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Introduction by the Organisers

The workshop on The Rigorous Renormalization Group, was attended by more
than 40 participants coming mainly from Western Europe and from America. The
official programme consisted in 19 lectures of 60 minutes each (plus discussion).
Four of them were devoted to noncommutative field theory, three of them presented
methods used for and results on the construction of a non-gaussian fixed point in a
statistical mechanics/quantum field theory model, and two lectures concerned, re-
spectively, nonlinear σ-models, the functional renormalization group, and quantum
electrodynamics. The remaining six lectures were on the Brockett-Wegner version
of the renormalization group, on random walks, on Fermi liquids, on anomalies
in quantum field theory, on renormalization in curved spaces and on functional
integrals for many boson systems. The scientific programme, the atmosphere and
the Oberwolfach style of the meeting, leaving much room for informal discussions
and joint work, were generally highly appreciated. The abstracts of the lectures
are presented in chronological order.
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Abstracts

Noncommutative Quantum Field Theories and Renormalization

Harald Grosse

Noncommutative Quantum Field Theory shows some unexpected features called
IR/UV mixing. They arise upon quantization and renormalizability of Noncom-
mutative Quantum Field Theory is spoiled. The planar contributions show the
standard singularities which can be handled by a renormalization procedure. The
nonplanar loop contributions are finite for generic momenta, however they be-
come singular at any order at exceptional momenta. Without imposing a special
structure such as supersymmetry, the renormalizability seems lost. Progress was
made, when we were able together with Raimar Wulkenhaar to solve this problem
for the special case of a scalar four dimensional theory defined on the deformed
Moyal space (CMP 256(2005)305). The IR/UV mixing contributions were taken
into account through a modification of the free Lagrangian by adding an oscil-
lator term, which modifies the spectrum of the free Hamiltonian. The harmonic
oscillator term was obtained as a result of the renormalization proof. The model
fulfills then the Langmann-Szabo duality relating short distance and long distance
behavior. Our proof followed ideas of Polchinski.
It turned out, that the IR/UV mixing occurs also on other Fuzzy spaces like non-
commutative Tori as well as on the kappa Poincare deformed space (work together
with Michael Wohlgenannt hep-th/0507030).
There are indications that a constructive procedure might be possible and will give
nontrivial interacting models, which are currently under investigation. In the self-
dual case we obtain special matrix models, which we are studying in two and four
dimensions together with H. Steinacker (hep-th/0512203 and hep-th/0603052).
The Φ3 model is of special interests, since it can be solved in closed form using
the solution of the Kontsevich model. We managed to renormalize the genus zero
contribution of the model and proved existence of correlation functions. In four
dimensions both a mass renormalization as well as a tadpole renormalization was
necessary.
On the other hand in work with M. Wohlgenannt (to be published) we coupled
a scalar field to a gauge field and calculated the one loop divergent contributions
using a heat kernel approach. We obtained this way gauge models for two and
four dimensions. We completed this calculation for the special values of parame-
ters for which the model is self-dual. Away from the duality point the calculation
is more involved and will be finished next. The resulting models will hopefully be
renormalizable and might become the starting point of a renormalizable deformed
Standard model, which will be the final goal.

References

[1] H. Grosse and R. Wulkenhaar, Renormalisation of φ4-theory on noncommutative R4 in the
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A combinatorial generalisation of Cramer’s Rule

D. C. Brydges

(joint work with A. Abdesselam)

1. Introduction

The result described here is a Corollary of a bijection discovered by Xavier
Viennot, [3, Proposition 6.3]. It is a combinatorial generalisation of Cramer’s
formula for the inverse of a matrix and it is closely related to the Mayer Expansion.

For motivation we begin with a combinatorial interpretation of Cramer’s for-
mula. Let A = (Axy, x, y ∈ S) be a matrix. A path ω from a to b is any finite
sequence (

ω1, ω2, · · · , ωn
)
∈

⋃

n∈N∗

Sn

with ω1 = a and ωn = b. The sites ω1, ω2, · · · , ωn need not be distinct; if they are
we say that the path is self-avoiding. The set of distinct sites in the sequence ω is
called the support of ω. If a = b then the only self-avoiding path is (a).

The resolvent expansion in powers of A represents (I − A)−1 by the formal
power series

(I −A)−1
ab =

∑

ω:a→b

Aω

where

Aω =

{∏n−1
i=1 Aωiωi+1 if n ≥ 2

1 if n = 1.

We call c ⊂ S × S a self-avoiding loop if for some n ∈ N∗,

c =

{
{(x1, x2), (x2, x3), . . . , (xn, x1)} if n ≥ 2

{(x1, x1)} if n = 1,

where x1, . . . , xn are distinct. The support of a loop is the set {x1, . . . , xn} ⊂ S.
By writing det(I − A) in terms of permutations and decomposing the permu-

tations into cycles, one has

(1) det(I − A) =

∞∑

r=0

∑

{c1,...,cr}
(−Ac1) · · · (−Acr)

where the r = 0 term equals 1 by definition and c1, . . . , cr are self-avoiding loops
with disjoint supports and

Ac =
∏

(x,y)∈c
Axy.
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There is a similar expansion for the ab cofactor of A,

(2) detA(b,a) =

∞∑

r=0

∑

ω̄,{c1,...,cr}
Aω̄(−Ac1) · · · (−Acr),

where ω̄, c1, .., cr have disjoint supports, c1, .., cr are cycles and ω̄ is a self avoiding
path from a to b. If a = b then ω̄ = (a) and Aω̄ = 1.

By Cramer’s formula

(3)
det(I −A)(b,a)

det(I −A)
= (I −A)−1

ab ,

so, as elements in the ring of power series in A with rational coefficients,

(4)

∑∞
r=0

∑
ω̄,{c1,...,cr}A

ω̄(−Ac1) · · · (−Acr)
∑∞

r=0

∑
{c1,...,cr}(−Ac1) · · · (−Acr)

=
∑

ω:a→b

Aω .

The result of Viennot generalises this formula to the case where the weights
on the self-avoiding loops and the weight on the self-avoiding path are arbitrary.
Let C be the finite set of all self-avoiding loops in S. For each c ∈ C we require
a formal variable λc and let λ = {λc : c ∈ C}. Likewise let C(a, b) be the set of
all self-avoiding paths from a to b. For each ω̄ ∈ C(a, b) there is a formal variable
αω̄ and α = {αω̄ : ω̄ ∈ C(a, b)}. Let R be the ring of power series with rational
coefficients in λ, α. Define an element of this ring by

(5) 〈a, b〉 =

∑∞
r=0

∑
ω̄,{c1,...,cr} αω̄λc1 · · ·λcr∑∞

r=0

∑
{c1,...,cr} λc1 · · ·λcr

.

By traveling along the path ω starting at a and ending at b, recursively erasing
self-avoiding loops in the order in which they appear, one obtains a possibly empty
list E(ω) of erased self-avoiding loops and a self-avoiding path ω̄(ω) from a to b.

E(ω) =

{
(c1, c2, . . . , cr) if r ≥ 1

() if r = 0

where c1, c2, . . . , cr are self-avoiding loops. In the case where a = b, ω̄(ω) = (a).

Theorem 1.1. [3]. For a, b ∈ S, as an identity in the ring of power series R,

〈a, b〉 =
∑

ω:a→b

(−λ)E(ω)αω̄(ω)

where

(−λ)E(ω) =
r∏

i=1

(−λci).

Cramer’s formula is the particular case where the formal variables are specialised
according to

λc = −Ac, αω̄ = Aω̄.

The proof of the bijection discovered by Viennot is elegant. It is based on the
theory of heaps. Our proof uses the Mayer expansion [6, 2] to perform the division
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in (5). By using the theory of combinatorial species [5, 4, 1] the Mayer expansion is
proved to be equal to a sum over a species of (loop ensemble and one self-avoiding
path) connected by edges of a tree graph. The edges of the tree graph taken in
the right order describe how to insert all the loops into the self-avoiding path to
obtain a species consisting of a single path. Loop erasure is the inverse surgery,
which applied to this path recreates the ensemble of loops, the self-avoiding path
and the tree.
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On the Brockett-Wegner Diagonalizing Flow

Volker Bach

(joint work with Jean-Bernard Bru)

In 1991, R. Brockett found a method to diagonalize a self-adjoint complex
N × N matrix H ∈ MN×N (C) by a family {U(t, s)}0≤s≤t ⊆ U(N) of unitary
transformations. With H as initial value, its diagonalized form H∞ is obtained
in the limit H∞ = limt→∞Ht, where Ht := U(t, 0)HU(t, 0)∗. A similar idea was
independently developed by F. Wegner in 1994.

