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Introduction by the Organisers

The MFO workshop “Analysis and Topology in Interaction”, organised by Ulrich
Bunke (Göttingen), Sebastian Goette (Regensburg), Kyoshi Igusa (Brandeis) and
Thomas Schick (Göttingen), was held from March 12th through March 18th, 2006.

The aim of this meeting was to reflect on the current state of the interaction
between mathematical fields of analysis and topology. It brought together repre-
sentatives of various mathematical communities ranging from homotopy theory,
index theory, global analysis up to mathematical physics. The program of the
conference has been a mixture of research and overview talks, sometimes with
introductory elements. Topics of the latter kind were the connection of Quantum
field theory constructions with twisted K-theory, and motivic groups. There were
two more informal introductory lectures on stacks in topological and smooth cat-
egories, and the insights given by the study of the Brownian motions into Hodge
theory.

The research talks reflected recent developments in the corresponding fields
and covered a broad area between topology, geometry, and analysis. The inten-
tion of the program was to communicate these developments across the borders
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of mathematical communities. They stimulated discussions and hopefully future
collaborations.

More specifically, the subjects covered by research talks included in particular

• twisted K-theory (explicit constructions and applications, and homotopy
theoretic approaches to its calculation);
• index theory on manifolds with boundary or with singularities, and study

of corresponding index theorems and eta-invariants; spectral flow;
• algebraic geometry methods in algebraic topology and vice versa (stacks,

motivic geometry);
• isomorphism conjectures in K- and L-theory;
• signatures of singular spaces;
• (refined) torsion invariants, in particular for families; signatures for fami-

lies;
• spectral theory and geometric implications;
• symplectic geometry via topology of the loop space;
• topology of the mapping class group.

Altogether, there were 23 “official” talks and a number of informal presentations
(partly extended discussions), and ample free interaction between the participants.
One of the evenings was devoted to a problem session; the open problems presented
are included in this report.

The conference was attended by 52 participants coming mainly from all over
Europe, Northern America and East Asia. Among them, a couple of very young
pre-doctoral mathematicians, supported by the EU, had the unique opportunity
to participate in such a stimulating event at a very early stage of their career.
It is a pleasure to thank the institute for providing a pleasant and stimulating
atmosphere.
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Abstracts

Euler Characteristics and Gysin Sequences for Group Actions on

Boundaries

Ralf Meyer

(joint work with Heath Emerson)

The results that I explained in this talk already appeared in [6]. The following
summary is very similar to the introduction to [6].

Let G be a locally compact group, let X be a proper G-space, and let X be a
compact G-space containing X as a G-invariant open subset. Suppose that both
X and X are H-equivariantly contractible for all compact subgroups H of G;
we briefly say that they are strongly contractible and call the action of G on
∂X = X \X a boundary action.

For example, the group G = PSl(2,Z) admits the following two distinct bound-
ary actions. On the one hand, since G is a free product of finite cyclic groups,
it acts properly on a tree X ([16]). Let ∂X be its set of ends, which is a Cantor
set, and let X be its ends compactification. Then X and X are strongly con-
tractible, and the action of G on ∂X is a boundary action. On the other hand,
PSl(2,Z) ⊆ PSl(2,R) acts by Möbius transformations on the hyperbolic plane H2.

We compactify H2, as usual, by a circle at infinity. Again, H2 and H2 are strongly
contractible and the action on the circle ∂H2 is a boundary action. Other ex-
amples are: a word-hyperbolic group acting on its Gromov boundary; a group of
isometries of a CAT(0) space X acting on the visibility boundary of X .

The central problem of this talk is to understand the map on K-theory induced
by the obvious inclusion u : C∗

redG → C(∂X) ⋊ G, where G × ∂X → ∂X is a
boundary action and C(∂X) ⋊G is its reduced crossed product C∗-algebra. Our
result is analogous to the classical Gysin sequence, which we recall first.

Let X be a locally compact space and let π : V → X be a vector bundle over X ,
say of rank n. Let BV and SV be the (closed) disk and sphere bundles of V ,
respectively (with respect to some choice of metric on the bundle). Let H∗

c denote
cohomology with compact supports. Since the bundle projection BV → X is a
proper homotopy equivalence, we have H∗

c (BV ) ∼= H∗
c (X) and K∗(BV ) ∼= K∗(X).

We assume now that the bundle V is oriented or K-oriented, respectively. Then we
get Thom isomorphisms H∗−n

c (X) ∼= H∗
c (V ) or K∗−n(X) ∼= K∗(V ), and excision

for the pair (BV, SV ) provides us with long exact sequences of the form

· · · → H∗−n
c (X)

ε∗−→ H∗
c(X)

π∗

−→ H∗
c(SX)

δ−→ H∗−n+1
c (X)→ · · · ,

· · · → K∗−n(X)
ε∗−→ K∗(X)

π∗

−→ K∗(SX)
δ−→ K∗−n+1(X)→ · · · .

These are the classical Gysin sequences. In cohomology, the map ε∗ is the cup
product with the Euler class eV ∈ Hn(X) of the oriented bundle V . In K-theory,
it is the cup product with the spinor class (see [7, IV.1.13]).
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We are only interested in the case where X is a smooth n-dimensional manifold
and V = TX is its tangent bundle. Then the map ε∗ : H∗−n

c (X) → H∗
c(X) van-

ishes unless ∗ = n, for dimension reasons; if X is not compact, then H0
c(X) = 0

and hence ε∗ = 0. If X is compact, then eTX ∈ Hn(X) has the property that
〈eTX , [X ]〉 is the Euler characteristic χ(X) of X (see [2]). There is a similar for-
mula for the map ε∗ : K∗−n(X) → K∗(X): it vanishes on K1(X) and is given by
x 7→ χ(X) dim(x) · pnt! on K0(X); here the functional dim: K0(X) → Z sends
a vector bundle to its dimension and pnt! ∈ KK−n

(
C, C0(X)

) ∼= Kn(X) is the
wrong way element corresponding to the inclusion of a point in X , which is a
K-oriented map. Notice that dim = 0 unless X is compact. Since the map ε∗

factors through Z, we can cut the above long exact sequence into a pair of shorter
exact sequences.

Now that all the words in the title are explained, we can bring them together.
We return to the situation of a boundary action. For expository purposes, we first
assume that G is a torsion-free discrete group. If G is torsion-free, then X is a
universal free proper G-space, so that G\X is a model for the classifying space
BG. We warn the reader that K∗(G\X) depends on the particular choice of BG
because K-theory is only functorial for proper maps.

The exact sequences in the following theorem are quite similar to the classical
Gysin sequence for the tangent bundle.

Theorem 1. Let G be a torsion-free discrete group and let G × ∂X → ∂X be a
boundary action, where X is a finite-dimensional simplicial complex with a sim-
plicial action of G. Assume that G satisfies the Baum-Connes conjecture with
coefficients C and C(∂X). Let u : C∗

redG→ C(∂X) ⋊G be the embedding induced
by the unit map C→ C(∂X).

If G\X is compact and χ(G\X) 6= 0, then there are exact sequences

0→ 〈χ(G\X)[1C∗
red
G]〉 ⊆−→ K0(C∗

redG)
u∗−→ K0(C(∂X) ⋊G)→ K1(G\X)→ 0,

0→ K1(C∗
redG)

u∗−→ K1(C(∂X) ⋊G)→ K0(G\X)
dim−−→ Z→ 0.

Here 〈χ(G\X)[1C∗
red
G]〉 denotes the free cyclic subgroup of K0(C∗

redG) that is gen-
erated by χ(G\X)[1C∗

red
G], and dim maps a vector bundle to its dimension.

If G\X is not compact or if χ(G\X) = 0, then there are exact sequences

0→ K0(C∗
redG)

u∗−→ K0(C(∂X) ⋊G)→ K1(G\X)→ 0,

0→ K1(C∗
redG)

u∗−→ K1(C(∂X) ⋊G)→ K0(G\X)→ 0.

Corollary 1. The class of the unit element in K0(C(∂X)⋊G) is a torsion element
of order |χ(G\X)| if G\X is compact and χ(G\X) 6= 0, and not a torsion element
otherwise.

Several authors have already noticed various instances of this corollary ([3, 4,
1, 11, 14, 17, 13]): for lattices in PSl(2,R) and PSl(2,C), acting on the boundary
of hyperbolic 2- or 3-space, respectively; for closed subgroups of PSl(2,F) for a
non-Archimedean local field F acting on the projective space P1(F), where X is the
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Bruhat-Tits tree of PSl(2,F); for free groups acting on their Gromov boundary.
Moreover, Mathias Fuchs has simultaneously obtained the assertions of Theorem 1
and Corollary 1 for some subgroups of almost connected Lie groups, by a com-
pletely different method.

Comparing the classical and non-commutative Gysin sequences, we see that the
inclusion u : C∗

redG→ C(∂X)⋊G plays the role of the embedding C(M)→ C(SM)
induced by the bundle projection SM → M . Therefore, if we view C∗

redG as the

algebra of functions on a non-commutative space Ĝ, then C(∂X) ⋊ G plays the

role of the algebra of functions on the sphere bundle of Ĝ. Such an analogy has
already been advanced by Alain Connes and Marc Rieffel in [5, 12] for rather
different reasons (and for a different class of boundary actions).

For groups with torsion and, more generally, for locally compact groups, we
must use an equivariant Euler characteristic in KKG

0 (C0(X),C) instead of the
Euler characteristic of G\X . To define it, we use a general notion of Poincaré
duality in bivariant Kasparov theory. An abstract dual for a space X consists of
a G-C∗-algebra P and a class Θ ∈ RKKG

n (X ; C,P) for some n ∈ Z such that the
map

PD: RKKG
∗−n(Y ;A⊗ P , B)→ RKKG

∗ (X × Y ;A,B), f 7→ Θ⊗P f,

is an isomorphism for all pairs of G-C∗-algebras A, B and all G-spaces Y . This
formalises a result of Gennadi Kasparov ([8, Theorem 4.9]).

Let X be any G-space that has such an abstract dual. The diagonal embedding
X → X ×X yields classes

∆X ∈ RKKG
0 (X ;C0(X),C), PD−1(∆X) ∈ KKG

−n(C0(X)⊗ P ,C).

Let Θ̄ ∈ KKG
n (C0(X), C0(X)⊗P) be obtained from Θ by forgetting the X-linearity.

We define the abstract equivariant Euler characteristic by

EulX = Θ̄⊗C0(X)⊗P PD−1(∆X) ∈ KKG
0 (C0(X),C).

Examples show that this class deserves to be called an Euler characteristic. We
were led to this definition by the consideration of the Gysin sequence.

Gennadi Kasparov constructs such an abstract duality for a smooth Riemannian
manifold in [8, Section 4], using for P the algebra of C0-sections of the Clifford
algebra bundle on X . A fairly simple computation shows that the associated
equivariant Euler characteristic is the class in KKG

0 (C0(X),C) of the de Rham
operator on X , which we call the equivariant de-Rham-Euler characteristic of X .

If X is a simplicial complex and G acts simplicially, then a Kasparov dual
for X is constructed in [9]. Since the description of Θ in [9] is too indirect for our
purposes, we need a slightly different construction. This requires quite a lot of
work. In the end, we can compute the abstract Euler characteristic that we get
from this duality. It is given by the expected combinatorial formula and therefore
called the equivariant combinatorial Euler characteristic. An important feature of
the (abstract) Euler characteristic is that it does not depend on the choice of the
abstract dual. Therefore, if X admits a smooth structure and a triangulation at
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the same time, then the combinatorial and the de Rham Euler characteristic of X
coincide. This result is due to Wolfgang Lück and Jonathan Rosenberg ([10, 15]).

Now we outline the first steps of the proof of Theorem 1 and its analogies
for general locally compact groups. The starting point is the extension of G-C∗-
algebras

0→ C0(X)→ C(X)→ C(∂X)→ 0,

which yields a six term exact sequence for the functor Ktop
∗ (G, · ); this denotes

the domain of the Baum-Connes assembly map. The strong contractibility of X
implies that Ktop

∗
(
G,C(X)

) ∼= Ktop
∗ (G). The resulting map

Ktop
∗ (G) ∼= Ktop

∗
(
G,C(X)

)
→ Ktop

∗
(
G,C(∂X)

)

in the exact sequence is induced by the unital inclusion C → C(∂X). A purely
formal argument shows that the map

Ktop
∗
(
G,C0(X)

)
→ Ktop

∗
(
G,C(X)

) ∼= Ktop
∗ (G)

in the exact sequence is given by the Kasparov product with the equivariant ab-
stract Euler characteristic EulX ∈ KKG

0 (C0(X),C).
Our interest in the problem of calculating the K-theory of boundary crossed

products was sparked by discussions with Guyan Robertson at a meeting in Ober-
wolfach in 2004. We would like to thank him for drawing our attention to this
question. We also thank Wolfgang Lück for helpful suggestions regarding Euler
characteristics.
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Witt Groups and Witt Spaces

Jonathan Woolf

The Witt group of a commutative ring R is the group of stable equivalence classes
of non-singular symmetric bilinear forms under direct sum with metabolic forms
(see [7] for details). Tensor product makes the Witt group into a ring. If R is a
local ring in which 2 is invertible the Witt group together with the rank provide
a complete classification of non-singular symmetric bilinear forms. In general the
situation is more complicated but the Witt group provides important invariants.
Examples:

(1) W (Z) ∼= Z (the signature),
(2) For prime p we have

W (Z/p) ∼=





Z/2 p = 2
Z/2⊕ Z/2 p = 1 mod 4
Z/4 p = 3 mod 4

(3) There is a split exact sequence

0→W (Z)→W (Q)→
⊕

p

W (Z/p)→ 0

where the right-hand term consists of obstructions to a rational form being
Witt-equivalent to an integral form.

The Witt group of Q has a geometric interpretation as the 4k-dimensional
bordism group of those compact, oriented PL-pseudomanifolds whose rational in-
tersection homology satisfies Poincaré duality locally. These pseudomanifolds are
called Witt spaces and an characterisation of them can be given in terms of the al-
lowed links of singularities. Any complex variety is a Witt space and these provide
an important, but by no means exhaustive, class of examples.

Theorem 1 (Siegel [9]).

ΩWitt
∗ ∼=





Z ∗ = 0
W (Q) ∗ = 4k, k > 0
0 otherwise
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A similar interpretation of the Witt group of Z, involving intersection Poincaré
(IP) spaces which are the pseudomanifolds whose integral intersection homology
satisfies Poincaré duality locally, is also possible. Again the allowed links can be
explicitly characterised and the bordism groups computed.

Theorem 2 (Pardon [8]).

ΩIP
∗ ∼=





W (Z) ∗ = 4k, k > 0
Z2 ∗ = 4k + 1, k > 0
0 otherwise

In both cases the isomorphism with the Witt group is obtained by sending a
4k-dimensional pseudomanifold to the class in the Witt group of the intersection
form on the 2k-dimensional intersection homology group. The right-hand term of

0→W (Z)→W (Q)→
⊕

p

W (Z/p)→ 0

can now be interpreted as the space of obstructions to a Witt space being Witt-
bordant to an IP space — the obstructions are local to the singularities and each
can be explicitly realised by plumbing (see [6, 9]).

The isomorphism between W (Q) and bordism groups of Witt spaces can be
generalised as follows. In [1] Balmer shows that (under mild conditions) Witt
groups may be associated to any triangulated category with duality in which 2 is
invertible. The groups are indexed by Z but are always 4-periodic. These Balmer–
Witt groups of triangulated categories are generalisations of the Witt group of a
ring: elements are represented by self-dual objects considered up to a relation of
‘Witt-equivalence’. Furthermore, [2] shows that the zeroth group of the bounded
derived category of modules over a local ringR in which 2 is invertible is isomorphic
to W (R). [10] shows that the Balmer–Witt groups of the PL-constructible derived
category of sheaves form a homology theory on polyhedra isomorphic to the 4-
periodic colimit of the bordism groups of Witt spaces. By relating constructible
sheaves to combinatorial sheaves this homology theory can also be identified with
Ranicki’s free rational L-theory. Unfortunately the requirement that 2 be invertible
means that an integral analogue of this result, which might be of some utility in
surgery theory, is not possible in the context of derived categories of sheaves (it is
essential to work with categories of complexes instead).

This correspondence between Witt equivalence classes of self-dual sheaves and
bordism classes of Witt spaces suggests geometric interpretations of sheaf-theoretic
results. For instance, in [4], Cappell and Shaneson prove an up-to-cobordism ana-
logue of Beilinson, Bernstein and Deligne’s decomposition theorem for intersection
homology: if f : X → Y is a stratified map between spaces with only even di-
mensional strata and E is a constructible self-dual complex of sheaves on X then
the pushforward Rf∗E is, up to a certain notion of cobordism, the direct sum of
‘simple’ self-dual complexes supported on the strata of Y . This has interesting con-
sequences for the signatures, and more generally L-classes, of stratified spaces. By
relating Cappell and Shaneson’s cobordism relation to Balmer’s Witt-equivalence
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this result can be reinterpreted as saying that the bordism class of a Witt space
with a stratified map to Y is a sum of classes indexed by the strata of Y .

This geometric version retains torsion information which is lost in Cappell and
Shaneson’s result. From another perspective, it can be seen as a wide-ranging
generalisation of Novikov additivity (shown by Siegel to be a consequence of the
existence of a ‘pinch cobordism’ between certain Witt spaces).

There are other flavours of Balmer–Witt groups of sheaves on stratified spaces,
obtained by varying the constructibility condition. In particular the Balmer–

Witt group W alg-c
∗ (X) of sheaves on a complex algebraic variety X which are

constructible with respect to complex algebraic stratifications. These are used
in [3] to construct L-classes for singular varieties. These groups have alternative
descriptions as the Witt groups of the derived category of perverse sheaves and, via
the Riemann–Hilbert correspondence, as the Witt groups of the regular holonomic
derived category of D-modules (see e.g. [5]). Using [2] we can identify the zeroth
group as the Witt group of the abelian category of perverse sheaves on X .

Conjecture 1 (c.f. Youssin [11]). The Witt group W (Perv(X)) of perverse sheaves
on X decomposes as a direct sum indexed by the simple objects of Perv(X). Fur-
thermore, if V = {f = 0} ⊂ X is a hypersurface then there is a split surjection

W (Perv(X))→W (Perv(V ))

induced by the perverse vanishing cycles functor pϕf .

This conjecture holds when X is a curve. Although the Witt group of perverse
sheaves will have uncountably many summands (including as it does a summand
for each point of the curve) the class of any self-dual perverse sheaf will project
to zero in all but finitely many of these. For example, if Y is smooth of complex
dimension 2n and f : Y → C has a single isolated singularity at 0 then the

pushforward of the constant sheaf induces a class in W alg-c
4n (X) ∼= W (Perv(C)).

This class maps under the perverse vanishing cycles functor to
{

0 z 6= 0
[IF ] z = 0

in W (Perv(z)) ∼= W (Q) where IF is the intersection form on the middle homology
of the Milnor fibre F of the singularity. The rational Witt class of IF is sufficient
to distinguish between many of the ADE singularities; the first pair we cannot
distinguish is A7 and E7.
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[8] W. Pardon, Intersection homology Poincaré spaces and the characteristic variety theorem,

Comment. Math. Helv. 65(2) (1980), 198–233.
[9] P. Siegel, Witt spaces: a geometric cycle theory for KO-homology at odd primes, Am. J.

Math. 105 (1983), 1067–1105.
[10] J. Woolf, Witt groups of sheaves on topological spaces, Accepted by Comment. Math. Helv.

(2005).
[11] B. Youssin, Witt groups of derived categories, J. K-theory 11(4) (1997), 373–395.

Additivity for the Parametrised Topological Euler Characteristic and

Reidemeister Torsion

Wojciech Dorabia la

(joint work with Bernard Badzioch)

The motivation for the results described here comes from the work of Dwyer, Weiss
and Williams on refining the structure of fibre bundles of topological manifolds
[4]. One of the main tools used in their work is Waldhausen’s algebraic K-theory
of spaces [9] which we will denote by A(−). Recall, that for a space X the infinite
loop space A(X) can be obtained by applying Waldhausen’s S•-construction to the
category of homotopy finitely dominated retractive spaces over X . In particular,
any such retractive space represents a point in A(X). This justifies the following:

Definition 1. Let X be a homotopy finitely dominated space. The homotopy
characteristic of X is the point χh(X) ∈ A(X) represented by the retractive space

X × {0, 1} //Xoo .

