation follows the ‘error balancing’

concept,

η :=
∑

K∈Th

ηK , ηK ≈ TOL/N, N := #{K ∈ Th} ⇒ η ≈ TOL.

The ‘weighted’ error estimate (8) is compared with ‘energy norm-type’ error esti-
mators of the form

ηE := cI

(∑

K∈Th

h2
K

{
(ρuK)2 + (ρλK)2 + (ρqK)2

})1/2

,(9)

which have been given by Liu/Yan [11, 12], Dahmen/Kunoth [8, 10], and Hoppe
et al. [9]. It has to be noted that both estimates, (8) and (9), do not work well
for mesh adaptation in parameter estimation due to the inherent ill-conditioning
of such problems. In this case the DWR method needs to be applied in a more
sophisticated way, in order to give error bounds for the control, ‖q − qh‖ .

The superiority of mesh adaptation by the DWR method over other residual-
based approaches is demonstrated by examples from optimal flow control (drag
minimization in viscous flow; see Becker [2]) and parameter estimation as well
as model calibration in reactive flows (determination of Arrhenius coefficients and
diffusion models from measurements; see Becker/Vexler [7]). Other applications of
the DWR method to various kinds of optimal control problems can be found in the
survey article [4]. Current work concerns the use of the DWR method in optimal
control of nonstationary problems, for control and state constraints, in estimating
of distributed parameters, in fluid-structure interaction, in optimal experimental
design, and last but not least in software development [6].
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[2] R. Becker, Mesh adaptation for stationary flow control, J. Math. Fluid Mech. 3, 317-341
(2001).

[3] R. Becker and R. Rannacher, An optimal control approach to error estimation and mesh
adaptation in finite element methods, Acta Numerica 2000 (A. Iserles, ed.), pp. 1-102, Cam-
bridge University Press, 2001.

[4] R. Becker, D. Meidner, R. Rannacher, and B. Vexler: Adaptive finite element methods
for PDE-constrained optimal control problems, Reactive Flows, Diffusion and Transport
(R. Rannacher, ed.), Springer, to appear 2006.

[5] R. Becker, H. Kapp, and R. Rannacher, Adaptive finite element methods for optimal control

of partial differential equations: basic concepts, SIAM J. Optim. Control 39, 113-132 (2000).
[6] R. Becker, D. Meidner, and B. Vexler, RoDoBo: A C++ library for optimization with

stationary and nonstationary PDEs, Institute of Applied Mathematics, University of Hei-
delberg, URL http://www.rodobo.uni-hd.de, 2005.

[7] R. Becker and B. Vexler, A Posteriori error estimation for finite element discretization of
parameter identification problems, Numer. Math. 96, 435–459 (2004).

[8] W. Dahmen and A. Kunoth, Adaptive wavelet methods for linear-quadratic elliptic control
problems, SIAM J. Contr. Optim. 43, 1640–1675 (2005).



634 Oberwolfach Report 11/2006

[9] R. Hoppe, Adaptive finite element methods for optimally controlled elliptic problems with
control constraints, Lecture at Workshop on PDE Constrained Optimization, Center for
International Mathematics, Tomar, Portugal, July 26–29,2005.

[10] A. Kunoth, Adaptive wavelet schemes for an elliptic control problem with Dirichlet boundary
control, Numer. Algor. 39, 199-220 (2005).

[11] W. Liu and N. Yan, A posteriori error estimates for some model boundary control problems,
J. Comput. Appl- Math. 120, 159–173 (2000).

[12] W. Liu and N. Yan, A posteriori error estimates for control problems governed by parabolic
equations, Numer. Math. 93, 497–521 (2003).

A virtual control concept for optimal control problems with pointwise

state constraints

Arnd Rösch

(joint work with Svetlana Cherednichenko, and Klaus Krumbiegel)

We investigate an optimal control problem with pointwise control and state con-
straints

(P )







min J(y, u) := 1
2‖y − yd‖2

L2(Ω) + ν
2 ‖u‖2

L2(Ω)

subject to (Ay)(x) = u(x) in Ω

y = 0 on Γ

0 ≤ u(x) ≤ b a.e. in Ω

y(x) ≥ yc(x) a.e. in Ω′

where A stands for an elliptic operator. Problems of this type contain theoretical
and numerical difficulties. One possibility to overcome these problems is a Lavren-
tiev type regularization introduced in Meyer, Rösch, and Tröltzsch [1]. Here, the
state constraint y = yc is replaced by a mixed control-state constraint y+εu ≤ yc.
In [1], the strong convergence of regularized solutions to the solution of the original
problem has been shown.