Both derivations are formal, however, in the sense that the question of global
existence ofHt, which results from a nonlinear evolution equation, is not addressed.
J.-B. Bru and V. Bach have specified sufficient conditions insuring global existence
which are presented in the seminar.

Moreover, both Brockett’s and Wegner’s methods are restricted in applicability
to trace-class operators, and it is not clear, how to extend it to more general
classes of operators. Together with M. Walser, J.-B. Bru and V. Bach show that
the method is at least transferable to second quantizations dΓ(h) of operators h,
whose off-diagonal part is Hilbert-Schmidt. This is possible because the identity
used by Brockett, which results from the cyclicity of the trace, can be pulled back
from the second quantization dΓ(h) of the operator h to the operator h itself,
where it yields finite values for the trace.
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Exit distribution for random walks in random environments

Erwin Bolthausen

(joint work with Ofer Zeitouni)

We consider the standard random walks in random environments (RWRE for
short) on Zd, d ≥ 3. Let P be the set of probability distributions on Zd, charging
only neighbors of 0. If ε ∈ (0, 1/2d), we set

Pε def
=

{
q ∈ P :

∣∣∣∣q (±ei) −
1

2d

∣∣∣∣ ≤ ε, ∀i
}
,

where the ei are the standard base vectors in Rd. We call an element ω ∈ Ω
def
=

PZ
d

a random environment. For ω ∈ Ω, and x ∈ Z
d, we consider the transition

probabilities pω (x, y)
def
= ωx (y − x) , if |x− y| = 1, and pω (x, y) = 0 otherwise.

The random walk {Sn}n≥0 with initial position x ∈ Zd is, given the environment
ω, the Markov chain with S0 = x and transition probabilities

Pω,x(Sn+1 = y|Sn = z) = ωz(y − z) .

We are interested in the case of a random ω. Given a probability measure µ

on P , we therefore consider the product measure Pµ
def
= µ⊗Z

d

on Ω. Our basic
assumption is

Condition 1. µ is invariant under lattice isometries, i.e. µf−1 = µ for any
orthogonal mapping f which leaves Zd invariant, and µ (Pε) = 1 for some (small)
ε ∈ (0, 1/2d).

This model of RWRE has been studied extensively. We refer to [6] for recent
surveys. A major open problem is the determination, for d > 1, of laws of large
numbers and central limit theorems in full generality (the latter, both under the
quenched measure, i.e. for Pµ-almost every ω, and under the annealed measure
Pµ ⊗ Px,ω). Although much progress has been achieved in recent years ([3, 4, 1]),
a full understanding of the model has not yet been achieved.

We consider here exit distributions of the random walk from balls

VL
def
=

{
x ∈ Z

d : |x| ≤ L
}
,

where |·| denotes the Euclidean distance. For x ∈ VL, we write ΠL,ω (x, ·) for the
exit distribution of the RWRE from VL i.e.

ΠL,ω (x, z)
def
= Pω,x

(
SτVL

= z
)
,

where τVL is the first exit time of the walk from VL. We also write πL (x, ·) for
the exit distribution of ordinary random walk. The main result is that ΠL,ω (x, ·)
with probability close to 1 approaches πL (x, ·) if L is large. The distance between
the two distributions can however not be measured in terms of the total variation
distance as this cannot approach 0, due to the random environment close to the
boundary. However, only some slight smoothing is necessary.
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Let f : R
d → [0,∞) be a smooth rotational symmetric probability density. For

r > 0 (large), we set

fr (x)
def
=

f (x/r)∑
y f (y/r)

, x ∈ Z
d.

Our main result is

Theorem 2. There exists ε > 0 (depending only on the dimension d ≥ 3) such
that if Condition 1, then for any η > 0 there exists r (η) with

lim
L→∞

Pµ

({
ω :

∥∥∥
∑

y
[ΠL,ω (0, y) − πL (0, y)] fr (· − y)

∥∥∥
1
≥ η

})
= 0.

If r increases with L : rL ր ∞, then
∥∥∥
∑

y
[ΠL,ω (0, y) − πL (0, y)] frL (· − y)

∥∥∥
1
→ 0

in Pµ-probability.
In a recent paper [5], the authors obtain for a model of a diffusion in random

environment, essentially under similar conditions, a functional central limit theo-
rem. Such a CLT is not immediate from the above theorem. What is lacking is
essentially some control of the holding times. On the other hand, the local control
we get of the exit distribution is more precise than what is obtained in [5] for the
diffusion case.

For an earlier work on the same models, see [2].
The above result is proved using a multiscale analysis, showing that if the exit

distributions of the RWRE are close to the ones of ordinary random walk, then
on a bigger scale, they are even closer. This is achieved by representing the exit
distribution on the larger scale through the smaller ones, using the well known
perturbation expansion of the Green’s function. The main delicacy is coming
from the above mentioned fact that there can be no such contraction in total
variation norm. One therefore has to adapt the representation using an appropriate
smoothing. However, it turns out that the representation of the smoothed exit
distributions on the large scale is not possible through the smoothed ones on the
smaller scale alone. Fortunately, the representation can be adapted in such a way
that “non-smoothed” exit distributions are needed only in somewhat minor parts
of the perturbation expansion for which one needs only somewhat crude bounds.
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Infrared finite algorithms in QED

Alessandro Pizzo

(joint work with Volker Bach, Jürg Fröhlich)

We consider a nonrelativistic electron moving in the Coulomb field of a single
nucleus of unit charge and interacting with the soft modes of the quantized elec-
tromagnetic field. Our main concern is how to rigorously control the higher or-
der radiative corrections to the scattering amplitudes in the low energy regime
(Rayleigh scattering). In fact, Taylor formula is ill-defined when no infrared regu-
larization is adopted. We develop a proper perturbation theory and we provide an
asymptotic expansion, up to any order in the coupling constant, for the scattering
amplitudes, which represents a first important step towards a rigorous analysis of
metastable states. At this stage (scattering amplitudes), the asymptotic expansion
of the groundstate vector of the system is the main technical issue. Concerning this
expansion, we use a scaling analysis based on the iterated analytic perturbation
theory.

Renormalisation scalar quantum field theory on 4D-Moyal plane

Raimar Wulkenhaar

(joint work with Harald Grosse; Vincent Rivasseau, Fabien Vignes-Tourneret)

Quantum field theories on the Moyal plane characterised by the ⋆-product (in
D dimensions)

(a ⋆ b)(x) :=

∫
dDy

dDk

(2π)D
a(x+ 1

2θ·k) b(x+y) eiky , θµν = −θνµ ∈ R(1)

became fashionable after their appearance in string theory [1] and the discovery of
the UV/IR-mixing problem [2]. The UV/IR-mixing contains a clear message: If
we make the world noncommutative at very short distances, we must at the same
time modify the physics at large distances. The required modification is, to the
best of our knowledge, unique: It is given by an harmonic oscillator potential for
the free field action. In fact, we can prove the following

Theorem 3. The quantum field theory associated with the action

S =

∫
d4x

(1

2
∂µφ ⋆ ∂

µφ+
Ω2

2
(x̃µφ) ⋆ (x̃µφ) +

µ2

2
φ ⋆ φ+

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)
(x) ,(2)

for x̃µ := 2(θ−1)µν x
ν , φ-real, Euclidean metric, is perturbatively renormalisable

to all orders in λ.
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There are by now three different proofs of the theorem.

(1) by exact renormalisation group equations in a matrix base of the Moyal
algebra [3],

(2) by multi-scale analysis again in a matrix base of the Moyal algebra [4]
(3) by multi-scale analysis directly in position space [5].

First proof [H. Grosse and R. Wulkenhaar] The ⋆-product (1) leads in momentum
space to oscillating phase factors which result for some non-planar Feynman graphs
in convergent but not absolutely convergent integrals. Our starting point was the
conjecture that the selection of a certain order of integration by the renormalisation
scheme is at the origin of the UV/IR-mixing problem. Thus, our idea was to invent
a regularisation where the model with cut-off is well-defined and no ambiguity in
the order of integration appears.

We selected the renormalisation group approach as the right strategy. In order
to make use of the simplicity of renormalisation proofs based on exact renormal-
isation group equations, it was necessary to have amplitudes for vertices and the
propagator which are manifestly positive, not oscillating. This lead us to the use
of the matrix base of the Moyal algebra where, with respect to that base (given
by Laguerre polynomials), the ⋆-product becomes a product of infinite matrices.
The price for this achievement was a rather complicated kinetic matrix of the φ4-
action. We eventually succeeded in computing the propagator in the matrix base
by identifying the eigenvectors of the kinetic matrix as Meixner polynomials. At
the end, the matrix propagator was expressed as a finite sum over hypergeometric
functions. See [3].