The homotopy characteristic χh(X) is a homotopy type invariant of X and
can be viewed as a generalisation of the classical Euler characteristic of the space
X . Indeed, we have an isomorphism π0A(X) ∼= K̃0(Z[π1X ])⊕ Z which sends the
connected component of χh(X) to the pair (ω(X), χ(X)) where ω(X) is the Wall
finiteness obstruction while χ(X) is the Euler characteristic of X .

One especially appealing aspect of this extension of the notion of the Euler
characteristic of a space is that one can modify the above construction to define
invariants which reflect not only the homotopy type of a space but also its geome-
try. Let A%(−) denote the cohomology theory represented by the spectrum A(∗).
The functor A%(−) is not equivalent to A(−), but comes equipped with an assem-
bly map, i.e. a natural transformation a : A%(X)→ A(X), and this assembly map
measures the failure of the algebraic K-theory of spaces to be excisive. The homo-
topy characteristic χh(X) usually does not admit a lift to A%(X), but a lift does
exist if X is of the homotopy type of a compact ENR (See [10], [8]). If, in addition,
X itself is a compact ENR (in particular - a compact topological manifold) there
is a canonical way to construct a lift of χh(X). The resulting point in A%(X) is
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called the topological characteristic of X and is denoted by χt(X). The more rigid
nature of χt(X) is revealed by the fact that topological characteristics of ENRs
are not invariant under homotopy equivalences. They are, however, invariant with
respect to cell-like maps; if f : X → Y is cell-like then it defines a canonical path
in A%(Y ) joining f∗χt(X) with χt(Y ).

Dwyer, Weiss and Williams showed that the approach sketched above leads to

very interesting invariants of fibre bundles. Let E
p→ B be a fibration whose fibres

are homotopy finitely dominated spaces. Define

AB(E) :=
∐

x∈B
A(p−1(x)).

This space can be equipped with an appropriate topology such that we obtain
a fibration ph : AB(E) → B. Its fibres are the spaces A(p−1(x)) which contain
points χh(p−1(x)) – the homotopy characteristics of p−1(x) for x ∈ B. Since
the structure maps gluing the fibres of p together are homotopy equivalences, the
homotopy invariance of χh implies that the elements χh(p−1(x)) for various x ∈ B
are compatible enough to define a continuous section of ph:

χh(p) : B → AB(E), x 7→ χh(p−1(x)).

We take χh(p) to be the homotopy characteristic of the fibration E
p→ B. It is an

element of A(p) – the space of sections of ph.

If E
p→ B is a fibration as above and if its fibres are compact ENRs we have

defined topological characteristics of the fibres, so one can try to replicate the
above constructions on the level of the excisive A-theory A%(−). Thus, we can

take A%
B(E) :=

∐
x∈B A

%(p−1(x)) and define A%(p) to be the space of sections

of the quasi-fibration pt : A%
B(E) → B. Recall, however, that χt is invariant only

with respect to cell-like maps. As a consequence for an arbitrary fibration p the
topological characteristics χt(p−1(x)) cannot be combined to give a section of pt.

If we assume that the fibres of p are topological manifolds and that E
p→ B is a

bundle of manifolds, then the structure maps of p are given by homeomorphisms
and we do get a section χt(p) ∈ A%(p) which we call the topological characteristic
of p.

Just as in the non-parametrised case, we have the assembly map a : A%(p) →
A(p). If p is a fibre bundle of compact topological manifolds, and so both χh(p)
and χt(p) are defined, the topological characteristic χt(p) is a lift of χh(p) (more
precisely, there is a canonical path in A(p) joining a(χt(p)) with χh(p)). A beauti-
ful theorem of Dwyer, Weiss and Williams [4] shows that the converse is also true:

for a fibration E
p→ B with homotopy finitely dominated fibres the homotopy

characteristic χh(p) admits a lift to A%(p) if and only if p is fibrewise homotopy
equivalent to a bundle of compact topological manifolds.

The process of rectifying the structure of a fibration by means of its charac-

teristics can be pushed one step further. For a fibration E
p→ B let QB(E) :=∐

x∈B Q(p−1(x)) where Q(p−1(x)) is the stable homotopy spectrum of p−1(x). Let
Q(p) denote the space of sections of the quasi-fibration ps : QB(E)→ B; the unit
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map Q(S0) → A(∗) induces a map η : Q(p) → A%(p). If p is a bundle of smooth
manifolds, then it defines an element χs(p) ∈ Q(p) and this smooth characteristic
of p is a lift of χt(p). Again [4] gives the converse to this last statement: for a

bundle E
p→ B of topological manifolds we can lift χt(p) to Q(p) if and only if p

is related to a smooth bundle of manifolds via a fibrewise homotopy equivalence.
The results described above show that the existence of lifts of χh(p) and χt(p)

provides a great deal of information about the geometry of the bundle p. Unfortu-
nately, for a given bundle p, the elements χh(p) and χt(p) are usually very hard to
compute. Going back for a moment to the classical Euler characteristic χ of CW-
complexes, recall that the property of this invariant which makes it computable
is its additivity; if X0, X1, X2 are subcomplexes of X such that X = X1 ∪X0

X2

then χ(X) = χ(X1) + χ(X2)− χ(X0).
As it turns out an analogous property holds for both the homotopy characteristic

(see [3]) and the topological characteristic (stated below).

Theorem 1 (Theorem 1 of [1]). Suppose that the fibre M of a bundle p : E → B
is a compact manifold which splits into a union of submanifolds M = M1 ∪M2,
where M0 = M1 ∩M2 is a submanifold of codimension 1. Furthermore, suppose
that p admits a splitting into subbundles pi : Ei → B for i = 0, 1, 2 such that Mi

is a fibre of pi, and E0 = E1 ∩ E2. Then there exists a path in A%(p) joining
χt(p) with j1∗χt(p1) + j2∗χt(p2) − j0∗χt(p0). Here ji∗ is the map induced by the
inclusion ji : Ei →֒ E.

Another important consequences of the work of Dwyer, Weiss and Williams
are their definitions of smooth, homotopy and topological Reidemeister torsion
for bundles which, are secondary invariants of the respective characteristics of
bundles. Just as the homotopy characteristic of a space generalises the notion of
Euler characteristic, homotopy Reidemeister torsion is an extension of the notion of
the classical Franz-Reidemeister torsion of spaces. Arguments similar to the ones
used to prove Theorem 1 for χt(p) show that the topological Reidemeister torsion
is additive (again, the same property for the homotopy torsion has been proved
in [3]). Aside from increasing the computability of topological torsion, this fact
brings us closer to understanding the relationship of the torsion of Dwyer, Weiss
and Williams to the analytic torsion of Bismut and Lott [2] and the torsion of Igusa-
Klein [7]. The subject of comparing the higher Franz-Reidemeister torsion of Igusa
and Klein with the higher analytic torsion of Bismut and Lott was undertaken by
Goette in [5], [6].
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Equivariant Index Theory and the Eta Invariant

Ken Richardson

(joint work with J. Brüning, F. W. Kamber)

1. Introduction

In this note, we exhibit formulas for the multiplicities of the equivariant index,
summarising joint work with J. Brüning and F. Kamber ([5],[6]). Also, in work
with I. Prokhorenkov ([8]), if a Killing vector field with isolated singularities ex-
ists, then the Witten deformation method can be used to obtain formulas for the
multiplicities.

2. Notation and preliminaries

Suppose that a compact Lie group G acts by isometries on a compact, connected
manifold M , and let E = E+ ⊕ E− be a graded, G-equivariant vector bundle
over M . We consider a first order G-equivariant differential operator D = D+ :
Γ (M,E+) → Γ (M,E−) which is transversally elliptic, and let D− be the formal
adjoint of D+.

The group G acts on Γ (M,E±) by (gs) (x) = gs
(
xg−1

)
, and the (possibly

infinite-dimensional) subspaces ker (D) and ker (D∗) are G-invariant subspaces.
Thus, each of Γ (M,E±), ker (D), and ker (D∗) decomposes as a direct sum of
irreducible representation spaces. Let ρ : G→ End (Vρ) be an irreducible unitary
representation of G. Let Γ (M,E±)

ρ
be the subspace of sections that is the direct

sum of the irreducible G-representation subspaces of Γ (M,E±) that are unitarily
equivalent to the ρ representation. It can be shown that the extended operator

Ds : Hs
(
Γ
(
M,E+

)ρ)→ Hs−1
(
Γ
(
M,E−)ρ)

is Fredholm and independent of s, so that each irreducible representation of G
appears with finite multiplicity in kerD±. Let a±ρ ∈ Z+ be the multiplicity of ρ

in ker (D±).
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We define the virtual representation-valued index of D as in [1], as

indG (D) :=
∑

ρ

(
a+
ρ − a−ρ

)
[ρ] ,

where [ρ] denotes the equivalence class of the irreducible representation ρ. The
index multiplicity is

indρ (D) := a+
ρ − a−ρ =

1

dimVρ
ind
(
D|Γ(M,E+)ρ→Γ(M,E−)ρ

)
.

In particular, if ρ0 is the trivial representation of G, then

indρ0 (D) = ind
(
D|Γ(M,E+)G→Γ(M,E−)G

)
,

where the superscript G implies restriction to G-invariant sections.
There is a clear relationship between the index multiplicities and Atiyah’s equi-

variant distribution-valued index indg (D); the multiplicities determine the dis-
tributional index, and vice versa. Because the operator D|Γ(M,E+)ρ→Γ(M,E−)ρ is

Fredholm, all of the indices indG (D) , indg (D), and indρ (D) depend only on the
homotopy class of the principal transverse symbol of D. Incidentally, if a formula
for indρ0 (D) in terms of the principal transverse symbol is known, then it fol-
lows that indρ (D) can be computed in a similar way, because the invariant index

indρ0
(
D̃
)

of the differential operator twisted by the dual representation ρ∗ on the

bundle E ⊗ V ∗
ρ is the same as indρ (D).

A heat kernel analysis shows that indρ0 (D) may be expressed as an integral
over G×M that concentrates near sets of the form

⋃

Gx∈[H]

x×Gx,

where the isotropy subgroup Gx is the subgroup of G that fixes x ∈ M , and [H ]
is a conjugacy class of isotropy subgroups.

A large body of work over the last twenty years has yielded theorems that
express indg (D) in terms of topological and geometric quantities (as in the Atiyah-
Segal-Singer index theorem for elliptic operators or the Berline-Vergne Theorem
for transversally elliptic operators — see [2],[3],[4]). However, until now there
has been very little known about the problem of expressing indρ (D) as a sum of
topological or geometric quantities which are determined at the different strata

Σ[H] :=
⋃

Gx∈[H]

x

of the G-manifold M .
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3. New formulas for the multiplicities of the equivariant index

With the notation as in Section 2, suppose that there is only one stratum Σ, so
that every orbit of G is principal. This case is well-understood, as M/G is a
manifold, and the index indρ0 (D) satisfies

indρ0 (D) = ind
(
DG
)
,

where DG is an operator induced on Γ (M/G, E), where over each orbit O ∈M/G,
E is the set of sections V ∈ Γ (O, E|O) that are invariant under the G-action.
Thus, the equivariant index theorem for this operator is a result of the Atiyah-
Singer Index Theorem, applied the operator DG.

A similar case that has been understood for a long time — the situation where
all orbits have the same dimension (which implies that all isotropy subgroups
have the same dimension). It turns out that this is equivalent to the problem of
computing the index of an elliptic operator on an orbifold, and this problem was
solved by Kawasaki [7].

In [5], the more general case, where the orbits have different dimensions, is
treated. As an example, we now discuss the case when there are two isotropy
types (including the case when the two types of orbits have different dimensions).

In the theorem that follows, we let

Dε (M,Σ) = [M \ Tε (Σ)] ∪ [(−ε, ε)× SΣ] ∪ [M \ Tε (Σ)]

be the double of the blowup of M along the singular stratum Σ, with a specific
choice of metric (in [5]). Also, let A1∗A2 denote the product of the two differential
operators A1 and A2, compatible with the product in K-theory (see [1]).

The theorem that follows is proved using the heat kernel approach.

Theorem 1. (special case of theorem in [5]) Let E be a Hermitian vector bun-
dle over a closed, Riemannian manifold M , such that a compact Lie group G
acts on (M,E) by isometries. Suppose that the action of G on M has only two
isotropy types. Let M0 denote the principal stratum, and let Σ denote the singular
stratum. Let D : Γ (M,E+) → Γ (M,E−) be a first order, transversally elliptic,
G-equivariant differential operator. We assume that near Σ, D can be written as
the product

D =

{
Z

(
∇E∂r

+
1

r
DS

)}
∗DΣ,

where r is the distance from Σ, where Z is a local bundle isomorphism, the map DS

is a purely first order operator that differentiates in directions tangent to the unit
normal space SxΣ, and DΣ is a global transversally elliptic, first order operator
on the stratum Σ. Then

indρ0 (D) =

∫

M0/G

αG −
(
η
(
DS
)G − h

(
DS
)G

2

)
indρ0

(
DΣ
)
,

where
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(1) αG is the Atiyah-Singer integrand for the induced operator on the orbit
space
Dε (M,Σ) /G of the double of the blowup of Σ, with ε→ 0.

(2) η
(
DS
)G

is the eta invariant of the operator
(
DS
)G

, the elliptic operator

on the orbit space SxΣ/G induced from the equivariant operator DS on
SxΣ, for any fixed x ∈ Σ.

(3) h
(
DS
)G

is the dimension of ker
(
DS
)G

on SxΣ/G.

This theorem can be extended to more general situations with more complicated
stratifications. Also, an important application of this theorem involves the solution
to the problem of finding a formula for the basic index of the transversal Dirac
operator on a Riemannian foliation, a problem which has been open for 25 years
(see [6]).

4. Equivariant Witten deformations

A completely different approach to calculating the index indρ (D) has been dis-
covered in joint work with I. Prokhorenkov (see [8]). The idea is to generalise
Witten’s deformation proof of the Atiyah-Hirzebruch Theorem (which states that
the S1-equivariant index of the spinc Dirac operator is identically zero) to more
general operators and groups. Given a vector field generated by a one-parameter
subgroup of isometries, that has isolated fixed points on the manifold M , then one
may write the index indρ (D) as a sum of combinatorial indices, each of which is
generated by the local expression of D and the group action near a fixed point.
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Family Hirzebruch Signature Theorem with Converse

E. Bruce Williams

(joint work with Michael Weiss)

Let σ(X) ∈ Z be the signature of X, where X is a connected, oriented 4k-dim
Poincaré complex.

For smooth manifolds, index theory applied to the signature operator yields:

(1) a characteristic class formula for the signature of a smooth manifold (Hirze-
bruch Signature Theorem),

(2) a KO-theory Thom class (at odd primes) for vector bundles, and
(3) a family index theorem for the fibrewise signature operator on a smooth

bundle with closed manifold fibres.

The work of Sullivan, Kirby, and Siebenmann implies that (1) and (2) extend to
topological manifolds and topological euclidean bundles. In fact Sullivan showed
that (at odd primes) the theory of stable topological euclidean bundles is equivalent
to the theory of stable spherical fibrations equipped with a KO-orientation.

The goal of this talk is to describe a refined version of the signature which we
use to study the following question.
Question: Let p : E → B be a fibration where B is a connected, CW complex and
the fibres of p are homotopy equivalent to an n-dim Poincaré complex F. When is
p fibre homotopy equivalent to a fibre bundle q : E → B with fibres closed n-dim
topological manifolds? ( I.e. when does p admit manifold- bundle structure?)

We show that the fibration p has a parametrised (refined) signature. If p does
admit manifold-bundle structure, then the parametrised (refined) signature satis-
fies a certain family index theorem we describe below. Suppose F is homotopy
equivalent to a closed manifold, and dim(B) is less than the concordance stable
range for all the manifolds homotopy equivalent to F . Then p admits manifold-
bundle structure iff this family index theorem is satisfied.
The refinement of the signature occurs in 4 stages.

Stage I: Symmetric chain complexes (Ranicki)
Let R be a ring with involution −, and C a left, f.g. free R-chain complex. Let

Ct be C made into a right R-chain complex via −. A n-dim symmetric structure
on C is given by an n-cycle in (Ct ⊗R C)hZ/2.

Let Ln(R) be the group of bordism classes of chain complexes equipped with a
(nonsingular) n-dim symmetric structure. The group Ln(R) is the nth -homotopy
group of the bordism spectrum L•(R).

There is an assembly map H•(X ; L•(Z)) → L•(Zπ1(X)). If we replace ho-
motopy fixed point with homotopy orbit in the definition of L•(R), we get the

quadratic L-theory spectrum L•(R), and a norm map L•(R)→ L•(R). Let L̂(R)

be the spectrum which is the cofibre of this norm map. The map L•(Z) → L̂(Z)
is a map of ring spectrum.
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If Xn is a n-dim Poincaré complex, then the geometry which yields Steenrod
operations also yields a preferred (nonsingular) n-dim symmetric structure on

C(X̃), the cellular chain complex of the universal cover of X.
Ranicki proved the following refinements of (1) and (2).

(1) If Xn is a topological manifold, then σ∗(X) has a preferred lifting to a
L•(Z)-fundamental class in the domain of the assembly map.

(2) Any oriented spherical fibration has a preferred L̂(Z)-Thom class. A stable
spherical fibration comes (up to fibre homotopy) from removing the zero

section of a topological euclidean bundle iff the L̂(Z)-Thom class lifts to
a L•(Z)-Thom class.

The new statement (1) does not have a converse. In order to get a converse we
need to go the next stage of refinement.

Stage II: Visible Symmetric Chain Complexes (Weiss and Ranicki)
See Ranicki’s book “Algebraic L-theory and topological manifolds)

Visible symmetric theory for Zπ is the same as symmetric theory except (Ct⊗Zπ

C)hZ/2 is replaced by ((Ct⊗Z C)hZ/2)hπ. If we further replace the discrete ring Zπ
with the simplicial ring ZΩX, we get the functor VL•(ZΩX), with assembly map
H•(X ; L•(Z))→ VL•(ZΩX). Note: VL•(Z) = L•(Z).
Warning: Ranicki uses different notation for VL•(ZΩX).

An n-dim Poincaré complex determines an element σ∗
V (X) in the n-th homotopy

groups of VL•(ZΩX). Assume n > 4. Then σ∗
V (X) lifts to a fundamental class

in the domain of the assembly map iff x is homotopy equivalent to a n-dim closed
topological manifold.

Suppose p : E → B is a fibrations such that for any b ∈ B, Fb = p−1(b) is an n-
dim Poincaré complex. Then p has a parametrised signature which is a continuous
rule which assigns to each b ∈ B a point in the n-th loop space of VL•(ZΩFb).
Modulo issues involving Wh1 one can show that p is fibre homotopy equivalent
to a block bundle iff the parametrised signature satisfies a family index theorem,
i.e. factors through the fibrewise assembly map to give a L•(Z)-fundamental class
for each fibre. This result is not explicitly already in the literature, but it is
closely related to Quinn’s thesis and the papers of Lueck and Ranicki on L-theory
transfers.

Stage III: Visible symmetric structures on retractive spaces
In order to replace block bundles with fibre bundles in the last paragraph we

have to further refine our L-theory in two more stages. For details see [WW3]=Weiss
and Williams, Automorphisms of manifolds and algebraic K-theory: Part III which
is on Michael Weiss’s home page at Aberdeen.

Replace systems of chain complexes with retractive spaces over X . See sections
2 and 3 of [WW3]. This yields the functor VL•(X).

Stage IV: Modify using algebraic K-theory of spaces
Recall that given a spectrum A with an action by Z/2 we get a norm map

from the (homotopy orbit spectrum) to the (homotopy fixed spectrum) and the
cofibre is called the Tate spectrum. If X is a n-dim Poincaré complex, then the
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Spivak fibration can be used to construct an action by Z/2 on A(X), the algebraic
K-theory of X in the sense of Waldhausen, and there is a natural transformation
from VL•(X) to the Tate spectrum. We “twist” this construction n times, and let
VLA•(X). be the fibre product of VL•(X) and the (homotopy fixed spectrum)
over the Tate spectrum. See section 8 of [WW3].

We then get a result which is analogous to the last paragraph of Stage II except
we replace VL•(ZΩFb) with VLA•(X), block bundle by fibre bundle, and we
have to assume that dim(B) is less than the concordance stable range for all the
manifolds homotopy equivalent to F.

