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Abstract. The main aim of fine structure theory and inner model theory
can be summarized as the construction of models which have a canonical inner
structure (a fine structure), making it possible to analyze them in great de-
tail, and which at the same time reflect important aspects of the surrounding
mathematical universe, in that they satisfy certain strong axioms of infinity,
or contain complicated sets of reals. Applications range from obtaining lower
bounds on the consistency strength of all sorts of set theoretic principles in
terms of large cardinals, to proving the consistency of certain combinator-
ial properties, their compatibility with strong axioms of infinity, or outright
proving results in descriptive set theory (for which no proofs avoiding fine
structure and inner models are in sight).

Fine structure theory and inner model theory has become a sophisticated
and powerful apparatus which yields results that are among the deepest in
set theory.
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Introduction by the Organisers

The workshop Fine Structure Theory and Inner Models, organised by Ronald
Jensen (Berlin), Menachem Magidor (Jerusalem) and Ralf Schindler (Münster)
was held April 30th - May 6th, 2006. It was attended by most of the leading
researchers in the area.

Fine structure theory was initiated by the first organizer, R. Jensen, in the 70ies.
It has been exploited ever since for producing a series of spectacular results in set
theory. One such is Jensen’s Covering Lemma for Gödel’s constructible hierarchy,
L, which says, put informally, that the universe V of all sets either resembles L to
a large extent or else is very different from L. Later on, various people (most of
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which were participants of this workshop) proved versions of the Covering Lemma
for larger inner models.

The main goal of “Fine structure theory and inner model theory” is to con-
struct fine structural inner models of set theory, i.e., definable transitive proper
class-sized models of the standard axiom system ZFC of set theory, which reflect
the large cardinal structure of the universe, but at the same time admit a fine
structure that makes it possible to analyze them in great detail and prove various
combinatorial properties in them. Other applications of such inner models are
consistency strength investigations, and they can be used as a tool for proving
implications which don’t mention inner models at all, but for which no “direct”
proof is in sight.

A large cardinal concept is one such that ZFC cannot prove that there is an
incarnation of it. Our area is the key tool for uncovering the large cardinal struc-
ture which is implicit in many (not only set theoretic) hypotheses. In fact, often
a given statement which doesn’t mention large cardinals at all and a statement
about the existence of models with large cardinals turn out to be two sides of the
same coin. Breathtaking results by Martin, Steel, Woodin, and others in the 80ies
and 90ies have shown that the large cardinal concept of a Woodin cardinal is a
crucial one here.

The main issues of this area are the following.

• Fine structure theory. This is a general theory of the definability over the
structures that form the building blocks of the inner models one wants
to construct. In most cases, these structures are premice, that is, models
constructed from sequences of extenders which code fragments of elemen-
tary embeddings. The existence of such embeddings is the essence of the
crucial large cardinal concepts.

• Iterability. That a (well-founded) structure be iterable means that we can
keep taking ultrapowers of it (i.e., decoding the elementary embedding
coded by some extender on the sequence of the structure, along with the
target model, which, by elementarity, is again a model constructed rela-
tive to a sequence of extenders) without ever producing non-well-founded
structures. In fact, what one needs for iterability is an iteration strategy
for the given structure. The iterability of a premouse is the key property
one needs in order to choose the next building block in the construction
of an inner model in a canonical way. This eventually makes the resulting
inner model definable in some reasonable way. Also, without iterability
we wouldn’t know how to prove key (fine structural) first order properties
which we require of our premice and which are then inherited by the inner
model we are about to construct. For instance, the fact that the (general-
ized) continuum hypothesis holds in the inner models we construct relies
on iterability.

It is important here to isolate criteria for the iterability of a premouse
which are not too strong so that sufficiently many iterable premice can be
shown to exist.
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• The model construction. The construction of an inner model is done by
recursion on its “building blocks”. In order to verify that the construction
doesn’t trivialize one has to prove that sufficiently many premice meet the
iterability criterion one works with.

Also, one wants to show that a Covering Lemma holds for the inner
model which was built.

• Applications of inner models. Woodin’s core model induction makes use
of “locally defined” inner models which are used for verifying inductively
that (sufficiently iterable) models of ZFC plus there are such-and-such
many Woodin cardinals exist. This induction can therefore be used for
showing that a given (say, combinatorial) statement implies that definable
sets of reals are determined. It turns out that in order to organize such an
induction properly, one has to construct a new kind of “hybrid” premice
which are constructed not only relative to a sequence of extenders, but
also relative to iteration strategies for certain structures.

The conference had 16 participants. 13 talks were given, and they covered both
pure and applied parts of inner model theory. Because this was a gathering of true
specialists, there was no need for overview-style talks and we could concentrate on
issues which are at the focus of current research. The talks came with intriguing
results, but also with promising new perspectives for upcoming research. We had
very lively discussions.

It was a fruitful workshop, and many of the ideas which were exchanged are
sure to be further elaborated in the near future.
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Abstracts

Supercomplete extenders and type 1 mice

Qi Feng

(joint work with Ronald B. Jensen)

Let M be a pre–mouse. Let τ < κ < ht(M).
τ is strong upto κ, denoted by oM (τ) ≥ κ, if ∀β < κ∃ν ≤ ht(M)(τ = crit(EM

ων)∧
lh(EM

ων) ≥ β).
κ is of type 0 in M iff there is a ν ≤ ht(M) such that κ = crit(EM

ων) and
{τ < κ | oM (τ) ≥ κ} is bounded in κ.
κ is of type ≥ 1 in M iff there is a ν ≤ ht(M) such that κ = crit(EM

ων) and
{τ < κ | oM (τ) ≥ κ} is unbounded in κ.
κ is of type ≥ 2 in M iff there is a ν ≤ ht(M) such that κ = crit(EM

ων) and

{τ < κ | oM (τ) ≥ κ ∧ τ is of type ≥ 1 in M}

is unbounded in κ.
κ is of type 1 in M if κ is of type ≥ 1 and κ is not of type ≥ 2.
For ν ≤ ht(M), EM

ων 6= ∅ is of type 0 (of type 1, or of type ≥ 2) if crit(EM
ων) is

of type 0 (of type 1, or of type ≥ 2).
A pre–mouse M is of type 0 iff for all ν ≤ ht(M) if EM

ων 6= ∅ then crit(EM
ων) is

of type 0 in M .
A pre–mouse M is of type 1 iff M is strongly acceptable and for all ν ≤ ht(M)

if EM
ων 6= ∅ then crit(EM

ων) is of type < 2 (i.e., not of type ≥ 2) in M .
Let M = 〈JE

α , F 〉 be a J–structure. M is strongly acceptable if and only if M
is acceptable and whenever τ < α, ξ < ωτ , JE

τ+1 |= φ(ξ) and JE
τ |= ¬φ(ξ) for a Σ1

formula φ, then Card(τ) ≤ max(ξ, ω) in JE
τ+1.

The key properties of strongly acceptable structures are Σ1–reflection between
cardinals and it is preserved by Σ1 embeddings. Also, mice are strongly acceptable.