The adaptation of the renormalisation group equation framework to the action
(2) requires two steps:

• Prove bounds for the cut-off propagator.
• Compute the amplitude of a graph as a function of these bounds.

We started with the second step. In [6] we proved a power counting theorem
for general dynamical matrix models, characterised by a scaling behaviour of the
propagator, in the exact renormalisation group approach. The proof is by induc-
tion in the number of vertices and loops. As Feynman graphs for matrix models
are ribbon graphs characterised by their topology, i.e. genus and number of holes
of the Riemann surface, the difficulty was:

• to guess the power counting theorem in terms of the topology,
• to prove that the scaling behaviour (in terms of the topology) is indepen-

dent of the history in which a graph of given topology arises from smaller
graphs with their topology.

The second step alone goes over 20 pages!
It turned out numerically [3] that the propagator obtained for Ω = 0 in (2) has

scaling properties which make the perturbative renormalisation impossible. Of
course, this is a manifestation of UV/IR-mixing. With inclusion of the harmonic
oscillator piece, also motivated by a duality argument [7], the scaling behaviour
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together with the power-counting theorem [6] implied that all non-planar graphs
and all graphs with more than 4 external legs are irrelevant. See [3].

As a result, only planar graphs with two or four external legs can be relevant
or marginal. However, these graphs are labelled by an infinite number of matrix
indices. Here, we invented a discrete Taylor expansion in the matrix indices of the
external legs which decomposes the (infinite number of) planar two- and four-leg
graphs into a linear combination of four relevant or marginal base functions and
an irrelevant remainder. The explicite realisation of the propagator in terms of
hypergeometric functions was essential in this estimation. These four universal
base functions have the same index dependence as the original action in matrix
formulation, which implies the renormalisability of the model [3]. A summary of
the main ideas and techniques can be found in [8].

We have also computed in [9] the one-loop β-functions of the model which
describe the dependence of the bare coupling constant and the bare oscillator fre-
quency on the cut-off matrix size. It turned out that λ

Ω2 remains constant under
the renormalisation flow. As |Ω| is bounded by 1, the running coupling constant
can be kept arbitrarily small over all scales for a sufficiently small renormalised
coupling constant. This is a sign that a constructive renormalisation of the non-
commutative φ4

4-model is possible.

Second Proof [V. Rivasseau, F. Vignes-Tourneret, R. Wulkenhaar] In [3] the as-
ymptotic properties of the propagator are only numerically determined. This
shortcoming was cured in [4] where we proved these bounds rigorously, for Ω large
enough. The idea was to use the Schwinger representation of the matrix propaga-
tor and to cut it into slices M−i ≤ α ≤M−i+1. We proved bounds in the matrix
indices as a function of the scale index i.

These bounds confirmed the previous numerically estimation, but also gave rise
to a different renormalisation proof. For given attribution of scale indices to each
propagator, we were able to sum all independent matrix indices of the graph, thus
giving the amplitude in terms of the scale attribution. In order to determine the
independent matrix summation indices, the SO(2)×SO(2) symmetry of the model
(2) was used, which is most conveniently realised in the dual of the graph. Then,
the lines of the dual graph are distinguished into tree lines (chosen according to
the scale attribution) and loop lines. The bounds implied that summation over
the loop angular momenta do not cost anything so that the power-counting degree
of divergence boils down to twice the number of completely inner vertices of the
dual graph minus the number of propagators. This is precisely the topological
degree of divergence found in [3]!

Third Proof [R. Gurau, J. Magnen, V. Rivasseau and F. Vignes-Tourneret] Renor-
malisation should be basis independent. In particular, the model (2) should also
be renormalisable in position space (or, which by duality [7] is the same, momen-
tum space). This was indeed confirmed in [5]. The advantage of position space is
that the propagator is simple: it is given by the Mehler kernel. The price to pay
are the oscillating phase factors in the vertex. The problem is elegantly circum-
vented by first proving that non-orientable graphs (which are always non-planar)
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are irrelevant even if one bounds the oscillating phases by 1. And for orientable
graphs (which can be planar or non-planar) the phases can be globally handled.
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Asymptotically safe renormalization flow in sigma-models with

warped product target spaces

Max Ralph Niedermaier

Research context: The renormalization problem for the quantized gravitational
field remains unsolved. Truncated variants of the problem allow one to gain insight
into obstructions and prospects. A fruitful truncation is one where the functional
integral over geometries ‘weighed’ with the Einstein-Hilbert action is restricted to
those allowing for two commuting Killing vectors. This truncation captures the
‘spin two’ aspect of the gravitational field and keeps infinitely many local dynam-
ical degrees of freedom. Suitably formulated the core part of the resulting renor-
malization problem consists in defining the quantum theorie of two-dimensional
nonlinear sigma-models whose target space is a warped product of the form

G/K h× R
1,1 ,

where G/K is a noncompact symmetric space (with a non-amenable Lie symmetry
group G) of curvature ζ < 0, R1,1 is isometric to two-dimensional Minkowski
space, and the ‘warp function’ h is a function of ρ, the area radius of the two
Killing vectors. The warped product then has scalar curvature ζ dim(G/K)/h(ρ).
Without the warp factor noncompact sigma-models of this type are of independent
interest, see the contribution by E. Seiler. The results described below can be put
into the context of the asymptotic safety scenario for quantum gravity [4] and
provide nontrivial evidence for it.
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Results [1, 2]: The systems are perturbatively non-renormalizable with a finite
number of couplings, reflecting the corresponding property of the untruncated
gravity theory. Using the covariant background field technique and dimensional
regularization the following results are obtained to all loop orders: (i) strict cutoff
independence can be achieved by allowing for infinitely many couplings. They
can be combined into a generating function of one real variable, the above ‘warp
function’ h. (ii) The renormalization flow of h is govered by a beta functional
which can be expressed in closed form in terms of the (one coupling) beta function
of the G/K sigma-model. (iii) The h-flow has a degenerate Gaussian and a non-
Gaussian fixed point function h∗. (iv) The warping (i.e. the coupling to gravity)
reverses the signs of the flow. While the single coupling of the G/K models is
infrared free, all the couplings contained in h are asymptotically safe. That is,
arbitrary linear perturbations h∗ + δh are to all loop orders driven back to h∗ in
the ultraviolet. (v) the trace anomaly vanishes at the non-Gaussian fixed point
and the gravitational constraints can be defined as composite operators.

The results suggest that the warped-product sigma-models exist as quantum
field theories beyond perturbation theory. An ‘exact’ bootstrap type construction
has been proposed for G/K = SL(2,R)/SO(2) [3] but contact to the functional
integral is missing. The investigation of nonperturbative aspects in the functional
integral formulation is an important open problem.
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Fermi liquid behavior in the weak coupling 2D Hubbard model at

exponentially small temperatures

Alessandro Giuliani

(joint work with Giuseppe Benfatto, Vieri Mastropietro)

We consider the two dimensional Hubbard model:

(1) H =
∑

~x∈Λ

∑

σ=↑↓
a+
~x,σ

(
− ∆

2
− µ

)
a−~x,σ + U

∑

~x∈Λ

a+
~x,↑a

−
~x,↑a

+
~x,↓a

−
~x,↓

where:

• Λ ⊂ Z2 is a square sublattice of Z2 with side L;
• a±~x,σ are creation or annihilation fermionic operators with spin index σ =↑↓

and site index ~x ∈ Λ, satisfying periodic boundary conditions in ~x;
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• ∆ is the discrete Laplacian on Z
2;

• µ > 0 is the chemical potential, whose value fixes the average density of
particles;

• U is the strength of the on–site density–density interaction; it can be either
positive or negative.

