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Introduction by the Organisers

The topic of Differential Algebraic Equations (DAEs) began to attract significant
research interest in applied and numerical mathematics in the early 1980’s. Today,
a quarter of a century later, DAEs are an independent field of research, which is
gaining in importance and becoming of increasing interest for both applications
and mathematical theory.
This Oberwolfach workshop brought together 48 experts in applied mathematics,
among them, on the one hand, some who have already influenced and formed the
developments of the field, and on the other hand, some very young researchers
who have shown outstanding creativity and competence in connection with their
PhD theses and thus raise great hopes for further advances.
The 16 female and 32 male scientists came from 13 countries to meet and work
together in the wonderful, unique Oberwolfach atmosphere, which stimulated a
fruitful and pleasant collaboration.
The schedule comprised a total of 34 presentations, 18 of which were arranged into
14 survey lectures (some of them with more than one speaker) offering a broader
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treatment of a particular subject. 16 shorter contributions supplemented the sci-
entific programmme. The areas can be classified (of course with large overlap)
into 4 groups:

• abstract differential algebraic systems, coupled systems, partial differential
algebraic systems;

• analysis of (ordinary) differential algebraic equations and application of
numerical methods to problems having new mathematical complexity;

• innovative and improved numerical integration methods to solve highly
complex application problems;

• optimization with constraints described by DAEs and control problems
concerning DAEs.

The broad range of these areas and the diversity of the participants stimulated
fruitful discussions between the different branches and gave rise to new contacts
and collaborations. A considerable gain in knowledgde and progress became ob-
vious, which includes the formulation of open questions and challenges for the
future.
We are grateful to the Mathematisches Forschungsinstitut Oberwolfach for pro-
viding an inspiring setting for this workshop.
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Degenerate hyperbolic systems in heat exchanger modelling: Analysis and
numerical approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105

Marlis Hochbruck and Alexander Ostermann
Exponential integrators of Rosenbrock-type . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107

Shivakumar Kameswaran (joint with Lorenz T. Biegler)
Optimization of DAEs with applications in Optimal Control . . . . . . . . . . . . 1110

Ekaterina Kostina (joint with Hans Georg Bock, Stefan Körkel, Johannes
P. Schlöder)
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René Lamour (joint with Roswitha März)
Different Index Concepts, their Canonical Forms and Solvability of Linear
DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119

Vu Hoang Linh (joint with Nguyen Huu Du)
Stability radii for linear time-varying differential algebraic equations and
their dependence on data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121

Christian Lubich
Symplectic integrators for general relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124

Christoph Lunk (joint with Bernd Simeon)
Solving Partial Differential-Algebraic Equations in
Structural Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125

Roswitha März
Projector Based DAE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1128

Volker Mehrmann (joint with Chunchao Shi)
Transformation of high order linear differential-algebraic systems to first
order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131

Linda Petzold (joint with Zheming Zheng)
Runge-Kutta-Chebyshev Projection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134

Roland Pulch
Numerical Simulation of DAEs with Multiscale Behaviour in Time . . . . . . 1135

Timo Reis
Linear and Time-Invariant Abstract Differential-Algebraic Systems . . . . . . 1138

Ricardo Riaza (joint with Roswitha März)
Singularities of differential-algebraic equations . . . . . . . . . . . . . . . . . . . . . . . . 1140

Bernd Simeon
DAE’s and Beyond: From Constrained Mechanical Systems to Saddle
Point Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143

Gustaf Söderlind
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Abstracts

DAEs at work: Industrial multibody system simulation

Martin Arnold

For more than 15 years, the dynamical simulation of constrained mechanical sys-
tems has been one of the central applications of DAE methods in engineering. In
the present contribution we summarize shortly the historical background and some
current developments in this field.

Following a network approach for model setup [16], the state of complex multi-
body systems is described by a vector q(t) ∈ Rnq of in general redundant position
and orientation coordinates and the corresponding velocities v(t) := q̇(t). Redun-
dant coordinates have to satisfy nλ holonomic constraints

(1) 0 = g(q(t), t)

that are coupled to the dynamical equations

(2) M(q, t)q̈(t) = f(q, q̇, t) −G⊤(q, t)λ

by constraint forces −G⊤λ with G(q, t) := (∂g/∂q)(q, t) and Lagrangian multipli-
ers λ(t) ∈ R

nλ , see [18]. Eqs. (1) and (2) together form the equations of motion,
a second order DAE with the symmetric positive definite mass matrix M and the
force vector f . If G has full rank, the differential index and the perturbation index
of (1)/(2) are ν = 3, see [11, 14]. Index reduction is necessary to guarantee the
robust and efficient time integration of the equations of motion.

It is important to note that the constraints (1) result from the use of redundant
coordinates q(t). Locally, the constraints may always be avoided using a minimal
set of generalized coordinates q̄(t) ∈ Rnq−nλ . Coordinate partitioning [20] is a
numerical approach to split the vector q(t) of redundant coordinates into nq − nλ

independent coordinates q̄(t) and nλ dependent ones.
With coordinate partitioning, the dynamical simulation of constrained mechan-

ical systems could be based on any suitable ODE solver. From the engineer’s
viewpoint, the use of DAE methods is attractive only if they result in a faster and
more robust time integration of the equations of motion. For the acceptance of
DAE methods in this field it is essential to provide a convincing physical interpre-
tation of common DAE techniques like index reduction or projection and to have
robust DAE solvers that are prepared to be used by non-experts.

The use of modern DAE methods in industrial multibody system simulation
was inspired by the work of Führer [10, 11, 12] who applied index reduction by
differentiation, a very formal technique from DAE theory, to derive the (hidden)
constraints on the level of velocity coordinates

(3) 0 =
d

dt
g(q(t), t) =

∂g

∂q
(q, t) q̇(t) +

∂g

∂t
(q, t) = G(q, t) v + gt(q, t)
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that are combined with (1)/(2) in an analytically equivalent second order index-2
DAE which is known today as stabilized index-2 formulation (or Gear–Gupta–
Leimkuhler formulation [12, 13]) of the equations of motion. With ODASSL [11],
a specially adapted version of the BDF solver DASSL [8], the stabilized index-2
formulation of the equations of motion in standard form (1)/(2) may be solved
very efficiently.

In industrial applications, the model equations of multibody systems are not re-
stricted to this rather simple standard form (1)/(2). An important extension are
rigid body contact conditions that may be formulated efficiently using parame-
trizations of the surfaces of the bodies being in contact. Geometric considerations
show that the contact point coordinates s = s(q, t) are implicitly defined by ad-
ditional algebraic equations 0 = c(q, s, t), see [10], which have to be appended to
(1)/(2). The stabilized index-2 formulation has been extended to these more gen-
eral model equations [1, 6] by an approach that is closely related to the general
DAE index reduction concept according to Kunkel and Mehrmann, see [5].

Today, the stabilized index-2 formulation combined with DASSL / ODASSL or
with the implicit Runge–Kutta solver RADAU5, see [14], is one of the standard
approaches to the time integration of constrained mechanical systems in industrial
multibody system simulation [2]. Special techniques for Jacobian approximation
and Jacobian update have been developed that exploit the structure of large scale
multibody system models (nq ≫ 100) to reduce the computing time by 80% and
more [3]. With these adapted solvers, large multibody system models like detailed
full vehicle models in automotive and railway engineering may still be handled
efficiently (nq = 100 . . . 1000 , nλ = 10 . . . 50 ).

However, in high-end applications with thousands of degrees of freedom also
these adapted solvers show a dramatical loss of efficiency. Typical examples are the
dynamical simulation of combustion engines with chain drives [15] and multibody
system models of vehicles or vehicle components that move along large elastic
structures like, e.g., a heavy truck that crosses a bridge or the pantograph head of
a high-speed train that moves along the overhead equipment [7, 19].

Often, these large scale problems show a clear modular structure that can be ex-
ploited in the dynamical simulation coupling, e.g., two or more specialized simula-
tion tools in a co-simulation framework [17] or using small stepsizes for (hopefully)
low dimensional subsystems with small time constants and much larger stepsizes
for the remaining part of the model (multi-rate methods [15]). For a large class of
these modular time integration methods, stability and convergence may be studied
by techniques from DAE theory. Following the ideas of the convergence analysis
for one-step methods applied to semi-explicit index-1 DAEs [9], a contractivity
condition is given that is necessary for stability and convergence of modular time
integration [4].
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differentiell-algebraische Systeme von höherem Index. Fortschritt-Berichte VDI Reihe 20,
Nr. 264. VDI–Verlag, Düsseldorf, 1998.



Differential-Algebraic Equations 1085

[2] M. Arnold. Simulation algorithms and software tools. Accepted for publication in: G. Masti-
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PDA-Models in Chip Design — Wavelet-based Integration

Andreas Bartel

(joint work with Stephanie Knorr)

1. Introduction

The usual modelling of electric circuits yields systems of differential-algebraic
equations (DAEs). Due to down-scaling, secondary effects become more and more
important (e.g. [1, 2, 6]): for instance, thermal-conduction, transmission line phe-
nomena and complex semiconductor behaviour, plus additionally inherent multi-
scales of signals. Here more sophisticated models enrich the DAE-description by
spatial systems, which results in a partial differential-algebraic equation (PDAE)
to include adequately down-scaling effects. Roughly speaking, there are three
classes of models: (1) refined networks, where network elements are replaced by a
spatial description of the underlying electric effect; (2) multiphysics, where addi-
tional quantities are introduced; and (3) multirate, where time scales are decoupled
by multiple time variables.

We address here the last case, and investigate the detection of steep gradients
in heterogeneous signal structures (digital-like plus analog) via wavelets.

2. Multidimensional Signal Model

We are interested in computing limit cycles for circuits with widely separated
time scales. Here, these problems are faced by the introduction of a corresponding
variable for each occurring scale [3]. The resulting multidimensional representation
of a signal yields then a multivariate function (MVF). We illustrate this for a 2-tone
quasiperiodic signal x, which is transferred to its MVF x̂ as follows:

x(t) = sin

(
2π

T1
t

)
sin

(
2π

T2
t

)
; x̂(t1, t2) = sin

(
2π

T1
t1

)
sin

(
2π

T2
t2

)
.

In the multidimensional description the time scales are decoupled. In this example,
the MVF is periodic in each coordinate direction and can be resolved with only
few grid points over the rectangle of the periodicities [0, T1] × [0, T2]. The more
the time scales differ (T1 ≫ T2), the more efficient the multidimensional approach
becomes, since the structure of the MVF is independent from the ratio T1/T2 in
contrast to the original x, which can be reconstructed via x(t) = x̂(t, t).

Applying the multidimensional signal model to differential-algebraic network
equations leads to multirate partial differential-algebraic equations (MPDAEs):

d
dt q(x(t)) = f

(
b(t),x(t)

)
;

∂q(x̂)

∂t1
+
∂q(x̂)

∂t2
= f
(
b̂(t1, t2), x̂(t1, t2)

)

with MVFs x̂ of the unknown node potentials and branch currents and b̂ repre-
senting input signals; the charges and fluxes are described by q.

In analogy to the theory of an underlying ODE, a structural analysis of the MP-
DAE [5] revealed the characterisation as a PDE-system restricted to a manifold.
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The hyperbolic type of the inherent PDE allows us to formulate a characteristic
system. We are left with systems of differential-algebraic equations for x̄c

(1) d
dτ q(x̄c(τ)) = f(b̂(τ + c, τ), x̄c(τ)) with x̄c(τ) = x̂(τ + c, τ),

which exhibit an information transport along straight lines in the direction of the
diagonal. To exploit this, we discretise the DAE (1) on a characteristic grid, which
will be described in the following section.

3. Wavelets for Adaptive Grid Generation

We have to determine the MPDAE-solution over the rectangle [0, T1]× [0, T2] of
the periodicities, which is depicted in figure 1 (left), and aims at the limit cycle for
our quasi-periodic problem. The representation of the domain’s diagonal, which
contains the solution x(t) = x̂(t, t) of the original network equations, is indicated
by the dotted lines; the solid lines show the characteristic curves, along which
we have to solve system (1), only. The periodicity of the MPDAE-solution x̂ in
t2-direction leads to boundary conditions for the restrictions x̄c via interpolation.

To determine the adaptive grids in t2-direction we integrate the original DAE-
system along the characteristic curves [c, c+ T2] in advance using a standard time
integration algorithm. Thereby it is crucial to specify consistent initial values for
each characteristic curve, which can be obtained by an implicit Euler-step. Then
the obtained solutions are decomposed performing discrete wavelet transforms
(DWTs). The wavelets used for this transformation are hat-functions, which are
“folded” at the edges of the interval [0, T2] following [4]. In this way a multire-
solution analysis of L2([0, T2]) is constructed and the time-frequency localisation
property of the wavelets can be used to generate an adaptive grid by ’simply’
inspecting the magnitude of the wavelet coefficients.

For the time-integration along the characteristic curves we do not have to solve
for the limit cycle, as we only need the basic structure of the solution to determine
an adaptive grid, which could possibly look like the one depicted in figure 1 (right).

2

T1

t

T2

t1

2

T1

t

T2

t1

Figure 1. Characteristic curves (left) and adaptive grid (right).

Equipped with a grid tailored to the special structure of the solution, we solve
the DAEs (1) using a finite difference discretisation described in [6]. As the equa-
tions are only coupled via the interpolation for the boundary conditions, the arising
linear system in the Newton iteration is very sparse and can be solved efficiently.
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4. Simulation Results and Conclusions

To illustrate the adaptive grid generation presented in this paper, we introduce
an industrial test example, the Miller integrator shown in figure 2 (left), which can
be described by a set of index-1 differential-algebraic equations. This circuit com-
prises the two major properties we want to focus on, namely widely separated time
scales and heterogeneous signal structures. Apart of a slowly varying harmonic
input signal (vin), two pulse functions (pa and pb) are involved, which work on a
much faster time scale than the input and are characterised by steep gradients.

Figure 2 (middle) shows the adaptive grid on the two-dimensional domain ob-
tained after time-integration along the characteristic curves and DWT of those
solutions. Comparing this grid with the MPDAE-solution at node 1 depicted, fig-
ure 2 right, we notice that the steep gradients arising due to the pulse functions
are perfectly detected by the wavelet transforms.
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+
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Figure 2. Circuit (left), grid (middle), MPDAE-solution (right).

In conclusion, we have demonstrated on the above example (Miller integrator)
that tailored grids can be defined using a pre-simulation in time domain plus
DWT with hat-wavelets. This also yields different grids on different characteristic
curves. It is Crucial for efficiency that the selection of discretisations by the DWT
coefficients is appropriate. Therefore a general algorithm has to be based on a
larger set of industrial test examples.
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Dynamic Optimization Using Control Parameterization

Paul I. Barton

Prof. Barton is the Director of the Process Systems Engineering Laboratory at
MIT. He is a chemical engineer by training but also has many interests in ap-
plied mathematics and numerical analysis. The broad theme of his research is
the modeling, simulation, optimization and design of large-scale dynamic systems
encountered in chemical engineering. Applications are drawn from the traditional
chemical process industries, and also from less traditional areas such as pharma-
ceutical and biochemical processes, micro-scale chemical process (e.g., for portable
power generation), signaling and regulation networks in biological systems, com-
plex chemical reaction mechanisms such as those in combustion systems, nuclear
hydrogen generation, design of OLED displays, and natural gas production, dis-
tribution and processing networks. His research interests and contributions in-
clude hybrid (discrete/continuous) dynamic systems; design and modeling of com-
plex distillation systems; numerical analysis of ordinary differential, differential-
algebraic and partial differential-algebraic equations; sensitivity analysis and au-
tomatic differentiation; pollution prevention in process design; mixed-integer and
dynamic optimization theory and algorithms; process safety analysis; open process
modeling software. Besides these general interests the following paragraphs de-
scribe current research efforts relating to the theme of the workshop.

Global Dynamic Optimization. Deterministic global optimization algorithms
guarantee an ε–accurate estimate for a global solution of a nonconvex optimization
problem in finite computational time. This effort is extending existing notions
such as branch-and-bound algorithms to dynamic optimization problems. The
optimization problem is formulated on a Euclidean space, and the real valued
optimization variables influence the objective and constraint functionals through
the solutions of ODEs, DAEs or PDAEs, which are evaluated using numerical
integration. Optimal control problems may be addressed within this framework
via control parameterization (i.e., approximation of controls in terms of a finite
series of basis functions).

Branch-and-bound approaches for global optimization require the construction
of convergent convex relaxations of the nonconvex functions involved in an opti-
mization problem. A convex relaxation is a convex function that underestimates
the nonconvex function on some set of interest. A key question is how to con-
struct, in a computationally tractable manner, tight convergent convex relaxations
of functionals with ODEs, DAEs or PDAEs embedded. Our recent research has
developed methods for constructing convex relaxations of functionals with linear
and nonlinear ODEs embedded. A subsidiary question raised by these methods
is how to estimate the image of a subset of a Euclidean space under the solution
of ODEs, DAEs or PDAEs. The estimates generated from traditional ideas such
as differential inequalities are often too weak for practical application. Our cur-
rent focus is on exploiting the structure of models of physical systems to tighten
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these estimates, new nonlinear convex relaxations, and extensions of these ideas
to DAEs and PDAEs.

The ability to construct convex relaxations also enables the application of
mixed-integer nonconvex optimization algorithms to solve mixed-integer dynamic
optimization (MIDO) problems (dynamic optimization problems that involved a
mixture of integer and real valued decisions), which we have demonstrated re-
cently. Looking to the future, approaches for the global solution of semi-infinite
and bilevel programs with dynamic systems embedded now seem conceivable.

Large-Scale Dynamic Optimization. This research is investigating methods
for finding local solutions of dynamic optimization problems on Euclidean spaces
with very many optimization variables (1,000s–100,000s). Usually, the dynamical
system will also involve very many state variables (1,000s–1,000,000s), e.g., from
a method of lines discretization of a PDAE. Our approach is based on a method
for computing Hessian-vector products of ODE embedded functionals for a small
multiple of the cost of simulating the ODEs. In particular, this multiple does not
change with the number of optimization variables. This ability to compute “cheap”
Hessian-vector products enables the application of large-scale optimization meth-
ods that do not rely on sparsity, e.g., truncated Newton methods. Extensions of
this approach to DAEs are the subject of current research. A potential application
for these ideas is to multiple shooting methods for dynamic optimization, which by
their nature introduce many optimization variables into the optimization problem
solved.

Simulation and Optimization of PDAEs with a Separation of Time
Scales. An application related to the start-up of micro-scale chemical processes
for electrical power generation highlighted a class of PDAEs in time and one spa-
tial dimension with a natural separation of time scales. The slow variables are
lumped, and the fast variables are hyperbolic with all characteristics pointing in
the same direction. If the fast variables are approximated as quasi-steady-state
(QSS), a natural decomposition occurs in which an adaptive numerical integrator
can be used to solve for the spatial profile of the fast variables at each time step for
the slow variables. In start-up problems, where shocksand fronts can develop and
move around the spatial domain, an adaptive spatial mesh is highly advantageous
to the reliability of the simulation, and this reliability is particularly important for
optimizations embedding these simulations. Furthermore, preliminary numerical
studies indicate that this approach is several orders of magnitude faster than a uni-
form spatial mesh that yields comparable accuracy (i.e., the spatial discretization
error is comparable to the error introduced by the QSS approximation). Efficient
implementation of this concept requires the careful application of state-of-the-art
sensitivity analysis algorithms. There appears some scope to extend these ideas to
situations in which the fast problem is a BVP, and the slow variables are spatially
distributed.

Hybrid Systems. Hybrid (discrete/continuous) dynamic systems exhibit both
discrete state and continuous state dynamics that are coupled. A popular hybrid
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system model is the hybrid automaton, in which the discrete state is represented
by a finite set of modes, and the continuous dynamics while a particular mode
is active are described by ODEs or DAEs associated with the active mode. At
any point in time one mode is active, but an instantaneous switch can also occur
to a different mode described by different equations. Switching can occur as a
consequence of an explicit control action, or implicitly as a consequence of some
condition on the continuous state variables becoming satisfied. Also, at a switch
a jump may occur in the continuous states, as described by a transition function
that maps the final state in one mode to the initial state in the next mode. This
model appropriately describes the dynamics of many physical and technological
systems of current interest. We have developed many of the key concepts in the
theory and algorithms for simulation, sensitivity analysis and optimization of this
hybrid automaton model.

Current research is investigating approaches for solving optimization problems
with hybrid automata embedded. Two directions are being pursued. One is a
global optimization approach based on mixed-integer dynamic optimization, which
is primarily aimed at solving problems in formal safety verification of embedded
systems. The other direction is local optimization based on nonsmooth optimiza-
tion techniques, and the computation of associated quantities such as elements of
the generalized gradient.

Sensitivity Analysis of Oscillatory Systems. Oscillatory systems are perva-
sive, for example, in biological systems. Often it is desirable to compute the sen-
sitivity with respect to parameters of characteristics of oscillations such as period,
amplitude, phase and derived quantities based on these. However, conventional
sensitivity analysis notions do not directly yield this information. We are devel-
oping an efficient computational approach based on a BVP formulation that can
compute directly all sensitivity information of an oscillating system. Our current
approach applies to ODEs, but extensions to DAEs and hybrid systems would be
desirable.

Model Reduction for Chemical and Biological Networks. Modern exper-
imental techniques in conjunction with quantum computational chemistry are fa-
cilitating the construction of detailed chemical kinetic models that can predict ac-
curately the formation and destruction of byproducts and pollutants in processes
such as combustion, pyrolysis, and super-critical water oxidation. Similarly, high
throughput experimental techniques, amongst others, are facilitating elucidation
of the biochemical networks that govern phenomena such as signaling and regula-
tion in cells. Today these detailed ODE/DAE models can often involve 100s-1,000s
chemical species and 1,000s-10,000s chemical reactions.