In this paper, we extend these results. Under a Slater type assumption, we
prove an estimate for the regularization error of the form

ν‖ū− ūε‖2
L2(Ω) + ‖ȳ − ȳε‖2

L2(Ω) ≤ εC.

Moreover, we investigate the case of perturbed data

‖yd − yσd‖L2(Ω) ≤ σd,

‖yc − yσc ‖L∞(Ω′) ≤ σc.

In this case, the stability estimate

ν‖ū− ūσε ‖2
L2(Ω) +

1

2
‖ȳ − ȳσε ‖2

L2(Ω) ≤ C1ε+ C2σc +
1

2
σ2
d

is obtained. For more details see [2].
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However, this approach needs a specific situation: The state constraints have to
be required where the control is acting. Clearly, the situation changes completely
if we consider the boundary control problem

(P ′)







minimize J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Γ)

subject to Ay + y = 0 in Ω
∂nA

y = u on Γ
ua ≤ u(x) ≤ ub a.e. on Γ
y(x) ≥ yc(x) a.e. in Ω,

Here, we will introduce a new virtual control concept by

(P ′
ε)







min Jε(y, u, v) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Γ) +
f(ε)

2
‖v‖2

L2(Ω)

subject to Ay + y = g(ε)v in Ω
∂nA

y = u on Γ
ua ≤ u(x) ≤ ub a.e. on Γ

y(x) ≥ yc(x) − h(ε)v(x) a.e. in Ω
0 ≤ v(x) ≤ vb a.e. in Ω

with a virtual control v. The functions f , g, and h are suitable chosen continuous
functions. Under a general assumption, we prove an estimate for the regularization
error of the form

ν‖ū− ūε‖2
L2(Γ) + ‖ȳ − ȳε‖2

L2(Ω) ≤ C1
κ(ε)

κ(ε) + τ
+ C2

(g(ε))2

f(ε)

with

κ(ε) = bh(ε) +
Cg(ε)
√

f(ε)
.

Acknowledgements. This work is supported by FWF P18090-N12.
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Numerical Methods for Shape Optimization of Variational Inequalities

Jan Sokolowski

(joint work with Piotr Fulmanski, Antoine Laurain, Jean-Francois Scheid, and
Antoni Zochowski)

Shape gradients and topological derivatives are used for numerical methods of
levelset type used for numerical solution of energy maximization for a class of uni-
lateral problems. We combine the recent results on topological differentiability of
solutions to variational inequalities [14] with the technique of level set [15]. The
numerical method is devised for scalar problem, however the extension to the elas-
ticity boundary value problems with unilateral conditions is straightforward.

Topology and shape optimization. The shape sensitivity analysis is combined
with the topological derivatives in order to perform the shape and topology op-
timization. The examples of applications include Signorini problem and the fric-
tionless contact problem in elasticity. The directional differentiability of shape
functionals with respect to smooth perturbations of the boundary of geometrical
domain is already proved in the monograph [9]. Recently, the form of topological
derivatives for variational inequalities is established in the paper [14].

Numerical method. We propose a numerical method which combines the level
set approach with the shape and topological derivatives in order to solve a class of
shape optimization problems for variational inequalities. This is a joint work with
Piotr Fulmanski (Lodz), Antoine Laurain and Jean-Francois Scheid (Nancy). The
first numerical results confirm that the method is convergent to optimal shape -
for maximization of the energy in the case of Signoroni problem.

Asymptotic analysis. Theoretical justification of procedures for computing
topological derivatives for variational inequalities is given in [14]. The references
on the subject of the topology and shape optimizations are listed below. In the
general case of elliptic boundary value problems, the topological derivatives are
derived using the outer and inner approximations of singularly perturbed elliptic
problems. In the particular case of unilateral problems, the outer approximation
is only constructed.
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[5] S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth
Boundaries, De Gruyter Exposition in Mathematics 13, Walter de Gruyter, 1994.