K1 Representative, Eta Invariant and Index of Toeplitz Operators

Xianzhe Dai

(joint work with Weiping Zhang)

On an even dimensional compact spin manifold with boundary, the famous Atiyah-
Patodi-Singer formula computes the index of the Dirac operator with a global
boundary condition, the APS boundary condition. In this magical formula, topol-
ogy (the index), geometry (the characteristic polynomial in curvature) and analysis
(the spectral invariant eta) all come together.

We discuss an odd dimensional analog of the Atiyah-Patodi-Singer index for-
mula. This involves a generalisation of the classical Toeplitz operator. More
precisely, let M be an odd dimensional oriented spin manifold with boundary ∂M .
We assume that M carries a fixed spin structure. Then ∂M carries the canonically
induced orientation and spin structure. Let gTM be a Riemannian metric on TM
such that it is of product structure near the boundary ∂M .

Let E be a Hermitian vector bundle over M . Let ∇E be a Hermitian connection
on E. We assume that the Hermitian metric gE on E and connection ∇E are of
product structure over [0, 1)× ∂M . The canonical (twisted) Dirac operator DE is
defined and, over [0, 1)× ∂M , one has

DE = c

(
∂

∂x

)(
∂

∂x
+ π∗DE

∂M

)
,

where DE
∂M : Γ((S(TM) ⊗ E)|∂M ) → Γ((S(TM) ⊗ E)|∂M ) is the induced Dirac

operator on ∂M .
As is well known, the APS projection P∂M is an elliptic global boundary condi-

tion for DE . However, to get self adjoint boundary conditions, we need to modify
it by a Lagrangian subspace of kerDE

∂M , namely, a subspace L of kerDE
∂M such

that c( ∂
∂x )L = L⊥∩(kerDE

∂M ). Since ∂M bounds M , by the cobordism invariance
of the index, such Lagrangian subspaces always exist.

Now the modified APS projection is obtained by adding the projection onto the
Lagrangian subspace:

P∂M (L) = P∂M + PL,
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where PL denotes the orthogonal projection from L2((S(TM)⊗E)|∂M ) to L. Then
(DE , PE∂M (L)) forms a self-adjoint elliptic boundary problem. We will denote the
corresponding elliptic self-adjoint operator by DE

P∂M (L).

Finally, we can introduce the analog of the Hardy space in this setting. Let
L2,+
P∂M (L)(S(TM)⊗E)) be the space of the direct sum of eigenspaces of non-negative

eigenvalues of DE
P∂M (L). This will be our analog of the Hardy space. We denote by

PP∂M (L) the orthogonal projection from L2(S(TM)⊗E) to L2,+
P∂M(L)(S(TM)⊗E)).

GivenN > 0 a positive integer, let CN be the trivial complex vector bundle over
M of rank N , which carries the trivial Hermitian metric and the trivial Hermitian
connection. Then all the above construction can be developed in the same way if
one replaces E by E⊗CN . And all the operators considered here extend to act on
CN by identity. If there is no confusion we will also denote them by their original
notation.

Now let g : M → GL(N,C) be a smooth automorphism of CN . With simple
deformation, we can assume that g is unitary. That is, g : M → U(N). Clearly, g
extends to an action on S(TM)⊗ E ⊗CN by acting as identity on S(TM)⊗ E.
We still denote this extended action by g.

Since g is unitary, one verifies easily that the operator gP∂M (L)g−1 is again an
orthogonal projection on L2((S(TM) ⊗ E ⊗ CN )|∂M ), and that gP∂M (L)g−1 −
P∂M (L) is a pseudodifferential operator of order less than zero. Moreover, the pair
(DE , gP∂M (L)g−1) forms a self-adjoint elliptic boundary problem. We denote its
associated elliptic self-adjoint operator by DE

gP∂M (L)g−1 . Thus DE
gP∂M (L)g−1 has

the boundary condition which is the conjugation by g of the previous APS type
condition.

The necessity of the conjugated boundary condition here is from the fact that,
if s ∈ L2(S(TM)⊗ E ⊗CN ) verifies P∂M (L)(s|∂M ) = 0, then gs verifies
gP∂M (L)g−1((gs)|∂M = 0.

Thus, consider also the analog of Hardy space for the conjugated boundary value
problem, L2,+

gP∂M (L)g−1(S(TM)⊗ E ⊗CN ) which is the space of the direct sum of

eigenspaces of nonnegative eigenvalues of DE
gP∂M (L)g−1 . Let PgP∂M (L)g−1 denote

the orthogonal projection from L2(S(TM)⊗ E ⊗CN) to L2,+
gP∂M (L)g−1(S(TM)⊗

E ⊗CN ).

Definition 1. The Toeplitz operator TEg (L) is defined by

TEg (L) = PgP∂M (L)g−1 ◦ g ◦ PP∂M (L) :

L2,+
P∂M (L)

(
S(TM)⊗ E ⊗CN

)
→ L2,+

gP∂M (L)g−1

(
S(TM)⊗ E ⊗CN

)
.

One verifies that TEg (L) is a Fredholm operator. We establish an index formula
for it in terms of geometric data.

Theorem 1. We have

indTEg (L) = −
(

1

2π
√
−1

)(dimM+1)/2 ∫

M

Â
(
RTM

)
Tr
[
exp

(
−RE

)]
ch(g, d)
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+ η(∂M, g)− τµ
(
P∂M (L), gP∂M (L)g−1,PM

)
.

Here ch(g, d) is the odd Chern character of g:

ch(g) =

(dimX)/2∑

n=0

n!

(2n+ 1)!
Tr
[(
g−1dg

)2n+1
]
,

and τµ
(
P∂M (L), gP∂M (L)g−1,PM

)
is a triple Maslov index [KL] (an integer).

And η(∂M, g) is an eta invariant defined on the finite cylinder [0, 1]× ∂M .

The definition of the eta invariant here involves a perturbation. Let ψ = ψ(x)
be a radial cut off function which is identically one in the ǫ-tubular neighborhood
of ∂M (ǫ > 0 sufficiently small) and vanishes outside the 2ǫ-tubular neighborhood
of ∂M . Consider the Dirac type operator

Dψ,g = (1 − ψ)g−1DEg + ψDE = DE + (1 − ψ)g−1[DE , g]

on [0, 1] × ∂M . We equip it with the boundary condition P∂M (L) on one of the
boundary component {0}× ∂M and the boundary condition Id− gP∂M (L)g−1 on
the other boundary component {1}×∂M . Then (Dψ,g, P∂M (L), Id−gP∂M (L)g−1)
forms a self-adjoint elliptic boundary problem. For simplicity, we will still denote

the corresponding elliptic self-adjoint operator by Dψ,g
[0,1]. Its η-invariant will be

denoted by η(Dψ,g
[0,1]), and the reduced η-invariant by η(Dψ,g

[0,1]) [APS1, APS2].

Definition 2. We define an invariant of η type for the even dimensional manifold
∂M and the K1 representative g by

η(∂M, g) = η(Dψ,g
[0,1])− sf{Dψ,g

[0,1](s); 0 ≤ s ≤ 1},

where Dψ,g
[0,1](s) is a path connecting g−1DEg with Dψ,g

[0,1] defined by

Dψ,g(s) = DE + (1 − sψ)g−1[DE , g]

on [0, 1]×∂M , with the boundary condition P∂M (L) on {0}×∂M and the boundary
condition Id− gP∂M (L)g−1 at {1} × ∂M .

Thus defined, it can be shown that η(X, g) does not depend on the cut off
function ψ.

Corollary 1. The number
(

1

2π
√
−1

)(dimM+1)/2 ∫

M

Â
(
RTM

)
Tr
[
exp

(
−RE

)]
ch(g, d) + η(∂M, g)

is an integer.

Remark 1. Our index formula is closely related to the so called WZW theory in
physics [W]. When ∂M = S2 or a compact Riemann surface and E is trivial, the
local term in the index formula is precisely the Wess-Zumino term, which allows an
integer ambiguity, in the WZW theory. Thus, our eta invariant η(∂M, g) gives an
intrinsic interpretation of the Wess-Zumino term without passing to the bounding
3-manifold.



752 Oberwolfach Report 13/2006

References

[APS1] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian
geometry I. Proc. Cambridge Philos. Soc. 77 (1975), 43-69.

[APS2] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian
geometry III. Proc. Cambridge Philos. Soc. 79 (1976), 71-99.

[AS] M. F. Atiyah and I. M. Singer, The index of elliptic operators I. Ann. of Math. 87 (1968),
484-530.

[BD] P. Baum and R. G. Douglas, K-homology and index theory, in Proc. Sympos. Pure and
Appl. Math., Vol. 38, pp. 117-173, Amer. Math. Soc. Providence, 1982.

[BF] J.-M. Bismut and D. S. Freed, The analysis of elliptic families II, Commun. Math. Phys.
107 (1986), 103-163.

[BW] B. Booss and K. Wojciechowski, Elliptic boundary problems for Dirac operators,
Birkhäuser, 1993.

[DF] X. Dai and D. S. Freed, η-invariants and determinant lines, J. Math. Phys., 35 (1994),
5155-5194.

[DZ] X. Dai and W. Zhang, Higher spectral flow, J. Funct. Anal. 157 (1998), 432-469.
[DW] R. G. Douglas and K. P. Wojciechowski, Adiabatic limits of the η invariants: odd dimen-

sional Atiyah-Patodi-Singer problem, Commun. Math. Phys. 142 (1991), 139-168.
[G] E. Getzler, The odd Chern character in cyclic homology and spectral flow, Topology 32

(1993), 489-507.
[Gr] G. Grubb, Trace expansions for pseudodiferential boundary problems for Dirac type opera-

tors and more general systems, Ark. Mat. 37 (1999), 45-86.
[KL] P. Kirk and M. Lesch, The η-invariant, Maslov index, and spectral flow for Dirac type

operators on manifolds with boundary, Forum Math. 16 (2004), 553-629.
[MP] R. B. Melrose and P. Piazza, An index theorem for families of Dirac operators on odd-

dimensional manifolds with boundary, J. Diff. Geom. 46 (1997), 287-334.
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Quantum Field Theory Methods in Twisted K-Theory

Jouko Mickelsson

Twisted K-theory can be viewed as a study of local families of Fredholm operators,
defined over an open cover of a spaceX such that on the overlaps of sets in the open
cover the Fredholm operators are related by conjugation by a family of projective
unitary transformations.

The local families of projective unitary transformations are in cocycle relation,
thus defining a principal PU(H) bundle over X. The (equivalence) class of this
bundle is known as a gerbe, and its characteristic class (the Dixmier-Douady class)
lies in the cohomology group H3(X,Z).

In quantum field theory a gerbe arises because certain (gauge) symmetry trans-
formations cannot be lifted from the classical setting to the quantised theory;
typically, there is an obstruction coming from ill-defined phases. This happens
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in (chiral) gauge theory, where one studies families of Dirac operators DA para-
metrised by connections in a fixed vector bundle over a compact spin manifold M.
The quantum Dirac operators are acting in Fock spaces, carrying an irreducible
representation of the canonical anticommutation relations. For different gauge
connections these representations are in general inequivalent. The group of gauge
tranformations is acting through a projective representation in the bundle of Fock
spaces parametrised by gauge connections.

The above gerbe construction becomes nontrivial when passing to the moduli
space X = A/G0 of connections. Here G0 is the group of based gauge transforma-
tions, fixed in some given point on M. The Dixmier-Douady class can be viewed
as an obstruction to a fully gauge covariant quantisation. The construction is
interesting already in the simplest situation when M is the unit circle S1 and the
gauge group G is a compact simple Lie group. In this case G0 is the group ΩG of
based loops in G and X = G is the group of holonomies around the circle. In this
case the Freed-Hopkins-Teleman theorem states that the G-equivariant twisted
K-theory K∗

G(G, [ω]) is the Verlinde algebra in conformal field theory at level k,
where ω, the Dixmier-Douady class, is multiple of the basic form by k + the dual
Coxeter number of G, [FHT].

A simple construction of the twisted equivariant K-theory in the case X = G
was given using a supersymmetric Wess-Zumino-Witten model in 1+1 space-time
dimensions, [Mi]. The construction is essentially based on representation theory
of loop algebras with an observation that a gauge covariant interaction with an
external field A ∈ A can be added, producing the required family of Fredholm
operators parametrised by points in A and transforming covariantly with respect
to a projective unitary highest weight representation of the smooth loop group
LG.

The case of gauge connections over a manifold M when dimM > 1 is more
complicated because of usual renormalisation problems in quantum field theory.
However, the constructions can be carried out when one takes a homotopy approx-
imation to the moduli space X. Assuming that M = S2n+1 then one can show
that X is homotopy equivalent to the group Map(S2n, G) of smooth based maps
to G. In particular, for G = U(N) in the limit N →∞ the moduli space becomes,
by Bott periodicity, U(∞) = Map(S2n, U(∞)).

The construction of the supersymmetric Wess-Zumino-Witten model can be
generalised to this infinite-dimensional setting. An additional renormalisation is
however needed. This is kind of infinite vacuum energy substraction related to
the infinite-dimensionality of U(∞), similar to the normal ordering related to the
Fourier modes on the unit circle.

The case of the true moduli space A/G0 for dimM > 1 is still unfinished. Be-
sides of the renormalisation problems, the difficulty is that in general there is no
natural polarisation like in one dimension, to positive and negative Fourier modes
defining the Fock vacuum and a Borel decomposition in the loop algebra. This
problem can be solved by going to a light cone formalism. The gauge connections
and gauge transformations are defined on the light cone in Minkowski space, with
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appropriate boundary conditions at infinity. Then the decomposition of fields to
positive and negative Fourier modes along the light rays corresponds to decompos-
tion to positive and negative energies of wave operator or the free Dirac operator,
with initial values given on the cone. The important aspect of this polarisation is
that for Lie algebra valued functions it defines closed subalgebras of positive (resp.
negative) Fourier modes along the cone.

Finally, a Fredholm operator theoretic construction of the nonequivariant case
on G is still missing, although different other constructions exist [Do], [Br].

References

[Br] Volker Braun: Twisted K-theory of Lie groups, hep-th/0305178. JHEP 0403 (2004) 029
[Do] Christopher L. Douglas: On the twisted K-homology of simple Lie groups,

math.AT/0402082
[FHT] D. Freed, M. Hopkins, and C. Teleman: Twisted equivariant K- theory with complex

coefficients, math.AT/0206257; Twisted K-theory and loop group representations, math.
AT/0312155

[Mi] J. Mickelsson: Gerbes, (twisted) K theory, and the supersymmetric WZW model, hep-th
/0206139, in: Infinite Dimensional Groups and Manifolds, ed. by T. Wurzbacher, IRMA
Lectures in Mathematics and Theoretical Physics 5, Walter de Gruyter , Berlin (2004);
Twisted K theory invariants, math.AT/0401130. Lett. in Math . Phys. 71, 109-121 (2005)

On the Noncommutative Spectral Flow

Charlotte Wahl

The spectral flow, as introduced by Atiyah-Patodi-Singer, assigns to a continuous
path of selfadjoint Fredholm operators on a Hilbert space the net number of eigen-
values changing sign from minus to plus along the path. Motivated by geometric
applications it has been generalised to paths of unbounded selfadjoint Fredholm
operators with continuous resolvents [BLP] and to paths of families of elliptic op-
erators resp. elliptic operators over C∗-algebras [DZ] [LP]. In the latter two cases
the values of the spectral flow are in the K-theory of the base space resp. the
C∗-algebra.

We present a definition of the spectral flow of a path (Dt)t∈[0,1] of regular self-
adjoint Fredholm operators on the standard Hilbert A-module HA, where A is
a unital C∗-algebra, such that (Dt)t∈[0,1] defines a regular selfadjoint Fredholm
operator on the Hilbert C([0, 1],A)-module C([0, 1], HA). Our definition encom-
passes the generalisations mentioned before. Furthermore it is invariant under
conjugation by strongly continuous paths of unitary operators. Hence we also
obtain a rigorous definition for the classical spectral flow in the case where the
(separable) Hilbert space depends on the parameter. The motivating example is
the spectral flow of a path of Dirac type operators on a manifold with boundary
with generalised Atiyah-Patodi-Singer boundary conditions and the corresponding
problem for families resp. over C∗-algebras. The latter has applications in higher
index theory.



Analysis and Topology in Interaction 755

We give two different definitions of the spectral flow: by generalising the concept
of spectral sections introduced by Melrose-Piazza and adapting the definition of
[DZ], and in terms of Bott periodicity.
First we define the relative index ind(P,Q) ∈ K0(A) for projections P,Q on HA
differing by a compact operator as the index of the Fredholm operator QP :
P (HA) → Q(HA). If D is a selfadjoint regular Fredholm operator on HA and
K is a compact selfadjoint operator such that D + K is invertible then we call
1≥0(D+K) a generalised spectral section of D. The difference of two generalised
spectral sections P,Q of D is compact, hence ind(P,Q) is well defined. Now if
(Dt)t∈[0,1] is a regular selfadjoint Fredholm operator on C([0, 1], HA) and there
is a (global) generalised spectral section (Qt)t∈[0,1] of (Dt)t∈[0,1], and if Pi are
generalised spectral sections of Di, i = 0, 1, then we define

sf((Dt)t∈[0,1],P0,P1) := ind(Q1,P1)− ind(Q0,P0) .

For more general paths we can define the spectral flow by cutting a path into
pieces and adding up the spectral flows of the pieces. However generalised spectral
sections need not exist.

The definition of the spectral flow in terms of Bott periodicity is more general
but less intuitive. It applies to any regular selfadjoint Fredholm operator (Dt)t∈[0,1]

on the Hilbert C([0, 1],A)-module C([0, 1], HA) such that D0, D1 are invertible.
There is an odd monotonously increasing function χ ∈ C∞(R) with χ′(0) > 0 such
that χ2−1 has compact support and χ2(D0) = χ(D1)2 = 1 and (χ2(Dt)−1)t∈[0,1]

is compact on C([0, 1], HA). Then [(χ(Dt))t∈[0,1]] ∈ KK1(C, C0((0, 1),A)). We
set

sf((Dt)t∈[0,1]) = β[(χ(Dt))t∈[0,1]] ∈ K0(A) ,

where β : KK1(C, C0((0, 1),A)) → K0(A) is induced by Bott periodicity. The
definition is independent of the choice of χ.

Both definitions coincide in the cases where both apply.
An application is the expression of the pairing of odd K-theory with KK-theory

in terms of the noncommutative spectral flow [W2].
Another application is the definition of a noncommutative version of the Maslov

index for a pair of paths of Lagrangians [W1]. We proved that the noncommutative
Maslov index occurs as a correction term in a splitting formula of the spectral flow
of a loop of families of Dirac operators resp. Dirac operators over a C∗-algebra.
It would be interesting to know whether such a splitting formula also exists for
paths with invertible end points which are not necessarily loops. The proof of the
classical splitting formula in [N] in which the general case is reduced to the case
of loops seems not to work for families resp. over C∗-algebras.

There is also a generalisation of the spectral flow to Breuer-Fredholm operators
(see [BCPRSW] for an overview), which is not immediately related to our notion,
but we hope that there will be a fruitful interplay between both concepts.
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Semi-Infinite and Seiberg-Witten Homotopy

Christopher L. Douglas

(joint work with Ciprian Manolescu)

Studying the structure of the moduli spaces of solutions to the Seiberg-Witten
equations leads to strong invariants of 3- and 4-dimensional manifolds. The solu-
tions to the Seiberg-Witten equations on a 3-dimensional manifold can be identified
with the critical points of the Chern-Simons-Dirac functional. Seiberg-Witten-
Floer homology is defined in terms of these critical points and the 0-dimensional
moduli spaces of flow lines between critical points. Our goal is to incorporate the
topology of higher-dimensional moduli spaces of flow lines into SWF homotopy
types.

We combine the framework of semi-infinite homotopy theory from [2] with
the analytical results and finite-dimensional approximation constructions from [3],
both of which incorporate ideas of Furuta, to define a semi-infinite spectrum en-
coding the SWF homotopy type of a rational homology 3-sphere. Roughly, a
semi-infinite prespectrum E on a polarised Hilbert space H is an assignment to
each positive-energy or semi-infinite subspace V ⊂ H a space E(V ) together with
structure maps ΣW−V E(V ) → E(W ) for each inclusion V ⊂ W of semi-infinite
subspaces. The SWF semi-infinite spectrum for a rational homology 3-sphere is
defined as the semi-infinite suspension spectrum of the assignment

V∞
λ 7→ hocolim

µ>0
Con(CSD|V µ

λ
).

