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Introduction by the Organisers

The workshop Discrete Differential Geometry, organized by Alexander I. Bobenko
(Berlin), Richard W. Kenyon (Vancouver), John M. Sullivan (Berlin) and Günter
M. Ziegler (Berlin), was held March 5th to March 11th, 2006. The meeting was
very well attended, with almost 50 participants, from as far away as Australia and
China.

Discrete differential geometry is a new and active mathematical terrain where
differential geometry (providing the classical theory for smooth manifolds) and
discrete geometry (concerned with polytopes, simplicial complexes, etc.) meet
and interact. Problems of discrete differential geometry also naturally appear
in (and are relevant for) other areas of mathematics. Moreover, the process of
discretizing notions, problems and methods from the smooth theory often brings
out new connections and interrelations between different areas.
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The workshop at Oberwolfach brought together researchers with a wide variety
of backgrounds, including of course discrete geometry and differential geometry,
but also integrable systems, combinatorics, mathematical physics and geometry
processing. The exchange of ideas among different subfields helped to build new
bridges between these mathematical communities.

Discrete differential geometry can be said to have arisen from the observation
that when a notion from smooth geometry (such as the notion of a minimal surface)
is discretized “properly”, the discrete objects are not merely approximations of the
smooth ones, but have special properties of their own which make them form in
some sense a coherent entity by themselves. The discrete theory would seem to
be the more fundamental one: The smooth theory can always be recovered as a
limit, while there seems to be no natural way to predict from the smooth theory
which discretizations will have the nicest properties.

One case where these ideas seem particularly well-developed is for geometries
described by integrable systems. The notion of a discrete integrable system as
given by consistency on a cubic lattice has already shed new light on classical,
smooth integrable systems.

Another theme which arose repeatedly during the workshop was that of circle
patterns and sphere packings. These can be used to discretize conformal maps,
isothermic surfaces, and elastic bending energy.

Since a computer works with discrete representations of data, it is no surprise
that many of the applications of discrete differential geometry are found within
computer science, particularly in the areas of computational geometry, graphics
and geometry processing. The workshop brought theoreticians together with peo-
ple interested in these and other applications.



Discrete Differential Geometry 655

Workshop: Discrete Differential Geometry

Table of Contents

Yuri B. Suris (joint with Alexander I. Bobenko)
Discrete Differential Geometry: Consistency as Integrability . . . . . . . . . . . . 657

Boris Springborn
Circle Patterns, Theory and Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

Jean-Marc Schlenker
Circle Patterns on Singular Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

Wolfgang Kühnel (joint with Thomas F. Banchoff)
Discrete Models of Isoparametric Hypersurfaces in Spheres . . . . . . . . . . . . . 665

Vladimir S. Matveev (joint with Vsevolod V. Shevchishin)
Closed Polyhedral 3-Manifolds with K ≥ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

Max Wardetzky (joint with Klaus Hildebrandt and Konrad Polthier)
Algebraic Topology on Polyhedral Surfaces from Finite Elements . . . . . . . . 670

Ivan Izmestiev (joint with Alexander I. Bobenko)
Alexandrov Theorem, Weighted Delaunay Triangulations, and
Mixed Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

Yves Colin de Verdière
A Spectral Invariant of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676

Robert Connelly (joint with Károly Bezdek)
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Abstracts

Discrete Differential Geometry: Consistency as Integrability

Yuri B. Suris

(joint work with Alexander I. Bobenko)

This talk was based on the ongoing textbook with A. Bobenko [1], and aimed
at giving an overview of an (integrable part of) discrete differential geometry.
We started with recalling the differences between several disciplines with similar
names. While differential geometry investigates smooth geometric shapes, such as
curves and surfaces, with the help of mathematical analysis, and discrete geom-
etry studies geometric shapes with finite number of elements, such as polyhedra,
with an emphasis on their combinatorial properties, discrete differential geometry
develops discrete analogues and equivalents of notions and methods of the smooth
theory. The aims are, on the one hand, a better understanding of the nature and
properties of the smooth objects, and, on the other hand, satisfying the needs and
requirements of applications in modelling, computer graphics etc.

Then we recalled some stages of the historical development of discrete differen-
tial geometry: early work of R. Sauer in 1920-30s on bending of discrete surfaces
vs. isometric deformations of smooth surfaces; his and W. Wunderlich’s work
of 1950 [2, 3] on discrete pseudospheric surfaces; important monograph “Differen-
zengeometrie” by R. Sauer in 1970 [4]; and the more recent achievements which
arose from the interaction of the discrete differential geometry with the theory of
integrable systems, and started with the work of A. Bobenko, U. Pinkall of
1995 [5] on discrete pseudospheric surfaces, discrete isothermic surfaces and dis-
crete minimal surfaces, and with the work of A. Doliwa, P. Santini of 1997 [6]
on multi-dimensional discrete conjugate and orthogonal nets.

After that, several classes of discrete nets were considered, with an emphasis
on the following two basic ideas: first, complicated geometry of the corresponding

Figure 1. From discrete nets to transformations of smooth nets
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smooth nets and their transformations can be most easily comprehended by tracing
it back to certain incidence theorems of elementary geometry, and second, these
elementary geometric properties ensure the multidimensional consistency of the
corresponding discrete nets. It is this multidimensional consistency property which
is responsible for the existence of remarkable transformations with permutability
properties. Actually, on the discrete level the nets do not differ essentially from
their transformations, and the theory becomes complicated only upon the smooth
limit accompanied by the break of symmetry between coordinate directions (cf.
Fig. 1). Further, the multidimensional consistency is responsible for the possibility
to apply the powerful analytic machinery to the geometric problems at hand. In
other words, it is the multidimensional consistency property that can and should
be interpreted as integrability of the corresponding geometries.

The most fundamental class of discrete nets consists of the discrete conjugate
nets f : Zm → Rn, characterized by the property that four vertices f(u), f(u+ei),
f(u + ej) and f(u + ei + ej) of each elementary quadrilateral lie in a plane. A
construction of an elementary hexahedron of a discrete conjugate net with m = 3:
given 7 points f , fi, fij with planar quadrilaterals (f, fi, fij , fj), find the 8th
point f123 so that the quadrilaterals (fi, fij , f123, fik) are planar as well. This
problem has a unique solution, since the planes in a three-dimensional space in-
tersect (generically) in exactly one point. In this sense, discrete conjugate nets
consist of a 3D system, schematically presented on Fig. 2. This system is 4D con-

f

f3

f12

f1

f13

f2

f23 f123

Figure 2. 3D system

sistent (and, as a consequence, m-dimensionally consistent for all m ≥ 4), which
is schematically presented on Fig. 3.

Another remarkable class of discrete nets described by a 3D system featuring
4D consistency constitute discrete asymptotic nets f : Zm → R3, characterized by
the property that all neighbor points f(u± ei) of f(u) lie in a plane P(u) through
f(u). In this case the underlying incidence theorem is that of Möbius on the pairs
of mutually inscribed tetrahedra.

Important reductions of discrete conjugate nets appear if one requires that all
points lie on a quadric, or that all elementary quadrilaterals have parallel diagonals
(discrete Moutard nets). Admissibility of these reductions is again based on
some remarkable incidence theorems (the theorem on the 8th associated point in
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Figure 3. 4D consistency

the case of a reduction to a quadric, and the Pappos’ theorem on quadrangular
sets in the discrete Moutard case; in the particular case when the quadric under
consideration is a sphere, the corresponding incidence theorem is that of Miquel).
Upon imposing one such reduction, the system remains 3D and inherits the 4D
consistency.

If two such reductions are imposed simultaneously, one arrives at discrete nets
described by 2D systems featuring the crucial property of 3D consistency. The
most prominent example constitute discrete Moutard nets in quadrics. Discrete
pseudospherical surfaces and discrete isothermic surfaces are particular instances
of this construction (in the first case, the quadric is the two-sphere, while in the
second – the light cone of the Minkowski space which serves as an ambient space
of the projective model of Möbius geometry).

In conclusion, it has been stressed that multidimensional consistency serves as
the organizing principle of integrable discrete differential geometry.
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Circle Patterns, Theory and Practice

Boris Springborn

We give a very brief and incomplete overview of the theory of circle patterns and
some applications. The roots of this subject area lie in the investigation of polyhe-
dra in hyperbolic 3-space. The vertices need not be contained in hyperbolic space;
they may lie on the sphere at infinity (ideal vertices) and even outside (hyperideal
vertices). But we will assume that all edges intersect hyperbolic space. At each
edge e the adjacent faces enclose a dihedral angle φ ∈ (0, π). The exterior dihedral
angle is θ = π− φ. The sum of exterior dihedral angles at the edges incident with
a vertex v is < 2π (= 2π, > 2π) if the vertex is finite (ideal, hyperideal). Andreev
classified non-obtuse angled hyperbolic polyhedra with finite and ideal vertices.

Theorem (Andreev [1] [2]). Let P be an abstract polyhedron, P 6= tetrahedron,
and let θ(e) ∈ [π

2 , π) for each edge e. A hyperbolic polyhedron with finite and ideal
vertices of type P with exterior dihedral angles θ(e) exists, and is then unique, if
and only if the following condition is satisfied: For every edge cycle γ in the dual
polyhedron P ∗,

∑

e∗∈γ

θ(e) ≤ 2π ⇐⇒ γ is the boundary of a face of P ∗.

The condition implies that all vertices of such a polyhedron have degree 3 or 4, and
if the degree is 4 then θ(e) = π

2 for all incident edges. Andreev’s proof proceeds
by the “deformation method”; see also Roeder et al. [17].

Hyperbolic planes intersect the infinite boundary in circles, and the angle be-
tween the planes equals the intersection angles of the circles. Thus, statements
about hyperbolic polyhedra may be formulated in terms of patterns of circles. This
idea is due to Thurston, who used this correspondence to prove an existence and
uniqueness theorem for circle patterns in surfaces with positive genus.

Theorem (Thurston [22]). Let P be a polyhedral decomposition of a closed surface
with positive genus. Suppose each vertex is of degree 3 or 4, and θ(e) ∈ [π

2 , π]. A
corresponding circle pattern with circle intersection angles θ(e) exists, and is then
unique, if and only if the following condition is satisfied: For every null-homotopic
edge cycle γ in the dual polyhedron P ∗,

∑

e∗∈γ

θ(e) ≤ 2π =⇒ γ is the boundary of a face of P ∗.

This theorem allows also exterior intersection angles π, i.e. touching circles, and
the circle pattern analog of hyperideal vertices. Thurston’s theorem implies an
old theorem of Koebe [12], which states that for each abstract triangulation of the
sphere there exists, uniquely up to Möbius transformations, a packing of circles
with the given triangulation as contact graph. Thurston’s proof is constructive
in that it is based on a numerical algorithm to compute the radius of each cir-
cle. This algorithm has been refined and implemented in Stephenson’s program
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circlepack [9] [21]. Chow & Luo give an alternative proof of Thurston’s theorem
which is inspired by the Ricci flow on surfaces [7] .

The circle patterns corresponding (via stereographic projection from a vertex)
to convex polyhedra with ideal vertices are planar Delaunay tessellations. These
were classified in terms of combinatorial type and dihedral angles by Rivin.

Theorem (Rivin [15]). Let P be an abstract polyhedron, and let θ(e) ∈ (0, π) for
each edge e. A hyperbolic polyhedron with ideal vertices of type P with exterior
dihedral angles θ(e) exists, and is then unique, if and only if the following condition
is satisfied: For every edge cycle γ in the dual polyhedron P ∗,

∑

e∗∈γ θ(e) ≥ 2π,
and equality holds if and only if γ is the boundary of a face of P ∗.

The proof proceeds by a deformation method. Bowditch had also treated De-
launay tessellations of piecewise flat surfaces with isolated cone-singularities [5].
His conditions for existence are very different from Rivin’s and their equivalence
for flat surfaces is far from obvious. Bao & Bonahon generalized Rivin’s theorem
to polyhedra with ideal and hyperideal vertices [3]. Such polyhedra correspond
to weighted Delaunay tessellations. Recently, Schlenker extended this result by
allowing also cone singularities [18].

The existence and uniqueness of circle patterns can also be proved using varia-
tional principles. This approach is more constructive and yields efficient numerical
algorithms to construct them. Such a variational principle consists in some convex
(or concave) function of either the circle radii or of certain angles with the property
that its minimum (or maximum) corresponds to a circle pattern. The following
table lists known variational principles for different types of circle patterns. They
are all related since they can all be derived using Schläfli’s differential volume
formula for hyperbolic polyhedra.

packings ideal/Delaunay hyperideal/
weighted
Delaunay

Variables
are radii

Colin de Verdiere [8] Bobenko & S [4]

Variables
are angles

Bräger [6] Rivin [14] (euclidean)
Leibon [13] (hyperbolic)

S. [20]

Circle packings (touching circles) can be used to approximate conformal maps.
This was conjectured by Thurston and first proved by Rodin & Sullivan [16].
Schramm proved an approximation theorem for circle patterns with orthogonally
intersecting circles [19]. Circle packings and circle patterns can be seen as dis-
crete analogs of conformal maps [21]. This motivated using circle packings and
circle patterns in algorithms that map 3D surface meshes to the plane. The group
around Stephenson uses packings to construct planar maps of the surface of the
human cerebellum [10]. Kharevych et al. propose a method for surface flattening
which uses Delaunay type packings [11]. To advance this method was a prime
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motivation for investigating the variational principle for weighted Delaunay trian-
gulations [20].
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Circle Patterns on Singular Surfaces

Jean-Marc Schlenker

A circle packing on the sphere S2 is a set of oriented circles bounding disjoint
open disks. The incidence graph of a circle packing is the graph, embedded in S2,
which has a vertex for each circle, and an edge between two vertices if and only if
the corresponding circles intersect. Koebe discovered a striking property of circles
packings on the sphere: given a triangulation of the sphere, its 1-skeleton is the
incidence graph of a circle packing, which is unique up to Möbius transformations.

Results on circle packings were then extended to consider patterns of circle,
which we call “ideal” here, which appear in the definition of the Delaunay decom-
position of a set of points, and which are related to ideal hyperbolic polyhedra. The
circles then bound closed disks which cover the whole surface. The general idea
there is that those circle packings are uniquely determined by their combinatorics
and by the angles between the circles, results in this direction where obtained in
particular by Rivin [Riv94], and Leibon [Lei02a, Lei02b]. This was extended to
results concerning “ideal” circle patterns on surfaces with conical singularities, in
particular by Bowditch, Rivin, Leibon and by Bobenko & Springborn [BS04]. We
consider here a more general notion of circle pattern. Such circle patterns appear
in the definition of a weighted Delaunay decomposition, they are related to hy-
perideal hyperbolic polyhedra just as “ideal” circle patterns are related to ideal
polyhedra.

Definition 1. A circle pattern on S2 is a finite family of oriented circles
C1, · · · , CN . Given a circle pattern, an interstice is a connected component of
the complement of the union of the open disks bounded by the circles. A circle
pattern is hyperideal if:
• Each interstice is topologically a disk.
• For each j ∈ {1, · · · , M}, corresponding to an interstice which is not a point,

there is an oriented circle C′
j , containing Ij , which is orthogonal to all the circles

Ci adjacent to Ij .
• For all i ∈ {1, · · · , N} and all j ∈ {1, · · · , M}, if Ci is not adjacent to Ij, then

either the interior of Ci is disjoint from the interior of C′
j , or Ci intersects C′

j

and their intersection angle is strictly larger than π/2.
• If D is an open disk in S2 such that:

(1) For each j ∈ {1, · · · , M}, either D is disjoint from the interior of C′
j, or

∂D has an intersection angle at least π/2 with C′
j.

(2) ∂D is orthogonal to at least 3 of the C′
j.

then ∂D is one of the Ci.
Such a packing is strictly hyperideal if no interstice is reduced to a point. The
circles Ci are called principal circles, while the circles C′

j are the dual circles.

We need one more definition before stating our main result. Let Γ be a graph
embedded in a closed surface Σ.



664 Oberwolfach Report 12/2006

Definition 2. An admissible domain in (Σ, Γ) is a connected open domain Ω,
which is not a face of Γ, such that ∂Ω is a finite union of segments which:
• have as endpoints vertices of Γ,
• either are edges of Γ or are contained (except for their endpoints) in an open

face of Γ.
To each such admissible domain, we can associate two numbers: its Euler char-
acteristic, χ(Ω), and the number of boundary segments contained in open faces of
Γ, m(Ω).

Theorem 1. Let Γ be the 1-skeleton of a cellular decomposition of a closed ori-
entable surface Σ. Let κ : Γ2 → (−∞, 2π) and let θ : Γ1 → (0, π) be two functions.
There exists a flat metric h with conical singularities on Σ, with a hyperideal cir-
cle pattern σ with incidence graph Γ, intersection angles given by θ, and singular
curvatures given by κ, if and only if:

(1)
∑

f∈Γ2
κ(f) = 2πχ(Σ),

(2) for any admissible domain Ω ⊂ Σ :
∑

e∈Γ1,e⊂∂Ω

θ(e) ≥ (2χ(Ω)−m(Ω))π −
∑

f∈Γ2,f⊂Ω

κ(f) ,

with strict inequality except perhaps when Ω is a face of Γ.

The metric h is then unique up to homotheties, and σ is unique given h.

Theorem 2. Let Σ be a closed orientable surface, and let Γ be the 1-skeleton of a
cellular decomposition of Σ. Let κ : Γ2 → (−∞, 2π) and let θ : Γ1 → (0, π) be two
functions. There exists a hyperbolic metric h with conical singularities on Σ, with
a hyperideal circle pattern σ with incidence graph Γ, intersection angles given by
θ, and singular curvatures given by κ, if and only if:

(1)
∑

f∈Γ2
κ(f) > 2πχ(Σ),

(2) for any admissible domain Ω ⊂ Σ :
∑

e∈Γ1,e⊂∂Ω

θ(e) ≥ (2χ(Ω)−m(Ω))π −
∑

f∈Γ2,f⊂Ω

κ(f) ,

with strict inequality except perhaps when Ω is a face of Γ.

h and σ are then unique.