We study the (imaginary time) two point correlation function

(2) S(~x, t) = lim
L→∞

Tr
{
e−βHT a−(~x,t),σa

+

(~0,0),σ

}

Tr e−βH

where a±~x,t = etHa±~x e
tH and T is the fermionic time ordering, i.e. T a−~x,ta

+
~0,0

equals

a−~x,ta
+
~0,0

(−a+
~0,0
a−~x,t) if t > 0 (t ≤ 0). By fermionic multiscale analysis we de-

vise an iterative resummation scheme to compute S(~x, t) in terms of an expan-
sion convergent in the region of weak coupling and up to exponentially small
temperatures. The result is that two point correlation function at small U and
β−1 ≥ exp{−const/|U |}, can be written in the same qualitative form as the cor-
relation fucntion of a free Fermi gas, up to a (finite) renormalization of the Fermi
surface and of the wave functon renormalization constant. The result can be in-
terpreted as evidence of Fermi liquid behavior for small coupling and up to expo-
nentially small temperatures. The precise statement of our result is the following:

Theorem [2] Let us consider the 2D Hubbard model with 0 < µ < 2−
√

2
2 and

β−1 ≥ e−
a

|U| where a > 0 is a suitable constant. There exists a constant U0 > 0

such that, if |U | ≤ U0, the Fourier transform Ŝ(k), k = (~k, k0), of the two point
correlation function can be written as

(3) Ŝ(k) =
1

Z(θ)

1

−ik0 + ~vF (θ) ·
(
~k − ~pF (θ)

)
+R(k)

with Z(θ), ~vF (θ) and ~pF (θ) real and

(4) Z(θ) = 1 + a(θ)U2 +O(U3)

(5) ~vF (θ) = ~v
(0)
F (θ) +~b(θ)U2 + O(U3)

(6) ~pF (θ) = ~p
(0)
F (θ) + ~c(θ)U +O(U2)

where a(θ), |~b(θ)|, |~c(θ)| are bounded above and below by positive O(1) constants

uniformly in the region β−1 ≥ e−
a

|U| . Moreover

(7) |R(k)| ≤ C
[
|~k − ~pF (θ)|2 + k2

0 + |~k − ~pF (θ)||k0|
]

for some constant C > 0, uniformly in the considered range of parameters.

Remarks.
a) In the free case (U = 0) the two point correlation function has an expression

similar to (3) with Z(θ) replaced by Z0 = 1, ~pF (θ) replaced by ~p
(0)
F (θ) (the para-

metric equation of the free Fermi surface cos k1+cos k2 = 2−µ) and ~vF (θ) replaced
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by ~v
(0)
F (θ) = (sin k1, sink2)|~k=~pF (θ).

b) The condition 0 < µ < 2−
√

2
2 physically corresponds to the condition that umk-

lapp processes do not contribute to the scattering of n ≤ 4 particles.

c) The condition β−1 ≥ e−
a

|U| physically corresponds to the condition the temper-
ature is larger than the temperature where possible superconducting instabilities
are present.

The above theorem says that the 2D Hubbard model is a Fermi liquid up to
exponentially small temperatures and far from the half filled band case, in the
following sense. Comparing the representation (3) of the interacting two–point
Schwinger function with the free one, given in Remark (a), we see that they are
apparently similar but the parameters Z(θ), ~vF (θ) and ~pF (θ), differently from Z0,

~v
(0)
F (θ) and ~p

(0)
F (θ), are functions of the temperature β−1, for β−1 ≥ e−a/|U|. How-

ever such dependence can be stronger or weaker and the different sensitivity to a
variation of the temperature has important physical consequences. In the case of

the 2D Hubbard model with µ < 2−
√

2
2 we prove that Z(θ), ~vF (θ) and ~pF (θ) are

slowly depending on β for β−1 ≥ e−a/|U|, that is they are essentially constant in
β above an exponentially small temperature. This means that, in the considered
range of parameters, the interacting two–point correlation is essentially identical
to the free one, up to a renormalization of the parameters essentially independent
on the temperature; in this sense we say that the system shows a Fermi liquid
behavior for temperatures larger than an exponentially small one. This notion
of Fermi liquid is the natural mathematical interpretation of the notion of Fermi
liquid often used in the theoretical physics literature, and it is essentially the same
as the one adopted, for instance, in [3, 4].

Of course the property to be a Fermi liquid (in the above sense) is not triv-
ial at all and it is not verified in many cases. For instance, in the 1D Hub-
bard model, the wave function renormalization Z depends logarithmically on β,
that is c1U

2 log β ≤ |Z − 1| ≤ c2U
2 log β, with c1, c2 two positive constants,

for temperatures above an exponentially small temperature; so, with our defin-
ition, the 1D Hubbard model is not a Fermi liquid in such range of temperatures.
In the 2D Hubbard model at half–filling (i.e. at µ = 2) it has been recently
proved [5, 6] that, for temperatures above an exponentially small temperature,

c1U
2 log2 β ≤ |Z − 1| ≤ c2U

2 log2 β , so that the system is not a Fermi liquid at
half–filling in that range of temperatures. On the contrary, an example of Fermi
liquid in the above sense is provided by the continuum approximation of model
(1) in d = 2, the so–called jellium model, for which [4] showed that, in a range of
temperatures above an exponentially small temperature, c1U

2 ≤ |Z − 1| ≤ c2U
2,

and the system is a Fermi liquid. Note that in the jellium model, due to rota-
tion invariance, the interacting and the free Fermi surfaces have exactly the same
shape, that is a circle, and the effect of the interaction essentially consists just in
changing its radius.
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The proof of the Theorem is achieved by determinantal bounds for the fermi-
onic expectations and by an iterative resummation of the original power series
expansion for the two–point correlation function and by a renormalization of the
free “measure”, which takes into account, in particular, the modification of Fermi
surface. This allows us to reexpress iteratively the original power series in U as
an expansion in an increasing number of parameters (they are indeed functions),
called the “effective couplings” and physically describing the effective interaction at
different momentum scales, denoted by (λ1 = U, λ0, λ−1, λ−2, . . .); moreover, the
coefficients of the new series are themselves depending on U through the renor-
malized single scale propagators. The new series will be well–defined whenever
Ū = maxh≤1 |λh| will be smaller than U0, where U0 is a constant independent of
the temperature. From the physical point of view, this means that the temperature

dependence at all orders in the expansion for Ŝ(k) is essentially all included in the
effective couplings, whose size in turn will depend strongly on the temperature.
We stress that the possibility of resumming the series into a new series admitting
this kind of “uniform bounds” is specific of d = 2 far from half–filling; for instance
in d = 1 the coefficient at order 2n ≥ 2 of the resummed expansion for Z(θ) be-
haves like (Ū/U0)

2n(log β)n, instead of (Ū/U0)
2n, even assuming that the effective

interactions are bounded. This is not the case in d = 2 far from half–filling; in
this case the breaking of Fermi liquid behavior can be due only to some instability
occurring in the effective interactions.

Our result should be compared to [4], in which a proof of Fermi liquid behavior
was given for the jellium model. We have taken from such papers two crucial
technical ingredients: the idea of using anisotropic sectors (and the relative sector
lemma of [7]) for the bounds and the idea of further decomposing some sector into
isotropic sectors in order to improve the bounds for the self energy; note however
that the technical implementation of such ideas in the proofs is rather different with
respect to [4], mainly for the heavy use of trees for reorganizing the perturbative
series and for the fact that we do not need neither a “1PI analysis” to extract
our power counting improvements needed to prove the Theorem. Moreover, the
presence of a non circular Fermi surface causes many new technical problems with
respect to the case in [4]. The most important one is that, while in the Jellium
case the interacting Fermi surface is fixed a priori to be a circle as consequence
of rotational symmetry, here on the contrary the shape and the regularity or
convexity properties of the interacting Fermi surface are completely unknown: in
fact there is no a priori evidence of the fact that the interacting Fermi surface is
regular and convex uniformly in β in the considered range of temperatures. Hence
we cannot in our case fix the interacting Fermi surface by properly tuning the
chemical potential, as it is done in [1, 4]; on the contrary, we proceed in a way
similar to that used in [8], by inserting at each integration step all the quadratic
part of the interaction in the free fermionic measure. In this way to each fermionic
integration at a certain momentum scale corresponds a different Fermi surface,
and one has to check that the geometrical conditions for defining sectors and to
apply the sector lemma are verified at each scale.
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[3] M. Salmhofer Continuous Renormalization for Fermions and Fermi Liquid Theory, Comm.
Math. Phys. 194 (1998) 249–295.

[4] M. Disertori, V. Rivasseau Interacting Fermi Liquid in Two Dimensions at Finite Temper-
ature. Parts I and II, Comm. Math. Phys. 215 (2000) 291–341 and 251–390.

[5] V. Rivasseau The Two Dimensional Hubbard Model at Half-Filling. I. Convergent Contri-
butions, J. Stat. Phys. 106 (2002) 693–722.

[6] S. Afchain, J. Magnen, V. Rivasseau Renormalization of the 2-Point Function of the Hubbard
Model at Half-Filling, Ann. Henri Poincare’ 6 (2005) 399–448 and 449–483.