Type 0 mice are those iterable premice whose iterations shall never result to
infinite branching iteration trees. Hence iterations of type 0 premice are almost
linear iterations, as studied by Schindler.

Type 1 mice are those iterable premice whose iterations may result infinite
branching iteration trees but still enjoy certain finiteness character.

Here, we carry out a study of iteration trees of type 1 premice.
Our basic analysis gives us the following:
Let M be a type 1 premouse. Let T = 〈〈Ni〉, 〈νi〉, 〈ηi〉, 〈πi,j〉, T 〉 be a normal

iteration of M . Then

1. For i+ 1 < lh(T ), T (i+ 1) 6∈ [0, i]T if and only if there is a unique h such
that h+ 1 ≤T i and λT (h+1) ≤ κi < λh.

2. For all i, if there is some j > i such that κi ≤ κj < λi < λj , then κi or
Eνi

is of type 1.
3. If κi is of type 1, then T (i+ 1) ≤T i and κi < crit(πT (i+1)i).
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In our basic analysis, we employ three sequences 〈λij , Uj, κij〉 that are naturally
associated to a normal iteration tree of type 1 premice.

For i < j, we define λij = min{κh | i ≤ h < j ∧ κh < λi ∧ κh is type 0} if
there is some h such that i ≤ h < j and κh < λi and κh is of type 0; and define
λij = λi if otherwise.

Let Uj = {i < j | λij > supl<i λl}.
For each i, let κii = λi.
For j = h+ 1, let ξ = T (h+ 1). If ξ ∈ Uj , then set κξj = κh; if i ∈ Uj ∩ ξ, then

set κij = κiξ; and if i ∈ Uj − (ξ + 1), then set κij = min(κh, κih).
For limit j, if i ∈ Uj , let h <T j be the least such that i < h, then we set

κij = κih.
A Geometrical Theorem:

Theorem 1. Assume that i < j are two ordinals less than the length of a normal
iteration tree T of type 1 premice. Set T∧(i, j) = max{m | m ≤T i & m ≤T j}.

1. If T (i+ 1) 6∈ [0, i]T , then T∧(T (i+ 1), i) = T (h(i) + 1), where h(i) is the
unique h such that λT (h+1) ≤ κi < λh.

2. If i ∈ Uj, then T∧(i, j) ∈ Uj.
3. If i ∈ Uj, then κij = min{κT∧(i,j),i, κT∧(i,j),j}, hence,

κij = min{crit(πT∧(i,j),i), crit(πT∧(i,j),j)}.

4. If j = h+ 1 and T (j) < i < h and i ∈ Uj, then T∧(i, j) = T (j).

Following this, we are able to derive the following Finiteness Lemma.

Lemma 2. Let T be a normal iteration of type 1 premice. Then

(1) There is no infinite sequence 〈im | m < ω〉 such that im < im+1 and
κim

< κim+1
< λi0 and all of these κim

are of type 1.
(2) For each i, the set {κj | i < j ∧ κj < λi} is finite.

We are able to show the following existence and uniqueness of cofinal branch of
normal iteration trees of type 1 premice.

Theorem 3. Let T = 〈< Mi >,< νi >,< ηi >,< πij >, T 〉 be a normal iteration
of a type 1 premouse of limit length θ. Then

(a) T has at most one cofinal branch. In fact, let b = bT = {i | ∀k < θ ∃ j >
k (i <T j)}. Then b is a chain under the tree ordering and if T has a
cofinal branch, then b is the unique cofinal branch of the tree.

(b) T has a cofinal branch.

Let us now define supercomplete extenders.
Let F be an extender on M = JA

α . Let κ = crit(F ) and τ = (κ+)M . Let

π : JA
τ →F JA′

τ ′ . Let tξ be the ξ–th element of JA′

τ ′ . Let α(F,M) be the largest
cardinal of M below π(κ) + 1.
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We say that F is supercomplete on M if and only if for every countable X ⊆
lh(F ), and every countableW ⊆ P (κ)∩JA

τ , there is a strong connection δ : X → κ

such that

(a) ≺ δ(ξ1, · · · , ξn) ≻∈ Z ⇐⇒ ≺ ξ1, · · · , ξn ≻∈ F (Z) for Z ∈ W and
ξ1, · · · , ξn ∈ X , and

(b) if Y ⊆ X and
⋃

ξ∈Y

tξ is a well–founded relation, then so is
⋃

ξ∈Y

tδ(ξ).

We say that F is supercomplete with respect to M if and only if for every
countable X ⊆ lh(F ), and every countable W ⊆ P (κ) ∩ JA

τ , there is a strong
connection δ : X → κ such that

(a) ≺ δ(ξ1, · · · , ξn) ≻∈ Z ⇐⇒ ≺ ξ1, · · · , ξn ≻∈ F (Z) for Z ∈ W and
ξ1, · · · , ξn ∈ X , and

(b) if Y ⊆ X ∩ α(F,M) and
⋃

ξ∈Y

tξ is a well–founded relation, then so is

⋃

ξ∈Y

tδ(ξ).

We prove the following Iterability Theorem

Theorem 4. Let M be a type 1 premouse such that every surviving extender is
supercomplete with respect to M . Then M is uniquely simply normally iterable.

Corollary 5. Let M be a type 1 premouse such that every surviving extender is
supercomplete with respect to M . Then M is a mouse.

In fact, we prove the following Realization Theorem

Theorem 6. Let M = 〈JE
α , F 〉 be a type 1 premouse. Let σ : N →Σ∗ M be such

that N is countable. Let T = 〈〈Ni〉, 〈νi〉, 〈ηi〉, 〈πi,j〉, T 〉 be a normal countable iter-
ation of N . Assume that either T has no truncation and every surviving extender
is supercomplete with respect to M or T has truncations and every surviving exten-
der is supercomplete on M . Then there are σi : Ni →M and δi : λi → σT (i+1)(κi)
such that

(a) σ0 = σ, σjπij = σi for i ≤T j;
(b) σi(κi) ≤ σT (i+1)(κi);
(c) if σi(κi) = σT (i+1)(κi), then

δi : λi → σT (i+1)(κi)

is a strong connection in that δi = giσi ↾λi
and gi : σi[λi] → σi(κi) is to

witness the super completeness, and
(d) σi+1(πT (i+1),i+1(f)(a)) = σT (i+1)(f)(δi(a)), where f ∈ Γ(κi, NT (i+1)||ηi),

a ∈ λ<ω
i .
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(e) Set n(0) = ω,

n(i+ 1) =

{

ω if σT (i+1)(κi) < ωρω
M

n if ωρn+1
M ≤ σT (i+1)(κi) < ωρn

M ,

n(i) = min{n(j) | j <T i} for limit ordinal i.

Then σi is Σ
(n(i))
0 –preserving and if n(i) = 0, then, in addition, σi is

cardinal preserving.

The outer model program

Sy-David Friedman

Outer model program. Show that any model with large cardinals has an L-like
outer model with large cardinals.