It is often desirable to embed these chemical/biochemical kinetic models in
reacting flow simulations where it is necessary to repeat the chemistry model at
a large number of spatial grid points associated with the semi-discretization of
PDAEs, or in cell ensemble or population balance simulations of large groups of
cells. The need to repeat the large-scale chemical kinetic model at every spatial
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grid point or for each cell in an ensemble or having each species concentration as
an independent variable in a population balance can easily overwhelm state-of-
the-art algorithms running on advanced computing architectures. It is therefore
necessary to consider approaches for reducing the size of the chemical kinetic model
while still guaranteeing accuracy in the simulation results. We are developing a
fully automated local kinetic model reduction procedure that deletes reactions
and/or species from the model using a mixed-integer optimization formulation.
This procedure can guarantee finding the smallest possible kinetic model that
satisfies user specified error tolerances. Moreover, the resulting reduced model
can still be interpreted physically as a subset of the original chemical mechanism.
Current research is showing that these notions can be extended to generate models
that have rigorous regions of validity, i.e., the prediction of the reduced model is
guaranteed to be within some tolerance of the full model for some region of state
space. In conjunction with Profs. Green and Tidor at MIT we are also exploring
the use of libraries of these reduced models in adaptive chemistry and adaptive
biology simulations that adapt the reduced kinetic model to local conditions in
order to maintain model accuracy while reducing computational time.

Software. Our goal is always to develop software implementing our research ideas
that can be effectively used by a broader community. Jacobian is a modeling envi-
ronment for hybrid DAE based models that supports model analysis, simulation,
sensitivity analysis, parameter estimation and optimization. DAEPACK is an
automatic differentiation tool and numerical library implementing many of our
symbolic and numeric algorithms. GDOC implements the global dynamic opti-
mization ideas. RIOT implements the model reduction ideas. All of this software
is distributed for free for academic use.

Numerical Methods for Efficient Nonlinear Model Predictive Control
and Moving Horizon State Estimation

Hans Georg Bock

(joint work with Jan Albersmeyer, Moritz Diehl, Ekaterina Kostina, Peter Kühl,
Andreas Schäfer, Johannes P. Schlöder, Leonard Wirsching,

Frank Allgöwer, Rolf Findeisen)

The presentation reports on recent progress in the development of numerical
methods for the real-time computation of constrained closed-loop optimal controls,
and in particular the case of nonlinear model predictive control (NMPC) and
moving horizon estimation of states and parameters (MHE), for processes governed
by large systems of Differential Algebraic Equation (DAE) as they arise e.g. from
semi-discretization of instationary Partial Differential Equations.
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Closed-loop optimal controls as in NMPC are important in dynamic processes
with uncertainties in order to cope with perturbations of states and systems pa-
rameters. One possible way to compute them is to solve the Hamilton-Jacobi-
Bellman equation and tabulate the resulting closed-loop solution, which is a cum-
bersome task in high dimensional state spaces.

An alternative way, followed here, is to solve the corresponding open-loop con-
strained optimal control problem in real time for the perturbed data, and use the
first optimal control instant as the feedback control, see [1, 8]. The challenge here,
however, is that in order to be feasible in practice, numerical solution algorithms
have to be developed that minimize the response time with respect to perturbations,
while at the same time dealing with non-linear dynamics and boundary conditions
as well as non-linear control and state inequality constraints. For time critical
applications, the solution of such problems by choosing even the fastest off-line
optimization methods is therefore out of the question, and new methods have to
be developed [3, 4].

Of particular interest in the present talk are problems in which the required
response times may be orders of magnitude shorter than the time for solving an
off-line optimal control problem. As the basic solution approach we choose the
direct multiple shooting method which is an “all-at-once” optimization method
that consists of a finite dimensional parameterization of the control functions and
a time discretization - or more precisely a re-parameterization - of the differential-
algebraic equations. The result is a transcription to a large-scale constrained
non-linear programming problem with a system of non-linear equality constraints
that exhibit a special boundary value problem structure, for which very effective
solution methods have already been developed.

The direct multiple shooting approach has several advantages that are impor-
tant in the NMPC and the real-time optimization context: The incorporation of
the state variables as unknowns in the optimization process reduces the nonlinear-
ity and improves both local and global convergence, the algorithm allows a numer-
ically stable treatment of optimal control problems with highly unstable and even
chaotic dynamics, the decomposition of the integration process into independent
subintervals allows a convenient parallelization of the computationally intensive
parts. Moreover, since in multiple shooting modified standard DAE integrators
can be applied, an effective adaptive discretization error control of trajectories and
derivatives is possible. Starting from here, the so-called “real-time iteration” ap-
proach [4] is developed, which integrates, among others, the following algorithmic
components:

• a perturbation embedding, which makes the computation of function val-
ues and derivatives largely independent of the actual value of system and
parameter estimates,

• approximate Newton, Gauss-Newton and quasi-Newton optimization me-
thods for the equality and inequality constrained non-linear programming
problem, and
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• structure exploiting linear algebra techniques to decompose and solve the
quadratic program (QP) sub-problems.

One of its basic features is that now in each iteration of the optimization process,
the latest available process data are being used. A reformulation of the optimiza-
tion algorithm and a pre-computation - as far as possible - of constraint residuals,
gradients, Hessians and QP decompositions splits each iteration into a preparation
and a feedback phase. As a consequence, the response times to perturbations of
states and systems parameters are minimized. In real experiments for a high purity
distillation column, the response times realized by these new methods have been
shown to be orders of magnitude faster than those of previous approaches based
on on-line application of off-line optimization methods [6].

For the class of NMPC approaches that guarantee globally stable closed-loop
controls, the new approximate scheme could be proven to be nominally stable by
combining contractivity properties of the optimization algorithm with stability
properties of the NMPC scheme [5].

It is further shown that the approach can be drastically accelerated by special
algorithmic schemes for on-line feasibility and optimality improvement, that utilize
the principles of algorithmic and internal differentiation, or quasi-Newton update
techniques, for the efficient computation of Jacobians and Lagrange gradients at
different accuracy levels [1, 7].

Practical applications of NMPC require a simultaneous state and parameter
estimation and computation of the closed-loop NMPC control in real-time. It is
shown how the principles of the real-time iteration approach can be extended to
the dual problem of a moving horizon estimation of parameter and states, and how
to effectively nest the real-time iteration for both MHE and NMPC. In order to
take the statistical error of the system and parameter estimates and potentially
other errors in the model - into account, a robust NMPC approach is developed that
is based on a computationally efficient worst case optimization algorithm [2, 9].

In addition, we report on specific reduced Newton and Gauss-Newton real-
time strategies. At the expense of slightly increased response times they minimize
the effort for computing derivatives, for problems with a large number of state
variables, but comparatively few actual degrees of freedom for the controls, as e.g.
in Method of Lines approaches.
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Some Aspects of the Optimal Control of Nonlinear
Differential-Algebraic Equations

Rainer Callies

Conditions for the existence of Lagrangian multiplier functions in nonlinear opti-
mal control problems for DAEs are derived via a modified embedding technique.
We consider the following prototype of a variational problem for DAEs





J(y) :=

∫ tf

ta

f(t, y, ẏ) dt
!
= min

y(t) := (y1(t), . . . , yn(t))T , y ∈ C1
c ([ta, tf ], IRn)

y(ta) = ya , y(tf ) = yf

h(t, y) = 0 ∈ IR ∧ ‖∇h(t, y0)‖2 > 0 , ∇ := (∂/∂y1, . . . , ∂/∂yn)T

with the optimal solution y0(t).
For an elegant proof of the necessary conditions an embedding formula is chosen

which projects any function η(t) on the algebraic manifold

y(t, ε) := y0(t) + εη̃(t) + α(t, ε) · ∇h(t, y0(t)))

η̃(t) := η(t) −
[
∇hT (t, y0(t)) · η(t)

] ∇h(t, y0(t))
‖∇h(t, y0(t))‖2

2

with η ∈ C1
c ([ta, tf ], IRn) ∧ η(ta) = 0, η(tf ) = 0. α(t, ε) is determined such that

∀ t ∈ [ta, tf ], ∀ ε ∈ [−ε0, ε0]

h(t, y0(t) + εη̃(t) + α(t, ε) · ∇h(t, y0(t))) ≡ h(t, y0(t)) .

It is shown in the talk, that α(t, ε) ∈ IR exists, is uniquely determined and contains
all the nonlinear and no linear portions of the embedding. This embedding formula
separates the linear from the nonlinear parts of the embedding and fulfils the
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algebraic constraint: ε = 0 is an interior point. The first necessary condition reads
as

0 =
dJ

dε
(ε)

∣∣∣∣
ε=0

=
d

dε

(∫ tf

ta

f(t, y(t, ε), ẏ(t, ε)) dt

)∣∣∣∣
ε=0

=

∫ tf

ta

n∑

i=1

fyi
(t, y0, ẏ0)

(
ηi −

∂h

∂yi
(t, y0) ·

{[
∇hT (t, y0) · η

]

‖∇h(t, y0)‖2
2

})
dt

+

∫ tf

ta

n∑

i=1

fyi
′(t, y0, ẏ0)

(
η′i −

{
∂h

∂yi
(t, y0) ·

[
∇hT (t, y0) · η

]

‖∇h(t, y0)‖2
2

}′)
dt

Integration by parts together with the definition of the multiplier function

µ(t) :=

n∑

i=1

(
fyi

(t, y0, ẏ0) −
d

dt
fyi

′(t, y0, ẏ0)

)
∂h

∂yi
(t, y0)

1

‖∇h(t, y0)‖2
2

yields the well-known Euler-Lagrange equations

Fyi
− d

dt
Fy′

i
= 0 , F := f + µh , i = 1, . . . , n .

The last step and thus a reasonable definition of the multiplier function is possible
only, if the respective terms in the first variation do not vanish completely.

An example of the latter situation is given in [1]:
Let us find y : [0, T ] → IR4, which minimizes

J(y) :=
1

2
y2
1(T ) +

1

2

∫ T

0

(
y2
3(t) + u2(t)

)
dt , y := (y1, y2, y3, u)

T

subject to the DAE conditions (DAE index 2) and boundary conditions

ẏ1(t) = u(t) y1(0) = y10
ẏ2(t) = −y3(t) + u(t) y2(0) = 0

0 = y2(t) = h(t, y(t)) ∀ t ∈ [0, T ]

Insertion into the first variation yields

0 =

∫ tf

ta

n∑

i=1

i6=2

(fyi
(t, y0, ẏ0)ηi(t) + fyi

′(t, y0, ẏ0)η
′
i(t)) dt .

The first variation contains no information about the DAE constraint, no infor-
mation about the η2-component and no Lagrangian multiplier function; the stan-
dard approach via the extended Hamiltonian fails. The existence of a Lagrangian
multiplier function – and thus of the classical DAE boundary value problem –
is not essential for a well-defined optimal control problem. In those cases, the
(partial) transformation to minimum coordinates is a more powerful approach.

As an example from industrial applications, the time-optimal motion of a three-
link manipulator is investigated with its end-effector following a prescribed path
in space. The dynamic equations together with the spatial restrictions form a
nonlinear differential-algebraic system of differential index 3. Additionally, the
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optimal control problem for this DAE system contains multiple restrictions and
several interior points. A partial transformation to minimum coordinates is an el-
egant way to eliminate severe mathematical problems of the type discussed above,
which arise from the special structure of the algebraic constraints [2]. The trans-
formation results in a system of linear equations of motion. Introducing nonlinear
control/state constraints is the price to be paid for the much simpler structure
of the overall problem. The transformed optimal control problem is transferred
into a nonlinear multi-point boundary value problem and solved numerically by
the advanced multiple shooting method JANUS. The switching structure is de-
rived automatically. By backward transformation the actuator torques and their
switching behaviour are easily obtained. Solutions are presented for which the set
of feasible controls reduces to a single point at certain times.
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What’s New with Direct Transcription Methods for Optimal Control
Problems?

Stephen L. Campbell

(joint work with J. T. Betts, Anna Engelsone)

Direct transcription methods [1] have been successfully used to solve a variety of
optimal control problems for at least 20 years. They proceed by totally discretizing
the optimal control problem and then passing the fully discretized problem, which
is now a nonlinear programming problem (NLP), to a NLP solver. Direct tran-
scription methods are used in a number of industrial codes such as SOCS (Sparse
Optimal Control Software) developed at Boeing. A number of papers have been
written about direct transcription methods. The computational examples in this
talk were solved using SOCS but our comments are applicable to other optimal
control solvers with a similar philosophy.

The dynamical constraints in optimal control problems are often differential
equations. Accordingly the analytic and numerical theory for differential equations
plays an important role in optimal control theory and in the analysis and design
of algorithms.

Sometimes the dynamical constraints are Differential Algebraic Equations
(DAEs) rather than ordinary differential equations. In practice most optimal
control problems have various position and velocity constraints. When these con-
straints are active we again have a DAE. This has motivated the application of
DAE theory to the examination of constrained optimal control problems.

Given that so much work has been done on DAEs and also on direct transcrip-
tion methods for optimal control problems, it is natural to ask whether anything
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remains to be done when studying such methods. In recent years it has begun
to be realized that the existing computational theory needs to be modified when
talking about direct transcription methods applied to constrained optimal control
problems. Also, some modifications may be necessary if the approach is going to
be extended to an even wider class of problems in order to encompass more appli-
cations. In this talk we present two illustrations from our current investigations.
These two examples are: use of the theory for constrained differential equations
and their implications for providing guidance to users of direct transcription soft-
ware and the estimation of adjoint variables. There are other recent examples
[3, 2]. We focus here on only the most recent research [4, 5, 6, 7].

Traditionally a controlled system is viewed as a differential equation in the state
variable with an input function which is the control. The control is considered as
a forcing function. The numerical and analytical theory of such a differential
equation is then applied. If there are no control constraints, then the usual advice
in forming a regularized problem is to make sure the control is weighted in the
cost. If constraints are present and the resulting problem is solved by either control
parameterization or solution of the necessary conditions, then the DAE theory
is applied in a similar way. However, with direct transcription the situation is
different since the optimization software treats the algebraic part of the state and
what the user considers the control in the same way. In this talk it is shown
that what is important is that there is some alternative choice of control (which a
user does not need to find) for which this “virtual control” leads to an index one
system. Furthermore, what is important for obtaining a numerical solution is that
this virtual index one control is positively weighted in the cost. Thus the way to
regularize when a DAE is present is to include all the algebraic variables in the
cost.

One advantage of direct transcription is that it is not necessary to compute the
adjoint variables from the necessary conditions for the optimal control problem.
However, sometimes estimates of the adjoint variables are useful or needed. This
can happen when computing sensitivities. There are also results which state that
under certain conditions the multipliers from the discrete approximation provide
estimates of the adjoint variables which are more accurate than the control es-
timates [8]. These improved adjoint estimates can then be used, in the case of
unconstrained problems, to give improved control estimates.

The two primary discretization methods used by SOCS are the trapezoid (TR),
which is second order, and Hermite Simpson (HS), which is fourth order as an
integrator. Computational studies show that previous theoretical results are not
correctly predicting the values of the adjoint estimates. A careful analysis proves
that this is due to the fact that the HS and the TR are implemented in a com-
pressed form for computational efficiency rather than in the Butcher array formu-
lation which is the usual theoretical starting point. Furthermore, it is shown in
this talk how to modify how the multipliers are used and get improved estimates.
In the case of TR, the Butcher array based estimates are then obtained. In the
case of HS, second order is obtained.
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Exponential integrators for convection dominated flows

Elena Celledoni

We consider nonlinear convection diffusion problems with a dominating convection
term. These models are challenging and ubiquitous in applications, an example
being the numerical simulation of internal waves phenomena occurring between
the layers of a stratified flow. In Norwegian fjords, layers of stratified water with
different temperature and salt concentration occur due to ice melting and freshwa-
ter supply from rivers. Internal waves are caused by the tide and have a dramatic
influence on the ecosystem. The Navie-Stokes equations with the Bousinessque
approximation are a popular tool for modelling these phenomena. We consider
convection diffusion PDE models depending on a viscosity parameter ν of the
type,

(1)
∂

∂t
u(x, t) + V · ∇u(x, t) = ν∇2u+ f(x),

with x ∈ Ω ⊂ Rd and V : Rd × [0, T ] → R is a given vector field, but can also be
V = u, u : Rd × [0, T ] → Rd, and u(x, 0) = u0(x). The case when the parameter
ν tends to zero is particularly interesting and very challenging from the numerical
point of view. In this case the numerical discretizations often lead to phenomena
of numerical dispersion. A suitable generalization of these equations leads to the
Navier–Stokes equations at the presence of high Reynold’s numbers.

We present a new class of integration methods which present good performance
for convection dominated problems. These methods are exponential integrators
of Runge-Kutta type. They allow for the solution of just one linear system per
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stage, and their advantage is that they allow for the very accurate integration of
the linearized convection. As the diffusion is treated implicitly and the convection
is accurately resolved, the methods have superior properties of linear stability.

A simple example is the following transport-diffusion algorithm studied in [5],

(2)

Du
n+1

2

Dt = 0, un+ 1
2
(x, tn) = un(x), on [tn, tn + h]

un+ 1
2
(x) = un+ 1

2
(x, tn + h)

un+1 = un+ 1
2

+ hν∇2un+1 + hf,

the convecting vector field is V(x) = un(x). The integration of a linear pure
convection problem arises as a building block of the integration method and can
be achieved by computing characteristics, as follows

(3)
un+ 1

2
(x) = un+ 1

2
(x, tn + h) = un(X(tn))

dX
dτ = un(X(τ)), X(tn + h) = x.

The equation for the characteristics X(τ) must by integrated backwards in time,
either exactly or with a suitable numerical integrator.

The study of higher order time integrators of this type is also motivated by some
observations in some recent work by Karniadakis et al., [6]. The authors point out
that the use of low order semi-implicit methods in the case of direct numerical
simulation of turbulent flows leads to prohibitive time step restrictions. In fact
the time-step dictated by the CFL condition can be of several orders of magnitude
smaller then the intrinsic temporal scale of the problem predicted by the theory.
Exponential Runge-Kutta integrators can overcome this time step restriction.

Preliminary work illustrating the potential of the methods has been presented in
[2]. This work is also related to the methods presented in [3], for the disretization
of the Navier-Stokes equations.

Extending the methods to the case of incompressible Navier-Stokes equations
while maintaining high order requires taking into account the classical theory of
DAEs along the lines of recent work by Petzold and Zheng [4].
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A quadratic regulator problem related to singular systems in Hilbert
space

Angelo Favini

(joint work with Luciano Pandolfi)

Of concern is the quadratic regulator problem for a plant described by

ẋ = Ax+Bu

y = Gu, x(0) = x0 ∈ X,

where A,B and G are operators with the following properties:

• A generates an analytic semigroup on a Hilbert space X ;
• the operators B and G are linear and continuous from U into X and from
U into Y , where U and Y are Hilbert spaces;

• Ker(G∗) = 0.

The cost functional to minimize is

J(x0;u) =

∫ T

0

F (x(t), u(t))dt + 〈
[
x(T )
y(T )

]
,M

[
x(T )
y(T )

]
〉,

where

F (x, u) = 〈
[
x
y

]
, Q

[
x
y

]
〉 + |u|2,

Q,M are symmetric nonnegative continuous linear operators and

M =

[
M11 M12

M∗
12 M22

]
, M22 > cI > 0.

Even if the optimal control in general does not exist, it is seen that, when it exists,
it admits a variational characterization. A necessary and sufficient condition for
existence of an optimal control is described by means of a compatibility relation.
We are going to study this quadratic regulator problem with u ∈ L2(0, T ;U).
Clearly, the quadratic cost is not defined for every u ∈ L2(0, T ;U). So, we intro-
duce a suitable domain over which the quadratic cost makes sense.

Let
ess lim

t→T−
u(t) = l

when for every ǫ > 0 there exists δ > 0 such that the following set has zero
Lebesgue measure:

{t , such that ||u(t) − l|| > ǫ , 0 < T − t < δ} .
If two functions u and u′ belongs to the same equivalent class [u] ∈ L2(0, T ) then
the ess lim exists for one of them if it exists for the second, and the limit itself is
the same.

We introduce the linear space U of those equivalent classes in L2(0, T ;U) iden-
tified by a representative u such that the essential limit for t→ T− exists and we
define

u(T ) = ess lim
t→T−

u(t).
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The subspace U ⊆ L2(0, T ;U) just defined is the domain over which the problem
will be studied. Its introduction is suggested in [1].

Due to the fact that u(·) → J(x0;u(·)) is neither continuous nor closed, we
must check explicitly that when the optimal control exists, it has a variational
characterization. We proceed as usual: if the optimal control u+(·;x0) exists, then
we can compute J(x0;u

+(·;x0) + v(·)), v(·) ∈ U . By taking v(·) “concentrated”
near the final point T we can separate the distributed and terminal conditions and
we find that, see [2], [3] for more details,

x(0) = x0

ẋ+(t;x0) = Ax+(t;x0) +Bu+(t;x0)

u+(t;x0) = −B∗p(t) −G∗q(t)

ṗ = −A∗p−Q11x
+(t;x0) −Q12y

+(t;x0)

p(T ) = M11x
+(T ;x0) +M12y

+(T ;x0)

q(t) = Q∗
12x

+(t;x0) +Q22y
+(t;x0)

y+(t;x0) = Gu+(t;x0) .

Moreover, the following “consistency condition” must hold:

M22Gu
+(T ;x0) = −M∗

12x
+(T ;x0) .

Conversely, it is easily seen that if a pair x(t;x0, u) and u(t) is related in this
way, then for every v ∈ U the cost with u(t) + v(t) is the sum of two squares, and
it is minimum for v = 0. Hence:
Theorem 1 Let x0 ∈ X and let us consider the following two-point problem:

(1)





x(0) = x0

ẋ =

{
A−B(I +G∗Q22G)−1G∗Q∗

12

}
x(t)

−B(I +G∗Q22G)−1B∗p(t)

ṗ = −
[
A−B(I +G∗Q22G)−1G∗Q∗

12

]∗
p(t)

−
{
Q11 −Q12G(I +G∗Q22G)−1G∗Q∗

12

}
x(t)

p(T ) =

{
M11 −M12M

−1
22 M

∗
12

}
x(T ) .

If the optimal control u+(·;x0) exists then this two-point problem is solvable and
the optimal control satisfies the “compatibility condition” (3). Conversely, let the
two-point problem (1) be solvable and let us define

(2) u+(t;x0) = −(I +G∗Q22G)−1B∗ {p(t) +G∗Q∗
12x(t)} .