[7] J. Feldman, J. Magnen, V. Rivasseau, E. Trubowitz An infinite volume expansion for many
fermions Green functions, Helv. Phys. Acta 65 (1992) 679–721.

[8] G. Benfatto, V. Mastropietro Renormalization group, hidden symmetries and approximate
Ward identities in the XYZ model, Rev. Math. Phys. 13 (2001) 1323–1435.

Renormalization of Non Commutative Field Theory in Direct Space

Vincent Rivasseau

(joint work with R. Gurau, J. Magnen and F. Vignes-Tourneret)

In joint work with R. Gurau, J. Magnen and F. Vignes-Tourneret [1], using di-
rect space methods, we provided recently a new proof that the Grosse-Wulkenhaar
scalar Φ4

4 theory on the Moyal space R4 is renormalizable to all orders in pertur-
bation theory.

The Grosse-Wulkenhaar breakthrough [2][3] was to realize that the right propa-
gator in non-commutative field theory is not the ordinary commutative propagator,
but has to be modified to obey Langmann-Szabo duality [4],[3].

Our method builds upon previous work of Filk and Chepelev-Roiban [5][6].
These works however remained inconclusive [7], since these authors used the right
interaction but not the right propagator, hence the problem of ultraviolet/infrared
mixing prevented them from obtaining a finite renormalized perturbation series.

We also extended the Grosse-Wulkenhaar results to more general models with
covariant derivatives in a fixed magnetic field [8]. Our proof relies solely on a
multiscale analysis analogous to [9] but in direct x configuration space.

Non-commutative field theories (for a general review see [10]) deserve a thorough
and systematic investigation. Indeed they may be relevant for physics beyond the
standard model. They are certainly effective models for certain limits of string
theory [11]-[12]. What is often less emphasized is that they can also describe
effective physics in our ordinary standard world but with non-local interactions.

In this case there is an interesting almost complete reversal of the initial Grosse-
Wulkenhaar problematic. In the Φ4

4 theory on the Moyal space R4, the vertex is
sort of God-given by the Moyal structure, and it is LS invariant. The challenge was
to overcome uv/ir mixing and to find the right propagator which makes the theory
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renormalizable. This propagator turned out to have LS duality. The harmonic
potential introduced by Grosse and Wulkenhaar can be interpreted as a piece of
the covariant derivatives in a constant magnetic field.

Now to explain the (fractional) quantum Hall effect, which is a bulk effect
whose understanding requires electron interactions, we can almost invert this logic.
The propagator is known since it corresponds to non relativistic electrons in two
dimensions in a constant magnetic field. It has LS duality. But the interaction
is unclear, and cannot be local since at strong magnetic field the spins should
align with the magnetic field, hence by Pauli principle the local interaction should
vanish.

We can argue that among all possible non-local interactions, a few renormaliza-
tion group steps should select the only ones which form a renormalizable theory
with the corresponding propagator. In the commutative case (i.e. zero magnetic
field) local interactions such as those of the Hubbard model are just renormalizable
in any dimension because of the extended nature of the Fermi-surface singularity.
Since the non-commutative electron propagator (i.e. in non zero magnetic field)
looks very similar to the Grosse-Wulkenhaar propagator (it is in fact a general-
ization of the Langmann-Szabo-Zarembo propagator) we can conjecture that the
renormalizable interaction corresponding to this propagator should be given by a
Moyal product. That’s why we hope that non commutative field theory is the cor-
rect framework for a microscopic ab initio understanding of the fractional quantum
Hall effect which is currently lacking.

Even for regular commutative field theory such as non-Abelian gauge theory,
the strong coupling or non perturbative regimes may be studied fruitfully through
their non commutative (i.e. non local) counterparts. This point of view is force-
fully suggested in [12], where a mapping is proposed between ordinary and non
commutative gauge fields which do not preserve the gauge groups but preserve
the gauge equivalent classes. We can at least remark that the effective physics
of confinement should be governed by a non-local interaction, as is the case in
effective strings or bags models.

In other words we propose to base physics upon the renormalizability principle.
Renormalizability means genericity; only renormalizable interactions survive a few
RG steps, hence only them should be used to describe generic physics. This search
for renormalizabilty could be the powerful principle on which to orient ourselves
in the jungle of all possible non-local interactions.

Fermionic theories such as as the two dimensional Gross-Neveu model can be
shown renormalizable to all orders in their Langmann-Szabo covariant versions,
using either the matrix basis [13] or the direct space version developed here [14].
However the x-space version seems the most promising for a complete non pertur-
bative construction, using Pauli’s principle to controll the apparent (fake) diver-
gences of perturbation theory. They are treated in the talk of F. Vignes-Tourneret.

In the case of φ4
4, recall that although the commutative version is until now

fatally flawed due to the famous Landau ghost, there is some hope that the non-
commutative field theory treated at the perturbative level in this paper may also
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exist at the constructive level [15][16]. Again the x-space version of renormaliza-
tion is probably better than the matrix basis for a rigorous investigation of this
question.
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A non trivial fixed point in a three dimensional quantum field theory

P.K. Mitter

Exact Renormalization Group methods give a constructive tool to analyze critical
behaviour of classical statistical mechanical systems and the related problem of
constructing a continuum limit ( ultraviolet cutoff removal) for euclidean quantum
field theory models. In this context an open challenging problem is to construct
a massless φ4 field theory in R3. It is expected that such a massless field theory
would be in the universality class of the critical Ising model in Z3. This expectation
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is supported by the renormalization group calculations of Wilson, Fisher, and many
others following them in various approximation schemes. But to date there is no
mathematical solution of this problem.
Brydges, Mitter and Scoppola in [BMS 2003] considered a variant of this model
baptized the φ4

3,ǫ model in R3. This corresponds to a perturbation by a φ4 inter-
action of a Gaussian random field with a covariance depending on a real parameter
ǫ in the range 0 ≤ ǫ ≤ 1. The covariance is the Green’s function of a stable Lévy
process in R3 and is both pointwise and Osterwalder-Schrader positive. For ǫ = 1
one recovers the Newtonian potential ( the covariance of the standard massless
free scalar field ) whereas for ǫ = 0 the φ4 interaction is marginal. The infinite
volume critical theory with a fixed ultraviolet cutoff at unit length scale was con-
sidered. It was proved that for ǫ > 0 and held sufficiently small there exists a
nontrivial hyperbolic fixed point of the renormalization group iterations. The sta-
ble manifold was constructed in a small neighborhood of this fixed point. It is an
open problem to extend the stable manifold beyond this region and to prove that
it connects the (unstable) Gaussian fixed point with the nontrivial (stable) fixed
point. A.Abdesselam has made progress on the construction of a renormalization
group trajectory connecting the two fixed points and he reports on this issue in
the present workshop, [A 2006].
In order to prove the above result some new methods of renormalization group
analysis were introduced in [BMS]. These build on earlier methods due to Brydges
and Yau in [BY 1990] and Brydges, Dimock and Hurd in [BDH 1998 ] but sim-
plify them considerably. A crucial ingredient is the use of multiscale expansions of
the underlying Gaussian random field as the sum of fluctation fields whose covari-
ances have finite range. This is accomplished in the continuum context above by
adopting an appropriate ultraviolet cutoff scheme. But such finite range multiscale
expansions are by no means special to a particular choice of ultraviolet cutoff. For
example it was shown by Brydges, Mitter and Guadagni in in [BGM 2004] that
a large class of Gaussian random fields on a lattice Zd have finite range expan-
sions. This has been generalized considerably by Brydges and Talarczyk in [BT
2006]. The upshot is that the analysis of fluctuation integrations get considerably
simplified and cluster expansions and analyticity norms can be dispensed with.
At a generic step of the discrete renormalization group flow the partition function
density is represented through a polymer gas representation where the polymer
activities K(X,φ) are supported on closed connected disjoint sets X (polymers)
which are unions of closed cubes in R3. In the complement of the union of these
sets there sits a local potential V ( local functional of fields). The couple (V,K)
gives coordinates for the RG trajectory which make sense in infinite volume (
in contrast to the partition function itself). The discrete RG flow can be now
considered as the iteration of a single RG map. Moreover one profits from the
non uniqueness of this representation so that all expanding ( relevant) variables
under the RG map: (V,K) → (V ′,K ′) are collected in the local part V so that
the polymer activities K represent contracting ( irrelevant) directions. The local
part V (Y, φ) in a region Y is the integral of a field polynomial with coefficients
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λ = (ξ, g, µ, ..) that may be generically called coupling constants which evolve
under the RG map. The space of functionals (λ,K) can be realized as a Banach
space. The nonlinear part of the RG map (λ,K) → (λ′,K ′) satisfies a Lipshitz
property and the discrete flow is then analyzed by methods of stable manifold
theory in a Banach space context leading to the claimed result.
The results in [BMS 2003] together with those reported in [A 2006] realise part of
what would be the Wilson program in the context of this model. An important task
is to study the scaling limit for correlation functions and in the process construct
elementary and composite scaling fields. Prelimnary investigations lead us to
expect that the simplest composite fields have anomalous scaling dimensions.
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Functional renormalization group approach to interacting electron

systems

W. Metzner

Interacting electron systems usually exhibit very different behavior on different
energy scales. Collective phenomena and composite objects emerge at scales far
below the bare energy scales of the microscopic Hamiltonian. For example, in
high-temperature superconductors one bridges three orders of magnitude from the
highest scale, the bare Coulomb interaction, via the intermediate scale of short-
range magnetic correlations, down to the lowest scale of d-wave superconductivity
and other ordering phenomena.