Here CSD is the Chern-Simons-Dirac functional, V µλ is the span of the eigenspaces
(with eigenvalues between λ and µ) of the linearisation of CSD, the eigenvalue
λ≪ 0 is fixed, and Con(−) is a rigid form of the Conley index. The existence
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of semi-infinite suspension spectra is a consequence of joint work in progress with
Andrew Blumberg. Note that here the polarisation of the Seiberg-Witten configu-
ration space is defined by the eigenvalue decomposition of the linearisation of the
CSD functional, so V∞

λ is indeed a semi-infinite subspace.
The rigid Conley index is defined as follows. Recall that the classical Conley

index of a Morse function f on a noncompact, finite-dimensional manifold M is

a homotopy type [C(f)] whose reduced homology H̃•([C(f)]) is isomorphic to the
Morse homology of the pair (M, f). The homotopy type [C(f)] is defined as the
homotopy type of the quotient N/L where (N,L) is a pair with N an appropriate
neighborhood of the isolated invariant set of the flow of f , and L ⊂ N an exit
set—see for example [1, 4]. There is a topological category CP of such pairs (N,L);
the morphisms in CP are induced by the flow, as in [4]. The geometric realisation
of this category is contractible, and the rigid Conley index is defined as

Con(f) = hocolim
(N,L)∈CP

N/L

That this produces a space rather than merely a homotopy type is useful for
constructing invariants of families of flows (for example, families of flows coming
from the CSD functional for a family of rational homology 3-spheres).

References

[1] C. Conley, Isolated invariant sets and the Morse index, Amer. Math. Soc., Providence, 1978.
[2] C. L. Douglas, Twisted parametrized stable homotopy theory, preprint (2005),

math.AT/0508070.
[3] C. Manolescu, Seiberg-Witten-Floer homotopy type of three-manifolds with b1 = 0, Geom.

Topol. 7 (2003), 889-932.
[4] D. Salamon, Connected simple systems and the Conley index of isolated invariant sets,

Trans. Amer. Math. Soc. 291 (1985), no. 1, 1-41.

Motivic Groups in Enriched Algebraic Geometry

Jack Morava

Spec(Z) has two rather orthogonal interesting enrichments, either in terms either
of some category of E∞ ring spectra [2, 4, 6] at finite primes or in some none
commutative sense [1] at the Archimedean primes. The language of motivic
Galois groups seems to accommodate both these perspectives in terms of a kind
of generalised Sullivan arithmetic square [3], which provides an opportunity to
re-examine some old questions about the connected components of the idelé-class
group [5, 7].
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Direct Images for Relative and Multiplicative K-Theories

Alain Berthomieu

Consider triples (E,F, f) where E and F are flat complex vector bundles on the
same differentiable manifold X and f : E → F is some C∞ bundle isomorphism
between them. In [3], some “relative K-theory” group K0

rel(X) is constructed as
the free abelian group generated by such objects modulo the following relations:
isotopy of f (which means homotopy throw isomorphisms) and nullity if f is a
parallel isomorphism (with respect to connections ∇E on E and ∇F on F defining
the flat structures), or if F = E′ ⊕ E′′ and f = s⊕ p where

0→ E′ i−→ E
p−→ E′′ → 0

is an exact sequence in the flat bundles category, and s : E → E′ verifies that s ◦ i
is the identity of E′.

In such a situation, characteristic classes are constructed using Chern-Simons
forms: let ch(∇E) and ch(∇F ) be the explicit differential form representatives
of the Chern characters of E and F obtained throw Chern-Weil theory from the
connections ∇E and ∇F , then Chern-Simons theory provides an odd differential
form ch(∇E , f∗∇F ) defined modulo coboundaries which verifies

dch(∇E , f∗∇F ) = ch(∇F )− ch(∇E)

(This of course also works for nonflat connexions). Here the curvatures of ∇E and
∇F vanish so that ch(∇E , f∗∇F ) is a closed form, and one gets a group morphism
Nch : K0

rel(M) −→ Hodd(M,C). This construction generalises the classes consid-
ered by Bismut and Lott in [6] (with different objectives) in the particular case of

E
C∞

== F and ∇F being the adjoint transpose of ∇E .
On the other hand, consider triples (E,∇, α) where E is some smooth complex

vector bundle on X , ∇ is some connection on E, and α is an odd differential form
on X defined modulo coboundaries such that

dα = ch(∇)− rkE

then the relevant Karoubi’s multiplicative K-theory group MK0(X) in this con-
text [8] [9] is the free abelian group generated by such triples modulo direct sums
and the following relation:

(F,∇F , β) =
(
E,∇E , β − ch(∇E , f∗∇F )

)

if (F,∇F , β) ∈ MK0(X), if f : E → F is some smooth bundle isomorphism, and
∇E and ∇F are (not necessarily flat) connections on E and F .
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These groups enter in the following commutative diagram:

(*)

K1
top(X) −−−−→ K0

rel(X) −−−−→ K0
flat(X) −−−−→ K0

top(X)

‖
y

yNch

y
y‖

K1
top(X) −−−−→ Hodd(X,C) −−−−→ MK0(X) −−−−→ K0

top(X)

whose lines are exact sequences and where K0
flat(X) is the “algebraic” K-theory

group of flat vector bundles on X modulo exact sequences.
Let now π : M → B be some submersion between compact manifolds. To

some flat vector bundle E on M , one can associate the formal difference of flat
vector bundles H±(M/B,E) on B consisting of the even and odd degree de Rham
cohomology of the fibres of π with coefficients in E. This provides a direct image
morphism π! : K

0
flat(M)→ K0

flat(B).
To construct π∗ : K0

rel(M) → K0
rel(B), one needs for (E,F, f) ∈ K0

rel(M) some
smooth isomorphism between the flat bundles H+(M/B,E)⊕H−(M/B,F ) and
H−(M/B,E) ⊕ H+(M/B,F ) on B, which would be canonically associated to
f . This is found in [3] by following the kernel of

(
d∇t + (d∇t )∗

)
t∈[0,1]

which

is the deformed fibral Euler-Dirac operator corresponding to the deformation of
connections (∇t)t∈[0,1]. These kernels are not of constant dimension, so that a
regularisation trick from [1] is needed. For proving the compatibility with the
exact sequences relation in K0

rel, the correspondance of some cohomology spectral
sequence and little eigenvalues of fibral Euler-Dirac operator is studied, in the
spirit of [4] and [13]. This π∗ is compatible with the preceding π!.

The direct image π∗ : K∗
top(M) → K∗

top(B) is constructed in [1] (and is com-
patible with π!) using the foreseen trick, which can be used for adapting the con-
struction of the η-form of Bismut and Cheeger [5] to the case of fibral Euler-Dirac
operators with nonconstant dimension kernels.

Once the geometry of M is fixed, this provides for any complex vector bundles
E on M and F+ and F− on B with connections ∇E , ∇+ and ∇− and such that
[F+] − [F−] = π∗[E] ∈ K0

top(B) (with some additional data related to the regu-
larisation trick of [1]), some differential form defined modulo coboundaries, which
was denoted τ(∇E ,∇M/B ,∇+,∇−) in the talk, with the following properties:

1: transgression formula

dτ(∇E ,∇M/B,∇+,∇−) = ch(∇+)− ch(∇−)−
∫

M/B

e(∇M/B)ch(∇E)

where
∫
M/B is integration along the fibres of π, ∇M/B is the Levi-Civita

connection on the bundle TM/B of vertical tangent vectors, and e(∇M/B)
is the Chern-Weil representative of the Euler class of TM/B,

2: additivity for direct sums,
3: functoriality for pull-backs on fibred products (the model of the fibre may

not change),
4: nullity if ∇E is flat and F± = H±(M/B,E) with corresponding flat

connections ∇±,
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5: universal property: there is a unique choice with preceding properties for
E with vanishing rational Chern classes.

The functoriality property used on [0, 1]×M allows to calculate the dependence
of τ on its data, and this provides the following result: for (E,∇, α) ∈MK0(M),
choose some vector bundle F and some trivial vector bundle CN on B such that
[F ] − [CN ] = π∗[E] ∈ K0

top(B), endowed with connections ∇F and dC
N

(the
canonical one), then

(E,∇E , α) 7−→
(
F,∇F , τ(∇E ,∇M/B,∇F , dC

N

)+

∫

M/B

e(∇M/B)α
)
−(CN , dC

N

, 0)

provides a morphism MK0(M) → MK0(B), which is compatible with the pre-
ceding ones and independent of the geometric data used in its definition.

This is closely related to Lott’s analytic family index construction [10] but not
exactly the same (for example because no spinc assumption is needed here).

The form τ (and its properties) allows one to prove for any (E,F, f) ∈ K0
rel(M)

Nch

(
π∗(E,F, f)

)
=

∫

M/B

e(∇M/B)Nch(E,F, f)

thus completing the direct image for the whole diagram (*). This uses [6] in an
essential way and generalises (without totally recovering) some of the results from
Ma and Zhang’s work [11] [12].

The holomorphic counterpart of these results on relative K-theory were estab-
lished in [2]. See [7] about direct image for MK0 under closed immersions.
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Homotopy Theory of Compactified Moduli Space

Søren Galatius

(joint work with Ya. Eliashberg)

LetMg denote the moduli space of genus g Riemann surfaces andMg the Deligne-
Mumford compactification ofMg. Very briefly, the goal of this work (in progress)

is to do forMg what Madsen and Weiss did forMg. I will start by a short account

of Madsen-Weiss’ approach. Mg and Mg will always denotes the stacks, rather
than the coarse moduli space.

1. M and surface bundles

By a surface bundle over a manifold Xk we mean a proper submersion f :
Ek+2 → Xk with oriented fibres. Let

S(X) = (surface bundles f : E → X)/ ≃
denote the set of isomorphism classes of surface bundles over X .

Thus defined, S is a set-valued functor (under pullback) from the category of
smooth manifolds and homotopy classes of maps. As such, it is represented by the
stack

M =
∐

k

(∐

g

Mg

)k
/Σk.

Thus H∗(M) is the set of characteristic classes of surface bundles. In particular
we have the Miller-Morita-Mumford classes κi ∈ H2i(M).

2. Formal surface bundles and Madsen-Weiss

Madsen-Weiss’ point of view is to replace “surface bundle” by the correspond-
ing stable normal bundle condition. This means that we consider triples (f, L, φ)
consisting of a proper map f : Ek+2 → Xk, a complex line bundle L→ E, and a
stable isomorphism φ : TE ⊕ Rj ∼= f∗TX ⊕ L ⊕ Rj , defined for some j ≫ 0. We
call such a triple a formal surface bundle and define

S̃(X) = (formal surface bundles E → X)/ ≃ .
Here, two formal surface bundles fν : Eν → X , ν = 0, 1 (suppressing the L’s and
the φ’s from the notation), are equivalent if there exists a formal surface bundle
f : W k+3 → X × R, transversal to X × {0, 1}, whose restriction to f−1(X × {ν})
is fν .

If f : E → X is a surface bundle, then the differential of f is an epimorphism
TE → f∗TX . If we let L denote its kernel, we have a short exact sequence
0 → L → TE → f∗(TX) → 0, and a choice of splitting gives an isomorphism

TE ∼= f∗(TX)⊕ L. This defines a forgetful map S(X)→ S̃(X).
For many purposes, the notion of formal surface bundle is easier to understand

than (honest) surface bundles, even though the definition looks more complicated.
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For formal reasons (viz. Pontrjagin-Thom theory), the functor S̃ is part of a co-
homology theory, which is represented by a Thom spectrum, often denoted CP∞

−1.
It is the Thom spectrum of the map

BU(1)
−L−→ Z×BO,

classifying the virtual inverse of the canonical complex line bundle L → BU(1).
Thus we have a natural isomorphism

S̃(X) ∼= [X,Ω∞CP∞
−1],

and the forgetful map S → S̃ is represented by a continuous map

M→ Ω∞CP∞
−1.

Also for formal reasons (Thom isomorphism), it is easy to calculate H∗(CP∞
−1).

It is Z in even dimensions and vanishes in odd dimensions. The generators map
under the map

H∗(CP∞
−1)→ H∗(Ω∞CP∞

−1)→ H∗(M)

to the Miller-Morita-Mumford classes. With rational coefficients, they form poly-
nomial generators of the cohomology ring H∗(Ω∞CP∞

−1).
Finally, the statement of Madsen-Weiss can be rephrased as follows: The re-

striction

Mg → Ω∞CP∞
−1

of the forgetful map, is a homology isomorphism in degrees up to (g − 1)/2.

3. M and Lefschetz fibrations

We now try to apply a similar analysis to the spaces Mg or, more generally,
the stack

M =
∐

k

(∐

g

Mg

)k
/Σk.

Points in M are nodal curves, i.e. Riemann surfaces with a certain mild kind of
singularities, modelled on {(z, w) ∈ C2 | zw = 0}. In nearby points, a singularity
zw = 0 can deform into zw = ǫ, ǫ ∈ C. The universal nodal curve is the map

π : C →M,

where C is the stack of pairs (Σ, p) with Σ ∈ M and p ∈ Σ. The subspace of C
where p ∈ Σ is a node, is a smooth substack Σ ⊆ C of complex codimension 2, and
the restriction

π|Σ : Σ→M
is an immersion with normal crossings, of complex codimension 1.
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If X is a smooth manifold and g : X →M is smooth and transverse to π : C →
M, then E = g∗C is a smooth manifold, and we have a pullback square

E //

π

��

C
π

��
X

g
//M

The map π : E → X is no longer a surface bundle (as it would have been withM
in place of M), it is a Lefschetz fibration. We recall a definition of this notion.

Imprecisely, a Lefschetz fibration is a smooth proper map f : Ek+2 → Xk,
which locally in E looks like

(x1, . . . , xk−2, z, w) 7→ (x1, . . . , xk−2, zw),

where the xi are real parameters and z and w are complex parameters.
More precisely, we will by a Lefschetz fibration mean a tuple (f,Σ, U, L, q),

where f : Ek+2 → Xk is a proper map, Σk−2 ⊆ E is a closed submanifold
such that f |Σ is an immersion with normal crossings. U → Σ is a 2-dimensional
complex vector bundle, embedded as a tubular neighborhood U ⊆ E. L → Σ is
a complex line bundle, immersed as a tubular neighborhood L → X , q : U → L
is a nondegenerate fibrewise quadratic form (i.e. q(v) = 1

2b(v, v) for a unique

b ∈ (S2U)∗ ⊗ L), such that the diagram

U //

q

��

E

f

��
L // X

commutes near the zero section Σ ⊆ U . Finally, the restriction f |(E − Σ) should
be a submersion with oriented fibres, the orientation being compatible with the
complex structures of U and L near Σ.

It is not hard to see that the map π : C → M is a Lefschetz fibration in this
sense, and that it is universal: Any Lefschetz fibration f : E → X (suppressing
much from the notation) is induced by a smooth map g : X →M, transverse to
π. Thus, if we let

L(X) = (Lefschetz fibrations f : E → X)/ ≃,
then L is represented by the space M: There is a natural isomorphism L(X) ∼=
[X,M].

4. Formal Lefschetz Fibrations

Following Madsen-Weiss, we replace “Lefschetz fibration” by the corresponding
stable normal bundle condition. This leads to the notion of a Formal Lefschetz
Fibration.

A formal Lefschetz fibration is a tuple

(f, VS , VN , U, L, q, L
′, k, φ, ψ)
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where

(i) f : Ek+2 → Xk is a proper map
(ii) E = VS ∪ VN is an open cover (S and N stands for “singular” and “nonsin-

gular”)
(iii) U → VS and L → VS are complex vector bundles of dimension 2 and 1,

respectively
(iv) q : U → L is a fibrewise quadratic, nondegenerate form
(v) L′ → VN is a complex line bundle

(vi) k is an isomorphism of vector bundles over VS ∩ VN : L′ ⊕ L ∼= U
(vii) φ is a stable isomorphism of vector bundles over VS : Rj ⊕ TE ⊕ L ∼= Rj ⊕

f∗TX ⊕ U .
(viii) ψ is a stable isomorphism of vector bundles over VN : Rj⊕TE ∼= Rj⊕f∗TX⊕

L′.

φ, ψ and k should be compatible over VN ∩ VS , in the sense that (ψ ⊕ idL) ◦
(idRj⊕f∗TX ⊕ k) = φ. (Note that we require these to be equal as maps. Alterna-
tively we could require them to be homotopic via a homotopy h which we should
then include in the data).

Let

L̃(X) = (Formal Lefschetz Fibrations f : E → X)/ ≃
where ≃ is the equivalence relation generated by increasing j, and by homotopy,
i.e. if W k+3 → Xk × R is a formal Lefschetz fibration, transverse to X × {0, 1},
then the restriction to X × {0} and X × {1} are equivalent.

There is a forgetful map L(X) → L̃(X), defined as follows. Given a Lefschetz
fibration (f,Σ, U, L, q), we let

• VN = E − Σ, and L′ → VN is the kernel of D(f |VN )).
• VS = U ⊆ E.

As in the uncompactified case, the point of considering the corresponding stable
normal bundle condition is, that L̃(X) is for many purposes easier to understand.
The “usual” cohomology classes in Mg, thought of as natural transformations

L(X)→ H∗(X ; Q),

factor through L̃(X). In particular we have the Miller-Morita-Mumford classes κi,
but also some new classes that I will call θi,j , i, j ≥ 0. For a Lefschetz fibration
f : E → X they are defined as

θi,j = (f |Σ)!(c
i
1c
j
2(U)) ∈ H2+2i+4j(X)

5. Classifying FLFs

Pontrjagin-Thom theory implies that formal Lefschetz fibrations are classified
by a Thom spectrum. The general procedure is to translate the stable normal
bundle condition into a map ξ : B → Z × BO. The stable normal bundle of a
proper map f : E → X is a map

Nf : E → Z×BO,
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whose homotopy class is [f∗TX ]− [TE] ∈ KO0(E), and ξ : B → Z× BO should
be such that the bundle conditions on f are equivalent to a lifting of Nf to a map
l : E → B. Then the Thom spectrum Bξ of ξ will classify L̃ in the sense that
there is a natural isomorphism

L̃(X) ∼= [X,Ω∞Bξ].

In our case, E is a pushout VS ← VS ∩ VN → VN , and the space B is most
easily described as a homotopy pushout of spaces over Z×BO:

BSN //

��

BS

��
L−U

��6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

BN

−L′

))SSSSSSSSSSSSSSSS
// B

Z×BO.

(1)

Here, BN = BU(1) models the same bundle condition as in the uncompactified
case. More interestingly, BS is the universal space carrying two complex bundles
U,L of dimensions 2 and 1, respectively, equipped with a quadratic nondegenerate
map q : U → L. This is

BS = E(U(2)× U(1))×U(2)×U(1) Quad(C2,C1),

where Quad(C2,C1) denotes the space of quadratic, nondegenerate maps. It turns
out that this is homotopy equivalent to the classifying space of the maximal torus
normaliser in U(2):

BS = B(Σ2

∫
U(1)).

BSN is the sphere bundle of the canonical bundle U → BS .
The pushout diagram (1) above leads to a map ξ : B → Z × BO, and thus a

Thom spectrumBξ. By Pontrjagin-Thom theory, this will classify formal Lefschetz
fibrations. Therefore we will denote it FLF := Bξ. I have sketched a proof that
there is a natural isomorphism

L̃(X) ∼= [X,Ω∞FLF ].

6. Cohomology of FLF

The pushout diagram (1) of spaces over Z×BO leads to a pushout diagram of
Thom spectra, and in turn a cofibration sequence of spectra

CP∞
−1 −→ FLF −→ B(Σ2

∫
U(1))L.

B(Σ2

∫
U(1))L is the Thom spectrum (space, in fact) of the bundle L→ B(

∫
U(1)).

It is not hard to calculate the cohomology of these spectra, using Thom isomor-
phism. I will state the answer with rational coefficients.