There are related results for Euclidean and hyperbolic surfaces with polygonal
boundary. The proofs use 3-dimensional hyperbolic geometry and are based on a
deformation argument.
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Discrete Models of Isoparametric Hypersurfaces in Spheres

Wolfgang Kühnel

(joint work with Thomas F. Banchoff)

We present polyhedral models for isoparametric families in the sphere with
at most three principal curvatures. Each member of the family (including the
analogues of the focal sets) is tight in the boundary complex of an ambient convex
polytope. In particular, the tube around the real (complex) Veronese surface is
represented as a tight polyhedron in 5-space (8-space). The examples are based
on the Bier sphere triangulation of S4 or S7, respectively. In the 4-dimensional
case there are simplicial branched coverings of these triangulations in the complex
projective plane and in S2×S2 which are branched precisely along the polyhedral
analogues of the Veronese surface.

By a theorem of E. Cartan [4] all isoparametric families of hypersurfaces in the
sphere with at most three principal curvatures are given by the following list:
(1) tubes around a point in Sn−2

(2) tubes around a great sphere Sk ⊂ Sn−2 where 1 ≤ k ≤ n− 4
(3) tubes around any of the Veronese-type standard embeddings of the projective

planes RP 2 → S4, CP 2 → S7, HP 2 → S13, or OP 2 → S25.
In these three cases we have 1, 2 or 3 constant principal curvatures, respectively.
In addition isoparametric hypersurfaces have the geometric property of tightness.

Main Theorem 1 In each of the cases above (except possibly for the case
of OP 2) there is a simplicial (n − 2)-sphere in Euclidean n-space satisfying the
following:

(1) It contains two disjoint simplicial subcomplexes triangulating the two focal sets
of the isoparametric family as a kind of “top” and “bottom” of the simplicial
n-sphere (in the case of HP 2 a complete proof is not available),

(2) each member of the isoparametric family corresponds to a slice through this
(n− 2)-sphere between top and bottom,

(3) each member of the family (including the focal sets) is a tight polyhedral sub-
manifold in the boundary complex of a certain convex (n− 1)-polytope. So in
particular the real Cartan hypersurface is tight in the boundary complex of a
5-polytope, the complex Cartan hypersurface is tight in the boundary complex
of an 8-polytope.
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The construction will make use of the following three ingredients:

1. Higher-dimensional octahedra (cross polytopes)

2. Tight triangulations of the projective planes over R and C,

3. Sarkaria’s deleted join of a simplicial complex with itself, and the Bier sphere.

Definition (1) The deleted join K ∗∆ K of a simplicial complex K with itself is
a part of the ordinary join of two disjoint copies K1 and K2 of K where we take
the join of only those two simplices in K1 and K2, respectively, which are disjoint
in K. So in particular, each vertex of K leads to a missing edge (a diagonal) in
K ∗∆ K.

(2) Similarly we have the deleted join K ∗∆ K∗ of an n-vertex simplicial complex
K with its combinatorial Alexander dual K∗. The vertex set of the deleted join
will be denoted by {1, 2, . . . , n, 1, 2, . . . , n} with diagonals 11, 22, . . . , nn.

Theorem 2 For any given simplicial complex K with n vertices the deleted join
of K with its combinatorial Alexander dual K∗ is a triangulated (n − 2)-sphere
with at most 2n vertices. It is called the Bier sphere Biern(K) after Thomas Bier.
After subdivision, the Bier sphere coincides with the first barycentric subdivision
of an (n− 1)-simplex, see [5].

Theorem 3
(1) [1] Any combinatorial 2k-manifold with n = 3k + 3 vertices (which is not a

sphere) satisfies k = 0, 1, 2, 4, 8 and, in addition, the following combinatorial
complementarity condition:
• Any subset of vertices spans a simplex in the triangulation if and only if the

complementary subset does not.
In particular, if K denotes the simplicial complex triangulating the manifold,
then we have the (Alexander) self-duality K∗ = K. Moreover K is (k + 1)-
neighborly meaning that any (k + 1)-tuple of vertices spans a simplex in K.

(2) [3] In the cases k = 0, 1, 2, 4 there exists such a combinatorial manifold with
n = 3, 6, 9, 15 vertices, respectively. It is unique for k = 0, 1, 2 and not unique
for k = 4. For k = 8 the existence is still open.

Corollary 4 If K denotes any simplicial complex triangulating a combinatorial
2k-manifold with n = 3k + 3 vertices which is not a sphere, then the deleted
join Biern(K) = K ∗∆ K is a combinatorial sphere of dimension n − 2 with
2n vertices. It can be regarded as a subcomplex of the cross polytope βn. The
family of all slices between top and bottom constitutes a polyhedral analogue of the
isoparametric family in these cases, i.e., for k = 0, 1, 2, 4. (For k = 8 this depends
on the existence or non-existence of a 27-vertex triangulation of a 16-manifold
which is not a sphere.)

It was pointed out by Massey [6] that a number of interesting 4-manifolds
(among them the complex projective plane) are quotients of S2×S2. In particular,
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CP 2 is the quotient of S2×S2 by the involution τ(x, y) = (y, x), and the 4-sphere is
the quotient of CP 2 modulo complex conjugation σ where σ[z0, z1, z2] = [z0, z1, z2].

By a branched simplicial k-sheeted covering between two d-manifolds we mean
a simplicial mapping which is simultaneously a branched k-sheeted covering. In
particular, it is required that the preimage of any (open) d-simplex consists of
k disjoint (open) d-simplices and that there is no collapsing of lower-dimensional
simplices. Then the branch locus is a simplicial subcomplex of each of the two
triangulated d-manifolds.

Proposition 5 There is a branched simplicial 2-sheeted covering from a trian-
gulated CP 2 onto a triangulated 4-sphere which is branched along a subcomplex
isomorphic to RP 2

6 . We can denote it – by slight abuse of notation – as follows:

CP 2
18 := S2

12 ∗∆ RP 2
6 −→ RP 2

6 ∗∆ RP 2
6 .

Here S2
12 denotes the icosahedral triangulation of the 2-sphere with its 2-fold sim-

plicial covering S2
12 −→ RP 2

6 . The complex S2
12 ∗∆ RP 2

6 does not literally denote
the deleted join but the join where each simplex is deleted which involves one vertex
of RP 2

6 and any of the two corresponding antipodal vertices of the icosahedron S2
12.

Proposition 6 There is a branched simplicial 2-sheeted covering from a trian-
gulated S2 × S2 onto a triangulated CP 2 which is branched along a subcomplex
isomorphic to the icosahedral triangulation of S2. We can denote it – with the
same remark as in Proposition 5 above – as follows:

(S2 × S2)24 := S2
12 ∗∆ S2

12 −→ S2
12 ∗∆ RP 2

6

where S2
12 −→ RP 2

6 denotes the same 2-fold simplicial covering as above.
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Closed Polyhedral 3-Manifolds with K ≥ 0

Vladimir S. Matveev

(joint work with Vsevolod V. Shevchishin)

Let a closed 3-manifold be glued (isometrically, face-to-face) from polyhedra such
that for any edge the sum of dihedral angles around the edge is ≤ 2π. We show
that in this case the manifold can carry a Riemannian metric of nonnegative sec-
tional curvature such that it is close to the initial metric in the Gromov-Hausdorff
distance. In view of results of Hamilton [Ha1, Ha2] this implies that the manifold
is homeomorphic to the quotient of one of the spaces S3 or S2 × R or R3 by a
group of fixed-point-free isometries in the standard metric.

A (convex) polyhedron (of dimension 3) is the convex hull of finitely many points
in R3 such that not all of them lie on the same plane. Every polyhedron carries
the induced metric (= distance-function). Polyhedral 3-manifolds are those glued
from polyhedra using face-to-face isometries.

From the definition it follows that the faces, the edges, and the vertices of one
polyhedron are glued with those of other polyhedra, which make the notions edge
and vertex of the polyhedral manifold well defined.

We say that a polyhedral manifold has nonnegative curvature, if it has nonneg-
ative curvature in the sense of Alexandrov. By Globalisation Theorem [B-G-P],
the latter is equivalent to the following condition: for every edge the sum of the
dihedral angles around this edge ≤ 2π, see also [Mi].

An edge will be called essential, if the sum of the dihedral angles around this
edge is strictly less than 2π. A vertex will be called essential, if it is the endpoint
of at least three essential edges.

Main Theorem. Let M be a closed polyhedral 3-dimensional manifold of nonneg-
ative curvature. Then, the manifold is homeomorphic to the quotient of one of the
spaces S3 or S2×R or R3 by a group of fixed point free isometries in the standard
metric. In particular, M can be finitely covered by S3, S2 × S1, or S1 × S1 × S1.
Moreover, the existence of an essential edge implies that the manifold can be fi-
nitely covered by S3 or S2 × S1, and the existence of an essential vertex implies
that the manifold can be finitely covered by S3.

Corollary. (Independently obtained by Lutz & Sullivan [Lu-Su]) Let M be
a triangulated closed 3-manifold. Assume for every edge of the triangulation the
number of the simplices containing this edge is less than six. Then, M can be
finitely covered by S3.

The proof of Corollary is deduced from main Theorem as follows. One realizes
each tetrahedron Pi of the triangulation as a regular tetrahedron, i.e., a tetrahedron
in R3 such that the length of every edge is equal to 1. Then, all gluing functions
will automatically be isometric, and our manifold with the induced metric becomes
a polyhedral manifold. Using the hypotheses one can show that for every edge
the sum of dihedral angles containing this edge is at most 5 × arccos(1/3) ≈
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352.66 2π
360 < 2π. So every edge is essential, and hence every vertex is essential as

well, and Main Theorem applies.

Scheme of the proof of Main Theorem. For a given closed polyhedral mani-
fold M of nonnegative curvature we construct a Riemannian metric of nonnegative
sectional curvature on M . Moreover, we show that in the presence of at least one
essential edge the constructed metric is not everywhere flat, and in the presence of
at least one essential vertex there exists a point on M at which the sectional cur-
vature is positive in every two-dimensional direction. Then, our theorem follows
from the famous results of Hamilton [Ha1, Ha2].

The idea is rather natural. According to Cheeger [Che] (see Remark 6 there),
it was suggested by Gromov directly after Hamilton proved his results. However,
implementation of this idea turned out to be difficult, see for example [Pe] where
a few approaches were discussed, and [B-G-P], where it was explicitly written that
it is hard to smooth a polyhedral metric keeping control over the lower curvature
bound.

If there are no essential vertices, then the construction of a smooth Riemannian
metric of nonnegative sectional curvature is easy. If such a vertex exists, our
construction of such a metric consists of three steps.

Step 1: We show that (in the presence of at least one essential vertex) it is possible
to construct a polyhedral metric on the manifold such that
• all polyhedra are tetrahedra,
• all edges are essential.

The main tool of the construction is Alexandrov’s embedding theorem from [Al].

Step 2: We change the metric on the manifold replacing every tetrahedron T by
a spherical tetrahedron TR lying in the sphere S3 of sufficiently large radius R
such that the lengths of edges of T coincide with those of TR. If R is big enough,
such a spherical tetrahedron TR exists. Moreover, the gluing mappings remain to
be isometric, so that the metric of the spherical tetrahedra induces a new metric
on M . If R is huge enough, all edges remain essential, so that the new metric
has Alexandrov curvature ≥ 1/R2. Then, we smooth this metric near the edges.
In order to do this, we use an Ansatz involving a function of two variables such
that the positivity of the sectional curvature of the metric is equivalent to the
concavity of the function. Then, we construct an appropriate concave function by
gluing from three pieces. As result we obtain a metric of nonnegative curvature
which is a Riemannian metric outside the vertices and has conical singularities
near the vertices.

Step 3: We smooth the metric near the vertices using the Alexandrov embedding
theorem [Al] and regularity results of Pogorelov [Po].

Acknowledgements. We thank W. Ballmann, V. Bangert, A. Bolsinov, A. Bobenko,
Yu. Burago, E. Hertel, B. Leeb, F. Luo, A. Knauf, W. Kühnel, F. Lutz, S. Matveev, A.
Petrunin, M. Simon, J. Sullivan, H. Weiß, G. Ziegler for useful discussions.
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Algebraic Topology on Polyhedral Surfaces from Finite Elements

Max Wardetzky

(joint work with Klaus Hildebrandt and Konrad Polthier)

It has been known to the numerics community for some time that discretizations of
smooth differential complexes such as the de Rham complex yield very stable meth-
ods for approximating solutions to partial differential equations (cf. Arnold [1]).
Among the most notable such discretizations are Whitney elements. Given a lo-
cally finite C∞ triangulation of a smooth manifold M , Whitney [11] defined a
certain linear map W from the simplicial cochains Cq induced by this triangula-
tion to L2Λq, a chain map in the sense that dW = W δ, where d is the Cartan
outer differential. Dodziuk and Patodi [4, 5] observed that this map together with
a Riemannian metric g on a compact smooth manifold M gives rise to a positive
definite inner product on simplicial cochains, and hence a discrete Hodge decom-
position (using the inner product on simplicial cochains to define adjoint operators
to the simplicial coboundary operators). Then under (suitable) refinement of the
triangulation of M , the discrete Hodge decomposition converges to the smooth
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one on (M, g). Recently Wilson [12] has extended these results by a (converging)
discrete wedge product on simplicial cochains and a (converging) combinatorial
Hodge star operator.

Whitney elements are piecewise linear by construction. Here we report on a differ-
ent development using piecewise constant vector fields (or one-forms) on compact
polyhedral surfaces. The function spaces corresponding to a discrete Hodge decom-
position then turn out to be a mixture of conforming and nonconforming linear
elements. For sequences of polyhedral surfaces whose positions and normals con-
verge to the positions and normals of a compact smooth surface embedded in
E3, we report on a convergence result for the corresponding discrete Hodge de-
compositions and Hodge star operators. The proof is mainly based on showing
that the convergence results of Dodziuk/Patodi and Wilson remain valid if one
works with variable (and converging) metrics (M, gn), instead of a fixed one. The
motivation to investigate into piecewise constant structures here is that piecewise
constant harmonic fields come in pairs of a conforming and a nonconforming ver-
sion, much like linear models of discrete minimal surfaces [9] which also turn out
to come in pairs of a conforming and a conjugate nonconforming minimal surface.
Finally we remark that one finds strong similarities between the current analytic
approach of discretizing function spaces (using the duality between conforming
and nonconforming elements) and an algebraic approach (using the duality be-
tween primal and dual graphs), such as pursued by Desbrun et al. [3], Mercat [8],
Dynnikov/Novikov [6], and others.

By a polyhedral surface Mh we mean the result of isometrically gluing flat Euclid-
ean triangles along their boundaries such that the result is homeomorphic to a
topological 2-manifold. As usual, h denotes the mesh size (a notation which goes
back at least to [2]). We only consider orientable surfaces. The Euclidean struc-
ture on triangles induces a Euclidean cone structure on Mh. The triangulation
gives rise to the following function spaces:

Sh = {u ∈ C0(Mh) |u is linear on triangles},
S∗

h = {u ∈ L2(Mh) |u is linear on triangles and continuous at edge midpoints},
Xh = {X is tangential and constant on all individual triangles}.

Clearly, Sh ⊂ S∗
h. The space Sh is called conforming, and S∗

h is called noncon-
forming. Finally, Xh denotes the space of piecewise constant vector fields. The
cone metric on Mh induces a L2-inner product on each of these spaces.

The gradient of a function in Sh or S∗
h is well-defined on triangles and takes

values in Xh. Let div denote the adjoint operator to grad : Sh → Xh with
respect to the L2-inner products. Similarly, let div* denote the adjoint operator
to grad : S∗

h → Xh. Complex multiplication J acts on Xh by rotation by π/2 on

each individual triangle. Set curl = − div ◦ J, and curl* = − div* ◦ J. It is not
difficult to see that for X ∈ Xh, the terms curl* X and div* X are measures for
the tangential and normal jumps of X across edges of Mh, respectively. If Mh

is closed (has empty boundary), one obtains the following (mutually L2-adjoint)
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chain complexes:

0 −−−−→ Sh
grad−−−−→ Xh

curl*−−−−→ S∗
h −−−−→ 0

0 ←−−−− Sh
div←−−−− Xh

J grad←−−−− S∗
h ←−−−− 0.

Lemma. The homology groups for (each of) the above chain complexes are iso-
morphic to the respective simplicial homology groups. This gives the following two
discrete Hodge decompositions of Xh:

Xh = imgrad|Sh
⊕ imJ grad|S∗

h

⊕ ker curl* ∩ ker div

= imJ grad|Sh
⊕ im grad|S∗

h

⊕ ker div* ∩ ker curl,

where the second row is the J-transformed version of the first.

By construction, the sum is orthogonal with respect to the L2-inner product on
Xh. The space H(Mh; R) = ker curl* ∩ ker div is termed conforming harmonic,
and the spaceH∗(Mh; R) = ker div* ∩ ker curl is termed nonconforming harmonic.
The dimension of each of these spaces equals twice the genus of Mh. Note that
complex multiplication J acts as a linear isomorphism between these two spaces.
In a similar fashion to [12], one defines a discrete Hodge star operator on H(Mh; R)
by first applying J and then L2-projecting back to H(Mh; R),

⋆ : H(Mh; R) −→ H(Mh; R).

In other words, if X ∈ H(Mh; R), then ⋆X is the conforming harmonic part of
J(X). Note that ⋆⋆ 6= −Id. However, ⋆ is still an isomorphism. There exists a
similar nonconforming version.

Convergence. Let (M, g) be compact smooth surface embedded into E3 which
inherits its metric structure from ambient space. A polyhedral surface Mh in a
(small enough) tubular of M is a normal graph if Mh can be viewed as a section
in the normal bundle of M . A sequence of normal graphs {Mn} converges totally
normally ([7][10]) to M if the positions of Mn converge in Hausdorff distance and
the normals of Mn converge in L∞ to those of M . Using the pullback from Mn to
M , the surface M inherits a sequence of cone metrics {gn} coming from {Mn}.
Lemma. If Mn →M totally normally, and X, Y are vector fields on M then

sup
X,Y

∥

∥

∥

∥

|gn(X, Y )− g(X, Y )|
‖X‖g · ‖Y ‖g

∥

∥

∥

∥

∞

−→ 0.