The optimal control for the initial condition x0 exists (and then it is given by (2) )
if and only if the following “compatibility condition” is satisfied:

(3) Gu+(T ;x0) = −M−1
22 M

∗
12x(T ) .
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Proof. The direct implication was proved already. Conversely, let the two-point
problem be solvable and let u be defined as in (2). It is easy to see that all the
conditions for the optimal control are satisfied, provided that the compatibility
condition (3) holds.

Now we note that the two-point problem (without the compatibility condition)
is always solvable:
Theorem 2 We have

(4) M11 −M12M
−1
22 M

∗
12 ≥ 0

so that the two-point problem (1) is solvable. Moreover, the vector x(T ) is a linear
and continuous function of x0.
Proof. The positivity condition (4) follows from M ≥ 0.

The two-point problem (without the compatibility condition) can be written as
follows:

x(0) = x0,

ẋ = Ax+Bu , A = A−B(I +G∗Q22G)−1G∗Q∗
12 ,

ṗ = −A∗p−Qx , Q = Q11 −Q12G(I +G∗Q22G)−1G∗Q∗
12 ,

p(T ) = Mx(T ), M = M11 −M12M
−1
22 M

∗
12 .

This is the two-point problem of the quadratic cost

J̃(x0;u) =

∫ T

0

{
〈Qx(t), x(t)〉 + 〈Ru(t), u(t)〉

}
dt+ 〈Mx(T ), x(T )〉

where R = (I + G∗Q22G) is coercive and M ≥ 0 see condition (4). Hence there
exists a unique optimal control for every x0. Furthermore, if x̃(t;x0) is the optimal
trajectory of x0, then the transformation x0 → x̃(t;x0) is linear and continuous.

We use the last statement of the theorem as follows: the compatibility condi-
tion (3) can be written as

(5)
Lx(T ) = 0
L = G(I +G∗Q22G)−1B∗

{
M11 −M12M

−1
22 M

∗
12 +G∗Q∗

12

}
+M−1

22 M
∗
12 .

Hence:
Theorem 3 The initial condition x0 is optimizable if and only if the component
x(T ) of the solution of the two-point problem belongs to kerL. In particular:

• the set of the optimizable initial conditions is a closed subspace of X ;
• every initial condition x0 is optimizable if and only if L = 0.

Of course, the optimal control ũ(t;x0) for J̃ is given by

ũ(·;x0) = −R−1B∗p(·) .
It always exists while u+(·;x0) exists only if x0 is optimazable. The previous
considerations show:
Theorem 4 If x0 is optimizable then ũ(·;x0) = u+(·;x0).
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The Riccati equation is an important tool in the quadratic regulator problem.
Hence we now relate our problem to a differential Riccati equation. It is known
that the component p of the two-point problem (1) is expressed as

p(t) = P(t)x(t)

where P(t) solves the Riccati equation

d

dt
〈P(t)x, y〉 = −〈Ax,P(t)y〉 − 〈P(t)x,Ay〉 − 〈Qx, y〉

+〈B∗P(t)x,R−1B∗P(t)y〉 , ∀x , y ∈ domA ; P(T ) = M
so that the optimal control of J̃(x0;u) is

ũ(t) = R−1B∗P(t)x(t)

where now x solves the closed loop equation

(6) ẋ =

[
A−BR−1B∗P(t)

]
x , x(0) = x0 .

As we noted, this is also the optimal control of J(x0;u) when x0 is optimizable.
Hence,
Theorem 5 Let x0 be optimizable. Then, the optimal control has the feedback
form

u+(t;x0) = R−1B∗P(t)x+(t;x0) .
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Towards Explicit Methods for DAEs

C. William Gear

Explicit methods have previously been proposed for parabolic PDEs and for stiff
ODEs. RKC methods [2, 3] handle problems with eigenvalues distributed along the
negative real axis, while projective methods [1] can be designed to handle groups
of widely separated eigenvalues. We discuss ways in which Differential Algebraic
Equations might be regularized so that they can be efficiently integrated by explicit
projective methods and illustrate the effectiveness of this approach for some simple
index three problems. The approach places very stiff regularizing eigenvalues at
known locations and damps their components in one or two inner steps of the
projective integrator.
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Degenerate hyperbolic systems in heat exchanger modelling: Analysis
and numerical approximation

Michael Hanke

(joint work with Magnus Strömgren)

In a recent physical experiment with carbon dioxide as a refrigerant in a heat pump
system two different steady states with very different coefficients of performance
were observed. Numerical experiments to explain the behavior of the heat pump
using standard system simulation tools failed very often. The heat exchanger may
be modelled by the one-dimensional Euler equations of compressible fluid flow. [3]
The physical properties of the flow and the refrigerant restrict the choice of the
primary variables in the mathematical model. For one-component two-phase sys-
tems, the choice of pressure p and specific enthalpy h as thermodynamic variables
is advantageous since they uniquely determine the state. The more common choice
of pressure and temperature T is not suitable since the pressure is determined by
the temperature alone in the two-phase region. As a third variable it is convenient
to use the mass flow rate F . Since the flow in the heat pump system is character-
ized by very low Mach numbers everywhere exept in the expansion valve, we can
eliminate the time scales associated with sound waves. This leads to a reduced
model, the zero Mach-number limit,

A
∂ρ

∂t
+
∂F

∂z
= 0,

A
∂p

∂z
= R,

A
∂e

∂t
+

∂

∂z
(Fh) = Q.

Here,the internal energy per unit volume is e = ρh − p. The system is closed by
the constitutive relations ρ = f(p, h) and T = g(p, h). The right-hand sides R and
Q describe friction and the heat exchange, respectively. They are given by

R = −Lf
F 2

Aρ
signF Q = Aexchα(Text − T ).

A,Aexch, Text and Lf are given positive constants. In the friction-free case, Lf = 0.
The final system does no longer contain time derivatives in the momentum

equations. Therefore, this degenerated hyperbolic system can be considered as
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a partial differential-algebraic equation (PDAE). The following questions are of
interest:

• Is the model well-posed?
• What are the correct boundary conditions?
• What is the index of this PDAE?
• How should one discretize the system?

We will answer these questions for the linearized frozen coefficient problem

Aut + Bux + Cu = g(x, t)

where u = (F, p, h)T and

A =




0 a12 a13

0 0 0
0 a32 a33



 B =




1 0 0
0 b22 0
0 0 b33





and C is a general matrix. In the frictionless case (Lf = 0) it holds c21 = c22 =
c33 = 0 while, for Lf > 0, we have 0 < α0 ≤ c21/Lf ≤ α1. In order to gain some
insight into the structure of the system, the matrix pencil (A,B) is transformed
into its Kronecker canonical form:


1
0 0
1 0






v1
v2
v3




t

+




u
1

1






v1
v2
v3




z

+ D




v1
v2
v3


 =




g̃1
g̃2
g̃3


 .

Here, u denotes the speed of the flow. Hence, we have one characteristic left from
the Euler equations, as expected. If there wouldn’t be any source term, then
D = 0. This case is discussed in detail in [4]. The time (differentiation) index
becomes 2, while the space index is 0.

Assume now that friction as well as the other source terms are present. Then
it can be shown that the system consists of

• a hyperbolic equation for v1,
• a parabolic equation for v2,
• and a differential relation for v3.

Moreover, the following energy estimate can be proven,

‖v(·, t)‖ ≤ C(t){
∫ t

0

(‖g̃(·, τ)‖2 + ‖g̃x(·, τ)‖2)dτ

+‖v1(·, 0)‖2 + ‖v2(·, 0)‖2 + ‖v1,x(·, 0)‖2 + ‖v2,x(·, 0)‖2}
provided that the correct boundary conditions are given. They can be interpreted
in terms of the original physical quantities:

• h and p at inflow and F at outflow (if d33 < d22)
• h and F at inflow and p at outflow (if d33 > d22)

The estimate can be interpreted in terms of a perturbation index: it is 1 with
respect to time while it becomes 2 with respect to space! So the introduction of
the friction term decreases the time index as intended but increases at the same
time the space index.
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The energy estimate above was derived under the assumption that Dirichlet
boundary conditions are given for the transformed variables. In fact, the boundary
conditions are posed in terms of the physical variables u = (F, p, h)T . Dirichlet
boundary conditions for u lead to a coupling of the boundary conditions for v.
Does this have any influence on the stability properties? It can be shown that the
linearized system is stable if the Reynolds number is not too large. It is not known
if this restriction is really necessary or not for the system considered.

Having in mind that the system is a part of a larger network it is appropriate
to discretize it by the method of lines (MOL). This discretization is done in the
physical variables. By transforming it to the canonical ones the latter become
coupled. For a toy problem, by using a simple upwind discretization the following
can be shown:

If the step size is restricted by ∆x < Cu, then

• the numerical scheme becomes weakly unstable;
• the resulting differential-algebraic equation has the tractability index 1.

Thus, for sufficiently small step sizes, the properties of the continuous system are
resembled.
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Exponential integrators of Rosenbrock-type

Marlis Hochbruck and Alexander Ostermann

(joint work with Julia Schweitzer)

1. Introduction

We consider a system of ordinary differential equations in autonomous form

(1) y′(t) = f(y), y(t0) = y0,

assuming that the linearisation J = Df(y) is uniformly sectorial in a neighbour-
hood of the exact solution. Consequently, there exist constants C and ω (both
independent of y) such that

(2)
∥∥etJ

∥∥ ≤ C eωt, t ≥ 0.

Typical examples are abstract nonlinear parabolic equations, see [4], and their
spatial discretisations.
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Recently, we studied a class of explicit exponential Runge–Kutta methods for
similar problems, see [2]. Due to the involved structure of the order conditions,
however, it seems to be difficult to construct reliable and efficient error estimates
for these methods. Moreover, in contrast to classical time integrators, exponential
Runge–Kutta methods are not invariant under linearisation. This results in an
error behaviour similar to classical W-methods, see [1]. Therefore, one has to
expect large errors whenever the linear part is not well chosen.

2. Method class

Motivated by the observations just mentioned, we propose to linearise the right-
hand side of (1) in each step, as it is done in classical Rosenbrock methods. Thus
we write

(3) y′ = Jny + gn(y), Jn = Df(yn), gn(y) = f(y) − Jny.

Here, yn is the numerical approximation to y(tn).
Applying then an exponential Runge–Kutta method to (3) gives the following

s-stage exponential Rosenbrock-type scheme

Yni = ecihJnyn + h

i−1∑

j=1

aij(hJn) gn(Ynj),(4a)

yn+1 = ehJnyn + h

s∑

i=1

bi(hJn) gn(Yni).(4b)

For a variable step size implementation of (4), we base the step size selection on
a local error control. For that purpose, we consider the embedded error estimator

(5) ŷn+1 = ehJnyn + h

s∑

i=1

b̂i(hJn) gn(Yni)

and take the difference ‖yn+1 − ŷn+1‖ as error estimate.

3. Stiff order conditions

As usual in exponential integrators, the functions

ϕk(hJ) = h−k

∫ h

0

e(h−τ)J τk−1

(k − 1)!
dτ, k ≥ 1

play an important role. For sectorial operators J , the bound (2) shows that these
functions are well defined and bounded on compact time intervals.
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It is shown in [3] that the stiff order conditions for an exponential Rosenbrock-
type method are given as:

No. Order Order Condition

1 1
∑s

i=1 bi(hJ) = ϕ1(hJ)

2 2
∑i−1

j=1 aij(hJ) = ciϕ1(cihJ), 2 ≤ i ≤ s

3 3
∑s

i=2 bi(hJ)c2i = 2ϕ3(hJ)

4 4
∑s

i=2 bi(hJ)c3i = 6ϕ4(hJ)

The first, third, and fourth order condition are just the (exponential) quadrature
conditions, the second one is the well-known C(1) condition, generalised to the
operator case.

It is worth noting that the exponential Euler method applied to (3) is second-
order accurate. It has one stage (s = 1) with weight b1(hJ) = ϕ1(hJ) and conse-
quently satisfies the first two order conditions.

4. Examples

From the above order conditions, it is straightforward to construct pairs of embed-
ded methods up to order 4. We consider two examples. The method exprb32 is
a third-order method with a second-order error estimator (the exponential Euler
method). Its coefficients are

c1
c2 a21

b1 b2
b̂1

=

0
1 ϕ1

ϕ1 − 2ϕ3 2ϕ3

ϕ1

The method exprb43 is a fourth-order method with a third-order error estimator.
Its coefficients are

c1
c2 a21

c3 a31 a32

b1 b2 b3
b̂1 b̂2 b̂3

=

0
1
2

1
2ϕ1

(
1
2 ·
)

1 0 ϕ1

ϕ1 − 14ϕ3 + 36ϕ4 16ϕ3 − 48ϕ4 −2ϕ3 + 12ϕ4

ϕ1 − 14ϕ3 16ϕ3 −2ϕ3

5. Stability and Convergence

For proving convergence estimates, the temporal smoothness of the exact solution
is one of our basic ingredients. Using this property, we establish by Taylor series
expansion a recursion for the global errors En = yn − y(tn) in terms of the defects

En+1 = ehnJnEn + hn∆n.
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Here ∆n depends on the defects and on En itself. The stability of this recursion
is all-important. It is verified in [3] that there exist constants C and Ω such that

∥∥ehnJn · · · eh0J0

∥∥ ≤ C eΩ(h0+...+hn),

whenever the involved step sizes are sufficiently small. We emphasise that our
proof of this result does not require the unrealistic condition

∥∥ehmJm

∥∥ ≤ 1.
A method is said to have order p, if it fulfils the stiff order conditions up to

order p. For such methods, we have the following convergence result, see [3].
Theorem (Convergence). Under the above assumptions, for H > 0 sufficiently

small and T ≥ t0, there exists a constant C such that the global error satisfies
∥∥yn − y(t0 + nh)

∥∥ ≤ C hp,

uniformly for all 0 < h ≤ H and all n ≥ 0 with nh ≤ T − t0. The constant C is
independent of n and h.

Methods up to order 4 can be constructed easily, see the previous section. For
numerical comparisons, we refer to [3].
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häuser, Basel, 1995.

Optimization of DAEs with applications in Optimal Control

Shivakumar Kameswaran

(joint work with Lorenz T. Biegler)

Dynamic optimization aims at optimizing systems that are governed by differen-
tial equations. From a mathematical viewpoint, a dynamic optimization problem
is an optimal control problem, which formally refers to the minimization of a cost
(objective) function subject to constraints that represent the dynamics of the sys-
tem. The last decade has witnessed a tremendous amount of effort going into
optimization of DAEs. The focus was on developing numerical algorithms and
optimization platforms, and solving interesting applications.

In order to cater to the scale and the complexity of present-day applications,
the following directions must be explored: design of powerful numerical methods,
optimization of systems governed by PDEs, ability to handle discrete decisions,
identification of problem classes that can be solved by various dynamic optimiza-
tion methodologies, reliability of NLP methodologies for dynamic optimization,
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ill-conditioned systems and model reduction. My Ph.D. research aims at address-
ing some of these issues using rigorous theoretical tools and/or characteristic ex-
amples, and at the same time, use the results for solving large-scale industrial
applications to realize the benefits.

In collaboration with Prof. Biegler, I have addressed the following issues:

• Discretize then Optimize vs. Optimize then Discretize: Research
in this direction has focused on classification of problems based on whether
it is advantageous to discretize all the dynamic constraints and then solve
the large-scale NLP, or to discretize the optimality conditions of the orig-
inal dynamic optimization problem. If the dynamic optimization problem
is well-posed, then we have demonstrated the equivalence between the
two approaches for a class of discretization schemes. Our analysis has
also been instrumental in devising numerical procedures for dynamic opti-
mization problems with high-index path constraints and singular optimal
control problems. We have successfully applied our results for the bound-
ary control of a heat transfer problem, and optimal control of fed-batch
bioreactors and semi-continuous chemical reactors.

• Reliability of NLP-Based Methods for Dynamic Optimization:
Although NLP-based methods have been used for an entire decade for the
solution of dynamic optimization problems, characterizing (as a function
of the step size) the relationship between the NLP solution and the solu-
tion of the original dynamic optimization problem is still an active area
of research. In this direction, we have addressed convergence rates for
NLP-based methods, and have identified classes of problems for which the
reliability of NLP-based methods can be proved rigorously. Our results
have applications in adjoint estimation, error analysis, and mesh refine-
ment. We have also demonstrated the implication of our results on the
temperature control of a batch reactor.

• Handling Discrete Decisions: A number of applications of dynamic
optimization also possess discrete components. These discrete compo-
nents introduce discontinuity into the optimization problem. Integer vari-
ables can be used to model these discontinuities, but the problem then
becomes combinatorially expensive. We have overcome this difficulty by
using complementarity conditions for modeling certain discrete decisions.
The advantage of this formulation is that it does not use integer variables,
and thus an NLP solver can be employed rather than a specialized mixed-
integer nonlinear programming solver. We have used complementarity for-
mulations for modeling and solving a number of interesting applications
in optimal control, reservoir engineering, and chemical engineering.

• Large-scale Parameter Estimation for a Reservoir Application:
In a project funded by ExxonMobil Upstream Research Company, we have
developed a novel complementarity-based procedure for the estimation of
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relative permeability and capillary pressure functions, from experimen-
tal data on oil-reservoir core samples. The values of these flow-functions
are crucial for proper exploitation of petroleum resources. The coupled
PDEs that are used to model two-phase flow phenomena, and boundary
conditions that switch in a discrete manner depending on the value of
the capillary pressure at the boundary make it a challenging optimiza-
tion problem. Spatial and temporal discretization of the PDEs results in
a large-scale NLP, and we have successfully solved instances that involve
about 89000 variables and constraints. The solution procedure for this
problem has benefited heavily from our research on the aforementioned
directions.

• Trajectory Planning for Fuel Cell/Gas Turbine Power Genera-
tion Systems: In a different project funded by FuelCell Energy, Inc. we
have developed a methodology for trajectory planning of hybrid power
generation systems to achieve better control performance than conven-
tional control. The goal is to predict controller moves to meet the power
requirements, and this is crucial for the operation of such plants. We have
formulated this as a dynamic optimization problem, and have successfully
applied our research on dynamic optimization to solve the resulting large-
scale problem ( 60000 variables and constraints).

We believe that the future of dynamic optimization lies in large-scale applications.
Also, this decade is marked by increased efforts in modeling and simulation of bio-
logical and nano-scale processes/phenomena; optimization is a natural extension.
With research efforts in the aforementioned directions, dynamic optimization is
emerging as a much sought after tool for such applications. Preprints of my papers
can be found from my homepage http://dynopt.cheme.cmu.edu/skk/skk.html.

Numerical solution of large-scale optimal control problems in robust
optimum experimental design

Ekaterina Kostina

(joint work with Hans Georg Bock, Stefan Körkel, Johannes P. Schlöder)

Estimating model parameters from experimental data is crucial to reliably simu-
late dynamic processes. In practical applications, however, it often appears that
the experiments performed to obtain necessary measurements are expensive, but
nevertheless do not guarantee sufficient identifiability. The optimization of one
or more dynamic experiments in order to maximize the accuracy of the results of
a parameter estimation subject to cost and other technical inequality constraints
leads to very complex non-standard optimal control problems.

The problem of optimum experimental design can be described as follows: our
aim is
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• to design Nexp optimal experiments by choosing experimental variables
q = (q1, ..., qNexp

) (e.g. initial concentrations, properties of the exper-
imental device etc), and experimental controls u = (u1, ..., uNexp

) (e.g.
temperature profiles of cooling/heating, inflow profiles etc)

• that minimize a “size” of a confidence region of parameters which is de-
scribed by a suitable function Φ of a covariance matrix of the underlying
parameter estimation problem

min
q,u

Φ(C(x, p, q, u))

• such that the state variables x = (x1, ..., xNexp
), parameters p, design

parameters q = (q1, ..., qNexp
) and design controls u = (u1, ..., uNexp

) satisfy
control and state constraints

ci(t, xi(t), p, qi, ui(t)) ≥ 0, t ∈ Ti = [ti0, t
i
f ], i = 1, 2, ..., Nexp,

• and xi(t) = (yi(t), zi(t)), qi, ui(t), p, t ∈ Ti, satify model dynamics, e.g.

ẏi(t) = fi(t, yi(t), zi(t), p, qi, ui(t)),
0 = gi(t, yi(t), zi(t), p), t ∈ Ti,

i = 1, 2, ..., Nexp,

and constraints of the underlying parameter estimation problem

ri(yi, p, qi, ui) = 0, i = 1, 2, ..., Nexp.

One of the difficulties is that the objective function is a function of a covariance
matrix and therefore already depends on a generalized inverse of the Jacobian
of the underlying nonlinear parameter estimation problem, see [11, 6]. While
experimental design for linear models is well established and discussed, e.g. in
[1, 9, 13], numerical methods for design of experiments for nonlinear dynamic
systems where first developed in [2, 3, 11, 12]. The numerical methods are based
on the direct approach, according to which the control functions are parameterized
on an appropriate grid by local support functions, the solution of the DAE systems
and the state constraints are discretized. As a result, we obtain a finite-dimensional
constrained nonlinear optimization problem which can be formally written as a
general nonlinear programming problem

min
ξ∈R

nξ
ϕ(ξ, s, p) s.t. ψi(ξ, s, p) = 0, i ∈ E , ψi(ξ, s, p) ≤ 0, i ∈ I.(1)

Here we summarize all experimental design variables, the (parameterized) controls
in the nξ vector ξ, s ∈ Rns denotes a parameterization of the state variables of the
process models, p is an np-vector of parameters, the functions ϕ : Rnξ+np → R,
ψi : Rnξ+np → R, i ∈ E ∪ I, are twice-continuously differentiable. Note, that the
equality constraints ψi(ξ, s, p) = 0, i ∈ E , contain the discretized boundary value
problem. The problem (1) is solved by an SQP method.

The main effort for the solution of the optimization problem by the SQP method
is spent on the calculation of the values of the objective function and the con-
straints as well as its gradients. Efficient methods for derivative computations
combining internal numerical differentiation [4] of the solution of the DAE and
automatic differentiation of the model functions [10] have been developed. For
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more detailed discussion of the numerical methods for nonlinear optimum experi-
mental design see [2, 3, 11, 12].