Of course this depends on what one means by “large cardinals” and by “L-like”.
The large cardinals considered below are the following.

κ is n-superstrong, n ≤ ω, iff κ is the critical point of an elementary embedding
j : V →M with Vjn(κ) ⊆M . κ is hyperstrong iff one instead requires Vj(κ)+1 ⊆M .

Here are some results in the outer model program (see my paper Large cardinals
and L-like universes):

1. If κ is ω-superstrong then it remains so in some forcing extension satisfying
GCH, the existence of a definable wellordering of the universe, ♦κ for all regular
κ, the existence of a gap 1 morass at κ for all regular κ, � on the singular cardinals
and �κ restricted to ordinals of cofinality at most the least superstrong cardinal
for each regular κ.

2. (Burke) If κ is superstrong then it remains so in some forcing extension satisfying
�κ. (Cummings-Schimmerling improve this to a 1-extendible. On the other hand,
Jensen showed that �κ fails for hyperstrong κ.)

An interesting question is whether one can force the fundamental L-like prop-
erties of condensation and fine structure while preserving large cardinals. Below
are some results concerning the former.

Gödel proved a strong form of condensation in L:

(a) L =
⋃

α Lα, Lα transitive, Ord(Lα) = α, α < β → Lα ∈ Lβ , Lλ =
⋃

α<λ Lα

for limit λ.
(b) For each α: (M,∈) ≺ (Lα,∈) → (M,∈) ≃ (Lᾱ,∈) for some ᾱ.

This can be formulated axiomatically as follows:
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Club Condensation:
(a) V =

⋃

αMα, Mα transitive, Ord(Mα) = α, α < β → Mα ∈ Mβ, Mλ =
⋃

α<λ Mα for limit λ.
(b) There are structures Aα = (Mα,∈, . . .) for a countable language such that
A ⊆ Aα → A ≃ Aᾱ for some ᾱ.

Proposition 1. Club Condensation implies GCH; in fact, if (Mα | α ∈ Ord)
witnesses (a) of Club Condensation then for all infinite cardinals κ, H(κ) = Mκ

has cardinality κ.

Theorem 2. If there is an ω1-Erdős cardinal then Club Condensation fails.

Are large cardinals consistent with weaker forms of Condensation? A natural
weakening of Club Condensation is

Stationary Condensation:
(a) V =

⋃

αMα, Mα transitive, Ord(Mα) = α, α < β → Mα ∈ Mβ, Mλ =
⋃

α<λ Mα for limit λ.
(b) There are structures Aα = (Mα,∈, . . .) for a countable language such that
for each α and structure Bα = (Mα,∈, . . .) for a countable language, there exists
(M,∈, . . .) ⊆ Bα such that Aα ↾ M ≃ Aᾱ for some ᾱ.

Club Condensation implies Stationary Condensation and Stationary Conden-
sation implies the GCH.

Theorem 3. If κ is ω-superstrong then it remains so in some forcing extension
satisfying Stationary Condensation.

In fact, the forcing used to prove Theorem 3 is quite simple: just add an α+-
Cohen subset of α+ for each infinite cardinal α by an Easton support product.

Are large cardinals consistent with stronger forms of Condensation? The known
fine-structural inner models for large cardinals obey much more than Stationary
Condensation:

Large Condensation:
(a) V =

⋃

αMα, Mα transitive, Ord(Mα) = α, α < β → Mα ∈ Mβ, Mλ =
⋃

α<λ Mα for limit λ.
(b) There are structures Aα = (Mα,∈, . . .) for a countable language such that for
each α of uncountable cardinality κ and structure Bα = (Mα,∈, . . .) for a countable
language, there exists a continuous chain (Bγ | ω ≤ γ < κ) of substructures of Bα

with union Bα, where each Bγ = (Mγ ,∈, . . .) has size card γ and Aα ↾ Mγ ≃ Aᾱ

for some ᾱ.
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Club Condensation implies Large Condensation, which in turn implies Station-
ary Condensation. Large Condensation implies, for example, that for any α of
cardinality ω2 there is a club of x in Pω2

(α) for which condensation holds on a
club of y in Pω1

(x).

Theorem 4. In known L[E] models, Large Condensation holds.

Theorem 5. If κ is ω-superstrong then it remains so in some forcing extension
satisfying Large condensation.

Theorem 5 is proved by a construction very reminiscent of Jensen coding, how-
ever Easton support must be used at inaccessibles for the sake of large cardinal
preservation.

Degrees of Rigidity for Souslin Trees

Gunter Fuchs

(joint work with Joel Hamkins)

A Souslin tree T is r igid if it has no nontrivial automorphism. Consider the
following notions of rigidity.

Definition 1. T is totally rigid if whenever p, q ∈ T , p 6= q, then Tp is not
isomorphic to Tq. Here, Tp is the tree obtained by restricting the tree order of T
to nodes which lie above p; cf. [1].
T has the unique branch property (UBP) if forcing with T adds precisely one

branch to T .

We also consider the (T -)absolute forms of these notions. Namely, T has a
property T -absolutely if after forcing with T , T still has that property.

Our main result concerning these notions of rigidity is that, assuming the com-
binatorial principle ♦, the following diagram exhibits all the implications between
them.

UBP

Absolute UBP

Total Rigidity

Abs. Total Rigidity

Rigidity

Absolute Rigidity
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The construction of a tree that witnesses that the unique branch property does
not imply absolute rigidity results in a tree that has the UBP but has the property
that branches through it code automorphisms of some other part of the tree (so
that the automorphism fixes the branch that codes it). The construction can be
extended to give a result on the automorphism tower problem in group theory (see
[3] and [4]).

Namely, if G is a centerless group, then the map sending g ∈ G to the inner
automorphism ig is injective, and so G can be viewed as a normal subgroup of the
group Aut(G) of automorphisms of G. Moreover, Aut is again a centerless group,
and so we can iterate the process of passing to the automorphism group of a
centerless group, viewing the old group as a normal subgroup of its automorphism
group. At limit stages, we can just take unions, by this identification. The sequence
of groups obtained in this way is called the automorphism tower of G. Its height is
the least α such that the αth group in the tower is isomorphic to its automorphism
group.

Using methods of Hamkins and Thomas ([2]), we prove the following result.

Theorem 2. If ♦ holds, then for any m < ω there is a group Gm, whose auto-
morphism tower has height m, but for any n ∈ [1, ω), there is a <ω1-distributive
notion of forcing, so that in the corresponding extensions, the automorphism tower
of the same group has height n.

Actually, the <ω1-distributive notions of forcing in the theorem are Sousling
trees. Carrying out the construction at higher cardinalities κ, i.e., constructing
κ+-Souslin trees instead of ω1-Souslin trees, we obtain the following.

Theorem 3. If ♦κ+(cofκ) + 2<κ = κ holds, then for any α < κ there is a group
whose automorphism tower has height α, but for any β ∈ [1, κ), there is a <κ+-
distributive notion of forcing such that after forcing with it, the automorphism
tower of the same group has height β.