As stated earlier, H∗(CP∞
−1) is one-dimensional in each even degree. The classes

correspond to the Miller-Morita-Mumford classes.
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The inclusion B(Σ2

∫
U(1))→ BU(2) induces an isomorphism in rational coho-

mology (actually with coefficients in Z[1/2]). Thus the cohomology has basis ci1c
j
2,

i, j ≥ 0. This gives rise to the characteristic classes θi,j described earlier. It is
not hard to see that the κi classes together with the θi,j classes form a basis for
H∗(FLF ; Q). On the level of infinite loop spaces we get

H∗(Ω∞FLF ; Q) ∼= Q[κi|i ≥ 0]⊗Q[θi,j |i, j ≥ 0].

Thus we know precisely what are characteristic classes of formal Lefschetz fibra-
tions.

7. Concluding remarks

The forgetful map from Lefschetz fibrations to formal Lefschetz fibrations is
classified by a map

M→ Ω∞FLF.

It seems that many of the cohomology classes inMg that are “usually” considered,
can be pulled back from classes in Ω∞FLF (namely precisely the κi and the θi,j
classes).

The question of understanding the intersection theory ofMg can now, at least
partly, be rephrased as understanding the bordism (or just homology) class of the
map Mg → Ω∞FLF .

A slightly weaker question is to understand the class

[M] ∈ H∗(FLF ; Q).(2)

A goal of this work (in progress) is to give a homotopy theoretic description of
the class (2). In the longer term, one should of course consider Gromov-Witten
theory of an arbitrary symplectic manifold X (in a way that the above would
correspond to the case whereX is a point). The analogue of (2) would be [M(X)] ∈
H∗(FLF ∧X+; Q).

A question orthogonal to that of understanding [M] is to ask, what the analogue
of Madsen-Weiss’ theorem would be. The naive guess thatMg → Ω∞FLF might
be a homology isomorphism in a range increasing with g, turns out to be wrong.
Instead we propose to consider the subspace M̃g ⊆ Mg, consisting of irreducible
curves. Then the composition

M̃g ⊆Mg → Ω∞FLF

seems to be a homology isomorphism in a stable range. Thus, in that stable
range, the cohomology of Mg will be the direct sum of a stable part, which is
the polynomial algebra in the κi and the θi,j , and an unstable part, which is the

homology of Mg − M̃g.
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Index Theory on Orbifolds via Formal Deformation Quantisation

Hessel Posthuma

(joint work with M. Pflaum and X. Tang)

Symplectic orbifolds are naturally encountered in mathematical physics and Pois-
son geometry, e.g. as the result of symplectic reduction with respect to a locally
free action of a compact Lie group. It is therefore very natural to try to extend
known quantisation schemes on symplectic manifolds to this category. The aim of
this talk is to explain how this gives a useful approach to index theory on orbifolds
and as such may serve as an example for dealing with more singular spaces. In all
this we use the the theory of formal deformation quantisation.

A symplectic orbifold X is, loosely speaking, a topological Hausdorff space
which locally is homeomorphic to an open neighbourhood of 0 in R2n/Γ, where Γ
is a finite group acting by linear symplectic transformations with respect to the
standard symplectic form on R2n. Besides being an orbifold in the usual sense, the
symplectic structure gives the sheaf of smooth functions on X , i.e., those functions
that locally lift to smooth Γ-invariant functions in a chart as above, the structure
of a sheaf of Poisson algebras. Instead of considering the deformation problem
for this Poisson algebra, denoted AX , we will do the folowing, in the spirit of
noncommutative geometry:

Associated to a symplectic orbifold X is a proper étale groupoid G, with struc-
ture maps s, t : G1 → G0 and G0/G1

∼= X , such that G0 carries an invariant
symplectic form ω, i.e., s∗ω = t∗ω. The convolution algebra of an étale groupoid
is defined as AG := C∞

c (G1) with the product

(f1 ∗ f2)(g) =
∑

g1g2=g

f1(g1)f2(g2),

for g ∈ G1. Notice that the center of AG equals AX := C∞
c (X), and when

X happens to be a manifold, AG is even Morita equivalent to its center. The
symplectic nature of the orbifold amounts to a canonical Hochschild class π ∈
H2(AG, AG) which satisfies [π, π] = 0, cf. [8]. The upshot is that the “classical
phase space” is already a noncommutative geometry!

A formal deformation quantisation of the noncommutative Poisson algebra
(AG, π) consists of an associative product ⋆c on AG[[~]], compatible with the
~-adic filtration, such that in zeroth order one recovers the convolution prod-
uct above, and the Hochschild class of the first order approximation equals π.
Such a deformation, denoted by A~

G, can be constructed as follows: Using Fe-
dosov’s method [1], one can construct a G-invariant deformation quantisation of
the sheaf of smooth functions on the symplectic manifold G0, with characteristic
class [Ω] ∈ H2(X,C[[~]]). Using a kind of crossed product construction, one ob-
tains a deformation A~

G of AG, whereas the invariant section of this sheaf give a
deformation quantisation A~

X of AX , cf. [6]. In sharp contrast to the classical (i.e.,
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undeformed) theory, it turns out that there is a canonical Morita equivalence

(1) A~

G
M∼ A~

X ,

when the orbifold X is reduced, so, in a sense, the quantisation “resolves the
singularities”.

As a first step towards the index theorem, one computes the cyclic theory of
the algebra A~

G. To state the following theorem, let X̃ be the “inertia orbifold”
associated to X . This orbifold, canonically associated to X , was first considered
in [3], and is referred to in the physics literature as the “twisted sectors” of X .

Theorem 1 ([5]). The Hochschild and cyclic cohomology groups of the deformed
groupoid algebra A~

G are given by

HH•(A~

G) ∼= H•
(
X̃,C((~))

)

HC•(A~

G) ∼=
⊕

k≥0

H•−2k
(
X̃,C((~))

)
.

Similar results hold for Hochschild and cyclic homology [5] in terms of compactly

supported cohomology, so that these are Poincaré dual over X̃ to the cohomology
as stated above. Of special interest is the above result for HC0 since cyclic cocycles
of degree zero are nothing but traces on the algebra A~

G, i.e., linear maps tr : A~

G →
C((~)) satisfying

tr(a ⋆c b) = tr(b ⋆c a).

Therefore we find that

dimC((~)){space of traces} = # Components(X̃),

in particular is not one-dimensional when X is a nontrivial orbifold. This is in
sharp contrast with the case of smooth symplectic manifolds where it is well-known
that there is a unique trace up to normalisation, cf. [1, 4].

Let K0
orb(X) be the Grothendieck group of formal differences of orbifold vector

bundles, sometimes called “orbifold K-theory”. A trace tr in the sense above
induces an index map

tr∗ : K0
orb(X)→ C((~))

as follows. By taking the trace of idempotents in matrix algebras over A~

G, one
gets a map tr∗ : K0(A~

G)→ C((~)). To obtain the index map from this, one uses
the isomorphisms

K0(A~

G) ∼= K0(AG) ∼= K0
orb(X).

Here the first isomorphism states thatK-theory is “rigid” under deformation quan-
tisation, whereas the second can be viewed as a kind of Serre–Swan theorem for
orbifolds. The algebraic index theorem for orbifolds gives a topological formula
for the value of an index map associated to a trace on a K-theory class given by a
pair (E,F ) of orbifold vector bundles, isomorphic outside a compact subset of X .
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Theorem 2 ([7]). Let trα be a trace corresponding to the connected component

X̃α of X̃α. Let E → X be an orbifold vector bundle. Then, up to a constant,

(trα)∗ ([E]− [F ]) ∝
∫

X̃α

Chθ(RE −RF )

det (1− θ−1 exp(−R⊥))
Â(RT )eι

∗
αΩ/~.

In the formula above, the right hand side consists of the usual characteristic
classes which can be explicitly represented by differential forms on X̃ by choosing
a Riemannian metric with curvature R and connections on E and F . The map
ια is the canonical embedding of the connected component X̃α into X , and θ is
the canonical automorphism acting on vector bundles normal to this embedding,
so that one can twist the Chern character of E and F restricted to X̃α and write
down the denominator familiar from the equivariant index theorem.

Notice that the formula in the theorem is only given up to a constant, since
thus far the trace is only determined up to normalisation by its support on X̃α.
When X is a manifold, i.e., X̃ = X and there is a unique trace, the normalisation
can easily be fixed and the theorem above reduces to the algebraic index theorem
in [1, 4]. For an orbifold, the normaliation issue is much more nontrivial because
of the non-uniqueness of the trace, and the actual statement proved in [7] is much
stronger: using the concept of a “twisted trace density”, a canonical trace with
support on X̃α is constructed for which the normalisation can explicitly be fixed.
The resulting formula was first conjectured in [2].

Finally, one can obtain the the classical Kawasaki index theorem [3], by con-
sidering the deformation quantisation A~

T∗X of of the cotangent bundle T ∗X of
an orbifold X induced by the asymptotic pseudo-differential calculus. Using the
Morita equivalence (1), one can compare the operator trace to the canonical trace
above. As can be suspected from the index theorem, this trace has support on all
connected components of X̃ . Since the index of an elliptic operator on a compact
orbifold is determined by its symbol, considered as a class in the (compactly sup-
ported) orbifold K-theory of T ∗X , one derives the cohomological formula of the
Kawasaki index from the algebraic index theorem, cf. [7].
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Harmonic Magnus Expansion on the Universal Family of Riemann

Surfaces

Nariya Kawazumi

We introduce a higher analogue of the period matrix of a compact Riemann surface,
in order to construct “canonical” differential forms representing (twisted) Morita-
Mumford classes [10], [8] and their higher relations on the moduli space Mg of
compact Riemann surfaces of genus g ≥ 1.

For simplicity, we consider the moduli space Mg,1 of triples (C,P0, v) of genus g
instead of the space Mg. Here C is a compact Riemann surface of genus g, P0 ∈ C,
and v a non-zero tangent vector of C at P0. The space Mg,1 is an aspherical
(3g − 1)-dimensional complex analytic manifold, and the fundamental group is
equal to the mapping class group Γg,1 := π0Diff+(Σg, p0, v0), where Σg is an
oriented closed connected C∞ 2-manifold of genus g, p0 ∈ Σg, and v0 ∈ Tp0Σg\{0}.
The universal covering space is just the Teichmüller space Tg,1 for the topological
triple (Σg, p0, v0). For any triple (C,P0, v) one can define the fundamental group
of the complement C \ {P0} with the tangential basepoint v, which we denote by
π1(C,P0, v). If we choose a symplectic generator of π1(C,P0, v), we can identify it
with a free group of rank 2g, F2g. This induces a homomorphism Γg,1 → Aut(F2g),
which is known to be an injection from a theorem of Nielsen.

Let n ≥ 2 be an integer, Fn a free group of rank n with free basis x1, x2, . . . , xn,
Fn = 〈x1, x2, . . . , xn〉. We denote by H := H1(Fn; R) the first real homology
group of the group Fn, and by [γ] ∈ H the homology class induced by γ ∈ Fn.

The completed tensor algebra generated by H , T̂ = T̂ (H) :=
∏∞
m=0H

⊗m, has

a decreasing filtration of two-sided ideals T̂p :=
∏
m≥pH

⊗m, p ≥ 1. The subset

1 + T̂1 is a subgroup of the multiplicative group of the algebra T̂ . We define a
Magnus expansion of the free group Fn in our generalised sense [5].

Definition 1. A map θ : Fn → 1 + T̂1 is a (real-valued) Magnus expansion of the

free group Fn, if θ : Fn → 1 + T̂1 is a group homomorphism, and θ(γ) ≡ 1 + [γ]

(mod T̂2) for any γ ∈ Fn.

We denote by Θn the set of all the real-valued Magnus expansions. The
automorphism group Aut(Fn) of the group Fn acts on Θn in a natural way.

Moreover the (projective limit of) Lie group(s) IA(T̂ ) of all the R-algebra au-

tomorphisms U : T̂ → T̂ , which satisfies U(T̂p) = T̂p, for any p ≥ 1 and

U = 1H on T̂1/T̂2 = H , acts on Θn by U · θ := U ◦ θ, (U ∈ IA(T̂ ), θ ∈ Θn).
The latter action is free and transitive, and induces the Maurer-Cartan form

η = (ηp) ∈ Ω1(Θn)⊗̂LieIA(T̂ ) =
∏∞
p=1 Ω1(Θn)⊗H∗⊗H⊗(p+1). Here it should be

remarked that we have a natural bijection of manifolds

IA(T̂ ) ∼=
∏∞

m=1
Hom(H,H⊗m+1) ∼=

∏∞

m=1
H∗ ⊗H⊗m+1, U 7→ U |H .
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From the Maurer-Cartan formula dη = η ∧ η we obtain

(1) dηp =

p−1∑

s=1

(ηs ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ ηs︸ ︷︷ ︸
p−s+1

) ◦ ηp−s.

Consider the double cochain complex

C∗,∗ := C∗(Kp+1; Ω∗(Θn;H∗ ⊗H⊗(p+1))Aut(Fn)),

that is, the cellular cochain complex of the Stasheff associahedrons Kp+1 [12] with
values in the de Rham complex of Θn with twisted coefficients in Aut(Fn)-module
H∗ ⊗ H⊗(p+1). The formula (1) means the Maurer-Cartan forms ηp’s induce a
p-cocycle Yp ∈ Zp(C∗,∗), whose cohomology class

[Yp] ∈ Hp(C∗,∗) ∼= Hp(Ω∗(Θn;H∗ ⊗H⊗(p+1))Aut(Fn))

induces the (0, p + 2)-twisted Morita-Mumford class (−1)
1
2
p(p+1) 1

(p+2)!m0,p+2 on

the space Mg,1 [4]. From [9], [7] the i-th Morita-Mumford class is obtained by
contracting the coefficients of m0,2i+2 using the intersection form of the surface
for any i ≥ 1.

The map H∗ = H1(C; R) → Ω1(C) assigning each cohomology class the har-
monic 1-form representing it can be regarded as a H-valued 1-form ω(1) ∈ Ω1(C)⊗
H . We denote by ϕ′ and ϕ′′ the (1, 0)- and the (0, 1)-parts of ϕ ∈ Ω1(C) ⊗ C, re-
spectively. Then ω(1)

′ = ω(1)
′′ is holomorphic. We have

∫
C ω(1) ∧ ω(1) = I ∈ H⊗2,

the intersection form. We denote by δP0
: C∞(C) → R, f 7→ f(P0), the delta

2-current on C at P0. Then we have a unique T̂ -valued 1-current ω =
∑
p≥1 ω(p),

ω(p) ∈ Ω1(C)⊗H⊗p, satisfying the (modified) integrability condition

dω = ω ∧ ω − I · δP0
,

ω(p) = ω(1) for p = 1, and the normalisation condition
∫
C ω(p) ∧ ∗ϕ = 0 for any

closed 1-form ϕ and each p ≥ 2. Here ∗ is the Hodge ∗-operator on Ω1(C), which
is conformal invariant of the Riemann surface C. Moreover, using Chen’s iterated
integrals [1], we can define a Magnus expansion

θ = θ(C,P0,v) : π1(C,P0, v)→ 1 + T̂1, [ℓ] 7→ 1 +
∞∑

m=1

∫

ℓ

m︷ ︸︸ ︷
ωω · · ·ω .

The Magnus expansions θ(C,P0,v) for all the triples (C,P0, v) define a canonical
real analytic map θ : Tg,1 → Θ2g, which we call the harmonic Magnus expansion
on the universal family of Riemann surfaces. The pullbacks of the Maurer-Cartan
forms ηp’s give the canonical differential forms representing the Morita-Mumford
classes and their higher relations.

Theorem 1 ([6]). For any [C,P0, v] ∈Mg,1 we have

(θ∗η)[C,P0,v] = 2ℜ(N(ω′ω′)− 2ω(1)
′ω(1)

′) ∈ T ∗
[C,P0,v]

Mg,1 ⊗ T̂3.
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Here N : T̂1 → T̂1 is defined by N |H⊗m :=
∑m−1

k=0

(
1 2 · · · m− 1 m
2 3 · · · m 1

)k
, and

the meromorphic quadratic differential N(ω′ω′) is regarded as a (1, 0)-cotangent
vector at [C,P0, v] ∈ Mg,1 in a natural way.

The second homogeneous term of N(ω′ω′) coincides with 2ω(1)
′ω(1)

′, which is
just the first variation of the period matrices [11].

Let Cg be the universal family of compact Riemann surfaces over the moduli
Mg. Using a recipe of Morita [9] we have two differential forms eJ ∈ Ω2(Cg)
and eJ1 ∈ Ω2(Mg) from θ∗η1, which represent the first Chern class of the relative
tangent bundle TCg/Mg

and the first Morita-Mumford class, respectively. The form

eJ seems to be related to Arakelov’s admissible metric. Let B :=
√−1
2g

∑g
i=1 ψi∧ψi

be the volume form on a compact Riemann surface C induced by the orthonormal

basis {ψi}gi=1 of the holomorphic 1-forms,
√−1

2

∫
C ψi ∧ ψj = δi,j , (1 ≤ i, j ≤ g.)

Let h be the function on Cg×Mg
Cg satisfying the conditions 1

2π
√−1

∂∂h
∣∣
C×{P0} =

B − δP0
and

∫
C

(
h
∣∣
C×{P0}

)
B = 0. Then we obtain

Theorem 2.(
1

2π
√
−1

∂∂h

)∣∣∣∣
diagonal

= eJ +
1

(2− 2g)2
(e1

J − e1F ) ∈ Ω2(Cg).

Here e1
F :=

∫
fibre

(eJ)2 ∈ Ω2(Mg).

References

[1] K. T. Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math.
97 (1973), 217–246.

[2] R. Hain and D. Reed, On the Arakelov geometry of moduli spaces of curves, J. Diff. Geom.
67 (2004), 195–228.

[3] B. Harris, Harmonic volumes, Acta Math. 150 (1983), 91–123.
[4] N. Kawazumi, A generalization of the Morita-Mumford classes to extended mapping class

groups for surfaces, Invent. math. 131 (1998), 137–149.
[5] N. Kawazumi, Cohomological aspects of Magnus expansions, preprint, arXiv: math.GT/

0505497.
[6] N. Kawazumi, Harmonic Magnus expansion on the universal family of Riemann surfaces,

preprint, arXiv: math.GT/0603158.
[7] N. Kawazumi and S. Morita, The primary approximation to the cohomology of the moduli

space of curves and cocycles for the stable characteristic classes, Math. Res. Lett. 3 (1996),
629–641.

[8] S. Morita, Characteristic classes of surface bundles, Invent. math. 90 (1987), 551–577.
[9] S. Morita, A linear representation of the mapping class group of orientable surfaces and

characteristic classes of surface bundles, in: Topology and Teichmüller Spaces, World Sci-
entific, Singapore (1996), 159–186.

[10] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in: Arith-
metic and Geometry, Progr. Math. 36 (1983), 271–328.

[11] H. E. Rauch, On the transcendental moduli of algebraic Riemann surfaces, Proc. Nat. Acad.
Sci. U.S.A. 41 (1955), 42–49.

[12] J. D. Stasheff, Homotopy Associativity of H-Spaces, I, Trans. Amer. Math. Soc. 108 (1963),
275–292.



Analysis and Topology in Interaction 773

Stable Homotopy Theory and Quasi-Coherent Sheaves on the

Projective Line

Thomas Hüttemann

(joint work with Stefan Schwede)

Spectra and S-modules. A spectrum is a sequenceX = {X0, X1, . . .} of pointed
spaces (i.e., simplicial sets), equipped with structure maps λi : S

1∧Xi
- X1+i.

(Here S1 = ∆1/∂∆1 is the standard simplicial 1-sphere.) The homotopy groups
πk(X) of X are defined as the colimit of the sequence

πk(X0)
S1∧ ·

- πk+1(S1 ∧X0)
πk(λ0)

- πk+1(X1)
S1∧ ·

- . . .

(if k < 0 the first few terms of this sequence are not defined, but eventually it will
be a sequence of abelian groups).

A more conceptual approach is the following. We consider the sequence X =
{X0, X1, . . .} as a graded space. A particularly important example is the graded
space S := {S0, S1, S2, . . .} , the sequence of spheres (where we define inductively
Sn := S1 ∧ Sn−1).

If X and Y are graded spaces, their tensor product is the graded space X ⊗ Y
defined by

(X ⊗ Y )n =
∨

p+q=n

Xp ∧ Yq .

The tensor product of graded spaces is symmetric monoidal with unit object S0 =
{S0, ∗, ∗, . . . } .