Numerical Techniques for Optimization Problems with PDE Constraints 637

[6] S. A. Nazarov and J. Soko lowski, Asymptotic analysis of shape functionals, Journal de
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On Regularization of Elliptic Control Problems With Pointwise state

Constraints

Fredi Tröltzsch

(joint work with Peter Deuflhard, Christian Meyer, Uwe Prüfert, Anton Schiela,
and Martin Weiser)

Consider the elliptic optimal control problem with pointwise constraints on the
control and the state,

(1) min J(y, u) =
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Q)

subject to

(2) −∆y + y = u in Ω

with homogeneous Neumann or Dirichlet boundary condition. Moreover, pointwise
constraints are imposed on the state y ∈ C(Ω̄),

(3) ya ≤ y(x) ≤ yb ∀x ∈ Ω̄.

The following data are given: A bounded domain Ω ⊂ IRN , N ∈ {2, 3} with C0,1-
boundary Γ, a function yd ∈ L2(Ω), ν > 0, and bounds ya < yb. For all u ∈ L2(Ω),
a unique state y = y(u) exists in Y = H1(Ω) ∩ C(Ω̄). Moreover, there exists a
unique optimal control ū with associated state ȳ.

The theory of necessary optimality conditions shows that the Lagrange mul-
tipliers for the state constraints associated with the optimal state ȳ are regular
Borel measures, cf. Casas [4], for instance. We also refer to the discussion of
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the structure of the multipliers by Bergounioux and Kunisch [2]. In view of these
results, the numerical solution of such problems is more complicated than for
control-constrained problems so that different regularization methods have been
investigated.

Ito and Kunisch [5] and Bergounioux and Kunisch [3] have suggested a Moreau-
Yosida based regularization technique that is related to a penalization of the state
constraints. The resulting unconstrained problems can be efficiently solved by a
primal-dual active set strategy or, in the nonlinear case, by a semismooth Newton
method.

Later, inspired by the theory of problems with bottleneck constraints, Meyer et
al. [7] applied a Lavrentiev type regularization to a problem with mixed control-
state constraints of the type

λu(x) + y(x) ≥ ya(x), u(x) ≥ 0 a.e. in Ω.

Here, the corresponding Lagrange multipliers are functions of Lp-spaces, cf. [10].
The proof of this regularity result is fairly technical.

It is much easier in the case of the constraints ya ≤ λu + y ≤ yb (λ > 0) which
can be transformed to a control-constrained problem by defining a new control
v := λu + y. This idea, that has already been mentioned in [10], was applied
to an associated semilinear elliptic problem by Meyer and Tröltzsch [8]. After
regularization, a primal-dual active set method can be directly applied. Numerical
tests showed that the performance of this method is comparable to the one by
Bergounioux and Kunisch mentioned above. The main strength of the Lavrentiev
regularization is that the structure of a state-constrained problem is preserved
and the Lagrange multipliers are regular. This facilitates the analysis of some
numerical methods in function space.

Prüfert et al. [9] investigated a primal-dual interior point method for an elliptic
problem with unilateral and regularized state constraint. Here, the regularization
permits to set up the method in function space and to work out an associated con-
vergence analysis. For instance, the existence of the central path and convergence
rates can be shown. The main idea of this interior point method consists of adding
a logarithmic barrier function to the objective (1) and to solve the problem

(4) min
{
J(y, u) − µ

∫

Ω

(
ln(λu + y − ya) + ln(yb − λu− y)

)
dx

}

subject to the equation (2) and ya < y(x) < yb.
Here, µ > 0 is a positive path parameter tending to zero, while λ > 0 is

a fixed small Lavrentiev regularization parameter. Though the introduction of
the log-barrier functional (4) is a regularization itself, the additional Lavrentiev
regularization has several positive effects. First of all, it can be shown that, for all
fixed µ > 0, the problem (4), (2) has a unique solution (uµ, yµ) such that λuµ+yµ
has a distance ε(µ) > 0 to the boundaries ya, yb. In this way, the solution stays
in the interior of the admissible set. Moreover, the mapping µ 7→ (uµ, yµ) is



Numerical Techniques for Optimization Problems with PDE Constraints 639

continuously differentiable from (0,∞) to suitable spaces and it holds

‖(uµ, yµ) − (ū, ȳ)‖L∞(Ω)×C(Ω̄) ≤ c
√
µ

as µ ↓ 0. Altogether, this shows the existence of the central path and the existence
of its limit. The main tool behind the proof is the transformation of the problem
(4), (2) with mixed control-state constraints to a problem with control constraints
by introducing the auxiliary control v := λu+ y.