Again, the heights of the automorphism towers of the abovementioned groups
are changed by forcing with Souslin trees, κ+-Souslin trees this time.

Thus we get:

Theorem 4. In L, the following is true. If κ is an arbitrary cardinal and α < κ,
then there is a group the automorphism tower of which has height α and is such
that for any β ∈ [1, κ), there is a <κ-distributive notion of forcing such that after
forcing with it, the height of the automorphism tower of the same group is β.

Simon and Thomas [2] showed that this statement holds in a generic extension
obtained by doing a class size iterated forcing construction.
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Robust Extenders and Coherent Realizability

Ronald B. Jensen

Generalizing the notions of “supercomplete”, developed jointly with Qi Feng, we
define:

Definition 1. Let N = 〈JE
α , F 〉 be an active premouse. F is robust on N iff

whenever W ⊂ P(κ) ∩ N , where κ = crit(F ) and U ⊂ λ = F (κ) are countable,
there is a g : U → κ s.t.

(a) ≺ ~α ≻ ∈ F (X) ⇐⇒ ≺ g(~α) ≻ ∈ X for α1, . . . , αn ∈ U,X ∈W .
(b) Let u1, . . . , un ⊂ U . Then if ϕ is a Σ1–formula, we have:

CE
c,∞ |= ϕ[~u] ↔ CE

c̄,κ |= ϕ[g′′~u],

where c = supU,E = sup g′′U .

Here, the hierarchy CE
τ,ν(ν ≤ ∞) is defined by:

C0(e) = TC({e}),

Cα+1(e) = Def(Cα(e)) ∪ [α]ω ,

Cλ(e) =
⋃

ν<λ

Cν(e), for λ ≤ ∞ a limit.

(This is the Chang–hierarchy over the set e.) We then set:

C̃E
τ,η = Cη(〈Lτ [E], E ∩ Lτ [E]〉)

for E ⊂ V . Finally

CE
τ,η = 〈C̃E

τ,η = 〈C̃E
τ,η, 〈C

E
τ,ξ|ξ < η〉〉.

In order to apply this to the problem of coherent iterability we set:

ĈE
τ,η = C

(E×{0})∪(e×{1})
E,η where ē : γ ↔ Vω2

and e = {〈ν, τ〉|ē(ν) ∈ ē(τ)}. We define the notion of e–robustness be replacing

CE
τ,η by ĈE

τ,η in the above definition.
Now let 〈Nξ|ξ ≤ Θ〉 (Θ ≤ ∞) be a Steel array in which e–robustness is

the criterion for adding extenders. Let σ0 : P ≺ Nξ, where P is countable.
Let I = 〈〈Pi〉, 〈νi〉, 〈πij〉, T 〉 be a countable normal iteration of P . If I has no
truncation, we define a coherent realization of I wrt. σ0 to be a sequence 〈σi〉 st.
σi : Pi → Nξ (with appropriate preservation) and σjπij = σi if iT j. (If I has
truncations the definition is modified accordingly.) We prove
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(1) A coherent realization exists if there is no interlocking chain in I. [By
an interlocking chain we mean a sequence 〈in|n < ω〉 st. in < in+1 and
T (in + 1) < T (in+1 + 1) ≤ in for n < ω (where T (j + 1) = the immediate
predecessor of j + 1 in T ). (We can also weaken the hypothesis to the
assumption that there is no “severely interlocking chain”.)]

The set of mice which permit an iteration with an interlocking chain can be
characterized as follows:

(2) Let M be a mouse. The following are equivalent:
(a) Some M ||ξ has a normal iteration with an interlocking chain
(b) Some M ||ξ exists which sees arbitrarily large Σ2–strong cardinals.

(The definition of a Σn–strong cardinal in a premouse is the same as
in ZFC, except that the extenders which verify Σn–strongness must
be in the sequence.)

Open Question: What is the first Nξ which does not permit coherent realization
for some σ0, P, I as above? Does this Nξ have an iteration with an alternating
chain?

We also applied the notion of robustness to the problem of realizability in Steel’s
sense. We get:

(3) Let 〈Nξ|ξ < Θ〉 be a Steel array in which robustness in the criterion for
adding extenders. Let σ0 : P ≺ Nξ, I be as above. Then I has a maximal
realizable branch wrt. σ0.

Thus robustness has (as far as known) the same efficacy as Steels “background
certifiability”, although it is weaker. Using (3) and methods of Mitchell and
Schindler we prove:

(4) (ZFC) Assume that there is no inner model with a Woodin cardinal. Form
Kc, using robustness as the criterion for adding extenders. Then Kc is
universal.

An inner models proof of the Kechris-Martin theorem

Itay Neeman

A code for an ordinal α ∈ [ωn, ωn+1) is a pair 〈x#, t〈v1, . . . , vn〉〉 such that
tL[x][ω1, . . . , ωn] is equal to α. An ordinal belongs to Γ if it has a code in Γ.
A ⊆ [ωn, ωn+1) belongs to Γ if the set D of codes for ordinals in A belongs to Γ.

The following classical results are due to Kechris and Martin:

Lemma 1. Assume AD. Let A ⊆ [ωn, ωn+1) be Σ1
3 and bounded below ωn+1. Then

A has a ∆1
3 bound.

Theorem 2. Assume AD. Every Π1
3 subset of [ωn, ωn+1) has a ∆1

3 member.
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Corollary 3. Assume AD. Let ψ be Σ1. For x ∈ R let αx be least such that
Lαx

(T2, x) is admissible. Then the set {x | Lαx
(T2, x) |= ψ[T2, x]} is Π1

3.

We prove the corollary using inner models and genericity iterations rather than
determinacy. The inner models proof may be easier to generalize to higher levels,
but at the moment, this is not known.

Problems related to I[λ]

William J. Mitchell

The argument which this talk attempted to describe does not seem to be valid.
In the remainder of this abstract we will describe the aim of the investigation and
state some open problems.

The investigation concerned Shelah’s approachability ideal I[λ] [3]:

Definition 1. We say that an ordinal α is approachable via the sequence a =
〈 aν : ν < λ 〉 if there is a cofinal set c ⊂ α with otp c = cf(α) such that c ∩ β ∈
{ aν : ν < α } for all β < α.

A set x ⊆ λ is in I[λ] if there is a sequence a such that every ordinal in λ except
for a nonstationary set is approachable via a.

I earlier answered [2] a question of Shelah by showing that

Theorem 2. If κ is κ
+

-Mahlo then there is a generic extension in which there is
no nonstationary set S of ordinals of cofinality ω1 in I[ω2].

This theorem easily extends to I[κ+] whenever κ is the successor of a regular
cardinal. The program discussed in this talk aims to understand the remaining
cases. The most interesting case in that in which κ is singular, in which case
Shelah has shown that the statement of theorem 2 cannot hold of I[κ+] for sets of
ordinals of any cofinality γ < κ. We would like to show that this result cannot be
strengthened:

Conjecture 3. Under an appropriate large cardinal hypothesis, there in a generic
extension with a singular cardinal κ such that for each uncountable cardinal γ < κ

there is a set S ⊂ κ of ordinals of cofinality γ which is not in I[κ+].