It is easily seen that the associativity isomorphisms Sj ∧ Sk ∼= Sj+k yield a
map S ⊗ S - S of graded spaces. In fact, they equip S with the structure of a
monoid object in the category of graded spaces.

A left S-module is a graded space X together with an action S ⊗ X - X
of S on X (which satisfies the usual associativity and unitality conditions). Since
S is the free associative monoid generated by S1 in degree 1, the category of left
S-modules is equivalent to the category of spectra.

Similarly, we can define a category of right S-modules which is equivalent to
the category of “spectra” with suspensions acting from the right.

Homotopy groups of S-modules. We can now give a reformulation of the
definition of homotopy groups. Given a left S-module X , define a graded abelian
group Πk(X), k ∈ Z, by

Πk(X) :=
⊕

j≥2−k
πj+k(Xj) .

The structure maps of X (considered as a spectrum) induce a degree 1 self-map
of Πk(X). Hence we can consider Πk(X) as a graded Z[L]-module where L is an
indeterminate. The homotopy group πk(X) is naturally isomorphic to the degree
0 part of the localised graded module Πk(X)(L) = Πk(X)⊗Z[L] Z[L,L−1].
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S-Bimodules and their homotopy sheaves. An S-bimodule is a graded space
X equipped with compatible structures S ⊗ X ⊗ S - X as left and right
S-module. Explicitly, an S-bimodule is a collection of pointed simplicial sets
X = {X0, X1, X2, . . .} and structure maps

λn : S1 ∧Xn
- X1+n and ρn : Xn ∧ S1 - Xn+1

such that the following diagram commutes for all n ∈ N:

S1 ∧Xn ∧ S1 id∧ρn
- S1 ∧Xn+1

X1+n ∧ S1

λn∧id

?

ρ1+n

- X1+n+1

λn+1

?

Informally, an S-bimodule consists of two spectra with the same underlying graded
space and compatible structure maps.

Given an S-bimodule X , the graded abelian group Πk(X) has the structure of
a graded Z[L,R]-module; the action of the indeterminates L and R are induced
by left and right structure maps λn and ρn, respectively. We denote by π̃k(X) the
associated quasi-coherent sheaf on P1

Z
= Proj (Z[L,R]).

Stable model structures. The projective line has four interesting open subsets:
The projective line itself, two affine lines UL := {R 6= 0} and UR := {L 6= 0},
and the algebraic torus U0 := UL ∩ UR. We call these sets the distinguished open
subsets.

Let U be a distinguished open set. A map f : X - Y of S-bimodules is
called a U -equivalence if for all n ∈ Z the induced map of restrictions of sheaves

π̃n(f)|U : π̃n(X)|U - π̃n(Y )|U
is an isomorphism. Since the homotopy sheaves are quasi-coherent, we can char-
acterise equivalences for U affine by their effect on sections over U : The map
f : X - Y is a U -equivalence if and only if it induces isomorphisms of modules
Γ(U, π̃n(X)) - Γ(U, π̃n(Y )) for all n ∈ Z. Moreover, f is a P1-equivalence if
and only if it is a UL-equivalence as well as a UR-equivalence.

Theorem 1. Let U be a distinguished open subset of P1. The category of S-
bimodules admits a simplicial closed model structure where a map f is a weak
equivalence if and only if it is a U -equivalence. The model structure is stable
in the sense that simplicial suspension and loop functors induce mutually inverse
equivalences on the homotopy category.

The idea here is that an S-bimodule is a homotopical analogue of a quasi-
coherent sheaf on P1, and the U -equivalences capture exactly the homotopical
information living over the subset U .

The four model structures of the theorem are interrelated: If U ⊇ V are distin-
guished open subsets of P1, the identity functor is a left Quillen functor from the



Analysis and Topology in Interaction 775

U -model structure on the category of S-bimodules to the V -structure. Moreover,
morphisms in the P1-homotopy category of S-bimodules are determined by mor-
phisms in the U -homotopy categories with U ranging over the affine distinguished
sets. In other words, we have constructed a “bundle of homotopy categories”
on P1, and morphisms are determined by local data:

Theorem 2. Let X and Z be S-bimodules. Let (S-mod-S)U (X, Z) denote a
space having the homotopy type of a homotopy function complex of maps from X
to Z in the U -model structure of S-bimodules. One can choose these spaces in
such a way that there results a commutative diagram which is homotopy cartesian:

[eqno = (∗)](S-mod-S)P1(X, Z) - (S-mod-S)UR
(X, Z)

(S-mod-S)UL
(X, Z)

?

- (S-mod-S)U0
(X, Z)

?

In particular, the associated long exact Mayer-Vietoris sequence contains a
description of HoP1(X,Z) = π0(S-mod-S)P1(X, Z) in terms of the abelian groups
HoUL

(X,Z), HoUR
(X,Z) and π1(S-mod-S)U0

(X, Z).

Abelian spectra. The above can be re-done in a linearised setting. Let A de-
note a noetherian commutative ring (with unit). An A-abelian spectrum is a
graded simplicial A-module X = {X0, X1, . . .} together with structure maps
(maps of simplicial sets) λn : S1 ∧ Xn

- Xn+1 such that the adjoint maps
Xn

- ΩXn+1 are homomorphisms of simplicial A-modules. Equivalently, we

can prescribe structure maps Ã[S1]⊗AXn
- Xn+1 which are homomorphisms

of simplicial A-modules (where Ã[S1] = A[S1]/A[∗] is the reduce free simplicial
A-module generated by S1, and tensor means level-wise tensor product).

As before, we can give a re-interpretation using graded objects. The category
of graded simplicial A-modules has a symmetric monoidal product given by

(X ⊗A Y )n =
⊕

i+j=n

Xi ⊗A Yj .

The graded simplicial A-module

Ã[S] = {Ã[S0], Ã[S1], . . .}
is a monoid object with respect to the tensor product; the structure maps are
induced by the maps Ã[Si] ⊗A Ã[Sj] - Ã[Si+j ] given by concatenation of
generators; they can also be described as the linearisations of the isomorphisms
Si ∧ Sj - Si+j . An abelian spectrum is then nothing but a left Ã[S]-module,

that is, a graded simplicial A-module equipped with a left action of Ã[S].
It is well known that the category of abelian spectra admits a stable model

structure where a map is a weak equivalence (or fibration) if and only if it is a weak
equivalence (or fibration) of underlying (non-abelian) spectra. Moreover, the
homotopy category of abelian spectra is equivalent to the (unbounded) derived
category of A.
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Abelian S-bimodules. An A-abelian S-bimodule is a graded simplicial A-
module equipped with compatible structures as a left and right Ã[S]-module. Each
abelian S-bimodule X has an underlying S-bimodule (forget the linear structure),
so we know what homotopy sheaves π̃n(X) and U -equivalences should be. Note
that now π̃n(X) is naturally a quasi-coherent sheaf on P1

A, the projective line
over A.

Theorem 3. Let U be a distinguished open subset of P1. The category of A-
abelian S-bimodules admits a simplicial closed model structure where a map is a
weak equivalence if and only if it is a U -equivalence. The model structure is stable
in the sense that simplicial suspension and loop functors induce mutually inverse
equivalences on the homotopy category.

As in the case of S-bimodules the associated homotopy categories for the vari-
ous U assemble to a “bundle of homotopy categories”, giving rise to a homotopy
cartesian sqaure of mapping spaces similar to the diagram (∗) above. This enables
us to identify the homotopy categories of abelian S-bimodules with well-known
objects in algebra:

Theorem 4. Let U be a distinguished open subset of P1
A. The homotopy category

of A-abelian S-bimodules with respect to U -equivalences is equivalent, as a tri-
angulated category, to the (unbounded) derived category of quasi-coherent sheaves
on U . If U is affine (U 6= P1

A), the equivalence can be realised by a Quillen

equivalence of model categories.

Loop Space and Floer Homology

Kenji Fukaya

In this talk I explained an application of the technique to use an L∞ structure of
loop space homology to obtain a restriction of a Lagrangian submanifold. Espe-
cially I discussed the case of the Lagrangian S1 × S2n in C2n+1. It is explained
that the structure of the free loop space of homotopy groups of spheres is related
to such a problem. Especially this implies that that the Maslov index of the gen-
erator γ ∈ π1(S1 × S2n) is 2. Here we take the generator so that there exists
[D2] ∈ π2(C2n+1, L) which bounds γ and such that

∫

D2

ω > 0.
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Lie 2-Algebras and the Geometry of Gerbes

Danny Stevenson

Connections and curvature on a principal G-bundle P →M have a natural inter-
pretation in terms of extensions of Lie algebras: a connection on P is a C∞(M)-
linear splitting A of the short exact sequence

0→ Γ(ad(P ))→ Γ(TP/G)→ Γ(TM)→ 0

of Lie algebras. Here Γ(ad(P )) denotes the sections of the adjoint bundle ad(P )
associated to P , or, what is the same thing, invariant vertical vector fields on P .
Likewise Γ(TP/G) denotes the invariant vector fields on P . This exact sequence
is the infinitesimal version of the exact sequence of groups

1→ Gauge(P )→ AutG(P )→ Diff(M)→ 1

where AutG(P ) denotes the bundle automorphisms of P and Gauge(P ) denotes
the automorphisms of P covering the identity on M . The curvature FA of A
measures the failure of A to be a homomorphism of Lie algebras:

FA(X,Y ) = [A(X), A(Y )]−A[X,Y ] X,Y ∈ Γ(TM)

The data of A, FA and the Bianchi identity for FA can be neatly encoded as the
data of a weak homomorphism of Lie 2-algebras

∇ : Γ(TM)→ DER(ad(P ))

where Γ(TM) is thought of as a discrete Lie 2-algebra and DER(ad(P )) denotes
the Lie 2-algebra associated to the crossed module

Γ(ad(P ))→ Der(Γ(ad(P )))

arising from the action of Γ(ad(P )) on itself by derivations. Recall [4] that a Lie
2-algebra L is a category internal to LieAlg, thus L consists of

• a Lie algebra of objects L0

• a Lie algebra of morphisms L1

such that all of the structure maps of L are Lie algebra homomorphisms. There ex-
ist weakened versions of Lie 2-algebras, so-called semi-strict Lie 2-algebras. These
are closely related to L∞-algebras.

Starting with the seminal work of Breen and Messing [3], various authors [1, 2]
have developed a theory of connections on non-abelian gerbes. The aim of our
talk was how to show that this quite complicated theory could be neatly encoded
using the language of Lie 2-algebras. A G-gerbe on M for G a compact Lie group
consists of the following data:

• a surjective submersion π : P→M

• a right action P × AUT(G) → P of the automorphism 2-group AUT(G)
on P.
• the natural map P × AUT(G) → P ×M P is required to be a diffeomor-

phism.
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Here AUT(G) is a certain category internal to Grp, the category of Lie groups,
closely related to the canonical crossed module Ad: G → Aut(G) associated to
G. Thus AUT(G) has a group of objects Aut(G) and a group of morphisms
Aut(G) ⋉ G such that all structure maps are group homomorphisms. M is the
groupoid X [2] ⇉ X associated to a surjective submersion π : X →M . The data of
a connection on such a gerbe can be thought of as a splitting of the exact sequence:

(1) 0→ ad(P)→ TP/G
A←→ TM→ 0

Here ad(P), TP/G and TM are all certain groupoids internal to the category
VectBund of vector bundles. To understand curvature in this setting, one should
consider the following extension of Lie 2-algebras

(2) 0→ Γ(ad(P))→ Γ(TP/G)
A←→ Γ(TM)→ 0

associated to (1). We now find that curvature measures the failure of A to be a
weak homomorphism of Lie 2-algebras. This data can be neatly encoded in a weak
homomorphism

∇ : Γ(TM)→ DER(Γ(ad(P)))
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Eta-Invariants, Torsion Forms and Flat Vector Bundles

Xiaonan Ma

We present a new proof, as well as a C/Q extension (and also certain C/Z exten-
sion), of the Riemann-Roch-Grothendieck theorem of Bismut-Lott for flat vector
bundles. We further show that the Bismut-Lott analytic torsion form can be de-
rived naturally from the transgression of the η-forms appearing in the adiabatic
limit computations. Finally, we explain how to identify precisely the imagenary
part of the η-invariant associated to a non-unitary connection from a deformation
argument. We explain now in more detail way.

Let M be a compact smooth manifold. For any complex flat vector bundle F
over M with the flat connection ∇F . Let k be a positive integer such that kF is a
topologically trivial vector bundle. Let ∇kF0 be a trivial connection on kF , which
can be determined by choosing a global basis of kF . Let k∇F be the connection
on kF obtained from the direct sum of k copies of ∇F .
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The mod Q version of the Cheeger-Chern-Simons character CCS(F,∇F ) is
defined as

(1) CCS(F,∇F ) =
1

k
CS(∇kF0 , k∇F ),

where CS(∇kF0 , k∇F ) is the Chern-Simons class associated to (kF, k∇F ,∇kF0 ). It
determines a well-defined element in Hodd(M,C/Q)

Let hF be a Hermitian metric on F . Set

ω(F, hF ) = (hF )−1(∇FhF ), ∇F,e = ∇F +
1

2
ω(F, hF ).(2)

For any integer j ≥ 0, let c2j+1(F, hF ) be the Chern form (cf. [BL, (0.2)]) defined
by

c2j+1(F, hF ) = (2π
√
−1)−j2−(2j+1)Tr

[
ω2j+1(F, hF )

]
.(3)

Let c2j+1(F ) be the associated cohomology class in H2j+1(B,R), which does not
depend on the choice of hF . Then

Im(CCS(F,∇F )) = − 1

2π

+∞∑

j=0

22jj!

(2j + 1)!
c2j+1(F ),

Re(CCS(F,∇F )) =
1

q
CS(∇qF0 , q∇F,e) in Hodd(B,R/Q).

(4)

Let Z →M → B be a fibred manifold with compact base and fibres. Let e(TZ)
be the Euler class of the vertical tangent vector bundle TZ. The flat vector bundle
(F,∇F ) over M induces canonically a Z-graded flat vector bundle H∗(Z,F |Z) =

⊕dimZ
i=0 Hi(Z,F |Z) over B (cf. [BL]). Let ∇H∗(Z,F |Z ) = ⊕dimZ

i=0 ∇H
i(Z,F |Z) denote

the corresponding flat connection induced from ∇F .

Theorem 1. We have the following identity in Hodd(B,C/Q),

∫

Z

e(TZ)CCS(F,∇F ) =

dimZ∑

i=0

(−1)iCCS(Hi(Z,F |Z),∇Hi(Z,F |Z)).(5)

The imagenary part of (5) is Bismut-Lott’s Riemann-Roch-Grothendieck for-
mula [BL]. It turns out that the real part of (5) has been obtained by Bismut in
[B3, Theorem 0.2] under the extra condition that TZ is fibre-wise oriented.

In this talk, we present a new approach to the imagenary part of (5) based
on considerations of the adiabatic limits of η-invariants of Atiyah-Patodi-Singer
[APS3] associated to the so-called sub-signature operators. Besides giving a new
proof of (5), our method also provides the real part of (5).

From another aspect, in view of the R/Z-index theory developed by Lott [L],
one can refine the real part of (5) to an identity in K−1

R/Z(B) if Z is even dimensional

and spinc. Suppose that Z is even dimensional and spinc. Let S(TZ) = S+(TZ)⊕
S−(TZ) be the spinor bundle of TZ. Lott defined a topological index Indtop
mapping from K−1

R/Z(M) to K−1
R/Z(B). We denote by C the trivial complex line
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bundle carrying the trivial metric and connection. Then F = [(F, hF ,∇F,e, 0) −
rk(F )C] ∈ K−1

R/Z(M). Set

I(F ) =

n∑

i=0

(−1)i
(
Hi(Z,F |Z), hH

i(Z,F |Z),∇Hi(Z,F |Z ),e, 0
)
.(6)

Theorem 2. In K−1
R/Z(B), we have

Indtop((S
+(TZ)∗ − S−(TZ)∗)⊗F) = I(F )− rk(F )I(C).(7)

Finally, assume that M is an odd dimensional oriented closed spin manifold
carrying a Riemannian metric gTM . Let S(TM) be the associated Hermitian
bundle of spinors. Let E be a Hermitian vector bundle over M carrying a unitary
connection ∇E .

Let DE⊗F,e : Γ(S(TM) ⊗ E ⊗ F ) −→ Γ(S(TM) ⊗ E ⊗ F ) be the Dirac op-
erator associated to the connection ∇F,e on F and ∇E on E. Let DE⊗F be the
corresponding Dirac operator associated to the connection ∇F on F and ∇E on
E. Then DE⊗F,e is formally self-adjoint, and DE⊗F is not formally self-adjoint if
∇F does not preserve hF .

Let η
(
DE⊗F ), η

(
DE⊗F,e) be the associated reduced eta invariants. Then we

can identify the imagenary part of η
(
DE⊗F ) as following.

Re
(
η
(
DE⊗F )) ≡ η

(
DE⊗F,e) mod Z,(8)

Im
(
η
(
DE⊗F )) = − 1

2π

∫

M

Â(TM)ch(E)

+∞∑

j=0

22jj!

(2j + 1)!
c2j+1(F ).

This is a joint work with Weiping Zhang (Chern Institute of Mathematics,
Nankai University, China (weiping@nankai.edu.cn)).
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An Invariant Based on the Conformal Laplacian

Christian Bär

(joint work with M. Dahl)

This talk is based on the paper [1]. Throughout the talk let M be a compact
oriented differentiable manifold of dimension n ≥ 3. Given a Riemannian metric g
on M the Conformal Laplacian (or Yamabe operator) Yg is defined as

Yg = ∆g +
n− 2

4(n− 1)
· Scalg : C∞(M)→ C∞(M) ⊂ L2(M)

where ∆g = d∗d is the Laplacian and Scalg is the scalar curvature of g. The
operator Yg is an elliptic differential operator of second order, essentially self-
adjoint in L2(M). Let µ0(g) ≤ µ1(g) ≤ µ2(g) ≤ . . . be the spectrum of Yg, the
eigenvalues being repeated according to their multiplicities. Let f be a positive
smooth function on M . The Conformal Laplacian of the conformally related metric

g = f
4

n−2 g is given by

(1) Ygu = f− n+2
n−2Yg(fu).

Applying (1) to the function u ≡ 1 gives the formula

(2) Scalg =
4(n− 1)

n− 2
f− n+2

n−2Ygf

for the scalar curvature of g.

We now introduce a differential topological invariant of a compact manifold by
counting the number of small eigenvalues of the Conformal Laplacian.

Definition 1. Let M be a compact differentiable manifold. The κ-invariant κ(M)
is defined to be the smallest integer k such that for every ε > 0 there is a Rie-
mannian metric gε on M for which

{
µk(gε) = 1,
|µi(gε)| < ε, 0 ≤ i < k.

If no such integer exists set κ(M) :=∞.

Heuristically, κ(M) is the dimension of the “almost-kernel” of the Conformal
Laplace operator.

By rescaling the metrics gε accordingly one sees that κ(M) is also the smallest
integer k such that for each constant C > 0 there exists a Riemannian metric gC
for which {

µk(gC) > C,
|µi(gC)| ≤ 1, 0 ≤ i < k.

Hence κ(M) tells us which is the first eigenvalue that can be made arbitrarily large
for appropriate metrics while keeping the preceeding ones bounded.
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If we made this definition using the Laplace operator acting on p-forms instead of
the Conformal Laplacian, then by Hodge theory the resulting invariant would be
nothing but the pth Betti number bp(M).

¿From the fact that the spectrum of the disjoint union M1 ∐M2 is the disjoint
union of the spectra of M1 and of M2 it follows that

(3) κ(M1 ∐M2) = κ(M1) + κ(M2).

The next proposition concerns the relation between κ(M) and scalar curvature.

Proposition 1. Let M be a compact differentiable manifold of dimension n ≥ 3.
Then

(1) κ(M) = 0 if and only if there is a metric of positive scalar curvature on
M .

(2) If M has a metric with Scal ≥ 0, then κ(M) ≤ b0(M).

Proof. If κ(M) = 0, then there is a metric with µ0 = 1. The corresponding eigen-

function f0 can chosen to be positive. From Equation (2) it follows that g = f
4

n−2

0 g
has positive scalar curvature. Conversely, if g is a metric of positive scalar curvature
on M , then Yg > 0 and we can rescale so that µ0 = 1. Hence κ(M) = 0.