The performance of active set and interior point methods was studied detailed
by Bergounioux et al. [1] for discretized versions of elliptic problems. Inspired by
their work, Meyer et al. [6] compared an active set and an interior point method
for regularized bilateral state constraints in function space. Here, the Lavrentiev
regularization turns out to be very useful. While the interior point method can
be directly extended to function spaces, this is not clear for active set strategies.
Without regularization, measures appear as Lagrange multipliers. This causes
specific difficulties, since primal-dual active set strategies are based on a pointwise
evaluation of controls and Lagrange multipliers.

We should also point out that the regularization improves the performance of
the numerical methods. The condition numbers of the associated system matrices
increased considerably with decreasing parameter λ. As a natural consequence,
iteration numbers of the methods increase as well.
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Numerical solution of regularized optimal control problems with state

constraints

Michael Ulbrich

We consider optimal control problems with (regularized) state constraints. For
elliptic and parabolic optimal control problems with Lavrentiev-regularized state
constraints we show how the problem can be converted to a control constrained
problem. It is proved that the semismooth Newton approach can be applied to
this problem and that the resulting method converges superlinearly. Then, we
consider elliptic optimal control problems with (regularized) state constraints and
with bounds on the control. We handle the control bounds by barrier functions and
show rates of convergence for the Lavrentiev-regularized solutions to the solution
of the state constrained problem. A semismooth reformulation of the optimality
system and a sutable smoothing step for the controls are presented. Again, a su-
perlinearly convergent nonsmooth Newton method can be applied. The efficiency
of the presented approaches is documented by numerical results.

Multilevel preconditioning of interior point and semismooth Newton

methods for parabolic optimal control problems with bound

constraints

Stefan Ulbrich

In this talk we consider the numerical solution of optimal control problems gov-
erned by parabolic PDEs with control constraints. We discuss the construction of
multigrid preconditioners for the iterative solution of the linear Newton systems
arising in interior point and semismooth Newton methods.

We briefly introduce semismooth Newton and interior point methods for con-
trol constrained parabolic optimal control problems and state recent convergence
results [2–6].

We show that for both optimization methods the underlying Newton system
can be reduced to a coupled parabolic system. We propose three reductions of
this system to symmetric systems, which are positive definite for convex problems
and allow the detection of negative curvature for nonconvex problems. We now
propose two strategies to solve these systems iteratively: The first is to apply
a preconditioned CG-method to one of the reduced symmetric systems. Here,
the preconditioner is obtained by applying a parallel multigrid method to the
equivalent coupled parabolic system. The multigrid solver augments previous ap-
proaches [1] with time-domain decomposition techniques for the smoother, which
leads to a highly parallel algorithm. The smoother uses a forward-backward sweep
of collective Gauss-Seidel steps in parallel on small time slabs (we use 10 time
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steps in each slab). Our second strategy is to use a simplified preconditioner for
the reduced symmetric system that is based on an approximate factorization of
the system in a forward and a backward parabolic problem. We show that this
preconditioner yields in the case without bound constraints a condition number of
at most 2 if the preconditioner is computed exactly. In practice we replace exact
solves by a V (1, 1) multigrid cycle as approximate solver in the preconditioner.
Finally, we show numerical results for both strategies, which show the efficiency
and robustness of our approach.

References

[1] A. Borzi, Multigrid methods for parabolic distributed optimal control problems, J. Comp.
Appl. Math, 157 (2003), 365-382.

[2] M. Hintermüller, K. Ito, and K. Kunisch, The primal-dual active set strategy as a semi-
smooth newton method, SIAM J. Optim., 13 (2003), pp. 865–888.
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New Aspects in Proper Orthogonal Decomposition Model Reduction

Stefan Volkwein

(joint work with Michael Hinze, Martin Kahlbacher, and Karl Kunisch)

Proper orthogonal decomposition (POD) is a powerful technique for model reduc-
tion of linear and non-linear systems. It is based on a Galerkin type discretization
with basis elements created from the system itself.

In the first part (see [5]) error estimates for Galerkin POD methods for linear
and semi-linear elliptic, parameter-dependent systems are proved. The resulting
error bounds depend on the number of POD basis functions and on the parameter
grid that is used to generate the snapshots and to compute the POD basis.