Under the pullback from Mn to M , our objects are defined a.e. on M . In particular,
let Πn be the L2-projections of smooth vector fields on M to piecewise constant
fields on M associated with a totally normally converging sequence {Mn}. Then:

Theorem. In L2(M), the components of the discrete Hodge splittings of Πn(X)
converge to the components of the smooth Hodge splitting of X. Moreover, if h is
harmonic on (M, g) and hn is the conforming harmonic part of Πn(h) then ⋆nhn

converges to ⋆h. Finally, H∗(Mn; R) tends to H(Mn; R), insofar as Jn hn → ⋆nhn.
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On the one hand the proof is based showing that the convergence results proved
in [4][5][12] remain true for variable and converging metrics gn, and on the other
hand on relating the Hodge splitting of Whitney elements to the Hodge splitting
of piecewise constant elements. In a similar fashion one obtains convergence for
the spectral decomposition of Laplacians. For details we refer to [10].
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Alexandrov Theorem, Weighted Delaunay Triangulations, and
Mixed Volumes

Ivan Izmestiev

(joint work with Alexander I. Bobenko)

Theorem (A. D. Alexandrov, 1942). Let S be a 2-sphere equipped with a convex
polyhedral metric. Then there is a convex polytope P in R3 with boundary isometric
to S. Besides, P is unique up to a rigid motion.

A polyhedral metric is one modelled locally on the Euclidean plane and Euclid-
ean cones. It is called convex if all cone angles are less than 2π. The surface of
a convex polytope provides an example of a convex polyhedral metric; the only
cone singularities are vertices. The fact that the edges cannot be distinguished
intrinsically is the main difficulty in reconstructing the polytope from the metric
of its boundary.
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The uniqueness part of Alexandrov theorem was essentially obtained by Cauchy.
The existence is the more difficult part. Alexandrov’s original proof [1, 2] is elegant
but non-constructive. In his book [2] Alexandrov poses the problem of finding a
constructive, possibly variational, proof. Alexandrov’s student Volkov gave a proof
partly of this sort which can be found in [3]. The idea is to adjust some set of
parameters one by one (like in Thurston’s proof of circle packing theorem).

In the talk we present another proof of the existence part of Alexandrov’s the-
orem that leads to an algorithm for constructing a polytope for a given metric. In
our proof we come up with weighted Delaunay triangulations. Our other tool are
mixed volumes, which play also a crucial role in the proof of Minkowski theorem.
We relate the total curvature of a polytope to the volume of the dual polyhe-
dron, see Lemma 5 below. This reveals a connection between the Alexandrov and
Minkowski theorems.

An outline of the proof follows.

Fix a convex polyhedral metric S. Singularities of S will be indexed by i, j, . . ..
By δi we denote the angular defect of i-th singularity. A geodesic triangulation
T of S is a subdivision of S in triangles by Euclidean geodesics with endpoints in
singularities. Edges are denoted by e. Multiple edges and loops are allowed.

Definition. A generalized polytope is a polyhedral complex homeomorphic to a
ball, which is glued from pyramids with a common apex and has boundary isometric
to S. Formally it is a couple (T, r) where T is a geodesic triangulation of S, and
r = (ri) is an assignment of positive numbers, called radii, to singularities. The
complex is glued from pyramids with side lengths ri based on triangles of T .

Let θe be the dihedral angle of a generalized polytope P = (T, r) at an edge
e of T . If all θe ≤ 2π then P is called convex. Let κi be 2π minus the total
dihedral angle around the edge that joins the apex to i-th singularity. We call κi

curvature. If we achieve κi = 0 for all i, then P becomes a convex polytope with
a distinguished interior point.

The algorithm works as follows. Begin with a convex generalized polytope
P (0) = (TD, R), where TD is a Delaunay triangulation of S, and all ri equal to a
sufficiently large number R. Then every κi is slightly less than δi. Start to deform
the radii so that all κi’s decrease proportionally:

κi(t) = (1− t) · κi(0), for t ∈ [0, 1)

As t → 1, the corresponding convex generalized polytope P (t) converges to a
convex polytope that we were looking for. In order that P (t) remains convex, at
certain moments changes of triangulation T (so called flips) has to be performed.

The following lemmas allow us to control the triangulation.

Lemma 1. If (T, r) is a convex generalized polytope, then T is the weighted De-
launay triangulation of S with weights r2

i at singularities. The converse is true
provided that pyramids over triangles of T with side lengths ri exist.
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Lemma 2. The weighted Delaunay triangulation with given weights is unique (up
to flat edges), if it exists. It can be obtained from any triangulation by consecutive
flipping of non-Delaunay edges. The space of admissible weights as well as of those
set of radii for which pyramids exist can be described explicitly.

Thus radii can be viewed as coordinates on the space P(S) of convex generalized
polytopes with boundary S.

The following lemma allows us to deform the curvatures κi as we like, as long
as they satisfy certain inequalities and as long as we stay inside P(S).

Lemma 3. The Jacobian
(

∂κi

∂ri

)

is non-degenerate if 0 < κi < δi.

This can be interpreted as infinitesimal rigidity of convex generalized polytopes
under given assumptions on curvatures. The proof of Lemma 3 is based on the
following three facts.

Lemma 4. The Jacobian
(

∂κi

∂ri

)

coincides with the Hessian
(

∂2µ
∂ri∂rj

)

, where

µ(P ) =
∑

i

riκi +
∑

e

ℓe(π − θe)

is the total curvature of a convex generalized polytope P , ℓe is the length of the
edge e.

Lemma 5. Let P ∗ be the convex generalized polyhedron dual to convex generalized
polytope P . Then volume of P ∗ and total curvature of P have same Hessians:

∂2µ

∂ri∂rj

(P ) =
∂2vol

∂hi∂hj

(P ∗)

The construction of P ∗ generalizes the classical construction of polar dual. As
opposed to P whose curvature is concentrated along segments joining the apex to
vertices, the curvature of P ∗ sits on perpendiculars to the faces. Coordinates for
P ∗ are heights hi = r−1

i .

Lemma 6. For a convex generalized polyhedron with positive curvatures and pos-

itive edge lengths and face areas the Hessian
(

∂2vol
∂hi∂hj

)

has signature (1, n− 1).

Positivity of curvatures and lengths and areas for P ∗ can be followed from
inequalities 0 < κi < δi for P .

Note an interesting fact
(

∂2µ

∂ri∂rj

)

∼ R−1 ·∆S

for P = (TD, R) as R → ∞. Here ∆S is the discrete Laplace operator associated
with the Delaunay triangulation of S.

The last ingredient of the proof is to show that the pyramids of P (t) don’t
degenerate when we follow the path κi(t) = (1− t)κi(0).

The proof provides an algorithm for constructing the polytope. A computer
program implementing this algorithm was written by Stefan Sechelmann.



676 Oberwolfach Report 12/2006

References

[1] Alexandrov A.D. Existence of a convex polyhedron and a convex surface with a given metric,
Mat. Sb. 11 (1942), n.1-2, 15–65 (Russian)

[2] Alexandrov A.D. Convex polyhedra Berlin, Springer, 2005
[3] Volkov Yu. A., Podgornova E. G. Existence of a convex polyhedron with prescribed develop-

ment Uchenye Zapiski Tashkent. Gos. Ped. Inst. 85 (1971) (Russian)

A Spectral Invariant of Graphs

Yves Colin de Verdière

In 1976, S. Cheng [1] proved the following very nice result:

The multiplicity of the first nonzero eigenvalue of the Laplacian for any Rie-
mannian metric on S2 is ≤ 3. The proof easily extends to Schrödinger operators
∆g + V .

Upper bounds were later found for the other surfaces by G. Besson, N. Nadi-
rashvili and B. Sévennec [10]. As a result, the multiplicity of the second eigen-
value of any Schrödinger operator on a closed surface X of Euler characteristic
χ(X) ≥ −3 is bounded by C(X) − 1, where C(X) is its chromatic number. All
proved upper bounds are compatible with the following conjecture I have made: for
any manifold, the maximal multiplicity of the second eigenvalue of any Schrödinger
operator is C(X)− 1.

The fact that C(X) − 1 is always a sharp lower bound for the maximal multi-
plicity and, in particular, the fact that there is no such upper bound for manifold
of dimension ≥ 3 is a result of the study of a similar problem for graphs.
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Several years ago [2], I introduced invariants of graphs which are coming from
spectral theory. If G = (V, E) is a finite graph with V = {vertices} and E =
{edges}, one of these invariants, which I called µ(G) (∈ N), is a “topological”
invariant:
• µ(G) ≤ 3 iff G is planar
• µ(G) ≤ 4 iff G admits a linkless embedding in R3 (Lovasz-Schrijver [9])

Roughly speaking, µ(G) is the largest multiplicity of the second eigenvalue of
a Schrödinger operator on G satisfying a structural stability assumption which is
formulated in terms of transversality.

The main property of µ is the following:

If G is a minor of G′, then µ(G) ≤ µ(G′); similarly, if G embeds into a manifold
X, then there exists a Schrödinger operator on X whose second eigenvalue has
multiplicity µ(G).

The main ingredient is a relationship between minors of graphs and singular
limits of operators on it. This is a very simple case of what people in functional
analysis call Γ-convergence of a sequence of unbounded operators. It involves
looking at “graphs” of symmetric operators as Lagrangian spaces and taking limits
of them in the Grassmanian of Lagrangian subspaces of T ⋆RV .

I introduced in [6] another invariant ν which turns out to be related with the
tree-width.

Another related topic studied in [3, 4] is a discrete Dirichlet-to-Neumann map,
which, in the case of graph, is just the map which to a given electrical potential
on the boundary vertices associates the outgoing currents.

References

[1] S. Cheng. Eigenfunctions an nodal sets. Commentarii Math. Helvetici, 51 (1976), 43–55.
[2] Y. Colin de Verdière. Un nouvel invariant des graphes finis et application à un critère de
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(smf@smf.univ-mrs.fr), 1998.
[6] Y. Colin de Verdière. Multiplicities of eigenvalues and tree-width of graphs. Journal of Com-

binatorial Theory, ser. B, 74 (1998), 121–146.

[7] Y. Colin de Verdière, Y. Pan, B. Ycart. Limites singulières d’opérateurs de Schrödinger et
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Stress Matrices and M Matrices

Robert Connelly

(joint work with Károly Bezdek)

1. Introduction

In [2] a connection is made between what are called “M” matrices, as used
in Colin de Verdière’s theory of graph invariants, and stress matrices as used in
rigidity theory in [1]. Following a description of stress matrices and their properties
relevant to rigidity theory, it is shown how a theorem of László Lovász [2], using
results about M matrices, implies a conjecture about the global rigidity of certain
tensegrity frameworks by Károly Bezdek.

2. Stress Matrices

Given a finite graph G = (V, E) without loops or multiple edges, where V
is the set of n vertices labeled 1, . . . , n and E the edges, a stress matrix Ω is a
symmetric n-by-n matrix, where the off-diagonal entries are denoted as −ωij and
the following conditions hold:

(1) When i 6= j and {ij} is not in E, then ωij = 0.
(2) [1, 1, . . . , 1]Ω = 0.

Condition (2) defines the diagonal entries of Ω in terms of the off-diagonal entries.
The i-th row and column of Ω correspond to the i-th vertex.

Consider a configuration of points p = (p1, . . . , pn), where each pi is in Euclidian
d-dimensional space Ed. Form the d-by-n configuration matrix P = [p1, p2, . . . , pn],
where each pi is regarded a column of P . The configuration p is said to be
in equilibrium with respect to the stress ω = (. . . , ωij , . . . ) if PΩ = 0. This is
equivalent to the vector equation for each vertex i,

∑

j ωij(pj − pi) = 0. Some

basic properties of stress matrices, which can be found in [1], are in the following
proposition.

Proposition. If the configuration p is in equilibrium with respect to the stress ω,
then the following hold:
(1) The dimension of the affine span of the configuration p is at most n − 1 −

rank Ω.
(2) If the dimension of the affine span of the configuration p is exactly n − 1 −

rank Ω, and q = (q1, . . . , qn) is another configuration in equilibrium with re-
spect to ω, then q is an affine image of p.

If Condition (2) in the Proposition holds for a configuration p, then we say p
is universal with respect to ω. It is easy to see that if a configuration p, with a
d-dimensional affine span, is not universal for a given equilibrium stress ω, then
there is a configuration q, whose affine span is at least (d + 1)-dimensional, that
projects orthogonally onto p, and which is in equilibrium with respect to ω as well.
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3. Global Rigidity

Suppose that the edges of a graph G are labeled either a cable or a strut.
We say a configuration q, corresponding to the vertices V , is dominated by the
configuration p if the cables of q are not increased, and struts are not decreased
in length. We call G(p) a tensegrity, and if every configuration in Ed that is
dominated by p is congruent p, we say G(p) is globally rigid in Ed.

If v1, v2, . . . are vectors in Ed, we say that they lie on a conic at infinity if for
all i, there is a non-zero d-by-d symmetric matrix C such that vT

i Cvi = 0, where
()T is the transpose. The following fundamental result can be found in [1].

Theorem 1. If a configuration p in Ed has an equilibrium stress ω, with ωij > 0
for cables, ωij < 0 for struts, (called a proper stress for G = (V, E)) such that
(1) the member directions pi − pj, for {ij} in E, do not lie on a conic at infinity,
(2) the matrix Ω is positive semi-definite, and
(3) the configuration p is universal with respect to ω,
then G(p) is globally rigid in EN , for all N ≥ d.

Any configuration that satisfies the hypothesis above is called super stable.

4. Lovász’s Result

The following result of Lovász in [2] has a situation that satisfies all the condi-
tions of Theorem 1 except condition (3). Condition (1) is easy to verify.

Theorem 2. If a tensegrity framework G(p) is defined by putting cables for the
edges of a convex 3-dimensional polytope P and struts from any interior vertex to
each of the vertices of P , then the configuration p has a proper equilibrium stress
ω, and any such non-zero stress has a stress matrix Ω with exactly one negative
eigenvalue and 4 zero eigenvalues.

If one takes the stress matrix Ω from Theorem 2 and removes the row and
column corresponding to the central vertex, then one gets an M matrix as used
in the definition of Colin de Verdière’s number defined as a graph invariant. The
problem is to get rid of the offending negative eigenvalue.

5. The Conjecture

Suppose P is a convex polytope in E3 and one creates a tensegrity G(p) by
assigning the vertices of P as the vertices of a configuration for G, the edges of
P as the cables for G(p), and assigning struts as some of the internal diagonals
such that G(p) has a proper equilibrium stress. Then it appears that the resulting
stress matrix Ω satisfies the conditions for being super stable, but no proof is
known in general. Károly Bezdek specialized that conjecture to the case when the
polytope P is centrally symmetric. With the help of Theorem 2 by Lovász, we
can prove that conjecture, which is the following.
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Theorem 3. For any 3-dimensional centrally symmetric convex polytope P , the
associated tensegrity GP (p), with struts between all antipodal vertices, has a stress
ω such that GP (p) is super stable. Furthermore any such proper equilibrium stress
for GP (p) is such that it serves to make GP (p) super stable.

Proof. Let ω′ denote any non-zero proper stress determined by the conclusion of
Theorem 2 for the centrally symmetric polytope P with the central vertex as the
interior point. Let ω̂′ denote the stress on GP (p) obtained by replacing each cable
and strut stress with the stress on its antipode. Then ω̂′ is an equilibrium stress
for GP (p) as well. Hence ω′ + ω̂′ is a proper equilibrium stress for GP (p), where
stresses on antipodal cables and struts are equal. So we assume without loss of
generality that the stresses in ω′ are symmetric, and Theorem 2 assures us that
the associated stress matrix has only one negative eigenvalue.

Suppose that i and j correspond to antipodal vertices of P . Let ω′
i0 = ω′

j0 < 0
be the stresses from the central vertex to the i and j vertices coming from the
stress ω′. Form a small tensegrity Gij(pi, pj , 0) with just three vertices i, j, and
the central vertex 0, where {i, j} is a strut, while {0, i} and {0, j} are cables. Let
ωij = 2ω′

i0 = 2ω′
j0 < 0, and replace ω′

i0 and ω′
j0 with −ω′

i0. It is easy to check
that this is an equilibrium stress for Gij(pi, pj , 0) whose associated stress matrix
is positive semi-definite. Extend this to all the vertices of G by having all other
stresses 0. The associated stress matrix Ω′

ij defined on all the vertices of G is

still positive semi-definite. But now Ω′ + Ω′
ij has its (0, i) and (0, j) entry 0. Let

Ω′ +
∑

ij Ω′
ij = Ω, where the sum is over all antipodal vertices {i, j}. We obtain

a stress matrix Ω corresponding to a stress ω, where all the ω0i = 0 and ωij < 0
for pairs {i, j} of antipodal vertices. Otherwise ωij = ω′

ij . Since Ω is obtained by

adding a positive semi-definite matrix
∑

ij Ω′
ij to Ω′, none of the eigenvalues of Ω′

decrease. It is clear that the stress ω is an equilibrium stress for a configuration
whose affine span is 4-dimensional, since the central vertex can be displaced into
E

4, where it has essentially been disconnected from all the other vertices. So the
0 eigenvalues of Ω must stay at 0, while the negative eigenvalue must increase to
provide the extra 0. If we remove the central vertex, then the resulting framework
with antipodal vertices connected by struts is super stable, as desired.

It clear that the above process can be reversed, starting with an arbitrary
equilibrium stress ω for the centrally symmetric polytope P to obtain a proper
stress for a tensegrity as in Theorem 2. So any such proper equilibrium stress ω
for struts connecting antipodal vertices of P will be super stable. �
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The ‘Consistency Approach’: Application to the Discrete Differential
Geometry of ‘Plated’ Membranes in Equilibrium

Wolfgang K. Schief

The aim of the talk is to present a non-technical exposition of work published in [14]
which embraces elements of classical shell membrane theory, discrete differential
geometry and integrable systems.