As we can see the experimental design optimization problem is formulated for
the assumed parameter values which are, however, only known to lie in a possibly
large confidence region. Our next aim is to construct robust experiments that is
experiments that are less sensitive to parameter uncertainty.

We discuss here our approach for a general optimization problem (1). We
assume that the parameters are only known to lie in a region defined by a “ball”
around the nominal parameter values p0

p ∈ P := {p : ||Q(p− p0)|| ≤ γ},
where Q is a given nonsingular matrix. Our aim is to find a solution ξ∗ which is
robust, i.e. insensitive, to “small” perturbations in p. For this purpose, following
one of the classical approaches since middle of the sixties, we may form and solve
the worst-case design problem:

min
ξ

max
p∈P

ϕ(ξ, s, p),

s.t. ψi(ξ, s, p) = 0, i ∈ E , ∀p ∈ P(2)

max
p∈P

ψi(ξ, s, p) ≤ 0, i ∈ I.

The optimization problem (2) is a semi-infinite programming problem. The so-
lution methods for such problems require the determination of global optima of
nonlinear subproblems which may be computationally extremely expensive. In or-
der to compute robust solutions we suggest to approximate the worst-case problem
(2) in the following way. First, we assume that we may reduce the problem to an
inequality constrained one. For the sake of notation simplicity we assume that the
number of constraints is equal to the number of the state variables s, the matrix

∂ψE(ξ, s0, p0)

∂s
, ψE(·) =

(
ψi(·)
i ∈ E

)

is nonsingular at the pair p0, s0, satisfying ψE(ξ, p0, s0) = 0, and there exist a
sufficiently smooth function s = s(p), s(p0) := s0, p ∈ P , such that ψE(ξ, s(p), p) ≡
0, p ∈ P . Denote

R :=
∂ψE(ξ, s0, p0)

∂s

−1
∂ψE(ξ, p0, s0)

∂p
.

Then we approximate the problem (2) by

min
ξ

max
p∈P

ϕ̃(ξ, s0, p0) := ϕ(ξ, s0, p0) +(3)

(
−∂ϕ(ξ, s0, p0)

∂s
R +

∂ϕ(ξ, s0, p0)

∂p

)
(p− p0),

s.t. max
p∈P

ψ̃i(ξ, s0, p0) := ψi(ξ, s0, p0) +

(
−∂ψi(ξ, s0, p0)

∂s
R +

∂ψi(ξ, s0, p0)

∂p

)
(p− p0) ≤ 0, i ∈ I,
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using Taylor expansions for the functions ϕ, ψi, i ∈ I, with respect to p. The
inner problems in (3) are the maximizations of linear functions subject to convex
constraints which can be solved explicitly. Using the explicit solution of the inner
problems in (3), we may rewrite the approximate worst-case problem (3) as follows

min
ξ

ϕ(ξ, s0, p0) + γ||Q−T

(
−RT ∂ϕ(ξ, s0, p0)

T

∂s
+
∂ϕ(ξ, s0, p0)

T

∂p

)
||∗,(4)

s.t. ψi(ξ, p0) + γ||Q−T

(
−RT ∂ψi(ξ, s0, p0)

T

∂s
+
∂ψi(ξ, s0, p0)

T

∂p

)
||∗ ≤ 0,

i ∈ I,
where || · ||∗ denotes a dual norm to || · ||ν . The second term in the cost function and
the constraints can be interpreted as a penalty for uncertainty in the parameters.

Applying SQP-type method for solving (4), we need second-order derivative of
functions ψi. However, in case of Euclidian norm we may compute the necessary
derivatives very efficiently. Indeed, in this case we need directional derivatives

of the form
∂2ψi(ξ, s0, p0)

∂p∂ξ

∂ψi(ξ, s0, p0)
T

∂p
which can be computed by means of

automatic differentiation. For computing the sensitivities R one may again apply
methods of automatic differentiation.

The methods of robust optimal experimental design have been applied to sev-
eral applications in chemistry [7] and bio-chemistry [5] and they have allowed to
estimate reliably unknown parameters and to reduce significantly experimental
costs. The methods for robust nonlinear optimization presented were applied also
for solving optimal control problems, see [8].
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[3] I. Bauer, H. G. Bock, S. Körkel, J. P. Schlöder, Numerical methods for optimum experimental
design in DAE systems, Journal of Computational and Applied Mathematics, 120 (2000),
1–25

[4] H. G. Bock, Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlin-
earer Differentialgleichungen, Bonner Mathematische Schriften, 187, Bonn (1987)

[5] H. G. Bock, S. Körkel, E. A. Kostina, J. P. Schlöder, Methods for design of optimal exper-
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Some problems connected with linear-quadratic optimal control
problems for descriptor systems

Galina Kurina

(joint work with Roswitha März)

I. Index criteria for differential algebraic equations arising from linear-
quadratic optimal control problems [1]. We consider the quadratic cost func-
tional

J(u, x) =
1

2
〈x(T ), V x(T )〉 +

1

2

∫ T

t0

〈(
x
u

)
,

(
W S
S∗ R

)(
x
u

)〉
dt

to be minimized on solutions of the linear differential algebraic equation (DAE)
with properly stated leading term

A(Bx)′ = Cx+Du, x = x(t) ∈ IRm, u = u(t) ∈ IRl, (1)

subject to the initial condition

A(t0)B(t0)x(t0) = z0.

The coefficients are supposed to be continuous matrix functions with A(t) ∈
L(IRn, IRk), B(t) ∈ L(IRm, IRn), C(t) ∈ L(IRm, IRk), D(t) ∈ L(IRl, IRk),W (t) ∈
L(IRm), S(t) ∈ L(IRl, IRm), R(t) ∈ L(IRl); V ∈ L(IRm); V ∗ = V,W ∗(t) =

W (t), R∗(t) = R(t);V and

(
W (t) S(t)
S(t)∗ R(t)

)
are positive semidefinite, t ∈ [t0, T ].

The system
A(Bx)′ = Cx +Du,

−B∗(A∗ψ)′ = Wx+ C∗ψ + Su,
0 = S∗x+D∗ψ +Ru,

(2)

following from the control optimality condition, is regular with tractability index
1 if and only if the matrices

(
AB − CQ0 D

)
,

(
G∗

0 − C∗Q∗0 WQ0 S
−D∗Q∗0 S∗Q0 R

)
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have full row rank on the interval [t0, T ]. Here G0 = AB; Q0, Q∗0 are the or-
thogonal projectors onto KerG0,KerG

∗
0 respectively.

It should be noted that the DAE (1) to be controlled is not assumed to be
regular or to have an index.

The definition of self-adjoint DAEs is introduced. The conditions ensuring the
Hamiltonian structure of inherent ODEs are established for self-adjoint DAEs.

For the controlled DAE consider a properly stated leading term with kerA(t) =
{0}. For the system (2) suppose the conditions assuring the regularity with index
1 to be fulfilled. Then the inherent ODE of (2) has the Hamiltonian structure

z′ =

(
0 −I
I 0

)
Ez, z :=

(
Bx

−A∗ψ

)
, E(t)

∗
= E(t).

This property is very useful for the solvability of boundary value problems. The
example from [1] shows the significance of the condition concerning the leading
term.

Let m = k, DAE (1) be regular with index zero or with index one, and imD ⊆
imAB, imS ⊆ im(AB)∗, then the DAE (2) is regular with tractability index
one if R is invertible and vice versa.

If R is singular the DAE (2) can not be regular with index two in general case.
Reasonable conditions yield the regularity with tractability index three for (2).

II. Feedback approach using an implicit Riccati equation [2]. Let us
assume that R(t) is non-singular for t ∈ [t0, T ] and consider the final value problem

B∗(A∗Y B−)′B = −Y ∗C − C∗Y + (S + Y ∗D)R−1(S∗ +D∗Y ) −W, (3)

A(T )∗Y (T )B(T )− = B(T )−∗V B(T )−. (4)

If Y solves (3),(4) and A∗Y Q0 = 0 then B∗A∗Y = Y ∗AB.
Let Y be a solution for (3),(4), the condition A∗Y Q0 = 0 be fulfilled and x∗ be

a solution of the IVP

A(Bx)′ = Cx−DR−1(S∗ +D∗Y )x, A(t0)B(t0)x(t0) = z0.

Then we get an optimal control in the feedback form u∗ = −R−1(S∗ + D∗Y )x∗
and J(u∗, x∗) = 1

2 〈z0, A(t0)
∗−B(t0)

−∗Y (t0)
∗z0〉 .

The solution of the implicit Riccati equation is reduced to the solution of the
algebraic Riccati equation and the standard differential Riccati equation resolved
with respect to the derivative.

The solvability of the closed loop problem and the connection between the
implicit Riccati equations and the implicit Hamiltonian systems have been also
studied.

The another implicit Riccati equation was used by other authors earlier (see,
for example, [3]). This another implicit Riccati equation fails for the different
combinations of the coefficients in the example from [3], but the solution for (3)
leads to an optimal control in a feedback form for this example.



1118 Oberwolfach Report 18/2006

III. Some non-standard linear-quadratic problems for descriptor sys-
tems [4]. We consider now the non-standard quadratic cost functional

J(u, y) =
1

2

N+1∑

j=0

〈y(tj) − yj , Fj(y(tj) − yj)〉 +
1

2

∫ T

0

〈u(t), Ru(t)〉dt

to be minimized on the trajectories of a descriptor system

(Bx)′ = Cx +Du, y = Gx.

Here t0 = 0, tN+1 = T, 0 < t1 < · · · < tN < T ; tj are fixed; Fj = F ∗
j ≥ 0,

R = R∗ > 0, yj are given. The coefficients are constant in this problem.
Two cases are researched, namely, when the initial value for the part of the

state variable is given and when additional constraints for boundary points of the
state variable are absent. For the third problem, output variable values in the
fixed points are given. The solvability of these optimal control problems has been
proved.

Adjoint variables and optimal controls are discontinuous functions when t = tj
in general case. The jumps for the adjoint variable ψ(·) are given by the formulas

B∗(ψ(tj − 0) − ψ(tj + 0)) = −G∗Fj(y∗(tj) − yj),

y∗(t) = Gx∗(t), x∗(·) is a trajectory corresponding to the control

u∗(t) = R−1D∗ψ(t), B∗(ψ(t))′ = −C∗ψ(t), t 6= tj .

IV. Discrete problems [5], [6]. Let us consider the problem of minimizing
the quadratic functional

J(u, x) =
1

2
〈xN , V xN 〉 +

1

2

N−1∑

i=0

〈(
xi

ui

)
,

(
Wi Si

S∗
i Ri

)(
xi

ui

)〉

on trajectories of a descriptor system

Ai+1Bi+1xi+1 = Cixi +Diui, i = 0, N − 1, A0B0x0 = z0.

Under some conditions, the implicit system, following from the control optimal-
ity condition, provides an explicit nonnegative standard Hamiltonian system for
the pair (Bixi, A

∗
iψi) and the considered optimal control problem is solvable.

We put Bi ≡ I. If the symmetric operators Ki are the solution of the problem

A′
iKiAi = Wi + C′

iKi+1Ci − (Si + C′
iKi+1Di)Li(Si + C′

iKi+1Di)
′,

A′
NKNAN = V

such that the operators
L−1

i = Ri +D′
iKi+1Di

are positive definite, then u∗i = −Li(S
′
i +D′

iKi+1Ci)xi is an optimal control in a
feedback form.

In general case, the implicit discrete operator Riccati equation has no a sym-
metric non-negative definite solution but it has a solution ensuring the positive
definiteness of the operators Li.

This work was partially supported by the RFBR (project No.06-01-00296-a).
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Different Index Concepts, their Canonical Forms and Solvability of
Linear DAEs

René Lamour

(joint work with Roswitha März)

The index of a (linear) DAE describes the number of differentiations of the right-
hand side that are necessary to compute a solution. The generalization of the
classical Weierstraß-Kronecker index for constant coefficient DAEs using the local
matrix pencil leads to irrelevant results and therefore various index definitions
have been provided.
We consider DAEs in standard form

(1) E(t)x′(t) + F (t)x(t) = q(t),

or with properly stated leading term

(2) A(t)(D(t)x(t))′ +B(t)x(t) = q(t),

with sufficiently smooth (at least continuous) matrices A(t) ∈ Rm×n, D(t) ∈
Rn×m, B(t), E(t), F (t) ∈ Rm×m, t ∈ I.
It would be desirable to have a common canonical form for all concepts to com-
pare the different definitions. However, up to now also the canonical forms are (in
detail) different.
Our special interest (as a part in a project of the DFG Research Center MATH-

EON) was directed at the relation between the tractability index and the strange-
ness index.
Notice that the strangeness index is defined for equations (1). The tractabilty
index is given for both formulations (1) and (2), see e.g. [4] and [6]. A projector
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based version of the strangeness concept will be given in [3].
The standard canonical form (SCF) (see [1]) (also known as Steve Campbell Form)

(3)
u′ + Wu = Luq,
Nw′ + w = Lwq,

was derived for the tractability index [5] and for the strangeness index [2]. In
contrast to the SCF definition of Campbell, who considered a strictly upper trian-
gular matrix N with possible variable rank, constant ranks related to characteristic
numbers of the tractability index or others of the strangeness index play an im-
portant role in the definition of both concepts. Here a rank change is considered
a critical point.
The conjecture was that the characteristic numbers of both concepts are strongly
related. Considering (3) for the tractability index and strangeness index the inner
structure of the related nilpotent matrix

N =




0 N01 · · · · · · N0,µ−1

0
. . .

...
. . .

. . .
...

. . . Nµ−2,µ−1

0




are different.
In the tractability index case the supdiagonal blocks have full column rank struc-

ture Nk,k+1
, but in the strangeness index case full row rank structure Nk,k+1

with rank sµ−2−k.
Both index definitions are based on different matrix chains and therefore the idea
of an equivalence proof concerning the rank conditions is to take the normal form
of the first index and apply the matrix chain of the other one.

DAE of index µ
Strangeness concept−−−−−−−−−−−−−−−−→ Normal form

Tractability
y concept Tractability

y concept

Normal form
Strangeness concept−−−−−−−−−−−−−−−−→ µt = µs + 1?

A regular DAE with strangeness index µ was proved to have tractability index µ+1.

Theorem 1: For (1) let the strangeness index be well defined. Let (ai, r̄i, si, ui),
i=0,...,µ−1, denote the corresponding characteristic values, and let sµ−1 = 0, sµ−2 6=
0, ui = 0, i=0,...,µ−1 (i.e., (1) has regular s-index µ− 1).
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Then, the DAE (1) is (in each proper reformulation) regular with tractability
index µ and corresponding characteristic values r0 = rankE = r̄0, rj = m−sj−1,
j=1,...,µ.

Up to the Oberwolfach conference we only believed the other direction to hold
but thanks to the inspiring atmosphere of Oberwolfach we succeeded in proving
the other direction.

Theorem 2: Let the regular strangeness index µs (see [3]) and the tractability
index µt ≥ 1 be well defined for a linear DAE (2), then µt = µs + 1 and the
characteristic values are given in a one-to-one relation.

Remarks: -Regular strangeness index means, that the DAE is not over or un-
derdetermind or, using the characteristic values of the strangeness index concept
that ui = 0, ∀i.
-For the special case that µt = 0 (i.e., we have an implicit regular ODE) the
relation µt = µs holds because of the different counting of the strangeness index.
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Stability radii for linear time-varying differential algebraic equations
and their dependence on data

Vu Hoang Linh

(joint work with Nguyen Huu Du)

This research is concerned with the robust stability for time-varying systems of
differential-algebraic equations (DAE-s) of the form

(1) E(t)x′(t) = A(t)x(t), t ≥ 0,

where E(·) ∈ Lloc
∞ (0,∞; Kn×n) with absolutely continuous kernel, K = {C,R}, and

A(·) ∈ Lloc
∞ (0,∞; Kn×n). The leading term E(t) is supposed to be singular for all
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t ≥ 0. We suppose that (1.1) generates an exponentially stable evolution operator
Φ = {Φ(t, s)}t,s≥0, i.e., there exist positive constants M and α such that

(2) ‖Φ(t, s‖
Kn×n ≤Me−α(t−s), t ≥ s ≥ 0.

We consider the system (1) subjected to structured perturbation of the form

(3) E(t)x′(t) = A(t)x(t) +B(t)∆(C(·)x(·))(t), t ≥ 0

where B(·) ∈ L∞(0,∞; Kn×m) and C(·) ∈ L∞(0,∞; Kq×n) are given matrices
defining the structure of the perturbation and ∆ : Lp(0,∞; Km) → Lp(0,∞; Kq)
is an unknown disturbance operator which is supposed to be linear, dynamic, and
causal. Thus, the system (3) represents a large class of linear functional differential
equations including, e.g., delay equations, integro-differential equations, etc. In
applications, the nominal system (1) plays the role of a simplified model problem,
while the perturbed system (3) can be considered as a real-life problem.

The so-called stability radius is defined by the largest bound r such that the
stability is preserved for all perturbations ∆ of norm strictly less than r. Depend-
ing on K = C or R, we talk about the complex stability radius or the real one.
This measure of the robust stability was introduced by Hinrichsen and Pritchard
[7]. Formulae of the stability radii for linear time-invariant systems of ordinary
differential equations (ODE-s) with respect to time- and output-invariant, i.e., sta-
tic perturbations can be found in [7, 11]. In lots of practical problems, uncertain
perturbations may depend on the output feedback, as well. In [9], robust stability
with respect to dynamic perturbations was considered for explicit time-invariant
systems and a formula of the stability radius was given in term of the norm of
a certain input-output operator. For time-varying systems, the most successful
attempt for finding a formula of the stability radius was an elegant result given
by Jacob [6]. On the other hand, systems occurring in various applications, such
as optimal control, circuit design, multibody mechanics simulation, etc., are de-
scribed by differential-algebraic systems, see [1]. Therefore, it is natural to extend
the notion of the stability radius to differential-algebraic equations. The stability
radius was formulated for linear time-invariant DAE-s of index-1, see [10, 2], and
analyzed for implicit systems containing small parameters, see [3]. It is worth
remarking that, as in the qualitative theory and in numerical methods for DAE-s,
the index notion plays a very important role in the robust stability analysis, too.

The first aim of this research is to extend Jacob’s result to time-varying systems
(1) of index-1. We follow the tractability index approach proposed by Griepentrog
and März [4]. First, a definition of the structured stability radii for (1) subjected
to (3), denoted by rK(E,A;B,C), is given. It is slightly different from the case of
ODE-s that not only the stability, but also the index-1 property are required to be
preserved. We propose the exact formula for rK(E,A;B,C) as follows. Let Q(·)
be an absolutely continuous projector onto kerE(·). Set P = I−Q, A = A+EP ′

and G = E −AQ. Assume that the following assumptions hold.
Assumption A1. System (1) is index-1 and there exist M > 0, α > 0 such that

‖Φ0(t, s)P (s)‖ ≤Me−α(t−s), t ≥ s ≥ 0.
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Here Φ0(t, s) is the Cauchy operator of the so-called inherent ODE system for (1).
Assumption A2. PG−1, QG−1 and Qs := −QG−1A are essentially bounded on
[0,∞).
We introduce the following operators

(Lt0u)(t) = C(t)
∫ t

t0
Φ(t, s)PG−1B(s)u(s)ds+ CQG−1B(t)u(t),

(L̃t0u)(t) = CQG−1B(t)u(t),

for all t ≥ t0 ≥ 0, u ∈ Lp(0,∞; Kn), p ≥ 1. The first operator is called the
input-output operator associated with (1-3).

Theorem 1. Let Assumptions A1-2 hold. Then

rK(E,A;B,C) = min{sup
t0≥0

‖Lt0‖−1
, ‖L̃0‖−1}.

If E is nonsingular, then by setting Q = 0, one obtains Jacob’s result. Further-
more, if E,A,B, and C are real, then the complex stability radius and the real
one coincide. We note that the perturbed system may loose the index-1 property
under the effect of perturbations. This yields an essential difference between the
robust stability of a singular system and that of a regular one.

For time-invariant case, the following theorem extends the result for ODE-s by
Hinrichsen et.al. [9] to DAE-s.

Theorem 2. Suppose that the nominal time-invariant system (1) has index-1 and
is exponentially stable. Then

rK(E,A;B,C) = ‖L0‖−1
.

Furthermore, if p = 2, then

rC(E,A;B,C) =

(
sup
w∈iR

∥∥C(wE −A)−1B
∥∥
)−1

.

Further analysis is addressed to the dependence of the stability radii on data.
This problem was investigated for time-invariant ODE-s [8], for time-varying ODE-
s [5], and for time-invariant DAE-s [3]. Let {Fk(·)}k∈N be a sequence of measurable
and essentially bounded matrix functions. We consider a sequence of the perturbed
systems

(4) E(t)x′(t) = (A(t) + Fk(t)) x(t), t ≥ 0, k = 1, 2, ...

Assumption A3. With the projector function Q defined above, the matrices

G̃k = E− (A+Fk)Q are invertible almost everywhere and for all k. Furthermore,

PG̃−1
k , QG̃−1

k and Qs,k = −QG̃−1
k A are essentially bounded on [0,∞).

Theorem 3. Let Assumptions A1-3 hold. Furthermore, suppose that the following
assumptions hold:

i) PG−1Fk(·) ∈ L1(0,∞; Kn×n), ∀k
ii) lim

k→∞
ess sup t≥0‖P (G̃−1

k −G−1)(t)‖ = 0,

iii) lim
k→∞

ess sup t≥0‖Q(G̃−1
k −G−1)(t)‖ = 0.
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Then, the perturbed systems (4) remain index-1 and generate exponentially stable
Cauchy operators, too. Moreover, their stability radii tend to those of the original
(1), respectively, as k tends to infinity:

lim
k→∞

rK(E,A+ Fk;B,C) = rK(E,A;B,C).

Further results and conclusions on data dependence are also obtained for the
stability radii of special problems such as almost time-invariant systems and ex-
plicit time-varying systems. In addition, the dependence of the stability radii on
the perturbation structure is analyzed, too. The publication of the results pre-
sented here, supplied with detailed proofs, is being in progress.