In the second part (see [4]) we investigate POD discretizations of abstract linear-
quadratic optimal control problems with control constraints. We apply the discrete
technique developed in [3] and prove error estimates for the corresponding discrete
controls, where we combine error estimates for the state and the adjoint system
from [7,8]. The main result of the present work can be formulated as follows.
Main result: Let ū denote the solution of the linear-quadratic optimal control
problem, and ūℓ its POD approximation using ℓ POD basis functions for the
Galerkin ansatz. Then

ūℓ − ū ∼ p̄ℓ − p̄,
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where p̄ = p̄(ū) and p̄ℓ = pℓ(ū) denote the corresponding solutions of the contin-
uous and discrete adjoint systems, respectively, associated to the same control ū.
To the authors knowledge, the presented POD error estimates are the first ones
for discrete controls computed by a POD Galerkin scheme.

In third part (see [6]) we focus on a model reduction technique for open loop
optimal control problems of the form

(P) min J(y, u) s.t.

{

yt(t) = F (y(t)) +B(u(t)) for t ∈ (0, T ],

y(0) = y0.

Here J denotes a cost-functional depending on the state y and the control u, with
y and u depending on time t ∈ [0, T ] and the spatial variable x from the domain
Ω ⊂ R

d with d ∈ N. The differential equation constraint in (P) will be considered
in weak form in a separable Hilbert space V of functions defined on Ω. The precise
conditions on the possibly nonlinear operator F : V → V ∗ and the control operator
B : U → V ∗ will not be given in this report. Here U denotes the control space. We
utilize a Gelfand triple V ⊂ H ⊂ V ∗, with V compactly and densely embedded in
the real Hilbert space H , and V ∗ denoting the dual space of V . Further y0 stands
for the given initial condition.

While significant advances have been made over the last decade in efficient
solving of (P) good reasons remain for applying model reduction techniques to
the partial differential equation and solving the optimal control problem for the
reduced system. Such a procedure can become necessary in the case a large systems
of partial differential equations or in the context of real time requirements, for
example. It provides a possibility for obtaining closed loop solutions based on
solving the Hamilton-Jacobi-Bellman equation which is otherwise computationally
infeasible even for very coarse spatial discretizations.

To obtain low dimensional models of complex high dimensional systems many
different approaches, including balanced truncation and reduced basis methods,
were proposed. Here we focus on model reduction based on proper orthogonal de-
composition (POD). It is based on a Galerkin technique where the basis functions
{ψi}ℓi=1 are chosen as the solutions to

(1)







min
{ψi}ℓ

i=1

∫ T

0

∥
∥
∥y(t, ·) −

ℓ∑

i=1

〈y(t, ·), ψi〉X ψi
∥
∥
∥

2

X
dt

subject to 〈ψi, ψj〉X = δi,j for 1 ≤ i, j ≤ ℓ,

with X a Hilbert space satisfying V ⊂ X ⊂ H . The basis defined by (1) is given
by the eigenfunctions corresponding to the ℓ largest eigenvalues λi of the following
eigenvalue problem:

Rψi :=

∫ T

0

〈y(t), ψi〉X y(t) dt = λiψi for 1 ≤ i ≤ ℓ,(2a)

〈ψj , ψi〉X = δij for 1 ≤ i, j ≤ ℓ.(2b)

Let us denote Xℓ = span {ψi}ℓi=1 endowed with the norm induced by X . In (2)
the function y denotes a solution to the dynamical system in (P) computed at
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a reference control u. Hence the Galerkin subspace Xℓ depends on the control
as well. Typical choices for X are X = H and X = V . Our assumptions will
guarantee that Xℓ ⊂ V . Let P ℓ : H → Xℓ denote the orthogonal projection with
respect to the H norm. Since Xℓ ⊂ V the projection P ℓ can be extended to a
bounded linear mapping from V ∗ → Xℓ ⊂ V ∗ satisfying 〈P ℓf − f, φ〉ngleV ∗,V = 0
for all φ ∈ Xℓ and f ∈ V ∗. In the POD-approach to (P) the dynamical system is
replaced by a Galerkin projection on the POD-subspace Xℓ. This results in

(Pℓ) min J(yℓ, u) s.t.