The theory of integrable systems (soliton theory) is multifaceted and extends to
a variety of areas in mathematics and physics. Amongst others, there have been
two important recent developments which are both geometric in nature but which
have otherwise unfolded independently. On the one hand, it has become evident
that the area of ‘discrete differential geometry’, which seeks to identify and make
use of canonical discrete analogues of differential geometric objects, provides key
new insight into the origins of integrable systems and their integrability-preserving
discretisations (see the monograph [4] and references therein). On the other hand,
until recently, the nonlinear equations descriptive of solitonic behaviour in physical
systems had been derived by approximation or expansion methods (except for the
Ernst equation of general relativity [7]). However, it turns out that, remarkably,
there exists ‘exact’ hidden integrable structure in diverse areas of nonlinear contin-
uum mechanics such as hydrodynamics, magnetohydrodynamics, the kinematics
of fibre-reinforced materials and elastostatics of shell membranes (see the review
article [13] and references therein).

In this talk, the above-mentioned two strands are brought together. Thus,
we present a discrete model of (shell) membranes in equilibrium together with
their resultant internal stress distributions in the absence of external forces. The
discrete membranes are composed of planar quadrilateral elements (‘plates’) which
are not entirely arbitrary but may be inscribed in circles. The latter property is
motivated by the fact that in discrete differential geometry [4] and computer-
aided surface design [6] quadrilaterals inscribed in circles have been identified
as canonical discrete analogues of surface ‘patches’ which are bounded by pairs
of lines of curvature. In mathematical terms, the mid-surfaces of the ‘plated’
membranes therefore constitute standard discrete curvature lattices. We derive a
set of equilibrium equations which reduces in the natural continuum limit to that
associated with classical membranes [10]. It is noted that finite element modelling
of plates and shells based on ‘discrete Kirchhoff techniques’ [3] has been a subject
of extensive research.

We show that, in the case of vanishing ‘shear stresses’, the equilibrium equa-
tions for plated membranes admit a parameter-dependent linear representation
(Lax pair) [1] which may be used to construct explicitly large classes of plated
membranes in equilibrium via an associated Bäcklund transformation [11]. This
is achieved by adopting the ‘Consistency Approach’ which has recently been in-
vestigated in detail in connection with the algebraic and geometric isolation and
classification of discrete integrable systems [2, 5, 8, 9] and discrete geometries
which exhibit underlying integrable structure (cf. Abstract by Yu.B. Suris). Thus,
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we first demonstrate that it is consistent to demand that the equilibrium equa-
tions regarded as relations between objects (such as stresses and discrete tangent
vectors) which are ‘attached’ to the quadrilaterals of a (‘horizontal’) lattice of Z2

combinatorics hold on the faces of a three-dimensional extension, that is, a Z3

lattice. The relations on the ‘vertical’ faces then turn out to be linearisable and
give rise to the above-mentioned Lax pair.

The results presented here constitute the discrete analogue of the recent ob-
servation that classical membranes on which the principal lines of stress coincide
with the lines of curvature are integrable [12] and highlights the validity of the
standard discrete model of lines of curvature.
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S-CMC Surfaces

Tim Hoffmann

A discretization of surfaces of constant mean curvature (cmc surfaces) is proposed.
Smooth cmc surfaces are described by the SinhGordon equation and are known to
be isothermic, that is they allow conformal parameterization by curvature lines.
There is a characterization of cmc surfaces by some isothermic properties, that we
will state below.

Isothermic surfaces in Rn can be characterized by the fact that they have a lift

f 7→ f̂ =
(1 + |f |2

2
, f,

1− |f |2
2

)

into the light cone of Minkowski Rn+2 that solves the Moutard equation [4]

fxy = λf

Two classical transformations for isothermic surfaces are of special interest here:
The dual (or Christoffel) transformation and the Darboux transformation: A dual
surface f∗ of an isothermic surface f in conformal curvature line parameterization
is given by the condition

df∗ =
fx

‖fx‖2
dx− fy

‖fy‖2
dy.

The Darboux transformation is characterized by the fact that the surface and
its transform both envelope a special sphere congruence.

Note that in the light cone description the lift of a Darboux transform is a
Moutard transform for the lift of the original surface.

Now cmc surfaces can be characterized by the fact that they possess a dual
surface that is a Darboux transform as well.

There is an integrable discretization of the Moutard equation [6]:

F + F12 = λF1 + F2.

Solutions to this equation in the Minkowski light cone give rise to discrete isother-
mic surfaces in the sense Bobenko and Pinkall defined in [2]: The surfaces are
build from quadrilaterals with real cross-ratios that factor (in particular this im-
plies con-circular vertices).

S-isothermic surfaces can be viewed as nonlinear deformations of the above dis-
crete isothermic surfaces: They are generated by solutions to the discrete Moutard
equation in the space like unit sphere [3]. In Rn they are build form sphere con-
figurations [3, 5]: Each vertex of the lattice corresponds to a sphere, the four
spheres around an elementary quadrilateral have a common orthogonal circle, and
the inversive distances of neighboring spheres are equal for opposite edges. A
discretization of minimal surfaces using this notion was proposed in [1].

s-isothermic surfaces possess dual and Darboux transforms and thus allow the
definition of s-cmc surfaces as s-isothermic surfaces that have a dual that is a
Darboux transform as well. Interpreting the radii of the spheres and circles as
metric of the surface one can derive a discrete SinhGordon equation:
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For for the radius R of a circle and the radii ri of its four neighboring spheres
the equation reads:

(1) R2 =
r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4

r1 + r2 + r3 + r4

This is of course the same equation one finds for Schramm type circle patterns [7].
For a central sphere of radius r and the four neighboring circles with radii Ri on
the other hand one finds:

(2)

4
∏

k=1

√

(B2 −R2
k)(A2 + r2)− i

√

(A2 −R2
k)(B2 + r2)

√

(B2 −R2
k)(A2 + r2) + i

√

(A2 −R2
k)(B2 + r2)

= 1.

Inserting the former into the latter equation gives rise to an equation for nine
sphere radii only. It can be easily shown, that this equation has a maximum
principle.
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Surface Curvature Lines and Circle Patterns

Sergey P. Tsarev

(joint work with Alexander I. Bobenko)

Discrete conjugate nets, defined as mappings Z2 −→ R3 with the condition that
each elementary quadrangle is flat, and discrete nets of curvature lines, defined as
discrete conjugate nets with additional property of circularity of the four vertices of
every elementary quadrangle, play an important role in the contemporary discrete
differential geometry (see e.g. [1] for a review) and applications to CAGD.

In this talk we formulate results about the order of approximation of discrete
nets to a given smooth conjugate net or the net of curvature lines on a smooth
surface that can be achieved. Roughly speaking, our results show that the pre-
viously known upper bounds ([2]) can be made one order better for conjugate
nets; for discrete nets of curvature lines one can impose one additional geometric
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requirement: all vertices of approximating discrete circular nets should lie on the
original smooth surface.

We use the following terminology and notations: d(A, S) is the distance from a
point A to another point S (or a line, plane, etc.). A point A is said to be εk-close
to S if d(A, S) < Cεk for ε → 0 and we write in this case d(A, S) � εk. A is said
to lie at εk-distance from S, if d(A, S) ∼ εk.

Suppose that a smooth surface α parameterized locally by some curvilinear
net of conjugate lines is given: α : Ω −→ R3, Ω ⊂ R2 = {(u, v)}. Take some
initial point α1 = α(u0, v0) and points α2 = α(u0 + ε, v0), α3 = α(u0, v0 + ε) at
ε-distance on the two conjugate lines of the net on α and let α4 = α(u0 +ε, v0 +ε)
be the fourth point of the curvilinear quad on α. Using the conjugacy condition
αuv = a(u, v)αu+b(u, v)αv and its derivatives, one can easily estimate the distance
from this fourth point to the plane π defined by α1, α2, α3:

Theorem 1. For any arbitrary smooth conjugate net α, d(α4, π) � ε4.

One can show that for generic conjugate nets, d(α4, π) ∼ ε4.
Using this result we may inductively construct for any ε > 0 an approximating

discrete conjugate net αε, starting from the initial point α1 and two series of points
α1,i, α2,i at ε-distances on two curvilinear coordinate lines on α passing through
α1: for every three ε-close points we choose the fourth point αε

ij on αε to be the

projection of the corresponding point αij = α(u0 + iε, v0 + jε) in α(Ω) onto the
plane passing through the three available points. The technique of [2] suffices to
prove the following:

Theorem 2. For a disc α : Ω → R
3 and sufficiently small ε > 0, there exists a

discrete conjugate net αε, such that d(αij , α
ε
ij) � ε3.

For a given smooth α parameterized by curvature lines one can prove a similar
result, if we take the circle ω passing through the points α1, α2, α3 defined as
above.

Theorem 3. For arbitrary smooth net of curvature lines in a neighborhood of a
non-umbilic point α1 on α, d(α4, ω) � ε3.

A bit more careful investigation shows that one can give the following remark-
able bound for the fourth point M of intersection of ω and α (in a neighbourhood
of a non-umbilic point for sufficiently small ε there is always exactly one such point
M in addition to the chosen α1, α2, α3):

Theorem 4. Under the assumptions of Theorem 3, d(α4, M) � ε3.

Again, one can prove a global approximation result, inductively constructing a
discrete circular net starting as above for the case of conjugate nets and taking the
fourth point αε

ij of intersection of α and the infinitesimal circle passing through
the three already constructed ε-close points on α. This fourth point will be close
to the initial node αij = α(u0 + iε, v0 + jε) of the smooth curvature line net on α:

Theorem 5. For a disc α : Ω → R3 and sufficiently small ε > 0, there exists a
discrete circular net αε with all its points αε

ij on α, such that d(αij , α
ε
ij) ∼ ε2.
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Figure 1.

In [2] one can find a similar result with the same order ε2 of approximation but
without the condition αε

ij ∈ α.
A. Doliwa proposed to define directions of “discrete curvature lines” for an

elementary circular quadrangle ABCD (see Figure 1) as the directions of the
bisectors GK and FH of the angles AGB and BFC. It is easy to prove that
GK and FH are orthogonal for arbitrary quadrangle ABCD inscribed in a circle.
In fact GK and FH approximate the directions of smooth curvature lines on a
surface: if we take any non-umbilic point P on a smooth surface α and a plane
πε, intersecting α, parallel to the tangent plane π at P , d(P, πε) ∼ ε2, then the
intersection line δ = α∩πε is ε2-close to the Dupin indicatrix of α at P ; if we take
then an arbitrary circle ω in πε, intersecting δ in points A, B, C, D (see Figure 1),
then the directions of the bisectors GK, FH approximate the principal directions
of the Dupin indicatrix:

Theorem 6. For any non-degenerate plane quadric the bisectors GK, FH (shown
on Figure 1 for the elliptic case) are parallel to the axes of the quadric.
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Some Applications of the Cosine Law

Feng Luo

In the discrete approach to smooth Riemannian metrics on surfaces, the basic
building blocks are sometimes taken to be triangles in constant curvature spaces.
The smooth surfaces are approximated by the polyhedral surfaces which are the
isometric gluing of Euclidean (or spherical or hyperbolic) triangles. The metric
on a polyhedral surface is determined by the lengths of its edges and the discrete
curvature at a vertex is defined to be 2π less the sum of inner angles at the
vertex. In this setting edge lengths and inner angles of triangles correspond to the
metrics and its curvatures. For triangles in hyperbolic, spherical and Euclidean
geometries, edge lengths and inner angles are related by the cosine law. Thus
cosine law should be considered as the metric-curvature relation. From this point
of view, the derivative of the cosine law is probably an analogy of the Bianchi
identity in Riemannian geometry. The talk is focused on some applications of the
derivatives of the cosine law.

The main result of the talk is the construction of two continuous families of
functions defined on the space of all geometric triangles. Two of members of
one family were discovered by Y. Colin de Verdiere in [CV] and G. Leibon [Le]
motivated by the 3-dimensional Schlaefli volume formula. They were used by
Colin de Verdiere as the energy function in a variational framework which proves
Thurston’s circle packing theorem and by G. Leibon for Delaunay triangulations of
hyperbolic. Another function in the family was discovered Richard Kenyon and his
coworkers in a statistical model. The Legendre transforms of two other members
of the family give the energy functions used by I. Rivin [Ri] and W. Braegger
[Br] for their study of Euclidean polyhedral surfaces. In the same fashion, each
function in the continuous families produces a local rigidity result for polyhedral
surfaces and a variational framework on triangulated surfaces. See also [BS].

We also discussed an application of a function in the family to Teichmuller
theory [Lu2].

Most of the computations involving derivative cosine law can be found in [CL],
[Lu1], [Lu2] and [Lu3].
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Discrete Curvature Flows and Laplacians

David Glickenstein

In two dimensions, a natural analogue of curvature on a piecewise Euclidean
surface is to consider at every vertex i the curvature Ki = 2π−∑

γi, where γi are
each of the angles at vertex i. In this setting, B. Chow and F. Luo’s combinatorial
Ricci flow [1] takes the form

(1)
dri

dt
= −Kiri

where ri are weights at each point such that the distance between vertex i and
vertex j in a triangle containing both is ri+rj . Each ri can be considered the radius
of a circle centered at the vertex i so that these circles form a packing, except for
the fact that there is may be a cone point inside each circle. The curvature is the
obstruction from it being a real packing at each point (if Ki = 0 then the circle
centered at i really is a flat circle).

In three dimensions, a natural analogue of the curvature is Ki = 4π −∑

αi

where αi are the solid (trihedral) angles at vertex i. One can use the same evolu-
tion equation on tetrahedra whose geometry is determined by weights at the four
vertices. Since Ki looks like a kind of scalar curvature, the flow (1) is referred
to as the combinatorial Yamabe flow [3] [4]. This curvature had previously been
studied by D. Cooper and I. Rivin [2].

In both 2D and 3D it can be seen that the evolution of curvature takes the form

dKi

dt
=

∑

j∼i

aij (Kj −Ki) ,

which appears to have the form of a discrete Laplace operator, which we call
△Ki. With some work it can be shown that the coefficients in both cases have a
natural expression as the “volume” of the geometric dual to the edge divided by
the “volume” (length, actually) of the edge. In 2D, the dual of a triangle is its
incenter and in 3D the dual of a tetrahedron is the center of the sphere tangent to
all of its edges (this exists because of the fact that the tetrahedra are determined by
the four weights ri not by edge lengths). This gives a nice geometric interpretation
of the Laplace operator.

I derived the geometric form of the Laplace operator and showed that if the flow
does not cause tetrahedra to collapse, the flow will converge to constant curvature.
A major tool used in 2D which is lacking in 3D is the maximum principle for the



Discrete Differential Geometry 689

Laplace operator. That is because the weights aij are necessarily positive in the
2D case but not in the 3D case.

The geometric interpretation of the Laplacians derived from combinatorial Yam-
abe flow leads one to perhaps try to define the Laplacian geometrically. Given a
Euclidean triangulation of an n-dimensional manifold, if one has a consistent way
to define the geometric dual of all of the simplices, then a Laplacian can be defined
as

△fi =
∑

j∼i

|⋆ {i, j}|
|{i, j}| (fj − fi)

where f is a function on the vertices, |{i, j}| is the length of the edge from vertex i
to vertex j, and |⋆ {i, j}| is the (n− 1)-dimensional volume of the geometric dual
to the edge {i, j} (see, for instance, Hirani [6]). For consistency it is sometimes
necessary to allow |⋆ {i, j}| to be negative. It turns out that to define the geomet-
ric duality it is sufficient to define centers of edges with a consistency condition
on each triangle. Then there are a lot of different possibilities, such as the one
described in the previous section for circle packings (the distance from a fixed
vertex to the center each edge containing is the same) and one which leads to De-
launay triangulations (the distance from a vertex to the center of an edge is half
the length of that edge). In two dimensions, the condition that |⋆ {i, j}| ≥ 0 is
the condition that the triangulation is weighted Delaunay (also called “regular”).
Once we have this intuition, it is possible to generalize some results of Delaunay
triangulations to weighted Delaunay, for instance the observation of Rippa that
the Dirichlet energy

−
∑

fi△fi

is optimized on Delaunay triangulations [7]. In higher dimensions, the condition
|⋆ {i, j}| ≥ 0 does not appear to be the same as being weighted Delaunay (which
would be that the dual of the (n− 1)-dimensional simplices has positive length).
This work is found in the preprint [5].
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Symmetry in Densest Packings

Charles Radin

Hilbert’s eighteenth problem is to classify the symmetry groups of the densest
packings, of Euclidean space En and hyperbolic space Hn, by spheres or polyhe-
dra [1]. The motivation was to encourage the study of interesting subgroups of
the isometry groups of these spaces [2].

Hilbert assumed that the symmetry groups would be crystallographic. This
was consistent with the very few examples of densest packings then known: that
for unit circles in E2, for unit spheres in E3, for spheres of special radii in H2, and
for certain tilings of En and Hn. (Note that the densest packings are unknown
even for such “simple” cases as regular pentagons or heptagons in E

2, or regular
tetrahedra in E3.) Since Hilbert’s time a few more examples have been successfully
analyzed. One class is “aperiodic tilings”, for instance the Schmitt tilings of E3,
based on a unit cube modified by the addition of certain bumps and dents on its
sides [3]. These tilings exhibit some symmetry, but first of all the group is not
crystallographic, and second the symmetry is not that of the tilings directly but of
the invariant probability measures on the set of all the Schmitt tilings [4]. (This
was widely exploited for other tilings in mathematical models of quasicrystals;
the probability measures were there interpreted as diffraction intensities [4].) In a
related investigation, the densest packings of spheres of generic (fixed) radius in Hn

were shown not to have crystallographic symmetry [5]. Again the analysis required
the mathematics of invariant probability measures on the space of packings of
optimal density.