This diversity of scales is a major obstacle to a straightforward numerical so-
lution of microscopic models, since the most interesting phenomena emerge only
at low temperatures and in systems with a very large size. It is also hard to deal
with by conventional many-body methods, if one tries to treat all scales at once
and within the same approximation, for example by summing a subclass of Feyn-
man diagrams. Perturbative approaches which do not separate different scales are
plagued by infrared divergences, and are therefore often inapplicable even at weak
coupling, especially in low dimensions.
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It is thus natural to treat degrees of freedom with different energy scales succes-
sively, descending step by step from the highest scale present in the microscopic
system. This is the main idea behind all renormalization group (RG) schemes.
Using a functional integral representation this idea can be implemented by inte-
grating out degrees of freedom (bosonic or fermionic fields) successively, following
a suitable hierarchy of energy scales. This generates a one-parameter family of
effective actions which interpolates smoothly between the bare action of the sys-
tem, as given by the microscopic Hamiltonian, and the final effective action from
which all physical properties can be extracted. The Green or vertex functions cor-
responding to the effective action at scale Λ obey a hierarchy of differential flow
equations [1, 2, 3, 4]. This hierarchy is exact and involves the flow of functions
of generally continuous variables. For these reasons it is frequently referred to as
”exact” or ”functional” RG.

The exact hierarchy can be solved exactly only in special cases, where the un-
derlying model can also be solved exactly (and more easily) by other means. How-
ever, the functional RG is a valuable source for devising approximation schemes,
which can be obtained by truncating the hierarchy and/or by a simplified para-
metrization of the Green or vertex functions. These approximations have several
distinctive advantages: i) they have a renormalization group structure built in,
that is, scales are handled successively and infrared singularities are thus treated
properly; ii) they can be applied directly to microscopic models, not only to ef-
fective field theories which capture only some asymptotic behavior; iii) they are
physically transparent, for example one can see directly how and why new corre-
lations form upon lowering the scale; iv) one can use different approximations at
different scales. Small steps from a scale Λ to a slightly smaller scale Λ′ are much
easier to control than an integration over all degrees of freedom in one shot.

Truncations of the functional RG hierarchy of flow equation have recently led to
a number of powerful new computation schemes for interacting electron systems
[5].

Applications of truncated functional RG equations to the two-dimensional Hub-
bard model have greatly improved our knowledge of its leading instabilities [6, 7, 8].
In particular, the existence of d-wave superconductivity in that model was ”con-
clusively” (though not rigorously) established for weak repulsive interactions.

The complex behavior of isolated static impurities in weakly interacting one-
dimensional Fermi systems (Luttinger liquids) is captured already by a first order
truncation of the functional RG hierarchy of flow equations [9, 10]. Universal
asymptotic power-laws as well as non-universal behavior and crossover phenomena
at higher energy scales are obtained within the same scheme.

The functional RG can be expected to lead to further substantial progress in
a variety of problems in interacting Fermi systems which are characterized by
many energy scales and complicated infrared singularities. Promising candidates
under investigation are the computation of ordered (symmetry-broken) phases and
quantum critical behavior in itinerant electron systems.
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Functional Renormalization for Disordered Systems

Kay Jörg Wiese

(joint work with Pierre Le Doussal)

The statistical mechanics of even well-understood physical systems subjected to
quenched disorder still poses major challenges. For a large class of these systems,
as e.g. random-field models or elastic manifolds in quenched disorder, an apparent
simplification appears: Supposing that all moments of the disorder are finite, one
can show that all correlation functions in the disordered model, in the limit of zero
temperature, are equivalent to those of the pure system at finite temperature in
two space-dimensions less, at a temperature proportional to the second moment
of the quenched disorder [1]. This phenomenon is called dimensional reduction
(DR). However, one also knows that dimensional reduction gives the wrong result
at large scales, more precisely at scales larger than the Larkin length. The latter is
obtained from an Imry-Ma type argument, balancing elastic energy and disorder,
as we detail below. For a d-dimensional elastic manifold in quenched disorder, the
elastic and disorder energy are

(1) Eelastic[u] =

∫
ddx

1

2
(∇u(x))2 , EDO[u] =

∫
ddxV (x, u(x)) .

For d = 1, these are polymers, for d = 2 membranes; and for d = 3 elastic crystals,
as e.g. charge density waves. For simplicity we consider disorder which at the
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microscopic scale is Gaussian and short-ranged with second moment

(2) V (x, u)V (x′, u′) = δd(x− x′)R(u− u′) .

The most important observable is the roughness exponent ζ, which describes the

scaling of the 2-point function [u(x) − u(x′)]2 ∼ |x−x′|2ζ . The Imry-Ma argument
compares elastic energy Eel ∼ Ld−2 and disorder energy EDO ∼ Ld/2 to conclude
that in dimensions smaller than four, disorder always wins at large scales, leading
to an RG-flow to strong coupling (in a way to be made more precise below). This
suggests that the dimensional reduction result ζDR = 4−d

2 will become incorrect
below four dimensions.

Functional RG was first introduced in [2, 3], and pioneered for the problem at
hand in [4, 5]. Important improvements have been obtained by several authors,
see [8] for a more detailed introduction and review.

Having identified four as the upper critical dimension, one would like to ex-
pand in ǫ = 4 − d. Taking the dimensional reduction result ζ = (4 − d)/2 in
d = 4 dimensions tells us that the field u is dimensionless. Thus, the width
σ = −R′′(0) of the disorder is not the only relevant coupling at small ǫ, but any
function of u has the same scaling dimension in the limit of ǫ = 0, and might
thus equivalently contribute. The natural consequence is that one has to follow
the full function R(u) under renormalization, instead of just its second moment
R′′(0). Such an RG-treatment is most easily implemented in the replica approach:
The n times replicated partition function becomes after averaging over disorder

exp
(
− 1
T

∑n
a=1Eel[ua] − 1

T

∑n
a=1EDO[ua]

)
=

exp
(
− 1
T

∑n
a=1Eel[ua] +

1
2T 2

∑n
a,b=1

∫
ddxR

(
ua(x) − ub(x)

))
. Perturbation the-

ory is constructed along the following lines: The bare correlation function is graph-
ically depicted as a solid line, with momentum k flowing through and replicas a
and b at its end; equivalently the disorder vertex is represented as a dashed line:

(3) a b =
Tδab
k2

,

x
a

b
=

∫

x

∑

a,b

R
(
ua(x) − ub(x)

)
.

The rules of the game are to find all contributions which correct R, and which
survive in the limit of T = 0. At leading order, i.e. order R2, counting of factors of
T shows that only the terms with one or two correlators contribute. On the other
hand,

∑
a,bR(ua − ub) has two independent sums over replicas. Thus at order

R2 four independent sums over replicas appear, and in order to reduce them to
two, one needs at least two correlators (each contributing a δab). Thus, at leading
order, only diagrams with two correlators survive. These are the following (noting
C(x− y) the Fourier transform of 1/k2):

a

b

x y
a

b
=

∫

x

R′′(ua(x) − ub(x))R
′′(ua(y) − ua(y))C(x − y)2(4)

a

b

x y
a

b
= −

∫

x

R′′(ua(x) − ua(x))R
′′(ua(y) − ua(y))C(x − y)2 .(5)
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renormalization

uu

-R’’(u) -R’’(u)

Figure 1. Change of −R′′(u) under renormalization and forma-
tion of the cusp.