A proof of conjecture 3 could be expected to involve an iteration of the forcing
of theorem 2, combined with Prikry style forcing at κ to make κ singular. We are
far from knowing how to do this, and the progress described in the present talk is
limited to the problem of a finite iteration of the forcing.

Conjecture 4. It is consistent that (under a suitable large cardinal hypothesis)
there is a generic extension in which I[ω2] has the property of theorem 2, and in
addition I[ω3] satisfies the same property for sets of ordinals of confinality ω2.

In fact the current work does not deal with I[ω2], but instead attempts to use
the basic technique of this forcing to reprove a known result:
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Theorem 5. [Uri Abraham [1]] If κ < λ are cardinals such that κ is λ-supercom-
pact and λ is weakly compact then there is a generic extension in which there are
no ℵ2− or ℵ3-Aronszajn trees.

Question 6. Can this technique be used to reprove theorem 5, or and least con-
struct a model with no special Aronszajn trees on ℵ2 or ℵ3?

The question about Special Aronszajn trees is likely to be less difficult than
that for Aronszajn trees — assuming either is possible — and would probably be
the relevant problem towards the extension to I[ω2] .
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Threads

Ernest Schimmerling

The combinatorial principle �(λ) says that all coherent sequences of clubs of
length λ can be threaded. If λ = κ+, then the related principle �κ implies �(λ).
Square principles such as these were isolated by Jensen and are key technical links
between several parts of set theory. They have also been applied in other areas
such as model theory and topology. Jensen and Solovay showed that the failure
of �κ for some regular κ ≥ ℵ1 is equiconsistent with the existence of a Mahlo
cardinal. Velickovic showed that the failure of �(λ) for some regular κ ≥ ℵ2

is equiconsistent with the existence of a weakly compact cardinal. My results
combined with those of several others show the following. If κ ≥ ℵ2 and both �κ

and �(κ) fail, then there is an inner model with a proper class of strong cardinals.
If κ ≥ max(ℵ2, 2

ℵ0) and both �κ and �(κ) fail, then all sets of reals in L(R)
are determined. If κ is a singular cardinal, then the hypothesis that �(κ) fails is
not needed. What is new here is the case in which κ is a regular cardinal. As a
corollary, the Proper Forcing Axiom for posets of cardinality (2ℵ0)+ then all sets
of reals in L(R) are determined. I spoke on these results on the morning of Friday,
May 5, 2006, explained credit and sketched the proofs.
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The self-iterability of L[E] and ♦∗
κ,λ

Ralf Schindler

(joint work with John Steel)

Let L[E] be an iterable tame fine structural model, and let Σ be an iteration
strategy for L[E]. We analyze to which extent L[E] knows fragments of Σ.

Definition 1. Let γ be either a cardinal of L[E], or else γ = ∞. An ordinal t < γ

is called a transition point of L[E] below γ iff t is a cutpoint in L[E] and for every
γ̄ < γ, L[E] |= “Jγ̄ [E] is γ-iterable above t, as witnessed by Σ ↾ X ∈ L[E]”, where
X is the collection of all trees T on Jγ̄ [E] which are above t, have length less than
γ, and are in L[E].

Theorem 2. For every γ > ω such that either γ is a cardinal in L[E] or else
γ = ∞, there is a transition point of L[E] below γ.

The proof of Theorem 2 exploits trying to make an initial segment of L[E]
generic over the common part model of the tree T for which L[E] is in search of
the right branch, so that then L[E] can serve as a certificate for a Q-structure for
T . Theorem 2 is in part motivated by [4]. It is also motivated by the question
whether any iterable tame fine structural model L[E] satisfies “there is x ∈ R and
an ODx-well-ordering of the reals,” which was recently settled in the affirmative
by Steel for all ω-small L[E].

Definition 3. Let κ ≤ λ be cardinals. The principle ♦∗
κ,λ denotes the following

statement. There is a function F : Pκ(λ) → V such that for every uncountable
X ∈ Pκ(λ), F (X) is a subset of P(X) of size at most Card(X), and for all A ⊂ λ,
there is a club C ⊂ Pκ(λ) such that for all X ∈ C, X ∩A ∈ F (X).

This principle was isolated by Jensen who showed that if κ < λ, then ♦∗
κ,λ holds

in L. In fact, Jensen’s original formulation of ♦∗
κ,λ results from the one given above

by deleting “uncountable,” and he proved that if κ < λ, then this stronger form
of ♦∗

κ,λ holds in L.

We combine the proof of Theorem 2 with the argument of [3] and [2] to show the
following, where L[E] is still an iterable tame fine structural model. The reason
for having included “uncountable” in the above formulation of ♦∗

κ,λ is that the
covering argument does not apply to countable substructures of initial segments
of L[E].

Theorem 4. If κ < λ, then ♦∗
κ,λ holds in L[E].

It turns out that as a matter of fact a version of the strengthening ♦+
κ,λ of ♦∗

κ,λ

(cf. [1]) also holds in L[E] (provided that κ < λ).
Our results will appear in [5].
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The global mouse set conjecture implies its local refinement

John R. Steel

The mouse set conjecture is one of the central open problems in inner model
theory. There is one statement of it:

Definition 1. Let ϕ(v) = ∃A ⊆ Rψ(A, v) be a Σ2
1–formula, where ψ has k real

quantifiers, and let x be a real. A 〈ϕ, x〉–witness is a countable, transitive N such
that x ∈ N and

(i) N |= ZFC + δ0 < . . . < δk are Woodin cardinals,
(ii) N |= ∃A ∈ Homδk

ψ(A, x), and
(iii) N is ω1–iterable.

Here Homk is the collection of κ–homogeneously Suslin–sets of reals. The
notion of 〈ϕ, x〉–witness as defined here is meant to be considered in models of
AD, where ω1–iterability implies ω1 + 1–iterability, and it is easily shown that

Proposition 2. Assume AD, and let N be a mouse over x which is a 〈ϕ, x〉
witness; Then ϕ(x) is true.

It is important here that N be a mouse (a fine structural object). This implies
that N will have an iteration strategy with the Dodd–Jensen–property. That can
be used to blow up the HomN

δk
set A such that N |= ψ[A, x], using genericity

iterations, to an A∗ such that V |= ψ[A∗, x]. The mouse–set–conjecture (MSC) is
that the converse to the proposition holds:

MSC: Assume AD+, and that there is no ω1–iteration strategy for a mouse with
a superstrong cardinal. Let ϕ(v) be a Σ2

1–formula, x a real, and suppose ϕ(x) is
true. Then there is a mouse N over x such that N is a 〈ϕ, x〉–witness.

Hugh Woodin has proved MSC under the stronger hypothesis that AD+ holds,
and there is no boldface pointclass Γ such that L(Γ,R) models AD + Θ = Θω1

.
Neeman and the author have made some incremental improvements to this result.