Acknowledgement. The speaker dedicates this talk to the memory of Professor
Katalin Balla (1947–2005).
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Symplectic integrators for general relativity

Christian Lubich

The Einstein equations of general relativity have a Hamiltonian formulation in
a 3+1 slicing, as has been known since the work by Dirac and by Arnowitt, Deser
and Misner nearly 50 years ago. The objective of this talk was to up possible ways
to exploit the Hamiltonian structure in the numerical integration.
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The Einstein equations have weak invariants, which can be viewed as con-
straints with zero Lagrange multipliers: the Hamiltonian and momentum con-
straints. They are, however, no longer automatically preserved under discretiza-
tion. It turns out that by considering the shift as additional momentum variables
and imposing a gauge condition, we obtain a formulation where the momentum
constraints arise as hidden constraints of a holonomically constrained Hamiltonian
system. The Rattle integrator is a very suitable integration method for this sys-
tem: it is symplectic and enforces the momentum constraints, but it ignores the
Hamiltonian constraint. Nevertheless, a result by Anderson and York implies that
in the continuous equations there is no drift in the Hamiltonian constraint once
the momentum constraints are enforced. Provided that this property carries over
to the spatial semi-discretization, the Rattle integrator applied to the proposed
formulation thus yields a very promising structure-preserving integration method.
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Solving Partial Differential-Algebraic Equations in
Structural Mechanics

Christoph Lunk

(joint work with Bernd Simeon)

In my talk I present an algorithm for solving the equations of constrained structural
dynamics with adaptivity in time and space. Giving a short outline the basis for
this will be the Rothe method. We set up the mathematical model and formulate
it as a time-dependent saddle point problem. For this purpose we need a time
integration scheme and error estimators for the descretization in space and time.

The application fields, we are interested in, are characterized by mechanical
multibody systems where each subsystem is discretized by finite elements or other
methods in space. State of the art solution schemes separate the unknowns in
space and time, using the Finite Elemente Methods (FEM) on a fixed mesh to
discretize the spatial part. Together with constraints this yields a system of DAEs
of index 3.

The advantage of this approach, also called Method of Lines (MoL), is that good
time integration methods exist based on index reduction and stabilized integration.
The disadvantage, however, is that adaptivity in space is hardly possibly.

The counterpart of the MoL, also called Rothe method, discretizes the system
with respect to time first and solves the obtained stationary problem afterwards [2].
The Newmark algorithm and its generalizations are still the methods of choice for
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time integration in structural dynamics. In the present work we shall show how
the Newmark and generalized α-methods can be extended to differential-algebraic
equations by using position and velocity stabilization as well as related techniques
from molecular dynamics solvers as key ideas. The benefits of the α-methods are
their controllable numerical dissipation properties. Thus spurious high frequent
oscillations caused by the spatial discretization can be damped out effectively.

The behavior of elastic bodies is described by physical laws, e.g. by Cauchy’s
first law of motion

ρü(x, t) =divσ(u(x, t)) + β(x, t),(1)

where σ(u(x, t)) is the stress tensor of the displacement u(x, t), ρ is the mass
density and β(x, t) is a volume force. We generalize these kind of equations by
writing

ü =Au+ l.

Here A is an spatial operator, for instance (1/ρ)divσ(u) from (1), that can be
nonlinear. The variable l denotes external loads. We skip the noncritical possibility
that the right hand side depends on the velocity u̇.

When we think of multibody systems, the variable u could contain the displace-
ment of multiple subsystems. We express any coupling between these subsystems
or other constraints with

Bu =m,

where B is an operator, e.g. the trace functional, which extracts the displacement
of two bodies in contact.

Summarizing the saddle point formulation of the constrained movement reads

ü−Au+ B′λ =l,

Bu =m,
(2)

where B′ is the adjoint operator of B and λ the Lagrange mutliplier.
The usual way to solve this system is to introduce the velocity w := u̇ and to

form the first order index 3 equation system. Due to the unfavorable sensitivity
of index 3 systems one differentiates the constraints with respect to time once

Bw = − Ḃu+ ṁ

and gets with (2) an index 2 formulation.
If we apply the Newmark scheme to the ordinary part of the equation and

append the constraint forces, we achieve (un
.
= u(·, tn), wn

.
= w(·, tn))

wn+1 − wn

△t =(1 − γ)zn + γzn+1 −
1

2
B′

nλn − 1

2
B′

n+1λn+1,

un+1 − un

△t =wn + △t(1

2
− β)zn + △tβzn+1 −△t(1

2
− β̄)B′

nλn −△tβ̄B′
n+1λn+1,

Bun+1 =mn+1,(3)

Bwn+1 = − Ḃun+1 + ṁn+1.
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where zn = Aun+ln. The key idea of α-methods is the use of a convex combination

αmzn + (1 − αm)zn+1 = αf (Aun + ln) + (1 − αf )(Aun+1 + ln+1).

Here β, γ, αf , αm and β̄ are parameters of the time integration scheme. If one
prescribes the spectral radius of numerical dissipation ρ∞, i.e. the damping rate
of eigenfrequencies ω → ∞, the suitable choice of parameters is αf = ρ∞/(1 +
ρ∞), αm = (2ρ∞ − 1)/(1 + ρ∞). The scheme damps uniformly, iff β = 1/4(1 −
αm +αf)2 and is of second order, iff γ = 1/2−αm+αf . In this case the truncation

error of un+1 is β̄△t3 ˙̈un +O(△t4) iff β̄ = β + (αm − αf )/2.
A special choice of parameters, namely αm = αf , γ = 1/2, β = β̄ = 0 leads

directly to the RATTLE-scheme, which was developed for molecular dynamics.
The combination of the RATTLE- and the α-schemes assigns the name α-RATTLE
scheme for (3). Its convergence proof can be found in [3].

The first challenge is the estimation of the time integration error. Taylor ex-
pansion shows, that with

ũn+1 :=un +
2△t
3
u̇n +

△t
3
u̇n+1 +

△t2
6

(Aun + ln − B′
nλ(·, tn))

we can control the error of un+1 by minimization of the truncation error ũn+1 −
un+1 = △t3(1

6 − β̄) ˙̈un + O(△t4). We remark that the implicit given Lagrange
multiplier λn and λn+1 do not match the exakt values in (3). Indeed λn = λ(·, tn)+

△t(1− 2β̄)λ̇(·, tn) +O(△t2) and λn+1 = λ(·, tn) +△t2β̄λ̇(·, tn) +O(△t2) hold. In
case of a L-stable scheme it is β̄ = 1/2, i.e. both values are of first order.

The stationary equation system (3) can be solved by the FEM. In that case
each line will be premultiplied with a test function and the function spaces will
be projected on finite subspaces (cf. [4]). The operators A and B itself define
functionals, e.g. a(u, v) := 〈Au, v〉 where v is a test function of u and l(v) :=
〈l, v〉, b(u, θ) := 〈θ,Bu〉 respectively. Under certain circumstances a(·, ·) defines a
norm with which the spatial error of the solution un+1 of the stationary system (3)
can be estimated.

Now the overall algorithm reads: First one has to initialize a spatial mesh
T0 at t = t0 with basis functions {φi} for u and w and {πj} for λn and λn+1

respectively. Additionally a time step size △t has to be defined and the initial
values u(x, t0), u̇(x, t0) has to be projected on the finite subspace (gives u0, w0).
Starting with n = 0 the program steps are

(1) assemble matrices Mij = 〈φi, φj〉ij ,Kij = a(φi, φj)ij , Gij = b(φi, πj),
fi = ln+1(φi) on mesh Tn,

(2) project un, wn, zn on mesh Tn,
(3) solve saddle point problem (Eq. (3)) in finite dimension,
(4) compute 3rd order value ũn+1,
(5) estimate spatial error errx of un+1 and ũn+1, refine Tn,
(6) if errx > tolx go to (1), otherwise:
(7) estimate time error errt, if errt > tolt decrease △t, fit zn, go to (2),

otherwise:
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(8) remove nodes in Tn, Tn+1 := Tn, compute zn+1, n 7→ n+1, propagate new
△t, go to (1).

We remark that step (5) is essential, because the time error estimator should not
be influenced by the spatial discretization error. The second hint concerns the
projection from old to new mesh: only if the projection matches the spatial mesh
in each time step exactly, undesirable oscillations can be prevented.

Finally we want to mention that this approach was successfully tested on a
multibody system “pantograph with catenary” [1]. The differences between a so-
lution with a fixed fine spatial grid and small time step sizes and our adaptive
solution were below the given tolerances but the adaptive solution needed signifi-
cantly less computer effort. Nevertheless, the proof of global convergence in time
and space is still in work.
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Projector Based DAE Analysis

Roswitha März

Most approaches to more general DAEs are supplied by reduction techniques im-
plying differentiations and eliminations. The use of derivative arrays involves the
restriction to problems satisfying high smoothness demands. However, we are
wrong in supposing more information in derivatives of a function than in the func-
tion itself. The tractability index concept provides an alternative way without the
use of derivative arrays. It relies on projector based decompositions into charac-
teristic parts and linearization. It allows to handle equations

(1) f((d(x(t), t))′, x(t), t) = 0,

where f(y, x, t) ∈ ℜm, d(x, t) ∈ ℜn, y ∈ ℜn, x ∈ D0, t ∈ ℑ, D0 ⊆ ℜm open,
connected, ℑ ⊆ ℜ an interval, f and d are continuous together with their first
partial derivatives fy, fx, dx, dt. Denote, for (x1, x, t) ∈ ℜm × D0 × ℑ, D(x, t) =
dx(x, t), A(x1, x, t, ) = fy(D(x, t)x1+dt(x, t), x, t), B(x1, x, t, ) = fx(...). The DAE
(1) is supposed to have a properly stated leading term, that is, the decomposition

(2) ℜn = kerA⊕ imD
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is given pointwise on ℜm ×D0 ×ℑ, both subspaces have constant dimension, and
they are spanned by C1 basises. Benefits from those refined DAE models have
been realized first in [1]. For further arguments we refer to [2,3].

Regular linear DAEs with tractability index µ are supplied by constant-
rank conditions for certain matrix functions Gi, i = 0, ..., µ (cf.[4-6]). For instance,
all linear DAEs having a well-defined regular strangeness index satisfy these rank
conditions. Regular linear DAEs can be completely decoupled by so-called fine and
completely decoupling projectors into the (uniquely determined) inherent explicit
regular ODE (IERODE), and the algebraic part including the inherent differenti-
ations. These decoupled systems look like standard canonical forms (SCF)(cf.[7]),
but with coefficients given explicitly in terms of the original DAE and the pro-
jectors computed from them. The resulting nilpotent block and its powers have
constant rank. This allows for rigorous input-output relations, detailled qualitative
stability analysis, etc.[2,8,9]. Points where the rank conditions fail are considered
to be critical ones. For a detailed discussion of those critical points we refer to
[10,11].

Quasi-regular linear DAEs form a class of DAEs with essentially relaxed
rank-conditions. Since the nullspaces of the matrix functions Gi now may change
their dimension, we do instead with continuous subnullspaces [12]. Quasi-regular
DAEs can be decoupled in the same way as regular ones. Not surprisingly, all
DAEs being transformable into SCF (with arbitrary nilpotent block) are quasi-
regular. Now, rank changes of the nilpotent block are no longer indicated as
critical points. However, note that this makes sense only for sufficiently smooth
data oriented somehow on a ”highest index subinterval”. To be more precise we
consider an example: The special DAE

(3)

0�1 0 0
0 0 α(t)
0 0 0

1A (Dx(t))′ + x(t) = q(t), t ∈ [−1, 1],

with α(t) = t1/3 on (0, 1], α(t) = 0 on [−1, 0], and D = diag(1, 0, 1), is quasi-
regular. For each q ∈ C, q3 ∈ C1, there are C1

D solutions. The restriction of this
DAE to the subinterval (0, 1] represents a regular DAE with tractability index two
being also solvable for all q ∈ C,q3 ∈ C1. However, considering the restriction to
the subinterval [−1, 0], we may put D = diag(1, 0, 0), and a regular index-one DAE
results that is solvable for all continuous q. Letting e.g. q(t) = t1/3 we obtain at
least continuous solutions on both subintervals, but the solution segments cannot
be continuously glued to each other. Hence, the point t⋆ = 0 , which indicates a
rank change in G0 = AD, is rather a critical point. We call those critical points
where nothing happens in a smoother setting harmless critical points.

Regular nonlinear DAEs with tractability index µ should be those the
linearizations of which are regular with the same index. A linearization of (1) is

(4) A⋆(t)(D⋆(t)x(t))
′ +B⋆(t)x(t) = q(t), t ∈ ℑ⋆,

with A⋆(t)=fy((d(x⋆(t), t))′, x⋆(t), t), B⋆(t)=fx(...), D⋆(t)=D(x⋆(t), t), t ∈ ℑ⋆,
and x⋆ is a sufficiently smooth function on ℑ⋆ ⊆ ℑ with values in D0. We will
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realize this idea in a constructive way by means of matrix functions and projectors
computed from the data in the original DAE (1). Choose Q0 ∈ C(D0 ×ℑ, L(ℜm))
to project pointwise onto N0(x, t) = kerD(x, t), P0 = I − Q0, and determine the
generalized inverse D− by the relations DD−D = D,D−DD− = D−, D−D =
P0, DD

− = R, where R denotes the continuously differentiable projector function
onto imD along kerA (cf.(2)). Starting with G0 = AD,B0 = B, π0 = P0, we
form, for i ≥ 0 ,as long as the expressions exist, the matrix functions

(5) Gi+1 = Gi +BiQi, Bi+1 = BiPi −Gi+1D
−(Dπi+1D

−)′Dπi.

Thereby, Qi+1 denotes a projector onto Ni+1 = kerGi+1, Pi+1 = I−Qi+1, πi+1 =
πiPi+1. These relations are meant pointwise for x ∈ D0, t ∈ ℑ, and jet variables
xj ∈ ℜm. The derivative involved in the expression for Bi+1 is defined to be the
total derivative in jet variables. Hence, in each level, a new variable xi+2 comes
in, so that Bi+1 depends on xi+2, ...x1, x, t.

The projectors Q0, ..., Qκ in (5) are said to be admissible on D0 × ℑ, if the
relations

(6) Xi ⊆ kerQi, Xi ⊕ [(N0 + ...+Ni−1) ∩Ni] = N0 + ...+Ni−1, i = 1, ..., κ,

become valid, and, for i = 1, ..., κ, Qi is continuous on ℜmi ×D0 ×ℑ, but DπiD
−

is there continuously differentiable. By admissible projectors Q0, ..., Qκ we obtain
continuous G0, ..., Gκ+1, and Gi has constant rank ri, i = 1, ..., κ.

The nonlinear DAE (1) is said to be regular on D0 × ℑ with tractability index
µ, if there are admissible on D0 × ℑ projectors such that rµ−1 < rµ = m. The
values r0, ..., rµ are called characteristic values of the DAE [12-14].

If a nonlinear DAE has Hessenberg-size-µ form (cf.[7]), then it is regular with
tractability index µ and characteristic values r0 = ... = rµ−1, and m− rµ−1 is the
number of derivative-free equations [12].

The following assertion shows that we have realized in fact the above idea on an
index notion via linearizations [12-14]: If the DAE (1) is regular on D0 × ℑ with
tractability index µ and characteristic values r0, ..., rµ, then all linearizations (4)
are regular with the same index and characteristic values. Conversely, supposed
some additional smoothness concerning the data of (1) is given, if all linearizations
(4) are regular DAEs, then they have an uniform index and uniform characteristic
values, and the nonlinear DAE (1) is regular on D0 ×ℑ with that index and these
characteristic values.

Our index notion allows for a priori and a posteriori index monitorings as
e.g.discussed in [15]. We believe that those diagnostic tools will be in great de-
mand just in the next future (cf.[14]). In a next step, a further localization of the
index notion that concerns also the jet variables should be considered.

Extremal conditions for minimization problems with constraints described
by DAEs are discussed in [16]. In particular, by a rigorous proof of a necessary
optimality condition, a question left open for several years is now answered. This
analysis relies on a deep projector based insight into the structure of regular DAEs
and their adjoints [16,17].
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[1] K.BALLA, and R.MÄRZ, A unified approach to linear differential algebraic equations and
their adjoints,Z.Anal.Anw.21(2002)3,738-802.
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[4] R.MÄRZ, The index of linear differential algebraic equations with properly stated leading
terms, Results in Mathematics 42(2002)308-338.
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Transformation of high order linear differential-algebraic systems to
first order

Volker Mehrmann

(joint work with Chunchao Shi)

We study general linear l-th order systems of Differential-Algebraic Equations
(DAEs) with variable coefficients

(1) Al(t)x
(l)(t) +Al−1(t)x

(l−1)(t) + · · · +A0(t)x(t) = f(t),

in a real interval I ⊂ R, together with initial conditions

(2) x(t0) = x
[0]
0 , . . . , x(l−2)(t0) = x

[l−2]
0 , x(l−1)(t0) = x

[l−1]
0 , t0 ∈ I.
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Here, the coefficients satisfy Ai(t) ∈ C(I,Cm,n), i = 0, 1, . . . , l, Al(t) 6≡ 0, x(t)
is an unknown vector-valued function in C(I,Cn), and the right-hand side f(t) is
a given vector-valued function in Ck(I,Cm), where Ck(I,Cm,n), k ∈ N0, denotes
the set of all k-times continuously differentiable matrix-valued functions from the
real interval I to the complex vector space Cm,n and k is sufficiently large. In the
following we will refer to DAEs with order l greater than 1 simply as high order
systems.

DAEs play a key role in the modeling and simulation of constrained dynamical
systems in many applications. Such systems have been intensively studied, theo-
retically as well as numerically, in the past three decades. For a systematic and
comprehensive exposition of important aspects regarding the theory, the numerical
treatment and many applications of first order DAEs, see e.g. [2, 4, 8, 9, 13, 18]
and the references therein.

Linear high order DAEs arise from linearizations of general nonlinear high order
DAEs of the form

(3) F (t, x, ẋ, . . . , x(l)) = 0

arround reference solutions. Typical applications where second order DAEs arise
naturally are multi-body systems, see [4, 18] or models of electrical circuits [6, 7].

Usually, in the classical theory of ordinary differential equations, high order
systems are turned into first order systems by introducing new variables for the
derivatives up to order l−1. There is no unique way of performing this transforma-
tion, and only recently for the case of constant coefficients (in the representation of
matrix polynomials) a systematic theory for transformation to first order has been
derived [15]. It has been indicated there, but also in several other publications,
see [1, 3, 19], that the classical textbook approach of turning high order systems
into first order form has to be performed with great care, since it may lead to
substantial mathematical difficulties, in particular for DAEs.

We present the analysis of linear systems of differential-algebraic equations of
higher order. This includes condensed forms for tuples of matrices and tuples of
matrix-valued functions which are associated with the systems of constant and
variable coefficients, respectively. Based on the condensed forms, we may convert
such a system into an equivalent system, from which the behavior with respect
to solvability, uniqueness of solutions and consistency of initial conditions can be
directly read off.

We demonstrate that if one turns a higher order problem in the traditional
way into a first order system of DAEs, then, to get the solvability and uniqueness
of solutions, more smoothness of the right-hand side f(t) may be required. The
condensed forms, however, allow to do the transformation to first order without
extra smoothness requirements.

Several issues remain open. These include the perturbation theory for higher
order systems of DAEs, (see [10] for recent results in the case of constant coefficient
systems) in particular how the decision making in the condensed forms influences
the transformation to first order (see [16] for first results) as well as the construction
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of appropriate numerical methods for the treatment of high order, high index
differential-algebraic systems, see [19, 20] for first results.
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Runge-Kutta-Chebyshev Projection Method

Linda Petzold

(joint work with Zheming Zheng)

Projection methods have been widely used in the solution of incompressible Navier-
Stokes equations, written in the nondimensionalized form:

∂u

∂t
+ ∇P = −(u · ∇)u +

1

Re
∇2u,(1a)

∇ · u = 0,(1b)

with boundary conditions

(2) u|Γ = ub,

where u is the velocity, P is the pressure and Re is the Reynolds number.
To solve this problem, projection methods use a fractional step approach, in

which an intermediate velocity is obtained by solving the momentum equation
(1a) without regard to the incompressibility constraint (1b), and then a projection
of the intermediate velocity onto the divergence-free space is performed to obtain
the corrected velocity that satisfies the incompressibility constraint. The pressure
is computed in the projection step. In solving the incompressible Navier-Stokes
equations with projection methods, much of the difficulty lies in the pressure
update. The pressure does not evolve according to a differential equation. Rather,
its value is determined by enforcing the incompressibility constraint. It has been
observed that while the velocity can be reliably computed to second order accuracy
in time, the pressure is typically only first order accurate in time.

If the incompressible Navier-Stokes equations are semi-discretized in space, they
become a differential-algebraic equation (DAE) system. The mathematical struc-
ture of this DAE system is referred to as Hessenberg index 2. In the DAE context,
u is the differential variable and P is the algebraic variable. The pressure P is
further determined to be index 2, where the number of differentiations needed to
determine the time derivative of P as a function of u, P and t, is called the index
of the DAE.

Often the momentum equation (1a) is solved implicitly in projection methods,
due to the stiffness introduced by the viscous term. However we are motivated to
develop an explicit projection method by solving the momentum equation explic-
itly with the use of a special purpose explicit Runge-Kutta method, the Runge-
Kutta-Chebyshev (RKC) method [2], due to its enhanced stability properties. The
RKC method was first proposed by Van der Houwen and Sommeijer. It was de-
signed for the solution of moderately stiff ordinary differential equation (ODE)
systems. This method exploits some remarkable properties of a family of explicit
Runge-Kutta formulas of the Chebyshev type. This Runge-Kutta method uses
the first two stages to achieve second order accuracy. The remainder of the stages
are used to enlarge the stability region. It has the property of being stable while
retaining a good accuracy using a minimum number of stages, and has been used
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in the solution of parabolic partial differential equations discretized by the method
of lines.

The explicit projection method we propose in this paper is called the Runge-
Kutta-Chebyshev Projection (RKCP) method. In the RKCP method, the mo-
mentum equation is solved explicitly by the RKC method. One projection per
step, regardless of the number of stages used in the RKC method, is performed at
the last stage of the RKC method. An additional projection on the time deriva-
tive of the velocity, i.e., the acceleration, is performed to recover the second order
temporal accuracy of the pressure, when it is desired. Because the RKC method
was designed for the solution of moderately stiff ODE systems, the RKCP method
is particularly well-suited for viscous dominated flows.