For a metric g with Scal ≥ 0 on M we have Yg = ∆g ≥ 0 and the zero eigenspace
consists of the locally constant functions. Hence µ0(g) = . . . = µb0(M)−1(g) = 0
and µb0(M)(g) > 0. �

The following theorem controls the spectrum of Yg under surgeries of codimen-
sion at least three. This enables us to examine the behavior of κ(M) under such
surgeries.

Theorem 1. Let (M, g) be a closed Riemannian manifold. Let M̃ be obtained
from M by surgery in codimension at least three. Then for each k ∈ N and for

each ε > 0 there exists a Riemannian metric g̃ on M̃ such that the first k + 1
eigenvalues of the operators Yg and Yeg are ε-close, that is

|µj(g)− µj(g̃)| < ε

for j = 0, . . . , k.

As an immediate consequence we obtain

Corollary 1. Let M be a compact differentiable manifold of dimension n ≥ 3.

Suppose M̃ is obtained from M by surgery of codimension ≥ 3. Then

κ(M̃) ≤ κ(M).

Hence for any κ0 ∈ N0 the property of having κ ≤ κ0 is preserved under surgery of
codimension at least three. For κ0 = 0 this means that the property of admitting
a metric of positive scalar curvature is preserved under such surgeries. This is a
famous by now classical result of Gromov and Lawson [3]. We do not give a new
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proof of this fact since we use the work of Gromov and Lawson when we prove
Theorem 1.

As to the case κ0 = 1 it is interesting to note that the property of allowing a scalar
flat metric is not preserved under such surgeries. It follows that the converse of
statement (2) in Proposition 1 does not hold. For example, the n-dimensional torus
T n has a flat metric but no metric of positive scalar curvature [4]. Thus κ(T n) = 1.
Performing surgery in codimension at least three on T n yields a manifold Mn not
admitting metrics with positive or zero scalar curvature. Yet we have κ(Mn) = 1.

Also note that the condition κ = 0 is not preserved under surgery of codimension
2. Like any compact connected 3-manifold the 3-torus T 3 can be obtained from S3

by a sequence of surgeries in codimension 2. But we have κ(T 3) = 1 > κ(S3) = 0.
This also shows that Theorem 1 cannot hold for surgeries in codimension less than
three.

The κ-invariant measures how close Y can come to being a positive operator for
some Riemannian metric on M . Since Y is positive if and only if M allows a metric
of positive scalar curvature one can also view κ as a measure of how close one can
get to having positive scalar curvature. Therefore it is not unreasonable to suspect
that κ is related to the Â or α-genus of M , the primary obstruction to allowing
metrics of positive scalar curvature. We show that this indeed is the case. On the
one hand we have

Theorem 2. Let M be a compact spin manifold of dimension n = 4m. Then

|Â(M)| ≤ 22m−1κ(M).

This together with a classical eigenvalue estimate by Cheeger [2] implies the fol-
lowing isoperimetric result.

Corollary 2. Let M be a compact spin manifold of dimension n = 4m with

|Â(M)| > 22m−1. Then there exists a constant C = C(M) such that for each
Riemannian metric with | Scal | ≤ 1 there exists a hypersurface S ⊂ M dividing
M into two connected components M1 and M2 such that

voln−1(S) ≤ C ·min{voln(M1), voln(M2)}.

On the other hand, we can bound κ(M) from above in terms of the dimension and
the α-genus, at least for simply connected manifolds of dimension n ≥ 5. First we
make the following

Observation. Let M be a simply connected compact differentiable manifold of
dimension n ≥ 5. If M is non-spin or if n ≡ 3, 5, 6, 7 mod 8 then

κ(M) = 0.

This comes from the fact that in these cases M is well-known to carry a metric of
positive scalar curvature, see [3], [5].
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In dimensions n ≡ 0 mod 4 the α-genus of a spin manifold is integer-valued and
it essentially coincides with the Â-genus. More precisely, if n = 8l then α(M) =

Â(M) while if n = 8l + 4 then α(M) = 1
2 Â(M).

Theorem 3. Let M be a simply connected differentiable manifold of dimension
n ≡ 0 mod 4. Write n = 8l or n = 8l + 4 with l ≥ 1 and let |α(M)| = 4lp + q,
p ≥ 0, 0 ≤ q < 4l. Then

κ(M) ≤ p+ min{q, l}.

As a special case we see that for spin manifolds as in the Theorem we have κ = 1
if α = 1. In dimensions n ≡ 1, 2 mod 8 this and the converse is true. In those
dimensions we have α(M) ∈ KO−n(pt) ∼= Z/2Z. By |α(M)| ∈ Z we mean 0 if
α(M) is trivial and 1 otherwise.

Theorem 4. Let M be a simply connected spin manifold of dimension n = 8l+ 1
or 8l+ 2, l ≥ 1. Then

κ(M) = |α(M)|.

This shows that κ(M) can distinguish certain exotic spheres. In particular, κ(M)
is not invariant under homeomorphisms, only under diffeomorphisms.

Even though Theorem 2 shows that κ(M) can become arbritrarily large it turns
out that in a stable sense it takes only the values 0 and 1. More precisely, let B
be a compact simply connected 8-dimensional spin manifold with Â(B) = 1. Then
α(M ×B) = α(M) for all spin manifolds M .

Theorem 5. Let M be a simply connected spin manifold. Then

κ(M ×Bp) ≤ 1

for all sufficiently large p.
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The Universal Functorial Equivariant Lefschetz Invariant

Julia Weber

The Lefschetz number is a classical invariant in algebraic topology. It is an integer
L(f) ∈ Z associated to an endomorphism f : X → X and contains fixed point
information: If L(f) 6= 0, then f has a fixed point. Generalisations which give
more precise lower bounds on the number of fixed points (generalised Lefschetz
invariant λ(f) [5, 8]) or which capture all iterates of f at the same time (Lefschetz
zeta function [1, 2]) have been developed.

An invariant which maps to all of these generalisations and still has the char-
acteristic properties of the Lefschetz number, namely homotopy invariance and
additivity, has been constructed by Lück [4]. We generalise this construction to
the equivariant setting, for all discrete groups G.

On the one hand, this gives finer invariants. The extra structure given by a
G-action on a space is taken into account. On the other hand, this generalisation
enlarges the scope of the invariant. If we have an infinite discrete group G acting
properly on a finite G-CW-complex X , the space X seen as a CW-complex is infi-
nite. This situation cannot be treated by the classical theory, but the equivariant
version can be applied.

1. Construction of the invariant

We recall the construction of the universal functorial Lefschetz invariant [4].
Given an endomorphism f : X → X of a finite connected CW-complex X , we lift

it to an endomorphism f̃ : X̃ → X̃ of the universal covering space X̃ of X . We
then consider the map induced on the cellular chain complex,

C∗(f̃) : C∗(X̃)→ C∗(X̃).

This endomorphism of a Zπ1(X)-chain complex is not quite equivariant, it is

twisted by the map φ : π1(X) → π1(X) induced by f . For y ∈ C∗(X̃) and γ ∈
π1(X) we have C∗(f̃)(yγ) = C∗(f̃)(y)φ(γ). (We have to choose a basepoint x ∈ X
and a path from f(x) to x, but since the construction turns out to be independent
of these choices we neglect them in this presentation.)

Definition 1. Let DX,f be the additive category whose objects are the φ-twisted
endomorphims of finitely generated free Zπ1(X)-modules. We set

U(X, f) := K0(DX,f )

u(f) := [C∗(f̃)] =
∑

(−1)i[Ci(f̃)] ∈ K0(DX,f ).

The assignment U extends to a functor on the category of endomorphisms of
finite CW-complexes, and for every endomorphism f : X → X the function u picks
an element in the corresponding abelian group. They satisfy homotopy invariance
(U is a homotopy invariant functor, and u is compatible with homotopy equiva-
lences) and additivity. Thus the pair (U, u) is a functorial Lefschetz invariant [4,
Definition 2.3].
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Theorem 1. [4, Theorem 2.5] The pair (U, u) is the universal functorial Lefschetz
invariant for endomorphisms of finite CW-complexes.

We extend this result to the equivariant setting. For discrete groups G, we con-
sider G-equivariant endomorphisms of finite proper G-CW-complexes X . (These
are defined like CW-complexes, cells being of the form G/H ×Di for finite sub-
groups H ≤ G.)

We need a generalisation of the fundamental group to G-spaces, and the right
notion is the fundamental category Π(G,X) [3, Definition 8.15]. It is a mixture of
the fundamental groupoid of X and the orbit category of G.

A ZΠ(G,X)-module is defined to be a functor Π(G,X)→ Ab, and morphisms
are defined to be natural transformations. (Note the analogy: If we view the group
π1(X) as a category with one object, then a Zπ1(X)-module becomes a functor
π1(X)→ Ab.)

There is a functor X̃ : Π(G,X) → T op which generalises the notion of uni-
versal covering space to G-spaces [3, Definition 8.22]. It incorporates information
about all fixed point sets XH , their components and the respective universal cover-

ings. We also have an endomorphism f̃ : X̃ → X̃. The equivariant endomorphism
f : X → X induces φ : Π(G,X)→ Π(G,X), and on the cellular chain complex we
obtain a φ-twisted endomorphism of ZΠ(G,X)-modules

C∗(f̃) : C∗(X̃)→ C∗(X̃).

Definition 2. Let EG,X,f be the additive category consisting of all φ-twisted en-
domorphims of finitely generated free ZΠ(G,X)-modules. We set

UG(X, f) := K0(EG,X,f )

uG(f) :=
[
C∗(f̃)

]
=
∑

(−1)i
[
Ci(f̃)

]
∈ K0(EG,X,f ).

The pair (UG, uG) satisfies G-homotopy invariance and additivity for diagrams
of G-equivariant maps. In addition, we have an induction structure in G. We call
a pair satisfying all these properties a functorial equivariant Lefschetz invariant [6,
Definition 2.3]. The pair constructed here has a universal initial property among
all functorial equivariant Lefschetz invariants.

Theorem 2. [6, Theorem 0.1] The pair (UG, uG) is the universal functorial equi-
variant Lefschetz invariant for equivariant endomorphisms of finite proper G-CW-
complexes, for discrete groups G.

2. Splitting result and applications

The invariant (UG, uG) contains much information, and UG(X, f) can be quite
large. We see that the abelian group UG(X, f) has a direct sum decomposition
into summands corresponding to the fixed point sets XH , for subgroups H ≤ G.
This not only gives structural insight but is also helpful for concrete calculations.
The information contained in uG(f) splits up into the information given by the
restrictions of f to the pairs (XH , X>H), where X>H is the subset of XH of points
with larger isotropy group than H .
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The decomposition is obtained from a K-theoretic splitting theorem. This is
valid for all K-groups, not only for K0. For the sake of clarity of presentation, we
formulate it here under the assumption that all fixed point sets XH are connected.
Otherwise we have consider the components of the fixed point sets.

Theorem 3. [6, Theorem 4.3] Let all fixed point sets XH be connected. Then for
all n ∈ Z we have

Kn(EG,X,f) ∼=
⊕

(H)∈consub(G)

Kn(EHG,X,f).

Here (H) runs through the set of conjugacy classes of subgroups of G. The category
EHG,X,f consists of twisted endomorphisms of ZAH-modules, where AH is the group

extension 1 → π1(XH) → AH → WH → 1, with WH := NGH/H denoting the
Weyl group of H in G.

The study of Lefschetz invariants was motivated by interest in fixed points. In
order to extract fixed point information, we define a trace map.

Definition 3. There is a trace map

trG : K0(EG,X,f) →
⊕

(H)∈consub(G)

Zπ1(XH)/ ∼ =: ΛG(X, f)

uG(f) 7→ λG(f).

We call the pair (ΛG, λG) the generalised equivariant Lefschetz invariant.

The idea of the trace map is as follows: An element in K0(EHG,X,f ) can be

represented by a matrix B with entries in ZAH . We define the trace map on B
by taking the sum of the π1(XH)-part of the diagonal elements modulo a twisted

conjugacy relation, trG(B) :=
∑

bii ∈ Zπ1(XH)/ ∼. This trace map is a variation
of the trace map from K-theory to Hochschild homology.

The claim that λG(f) contains fixed point information is made precise by the
refined equivariant Lefschetz fixed point theorem. It shows that the generalised
equivariant Lefschetz invariant λG(f) is equal to the sum of all fixed point contri-
butions.

Theorem 4. [6, Theorem 0.2] Let G be a discrete group, let M be a cocompact
proper smooth G-manifold and let f : M → M be a G-equivariant endomorphism
such that Fix(f) ∩ ∂M = ∅ and such that for every x ∈ Fix(f) the determinant of
the map (idTxM − Txf) is nonzero. Then

λG(f) =
∑

Gx∈G\Fix(f)

bx ∈ ΛG(M, f),

where bx is the contribution of the fixed point orbit of x.

If all isotropy groups Gx are of odd order, then

bx =
det
(
idTxM − Tx(f)

)
∣∣det

(
idTxM − Tx(f)

)∣∣ · βx ∈ Zπ1

(
MGx

)
/ ∼ ⊆ ΛG(M, f),
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where βx is the equivalence class of the loop [t ∗ f(t)−1 ∗ w] ∈ π1(MGx , z). (Due
to the equivalence relation, the element bx is independent of the choices involved.)

x = f(x)
f(t)−1

##
f(z)

w

}}
z

t

>>

Generalisations of the Lefschetz number can be used to obtain more precise
lower bounds on the number of fixed points of an endomorphism. These statements
use the Nielsen number N(f), which is defined using the generalised Lefschetz
invariant λ(f).

Based on the generalised equivariant Lefschetz invariant λG(f), we can intro-
duce equivariant Nielsen invariants. These give lower bounds for the number of
fixed point orbits in the G-homotopy class of f . Under mild hypotheses, these
bounds are sharp. These results generalise results of Wong [9] (for compact Lie
groups) to all discrete groups G.

We use them to prove the converse of the equivariant Lefschetz fixed point
theorem.

Theorem 5. [7, Theorem 6.2] Let G be a discrete group, and let M be a cocompact
proper smooth G-manifold satisfying the standard gap hypotheses, i.e., dimMH ≥
3 and dimMH−dimM>H ≥ 2 for all H ≤ G. Let f : M →M be a G-equivariant
endomorphism. Then

λG(f) = 0 =⇒ f is G-homotopic to a fixed point free G-map.
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Refined Analytic Torsion

Maxim Braverman

(joint work with Thomas Kappeler)

We construct a canonical element, called the refined analytic torsion, of the de-
terminant line of the cohomology of a closed oriented odd-dimensional manifold
M with coefficients in a flat complex vector bundle E. The refined analytic tor-
sion depends holomorphically on the flat connection on E and, hence, defines a
holomorphic section of the the determinant line bundle over the space of complex
representations of the fundamental group of M . We compute the Ray-Singer norm
of the refined analytic torsion. In particular, if there exists a flat Hermitian metric
on E, we show that this norm is equal to 1. The refined analytic torsion also
encodes the information about the η-invariant of the Atiyah-Patodi-Singer odd
signature operator. In particular, when the bundle E is acyclic, the refined ana-
lytic torsion is a non-zero complex number, whose absolute value is equal (up to an
explicit correction term) to the Ray-Singer torsion and whose phase is expressed in
terms of the η-invariant. The fact that the Ray-Singer torsion and the η-invariant
can be combined into one holomorphic function allows to use the methods of com-
plex analysis to study both invariants. We present several applications of these
methods. In particular, we compute the ratio of the refined analytic torsion and
the Turaev refinement of the combinatorial torsion.

Definition of the refined analytic torsion. Let M be a closed oriented odd
dimensional manifold. Denote by Rep(π1(M),Cn) the space of n-dimensional com-
plex representations of the fundamental group π1(M) of M . For α ∈
Rep(π1(M),Cn) we denote by Eα the flat vector bundle overM whose monodromy
is equal to α. Let ∇α be the flat connection on Eα. We defined a canonical non-
zero element

ρan(α) = ρan(∇α) ∈ Det
(
H•(M,Eα)

)

of the determinant line Det
(
H•(M,Eα)

)
of the cohomology H•(M,Eα) of M

with coefficients in Eα. This element, called the refined analytic torsion, carries
information about the Ray-Singer metric and about the η-invariant of the Atiyah-
Patodi-Singer odd signature operator. In particular, if α is a unitary connection,
then the Ray-Singer norm of ρan(α) is equal to 1. If, in addition, the representation
α is acyclic, then Det

(
H•(M,Eα)

)
is canonically isomorphic to C and ρan(α) can

be viewed as a non-zero complex number. For unitary acyclic representation the
absolute value of this number is equal to the Ray-Singer torsion, while its phase
is equal, up to an explicitly calculated correction term, to the η-invariant.

The construction of the refined analytic torsion is based on the study of the
graded determinant of the Atiyah-Patodi-Singer odd signature operator. If the
representation α is not unitary, this operator is not self-adjoint. To carry out the
construction of the refined analytic torsion we proved several new results about
determinants of non-self-adjoint operators, which have an independent interest.
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Analyticity of the refined analytic torsion. The disjoint union of the lines
Det

(
H•(M,Eα)

)
, (α ∈ Rep(π1(M),Cn)), forms a line bundle

Det→ Rep(π1(M),Cn),

called the determinant line bundle. It admits a nowhere vanishing section, given
by the Turaev torsion, and, hence, has a natural structure of a trivialisable holo-
morphic bundle.

We prove that ρan(α) is a nowhere vanishing holomorphic section of the bun-
dle Det. It means that the ratio of the refined analytic and the Turaev torsions
is a holomorphic function on Rep(π1(M),Cn). For an acyclic representation α,
the determinant line Det

(
H•(M,Eα)

)
is canonically isomorphic to C and ρan(α)

can be viewed as a non-zero complex number. We show that ρan(α) is a holo-
morphic function on the open set Rep0(π1(M),Cn) ⊂ Rep(π1(M),Cn) of acyclic
representations.

Recently, Burghelea and Haller [5, 6] constructed another holomorphic function
on the space of acyclic representations, whose absolute value is related to the
Ray-Singer torsion. Their function is different from ours and is not related to the
η-invariant.

Comparison with the Turaev torsion. In [10, 11], Turaev constructed a refined ver-
sion of the combinatorial torsion associated to a representation α, which depends
on additional combinatorial data, denoted by ǫ and called the Euler structure, as
well as on the cohomological orientation of M , i.e., on the orientation o of the de-
terminant line of the cohomology H•(M,R) of M . In [8], the Turaev torsion was
redefined as a non-zero element ρǫ,o(α) of the determinant line Det

(
H•(M,Eα)

)
.

One of our main results states that, for each connected component C of the
space Rep(π1(M),Cn), there exists a constant θ ∈ R, such that

(1)
ρan(α)

ρǫ,o(α)
= eiθ · fǫ,o(α),

where fǫ,o(α) is a holomorphic function of α ∈ Rep(π1(M),Cn), given by an
explicit local expression.

Recently, Rung-Tzung Hunag [9] showed by an explicit calculation for lens
spaces that the constant θ might depend on the connected component C. He also
proved that θ is independent of the Euler structure ǫ.

Sketch of the proof of formula (1). Using the calculation of the Ray-Singer norm of
the Turaev torsion, given in Theorem 10.2 of [8] and the formula for the Ray-Singer
norm of the refined analytic torsion [2, Th. 11.3], we obtain that

(2)

∣∣∣∣
ρan(α)

ρǫ,o(α)

∣∣∣∣ = |fǫ,o(α)|.