The natural attempt to prove MSC involves an induction on the Wadge–hier-
archy. Let Pβ = the βth pointclass closed under ¬, ∃R, and Wadge–reducibility.
(Thus P0 is the class of projective sets.) One would try to show
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Local MSC: Assume AD+; Then for any β, Pβ |= MSC. That is, if ∃A ∈
Pβ ψ(A, x) is true, where ψ involves only real quantifiers, then there is a 〈ϕ, x〉–
witness N such that N has an ω1–iteration strategy in Pβ .

We show

Theorem 3. Assume AD+ and MSC; Then Local MSC holds.

On the consistency strength of the inner model hypothesis

Philip Welch

(joint work with Sy-David Friedman and Hugh W. Woodin)

The inner model hypothesis (IMH) and the strong inner model hypothesis
(SIMH) were introduced by S-D. Friedman in [2]. We describe here some re-
cent consistency strength computations. This is joint work with S-D. Friedman,
and W.H. Woodin.

Definition 1. Let a first order sentence σ ∈ L∈̇ be called internally consistent if
it holds in some inner model (IM) (not necessarily proper) of ZFC set theory.

We treat with models of the form V = 〈V,∈, CV 〉 where
(a) V is a countable transitive inner model of ZFC.
(b) CV is a countable set of classes over V .

We assume that the classes C in CV are ZFC-preserving in that 〈V,∈, C〉 is also
a ZFC model in the appropriately widened language. We assume that CV contains
at least the definable classes over 〈V,∈〉. CV will also be deemed to contain as a
minimum, the inner models of V

Definition 2. V∗ = 〈V ∗,∈, CV ∗〉 is an outer model of V if it satisfies (a) and (b)
above and:

(i) V∗ ⊇ V
(ii) On∩V ∗ = On∩V ;
(iii) CV ⊆ CV ∗ .

Definition 3. (IMH) The inner model hypothesis holds of V , if, for any sentence
σ ∈ L∈̇, if it is internally consistent in an outer model V∗ of V , then it is already
internally consistent in V .

• Note that IMH easily implies the Σ1
3-correctness of V in its outer models.

Utilising a coding result of David and of Beller (cf [1]) the following was known:

Theorem 4. ([1]) The inner model hypothesis implies that for some real r,
for any ordinal α ∈ V , Lα[r] 6 |=ZFC. In particular, there are no inaccessible
cardinals and the reals are not closed under the #-operation.
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As was the following:

• (S-D.Friedman) IMH implies the existence of O#, O##, . . . , O#(n), . . . in V .

We improve this to:

Theorem 5. IMH implies that in the Core Model K, for any ordinal δ, there is
a measurable cardinal κ with mitchell order equal to δ: oK(κ) = δ.

We note that this is rather weak (in view of the theorem to come): we do not
even claim there is a measurable with order o(κ) = κ.

As an upper bound we have, using a result of Kechris and Solovay, cf [3]:

Theorem 6. Suppose there is an inaccessible cardinal and ∆1
2-Determinacy (light-

face) holds. Then there is a model V = 〈V,∈, CV 〉satisfying (a) and (b) above, for
which IMH holds.

One may try to strengthen the IMH by allowing parameters in the definition.
This can quickly lead to inconsistency. One such principle which we do not know
to be consistent, but which is not obviously inconsistent can be obtained as follows.

Definition 7. A set p is (globally) absolute if there is ϕ(v0) ∈ L∈̇, parameter free,
so that for all V∗ ⊇ V :

(∗) ∀α(V |=“card(α) ∧ TC(p) ≥ α”−→ V ∗ |=“card(α) ∧ TC(p) ≥ α”)
implies that ϕ(v0) uniquely defines p in V and in V ∗.

We thus require absoluteness of the definition of a parameter between V and
any outer model which has the same cardinals below TC(p).

Definition 8. (SIMH) If p ∈ V is absolute, and ψ(v0) and formula, and for any
V∗ ⊇ V satisfying the antecedent (∗) above, if ψ(p) holds in an inner model of V∗,
then it holds in an inner model of V .

Note: we are not requiring that the cardinals below that of TC(p) in the inner
model be precisely those of V , only that p is properly identified in the same way
as it is in V . As a lower bound on the strength of this principle we do have:

Theorem 9. SIMH implies that there is an inner model with a strong cardinal.

Question: Is SIMH consistent, relative to some large cardinal hypothesis?
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Beyond ω-huge

Hugh W. Woodin

The main topic for this series of lectures is the identification and analysis of an
ADR-like axiom at the level of Vλ+1. We also develop the theory of such axioms,
isolating a key conjecture: The Weak Uniqueness of Square Roots at λ.

The basic thesis is that inner models, L(N), such that

N = L(N,Vλ+1) ∩ Vλ+2

and for which there is an elementary embedding,

j : L(N) → L(N),

with critical point below λ, are analogs at λ of inner models L(Γ) where Γ ⊂ P(R),

Γ = L(Γ,R) ∩ P(R),

and where L(Γ,R) |= AD. Thus the existence of an elementary embedding,

j : L(Vλ+1) → L(Vλ+1)

with critical point below λ is the analog at λ of L(R) |= AD.
Suppose

Vλ+1 ⊂ N ⊂ Vλ+2

and that N = L(N) ∩ Vλ+2. Then ΘN denotes the supremum of the ordinals α
such that there exists a surjection,

π : Vλ+1 → α

with π ∈ L(N).

Definition 1. Suppose that N is transitive,

Vλ+1 ⊂ N ⊂ Vλ+2,

N = L(N) ∩ Vλ+2, and that

j : L(N) → L(N)

is an elementary embedding with CRT(j) < λ. Then:

(1) j is weakly proper if L(N) = {j(F )(j|Vλ) | F ∈ L(N)};
(2) j is proper if j is weakly proper and for all X ∈ N ,

〈Xi : i < ω〉 ∈ L(N,Vλ+1),

where X0 = X and for all i < ω, Xi+1 = j(Xi). ⊓⊔

There is an analog of of ZF + DC + ADR at the level of Vλ+1, the definition is
motivated by the fact that assuming ZF + ADR, for each set A ⊂ R there exists
η < Θ such that there is no surjection, ρ : R → η, which is OD from A, here Θ
denotes the supremum of the ordinals η for which there is a surjection of R onto
η.
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Definition 2. Suppose that

Vλ+1 ⊂ N ⊂ Vλ+2

and N = L(N,Vλ+1) ∩N . Then N is an ADR-like model at λ if:

(1) cf(ΘN ) > λ,
(2) There is a proper elementary embedding, j : L(N) → L(N);
(3) For all X ∈ N there exists η < ΘN such that there is no surjection,

ρ : Vλ+1 → N

such that ρ is OD in L(N) from X . ⊓⊔

Suppose that there is an inner model of ZF + DC + ADR (containing R ∪ Ord)
and let

Γ0 = ∩{Γ ⊂ P(R) | Γ = L(Γ,R) ∩ P(R) and L(Γ,R) |= ZF + DC + ADR}.