Our results are described in further detail in [1].
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Numerical Simulation of DAEs with Multiscale Behaviour in Time

Roland Pulch

The numerical simulation of electric circuits is based on a network approach, which
yields systems of differential algebraic equations (DAEs). We write these systems
in the general form

(1)
dq(x)

dt
= f (b(t),x(t)) (x,b : R → Rk, q, f : Rk → Rk),

where x denotes unknown node voltages and branch currents. The function b
represents predetermined input signals. In radio frequency applications, circuits
exhibit amplitude and/or frequency modulated signals with widely separated time
rates. Thus a transient integration of the corresponding system (1) becomes in-
efficient, since the fastest time scale restricts the size of time steps, whereas the
slowest time scale determines the length of the time interval in the simulation.
A multidimensional model for such signals yields an alternative approach by de-
coupling the time behaviour. Each separated time scale is given its own variable,
which produces a multivariate function (MVF) of the signal. For amplitude mod-
ulated signals, Brachtendorf et al. [1] transformed the DAEs (1) into a system of
multirate partial differential algebraic equations (MPDAEs). In case of two time
scales, the system reads

(2)
∂q(x̂)

∂t1
+
∂q(x̂)

∂t2
= f

(
b̂(t1, t2), x̂(t1, t2)

)
(x̂, b̂ : R2 → Rk),

where x̂ and b̂ represent the MVFs of x and b, respectively. A solution of the
MPDAE model (2) yields a solution of the original DAE (1) via x(t) = x̂(t, t).
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Since the time scales are decoupled, the MVF can be computed using a relatively
low number of grid points in time domain, i.e., an efficient numerical simulation
is achieved. The determination of quasiperiodic signals in the DAEs (1) demands
to solve the biperiodic boundary value problem

(3) x̂(t1, t2) = x̂(t1 + T1, t2), x̂(t1, t2) = x̂(t1, t2 + T2) for all t1, t2 ∈ R.

If the fast time scale t2 is periodic but the slow time scale t1 is aperiodic, then
initial-boundary value problems

(4) x̂(0, t2) = w(t2), x̂(t1, t2) = x̂(t1, t2 + T2) for all t1 ≥ 0, t2 ∈ R

with a predetermined function w arise. The selection of w(0) allows to reproduce
intial value problems of the DAEs (1).

If the signals include amplitude as well as frequency modulation, then an addi-
tional time-dependent local frequency function is necessary to obtain an efficient
multivariate representation. Narayan and Roychowdhury [3] introduced the cor-
responding system of warped MPDAEs

(5)
∂q(x̂)

∂t1
+ ν(t1)

∂q(x̂)

∂t2
= f (b(t1), x̂(t1, t2)) (ν : R → R).

Thereby, the local frequency function ν is unknown a priori, too. The input
signals b act on the slow time scale t1 only, whereas the system exhibits an in-
herent fast time scale. The reconstruction of a solution of the original DAEs (1)

reads x(t) = x̂(t,
∫ t

0
ν(s)ds). Again biperiodic problems (3) or initial-boundary

value problems (4) have to be considered. The determination of an adequate local
frequency function is crucial for the efficiency of the multidimensional model, since
inappropriate choices yield MVFs with undesired oscillations and thus require a
fine grid in time domain.

In the previous work [4], the structure of the system of MPDAEs (5) was inves-
tigated in detail. Thereby, the system exhibits a transport of information along
characteristic curves, i.e., a hyperbolic structure. Consequently, we constructed
a method of characteristics in time domain, which solves biperiodic problems (3)
efficiently in comparison to standard finite difference methods. A method of char-
acteristics for solving initial-boundary value problems (4) is feasible but inefficient
in case of widely separated time scales.

In the talk, we consider biperiodic boundary value problems (3) of the warped
MPDAEs (5) again. We discuss the determination of an appropriate local fre-
quency function here. Solutions of the warped system corresponding to different
local frequency functions are interconnected by a transfomation formula. If x̂
and ν satisfy the system (5), then the transformed MVF

(6) ŷ(t1, t2) := x̂

(
t1, t2 +

∫ t1

0

ν(s) − µ(s) ds

)

represents a solution of (5) belonging to the given local frequeny function µ. To
preserve the periodicities of the MVF, some restrictions on the choice of the lo-
cal frequencies are necessary. Thus the structure implies that the local frequency
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function represents free parameters in the multidimensional model. Narayan and
Roychowdhury [3] proposed smooth phase conditions, which are used as additional
boundary constraints, to identify a corresponding local frequency function. The
strategy yields efficient representations by MVFs in general. However, this advan-
tageous property can not be proved, since the approach via phase conditions is
motivated just heuristically. We impose an optimisation criterion on the MVFs,
which shall prevent undesired oscillations in the multidimensional representation,
namely

(7) γ (x̂) := T1

∫ T1

0

∫ 1

0

k∑

l=1

wl

(
∂x̂l

∂t1

)2

dt2 dt1 → min.
(
x̂ = (x̂1, . . . , x̂k)⊤

)

with constant weights wl ≥ 0. A variational calculus based on the transforma-
tion (6) yields a necessary condition for an optimal solution, which reads

(8) r(t1) :=

∫ 1

0

k∑

l=1

wl ·
∂2x̂l

∂t1
2 · ∂x̂l

∂t2
dt2 = 0 for all t1 ∈ R.

This additional condition can be included in a numerical scheme to determine the
according optimal solution. Numerical simulations using a voltage controlled os-
cillator demonstrate that the constructed approach yields efficient representations
by MVFs, where corresponding local frequencies are physically reasonable.

The periodicity in the slow time scale is crucial for the definition of the crite-
rion (7) and the realisation of the corresponding variational calculus. A further
field of research is the application of optimisation in case of initial-boundary value
problems (4) for warped MPDAEs (5). Houben [2] already constructed a minimi-
sation criterion, which is based on the charge term q(x̂). This approach yields
suitable solutions in general. On the other hand, alternative conditions based on
the MVF x̂ itself shall be constructed to guarantee an appropriate minimisation
directly. Smooth phase conditions can be applied in case of initial-boundary value
problems, too. It is still an open question, if conditions based on minimisation can
compete with phase conditions here.
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Linear and Time-Invariant Abstract Differential-Algebraic Systems

Timo Reis

In today’s engineering applications, there is an increasing interest in partial dif-
ferential-algebraic equations (PDAEs), which are mainly coupled systems of partial
differential equations (PDEs) and differential-algebraic equations (DAEs). This
type appears e.g. in modeling of electrical circuits with further components which
are modeled by PDEs. These can be parasitic like heat conduction or transmission
lines [1, 8] as well as they could be the result of a more reliable modeling of
complex components like semiconductor devices [2, 11, 12]. Moreover, PDAEs
are the outcome of mathematical models of several mechanical systems like elastic
multibody systems [4] or biomechanical systems like blood flow networks. In order
to study these problems in a systematic way, we are led to differential-algebraic
systems F (ẋ(t), x(t), t) = 0 in an abstract setting, the so-called abstract DAEs
(ADAEs). The unknown function x(·) is now a path in an appropriate (mostly
infinite dimensional) Hilbert space, and the Frechét derivative d

dẋF (ẋ, x, t) has a
nontrivial nullspace, in general. Here, we focus on the linear constant coefficient
case

(1) Eẋ(t) = Ax(t) + f(t).

E : X → Z is now a bounded linear operator and X,Z are some separable Hilbert
spaces. In many practical cases, A is often acting on some product spaces and it
is a block operator containing differential and evaluation operators. Hence, it is
natural to assume that it is unbounded in general and that it is defined on some
proper subspace D(A) ⊂ X .
In the finite dimensional version of (1), i.e. E and A are square matrices, the
Kronecker normal form is a powerful theoretical tool for the analysis. In this
case, a state space transform of (1) leads to the following decoupled differential
equations

Nẋ1(t) = x1(t) + f1(t)(2a)

ẋ2(t) = Āx2(t) + f2(t),(2b)

where N is nilpotent and Ā is some square matrix. The nilpotency index ν ∈
N of N is well-defined by the pair (E,A) and is called the Kronecker index.
Based on this representation, the set of consistent initial values can be deter-
mined (see [3], for instance). x20 can be chosen arbitrarily whereas x10 has to

satisfy Nk+1x
(k+1)
1 (0) = Nkx

(k)
1 (0) + Nkf

(k)
1 (0) for k = 0, . . . , ν − 1 that comes

from a successive formal differentiation and multiplication from the left with N
to (2a) and particularly considering t = 0. These relations are called the algebraic
and hidden algebraic constraints. Further, the sensitivity of x(t) with respect to
derivatives of the inhomogeneity f(t) can be measured leading to the notion of
perturbation index. In [9], the question was treated whether it is possible to gen-
eralize the Kronecker form to the infinite dimensional case. Thereby, the concept
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of decoupling form was developed. An ADAE in decoupling form is given by

(3)



N 0
0 I
0 0



(
ẋ1(t)
ẋ2(t)

)
=



I K
0 U

0 P



(
x1(t)
x2(t)

)
+



f1(t)
f2(t)
f3(t)




(
x1(0)
x2(0)

)
=

(
x10

x20

)
.

The bounded operator N is nilpotent with nilpotency index ν, a number that is
called ADAE index. This concept was first published in [6] as a generalization of
the tractability index (see [7]) to infinite dimensions. The main differences to the
finite dimensional case is the appearance of the operators P and K. The oper-
ator P appearing in the third row of the decoupling form has its interpretation
as a boundary control term. The coupling operator K is not always eliminable in
contrast to the finite dimensional case. In [9, 10], examples of ADAEs were given
that do not possess a decoupling form with K = 0. [10] gives sufficient criteria
form the removability of K.
The benefit of the decoupling form (3) for ADAEs is that the set of consistent initial
values can be determined and perturbation results can be derived [10]. However,
the appearance of the boundary and coupling operator leads to additional diffi-
culties for the parameterization of the consistent initial values of ADAEs. Indeed,
the initial value not only has to fulfill (hidden) algebraic constraints but also some
further relations which can be obtained by formally differentiating the third row
of (3).
The results are applied to ADAEs modeling electrical circuits with transmission
lines. Based on the decoupling form (3) and the results of [5] for circuits with
lumped elements, [10] gives circuit topological criteria for their index and consis-
tent initial values.
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Singularities of differential-algebraic equations

Ricardo Riaza

(joint work with Roswitha März)

Singular points of differential-algebraic equations (DAEs) can be roughly defined
as those where the assumptions supporting an index notion fail. In the present
contribution, we tackle singular (or, better, critical) points of linear DAEs with a
properly stated leading term, that is, DAEs of the form

(1) A(t)(D(t)x(t))′ +B(t)x(t) = q(t), t ∈ J ,
where J ⊆ R is an interval, and the matrix coefficients A(t) ∈ L(Rn,Rm), D(t) ∈
L(Rm,Rn), B(t) ∈ L(Rm) depend continuously on t.

1. Regular problems: the P -framework

The leading term of the DAE (1) is said to be properly stated on the interval J
if the coefficients A(t) and D(t) satisfy kerA(t) ⊕ imD(t) = Rn for all t ∈ J , and
both subspaces have constant dimension and are spanned by C1 basis functions.
Assuming the leading term of (1) to be stated properly on the interval J , denote as
R(t) the C1 projector function realizing the decomposition above with imR(t) =
imD(t), kerR(t) = kerA(t), t ∈ J .

In the sequel we drop the argument t in the matrix functions involved. Introduce

(2) G0 := AD, B0 := B.

If the leading term is properly stated, then G0 has constant rank r0 on J . Defining
N0 := kerD = kerG0, let P0 be any continuous projector along N0, and take
Q0 := I−P0. Additionally, denote as D− the continuous on J generalized inverse
of D uniquely defined by the four conditions

(3) DD−D = D, D−DD− = D−, DD− = R, D−D = P0.

For i ≥ 1, define

Gi := Gi−1 +Bi−1Qi−1.(4)

If Gi has constant rank ri, let Ni := kerGi, and choose a continuous projector Pi

along Ni. Write

Bi := Bi−1Pi−1 −GiD
−(DP0 · · ·PiD

−)′DP0 · · ·Pi−1.(5)
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The sequence is continued by defining Qi = I − Pi, Gi+1, etc. A non-singular
matrix function Gµ (with singular Gi, i < µ) defines the system as regular with
tractability index µ [1], and the solutions of problems with arbitrarily high index
can be described via a decoupling of the DAE [2]. A local version of this regularity
concept, supporting the notion of a regular point, is introduced in [3]: critical points
are therefore defined as those not satisfying this regularity notion [4].

Note that in order to build the matrix chain (4)-(5), we make use of three
assumptions in every step: (a) Gi has constant rank; additionally, the projectors
Qi are required to satisfy QiQj = 0, for all 0 ≤ j < i: the existence of such a
projector Qi relies on the condition (b) (N0 ⊕ · · · ⊕Ni−1) ∩Ni = {0} on J , what
in turn supports writing the direct sum N0 ⊕ · · · ⊕ Ni−1 ⊕ Ni in the next step.
Finally, (c) the products DP0 · · ·PiD

− are assumed to be C1.

2. Critical points

As detailed below, for sufficiently smooth problems, the failing of conditions (a)
and (b) above characterize the critical points of the DAE.

Theorem [4]. Assume that the coefficients A(t), D(t), B(t) in the DAE (1) are
Cm−1. Then every critical point t∗ of the DAE belongs to one of the following
invariant, independent of projectors types:

(i) type 0 if G0 has a rank drop at t∗;
(ii) type k-A, k ≥ 1, if it is not type 0, j-A or j-B with j < k, and Gk has a

rank drop at t∗;
(iii) type k-B, k ≥ 1, if it is not type 0, j-A or j-B with j < k, nor k-A, and

Nk(t∗) ∩ {N0(t∗) ⊕ · · · ⊕Nk−1(t∗)} 6= {0}.

In order to define a working scenario accommodating A- and B-critical points, we
construct below the tractability chain in a different, purely recursive manner.

3. The Π-framework

An alternative, simpler construction of the tractability matrix chain stems from
the fact that not individual projectors Pi, Qi but products of the form P0 . . . Pi

and P0 . . . Pi−1Qi are needed in the matrix chain construction, together with the
property that P0 . . . Pi is along Ki = N0 ⊕ . . .⊕Ni (see e.g. [3, Proposition 1]).

The leading term of (1) is assumed to be properly stated. Define, as before,
G0 := AD. Using the constant rank of G0 which follows from the proper statement
of the DAE, choose a continuous projector Π0 along N0 := kerG0, and let Γ0 :=
I − Π0. Denote K0 := N0, let D− be given by the conditions (3) with P0 = Π0,
and define C0 := B.

Now, for i ≥ 1, define

(6) Gi := Gi−1 + Ci−1Γi−1.

If Gi is singular, denote Ni := kerGi and check whether (a) Gi has constant rank,
and also whether (b) Ki−1 ∩ Ni = {0}. If both conditions are met, proceed by
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choosing a continuous projector

(7) Πi along Ki := Ki−1 ⊕Ni, with imΠi ⊆ imΠi−1,

and define

(8) Γi := Πi−1 − Πi.

Finally, if (c) DΠiD
− is C1, complete the i-th step by constructing

(9) Ci := Ci−1 −GiD
−(DΠiD

−)′D.

Note that the image condition in (7) can be met since Ki−1 ⊕ imΠi−1 = Rm

and hence there exists a space transversal to Ki−1 ⊕Ni within imΠi−1. It is also
worth emphasizing that the image condition in (7) is satisfied automatically if Πi

is chosen as the orthogonal projector along Ki = Ki−1 ⊕ Ni. Provided that the
smoothness condition (c) is met, this yields a well-defined criterion for the choice
of projectors in the tractability index construction.

From the construction above it follows that a DAE is regular with index µ iff
there exists a Π-sequence satisfying the requirements in (7) and for which Gµ is
non-singular, with Gi singular if i < µ. But this new framework provides a setting
within which a broad class of critical problems can be handled, as shown below.

4. Scalarly implicit decoupling of critical DAEs

Theorem. Assume that the set of regular points Jreg is dense in J , and that
there exist projector functions

(1) R ∈ C1(J , L(Rn)) satisfying imR = imD and kerR ⊆ kerA, for all
t ∈ J ; and

(2) Π1, . . . , Πm−1, continuous on J , with DΠiD
− continuously differentiable

on J , and satisfying imΠi ⊆ imΠi−1, such that, for t ∈ Jreg, kerΠi = Ki.

Then, letting ωµ = detGµ, there exist continuous operators K̃k, L̃k, Ñkj , M̃kj

such that x ∈ C1
D(I,Rm) := {x ∈ C(I,Rm) : Dx ∈ C1(I,Rn)} solves (1) in a

given subinterval I ⊆ J if and only if it can be written as

(10) x = D−u+ v0 + · · · + vµ−1,

where u ∈ C1(I,Rn) is a solution of the scalarly implicit ODE

ωµu
′ − ωµ(DΠµ−1D

−)′u+DΠµ−1G
adj
µ BD−u = DΠµ−1G

adj
µ q,

on the locally invariant space imDΠµ−1D
−, whereas the solution components

vk ∈ C1
D(I,Rm), k = 1, . . . , µ− 1, v0 ∈ C(I,Rm) verify

ωµvµ−1 = −K̃µ−1D
−u+ L̃µ−1q,

ωµ−k
µ vk = −K̃kD

−u+ L̃kq +

µ−1∑

j=k+1

Ñkj(Dvj)
′ +

µ−1∑

j=k+2

M̃kjvj , k=µ−2,...,1,0.

The key assumptions in this theorem express the existence of a continuous ex-
tension of the “sum” spaces Ki preserving the transversality property depicted
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in (b); it is worth emphasizing that these hypotheses hold for properly stated
reformulations of standard-form linear DAEs with analytic coefficients.
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DAE’s and Beyond: From Constrained Mechanical Systems to Saddle
Point Problems

Bernd Simeon

Computational mechanics and its various applications in vehicle analysis, aerospace
engineering, robotics, and materials science have experienced a significant devel-
opment over the last decades. From the numerical analysis point of view, the
question of constraints and their discretization is one of the key issues in this field.

In many cases, a dynamic saddle point problem is at the core of the problem
formulation. We can write the saddle point problem as

u̇+Au+B′µ = l
Bu = m

with u(x, t) as primal unknown, e.g., the displacement or velocity field, and the
Lagrange multiplier µ(x, t). The operator A is typically an elliptic operator while
B stands for the constraints and B′ for the corresponding dual operator.

After discretization in space, this infinite dimensional DAE or PDAE system
turns into a linear, semi-explicit DAE of index two if the constraints have full rank.
In this context, we notice the connection to saddle point theory and the inf-sup
condition.

The first part of the talk at the Oberwolfach workshop on DAE’s concentrated
on this relationship between semi-explicit DAE’s and PDE models in saddle point
formulation, e.g., the Navier-Stokes equations in the incompressible case, domain
decomposition approaches, and flexible multibody systems.

In the second part of the talk, materials with memory were investigated from a
DAE perspective. Examples for this problem class are elastoplasticity and shape
memory alloys, and the applications comprise the stretch formation of metal sheets
and micromechanical devices. In general, the mathematical models consist of a
coupled system of balance equations and unilaterally constrained evolution equa-
tions, Again, a saddle point formulation arises as natural problem setting and
starting point for numerical analysis.
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We presented a convergence result for implicit Runge-Kutta methods when
applied to the infinite-dimensional system of constrained evolution equations Fur-
thermore, the algorithms implemented in the FEM have been improved by state-
of-the-art techniques available in DAE solvers, and recently, shape memory wires
as actuators for robotics have been simulated successfully.
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Grid Density Control: What should an adaptive ODE solver do?

Gustaf Söderlind

In recent year there has been a quick progress in the development of a mathe-
matical theory for grid adaption. Today, adaptive time–stepping can be based on
control theory and signal processing. A similar approach is suggested for two-point
boundary value problems in order to create adaptive grids, based on controlling a
grid density function. Combining adaptive time–stepping with grid density control
opens up new possibilities for grid refinement and moving mesh algorithms. The
present talk will discuss some basic techniques and open problems related to grid
density control.

In discretization methods there is a trade-off between accuracy and computational
effort. For efficiency, one wants as few grid points as possible, and try to put
them where they really matter to accuracy. Many different approaches have been
suggested in connection with both time–stepping and grid generation in boundary
value problems. Here we shall develop adaptive grid generation based on control-
ling the grid density.

To this end we introduce a differentiable transformation, x = Γ(ξ), where x is
the original independent variable and ξ is a new, formal (“logical”) independent
variable. The transformation is supposed to satisfy Γ′(ξ) = 1/ρ(ξ) > 0. The
condition ρ(ξ) > 0 implies that x is a monotone function of ξ.

The approach differs a little in initial value and boundary value problems. In
the former case, we introduce an equidistant grid in ξ and denote its constant step
size by ε. The sampling correspondence

xi+1 − xi = Γ(ξi+1) − Γ(ξi) ≈
ε

ρ(ξi+1/2)
,

where ξk+1/2 = (ξk+1 + ξk)/2. This relates the uniform grid in ξ to a nonuniform
grid in x, and the function ρ is interpreted as a mesh density function. The
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transformation further allows us to rewrite the original differential equation

ẏ = f(y),

where dot denotes derivative with respect to x, by an augmented system,

y′ = f(y)/ρ; ρ′ = g(y); x′ = 1/ρ.

Here prime is derivative with respect to ξ, and the added equations represent a
control law for generating ρ and for recovering the original variable x, respectively.

The augmented system is discretized and solved using a constant step size
method in ξ. This corresponds to using a variable step size method in x, but has
the advantage that no special techniques are needed for the adaptivity, which is
represented by the variation of ρ, while convergence is handled by letting ε→ 0+.
In this way, it is technically possible to prove convergence of an adaptive method.
The approach has also proved to be of great value in the simulation of Hamilton-
ian systems, where near-conservation of energy is retained in spite of varying step
size. Examples will be given to demonstrate its performance.