The focus of this lecture is the old example of the densest packings of E3 by
unit spheres. The densest packings are not unique but can be understood as made
by nestling successive planar layers of spheres together. Each succeeding layer can
be added in one of two ways, so the resulting structure is highly nonunique.

The nonuniqueness of these densest packings poses a difficulty in the context of
Hilbert’s problem, as it is unclear how to associate a symmetry in this example. A
solution was proposed by Stillinger et al. in 1968 [6], based on the natural connec-
tion between these sphere packings and a certain mathematical model of material
crystals, the so-called “hard sphere” model of classical statistical mechanics. This
formalism requires analysis of the uniform probability distributions, µd, on the
sets Xd of all packings of E3, of density d, by unit spheres. It was argued that
although at optimal density there may not be a unique symmetry, at densities just
below optimum one symmetry is probably picked out by the averaging. (There
have been several attempts in the past 40 years to determine which symmetry is
indeed picked out, though the result does not appear to be conclusive [7].) There
is a more compelling feature of this approach than the resolution of the nonunique-
ness; numerical simulations show that the distributions µd behave smoothly in d,
as d is decreased from its optimal value, but only to some special density dc at
which point a “phase transition” is found, indicated by nonanalyticity in d, at
which the crystalline symmetry begins to disappear.
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The behavior described above suggests that the whole phenomenon of the sym-
metry of densest packings actually extends to packings of high but not necessarily
optimum density. This could lead to a different understanding of the mechanism
producing these symmetries.

The phase transition discussed above has an analog in packings of unit circles
in E2, again shown by numerical simulations. There are no proofs of the phase
transitions in either the 2- or 3-dimensional hard sphere model. However in recent
joint work with L. Bowen, R. Lyons and P. Winkler [8], [9] we have proven the
existence of this phase transition in packings of E

2 not by unit circles but unit
hexagons which have special bumps and dents on their edges, so-called “zipper
molecules”. To be specific, we prove the:

Theorem. Let µd be the uniform probability distribution on the space of packings
of E2, of density d, by zipper molecules. Let Sd be the subset of those packings
in which there is an infinite cluster of molecules linked together - that is, with
the bumps of one molecule inside dents of a neighbor. Then there exist densities
0 < d1 < d2 < 1 such that µd(S

d) = 1 for d2 < d < 1 while µd(S
d) = 0 for

0 < d < d1.

(The resulting nonanalyticity is evident.)

The moral we draw from this result is twofold. First, in continuation of the pre-
vious results on densest packings indicated above, the introduction of a uniform
probability distribution on a space of packings of optimal density (or more gen-
erally any fixed density) allows new techniques for analyzing densest packings. A
second moral is that symmetry may not be the only, or easiest, way to understand
what is special about densest packings; what we are using is not their symmetry
but a form of connectedness familiar from percolation theory.
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Open Problems in Discrete Differential Geometry

Collected by Günter Rote

Problem 1 (Walter Whiteley). Rigidity is preserved under polarity: If a (non-
convex) triangulated polyhedron is infinitesimally rigid, then its polar polytope is
infinitesimally rigid as well. (The polar polytope might be self-crossing.)

Can this statement be extended to smooth surfaces, with an appropriate def-
inition of polar surfaces? (In the smooth category, one may distinguish between
static and first-order rigidity.)

Note (Jean-Marc Schlenker): There is a result which somehow answers this.
It can be found on the top of p. 20 of a fairly recent preprint: arXiv:math.DG/

0205305(v5), “Hyperbolic manifolds with convex boundary”. Somehow that part
did not make it into the final, published version of the preprint (Inventiones math.
163 (2006), 109–169).

Problem 2 (Günter M. Ziegler). Does a 4-connected triangulated plane graph
with a fixed outer face (with n vertices and 3n−6 edges) always have a straight-line
drawing with all interior triangles of equal area?

Problem 3 (Richard Kenyon). Given a triangulation of a quadrilateral where all
triangle areas are equal, is the configuration rigid under the constraint that the
triangle areas must remain constant?

The example below is not infinitesimally rigid : If the inner square is rotated
(and the small vertices follow accordingly), the derivative of the area is zero. The
example can be enclosed in a larger square with no vertices on the boundary edges.

Walter Whiteley has shown (and outlined the proof during his talk) that tri-
angulations which triangulate a triangle, with specified but not necessarily equal
areas, are first-order rigid (and therefore rigid) for all generic realizations. Con-
sequently, the areas are also independent, in the sense that, in a neighborhood of
a given generic triangulation, one can change the interior areas by small amounts
and realize these areas in a unique way.

He also pointed out that a triangulation T (p) has a flex u if and only if the
triangulations T (p + u) and T (p− u) have the same areas.
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Problem 4 (Richard Kenyon). Let M be a closed polyhedral surface homeomor-
phic to S2 which is entirely composed of equal regular pentagons. If M is immersed
in 3-space, is it necessarily the boundary of a union of solid dodecahedra that are
glued together at common facets? The pentagonal faces may intersect each other
(and the “union of solid dodecahedra” must be defined appropriately) but two
different faces are not allowed to coincide.

(The corresponding question for equal squares has an affirmative answer.)

Problem 5 (John M. Sullivan). Does every 3-manifold have a triangulation where
each edge has degree 5 or 6? Does it have such a triangulation with the additional
requirement that no triangle has more than one degree-6 edge (a so-called “TCP
triangulation”)?

Note: Only spherical manifolds can have triangulations where all edges have
degree at most 5. (Compare the reports by Matveev and Lutz.) On the other
hand, it is known that all three-manifolds can be triangulated using edge degrees
4, 5 and 6, see Brady, McCammond, Meier, Bounding edge degrees in triangulated
3-manifolds, Proc. Amer. Math. Soc. 132 (2004), 291–298.

Problem 6 (Wolfgang Kühnel). Is there a direct geometric proof of the following
theorem: Every simply-connected n-dimensional simplicial (or even polyhedral)
manifold in which all ridges have positive curvature is homeomorphic to Sn. (The
statement follows from a result of Cheeger.)

The following three problems are variations of the long-standing open question
whether the boundary of a convex 3-polytope can be unfolded into the plane
without self-overlap by cutting is along edges.

Problem 7 (Alexander I. Bobenko). Can the boundary of a convex polytope be
unfolded into the plane without self-overlap by cutting the surface along edges of
the Delaunay triangulation T of the boundary? (T can have loops and multiple
edges, but the faces are triangles.)

In particular, if all faces of the polytope are acute triangles, can it be unfolded
by cutting along the edges of the polytope?

Problem 8 (Jeff Erickson). Let T be an arbitrary triangulation on the boundary
of a convex polytope whose vertices are the vertices of the polytope and whose
edges are geodesics. Can the surface be unfolded without self-overlap by cutting
it along edges of T ? (The answer is yes for a tetrahedron.)

Problem 9 (Bob Connelly). Can one cut the boundary of a convex polytope
along edges and start an unfolding motion during which all faces remain on the
convex hull (“blossoming”), at least for some short (infinitesimal) period?

Problem 10 (Günter M. Ziegler). Let f(2n + 1) the smallest difference in area
between the largest and the smallest triangle in a triangulation of the unit square
with 2n + 1 triangles. Vertices on the boundary edges are allowed. Find (asymp-
totic) bounds on f(2n + 1).
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It is known that f(2n+1) > 0 (Monsky, using 2-adic valuations), and f(2n+1) =
O(1/n2) is straightforward. It can also be established that f(2n + 1) = Ω(1/2cn

),
using separation bounds for algebraic numbers.

Problem 11 (Rade T. Živaljević). Is it true that a graph G = (V, E) admits an
embedding in 3-space (with curved edges permitted) without a (strong) quadrise-
cant line if and only if it is 1

2 -planar?
A strong quadrisecant line is a line that intersects 4 vertex-disjoint edges of G

(in their interior). A graph is 1
2 -planar if it does not contain two vertex-disjoint

non-planar subgraphs.

Remarks: Both classes of graphs are closed under minors (exercise) and an
associated question is to determine/compare collections of the corresponding “for-
bidden minors”. The first property arose in the context of studying “planarity
on vector bundles” (R. Živaljević, The Tverberg-Vrećica problem and the com-
binatorial geometry on vector bundles, Israel J. Math. 111 (1999), 53–76). It is
known (Corollary 3.5, loc. cit.) that the first property implies the second, so the
conjecture is that the opposite implication is true as well. It is also interesting
(J. Sullivan) to compare these classes with graphs which admit an embedding in
the 3-space without a (weak) quadrisecant, that is a line which has at least 4 inter-
section points with the graph. “Forbidden graphs” in this case include all graphs
which have two linked cycles (alternatively a knotted cycle) in each embedding,
for example K6, cf. E. Denne, Y. Diao, J. Sullivan, Quadrisecants give new lower
bounds for the ropelength of a knot, Geometry & Topology 10 (2006), 1–26, and
references therein.

Problem 12 (Konrad Polthier). Consider an unbounded triangulated surface in
3-space which is intersected by every vertical line exactly once (the graph of a
bivariate function). The vertices can be moved freely to minimize the surface
area. If the position of the vertices is critical with respect to total area, does it
follow that the surface must be a plane?

The same question may be asked for a bounded surface with a fixed plane
boundary curve. (The “discrete maximum principle” does not apply here: the
vertex height which minimizes the area of the faces for a given position of its
neighbors may be higher than all its neighbors.)

Problem 13 (Ken Stephenson). In any triangulation of the torus, a simple Euler
characteristic count shows that the average degree (the average number of edges
meeting at a vertex) is precisely 6. Suppose for a given triangulation T , all vertices
are of degree 6; by flipping one edge in the pair of faces to which it belongs, one
can change this so there are two degree 5 vertices and two degree 7 vertices, all
the rest remaining degree 6. Does there exist a triangulation T in which there is
one degree 5 vertex, one degree 7 vertex, and all the rest have degree 6? (Note:
this is easily done for a Klein bottle.)

Ivan Izmestiev, Günter Rote, and John Sullivan have answered this negatively.
If we build the surface from equilateral triangles with the same side length, we get
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a Riemannian metric on the torus with two cone singularities. In each shortest
system of (non-trivial) loops based on the vertex of degree 7, the angle between
the two ends of the loop arriving at the vertex must be at least π on each side.
On the other hand, the loops are geodesics and respect the Euclidean structure of
the triangular grid, and therefore the angle must be a multiple of π/3. One can
then derive a contradiction.

Problem 14 (John M. Sullivan and Jeff Erickson). Is there an acute triangulation
of a cube? (This means a subdivision into tetrahedra whose dihedral angles are
strictly less than a right angle.) Note that the square can be acutely triangulated,
but this requires eight triangles; it is not hard to see that an acute triangulation
of the cube would require hundreds of tetrahedra. Acute triangulations of three-
space and of a slab are known; none is possible for higher-dimensional space (and
hence for a higher-dimensional slab or a hypercube).

Similarly, is there a non-trivial acute triangulation of the regular tetrahedron?
Does any 3-polytope have more than one acute triangulation (ignoring trivial
symmetries)?

Discrete Differential Geometry of Polygons and the Simulation of
Fluid Flow

Ulrich Pinkall

The velocity vector field v of an ideal incompressible fluid moving in 3-space
is completely determined by its vorticity curl v. An important special situation
occurs when the vorticity is concentrated in the tubular neighborhood of a num-
ber of closed curves (called vortex filaments), which form a link in the sense of
knot theory. In the limit of infinitely thin vortex filaments one obtains from the
Euler equations of fluid flow a purely local evolution equation for space curves:
γ̇ = γ′× γ′′ (the so-called smoke ring flow). The smoke ring flow turns out to be a
completely integrable Hamiltonian system. Here we present a discretization of the
smoke ring flow as an evolution equation for polygons (again an integrable system).
Perturbing this system to account for the long-range interactions between vortex
filaments given by the Biot-Savart formula we obtain a realistic model for the
motion of real vortex filaments. The motion of the whole fluid can easily be recon-
structed from the motion of the filaments. We present a computer implementation
that allows simulation of complicated fluid flow in real time.
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Piecewise Linear Morse Theory

Günter Rote

Classical Morse Theory [8] considers the topological changes of the level sets Mh =
{ x ∈ M | f(x) = h } of a smooth function f defined on a manifold M as the
height h varies. At critical points, where the gradient of f vanishes, the topology
changes. These changes can be classified locally, and they can be related to global
topological properties of M . Between critical values, the level sets vary smoothly.

This talk concerns Morse Theory of piecewise linear functions, and in particular,
the “uninteresting” part of Morse theory, the level sets between the critical values,
where “nothing happens”. Spatial data coming from data acquisition processes
(like medical imaging) or numerical simulations (like fluid dynamics) need to be
represented for the purpose of storage on a computer, visualization, or further
processing. Commonly they are represented as piecewise linear functions. My
interest in Morse theory arose out of a fast and simple algorithm [4] for construct-
ing the contour tree (or Reeb graph) of a piecewise linear function, a tree that
represents how the connected components of the level sets, the contours, split and
merge, are created and destroyed. While writing up this algorithm, I felt that
I should say something about the obvious absence of topological changes when
passing over “non-critical” vertices, but I could not find any results in the litera-
ture that I could readily apply. The results below are a contribution towards the
foundations of Morse theory for piecewise linear functions of up to three variables.

1. Results and Open Questions

We assume that the domain M is a triangulation of a convex region in R3.
The function f is given at the vertices and extended to M by linear interpolation.
For simplicity, we restrict our attention to vertices in the interior of M . For our
purposes, the link of a vertex v is the graph consisting of the neighbors of v, with
an edge between two neighbors u and w if the triangle uvw is in the triangulation.
The upper (lower) link is generated by the vertices whose value is bigger (smaller)
than f(v). We assume that no two vertices have the same value.

Theorem 1. Let v be a vertex in the interior of M . The topology of the level
sets Mh is the same for all values h in a sufficiently small interval f(v) − ε ≤
h ≤ f(v) + ε if and only if the upper and the lower link are both non-empty and
connected.

The criterion can be adapted for boundary vertices, and also for two-dimensional
domains. If the condition if the theorem is fulfilled, we call v a regular (or ordinary)
point, otherwise it is a critical point, and f(v) is a critical value.

Theorem 2. If the interval [a, b] contains no critical value, then there is an isotopy
between all level sets in this range, i. e., a continuous bijection

g : Mb × [a, b]→ { x ∈M | a ≤ f(x) ≤ b }
that is level-preserving: f(g(x, h)) = h.
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For a fixed height h, the homeomorphism g(·, h) between Mb and Mh is piecewise
linear. However, the isotopy is not piecewise linear when regarded on its domain
Mb× [a, b]. (It should not be too difficult to strengthen the proof to achieve this.)

The proof is given in the appendix of [4] by an explicit construction: very
roughly, the upper link of v is embedded as a planar straight-line graph inside the
convex polygon whose sides correspond to the tetrahedra incident to v that are
intersected by the level set through v. This graph has the same face structure as
the level set above v. As the level set proceeds downwards towards v, the graph
of the upper link shrinks towards the center, and at v, the result is a wheel.

The part of the proof that relies on drawing a graph with straight lines does not
carry over to higher dimensions. An alternative approach that has not been tried
might be to use a sequence of elementary subdivision operations (by inserting a
new vertex into a cell) and their inverse “welding” operations [5, Theorem II.11].

There is a natural conjecture for the extension of the characterization of critical
points to 4 dimensions: the link of a vertex is a 3-sphere, and for a regular vertex,
it should be necessary and sufficient that the level set through this vertex cuts this
3-sphere into two 3-balls that are glued together along a 2-sphere forming their
common boundary. This condition is straightforward to test. In five and higher
dimensions, the problem of recognizing a critical point becomes more difficult, and
it is probably even undecidable, for some high enough dimension.

2. Related Literature

Interestingly, in Morse Theory for continuous functions [9], the criterion for
the definition of a regular point v is just a local version of the conclusion of our
Theorem 2: the existence of an isotopy between level sets in the neighborhood
of v, i. e., some height-preserving homeomorphism between some neighborhood
of v and the Cartesian product of a manifold with an interval of height values.

Tom Banchoff introduced Morse theory for piecewise linear functions in a widely
known and often cited paper [2] about critical points, which even contains a Critical
Point Theorem, without ever defining critical points, however. The results concern
the Euler characteristic of the manifold and its relation to an appropriately defined
index of a critical point. They remain at the level of counting, and no connection
to the topology of level sets is made.

Morse Theory for piecewise linear functions has also been treated by Brehm and
Kühnel [3, Section 2]; see also Kühnel [7, Chapter 7] for a more detailed account.
Critical points are defined and the topology changes at these points are analyzed
at the level of homology. For our case of two and three dimensions, this implies
that regular points, where the homology is trivial, do not incur a topology change
when the level set passes them, and there is a piecewise linear homeomorphism
between different level sets [5]. However, the existence of this homeomorphism
does not lead to the isotopy of Theorem 2.

In a related paper, Agrachev, Pallaschke and Scholtes [1] get a conclusion like
in Theorem 2 under a stronger condition. To classify a vertex v in a piecewise
linear function as a regular vertex, they require the existence of a direction that
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has a positive scalar product with the gradients of f on all cells incident to v.
The example of a bivariate function in the figure shows that this is stronger than
necessary. The graph of the function has three faces forming a “cup”. The figure
shows a side view and a top view with level lines. The vertex v at the bottom is a
minimum and therefore certainly not regular. If we add a “spout” that makes it
possible for the water to flow out, we only add more faces incident to v, and this
cannot make the vertex regular, according to this definition. However, one sees
that the level lines are isotopic as they pass through v.

The Stratified Morse Theory of Goresky and MacPherson [6] seems like a nat-
ural candidate to apply to our setting: It treats smooth functions on non-smooth
manifolds. If we look at the height function on the graph of the function f , which
is a polyhedral hyper-surface in four dimensions, we are precisely in the situation
that we need. One problem is that all vertices v of the domain are regarded as
critical points by definition. The theory makes statements about the nature of the
topology changes in this case, but only about the homeomorphism type of the level
sets above (Mf(v)+ε) and below (Mf(v)−ε) the value f(v), and thus they cannot
be used straight from the book in order to get our results about the isotopy across
the value f(v). Moreover, this theory depends on heavy tools like René Thom’s
isotopy lemma, which is a powerful and deep statement with a very long proof (by
John Mather) that has never been formally published. It might be rewarding to
try to follow the proofs of [6] for the special case considered here, possibly replacing
the application of Thom’s Lemma by something that can be proved directly.
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Towards a Fast Algorithm for Recognizing the Unknot

Ivan Dynnikov

A rectangular diagram of a knot or link is a picture like this:

In all crossings, the vertical line must be overcrossing. Collinear edges are
forbidden.