In a renormalization program, we are looking for the divergences of these dia-
grams, for ǫ → 0. These divergences are localized at x = y, which allows to ap-
proximate R′′(ua(y)−ub(y)) by R′′(ua(x)−ub(x)). The integral

∫
x−y C(x−y)2 =

∫
k

1
(k2+m2)2 = m−ǫ

ǫ (using the most convenient normalization for
∫
k
), is the stan-

dard 1-loop diagram, which we have chosen to regulate in the infrared by a mass,
i.e. physically by a harmonic well which is seen by the manifold. Note that the
following diagram also contains two correlators (correct counting in powers of tem-

perature), but is not a 2-replica but a 3-replica sum: a

b

x y

a

c
.

Taking into account the combinatorial factors, and a rescaling of R (which
remember has dimension ǫ for a dimensionless field u) as well as of the field u (its
dimension being the roughness exponent ζ), we arrive at [5]

(6) −m ∂

∂m
R(u) = (ǫ− 4ζ)R(u) + ζuR′(u) +

1

2
R′′(u)2 −R′′(u)R′′(0) .

Note that the field u itself does not get renormalized due to the statistical tilt
symmetry u(x) → u(x) + αx.

The important observation is that starting with smooth microscopic disorder,
integration of the RG-equation leads to a cusp in the second derivative of the
renormalized disorder at the Larkin-length, as depicted on figure 1. This can easily
be seen from the flow-equation of the fourth derivative (supposing analyticity),
which from (6) is obtained as

(7) −m ∂

∂m
R′′′′(0) = ǫR′′′′(0) + 3R′′′′(0)2 .

(Note that this explains also the appearance of the combination ǫ − 4ζ in (6)).
This equation has a singularity after finite renormalization time, equivalent to the
appearance of the cusp, as depicted on figure 1. After that dimensional reduction
is no longer valid.

Let us sketch how to proceed:
Different microscopic disorder leads to different RG fixed points. The latter are

solutions of equation (6), generalized to 2 loop [6, 7], with −m ∂
∂mR(u) = 0; it is

important to note that given a microscopic disorder, the exponent ζ, solution of (6)
is unique. For random-bond disorder (short-ranged potential-potential correlation
function) the result is ζ = 0.20829804ǫ+0.006858ǫ2 [5, 6, 7]. In the case of random
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field disorder (short-ranged force-force correlations) ζ = ǫ
3 . Both results compare

well with numerical simulations.
Different physical situations can then be adressed. For lack of space, we refer

to [8] for a more detailed introduction, and to http://www.lpt.ens.fr/∼wiese

for up-to date references.
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Nonperturbative Anomalies in QFT by Rigorous RG

Vieri Mastropietro

(joint work with G. Benfatto, P. Falco)

A central role in QFT is played by chiral Ward Identities (WI) and the relative
Anomalies, which are corrections to the Naive Ward Identities found by formal
manipulations of field equations [1]. WI provide in QED or in Electroweack theory
relations between the bare parameters which are crucial even to prove the renor-
malizability of the theories. There is some agreement on the validity of a property,
the Adler-Bardeen Theorem, see [1, 3], stating that the anomaly is given exactly
by its lower order non vanishing contribution; on this property is based the proof
of renormalizability of Electroweak theory. In general all the issues about WI and
anomalies, and their role in the construction of a QFT, are quite subtle and deli-
cate, so that it is convenient to consider models at lower dimension, which can be
considered a laboratory to test general ideas.

We consider the Thirring model, describing a system of Dirac fermions with
a local current-current interaction (but our techniques can be applied to a larger
class of models), whose generating function Wκ,K(J, φ) is given by the log of the
following Grassmann integral

(1)

∫
P (ψ)e−

λK
2 V (

√
ZKψ)+

R
dx[φ̄xψx+ψ̄xφx+Z

(2)
K Jxψ̄xψx]}
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where ψx, ψ̄x are Grassmann spinor variables, x = (x0, x), V =
∫
dxψ̄xψxψ̄xψx

and λK , ZK , Z
(2)
K are respectively the bare coupling, wave function and density

renormalization. We find it convenient to introduce Weyl Grassmann variables
ψ±
ω,x with ω = ± such that ψx = (ψ−

x,+, ψ
−
x,−) and ψ̄ = ψ+γ0; analogous definitions

are applied to the external fields Jx and φx. P (ψ) is a fermionic measure with
propagator

gκ,Kω,ω′(k) =
1

ZK
χκ,K(k)

[(
−ik0 + k iµK
−iµK −ik0 − k

)−1
]

ω,ω′

where χκ,K(k) is a smooth cutoff function selecting momenta κ ≤ |k| ≤ K, with
κ < 1, K > 1 and µK is the bare mass. In the massless limit µK = 0 the

propagator is simply given by gκ,Kω (k) =
χκ,K(k)
ZKDω(k) with Dω(k) = −ik0 + ωk. By

taking functional derivatives of Wκ,K with respect to φ we get the Schwinger
functions, while taking also derivatives with respect to J we get the vertex func-

tions. In particular we consider G2,1
κ,K,ω,ω′(x;y, z) = ∂

∂Jx,ω

∂2

∂φ+

y,ω′∂φ
−

z,ω′

W (φ, J)|0,0
and G2

κ,K,ω(y, z) = ∂2

∂φ+
y,ω∂φ

−
z,ω
W (φ, J)|0,0. The presence of the ultraviolet cutoff

K and the infrared cutoff κ makes the functional integral (1) well defined, but
singularities are found when cutoffs are removed for generic values of the bare
parameters; to carry out the renormalization program at non-perturbative level
we have to prove that there exist bare parameters (only depending on K) such
that, in the limit κ → 0,K → ∞, the Schwinger functions verify the OS axioms
[21]. The choice of regularizing the functional integral (1) via the cutoff function
χκ,K(k) is particularly convenient but many others are possible; indeed we can
prove that we get the same theory for a large class of regularizations, including a
lattice regularization. On the other hand all the regularizations we can use break
the local gauge invariance ψ±

x,ω → e±αω,xψ±
x,ω, which is valid at a classical level.

Note finally that, despite the enormous literature devoted to the Thirring model, a
complete nonperturbative construction of it starting from a regularized functional
integral like (1) is lacking.

Non-perturbative Renormalization. Our basic result consists in the proof
that cutoffs can be removed in (1) with a proper choice of the bare parameter.

THEOREM Given λ and µ small enough, there exist bare parameters λK =

λ+O(λ2), Z
(2)
K Z−1

K ≡ ξK = 1 +O(λ),

(2) ZK = K−η(1 + O(λ2)
)

µK = µK−η̄(1 + O(λ))

with η and η̄ independent of µ and such that η = aλ2 + O(λ3), η̄λ = −bλ+ O(λ2),
a, b > 0, such that the Schwinger functions at non-coinciding points exist in the
limit κ→ 0,K → ∞ and verify OS axioms. In particular, if limκ−1,K→∞G2

κ,K,ω ≡
G2
ω, there are positive constants C and c, such that

(3)
∣∣G2

ω(x,y)
∣∣ ≤ C

|x − y|1+η e
−c
√
µ1+η̂ |x−y|
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with η̂ = −b1λ + O(λ2), b1 > 0. Moreover, G2
ω(x,y) is singular for x → y and

diverges as |x − y|−1−η.
The above results are uniform in the mass, and the massless limit is reached

smoothly.
Anomaly and Anomaly Renormalization. We can consider the WI in the

massless limit µK = 0; the presence of the cutoff function χh,N breaks the chiral
invariance, so that the WI has additional terms

(4) Dω(p)G2,1
κ,K,ω,ω′(p,k) = δω,ω′ [G2

κ,K,ω(k − p) −G2
κ,K,ω(k)] + ∆2,1

κ,K,ω,ω′(p,k)

where ∆2,1
κ,K,ω,ω′ = ∂

∂Jx,ω

∂2

∂φ+

y,ω′∂φ
−

z,ω′

Hκ,K(φ, J)|0,0 and Hκ,K(φ, J) is given by the

log of a functional integral similar to (1), with the difference that Z
(2)
N

∫
dxJ(x)ψ̄xψx

in the exponent is replaced by ZN
∫
dkdpCκ,Kω (k,k − p)ψ+

k,ωψ
−
k−p,ω where

Cκ,kω (k,k+p) is given by ([χκ,K(k)]−1−1)Dω(k)−([χκ,K(k+p)]−1−1)Dω(k+p).