In two-point boundary value problems, the technique takes a slightly different
form. Here, we typically work with a fixed interval and a fixed number of grid
points. Thus, for an arbitrary N > 0, let ξk = k/(N + 1), and introduce the
equidistant grid ΞN = {ξk}N

k=1, with Ξ̄N = {0,ΞN , 1}. As before we denote its
mesh width by εN = 1/(N + 1). Further, suppose that we have a function Γ
satisfying the conditions above. Then Γ deforms the grid ΞN via the map

XN := Γ(ΞN ) ⇔ xk = Γ(ξk); k = 1 : N,

which again implies that

xk+1 − xk = Γ(ξk+1) − Γ(ξk) ≈ Γ′(ξk+1/2) · (ξk+1 − ξk) =
εN

ρ(ξk+1/2)
.

The grid XN is non-uniform unless ρ(ξ) ≡ 1; it is “dense” or “fine” where ρ is
large; and “sparse” or “coarse” where ρ is small.

Just as in the initial value problem case, obtaining an adaptive grid is a matter
of finding a suitable function ρ. In the time-stepping case, ρ is successively gen-
erated along with the time integration, but in the boundary value case, a given ρ
corresponds to a given grid. Therefore, the technique is rather used in the latter
case for grid refinement.

We report preliminary results an a new grid refinement algorithm. It works
by selecting a fairly small, fixed value of N , and then employs an Euler–Lagrange
criterion for successively refining the grid, so that the grid points are located where
they improve accuracy; the refinements typically go on for five to ten steps. After
this step, when the function ρ has been found, the grid is oversampled from ρ,
and the total number of grid points N is determined so that the error estimate
approximately equals a given tolerance, for a given error criterion. Examples will
be given from simple test runs.

Finally, as grid refinement for 2pBVP can be viewed as a procedure updating
the grid in a “pseudo time,” it is immediately seen that one can combine the adap-
tive time-stepping technique in true time, with grid refinement for 2pBVPs. This
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opens up new possibilities for moving mesh algorithms in PDEs. The possible
arrangement of such algorithms will be briefly discussed.

Supported by Swedish Research Council VR grant 2005xyz.

Control problems for differential-algebraic equations

Tatjana Stykel

In this report we briefly discuss stability, passivity and model order reduction of
linear time-invariant control systems described by differential-algebraic equations
(DAEs)

(1)
Eẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

where E,A ∈ Rn,n, B ∈ Rn,m, C ∈ Rp,n, D ∈ Rp,m, x(t) ∈ Rn is the state vector,
u(t) ∈ Rm is the input, and y(t) ∈ Rp is the output. Such equations arise in
a variety of applications including multibody dynamics and circuit simulation.

It is well known that the stability properties of system (1) can be characterized
in terms of the eigenvalues of the pencil λE − A. System (1) with u(t) ≡ 0 is
asymptotically stable if and only if λE −A is stable, i.e., all the finite eigenvalues
of λE −A have negative real part. Note, however, that the eigenvalues of λE −A
may be very ill-conditioned in the sense that they may change largely even for small
perturbations in E and A. Hence, eigenvalues that are computed numerically in
finite precision arithmetic, may not always provide the correct information on
the stability of dynamical systems. As an alternative to the use of eigenvalues
in the stability analysis, one can employ spectral parameters based on projected
Lyapunov equations [5, 6]. One can show that the pencil λE − A is stable if and
only if the projected generalized continuous-time Lyapunov equation

(2) ATHE + ETHA = −PT
r Pr, H = PT

l HPl

has a unique symmetric, positive semidefinite solution H . Here Pr and Pl are the
spectral projectors onto the right and left deflating subspaces of the pencil λE−A
corresponding to the finite eigenvalues. The parameter κ(E,A) = 2‖E‖‖A‖‖H‖,
where ‖ · ‖ denotes the spectral matrix norm, can be used to characterize the
stability of λE − A and also the sensitivity of its eigenvalues to perturbations in
the matrices E and A, see [5].

Passivity is an important concept in circuit simulation. System (1) is passive if
and only if its transfer function G(s) = C(sE − A)−1B +D is positive real, i.e.,
G(s) is analytic in C+ = { s ∈ C : Re(s) > 0 } and the matrix G(s) + GT (s̄) is
positive semidefinite for all s ∈ C+. We have the following result.

Proposition. Let G(s) = Gsp(s) + P(s), where Gsp(s) is the strictly proper part
and P(s) = P0 + sP1 + . . .+ sqPq is the polynomial part of G(s).
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1. If P1 is symmetric, positive semidefinite, Pj = 0 for j ≥ 2 and if the projected
generalized Lur’e equation

(3)
ATYE + ETYA = −PT

r L
TLPr, Y = PT

l YPl,
BTYE − CPr = −KTLPr, KTK = P0 + PT

0

has the solution Y, L, K, where Y is symmetric and positive semidefinite,
then G(s) is positive real.

2. If G(s) is positive real and if system (1) is minimal, then the projected
generalized Lur’e equation (3) has the solution Y, L and K.

IfR = P0+P
T
0 is nonsingular, then the projected Lur’e equation (3) is equivalent

to the projected generalized Riccati equation

ATYE + ETYA+ (BTYE−CPr)
TR−1(BTYE−CPr)=0, Y = PT

l YPl.

Modelling of complex physical and technical processes such as VLSI chip de-
sign and control of fluid flow often leads to linear DAE control systems of very
large order n, while the number m of inputs and the number p of outputs are
typically small compared to n. Despite the ever increasing computational speed,
simulation, optimization or real-time controller design for such large-scale systems
is difficult because of large storage requirements and computation time. In this
context, model order reduction is of crucial importance. A general idea of model
reduction is to approximate the large-scale system (1) by a reduced-order model
that preserves essential properties of (1) like stability and passivity and that has
a small approximation error.

Balanced truncation is one of the most effective and well studied model reduc-
tion approaches for standard state space systems [2, 4]. This approach has been
extended to DAE systems in [7]. An important property of the balanced trun-
cation model reduction methods is that the asymptotic stability is preserved in
the reduced-order system. Moreover, the existence of computable error bounds
allows an adaptive choice of the state space dimension of the approximate model.
The balanced truncation methods are closely related to the proper and improper
controllability and observability Gramians of system (1) that are defined by the
solutions of the two dual continuous-time and two dual discrete-time projected
generalized Lyapunov equations.

Note that Lyapunov-based balanced truncation, in general, does not preserve
passivity in the reduced-order system. In a passivity-preserving model reduction
approach, known as positive real balanced truncation, instead of the continuous-
time projected Lyapunov equations we have to solve the projected generalized
Riccati equations. For the DAE control system (1) that is not necessarily minimal
but that has the proper transfer function G(s), we have the following algorithm.
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Algorithm. Positive real balanced truncation for DAE systems.

Given G = [E, A, B, C, D ], compute the reduced-order system [ Ẽ, Ã, B̃, C̃, D̃ ].
1. Compute the Cholesky factors Ri and Li of the improper controllability and

observability Gramians Gic = RiR
T
i and Gio = LiL

T
i by solving the projected

generalized discrete-time Lyapunov equations

AGicA
T − EGicE

T = QlBB
TQT

l , Gic = QrGicQ
T
r ,

ATGioA− ETGioE = QT
r C

TCQr, Gio = QT
l GioQl,

with Qr = I − Pr and Ql = I − Pl.
2. Compute the skinny singular value decomposition LT

i ARi = UΘV T , where U
and V have orthonormal columns and Θ is nonsingular.

3. Compute W2 = LiUΘ−1/2, T2 = RiVΘ−1/2, P0 = D−CT2W
T
2 B, R = P0+PT

0 .
4. Compute the Cholesky factors R and L of the solutions X = RRT and Y = LLT

of the projected generalized Riccati equations

AXET + EXAT + (EXCT −PlB)R−1(EXCT −PlB)T =0, X = PrXPT
r ,

ATY E + ETY A+ (BTYE−CPr)
TR−1(BTYE−CPr)=0, Y = PT

l YPl.

5. Compute the skinny singular value decomposition

LTER = [U1, U2 ]

[
Π1

Π2

]
[V1, V2 ]T ,

where [U1, U2 ] and [V1, V2 ] have orthonormal columns, Π1 = diag(π1, . . . , πℓ)
and Π2 = diag(πℓ+1, . . . , πr) with π1 ≥ . . . ≥ πℓ ≫ πℓ+1 ≥ . . . ≥ πr > 0.

6. Compute the reduced-order system

[ Ẽ, Ã, B̃, C̃, D̃ ] = [WT
1 ET1, W

T
1 AT1, W

T
1 B, CT1, P0 ]

with W1 = LU1Π
−1/2
1 and T1 = RV1Π

−1/2
1 .

Similarly to the standard state space case [3], one can show that the reduced-

order system with the transfer function G̃(s) = C̃(sẼ− Ã)−1B̃+ D̃ is passive, and
the H∞-norm error bound

‖G̃− G‖H∞
≤ 2‖R−1‖2‖G + D̃T ‖H∞

‖G̃ + D̃T ‖H∞

r∑

j=ℓ+1

πj

holds where ‖G‖H∞
= supω∈R ‖G(iω)‖ denotes the H∞-norm of G.

A major difficulty in the numerical solution of the projected Lyapunov and
Riccati equations with large matrix coefficients is that the spectral projectors
onto the left and right deflating subspaces corresponding to the finite and infinite
eigenvalues of the pencil λE−A are required. However, in many applications such
as control of fluid flow, electrical circuit simulation and constrained multibody
systems, the matrices E and A have some special block structure. This structure
can be used to construct the projectors in explicit form [1, 8].
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[1] D. Estévez Schwarz and C. Tischendorf. Structural analysis for electric circuits and conse-
quences for MNA, Int. J. Circ. Theor. Appl. 28 (2000), 131–162.

[2] K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and
their L∞-error bounds, Internat. J. Control 39 (1984), 1115–1193.

[3] S. Gugercin and A.C. Antoulas. A survey of model reduction by balanced truncation and
some new results, Internat. J. Control 77 (2004), 748–766.

[4] B.C. Moore. Principal component analysis in linear systems: controllability, observability,
and model reduction, IEEE Trans. Automat. Control 26 (1981), 17–32.

[5] T. Stykel. Analysis and Numerical Solution of Generalized Lyapunov Equations. Ph.D.
thesis, Institut für Mathematik, Technische Universität Berlin, 2002.

[6] T. Stykel. On criteria for asymptotic stability of differential-algebraic equations, Z. Angew.
Math. Mech. 82 (2002), 147–158.

[7] T. Stykel. Gramian-based model reduction for descriptor systems, Math. Control Signals
Systems 16 (2004), 297–319.

[8] T. Stykel. Low rank iterative methods for projected generalized Lyapunov equations, Preprint
198, DFG Research Center Matheon, Technische Universität Berlin, 2004.

DAEs and PDEs for the Simulation of Shape Memory Behavior

Gunnar Teichelmann

(joint work with Bernd Simeon)

Shape Memory Alloy (SMA) materials have an enormous potential in technological
applications like aviation or medicine among others. This talk aims at their use
as temperature controlled actuators in mechatronic applications. All this calls for
simulation tools and techniques that are able to describe the relevant effects of
SMA behavior. Both mathematical models and appropriate numerical simulation
schemes have to be developed. In our case the model described by Helm [1]
presents major challenges since it consists of a heterogeneous coupled system of
partial differential and differential-algebraic equations (PDAEs) where continuum
models describe the evolution of deformation and temperature. State of the art
solution methods in most cases use return mapping algorithms comparable to low
order implicit integration schemes with fixed stepsize. So far, the use of finite
element methods to simulate shape memory behavior has mainly focused on the
isothermal case. Only few papers about the thermomechanic coupling exist. By
the interpretation of the multiphysical problem as PDAE the range of applicable
solution methods widens. After semidiscretization in space the resulting DAE
is open to be treated with appropriate time integration schemes with step size
control.

A material point x in referential coordinates is mapped to its position on the
deformed domain by the deformation function ϑ(t, x) = x + u(t, x) with the dis-
placement field u, see [2]. We formulate the quasistationary momentum balance
(1) with the symmetric stress tensor σ and the density of body forces β. Further-
more, we have mixed Dirichlet and Neumann boundary conditions and of course
consistent initial conditions. The kinematic relation between displacement u and
strain ǫ is represented by the linearized Lagrangian strain, while the total strain
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is decomposed by ǫ = ǫp + ǫe into plastic and elastic strain. The relation between
stress σ and elastic strain ǫe is then given by a generalized Hooke’s law, depending
also on the temperature. There are 6 ways for the volume fractions of tempera-
ture induced martensite zTIM, stress induced martensite and austenite to change
from one to another. The decision which transition is active depends mainly on
the temperature and its rate, the martensite fractions, the loading conditions, the
internal stress X and the value of the yield function. The variables zTIM, X and
ǫp are internal values, that are comprised in the vector α. They are described
by evolution equations (3), whose right hand sides discontinuously depend on the
actual phase transition. Also the heat equation (2) is part of the mathematical
model where the source term f(t, x, α, α̇, η) depends on all the variables and their
change rates in time. Until now the system reads

0 = div σ(u, ǫp) + β(t),(1)

ρc0 θ̇ = λ∆θ + f(t, x, α, α̇, η),(2)

α̇ = Γ(α, σ, θ).(3)

The balance of linear momentum depends both on the internal variable ǫp and
the temperature θ while the heat equation needs information about the strains
ǫ and the strain rates ǫ̇. In contrast to ǫ̇p the strain rate ǫ̇ is not available in a
quasistationary computation of the displacements. To overcome this problem we
introduce a new DAE with a Lagrangian multiplier η in the following sense

ǫ̇ = η, 0 = ǫ− 1

2
(∇u+ ∇uT ).

Coupling this DAE to our existing differential equations system, the quantity
ǫ̇ = η is now available on the right hand side. Note that this additional DAE is of
differentiation and perturbation index 2 and therefore the choice of an appropriate
integration scheme is crucial. At integration the tolerance values for the algebraic
part of this DAE can or should be chosen relatively coarse, depending on the
integration scheme. Detailed information can additionally be found in [3, 4].

For solution purpose we first use a finite element approach for semidiscretization
in space of the quasistationary momentum balance and the heat equation. In
this course the discretization points of the internal variables in space and of the
additional index 2 DAE show to be the gauss nodes of the fem grid. This procedure
leads to the semidiscretized system

0 = K · q − b−Q · ǭp,
Mθ · q̇θ = −Kθ(q) · qθ + bθ(α, α̇, η),

α̇i = Γ(αi, σ(q, ξi)),

ǫ̇i = ηi, i = 1 . . . k,

0 = ǫi −B(ξi) · q

of coupled ODE and DAE.
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The discontinuous right hand side of the evolution prevents implicit integration
schemes to succeed. The smoothing of these discontinuities allows implicit inte-
gration with the drawback of small stepsizes and an increased stiffness in these
regions. In a benchmark simulation of a onedimensional shape memory wire the
BDF2 scheme performed well. With 570 successful steps the number of 186 con-
vergence failures seems to be high, but they are due to the phase transitions. At
these points the evolution equations for the internal variables are changed and
thus the step size in time is reduced considerably. The error of the strain rate that
is determined by the index 2 DAE stays inside the integration tolerance.
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Abstract Differential-Algebraic Equations

Caren Tischendorf

The simulation of complex systems describing different physical effects becomes
more and more of interest in various applications, for instance, in chip design,
in the development of micro-electro-mechanical systems (MEMS), in structural
mechanics, in biomechanics and in medicine. The modeling of complex processes
often lead to coupled systems that are composed of ordinary differential equations
(ODEs), differential-algebraic equations (DAEs) and partial differential equations
(PDEs).

Such coupled systems can be regarded in the general framework of abstract
differential-algebraic equations of the form

A(u, t)
d

dt
D(u, t) + B(u, t) = 0, t ∈ [t0, T ].

This equation is to be understood as an operator equation with operators A(·, t),
D(·, t) and B(·, t) acting in real Hilbert spaces where u : [t0, T ] → X is the solution
belonging to a problem adapted space.

If the Hilbert spaces are chosen to be the finite dimensional space R
m, then

we obtain a differential-algebraic equation. Choosing A and D as the natural
embedding operators, we obtain an evolution equation. If, additionally, B is a
second-degree differential operator in space, it leads to a parabolic differential
equation. For elliptic differential equations, the operators A and D are identically
zero.
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For most coupled systems, the operators A and D are neither identically zero
nor invertible on the time interval [t0, T ]. For example, coupled circuit and device
models in chip design [14] have leading term operators of the form

A =




A 0 0
0 0 0
0 I 0
0 0 I


 , D(u, t) =



q(u1, t)
Ru2

u3




where A is a constant, finite-dimensional, singular matrix, I is the identity, I is
the natural embedding operator, q : Rn × [t0, T ] → Rm and R is a boundary
integral operator.

A general theory of abstract differential-algebraic equations (ADAEs) does not
exist and can not be expected to be given considering alone the complexity of prob-
lems simulating partial differential equations. However, special classes of ADAEs
have recently been successfully analyzed and simulated, see e.g. [1]-[14]. We pre-
sented a short overview of the treated classes and discussed basic ideas of the
different approaches to handle coupled problems.

In particular, we considered solvability and perturbation results for linear
ADAEs with time-constant coefficients using Laplace transformation and decou-
pling techniques [11, 12], for linear ADAEs with monotone, time dependent coef-
ficients by a Galerkin approach [14], for linear elliptic and parabolic PDAEs using
G̊arding-type inequalities [10], for nonlinear ADAEs from coupled circuit and de-
vice simulation by fixed point arguments and decoupling techniques [1]-[4] as well
as for flexible multibody systems employing saddle point arguments [13].
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The IMEX Runge-Kutta-Chebyshev Method for Stiff
Advection-Diffusion-Reaction Problems

J.G. Verwer

This lecture is devoted to the time integration of stiff, nonlinear advection-diffu-
sion-reaction PDE problems. Adopting the method of lines approach we assume
that the PDE system with its boundary conditions has been spatially discretized,
and thus we focus on ODE systems

(1) w′(t) = F (t, w(t)) , t > 0 , w(0) = w0 ,

representing semi-discrete advection-diffusion-reaction problems. In most practical
applications the dimension of this ODE system is huge, especially for multi-space
dimensional PDEs and/or PDE systems with many reacting species. The huge
dimension and the simultaneous occurrence of advection, diffusion and reaction
terms and stiffness can severely complicate the use of standard implicit integrators
leaning on modified Newton and (preconditioned iterative) linear solvers. On the
other hand, the stiffness induced by diffusion and reaction terms rules out easy-to-
use standard explicit solvers. This delineates our research question: how to realize
easy-to-use, robust and efficient time stepping for this sort of semi-discrete PDEs.

Decoupling the three processes from one another generally simplifies matters.
Most simple is to use operator (time) splitting by which advection, diffusion and
reactions can be sequentially and independently solved with integrators tuned for
the three different parts, see Ch. IV of [2]. A drawback is that operator splitting
can give rise to large splitting errors for operators exhibiting slow and fast time
scales that nearly balance. In particular, operator splitting is not exact for steady
states which is a disadvantage for transient problems running into steady state.
In this respect, decoupling through the implicit-explicit (IMEX) approach is more
subtle and preserves transient balances.

In [5] we have proposed a Runge-Kutta-Chebyshev (RKC) method of the IMEX
type treating modestly stiff diffusion terms explicitly and highly stiff reaction terms
giving rise to real eigenvalues implicitly. The Fortran90 code IRKC implements
the IMEX method [3]. The explicit part of this IMEX method closely resembles
the first RKC method due to van der Houwen & Sommeijer [1]. This method
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is an explicit, second-order stabilized Runge-Kutta method with a real stability
boundary equal to ≈ 0.66s2, s being the number of stages. A strong property is
that s can be taken arbitrarily large without internal error growth. The implicit
part of the IMEX method has been designed such that for the stiff reaction terms
the method is unconditionally stable (linear stability as used in the stiff ODE
field). Furthermore, if the reaction terms do not imply spatial dependence, in the
method they remain uncoupled over space grids enabling a fast computation of the
stiff terms (a single ODE system per grid box of a dimension equal to the number
of PDEs).

In [6] we have further extended our explicit method with the aim to also include
advection terms. Herewith our final goal is an efficient implicit-explicit RKC inte-
gration of advection-diffusion-reaction PDE problems in a manner that advection
and diffusion terms are treated simultaneously and explicitly and the highly stiff
reaction terms implicitly.

This talk reviews the developments towards this goal accompanied with several
numerical illustrations.
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General Linear Methods for Integrated Circuit Design

Steffen Voigtmann

Today electronic devices play an important part in everybody’s life. In particular,
there is an ongoing trend towards using mobile devices such as cell phones, laptops
or PDAs. Integrated circuits for these kind of applications are mainly produced in
CMOS technology (complementary metal-oxide semiconductor). CMOS circuits
use almost no power when they are not active and thus, combining negatively and
positively charged transistors, they draw power only when switching polarity.

Circuit simulation is one of the key technologies enabling a further increase in
performance and memory density. One important analysis type in circuit sim-
ulation is the transient analysis of layouts on varying input signals. Based on
schematics or netlist descriptions of electrical circuits the corresponding model
equations are automatically generated using the modified nodal analysis (MNA).
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This network approach preserves the topological structure of the circuit but does
not lead to a minimal set of unknowns. Hence the resulting model consists of
differential algebraic equations (DAEs)

(1) A q̇
(
x(t), t

)
+ b
(
x(t), t

)
= 0.

The vector x(t) ∈ Rm comprises all node potentials and some branch currents
while q(x, t) ∈ Rn represents charges and fluxes [2, 7]. Note that (1) has a properly
stated leading term in the sense of [4].

Typically MNA equations suffer from poor smoothness properties due to the
model equations of modern transistors but also due to e.g. piecewise linear input
functions. Similarly, time constants of several orders of magnitudes give rise to
stiff equations and low order A-stable methods need to be used.

The further miniaturisation of electrical devices drives simulation methods for
circuit DAEs to their limits. Due to the reduced signal/noise ratio, stability ques-
tions become more and more important for modern circuits. Thus there is a strong
need to improve stability properties of existing methods such as the combination
of BDF and trapezoidal rule. There are fully implicit Runge-Kutta methods that
exhibit much better stability properties. However, these methods are currently not
attractive for industrial circuit simulators due to their high computational costs.