To specify a rectangular diagram, it suffices to provide the positions of its
vertices. For example, the diagram above can be given as

or, equivalently, as the matrix
































0 1 0 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 0 1 0

































.

Rectangular diagrams give rise to a nice combinatorial formalism for describing
isotopy classes of links. Any link type can be presented by a rectangular diagram,
and any two different representations are equivalent modulo elementary moves
that include:
• cyclic permutations of vertical and horizontal edges (columns and rows, respec-

tively, of the corresponding matrix);
• exchanges of non-interleaved neighboring edges (neighboring columns or rows of

the matrix);
• stabilizations and destabilizations.
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Rows (columns) with non-zero entries at positions i, j and k, l are called interleaved
if i < k < j < l or k < i < l < j. A stabilization can be defined geometrically as
replacing a vertex with coordinates (x, y) by three vertices (x + ε, y), (x, y + δ),
(x+ ε, y+ δ), where ε and δ are small non-zero numbers (not necessarily positive).
The inverse operation is called destabilization.

The complexity of a rectangular diagram is defined as (one half of) the number
of edges. Cyclic permutations and exchanges do not change it, whereas destabiliza-
tions reduce it. It was shown in [1] that any rectangular diagram of the unknot can
be turned into a trivial diagram (a rectangular) by cyclic permutation, exchanges,
and destabilizations (i.e., no stabilization needed). The number of diagrams that
can be obtained from any given one by elementary moves excluding stabilizations
is obviously finite, so we get a simple algorithm for recognizing the unknot: first,
present the given knot in the rectangular form, then search all possible sequences
of cyclic permutations, exchanges, and destabilizations.

Though this algorithm looks very simple and close in nature to the way a human
recognizes unknots (untangling a rope), there is no optimistic upper bound for its
running time. The only upper bound known so far is the total number of diagrams
of complexity not exceeding the original one, which is of order nn. The idea now
is to find a larger family of moves such that: 1) any rectangular diagram of the
unknot can simplified by a move from that family in just one step; 2) the moves
that can be applied to a given diagram can be searched quickly, i.e., in polynomial
time.

For a while, a hope was that flypes, which are introduced in [2], could be
such a family. The number of flypes that can be applied to a given diagram of
complexity n is of order n6, but, jointly with Jean-Marie Droz, we have proved
that a simplifying flype (if existing) can be found in n4 operations. This made it
realistic to implement a flype-based simplifying procedure on a computer and try
it for rather large (n = 100) examples. In this way a rectangular diagram of the
unknot has been found that does not admit any simplifying flype, showing that
flypes are not yet sufficient for our purpose. However, the example, which has
45 vertical edges, still can be easily simplified by hand, which suggests that some
simple idea that might finally make the algorithm polynomial can be out there.
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Linear Versus Piecewise Linear Embeddability of Simplicial Complexes

Ulrich Brehm

(joint work with Karanbir S. Sarkaria)

Determining the minimal dimension m such that a given simplicial complex K
embeds piecewise linearly in Rm is in many cases an important but very difficult
problem of algebraic topology. Piecewise linear embeddability of K means linear
embeddability of the r-th derived complex K(r) for some r.

The first example of a triangulated 2-dimensional manifold with boundary which
does not embed linearly in R

3 has been constructed in [1]:

Theorem 1. There exists a triangulated Möbius strip with 9 vertices which does
not immerse linearly in R3.

An immersion is a locally injective continuous mapping, thus intersections of
triangles not sharing a vertex are allowed.

A detailed proof of Theorem 1 (see [1]) was given in the talk because it already
contains the basic ideas for the higher dimensional analogues.

The following higher-dimensional analogue of Theorem 1 is a counterexample
to a conjecture of Grünbaum in [2] (choosing m = 2n):

Theorem 2. For each n ≥ 2, m ≥ 3, r ≥ 0 with n ≤ m ≤ 2n there exists an n-
dimensional simplicial complex K which embeds piecewise linearly in Rm but its
r-th derived complex K(r) does not embed linearly in Rm.

Note that the dimension bounds are best possible since each n-dimensional
simplicial complex always embeds linearly in R2n+1 (merely choose the vertices in
general position) and each planar graph (n = 1, m = 2) embeds linearly in R2.

For the proof of Theorem 2 one first observes that it is sufficient to consider the
cases m = 2n and m = 2n− 1.

In the case m = 2n (where n ≥ 2) we consider Skn(∆2n+2), the n-skeleton of a
(2n + 2)-simplex. This complex does not embed piecewise linearly in R2n but after
removing an n-simplex s the complex L = Skn(∆2n+2) \ {s} embeds piecewise
linearly in R2n, however, for such an embedding the boundary complexes ∂s and ∂t
are linked with linking number 6= 0, where t = vert ∆2n+2 \ s is the complementary
simplex of s in ∆2n+2. Note that ∂s is an (n− 1)-sphere and ∂t is an n-sphere.

Now the idea is to construct K = L ∪M in such a way that K still embeds
piecewise linearly in R2n, L0 ∩M = ∂s and M contains a simplicial n-sphere ∂s̃
with n + 2 vertices which is homologous to u times ∂s (choosing u > 1). Now ∂t
and ∂s̃ have linking number at least u (in absolute value) under any piecewise
linearly embedding e : K → R2n.
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The number of simplices contained in the disjoint simplicial complexes (∂s̃)(r)

and (∂t)(r) is bounded in terms of r.
From this it follows that under any linear embedding of the union of these

spheres in R
2n the absolute value of the linking number is also bounded by a

constant depending only on r.
Choosing u bigger than this constant in the construction of K we get that K(r)

does not embed linearly in R2n.
For the case m = 2n− 1 one proceeds almost exactly in the same way using

the results in [3]. We merely replace Skn(∆2n+2) in the construction by any com-

plementary n-dimensional complex L̃ with 2n + 2 vertices, where complementary
means that for each subset σ ⊆ vert L̃ exactly one of the sets σ or vert L̃ \ σ is a

simplex of L̃.

A generalization of Theorem 1 to higher dimensional manifolds with boundary
is

Theorem 3. For each n = 2k, k ≥ 1 there exists an n-dimensional simplicial com-
plex K which embeds piecewise linearly but not linearly in R

2n−1, where K is
homeomorphic to the manifold with boundary obtained from the real projective
space RPn by deleting an open n-dimensional ball.

Open problem: Can the minimal dimensions for piecewise linear embeddability
and linear embeddability of a simplicial complex differ by more than one?

Of particular interest are the low dimensional cases of n-dimensional simplicial
complexes with n = 2 and n = 3.
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Computing Discrete Shape Operators on General Meshes

Denis Zorin

(joint work with E. Grinspun, Y. Gingold, J. Reisman)

Discrete curvature and shape operators, which capture complete information
about directional curvatures at a point, are essential in a variety of applications:
simulation of deformable two-dimensional objects, variational modeling and geo-
metric data processing. In many of these applications, objects are represented by
meshes. Currently, a spectrum of approaches for formulating curvature operators
for meshes exists, ranging from highly accurate but computationally expensive
methods used in engineering applications to efficient but less accurate techniques
popular in simulation for computer graphics.

We propose a simple and efficient formulation for the shape operator for vari-
ational problems on general meshes, using degrees of freedom associated with
normals. On the one hand, it is similar in its simplicity to some of the discrete
curvature operators commonly used in graphics; on the other hand, it passes a
number of important convergence tests and produces consistent results for differ-
ent types of meshes and mesh refinement.
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Discrete CMC Surfaces in Space Forms

Udo Hertrich-Jeromin

(joint work with Wayne Rossman, relying on recent work by Fran Burstall,
David Calderbank and Susana Santos)

We are concerned with the following question:

How to define discrete cmc surfaces in spaces of constant curvature?

More precisely: we are seeking an “integrable discretization” of the notion of a
surface of constant mean curvature (“cmc”) H in any space form Q3

κ (here κ
denotes the curvature of the space form), where “integrable discretization” in
this context means that the defined class of discrete surfaces/nets should have a
transformation theory that is similar to the smooth case (see Y. Suris’ talk for more
details). In particular, we seek a class of discrete nets that allows for “Bäcklund
transformations” and “Lawson correspondence”, as in the smooth case, and we
hope to see a remnant of the harmonic map associated family that drives the
usual integrable systems approach to constant mean curvature surfaces as well.

A second requirement for the sought definition is that it shall be a “unified
definition”, that is, one that works in all space forms and for all values of the
mean curvature alike. We will briefly discuss this issue below.



704 Oberwolfach Report 12/2006

Observations and known results.

A key observation is that smooth cmc surfaces in space forms are isothermic,
that is, they can be conformally parametrized by their curvature lines, they are
“divisible into infinitesimal squares by their curvature lines”.

Smooth isothermic surfaces have a particularly rich transformation theory and
the Bäcklund transformation and Lawson correspondence for cmc surfaces are
special cases of the Darboux and Calapso (or “T ”-) transformations for isothermic
surfaces, respectively (see [7]).

This transformation theory carries over completely to the discrete case (see [5]
and [7]) when a (discrete) isothermic net is defined as a net for which the cross
ratios of elementary quadrilaterals factorise into two functions of one variable or,
equivalently, the product of four adjacent cross ratios (taken in an appropriate
way) is 1 (cf. [2]).

These facts led to definitions of discrete minimal and cmc H 6= 0 nets in Euclid-
ean space (see [1] and [4]) as well as to the definition of horospherical nets as the
discrete analogue of cmc H = 1 surfaces in hyperbolic space: these can equiva-
lently be defined as Darboux transforms of spherical isothermic nets or as Calapso
transforms of discrete minimal nets in Euclidean space (see [5] and [6]).

In fact, the Calapso transformation can be used to carry the definitions in
Euclidean space over to other space forms in all cases where H2 + κ ≥ 0 (which
is a conserved quantity for the Lawson correspondence). A discrete analogue of
Bianchi’s permutability theorem for the Darboux and Calapso transformations will
then provide “intrinsic” definitions via “double Darboux transforms”.

The indicated definition will provide “integrable discretizations” in the covered
cases but they fail to provide a “unified” approach that would work in all situa-
tions (the problem is the lack of the existence of a parallel cmc surface in certain
situations, i.e., the fact that Bonnet’s theorem fails).

Polynomial conserved quantities.

Unlike other transformations of surfaces, the Calapso transformations can be re-
alized by a loop of maps λ 7→ Tλ from the isothermic surface/net into the Möbius
group of the conformal 3-sphere (or n-sphere) in the discrete and smooth cases
alike. The Darboux transformations now appear as those surfaces/nets that are
mapped to a single point by Tλ.

This loop of Möbius transformations can be lifted into the Lorentz group O1(5)
of 5-dimensional (or, (n + 2)-dimensional) Minkowski space. Thus, in the smooth
case, the above characterization of the Darboux transforms of an isothermic surface
is nothing but the integrated form of Darboux’s linear system (cf. [7]).

Burstall/Calderbank/Santos (see [3] and [8]) now define a polynomial conserved
quantity (“pcq”) as a polynomial P (λ) =

∑n
k=0 Pkλk (where the coefficients Pk are

maps from the surface into Minkowski space) that satisfies Darboux’s linear system
for all λ, i.e., that satisfies Tλ · P (λ) ≡ const when the constants of integration
for Tλ are suitably chosen. They observe that a (smooth) isothermic surface has
constant mean curvature in a space form exactly when it has a linear conserved
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quantity P (λ) = Q+λZ. Furthermore, the class of isothermic surfaces with pcq’s
is invariant under the Calapso transformation and has Bäcklund transformations
that appear as special cases of the Darboux transformation.

Discrete cmc nets in space forms.

We use this characterization of smooth cmc surfaces as isothermic surfaces that
have a linear conserved quantity as a definition in the discrete case: “an isothermic
net is cmc if it has a linear conserved quantity Q + λZ”.

This definition is obviously a unified definition. Also, it turns out to provide an
integrable discretization in the aforementioned sense: we can show, for isothermic
nets with pcq’s of any degree, that the Calapso transformation preserves the class
(this is straightforward from the properties of the Calapso transformation), thus
providing an analogue of the Lawson correspondence in the linear case, and that
suitably chosen Darboux transformations also preserve the class, hence providing
a notion of Bäcklund transformation. Further, the usual Bianchi permutability
theorem holds for the Bäcklund transformation defined in this way, which is a first
step towards a better understanding of the geometry of transformation and of the
defined class of discrete nets.

Finally, using the fact that Q (being constant) models the ambient space form of
the discrete cmc net and Z models its central sphere congruence (indeed, at least
generically, Z gives rise to a discrete normal field in the sense of Schief [9]), we
can prove that our definition generalizes the known definitions of discrete minimal
and cmc nets in Euclidean space (and of all definitions obtained from these via
Lawson correspondence).
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[7] U. Hertrich-Jeromin: Introduction to Möbius differential geometry ; London Math. Soc. Lect.

Note Ser. 300, Cambridge University Press (2003)
[8] S. Santos: PhD thesis, University of Bath; in preparation
[9] W. Schief: On a maximum principle for minimal surfaces and their integrable discrete coun-

terparts; manuscript (2005)



706 Oberwolfach Report 12/2006

Triangulated Surfaces and Higher-Dimensional Manifolds

Frank H. Lutz

(joint work with Jürgen Bokowski, Stefan Hougardy, Thom Sulanke,
John M. Sullivan, and Mariano Zelke)

We discuss and survey three different schemes for the enumeration of triangulated
manifolds (cf. [8], [9], [11], [12], and [14]):
• generation from irreducible triangulations,
• (isomorphism free) lexicographic enumeration,
• strongly connected enumeration.

With implementations of the second scheme, all triangulated surfaces with up
to 12 vertices have been enumerated [8], [13], [14]. There are 865, 20, and 821
vertex-minimal triangulations of the orientable surfaces of genus 2, 3, and 4 with
10, 10, and 11 vertices, respectively. All these examples have geometric realizations
as polyhedra in R3. The respective realizations were obtained by
• randomly choosing coordinates [8],
• geometric construction [1],
• enumeration of small coordinates [5], [6],
• simulated annealing based on the intersection edge functional [7].

For the orientable surface of genus 5 there are 751593 different 12-vertex trian-
gulations [14] of which at least 15 are realizable [7] and at least 3 are non-realiz-
able [10].

By Steinitz’ theorem (cf. [15]), every triangulation of the 2-sphere can be real-
ized as the boundary of a simplicial 3-polytope. The realizability of triangulations
of the torus was conjectured by Duke [3] and Grünbaum [4]. Our computational
results in combination with the non-realizability results of Bokowski and Guedes
de Oliveira [2] and Schewe [10] give rise to:

Conjecture. Every triangulation of an orientable surface of genus 1 ≤ g ≤ 4 is
geometrically realizable.

By strongly connected enumeration we further obtained all triangulations of
3-manifolds with edge degree at most five [9]: Altogether, there are 4787 such
examples, 4761× S3, 22 × RP3, 2 × L(3, 1), 1 × L(4, 1), and 1 × S3/Q, with the
600-cell as the largest example. (It was shown independently by Matveev and
Shevchishin that all triangulated 3-manifolds with edge degree at most five are
spherical and have at most 600 tetrahedra.)
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P. Schröder, and G. M. Ziegler, eds.), Oberwolfach Seminars, Birkhäuser, Basel.
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Nonrealizability of Triangulated Surfaces

Lars Schewe

In this talk we report on progress in finding nonrealizable triangulations of
surfaces; that is, triangulations of orientable, closed surfaces that do not admit a
polyhedral embedding without self-intersections in R3.

The first such example was found by Bokowski and Guedes de Oliveira [2].
Using a similar method we have the following new results:

(1) No triangulation of a surface of genus 6 using only 12 vertices admits a poly-
hedral embedding in R3.

(2) There exist at least three triangulations of a surface of genus 5 using only 12
vertices that do not admit a polyhedral embedding.

(3) For every g ≥ 5 we can construct an infinite family of triangulations of a
surface of genus g none of which admit a polyhedral embedding in R

3.

The last result is especially interesting in comparison to the results of Hougardy,
Lutz, and Zelke (cf. the talk of Frank Lutz). They found polyhedral embeddings
for some triangulations of a surface of genus 5 using only 12 vertices and found
that all minimal vertex triangulations of surfaces of genus g ≤ 4 admit polyhedral
embeddings.

Bokowski and Guedes de Oliveira showed that one special triangulation with
12 vertices of a surface of genus 6 does not admit a polyhedral embedding in R3.
To achieve this result they used an algorithm to generate oriented matroids and
showed that no oriented matroid was admissible for the triangulation in question.
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Oriented matroids (as a general reference we recommend [1]) serve as a combinato-
rial model of the point configuration of the vertices of the surface. From this model
we can read off which triangles and edges intersect each other. We call an oriented
matroid admissible for a given triangulation if the triangles do not intersect each
other (on the level of oriented matroids). It is known that the existence of such
an admissible oriented matroid is a necessary condition for the realizability of the
given triangulation. This allows us to show that a triangulation is nonrealizable
by showing that no admissible oriented matroid exists. Bokowski and Guedes de
Oliveira gave an algorithm that given a triangulation generates all admissible ori-
ented matroids. With this algorithm they could show that the triangulation they
studied did not admit an oriented matroid.

One of the drawbacks of this method of generating admissible oriented matroids
was the enormous amount of CPU-time needed for the algorithm. They used
about four months (on different machines) to check all possibilities. This made it
infeasible to check all 59 combinatorially distinct minimal vertex triangulations of
a surface of genus 6.