Both, the left and the right hand side of this equality, are absolute values of
holomorphic functions. If the absolute values of two holomorphic functions are
equal, then the two functions are equal up to a multiplication by a locally constant
function, whose absolute value is equal to one. Hence, (1) follows from (2).
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Application: relation of the η-invariant with the phase of the Turaev torsion. If α ∈
Rep0(π1(M),Cn) is an acyclic unitary representation, then the refined analytic tor-
sion ρan(α) is a non-zero complex number, whose phase is equal, up to a correction
term, to the η-invariant ηα of the odd signature operator corresponding to the flat
connection on Eα. Hence, if α1 and α2 are two acyclic unitary representations
which lie in the same connected component of Rep(π1(M),Cn), equality (1) al-
lows to compute the difference ηα1

− ηα2
in terms of the phases of the Turaev

torsions ρǫ,o(α1) and ρǫ,o(α2). The significance of this computation is that it al-
lows to study the spectral invariant ηα by the methods of combinatorial topology.
With some additional assumptions on the manifold M and on the representations
α1 and α2 a similar result was established in [7] by a completely different method.
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T-duality and Generalised Geometry

Peter Bouwknegt

(joint work with J. Evslin, K. Hannabuss and V. Mathai)

Introduction

References and motivation. My talk [1] was mostly based on the papers [2, 3].
I discussed global aspects of T-duality, and how it leads to various notions of
generalised geometry. In this abstract I will review the case of principal circle
bundles, and how this fits in with the notion of Hitchin’s generalised geometry
[4, 5] (see also [6] for a brief overview of generalised geometry). The analogous
story for principal torus bundles is more involved [3] and requires a generalisation
of generalised geometry [7].
Closed strings on M× S1. The spectrum of a closed bosonic string on a space-
time manifold M × S1

R is invariant under R → 1/R, where R denotes the radius
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of the ‘compactification circle’ S1
R. In fact this, so-called, T-duality (or ‘Target

space duality’) extends to a symmetry of the full string theory. A closed bosonic
string cannot tell the difference between a compactification on a circle of radius R
or a circle of radius 1/R. Generalising this to superstring theories, T-duality can
become an equivalence between different superstring theories (e.g. type IIA on S1

R

and IIB on S1
1/R). T-duality can be generalised to manifolds which are only lo-

cally a product with a circle, i.e. principal circle bundles, to higher rank cases, i.e.
principal torus bundles, and even to torus fibrations (the latter case being closely
related to mirror symmetry through the Strominger-Yau-Zaslow conjecture).
The Buscher rules. While for general manifolds we cannot solve the string
theory exactly, the transformation rules of the massless fields under T-duality can
be derived from an effective nonlinear sigma model by a procedure called ‘gauging
of the isometry’, which leads to a sigma model on the correspondence space of the
T-duality transformation (see below). In particular this leads to a set of trans-
formation rules between the metric gµν and a locally defined antisymmetric rank-2
tensor (2-form) Bµν (whose globally defined 3-form curvature H = dB is known
as the H-flux), known as the Buscher rules.

Global aspects of T-duality

Principal circle bundles. Analysing the Buscher rules leads to the following
global picture of T-duality. Given a pair (E,H), consisting of (an isomorphism
class of) a principal circle bundle over a base manifold M , or equivalently an

element F ∈ H2(M,Z), and an H-flux H ∈ H3(E,Z), the T-dual pair (Ê, Ĥ)

satisfies the relations F̂ = π∗H, F = π̂∗Ĥ

S1 −−−−→ E

π

y

M

S1 −−−−→ Êbπy
M

and is completely determined by requiring the relation

p∗H − p̂∗Ĥ = 0 ,

on the correspondence space E ×M Ê

E

π
��?

??
??

??
??

E ×M Ê

p̂=π×1

��?
??

??
??

?
p=1×π̂

����
��

��
��

M

Ê

π̂
����

��
��

��
�

The Gysin sequence. There is a nice interpretation of the global T-duality
rules above by diagram chasing through the Gysin sequence of the principal circle
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bundle E and the corresponding one for the T-dual Ê [2]

−→ H3(M,Z)
π∗

−−−−→ H3(E,Z)
π∗−−−−→ H2(M,Z)

F∪−−−−→ H4(M,Z) −→
Twisted K-theory. Physically, T-dual string theories are equivalent, and there-
fore should have the same D-brane spectrum. Since D-brane charges are suppos-
edly classified by twisted K-theory this is suggestive of the following theorem

Theorem 1 ([2]). Let (E,H) and (Ê, Ĥ) be T-dual pairs of principal circle bundles
and H-fluxes. There exists an isomorphism between the twisted K-theories (and

similarly for the twisted cohomologies) of E and Ê, i.e. Ki(E,H) ∼= Ki+1(Ê, Ĥ).

An interesting example, worked out in [8], is RP3 × RP7 (considered as an
S1 × S1 principal bundle over CP1 × CP3) with torsion flux of order two (recall
H3(RP3 × RP7,Z) = Z ⊕ Z2), which turns out to be T-dual (by performing two
consecutive S1 T-dualities) to S3 × S7 without flux.

Generalisations of geometry

Hitchin’s Generalised geometry. We will now show how T-duality, as dis-
cussed above, fits in with (Hitchin’s) generalised geometry. The idea behind gen-
eralised geometry is to replace structures defined on the tangent bundle TE by
structures on TE ⊕ T ∗E. In particular we have

• A bilinear form on sections (X,Ξ) ∈ Γ(TE ⊕ T ∗E):

〈(X1,Ξ1), (X2,Ξ2)〉 = 1
2 (ıX1

Ξ2 + ıX2
Ξ1)

• A (twisted) Courant bracket:

[(X1,Ξ1), (X2,Ξ2)]H =([X1, X2],LX1
Ξ2 − LX2

Ξ1

− 1
2d (ıX1

Ξ2 − ıX2
Ξ1) + ıX1

ıX2
H)

• A Clifford algebra: {γ(X1,Ξ1), γ(X2,Ξ2)} = 2〈(X1,Ξ1), (X2,Ξ2)〉
• A Clifford module Ω•(E): γ(X,Ξ) ·Ω = ıXΩ + Ξ ∧ Ω
• A (twisted) differential on Ω•(E): dHΩ = dΩ +H ∧ Ω

If we choose a connection A on the principal circle bundle π : E → M , and
‘dimensionally reduce’ Ω ∈ Ωk(E)S1 and (X,Ξ) ∈ Γ(TE ⊕ T ∗E)S1 as in

Ω = Ω(k) +A ∧Ω(k−1) , X = x+ f∂A , Ξ = ξ + gA ,

where Ω(k),Ω(k−1) ∈ Ω•(M), x ∈ Γ(TM), ξ ∈ Ω1(M), f, g ∈ C∞(M), and simi-

larly for Ê, then we have isomorphisms

τ : Ω•(E)S1 → Ω•(Ê)S1 , τ(Ω(k) +A ∧ Ω(k−1)) = −Ω(k−1) + Â ∧Ω(k)

φ : Γ(TE ⊕ T ∗E)S1 → Γ(T Ê ⊕ T ∗Ê)S1 , φ(x, f ; ξ, g) = (x, g; ξ, f)
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Theorem 2 ([5]). We have

(a) The map τ induces a chain map on the differential complexes

(Ω•(E)S1 , dH)→ (Ω•(Ê)S1 , d bH)

, i.e. τ ◦dH = −d bH ◦ τ , and hence an isomorphism on twisted cohomology.
(b) The map φ is orthogonal with respect to the pairing on TE ⊕ T ∗E, hence

induces an isomorphism on the Clifford algebras.
(c) For v ∈ Γ(TE ⊕ T ∗E)S1 we have τ(γv ·Ω) = γφ(v) · τ(Ω), hence τ induces

an isomorphism of Clifford modules τ : Ω•(E)S1 → Ω•(Ê)S1

(d) φ preserves the twisted Courant bracket.

The theorem shows that T-duality preserves the important structures present in
generalised geometry (such as generalised complex structures, generalised Kähler
structures, etc) and is therefore a convenient framework for T-duality.
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The Farrell-Jones Conjecture for Algebraic K-Theory for

Word-Hyperbolic Groups

Wolfgang Lück

(joint work with Arthur Bartels, Holger Reich)

This is a joint project with Arthur Bartels and Holger Reich. Our main result is

Theorem 1. Let R be an (associative) ring (with unit). Let G be a word-hyperbolic
group. Then the Farrell-Jones Conjecture for algebraic K-theory with coefficients
in R is true for G, i.e. the assembly map

Hn(EVCyc(G); KR)
∼=−→ Kn(RG)

is bijective for all n ∈ Z.

The Farrell-Jones Conjecture was formulated by Farrell-Jones in [2]. For a
survey about the Farrell-Jones Conjecture and the Baum-Connes Conjecture and
their status we refer for instance to [4]. The special case, where G is the fun-
damental group of a closed Riemannian manifold with strictly negative sectional
curvature is already treated in [1].

Theorem 2. Let F be the family of subgroups for which the Farrell-Jones Conjec-
ture for algebraic K-theory with coefficients with arbitrary rings R as coefficients
is true for G. Then:

(1) If G ∈ F and H ⊆ G is a subgroup of G, then G ∈ F ;
(2) If G1 and G2 belong to F , then G1 ×G2 belongs to F ;
(3) Word hyperbolic belong to F ;
(4) Nilpotent groups belong to F ;
(5) Let {Gi | i ∈ I} be a directed system of groups Gi ∈ F . (We do not require

the structure maps Gi → Gj to be injective.) Then colimi∈I Gi belongs to
F ;

(6) Suppose that R is regular with Q ⊆ R. Let 1 → H → G → Q → 1 be
an extension of groups. Suppose that K is either a word hyperbolic group
or an elementary amenable group and that the same is true for Q. Then
Farrell-Jones Conjecture for algebraic K-theory with coefficients in R is
true for G.

We mention some consequences of the Farrell-Jones Conjecture.

• Let R be a principal ideal domain and G ∈ F . Then the reduced projective

class group K̃0(RG), the Whitehead group Wh(G,R) and Kn(RG) for
n ≤ −1 all vanish if G is torsionfree.
• Suppose that G ∈ F . Then the following version of the Bass Conjecture

is true:
Let F be a field of characteristic zero and let G be a group. The

Hattori-Stallings homomorphism induces an isomorphism

K0(FG)⊗Z F → classF (G)f ,
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where classF (G)f consists of functions f : G→ F which vanish on elements
of infinite order and are constant on F -conjugacy classes of elements of
finite order.
• Suppose that G ∈ F . Then the following version of the Bass Conjecture

is true:
Let R be a commutative integral domain and let G be a group. Let

g ∈ G be an element in G. Suppose that either the order |g| is infinite or
that the order |g| is finite and not invertible in R. Then for every finitely
generated projective RG-module the value of its Hattori-Stallings rank
HSRG(P ) at (g) is trivial.
• Moody’s induction result which he proved for virtually poly-cyclic groups

in [5] holds for all groups in F , i.e. the canonical map

colimH⊆G,|H|<∞K0(RH)→ K0(RG)

is bijective for all regular rings R with Q ⊆ R.
• Higson-Lafforgue-Skandalis [3] give groups G for which the Baum-Connes

Conjecture with coefficients is not true. However, as a consequence of our
result these groups G belong to F .
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Problem Session

Notes taken by Sebastian Goette and Thomas Schick

• Bruce Williams: Let F → E
p−→ B be a smooth fibre bundle with n-

dimensional closed fibre. The bundle projection p induces a transfer map
p! : Li(Zπ1B) → Li+n(Zπ1E) in quadratic L-theory (the corresponding
map doesn’t exist in symmetric L-theory). There are natural maps from
quadratic L-theory to the (topological) K-theory of the (reduced) group
C∗-algebra, so we get a diagram

Li(Zπ1B) −−−−→ Ki(C
∗
r π1B)

yp!

Li+n(Zπ1E) −−−−→ Ki+n(C∗
r π1E).
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The question now is whether a corresponding transfer map in K-theory
exists which makes the diagram commutative?

One can look at a corresponding transfer map in topological K-homo-
logy, the left hand side of the Baum-Connes assembly map. It is obtained
by Kasparov product with the class of the fibrewise signature operator
in KK(C(E), C(B)). Is there a corresponding transfer on the right hand
side that makes the following diagram commute? If the Baum-Connes
conjecture is true, this implies the existence of the asked transfer map for
C∗-algebra K-theory.

K•(E) −−−−→ Ktop(Crπ1E)

sig

x ?

x

K•(B) −−−−→ Ktop(Crπ1B) .

Wolfgang Lück suggests to regard pairings with Witt groups.

• Wolfgang Lück: Let G be a loop group. Applying standard spectral se-
quence calculations in equivariant K-theory, calculations of Kitchloo show
that in KG

n (EG) the positive energy representations of G should play an
important role. Unfortunately, there is no theory of equivariant K-theory
for such groups (because they are not locally compact). Ongoing work of
Lück-Joachim should provide a satisfactionary definition.

The question now is, whether there is a corresponding right hand side
“Kn(C∗

rG)” of the Baum-Connes conjecture for such groups, i.e. a suitable
reduced C∗-algebra (or possibly l1-algebra or other associated Banach al-
gebras). This right hand side again should be related to (positive energy)
representations of loop groups (or Kac-Moody groups). Once the right
hand side is defined, an assembly map should be constructed and shown
to be an isomorphism.

Ralf Meyer suggests to study, instead of a hard to define C∗-algebra,
the C∗-category of (unitary) representations. Mike Hopkins suggests to
replace L2(G) by the right hand side of a Peter-Weyl formula. He also
points out that positive energy representations should play a role in the
definition of the wanted C∗-algebra of G, since they are also present in
the definition of KG

n (EG). Moreover, he suggests to look at C∗-algebras
of 2-groups or 2-groupoids.
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• Ulrich Bunke: Let X be a smooth manifold. Then there exists a lift
of the Chern character to smooth versions of K-theory as defined e.g. by
Bunke-Schick or by Hopkins-Singer, and with values in Deligne cohomol-
ogy or equivalently, in Cheeger-Simons differential characters:

K̂•(X)
bch−−−−→ Ĥ•(X,Q)

∥∥∥
y

K̂•(X)
(chtop,chdR)−−−−−−−−→ H•(X,Q)× Ω•(X) .

Question: Can Chern class be lifted in the same way, but with values in
integral Deligne cohomology Ĥ•(X,Z)?

Mike Hopkins explains that he expects that this can be solved, if neces-
sary by adding additional data in the definition of smooth K-theory cycles.

• Thomas Schick: If one twists the signature operator with a vector bundle
with sufficiently small curvature, then the index is a homotopy invariant.
Is the kernel a homotopy invariant as well?

More precisely, fix smooth Riemannian closed manifolds (M, g) and
(M ′, g′) and a homotopy equivalence f : M ′ → M . Is there a constant
δ > 0 (depending on the data which we just fixed) such that for every
bundle (E,∇) with curvature (in sup-norm) bounded by δ the kernels of
DE and D′

f∗E are isomorphic, where DE is the signature operator on M

twisted by (E,∇)?
Goette, Braverman express there expectation that this is quite unlikely.

• Maxim Braverman: Given a flat bundle E → M and an analytic
map f : Flat(E) → C from the set of flat connections, which is gauge
equivariant. As example regard regularised determinants of Dirac opera-
tors twisted by flat bundles. Does this induce an analytic map from the
variety R of representations of π1(M) to C?

Problem: every representation yields a flat bundle; in the neighbor-
hood of a given representation all these bundles are isomorphic (with
non-canonical isomorphism). This way one can construct a map from R
to Flat(E) that is natural only modulo gauge transformations. But such
a map has not yet been constructed analytically.

• Mike Hopkins and Kenji Fukaya: If M is a closed 3-manifold, can one
find a Lagrangian embedding of M into C3? It is known that, if M is hy-
perbolic, then after connected sum with sufficiently many copies of S1×S2

such an embedding exists; but it is complete open how many factors are
needed. It is known that M can not be embedded, but what about M#M?
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• Kenji Fukaya: Find a set of axioms that characterise Gromov-Witten
invariants uniquely; of course as “small” as possible. Note that the ax-
ioms by Kontsevich-Manin are not sufficient. A possible application is the
following: If M is Kähler, use an embedding of M into CPn (or other
N), and then ideas like in the Atiyah-Singer proof of the index theorem to
compute relative Gromov-Witten invariants. Problem: one does not just
want to compute a number, but products in cohomology; even the target
groups vary too much. Another problem: not all classes in M come from
the ambient space N .

• Mike Hopkins: Freed-Hopkins-Teleman show that if G is a compact Lie
group, then the positive energy representations of the loop group of G at
level τ are isomorphic to the twisted equivariant K-theoryKτ+h

G (G), where
h is the dual Coxeter number. If G is simple, simply connected, simply
laced then these representations are also isomorphic to the representations
of the quantum group Gκ, with κ = exp(2πi/(τ + h)).

The problem now is to find a direct relation between the representations
of the quantum group and the twisted equivariant K-theory. This is inter-
esting and should be possible, because the Coxeter number h mysteriously
shows up on both sides.

Reporter: Ansgar Schneider



800 Oberwolfach Report 13/2006

Participants

Sara Azzali

Dipartimento di Matematica
Universita di Roma ”La Sapienza”
Istituto ”Guido Castelnuovo”
Piazzale Aldo Moro, 2
I-00185 Roma

Prof. Dr. Bernard Badzioch

Department of Mathematics
State University of New York at
Buffalo
Buffalo NY 14260-2900
USA

Prof. Dr. Christian Bär

Institut für Mathematik
Universität Potsdam
Postfach 601553
14415 Potsdam

Prof. Dr. Alain Berthomieu

CNRS UMR 5580
Laboratoire Emile Picard
Universite Paul Sabatier
F-31062 Toulouse

Prof. Dr. Jean-Michel Bismut

Mathematiques
Universite Paris Sud (Paris XI)
Centre d’Orsay, Batiment 425
F-91405 Orsay Cedex

Prof. Dr. Peter G. Bouwknegt

Mathematical Sciences Institute
Australian National University
Canberra ACT 0200
Australia

Prof. Dr. Maxim Braverman

Northeastern University
Dept. of Mathematics
360 Huntingon Avenue
Boston MA 02115
USA

Prof. Dr. Ulrich Bunke

Mathematisches Institut
Georg-August-Universität
Bunsenstr. 3-5
37073 Göttingen

Prof. Dr. Alan Carey

Mathematical Sciences Institute
Australian National University
Canberra ACT 0200
Australia

Prof. Dr. Xianzhe Dai

Department of Mathematics
University of California at
Santa Barbara
Santa Barbara, CA 93106
USA

Wojciech Dorabiala

Department of Mathematics
Penn State-Altoona
3000 Ivyside Drive
Altoona, PA 16601
USA

Dr. Christopher Douglas

Dept. of Mathematics
Stanford University
Stanford, CA 94305
USA



Analysis and Topology in Interaction 801

Prof. Dr. Johan L. Dupont

Matematisk Institut
Aarhus Universitetet
Ny Munkegade
DK-8000 Aarhus C

Prof. Dr. Kenji Fukaya

Dept. of Mathematics
Faculty of Science
Kyoto University
Kitashirakawa, Sakyo-ku
Kyoto 606-8502
JAPAN

Prof. Dr. Soren Galatius

Department of Mathematics
Stanford University
Stanford, CA 94305-2125
USA

Prof. Dr. Sebastian Goette

Naturwissenschaftliche Fakultät I
Mathematik
Universität Regensburg
93040 Regensburg

Jochen Heinloth

Fachbereich Mathematik
Universität Duisburg-Essen
Campus Essen
Universitätsstr. 3
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Mathematisches Institut
Universität Münster
Einsteinstr. 62
48149 Münster

Prof. Dr. Wolfgang Lück

Mathematisches Institut
Universität Münster
Einsteinstr. 62
48149 Münster

Xiaonan Ma

Centre de Mathematiques
Ecole Polytechnique
Plateau de Palaiseau
F-91128 Palaiseau Cedex

Dr. Ralf Meyer

Mathematisches Institut
Georg-August-Universität
Bunsenstr. 3-5
37073 Göttingen

Prof. Dr. Jouko Mickelsson

Department of Theoretical Physics
Royal Institute of Technology
SCFAB
S-10691 Stockholm

Dr. Paul Mitchener

Mathematisches Institut
Georg-August-Universität
Bunsenstr. 3-5
37073 Göttingen

Prof. Dr. Jack Morava

Department of Mathematics
Johns Hopkins University
Baltimore, MD 21218-2689
USA

Prof. Dr. Ryszard Nest

Matematisk Afdeling
Kobenhavns Universitet
Universitetsparken 5
DK-2100 Kobenhavn

Prof. Dr. Paolo Piazza

Dipartimento di Matematica
Universita di Roma ”La Sapienza”
Istituto ”Guido Castelnuovo”
Piazzale Aldo Moro, 2
I-00185 Roma

Dr. Hessel Posthuma

Mathematisch Instituut
Radboud Universiteit Nijmegen
Toernooiveld 1
NL-6525 Nijmegen

Prof. Dr. Ken Richardson

Department of Mathematics
Texas Christian University
Box 298900
Ft Worth, TX 76129
USA

Dr. Thomas Schick

Mathematisches Institut
Georg-August-Universität
Bunsenstr. 3-5
37073 Göttingen

Jan Schlüter
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