{

yℓt = P ℓ
(
F (yℓ(t)) +B(u(t))

)
for t ∈ (0, T ],

yℓ(0) = P ℓ y0.

The discretization of the control variable is a different issue that is not the
focus of the present research. In Section 2 the control space U will be chosen to
be finite dimensional. Note that the projection in (Pℓ) depends on the state y
and hence on the reference control u at which the eigenvalue problem (2) is solved
for the basis {ψi}ℓi=1. This may deter from one of the main advantages of the
POD-approach for model reduction, which consists in the fact that unlike typical
finite element basis functions the elements of the POD-basis reflect the dynamics
of the system. In optimal control this feature gets lost if the dynamics of the
state corresponding to the reference control is significantly different from that of
the trajectory corresponding to the optimal control of (P) or the POD-Galerkin
approximation (Pℓ). To eliminate this weakness of the conventional approach we
propose to consider

(Pℓ
OS-POD)







min J(yℓ, u) subject to

yℓt(t) = P ℓ(u)F (yℓ(t)) + P ℓ(u)B(u(t)), for t ∈ (0, T ],

yℓ(0) = P ℓ(u) y0,

yt(t) = F (y(t)) +B(u(t)), for t ∈ (0, T ],

y(0) = y0,

R(y(u))ψi = λiψi for 1 ≤ i ≤ ℓ,

〈ψj , ψi〉X = δij for 1 ≤ i, j ≤ ℓ,

where we now indicate the dependence of the projection (Pℓ) and the correlation
operator R on the control u. The first three lines in (Pℓ

OS-POD) coincide with
(Pℓ), the next two are the infinite dynamical system and the last two represent
the eigenvalue problem characterizing the POD basis. For the optimal solution
(yℓ ∗, y∗, ψ∗

i , λ
∗
i , u

∗) the problem formulation (Pℓ
OS-POD) has the property that the

associated POD-reduced system is computed from the trajectory corresponding to
the optimal control u∗ and thus, differently from (Pℓ), the problem of unmod-
elled is removed. (Pℓ

OS-POD) can be considered as an optimization problem in
the variables (yℓ, y, ψi, λi, u) or, alternatively it can be looked upon in the reduced
sense with u the only independent variable, and yℓ, y, ψi, λi dependent variables
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defined by the equations in (Pℓ
OS-POD). In either case (Pℓ

OS-POD) is more com-
plicated than the original problem and we thus need to justify its scope. We shall
show that the optimality system for (Pℓ

OS-POD) involves two adjoint equations.
The adjoint equation for the finite dimensional system is the common one for the
POD-approach. It contains the linearization of the cost J with respect to the
state-variable yℓ as forcing function. The second adjoint equation results from
the infinite dimensional system and contains as forcing term information of the
linearization of the correlation operator R. The gradient of the reduced functional
u 7→ J(yℓ(u), u) with yℓ the solution to the POD system in (Pℓ

OS-POD) can be
expressed in terms of the solutions to these two adjoints. This can be utilized
for practical realizations of (Pℓ

OS-POD). It suggests a splitting of the variables
z into z1 = (yℓ, u) and z2 = (y, ψi, λi). Minimizing J(yℓ, u) with respect to the
former for fixed z2 results in the common POD-optimization problem for which
first order, gradient based, or second order methods can be used. Minimization
with respect to the second set of variables requires one additional forward and one
adjoint sweep of the full system if gradient iterations are used. Thus for practical
realization of (Pℓ

OS-POD) we suggest a splitting scheme where minimization with
respect to the z1 is done more accurately than with respect to z2. The benefit for
this extra work is that the POD basis is updated in the direction of the minimum
of J .

In the above discussion we presented OS-POD by means of the spatial cor-
relation operator R. There is an equivalent formulation based on a temporal
correlation operator K. For numerical realizations one can choose the formulation
involving R, respectively K, depending on which of the two results in a descretized
eigenvalue problem of smaller dimension.