Then L(Γ0) |= ZF + DC + ADR. This generalizes to ADR-like models at λ.

Theorem 3. Suppose that there is an ADR-like model at λ and let

N0 = ∩{N | N is an ADR-like model at λ}.

Then N0 is an ADR-like model at λ. ⊓⊔

The analysis of ADR-like models at λ leads naturally to the following definitions
and conjecture.

Definition 4. Suppose X ⊂ Vλ and

j, k : L(X,Vλ+1) → L(X,Vλ+1)

are proper elementary embeddings with critical point below λ. Then j = k(k) if

j|Vλ+2 = ∪{k(k|Z) | Z ⊂ Vλ+2, (Z, k|Z) ∈ L(X,Vλ+1)}. ⊓⊔

This the natural definition of k(k). Notice that if j is proper and if k(k) = j

then necessarily k is proper.

Definition 5. Suppose X ⊂ Vλ and

j : L(X,Vλ+1) → L(X,Vλ+1)

is a proper elementary embedding. An elementary embedding

k : L(X,Vλ+1) → L(X,Vλ+1)

is a square root of j if k(k) = j. ⊓⊔

We now come to our main structural conjecture.
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Conjecture 6. (Weak Uniqueness of Square Roots at λ) Suppose λ is a limit of
supercompact cardinals. For all X ⊂ Vλ+1, if

j : L(X,Vλ+1) → L(X,Vλ+1)

is a proper elementary embedding and if k1 and k2 are each square roots of j such
that

(1) k1|Vλ = k2|Vλ,
(2) k1(Lω(X,Vλ+1)) = k2(Lω(X,Vλ+1)) = Lω(X,Vλ+1),

then k1|ΘL(X,Vλ+1) = k2|ΘL(X,Vλ+1). ⊓⊔

This conjecture if provable would probably yield a proof of the following con-
jecture.

Conjecture 7. (Minimum Model Conjecture at λ) Suppose that

Vλ+1 ⊂M ⊂ Vλ+2

and that M is an ADR-like model at λ. Let

M0 = ∩{N | N is an ADR-like model at λ with ΘN = ΘM}.

Then M0 is an ADR-like model at λ and ΘM0 = ΘM . ⊓⊔

A sentence φ is Ω-valid from ZFC if for all complete Boolean algebras, B, and
for all α ∈ Ord if

V B

α |= ZFC

then V B

α |= φ. This definition is in the context of ZF.
Another interesting consequence the conjecture on weak square roots is given

in the following theorem where for a nontrivial elementary embedding,

j : Vλ → Vλ,

κω(j) denotes the supremum of the critical sequence of j, this is the sequence

〈κi : i < ω〉

where κ0 is the critical point of j and for all i < ω, κi+1 = j(κi).

Theorem 8. (ZF) Suppose that the weak uniqueness of square roots at λ is Ω-valid
from ZFC and that

Vλ ≺Σ4
V.

Then there is no nontrivial elementary embedding

j : Vλ+3 → Vλ+3

such that λ = κω(j). ⊓⊔

The main open problems are the two conjectures:

(1) Weak Uniqueness of Square Roots at λ
(2) Minimum Model Conjecture at λ
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Constructing global square sequences in extender models

Martin Zeman

Various types of square sequences were introduced by Jensen in his seminal
paper on fine structure of the constructible hierarchy. Given a class S of singular
limit ordinals, a global square sequence on S, briefly a global �S-sequence is a
sequence of sets 〈Cα |α ∈ S〉 satisfying the following properties:

(a) Each Cα is a closed unbounded subset of α, and if α is of uncountable
cofinality then Cα ⊆ S.

(b) (Coherency.) If ᾱ is a limit point of Cα then Cᾱ = Cα ∩ ᾱ.
(c) For each α ∈ S, the order type of Cα is strictly smaller than α.

We write briefly � if S is the set of all singular ordinals. Square sequences are
ubiquitous in set theory, as they provide a combinatorial structure that enables to
run certain type of constructions by transfinite recursion. Classical applications
of square sequences involve constructions of Suslin trees, special Aronszajn trees
and nonreflecting stationary sets. Jensen showed that various kinds of square
sequences, among others also global square sequences �, exist in Gödel’s con-
structible universe L. In the absence of 0#, square sequences constructed in L

can often be turned into square sequences in the sense of the actual universe V,
which is crucial in most of the applications. It is therefore desirable to look for
stronger results where the non-existence of 0# is replaced by weaker hypotheses.
In such results, Gödel’s L has to be replaced by a more general type of model,
a so-called extender model. These models are of the form L[E] where E is a
predicate that codes a coherent extender sequence. The literature on construction
varisus square sequences in such models is quite extensive. The ultimate result
on �κ in fine structural extender models where extenders on the E-sequence are
of a superstrong type or shorter is due to Schimmerling and Zeman and states
that a �κ-sequence exists in L[E] just in case that κ is not subcompact, i.e. when
{x ∈ Pκ(κ+) | otp(x) is a cardinal} is non-stationary.

The main result I presented is a construction of a global square sequence �.
By a result of Jensen, such a sequence exists just in case that there is a �κ-
sequence for all cardinals κ and also a �SC-sequence where SC is the class of all
singular cardinals. Building on the result of Schimmerling-Zeman, the heart of
the construction of a �-sequence is a construction of a �SC-sequence. It turns
out that such a senquence exists regardless of what large cardinals live in our
extender model. Although this might look a bit surprising, it is consistent with
earlier results that show the existence of a global square sequence in the presence of
supercompact cardinals; these results are forcing constructions. The main theorem
thus reads:

Theorem. If W is arbitrary extender models whose initial levels are weakly
iterable then W |= �SC.
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Here “weakly iterable” means that any countable premouse elementarily em-
beddable into the structure in question is (ω1 + 1, ω1)-iterable. This amount of
iterability enables to show that W admits the necessary fine structure theory
needed in our construction. The construction itself follows the original Jensen’s
construction in L, but involves a new important feature, namely that it has to be
carried out on two disjoint subclasses of SC which we denote S

0 and S
1. On S

0 we
imitate Jensen’s construction using levels of W instead of levels of L. On S

1 we
also imitate Jensen’s construction, but this time we are forced to use structures
called protomice that code levels of W in a canonical way, but are not levels of any
extender models, as their top extender fails to be total. The basic analysis of the
situation was done by Schimmerling-Zeman in connection with their construction
of a �κ-sequence. It has turned out that to each level corresponding to an ordinal
from S

1 we can assign a protomouse in a canonical way and that this assignment is
robust enough that it is preserved under manipulations arising in the construction.
In the construction of a global �SC sequence, there are three new issues that has
to be addressed and which do not occur in the consctuction of a �κ-sequence.

First, to each α ∈ S
1 we assign the singularizingW -level Nα. This level projects

to α, but the first n satisfying ω̺n
Nα

≤ α might differ from the least n such that

α is definably singularized over Nα via some good Σ
(n)
1 -function. This causes

serious difficulties in the translation of fine structural information between Nα

and the corresponding protomouse Mα. The key here is to restrict ourselves to
those α ∈ SC where there is no difference between the two values of n; we call
such levels Nα exact. I prove that exact levels constitute sufficiently large class of
W -levels that makes the main construction go through.