In order to cope with these difficulties, general linear methods (GLMs) are
studied for integrated circuit design. These methods were introduced by John
Butcher to provide a framework covering, among others, both linear multistep
and Runge-Kutta methods. They enable the construction of new methods with
improved convergence and stability properties [1].

A general linear method is characterised by four matrices M = [A,U ,B,V ]
satisfying A ∈ Rs×s, U ∈ Rs×r, B ∈ Rr×s, V ∈ Rr×r. The integer s is referred to
as the number of internal stages, while r denotes the number of external stages. In
order to proceed from the timepoint tn to tn+1 = tn +h using a stepsize h, r input

quantities q
[n]
j ∈ Rn, j = 1, . . . , r are used to compute s stage approximationsXi ≈

x(tn + cih) ∈ Rm, i = 1, . . . , s, at intermediate timepoints. An updated vector
q[n+1] is passed on to the next step. The interrelation of the various quantities is
given by the numerical scheme

AQ′
i + b(Xi, tn + cih) = 0, Q = h (A⊗ In)Q′ +(U ⊗ In) q[n]

q[n+1] = h (B ⊗ In)Q′ + (V ⊗ In) q[n]

(2)

where i = 1, . . . , s and

Q =



q(X1, tn+c1h)

...
q(Xs, tn+csh)


 , Q′ =



Q′

1
...
Q′

s


 , q[n] =




q
[n]
1
...

q
[n]
r


 , q[n+1] =




q
[n+1]
1
...

q
[n+1]
r


 .

The computational complexity of this scheme is mainly determined by the struc-
ture of the matrix A. If A has a diagonally implicit structure, the stages Xi can be
evaluated sequentially such that the computational costs are significantly reduced.
One of the key advantages of general linear methods over Runge-Kutta schemes
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is the fact that diagonally implicit methods with high stage order are possible
[9]. Hence, in spite of the diagonally implicit structure, there will be no order
reduction for the index-2 components.

Studying general linear methods for DAEs requires a thorough analysis of these
equations. Using the framework of the tractability index [4] it is possible to derive
a decoupling procedure for nonlinear index-2 DAEs. In contrast to similar decou-
plings for linear equations, the inherent dynamics is characterised by an implicit
index-1 equation.

Theorem 4. Let (1) be a regular index-2 DAE with a properly stated leading term.
Assume that N0∩S0 does not depend on x. Then (1) is locally equivalent to index
equation

u′ = f(u, z′, t), v = g(u, t),(3a)

z = z(u, t), w = w(u, v′, t),(3b)

where (3a) represents an implicit index-1 system. The solution of (1) is given by

x = D−u+ z + w where D− is a generalised reflexive inverse of ∂q
∂x .

Details on the subspacesN0, S0, the involved functions and the required smooth-
ness assumptions are given in [7]. The proof given there presents a decoupling
procedure that transforms (1) into (3). It is stressed that this approach does not
require the derivative array and only mild smoothness assumptions are made. In
case of linear DAEs, (3a) reduces to the inherent regular ODE derived in [4].

This new decoupling procedure for nonlinear index-2 DAEs allows to prove
existence and uniqueness results requiring only mild smoothness properties. Ad-
ditionally, general linear methods for index-2 DAEs can be studied by investigating
implicit index-1 equations first.

Order conditions ensuring order p behaviour for the local discretisation error can
be derived using rooted trees. The approach is similar to the one taken for Runge-
Kutta methods in [3]. Notice, however, that these results on Runge-Kutta schemes
present only a subset of the order conditions for general linear methods. Due to the
multivalue nature of the methods, additional order conditions have to guarantee
the required order for all components of q[n]. For methods in Nordsieck form,

where the input quantities q
[n]
j+1 ≈ hj dj

d tj q
(
x(t), t

)
, j = 0, . . . , r − 1, approximate

scaled derivatives of the exact solution, the full set of order conditions has been
derived in [7].

The order conditions and convergence results can be transferred to the general
index-2 equation (1) using the decoupling procedure discussed above.

Theorem 5. Let M = [A,U ,B,V ] be a GLM in Nordsieck form. Assume that

• M has order p for implicit index-1 DAEs (3a),
• V is power bounded and M∞ = V − BA−1U nilpotent with Mk

∞ = 0,
• M is stiffly accurate, i.e. e⊤s A = e⊤1 A and e⊤s U = e⊤1 V,
• M has stage order q for ordinary differential equations.

Then, after k steps, M is convergent with order min(p, q) for regular index-2 DAEs
A q̇
(
x(t), t

)
+ b
(
x(t), t

)
= 0 with a properly stated leading term.
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A proof and further details can be found in [7].
The full set of requirements on methods for nonlinear DAEs has to be taken into

account when constructing practical methods. A test implementation Glimda [8]
has been developed that employs General LInear Methods for Differential Alge-
braic equations. The code implements a variable-stepsize, variable-order approach,
where methods of order 1,2 and 3 are used.

The preliminary code Glimda based on general linear methods seems to be
competitive with BDF and Runge-Kutta solvers. By construction Glimda has
advantages for MNA equations. Hence there is strong evidence that general lin-
ear methods can be used efficiently for solving differential algebraic equations in
integrated circuit design.
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Collocation Methods for Index-1 DAEs with a critical point

Ewa B. Weinmüller

(joint work with O. Koch, R. März, D. Praetorius)

Model problem. We investigate the convergence behavior of collocation schemes
applied to approximate solutions of index-1 DAEs, including the case when a
critical point of 1−A type is present, see [6] and [5] for more technical details. The
underlying analytical problem is the linear system of DAEs,

(1) A(t)(D(t)x(t))′ +B(t)x(t) = g(t), t ∈ (0, 1],

where A(t) ∈ Rm×n, D(t) ∈ Rn×m, B(t) ∈ Rm×m and g(t), x(t) ∈ Rm with
n ≤ m. We assume that D(t) ≡ D is a constant matrix and that the matrices
A, B and the inhomogeneity g are at least continuous, A, B, g ∈ C[0, 1].
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Example: The following two dimensional problem belongs to class (1) and has a solution
x1(t) = −

6t+1

2
e5t, x2(t) = −

8t+1

2
e5t:�

1
1

�
(1,−1)

�
x1(t)
x2(t)

�
′

+

�
2 0
0 t + 2

�
x(t) =

�
−te5t

−
8t+7

2
te5t

�
.(2)

We study systems (1) with properly stated leading term, cf. [1]. This means that
A and D are well matched, i.e., kerA(t) ⊕ imD(t) = Rn, t ∈ (0, 1], and there
exists a projector function R ∈ C1(0, 1] which realizes this splitting. Here, we
assume that ker(A(t)) = {0}, t ∈ (0, 1] and im(D) = Rn. Let Q0 be a projector
onto N0 := ker(A(t)D) ≡ ker(D) and let us define P0 := I − Q0. In our case,
since the matrix D is constant, R = I for t ∈ (0, 1], and Q0, P0 are constant, we
regard all projections as extended to the interval [0, 1]. In order to describe the
boundary/initial conditions which are necessary and sufficient for (1) to be well-
posed, we decouple the system using techniques from [1]. To this end, we introduce
the matrices G0(t) := A(t)D, G1(t) := G0(t) + B(t)Q0 and allow a critical point
at t = 0, where G1 may become singular, i.e. G1(t) is non-singular on (0, 1]. The
decoupled system reads:

u′(t) +DG−1
1 (t)B(t)D−u(t) = DG−1

1 (t)g(t), t ∈ (0, 1],(3)

Q0x(t) = −Q0G
−1
1 (t)B(t)D−u(t) +Q0G

−1
1 (t)g(t), t ∈ (0, 1],(4)

where u(t) := Dx(t) are differential and Q0x(t) are algebraic components of the
solution x(t), and D− is a reflexive generalized inverse of D. We now rewrite (3)
and obtain a system of singular ODEs with a singularity of the first kind1,

(5) u′(t) − 1

t
M(t)u(t) = f(t), t ∈ (0, 1],

where M(t)/t := −DG−1
1 (t)B(t)D−, f(t) := DG−1

1 (t)g(t). Let us assume that
M ∈ C1[0, 1] and f ∈ C[0, 1]. Then we can use the theory given in [3] to augment
(5) by a set of initial2 conditions necessary and sufficient for u ∈ C[0, 1]. In case
that M(0) has zero eigenvalues or eigenvalues with negative real parts, u needs
to satisfy u(0) = γ, where γ ∈ kerM(0). Finally, if the right-hand side in (4) is
continuous on [0, 1], then there exists a unique, continuous solution of the following
IVP:

A(t)Dx′(t) +B(t)x(t) = g(t), t ∈ (0, 1],(6)

Dx(0) = γ, Q0x(0) = lim
t→0

(−Q0G
−1
1 (t)B(t)D−γ +Q0G

−1
1 (t)g(t)) =: Q0x0.(7)

Collocation scheme. We now turn to the numerical treatment of the IVP (6),
(7). We first introduce a mesh ∆ := (τ0, τ1, . . . , τN ), with hi := τi+1 − τi, i =
0, . . . , N − 1, τ0 = 0, τN = 1, such that hi ≤ h. In each subinterval Ji = [τi, τi+1],
we place m distinct collocation points, τi < ti,j < τi+1, j = 1, . . . ,m. We ap-
proximate x(t) by a function p(t) = pi(t), t ∈ Ji, where p ∈ Bm, and Bm is

1Singularity of the first kind arises when we assume that t = 0 is an algebraically simple zero
of the determinant of G1(t).

2We restrict our attention to IVPs in this talk.
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the Banach space of globally continuous, piecewise polynomial functions of de-
gree ≤ m equipped with the maximum norm. The defining equations for p are,
j = 1, . . . ,m, i = 0, . . . , N − 1,

A(ti,j)Dp
′(ti,j) +B(ti,j)p(ti,j) = g(ti,j),(8)

Dp(0) = γ, Q0p(0) = Q0x0.(9)

Note, that the numerical method is applied to the IVP (6), (7) in its original form.
We first show that p ∈ Bm exists and is unique. Decoupling (8) yields a collocation
scheme for the differential components of p, q(t) := Dp(t), and it follows from [4]
that q(t) ∈ Bm exists and is unique. Then, it is easy to see that Q0p(t) ∈ Bm

exists and is unique and consequently, this also holds for p(t) ∈ Bm.

In order to derive the error bounds for the solution p, we introduce an error
function e ∈ Bm defined by, j = 1, . . . ,m, i = 0, . . . , N − 1,

e′(ti,j) = x′(ti,j) − p′(ti,j), e(0) = 0.(10)

Standard results for interpolation, see [2], yield the estimate for the interpolation
error e′(t) = x′(t) − p′(t) + P0O(hk) + Q0O(hl). Integrating this expression, we

obtain e(t) = x(t) − p(t) + t(P0O(hk) +Q0O(hl)) provided that P0x ∈ C k̃+1[0, 1]

or equivalently Dx ∈ C k̃+1[0, 1] and Q0x ∈ C l̃+1[0, 1], where k := min{k̃,m} and

l := min{l̃, m}. Now, the error e satisfies the collocation scheme

A(ti,j)De
′(ti,j)+B(ti,j)e(ti,j)= ti,jB(ti,j)(P0O(hk)+Q0O(hl)), e(0) = 0

which we again decouple. According to [4] we have ediff := De(x) = tO(hk), and
we can use this information to estimate Q0e(t). Finally, x(t)− p(t) = O(hmin{l,k})
follows. For details, the reader is referred to [5].
Numerical experiment. Finally, we present some numerical results to illustrate
the theory.
Example: For the test problem specified in (2) the algebraic components and the differen-
tial components are given by Q0x(t) = (x2(t), x2(t))

T and P0x(t) = (x1(t)− x2(t), 0)
T =

(Dx(t), 0)T , respectively. Moreover,

G0(t) =

�
1 −1
1 −1

�
, G1(t) =

�
1 1
1 t + 1

�
, G−1

1 (t) =
1

t

�
t + 1 −1
−1 1

�
.

The inherent singular IVP has the form u′(t) − (−4 − 2t)/t u(t) = (7t + 5)e5t, u(0) = 0

and u(t) = te5t. Since u(t), x2(t) ∈ C∞[0, 1], we have k̃ = l̃ = ∞, and thus we expect to
see the order of convergence m being the stage order of the method. In the table below
we display the estimated convergence order for m = 2 equidistantly spaced collocation
points, left column, and m = 2 Gaussian points, right column. The maximum norm of
the global error has been calculated at the meshpoints τi.
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Mesh Error for x, equidistant coll. Error for x, Gaussian coll.

N error order const. error order const.

10 1.322e + 01 9.932e + 00
20 3.345e + 00 2.0 1.271e + 03 2.511e + 00 2.0 9.572e + 02
40 8.409e − 01 2.0 1.307e + 03 6.310e − 01 2.0 9.819e + 02
80 2.110e − 01 2.0 1.320e + 03 1.583e − 01 2.0 9.906e + 02
160 5.291e − 02 2.0 1.324e + 03 3.970e − 02 2.0 9.936e + 02
320 1.327e − 02 2.0 1.326e + 03 9.954e − 03 2.0 9.948e + 02

Mesh Error for u, equidistant coll. Error for u, Gaussian coll.

N error order const. error order const.

10 7.122e − 01 3.172e − 02
20 1.729e − 01 2.0 7.847e + 01 2.029e − 03 4.0 2.937e + 02
40 4.290e − 02 2.0 7.152e + 01 1.275e − 04 4.0 3.165e + 02
80 1.070e − 02 2.0 6.935e + 01 7.984e − 06 4.0 3.240e + 02
160 2.675e − 03 2.0 6.871e + 01 4.992e − 07 4.0 3.262e + 02
320 6.685e − 04 2.0 6.853e + 01 3.120e − 08 4.0 3.269e + 02

The numerical results are in good agreement with the theory. The superconvergence

does not hold in general although it can be observed for the differential components here.

However, if we rerun the test for m = 3 Gaussian points, we see the O(h4) convergence

for u again, and not the superconvergence behavior O(h6), see [5].

Conclusion. The concept of a properly stated leading term and the associated
decoupling technique are powerful tools which we were able to utilize in the con-
vergence proof of a collocation method applied to approximate solutions of singu-
lar DAEs. The results presented here will be subject to generalizations, such as
variable matrix D, general spectrum of M(0), nonlinear homogeneity, and more
involved types of critical points.
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Stochastic DAEs in circuit simulation

Renate Winkler

One of the challenges of the downscaling in the production of electronic chips is
the small signal-to-noise-ratio. In several applications the noise influences the sys-
tem behaviour in an essentially nonlinear way such that linear noise analysis is
no longer satisfactory and transient noise analysis, i.e., the integration of noisy
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systems in the time domain, becomes necessary.
We deal with the thermal noise of resistors as well as the shot noise of semicon-
ductors. Both are modelled by additional sources of additive or multiplicative
Gaussian white noise currents. The thermal noise current of an resistance R at

temperature T is given by Nyquist’s formula Ith =
√

2kT
R ξ(t). Here ξ(t) denotes

Gaussian white noise, and k = 1.3806× 10−23 is Boltzmann’s constant. The shot
noise current through an pn-junctions with deterministic current Idet is given by
Schottky’s formula Ish =

√
qeIdet ξ(t), see, e.g., [4]. Here qe = 1.602 × 10−19

denotes the elementary charge. In both cases the noise intensities contain a small
parameter.

Combining Kirchhoff’s Current law with the element characteristics and using
the charge-oriented formulation yields a stochastic differential algebraic equation
(SDAE) of the form

(1) A
d

dt
x(t) + f(t, x(t)) +

m∑

r=1

gr(t, x(t))ξr(t) = 0

where A is a constant singular matrix determined by the topology of the electrical
network and ξ is an m-dimensional vector of independent Gaussian white noise
sources. See, e.g., [6, 7] for the deterministic case and [5, 16] for the stochastic
case. One has to deal with a large number of equations as well as of noise sources.
Compared to the other quantities the noise intensities gr(t, x) are small.
We understand (1) as an Itô-stochastic differential equation

(2) AX(s)
∣∣∣
t

t0
+

∫ t

t0

f(s,X(s))ds+

m∑

r=1

∫ t

t0

gr(s,X(s))dWr(s) = 0 ,

where the second integrals are Itô-integrals, and W denotes an m-dimensional
Wiener process (or Brownian motion) given on the probability space (Ω,F , P )
with a filtration (Ft)t≥t0 . The solution X is a stochastic process depending on the
time t and on the random sample ω ∈ Ω. Typical paths are nowhere differentiable.
In the literature on numerical methods for SDEs (see, e.g., [8, 9, 10, 12]) mainly
two concepts of convergence are discussed, weak and strong convergence. Weak
convergence relates to Monte-Carlo methods and is mostly concerned with statis-
tical properties of the solutions of SDEs. The term strong convergence is often
used synonymously for the expression mean-square convergence, i.e., convergence
in the norm ‖ · ‖L2

. Here solution paths for given paths of the driving Wiener
process have to be approximated. We denote by | · | the Euclidian norm in R

n,
by ‖ · ‖ the corresponding induced matrix norm and by ‖Z‖L2

:= (IE|Z|2)1/2 the
norm of a vector-valued square-integrable random variable Z ∈ L2(Ω,R

n).
Only solution paths reveal the phase noise, which is a very important issue in

circuit simulation. Subsequently we discuss mean-square convergence of numerical
schemes for SDAEs of the form (2), where the deterministic part has globally
DAE-index 1. A crucial point in designing schemes for SDAEs is to force the
iterates to fulfill the constraints at the current time point. That way it is possible
to derive schemes for SDAEs from schemes for SDEs (A = I) and carry over the
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convergence results that are known there. However, terms that include derivatives
of the drift and diffusion coefficients f, gr would lead to terms that also involve
the derivative of the solution with respect to the inherent dynamical components
and should be avoided.

In the following we discuss schemes that are specially suited for SDEs and
SDAEs with small noise. We start with the drift-implicit Euler-scheme

(3) A
Xℓ −Xℓ−1

hℓ
+ f(tℓ, Xℓ) +

m∑

j=1

gj(tℓ−1, Xℓ−1)
∆W j

ℓ

hℓ
= 0 , ℓ = 1, . . . , N ,

with a given consistent initial value X0 , where Xℓ denotes the approximation to
X(tℓ), hℓ = tℓ−tℓ−1 , ∆W j

ℓ = W j(tℓ)−W j(tℓ−1) ∼ N(0, h) on the deterministic
grid 0 = t0 < t1 < . . . < tN = T .

We aim at estimates of the mean-square global error maxℓ=0,...,N ‖X(tℓ) −
Xℓ‖L2

. Also in the stochastic setting there exists a stability inequality by means
of which one can estimate the global errors by local ones. If the local error Lℓ at
time-point tℓ is defined as the defect that is obtained when the exact solution val-
ues are inserted into the numerical scheme, we have, see [1, 16] and, for a related
concept of local errors, [10, 12],

(4) max
ℓ=1,...,N

‖X(tℓ) −Xℓ‖L2
≤ S · max

(‖Lℓ‖L2

h
1/2
ℓ

,
‖E(Lℓ|Ftℓ−1

)‖L2

hℓ

)
,

with a grid-independent constant S. In general, the order of mean-square con-
vergence of schemes that involve only increments of the driving Wiener process is
only 1/2. For additive noise the order of strong convergence becomes 1. However,
when the noise is small and the step-sizes are not asymptotically small the error
behaviour is still dominated by the deterministic terms. The theoretical order 1/2
of the schemes would be observed only for much smaller stepsizes. Let us express
the smallness of the noise by means of a small parameter ǫ in the diffusion coef-
ficient (gr(t, x) = ǫ · ḡr(t, x) r = 1, . . . ,m, ǫ << 1) [11]. Then the error of the
Euler scheme is bounded by O(h+ ǫ2h1/2). It is even worth to use schemes with
the deterministic order 2 like the stochastic two-step BDF scheme [1, 2, 14] which
show global error O(h2 + ǫh+ ǫ2h1/2), or, especially for additive noise, to include
mixed classical stochastic integrals of the driving Wiener process into the scheme
to get rid of the error terms of order O(ǫh) [3].

Based on the knowledge of mean-square local and global errors we further
present an error estimate and, based on this, a stepsize control for the drift-
implicit Euler scheme for problems with small noise [13]. This stepsize control
leads to adaptive stepsize sequences that are uniform for all paths. Using the local
information from a number of simultaneously computed paths, it smoothes the
stepsize-sequence and reduces the number of rejected steps.
Using the techniques developed in [15] we aim at an estimate of the local error,
and based on this a stepsize control, for schemes with deterministic order 2 in the
case of small noise.
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72076 Tübingen



1166 Oberwolfach Report 18/2006

Dipl.Math. Christoph Lunk

Zentrum Mathematik
TU München
Boltzmannstr. 3
85748 Garching bei München

Prof. Dr. Roswitha März

Institut für Mathematik
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin

Prof. Dr. Volker Mehrmann

Institut für Mathematik
Technische Universität Berlin
Sekr. MA 4-5
Strasse des 17. Juni 136
10623 Berlin

Prof. Dr. Alexander Ostermann

Institut für Mathematik
Universität Innsbruck
Technikerstr. 25
A-6020 Innsbruck

Prof. Dr. Linda R. Petzold

Department of Computer Science and
Department of Mechanical and
Environmental Engineering
University of California
Santa Barbara CA 93106-5070
USA

Dr. Roland Pulch

FB C: Mathematik u. Naturwissensch.
Bergische Universität Wuppertal
42097 Wuppertal

Dr. Timo Reis

Institut für Mathematik
Technische Universität Berlin
Sekr. MA 4-5
Strasse des 17. Juni 136
10623 Berlin

Prof. Dr. Peter Rentrop

Zentrum Mathematik
TU München
Boltzmannstr. 3
85748 Garching bei München

Prof. Dr. Werner C. Rheinboldt

Zentrum Mathematik
TU München
Boltzmannstr. 3
85748 Garching bei München

Prof. Dr. Ricardo Riaza

Depto. de Matematica Aplicada a las
Tecnologias de la Informacion
E.T.S.Ingenieros de Telecommunic.
Universidad Politecnica Madrid
E-28040 Madrid

Dr. Monica Selva Soto

Mathematisches Institut
Universität zu Köln
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