The results mentioned above were achieved using a new algorithm to generate
oriented matroids that are admissible for a given triangulation. The idea of this
algorithm is to transform this problem into an instance of the well-known sat-
isfiability problem (SAT) and then solve the resulting SAT instance using freely
available SAT solvers.

With the new algorithm it is possible to check the triangulations in question in
reasonable time (the example of Bokowski and Guedes de Oliveira takes about two
hours on a single machine). We obtained result (3) by showing that after removing
one triangle from one of the triangulations mentioned in (2) the resulting complex
is still nonrealizable. Thus, we can construct new nonrealizable triangulations by
taking connected sums with this triangulation.
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Discrete Conformal Structures

Kenneth Stephenson

Circle packings are configurations of circles with specified patterns of tangency.
Such configurations were introduced into complex function theory through a 1985
conjecture of Thurston and its subsequent proof by Burt Rodin and Dennis Sulli-
van. Since then a rather comprehensive discrete function theory has emerged by
defining discrete analytic functions as maps between circle packings [4, 5]. These
maps manifest geometric behavior which not only parallels that of classical analytic
functions, but also converges to it under appropriate refinement. A key feature of
the discrete theory is its computability and the consequent experimental possibili-
ties. The research described in this talk goes more directly to the geometry of the
surfaces which underly analytic functions — namely, conformal geometry — and
specifically its discretization.

A short list of what one expects when “discretizing” a classical topic would
include: (1) geometric intuition — the essential global feel of the topic should
be evident; (2) the discretization should provide models for a significant range
of classical objects; (3) a refinement procedure should be available to allow the
discrete model to incorporate more features of the classical; and (4) the discrete
objects should converge under refinement to their classical counterparts.

The classical topic here is Riemann surfaces. These are largely smoke and mir-
rors: the conformal structure of a Riemann surface is whatever remains invariant
under the conformal transition maps of an atlas. In short, the web of consistencies
is the conformal structure. In the discrete case, geometric consistency is to be
associated with “discrete” conformal transition maps — that is, maps between
circle packings. In particular, this talk is intended to provide evidence in support
of this definition:

Definition 1. A discrete conformal structure for an oriented topological surface
S is an abstract simplicial 2-complex K which is (isomorphic to) a triangulation
of S.

A discrete conformal structure K on a surface allows for direct hands-on control
of that surface (as well as a useful marking). In particular, each circle packing for
K may be viewed as imposing a geometry on S. The existence and properties of
circle packings are well established and they are (largely) computable in practice,
so one can manipulate S. The issue is the extent to which these geometries on S
are discrete conformal ; that is, the extent to which their behaviors mimic what
one expects in the classical setting and whether they converge appropriately under
refinement.

The talk surveys various situations where one can both apply and visualize
concrete constructions with discrete conformal structures. Some are classical, some
are recent. The talk begins, however, by surveying some of the basics of circle
packing to illustrate the available discrete machinery. Thus one has the Discrete
Uniformization Theorem which states that associated with every triangulation K
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of an oriented topological surface S is an essentially unique classical conformal
structure on S which supports a circle packing (in its intrinsic metric of constant
curvature) with the combinatorics of K. In other words, K does induce a geometry.
Moreover, if K has a boundary, then there is considerable plasticity available: one
can realize circle packings for K satisfying specified boundary conditions in terms
of radii or angle sums (and branching, though not relevant to this talk). These
provide the discrete analogue of Neumann and Dirichlet boundary conditions.

The examples start with dessins d’enfants, a theory initiated by Grothendieck
in which closed Riemann surfaces are created from simple drawings and their
triangulations [1]. The classical conformal structure is defined by making each
face from a unit-sided equilateral triangle, so it is fundamentally combinatoric. If
such triangulations are refined and circle packed, the resulting discrete conformal
structures provide the only general method to approximate the classical conformal
structure. Examples of genus 0 and 2 are illustrated.

The next example illustrates conformal tiling, a topic due to Jim Cannon, Bill
Floyd, and Walter Parry [2]. Here “subdivision” rules define surfaces as collec-
tions of abstract polygonal faces. Given an abstract such tiling, one can add a
barycenter to each face and circle pack the resulting triangulation to obtain a
geometric tiling. As the faces undergo successive subdivisions, one can watch the
resulting geometries. The central issue is whether internal consistencies emerge in
the geometry which reflect the combinatorics of the subdivision rules, such things
as conformal type and internal self-similarities.

Next the classical topic of conformal welding. An illustration is given in the
figure below. The classical theory of conformal welding, which associates welding
functions, orientation preserving homeomorphisms of the unit circle, with welding
curves, simple closed curves in the plane, has recently been proposed by Mumford
[3] as an approach to analyzing “shape” for plane curves.

In this illustration, the welding map represented by the self-map of [0, 2π] given
on the left is converted to the owl-shaped welding curve on the sphere on the right.
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One simply attaches two triangulated, circle packed copies of the unit disc using
the welding map to determine how boundary vertices of the two triangulations
are associated. The result is a triangulated sphere, and when circle packed on the
Riemann sphere, the common boundary vertices take the owl shape (see Williams
[6]. Circle packing can equally well be used to move from a shape to the associated
welding map on the unit circle.

Additional examples are discussed involving computations of discrete extremal
length, harmonic measures, ad hoc constructions of analytic function image sur-
faces, pairs-of-pants constructions of closed surfaces, and conformal mapping of
piecewise affine surfaces embedded in 3-space. In all these cases one again sees
the close parallels between the discrete and classical objects, the advantage on the
discrete side being that the objects are constructible. An application of the last
topic, the conformal flattening of embedded surfaces, is illustrated with “brain
mapping” work (joint with Monica Hurdal). Besides providing a example of uses
outside mathematics, this work illustrates the extreme complications that can be
handled in circle packing constructions.

In closing, it is observed that for essentially all the situations that are illustrated
it has been proven that the discrete conformal objects converge under refinement
to their classical counterparts. This faithfulness and the intuitive and hands-on
nature of the discrete model are sufficient that one might (discreetly) describe
classical conformal structures as those imposed by “infinitesimal” triangulations
of their surfaces.
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Discrete Riemann Surfaces, Linear and Non-Linear

Christian Mercat

(joint work with Alexander Bobenko and Yuri Suris)

To the first two orders, discrete holomorphic functions are either complex linear
or Möbius transformations. We discretize this notion to complex functions of
vertices ♦0 of an oriented quad-mesh ♦. First, fix a direct embedding of this quad-
mesh into the complex plane by a complex function of the vertices Z : ♦0 → C,
corresponding to the identity map. We will say that another function is linear
holomorphic (with respect to Z) if and only if the ratio along the diagonals are
the same as Z on each quadrilateral:

∀(x, y, x′, y′) ∈ ♦2,
f(y′)− f(y)

f(x′)− f(x)
=

Z(y′)− Z(y)

Z(x′)− Z(x)
= i ρ(x,x′).

Likewise we will say that a function is cross-ratio preserving if the cross-ratio on
each quadrilateral is the same as the one given by Z:

f(x)− f(y)

f(y)− f(x′)

f(x′)− f(y′)

f(y′)− f(x)
=

Z(x)− Z(y)

Z(y)− Z(x′)

Z(x′)− Z(y′)

Z(y′)− Z(x)
= q(x,y,x′,y′).

An important class of cross-ratio preserving maps are given by circle patterns
with prescribed intersection angles. In the form of a Hirota system, a connection
between the two notions can be described: A discrete function F is cross-ratio
preserving if its exterior differential can be written, on each edge (x, y) ∈ ♦1

as F (y) − F (x) = f(x)f(y)
(

Z(y) − Z(x)
)

=:
∫

(x,y) f dZ for a function f . The

constraint on f is the Morera equation:
∮

f dZ = 0 around every quadrilateral.
Looking at logarithmic derivatives fε = f × (1 + εg) of f that still form a Hi-
rota system, one finds that g should be linear holomorphic with respect to F :
g(y′)−g(y)
g(x′)−g(x) = F (y′)−F (y)

F (x′)−F (x) . Linear constraints can as well be reformulated as a Mor-

era equation
∮

f dZ = 0 not for a multiplicative but for an additive coupling

between functions and 1-forms:
∫

(x,y) f dZ := f(x)+f(y)
2

(

Z(y)− Z(x)
)

.

We will be interested in so called critical reference maps Z composed of rhombi,
the length δ = |Z(y)− Z(x)| is constant for all edges (x, y) ∈ ♦1. Then these two
constraints are integrable, meaning that they give rise to a well-defined Bäcklund
(or Darboux) transform: given a linear holomorphic (resp. cross-ratio preserving)
map f and a starting point O ∈ ♦0, one can define a 2-parameters family fλ,µ of
deformations of f that still fulfill the same linear (resp. cross-ratio) condition and
starting value µ at the point O. This is done by viewing the solution f lying on
a ground level and building “vertically”, above each edge (x, y), a quadrilateral

on which the same kind of equation will be imposed:
fλ,µ(x)−f(y)
fλ,µ(y)−f(x) = λ+Z(x)−Z(y)

λ+Z(y)−Z(x)

for the linear constraint, resp.
fλ,µ(x)−f(x)

f(x)−f(y)
f(y)−fλ,µ(y)

fλ,µ(y)−fλ,µ(x) = λ2

(

Z(y)−Z(x)
)2 for the

cross-ratio constraint.
In [5], based on the point of view of integrable systems, we define discrete

holomorphicity in Zd, for d > 1 finite, equipped with rapidities (αi)1≤i≤d and
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the tools of integrable theory yields interesting results like a Lax pair governing
a moving frame Ψ(·, λ) : Zd → GL2(C)[λ] and isomonodromic solutions like the
Green function found by Kenyon [4].

An important tool of the linear theory is the existence of an explicit basis of
discrete holomorphic functions. In the rhombic case, for a discrete holomorphic
function f , the 1-form f dZ is holomorphic (it is closed and its ratios on two dual
diagonals are equal to the reference ratios) and can be integrated, yielding back
a holomorphic function. Differential equations can be setup, producing explicit
formulae for exponentials and polynomials which are shown to form a basis of
discrete holomorphic functions.

Lots of results of the continuous theory can be extended to this discrete setting:
There exists a Hodge star : ∗ : Ck → C2−k, defined by

∫

(y,y′)
∗α := ρ(x,x′)

∫

(x,x′)
α;

the discrete Laplacian is written as usual ∆ := d d∗+d∗d with d∗ := −∗d ∗, which
reads as weighted differences around neighbours ∆ f(x) =

∑

ρ(x,xk)(f(x)−f(xk)).
The weights are given by the usual cotan formula.

A wedge product defines an L2 norm for functions and forms by (α, β) :=
∫∫

♦2
α ∧ ∗ β̄. The norm of df is called the Dirichlet energy of the function f ,

ED(f) := ‖df‖2 = (df, df) = 1
2

∑

(x,x′)∈Λ1
ρ(x, x′) |f(x′)− f(x)|2 . The conformal

energy of a map measures its conformality defect EC(f) := 1
2‖df − i ∗ df‖2. They

are related through EC(f) = ED(f)− 2A(f) just as in the continuous case.
The Hodge star decomposes forms into exact, coexact and harmonic ones, the

harmonic being the orthogonal sum of holomorphic and anti-holomorphic ones. A
Weyl’s lemma and a Green’s identity are found.

Nonclosed 1-forms with prescribed diagonal ratios define meromorphic forms
and the holonomy around a quadrilateral is called its residue. The compact case
is covered with flat atlases of critical maps for a given euclidean metric with conic
singularities. Meromorphic forms of prescribed holonomies and poles are defined
and are used to form a basis of the space of holomorphic forms. It is 2g-dimensional
on a genus g surface, that is twice as large as the continuous case, defining two
period matrices instead of one. This difference is explained by the doubling of
degrees of freedom, and partially solved through continuous limit theorems: the
two period matrices converge to the same limit when refinements of quad-meshes
for a given Euclidean metric with conic singularities are taken. Every holomorphic
function can be approximated by a converging sequence of discrete holomorphic
functions on refinements of critical quad-meshes.

The Green function and potential allow one to setup a Cauchy integral formula
giving the value at a point (in fact its average at two neighbours x, y) as a contour

integral:
∮

∂D
f dGx,y = 2iπ f(x)+f(y)

2 .

We define a derivation with respect to Z by ∂ : C0(♦)→ C2(♦) with

∂f =
h
(x, y, x

′
, y

′) 7−→ −
i

2A(x, y, x′, y′)

I
(x,y,x′,y′)

fdZ̄

=
(f(x′) − f(x))(ȳ′

− ȳ) − (x̄′
− x̄)(f(y′) − f(y))

(x′ − x)(ȳ′ − ȳ) − (x̄′ − x̄)(y′ − y)

i
,
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where Z(x) is simply written x; and likewise ∂̄f with fdZ. A holomorphic function

f satisfies ∂̄f ≡ 0 and ∂f(x, y, x′, y′) = f(y′)−f(y)
y′−y

= f(x′)−f(x)
x′−x

. The Jacobian

J = |∂f |2 − |∂̄f |2 relates the areas
∫∫

(x,y,x′,y′)

df ∧ df = J
∫∫

(x,y,x′,y′)

dZ ∧ dZ.

Following Colin de Verdière and Kenyon, a geometrical
interpretation of linear discrete holomorphicity is en-
lightening. As circle patterns with prescribed angles can
be checked by eye, so can be a linear holomorphic map:
The quad-mesh ♦, when bipartite, decomposes into two
dual graphs Γ and Γ∗ whose edges are dual diagonals of
each quadrilateral. Around each vertex x ∈ Γ0, there is
a polygon, image of the dual face x∗ ∈ Γ∗

2 by the refer-
ence map Z. Consider the identity map as a picture of
all these polygons shrunk by a factor half. It represents
both dual graphs at the same time as matching poly-
gons. A map f : ♦0 → C is discrete holomorphic if and
only if every polygon x∗, centered at f(x), scaled and
turned according to ∂f(x), form into a polygonal pat-
tern of the same combinatorics as the reference polygo-
nal pattern, made of similar polygons.

The discrete exponential

as a polygonal pattern on

the triangular/hexagonal

lattice

The dilatation coefficient of a discrete map f is defined as Df := |∂f |+|∂̄f |

|∂f |−|∂̄f |
. We

will call f quasi-conformal when Df ≥ 1, that is |∂̄f | ≤ |∂f |. It can be written in

term of the complex dilatation: µf = ∂̄f
∂f

= (f(x′)−f(x))(y′−y)−(x′−x)(f(y′)−f(y))
(f(x′)−f(x))(ȳ′−ȳ)−(x̄′−x̄)(f(y′)−f(y)) .
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Some Observations from the (Projective) Theory of Rigidity

Walter Whiteley

Following along with the material presented in talks at this workshop, it became
clear that there are a surprising number of important connections between key
questions in field of Discrete Differential Geometry and the field of Rigidity The-
ory. In this talk, we outlined a selection of these connections. The material on
moving between metrics is joint work with Franco Saliola [3, 4], and the final
section on area constraints is new joint work with Bernd Schulze [6]. Other re-
sults come from the several decades of collaboration in the Structural Topology
Research Group [1, 2]. For those with an interest in this larger selection of back-
ground material, we note that the full set of articles from the journal Structural
Topology / Topologie Structurale is now available on the web from: http://www-
iri.upc.es/people/ros/StructuralTopology/.

One of the key themes is that, in spite of appearances, the key first-order,
or infinitesimal concepts are projectively invariant, and there can be substantial
additional insight from working with this projective geometry in the analysis [1, 8,
9]. Because the talks at the workshop on discrete integrable systems emphasized
the role of key projective configurations in the constructions, it is likely that these
concepts are also projectively invariant and further connections to rigidity and
associated geometric constraints can be anticipated and should be explored.

The first section of the talk outlined the rigidity matrices, and associated con-
nections for infinitesimal rigidity of frameworks. One key emphasis was that both
statics (the row dependences and row rank of the rigidity matrix) and first-order
kinematics (column dependencies and column rank) can be expressed in projective
form. If one examines the linear transformations which take the rigidity matrices
over Euclidean spaces to Rigidity Matrices over Spherical or Hyperbolic metrics,
one finds the matrix is decomposes into a a series of location specific blocks, one
for each vertex, that has the impact of switching the definition of ‘perpendicular’
to the underlying ‘projective motion’ as a weighted hyperplane [4]. This, in turn,
gives the simple translation of infinitesimal rigidity of a configuration in one metric
to infinitesimal rigidity of a configuration in another metric which shares the same
underlying projective geometry.

We also used this projective connection to connect first-order results for circle
configurations in the plane, with intersection angles as constraints, with first-order
results for corresponding points in Euclidean 3-space, which represent the circle
x2 + y2 − 2bx − 2cx + d with the point (b, c, d) [3]. The underlying connection
actually passes through stereographic lifting to the sphere, and then duality to the
‘de Sitter distance’ of points in the exterior of the sphere: a connection studied as
Laguerre Geometry, though it was also directly explored by Pedoe.

We also explored a second geometric construction which also appeared both
implicitly and explicitly in other talks at the workshop: parallel drawing of a con-
figuration. In the plane, with specified edges (essentially a framework), one can
seek new configurations where the designated edges are parallel to the original
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edges. This might be a trivial change (translation or dilation) or a non-trivial
change. The surprise is that in the plane, the search for parallel drawings is an
isomorphic problem to the search for first-order motions of the framework [5, 8].
This is an old engineer trick arising in folklore techniques developed at the drafting
tables in the 19th century. In 3-space the connection to first-order motions is more
tenuous, but it was noted that it is also connected to problems of integrable sys-
tems for configurations of plane quadrilaterals forming a surface or disc in 3-space.
In general, parallel drawing in any dimension is the projective dual of the concepts
of lifting and projection for polyhedral scenes into the next lower dimension, stud-
ied in scene analysis. The known fast combinatorial algorithms for determining
the space of parallel drawings at generic configurations come from studies in that
field [7]. We also note that parallel redrawing is a natural concept in studies of
Minkowski decomposability of polyhedra and polytopes, and in the study of recip-
rocal diagrams for configurations in all dimensions [2]. Again, the parallel drawing
properties of a configuration are projectively invariant (in Euclidean spaces) and
this underlying projective geometry offers additional insight.