The second new feature is a condensation lemma for protomice, which has
to be formulated with more caution than the one used for the construction of
a �κ-sequence. Roughly speaking, the condensation lemma asserts that if σ :
M̄ → M is a Σ0-preserving map from a sound and solid coherent structure M̄

into a protomouse M and α
def
= cr(σ) ≥ ω̺1

M̄
then M̄ is a protomouse, and if M̄

singularizes α then M̄ codes the singularizing W -level for α. This condensation
lemma is more subtle than the one mentioned above, and I am confident that it can
be also used for construction of �(E)-sequences and thus used for characterization
of stationary reflection at inaccessibles in W .

The third problem that had to be solved concerns the fact that the choice
of a canonical protomouse is preserved under direct limits that are used in the
proof that Cα is closed. In general, if we consider arbitrary direct limits, the
preservation might fail. In order to guarantee that the direct limit protomouse is
the canonical one, we have to impose an additional restriction on the embeddings
used in the main construcion on S

1. Surprisingly, this can be done by stipulating
that the largest “satisfiable” ordinal α∗ is in the range of any such embedding
that is used in the construction of Cα, an idea used by Jensen in his original
construction of a global square sequence in L, but for a completely different

purpose. Here “satisfiable” means that Hα∗ ∩α = α∗ where Hα∗ is the Σ1-Skolem
hull of α∗ ∪ {pMα

} over Mα and pMα
is the standard parameter of Mα.
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Σ1
2 Sets and Weak Capturing

Stuart Zoble

Consider the following two properties of a set of reals A ⊂ ωω at some infinite
cardinal κ.

(1) For every continuous f : κω → ωω there is a dense set of p ∈ κ<ω such
that either f−1(A) is meager or comeager below p.

(2) For every continuous f : κω → ωω there is a dense set of p ∈ κ<ω such
that either f−1(A) ∩ σω is meager below p in σω for a club of σ ∈ [κ]ω or
comeager below p in σω for a club of σ ∈ [κ]ω.

The first asserts that A is κ-Universally Baire and the second that A is weakly
captured at κ. The following is a reformulation of property (2) involving forcing
terms.

There is a Col(ω, κ)-term Ȧ such that for sufficiently large θ, for
a club of countable H ≺ H(θ), and for a comeager set of g : ω →
otp(H ∩ κ),

πH(Ȧ)g = A ∩H [g],

where otp(H ∩ κ) is the order type of H ∩ κ and πH is the transi-
tivization map.

If the phrase “comeager set of g” is replaced by “allH-generic g” then an equivalent
version of (1) is obtained (see [6]). We use ΓUB

κ to denote the pointclass of sets
satisfying property (1) and ΓWC

κ for property (2). If a set A ∈ ΓWC
κ and both A

and its complement have semiscales whose norms belong to ΓWC
κ then A ∈ ΓUB

κ

(see [6]). It is also shown in [6] that ΓWC
ω1

= ΓWC
κ under WRP(2)(κ). Thus under

MM , self-justifying systems which are ω1-Universally Baire are Universally Baire.
On the other hand, it is shown in [4] that any set of reals of size ω1 belongs to
ΓUB

ω1
\ ΓUB

ω2
under MM . Thus ΓWC

ω2
\ ΓUB

ω2
6= ∅ under MM . It is also shown in [4]

that ΓUB
ω1

= ΓUB
∞ if ω2 is generically supercompact. This paper was motivated by a

desire to find a definable set of reals which is weakly captured at some uncountable
cardinal but not fully captured at that cardinal. The scenario suggested by [6]
would involve arranging that ω2 has some generic weak compactness in a minimal
model for Σ1

2 ⊆ ΓUB
ω1

. Then it could be argued that Σ1
2 ⊆ ΓWC

ω2
by the result of

[6] but that Σ1
2 sets are not ω2-Universally Baire on consistency strength grounds.

The relevant global result is due to Feng, Magidor, and Woodin (see [1]) where it
is shown that Σ1

2 sets being Universally Baire is equivalent to assertion that every
set has a sharp which is in turn equivalent to two-step Σ1

3 generic absoluteness.
The proof of this theorem is not local, and in fact only shows that Σ1

2 ⊂ ΓUB
ωω+1

implies 0#. Using the full strength of covering for L we can reduce this to ω3.
The following is a convenient reformulation of Σ1

2 ⊆ ΓUB
κ for consistency strength

arguments. It follows from arguments in [1].
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Theorem 1. The following are equivalent for a cardinal κ.

(1) Σ1
2 sets are κ-Universally Baire

(2) For all sufficiently large θ, there is a club of countable X ≺ H(θ) such that
X [g] is Σ1

2 elementary in V for every X-generic g ⊂ Col(ω, κ ∩X).

Theorem 2. If Σ1
2 sets are ω3-Universally Baire then 0# exists.

The desired minimal model for Σ1
2 sets ω1-Universally Baire is given by the follow-

ing theorem which is joint with Woodin whose idea it was to force over L using a
fragment of 0#.

Theorem 3. The following are equiconsistent.

(1) Σ1
2 sets are ω2-cc-Universally Baire

(2) There are ordinals κ < λ such that λ is weakly compact in L and for every
α < λ there is an elementary j : Lα → Lβ with critical point κ such that
j(κ) ≥ α

Note that condition (2) does not imply that 0# exists. Ralph Schindler pointed
out to the author that (2) is equiconsistent with the existence of a cardinal which
is remarkable to a weakly compact. The model for (1) is a forcing extension of L in
which CH holds. Thus two-step Σ1

3 absoluteness holds in this model for iterations
that satisfy the (2ω)+-chain condition. Further it can be argued that WRP(2)(ω2)

holds in the model so that Σ1
2 ⊂ ΓWC

ω2
. On the other hand, Σ1

2 sets cannot be
ω2-Universally Baire in this model as the argument of Theorem 1.2 would show
that there is a club of α < ω2 which are regular in L, an impossibility by the
nature of the forcing used to obtain the model. Thus the motivating question is
answered.

Theorem 4. It is consistent that Σ1
2 sets are weakly captured but not fully captured

at ω2.
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et al., eds., Kluwer, 2004), pp. 207-222

[4] Todorcevic, S., Zoble, S., Baire reflection, preprint, 2006
[5] Woodin, H., On the strength of projective uniformization, Logic Colloquium ’81, J. Stern

(ed.), 1982, pp. 365-383
[6] Zoble, S., Stationary Reflection and the Universal Baire Property, Fundamenta Mathe-

maticae, 2006

Reporter: Gunter Fuchs



Mini-Workshop: Feinstrukturtheorie und Innere Modelle 1243

Participants

Prof. Dr. Qi Feng

Institute of Mathematics
Chinese Academy of Sciences
Beijing 100080
CHINA

Prof. Dr. Sy-David Friedman
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