To overcome the problem of unmodelled dynamics in the POD-basis it was
proposed earlier [2, 9] to update the basis after a solution to (Pℓ), to recompute
the solution to (Pℓ) with this new basis, and to possibly iterate. In [1] this
updating procedure was combined with a trust region strategy which determines
whether at the end of an optimization step an update of the POD-basis should
be performed. The main difference between the procedure just described and
(Pℓ

OS-POD) lies in the fact that the former updates the basis according to the
optimal control obtained from (Pℓ

OS-POD) whereas the update of the POD-basis
following (Pℓ

OS-POD) respects the goal of minimizing J . On a computational level,
updating the basis at the end of a (Pℓ

OS-POD) solution step requires one forward
solve of the full system, whereas a gradient step for (Pℓ) for z2 requires one forward
and one backwards solve of the full system.
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Interior Point Aspects in PDE Optimization

Martin Weiser

We consider three aspects of interior point methods applied to PDE constrained
optimization problems. These are control reduction and parametric sensitivities in
control constrained problems and self-concordance of integrated barrier functions
for state constrained semi-infinite programs.

Control Reduction. Using the logarithmic barrier function for a model problem
of the tracking type

min
u∈L∞,y∈H1

0

1

2
‖y − yd‖2

L2
+
α

2
‖u‖2

L2

subject to an elliptic state equation −∆y = u and box constraints −1 ≤ u ≤ 1 on
the control, the primal interior point formulation consists of the relaxed necessary
conditions

y − yd − ∆λ = 0

αu − λ− µ

1 − u
+

µ

1 + u
= 0(1)

−∆y − u = 0.

Transfering an idea of Hinze [2], the optimality condition (1) can be used to point-
wisely eliminate the control u = u(λ, µ), giving the reduced system

y − yd − ∆λ = 0

−∆y − u(λ, µ) = 0.

A similar idea has been suggested by Rösch [5] as a postprocessing step for dis-
cretized problems and by Ulbrich and Ulbrich [9] as a projection step inside affine
scaling methods.

There are two advantages of this approach: (i) Since only the state and the
adjoint state have to be discretized, the discretization error estimates for linear
and quadratic finite elements are not impeded by the kinks occuring in the control
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at the boundary of the active set. Thus, relatively high accuracy can be obtained
on rather coarse meshes [10]. In particular, the active set can be represented
with subgrid resolution. (ii) Since the control enters only in an integrated way,
integral norms are sufficient for a convergence analysis. Assuming strong strict
complementarity, superlinear convergence of the control reduced interior point
method can be shown [7].

Parametric Sensitivities. Whenever the problem setting depends on some pa-
rameter p, the question arises how the parametric sensitivity up(µ)of the interior
point approximation u(µ) for some µ > 0 is related to the parametric sensitivity u∗p
of the continuous solution u∗. Again assuming the strong strict complementarity,
it can be shown [1] that

‖u(µ) − u∗‖Lq
≤ cµ(1+q)/2q and‖up(µ) − u∗p‖Lq

≤ cµ1/2q.

These convergence rates are also observed in numerical examples. The reason for
the loss of convergence rate of the sensitivities is that, the sensitivity of the exact
solution usually exhibits a discontinuity at the boundary of the active set, whereas
the sensitivity of the interior point approximation is continuous. This explains in
particular, that in the L∞-norm, no convergence can be shown at all.

Semi-Infinite Programs. Many applications involve distributed state constraints
but only a finite number of controls. Writing the state y as a function y(u) of the
control u, the optimal control problem falls in the class of semi-infinite optimization
problems. Several attempts have been done at extending interior point methods
from finite dimensional (non)linear programming to the semi-infinite case by sim-
ply substituting the sum over logarithmic barrier functions by an integral [4,6,8].
The results have been widely disappointing, in particular, no satisfactory con-
vergence theory could be established. One reason might be that no integrated
barrier function can lead to a ϑ-selfconcordant barrier function for general semi-
infinite programs [3]. As a consequence, integrated barrier approaches were mostly
dropped in favor of local reduction methods.

In PDE constrained optimization, however, local reduction methods are less
attractive, since (i) a discretization is needed for the PDE anyway and (ii) local
reduction methods usually exhibit a relatively small domain of convergence. Thus,
integrated barrier methods are algorithmically attractive in this context. In fact,
for a restricted setting, in a neighborhood of a generic solution with finitely many
touch points with strictly positive definite Hessian of the state, θ-selfconcordance
can be shown for the integrated barrier function

∫

Ω

y(x)−d/2 dx for Ω ⊂ R
d.

This result suggests that integrated barrier approaches should be efficient in most
practical problems, provided a suitable barrier function is used.
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