Finally, we presented the solution to the infinitesimal version of one of the
problems from the problem session on Wednesday evening. At that session, it
was asked whether a plane configuration of a triangulated triangle, constrained to
hold the areas of the interior triangles fixed (area one or even more general areas)
would be unique up to area preserving maps (translation, affine transformations
with determinant 1). We described an approach using infinitesimal motions and
‘rigidity like’ matrices which represent the constraints of equal area [6]. This model
of the problem presents a lot of analogs to results in plane and spatial rigidity.

One analog is a necessary counting condition for local uniqueness (rigidity), and
for independence:
With |T | triangles and |V vertices, we need |T | ≥ 2|V | − 5 for local uniqueness.
Moreover, for independence of the constraints, all non-empty subsets T ′ of triangles
must satisfy |T ′| ≤ 2|V ′| − 5.
On counting, a triangulated triangle has exactly the right number of triangles
to be independent and locally unique. We conjecture that these counts are also
sufficient for local uniqueness when the vertices are in generic position. We note
that, like the counts for rigidity in the plane (and unlike the counts for rigidity in
3-space) these counts do generate a matroidal independence structure on 3-uniform
hypergraphs (collections of abstract triangles) in the plane ([9] Appendix A).

We outlined an inductive proof that a triangulated triangle gives a locally unique
pattern, with fixed areas, provided the vertices are generic. The proof begins
with the simplest case: one triangle on three vertices, and then works up by a
process called vertex splitting which adds one new vertex and two new triangles at
each stage, while preserving the null-space of the corresponding matrix, at generic
configurations.

We also noted that these area constraints have an averaging property (similar
to averaging for first-order rigidity). If we have two configurations p and q which
give the same areas a pattern (T, V ), then the same pattern at the configuration
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p+q
2 has an infinitesimal motion p−q which preserves the area. Conversely, a first-

order deformation u of a pattern (T, V ) at p will generate two patterns at p + u
and p − q which have the same areas (though these are different than the areas
of the original). In this manner, it is possible to create a number of first-order
flexible configurations on a triangulated triangle, but it we do not know of any
finitely flexible patterns for a triangulated triangle.

In closing, we returned to the central theme: these concepts have a core projec-
tive content which gives simplicity to the analysis and gives insight for the solution
of associated geometric problems.
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Computing Quadrilateral and Conical Meshes

Johannes Wallner

(joint work with Helmut Pottmann and Wenping Wang)

It is well known that the network of principal curvature lines can be discretized
by circular meshes, i.e., quadrilateral meshes with planar faces, where the vertices
of each face are co-circular [1]. A new discretization is conical meshes, where we
require faces adjacent to a vertex to be co-conical; to be precise: the oriented
planes which carry those faces are tangent to an oriented cone of revolution [2].
In the smooth case, infinitesimally neighbouring surface normals along a principal
curvature line are co-planar (this is a characterization) – in the discrete case,
neighbouring axes of circles/cones of a circular/conical mesh are co-planar.

In the S3 model of Möbius geometry, co-circular vertices lie in S3 ∩ U , with
dimU = 2. Analogously, in the Blaschke cylinder model S2 × R of Laguerre



718 Oberwolfach Report 12/2006

geometry, co-conical faces appear as points which lie in (S3×R)∩U , with dimU =
2. In this way, both the circular and conical meshes appear as quadrilateral meshes
in the appropriate geometric model. Möbius/Laguerre transformations transform
circular/conical meshes into meshes of the same property, an important example
of a Laguerre transformation being the offsetting operation. The latter leads to
applications of conical meshes in architectural design.

For a conical mesh, the unit normal vectors of the faces constitute a circular
mesh in S2, which implies that 3D consistency of the conical condition follows
directly from Miquel’s theorem. It is interesting to note that the rhombic networks
of [3] which are models of surfaces of constant curvature have diagonals which
constitute a mesh which is both circular and conical.

We express planarity/circularity/conicality of a mesh in terms of the angles φe,f

enclosed by edges e, f of the mesh (0 ≤ φe,f ≤ π): A face with boundary edges
e1, . . . , en is planar and convex ⇐⇒

∑

φei,ei+1
= (n − 2)π (Fenchel’s theorem).

In the case n = 4, it is in addition circular ⇐⇒ the sums of opposite angles
equal π. If e1, . . . , e4 are the edges emanating successively from a vertex, then this
vertex is conical ⇐⇒ φe1,e2

+ φe3,e4
= φe2,e3

+ φe4,e1
(Lexell’s theorem).

By summing up the squares of these conditions we arrive at a nonnegative geom-
etry functional FG(v1, . . . ) on the vertices where FG = 0 characterizes meshes of
the required properties. In order to perturb a given mesh such that it becomes
planar/circular/conical, we numerically optimize in the space of vertices such that
FG → 0 and in addition FP , FF → min, where FP and FF are nonnegative func-
tionals expressing distance from a target surface and mesh fairness, resp.
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An Approach to Combinatorial Holonomy

Michael Joswig

Introduction. The classical holonomy group of a Riemannian manifold is a
linear group generated by translating a frame of reference at a base point along
closed smooth curves. Holonomy is related to curvature, and the holonomy group
captures the obstruction to certain embeddability problems. The purpose of this
talk is to survey recent results in geometric and topological combinatorics which
have been obtained by transferring these concepts to a combinatorial level.

Combinatorial Manifolds. Let ∆ be a simplicial complex. A perspectivity is
a local reflection of one facet of ∆ to an adjacent one. This defines a bijection
between the vertex sets of any two adjacent facets. Concatenating perspectivities
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leads to projectivities, and the set of all projectivities with respect to closed paths
in the dual graph of ∆ which start and end at a fixed facet σ0 form a group,
the group of projectivities Π(∆, σ0). If the dual graph of ∆ is connected then
the isomorphism type of the group of projectivities does not depend on the base
facet σ0; in this case we write Π(∆).

A first application of projectivities is to a very special class of coloring problems.
A d-dimensional simplicial complex ∆ is balanced if its vertices can be colored with
d + 1 colors such that vertices sharing an edge receive different colors, that is, the
chromatic number of the 1-skeleton equals d + 1. Clearly, since the vertices in a
d-face form a clique of size d + 1, this is a lower bound for the chromatic number
of the graph of any d-dimensional simplicial complex. Under mild connectivity
assumptions, which are satisfied, for instance, if ∆ is a combinatorial manifold, it
is easy to see that ∆ is balanced if and only if Π(∆) is the trivial group; see [4].
The following result has been proved a number of times, and ideas can be traced
back to Heawood’s 1897 paper on the 4-color problem.

Theorem. A simply connected combinatorial manifold (with or without boundary)
is balanced if and only if each interior face of codimension 2 is contained in an
even number of facets.

This result is instrumental, for instance, in obtaining bounds on the dimension
of a real torus acting freely on moment angle manifolds defined by simple poly-
topes. For this and a suitable generalization to the not simply connected case,
see [4].

Balanced triangulations of lattice polytopes can lead to non-trivial lower bounds
on the number of real roots of certain sparse polynomial systems. Let P be a d-
dimensional lattice polytope with a regular and balanced lattice triangulation ∆
such that ∆ uses all lattice vertices inside P . Since ∆ is balanced its dual graph is
bipartite. Call the facets in the bipartition ‘black’ and ‘white’, respectively. Then
the signature σ(∆) is the absolute value of the difference between the number
of black facets (with odd normalized volume) and the number of white facets
(with odd normalized volume). A Wronski system for (P, ∆) is a system of d real
polynomials in d indeterminates such that all polynomials have P as its Newton
polytope. There are certain additional constraints, which we omit here, on the
coefficients of the polynomials which are related to the triangulation ∆. The
following result, due to Soprunova and Sottile [7], generalizes the basic fact that
a real univariate polynomial of odd degree has at least one real root.

Theorem. A generic Wronski polynomial system for (P, ∆) (which satisfies cer-
tain additional geometric properties) has at least σ(∆) real roots.

We give an example. Consider the lattice triangle T = conv{(0, 0), (2, 0), (0, 2)}
with the balanced and regular lattice triangulation shown in the figure (left). All
triangles in the triangulation have normalized volume 1, and hence the signature
equals 4 − 2 = 2. A Wronski system for T consists of two polynomials of type
a(1+xy)+b(x+y2)+c(x2 +y), where a, b, c are real parameters (corresponding to
the color classes of vertices in the triangulation) still to be chosen. For instance,
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(a1, b1, c1) = (1,−1, 2) and (a2, b2, c2) = (−1, 3, 5) yields a generic Wronski system
for T with two real roots, depicted in the figure (right).

Figure 1. Lattice triangle with a balanced regular lattice trian-
gulation and two conics corresponding to a Wronski system.

The special case of Wronski systems corresponding to products of lattice poly-
topes is discussed in [5].

It is an interesting question to ask, what happens if the group of projectiv-
ities of a combinatorial manifold ∆ is not trivial? An answer is given in [3]:
The group of projectivities can be read as a monodromy group, and this way it
defines a branched covering over ∆ where the branch locus is formed of those in-
terior codimension-2-faces which are contained in an odd number of facets. This
branched covering is called partial unfolding. If the branch locus itself is a mani-
fold then the covering space is also a manifold. An interesting fact is that, from
the topological point of view, these very special combinatorially defined branched
coverings are quite common in the following sense.

Theorem. For each closed oriented manifold M with d := dimM ≤ 3 there is
a triangulation ∆ of the d-sphere such that M is homeomorphic with the partial
unfolding of ∆.

Holonomy of Groupoids. Recently, Živaljević suggested to reformulate the
above approach to combinatorial holonomy in the language of category theory,
see [8, 9]. A groupoid C = (Obj(C), Mor(C)) is a small category with invertible
morphisms. For an object x ∈ Obj(C) we call Hol(C, x) = C(x, x) the holonomy
group of C at x. Clearly, Hol(C, x) is independent of x if the category C is connected.

The first example of this kind justifies the name: Let M be a Riemannian
manifold. We obtain a groupoid R with object set M and morphisms between
x, y ∈ M given by the linear isomorphisms of the tangent spaces TxM → TyM
induced by parallel transport along piecewise smooth paths from x to y. Then
Hol(R, x) is the usual holonomy group of M at x.

For the second example let ∆ be a simplicial complex. Then Sk is a groupoid,
where the objects are the k-faces of ∆, and where the morphisms are the projec-
tivities between faces in the k-skeleton ∆≤k. In this case Hol(Sk, σ) = Π(∆≤k, σ)
for each k-face σ ∈ ∆≤k.
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A third example was studied independently by Bolker, Guillemin, and Holm [2].
Let Γ = (V, E) be a (connected and undirected) d-regular graph. We let Obj(G) =
{E(v) : v ∈ V }, where E(v) is the set of edges containing v. Moreover, we let
Mor(G) = {∇v,w : {v, w} ∈ E} with bijections ∇v,w : E(v) → E(w) satisfying
∇v,w{v, w} = {v, w} and ∇v,w = ∇−1

w,v. The holonomy group Hol(G) plays a role
in questions concerning the parallel redrawings of Γ.

One of the most striking application of this approach to combinatorial holonomy
up to now is a new proof of the Lovász Conjecture on lower bounds for the chro-
matic number of graphs. The conjecture was settled in the affirmative by Babson
and Kozlov [1], and the new proof is due to Živaljević [8, 9] and Schultz [6]. Let
Γ be a finite graph and C2r+1 a cycle of odd length 2r + 1, then the Hom-complex
Hom(C2r+1, Γ) is a cell complex capturing the different ways of how to map the
odd cycle C2r+1 to the graph Γ.

Theorem. If Hom(C2r+1, Γ) is k-connected then χ(Γ) ≥ k + 4.
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Edge Subdivision Schemes and the Construction of
Smooth Vector Fields

Peter Schröder

(joint work with Ke Wang, Weiwei, Yiying Tong, Mathieu Desbrun)

Subdivision schemes are a broadly deployed tool in all areas of geometric model-
ing and computer graphics [20, 16]. Their foremost benefit is the ease with which
they accommodate the construction of smooth surfaces in the arbitrary topology
setting. They also offer many favorable computational properties for applications
ranging from surface compression [5] to physical modeling [4]. Their mathematical
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properties are by now well understood [10, 11, 18, 19] and a large variety of subdi-
vision schemes and extensions have been developed. Broadly, subdivision schemes
are classified as either primal (e.g., Catmull-Clark [1], Loop [7], and

√
3 [6]) with

vertices carrying the data and faces being split, or dual (e.g., Doo-Sabin [2] and

dual-
√

3 [8]) in which data lives at faces and vertices are split.
In this talk we present a novel class of subdivision schemes which carry scalar

coefficients on edges from the coarser mesh into scalar coefficients on edges in the
refined (face split) mesh. The method can be viewed as constructing higher regu-
larity bases for discrete differential 1-forms in the arbitrary topology 2-manifold
(with boundaries) setting. Given the metric induced by an underlying surface, 1-
forms then yield smooth tangent vector fields, which are useful in many computer
graphics applications including texture synthesis [15], fluid simulation [14], crowd
animation [12], and shading [13]. In particular the design of vector fields is greatly
facilitated by the intuitive relationship between coefficients and the resulting vec-
tor field.
Approach and Contributions. Our construction is based on treating vertex-, edge-,
and face-based subdivision schemes as a triple of schemes linked through Stokes’
theorem, ensuring that the spaces spanned by the underlying bases form a chain
complex. Given the (purely topological) exterior derivative operator d this amounts
to requiring that the subdivision operators S0, S1, and S2 (for the vertex-, edge-,
and face-based schemes respectively) satisfy commutative relations with respect
to d

(1) dS0 = S1d and dS1 = S2d.

In words: taking the exterior derivative of a 0-form (vertex-based) subdivision
scheme is equivalent to first taking differences—assigning values to edges from
their endpoints—and then applying the edge-based subdivision scheme. Similarly,
taking the exterior derivative of a 1-form (edge-based) subdivision scheme is the
same as first computing signed sums around the boundary of each face followed by
application of the face-based subdivision scheme. This generalizes the well known
formule de commutation [3] to the bivariate setting.

Applying this line of reasoning to piecewise linear subdivision recovers the well
known Whitney forms [17]. Asking for smoother bases over arbitrary triangula-
tions leads to considering Loop subdivision for S0. For S2 one may then choose
(a generalization of) half-box splines [9]. With S0 and S2 fixed in this manner, S1

follows uniquely using Eq. 1. It too is (a generalization of) a piecewise polynomial
spline scheme, which we describe for the first time.

More generally, one may begin with a desired support (stencil size) and sym-
metries for the 0-form (vertex-based) subdivision scheme and then derive fully
parameterized families of subdivision scheme triples from Eq. 1. While we demon-
strate this only in the case of Loop (and triangles), the approach applies equally
well to other settings, e.g., quadrilaterals with Catmull-Clark for S0 and Doo-Sabin
for S2.

The preprint (http://multires.caltech.edu/pubs/FormSubdivision.pdf)
of the same title contains all the details of the construction.
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liebiger Topologie. Shaker Verlag, 1999. Habilitationsschrift.

[12] C. W.Reynolds. Steering Behaviors For Autonomous Characters. In Game Developers Con-
ference, 1999.

[13] C. Schlick An Inexpensive BRDF Model for Physically-Based Rendering. Comput. Graph.
Forum 13 (1994), 233–246.

[14] L. Shi and Y. Yu. Taming liquids for rapidly changing targets. In ACM/EG Symposium
on Computer Animation, 229–236, 2005.

[15] G. Turk. Texture Synthesis on Surfaces. In Proceedings of SIGGRAPH 2001, 347–354,
2001.

[16] J. Warren and H. Weimer. Subdivision Methods for Geometric Design: A Constructive
Approach, 1st ed. Morgan Kaufman Publishers, 2001.

[17] H. Whitney. Geometric Integration Theory. Princeton University Press, 1957.
[18] D. Zorin. A Method for Analysis of C1-Continuity of Subdivision Surfaces. SIAM J. Numer.

Anal. 37 (2000), 1677–1708.
[19] D. Zorin. Smoothness of Subdivision on Irregular Meshes. Constructive Approximation 16

(2000), 359–397.
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Institut für Mathematik
MA 6-2
Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin

Dr. Boris Springborn

Institut für Mathematik
Fakultät II - Sekr. MA 8 - 3
Technische Universität Berlin
Straße des 17.Juni 136
10623 Berlin

Prof. Dr. Kenneth Stephenson

Department of Mathematics
University of Tennessee
121 Ayres Hall
Knoxville, TN 37996-1300
USA

Prof. Dr. John M. Sullivan

Fakultät II-Institut f. Mathematik
Technische Universität Berlin
Sekr. MA 3-2
Straße des 17. Juni 136
10623 Berlin



Discrete Differential Geometry 727

Dr. Yuri B. Suris

Zentrum Mathematik
Technische Universität München
Boltzmannstr. 3
85747 Garching bei München

Dr. Sergey P. Tsarev

Institut für Mathematik
Fakultät II - Sekr. MA 8 - 3
Technische Universität Berlin
Straße des 17.Juni 136
10623 Berlin

Prof. Dr. Johannes Wallner

Institut für Geometrie
Technische Universität Wien
Wiedner Hauptstr. 8 - 10
A-1040 Wien

Max Wardetzky

Institut für Mathematik II (WE2)
Freie Universität Berlin
Arnimallee 3
14195 Berlin

Prof. Dr. Walter John Whiteley

Department of Mathematics and
Statistics
York University
4700 Keele Street
Toronto Ontario M3J 1P3
CANADA

Prof. Dr. Günter M. Ziegler

Institut für Mathematik
MA 6-2
Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin

Prof. Dr. Rade T. Zivaljevic

Mathematical Institute
SANU
P.F. 367
Knez Mihailova 35/1
11001 Beograd
SERBIA

Prof. Dr. Denis Zorin

Media Research Laboratory
Courant Institute of Mathematical
Sciences, New York University
719 Broadway 12th Fl.
New York NY 10003
USA