Note that ∆2,1
κ,K,ω,ω′ is a rather complex functional integral depending on the de-

tails of the cutoff function; however, , it can be written in a remarkably simple
form; we prove in fact that ∆2,1

κ,K,ω,ω′ can be written as

(5) ν+Dω(p)G2,1
κ,K,ω,ω′ + ν−D−ω(p)G2,1

κ,K,−ω,ω′ +H2,1
κ,K,ω,ω′

where ν+ and ν− are suitable functions of λ such that

(6) |ν+ − a+λ
2| ≤ cλ3 |ν− − a−λ| ≤ Cλ2

with a− = 1
4π and a+ strictly negative; moreover, for fixed non-zero k,p,

(7) lim
κ−1,K→∞

H2,1
κ,K,ω,ω′(p,k) = 0

Eqs. (4), (5) and (7) imply that, in the limit κ−1,K → ∞, the model (1) really
verifies an anomalous WI of the form assumed in [17]; however the values of the
anomaly coefficients are different with respect to the ones in [17] and in particular
the Anomaly Non-renormalization property does not hold.

New anomaly in the Schwinger-Dyson equation. The two point function
G2
κ,K,ω verifies a Schwinger-Dyson (SD) equation

(8) ξK
−1G2

κ,K,ω(k) = gκ,Kω (k)[Z−1
K − λK

∫
dpG2,1

κ,K;−ω,ω(p,k)]

By using the WI (4) and (5), we get, if α = (1− ν+ − ν−)−1, ᾱ = (1− ν+ + ν−)−1

and Aω = (α + ωᾱ)/2

G2
ω,κ,K(k) =

gκ,Kω (k)

ZK
− λKA−g

κ,K
ω (k)

∫
dp(9)

G2
ω,κ,K(k − p)

D−ω(p)
−

∑

ω′

λKAω′gκ,Kω (k)

∫
dp
H2,1
K,κ,ω,ω′(p,k)

D−ω(p)

If the last term in (9) were vanishing in the limit κ−1,K → ∞, one would get a
closed equation for G2

ω, which is identical to the closed equation obtained in [17],

inserting the WI in the SD equation. However this is not what happens; H2,1
κ,K,ω,ω′
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is vanishing in the limit κ−1,K → ∞ at k,p fixed, but the same is not true for
its integral over p. Intuitively this can be understood by noting that the integral
involves momenta close to the u.v. cutoff scale K, where H2,1

κ,K,ω,ω′ is not small
at all. In other words: even if the WI and the SD equation are true in the model
(1), in the limit κ−1,K → ∞, the closed equation obtained combining the two
identities is not verified; this is a new anomaly which is hard to see in a purely
perturbative approach and in fact it was never noticed before. The fact that the
last term in (9) is not vanishing in the limit κ−1,K → ∞ could imply that there

is no closed equation for G2
ω; however we can prove that λKg

κ,K
ω (k)

∫
dp

H2,1
κ,K,ω,εω

D−ω(p)

can be written as

(10) αε,κ,K
gκ,Kω (k)

ZK
+ ρεG

2
ω,κ,K(k) +R4,κ,K

ε (k)

with limκ−1,K→∞R4,κ,K
ε (k) = 0 and ρ± suitable functions of λ such that ρ+ =

c2λ
2 +O(λ2), ρ− = c4λ+O(λ). By inserting (10) in (9) we get then, in the limit

κ−1,K → ∞, a closed equation which is however different from the one assumed
in [17]; in particular, the relation between the critical index η of the two point
Schwinger function and the anomaly coefficients ν± is given by

(11) η =
λ∞
2π

ν−
(1 − ν+)2 − ν2

−

1

1 +
∑
εAερε

As
∑
εAερε = c0λ + O(λ2), c0 > 0, we see that the new anomaly produces a

different relation with respect to the ones found in [17]. Note that the combination
of WI and SD equations is a rather general technique in QFT; it is used, for
instance, in QED by [19, 11] and in condensed matter physics in [20], hence this
new anomaly could be relevant in a more general setting.
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Renormalization of the Non-commutative Gross-Neveu Model

Fabien Vignes-Tourneret

From the rebirth of non-commutative quantum field theories [1, 2, 3], people were
faced to a major difficulty. A new (with respect to the usual commutative the-
ories) kind of divergences appeared in non-commutative field theory [4, 5]. This
UV/IR mixing incited people to declare such theories non-renormalizable. Nev-
ertheless H. Grosse and R. Wulkenhhar found recently the way to overcome such
a problem by modifying the propagator. Such a modification will be now called
“vulcanization”. They proved the perturbative renormalizability, to all orders, of
the non-commutative Φ4 theory (1) on the four-dimensionnal Moyal space [6, 7].

(1) S =

∫
dx

1

2
φ

(
−∆ + Ω2x̃2 +m2

)
φ+

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

Their proof is written in the matrix basis. This is a basis for the Schwartz class
functions where the Moyal product becomes a simple matrix product [8, 9]. A
Moyal based interaction has a non-local oscillating kernel. The main advantage of
the matrix basis is that the interaction is then of the type TrΦ4. This form is much
easier to use to get useful bounds. The main drawback is the very complicated
propagator (see [10] for a complete study of the Gross-Neveu propagator in the
matrix basis). This is one of the reasons which lead collaborators and myself to
recover in a simplified manner the renormalizability of the non-commutative Φ4

theory in x-space [11]. The direct space has several advantages. First of all, the
propagator may be computed exactly (and used). It has a Mehler-like form in the
Φ4, LSZ and Gross-Neveu theories [10, 11, 12]. The x-space allows to compare
the behaviour of commutative and non-commutative theories. It seems to allow a
simpler handling of symmetries like parity of integrals. This point is very useful for
the renormalization of the Gross-Neveu model. We also plan to extend renormaliz-
ability proofs into the non-perturbative domain thanks to constructive techniques
developped in x-space. Finally, at the end, when Physics enter into the game, we
would like to have some experience with our physical space. Of course x-space
has also drawbacks. It forces to deal with non absolutely convergent integrals.
We have to take care of oscillations. Until now it is much more difficult to get
the exact topological power-counting of the known non-commutative field theories
in direct space than in the matrix basis. The non-commutative parametric repre-
sentation would certainely provide an other way to get the full power-counting [13].
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Apart from the Φ4
4, the modified bosonic LSZ model [11] and supersymmet-

ric theories, we now know several renormalizable non-commutative field theories.
Nevertheless they either are super-renormalizable (Φ4

2 [9]) or (and) studied at a
special point in the parameter space where they are solvable (Φ3

2,Φ
3
4 [14, 15], the

LSZ models [16, 17, 18]). Although only logarithmically divergent for parity rea-
sons, the non-commutative Gross-Neveu model is a just renormalizable quantum
field theory as Φ4

4. Its main interesting feature is that it is completely equivalent to
a non-local fermionic field theory in a constant magnetic background. Then apart
from strengthening the “vulcanization” procedure to get renormalizable non-com-
mutative field theories, the Gross-Neveu model may also be useful for the study
of the quantum Hall effect. It is also a good first candidate for a constructive
study [19] of a non-commutative field theory as fermionic models are usually eas-
ier to construct. Finally its commutative counterpart being asymptotically free
and exhibiting dynamical mass generation [20, 21, 22], a study of the physics of
this model would be interesting.

In [23], I prove the perturbative renormalizability of the orientable non-com-
mutative Gross-Neveu model defined by the following action functionnal

(2) S[ψ̄, ψ] =

∫
dx

(
ψ̄ (−ıγµ∂µ + Ωγµx̃µ +m)ψ + Vo(ψ̄, ψ)

)
(x)

where Vo(ψ̄, ψ) = 1
4

∑
a,b λ1ψ̄a⋆ψa⋆ψ̄b⋆ψb+λ2ψ̄a⋆ψb⋆ψ̄b⋆ψa+λ3ψ̄a⋆ψb⋆ψ̄a⋆ψb.

The main difficulty in the proof is due to the propagator. By multiscale analysis
[19], the Φ4 propagator in a slice i behaves like

(3) CiΦ(x, y) ∼M2i e−M
2i(x−y)2−M−2i(x+y)2 .

The term exp−M−2i(x + y)2 was called “masslet”. In the Gross-Neveu model,
the masslet is replaced by an oscillation. The propagator behaves like

(4) CiGN(x, y) ∼M i e−M
2i(x−y)2+2ıΩxΘy .

Whereas, in the Φ4 case, the (vertex) oscillations were only useful to prove the
convergence of the non-planar graphs, here the total oscillation (vertex + propa-
gator) is needed to get the power-counting even for planar graphs. This requires
a carefull exploitation of those oscillations.

Moreover the Gross-Neveu model exhibits two new features (with repsect to
Φ4). At first, there is a remaining UV/IR mixing. It concerns the planar four-
point graphs with two broken faces (N = 4, g = 0, B = 2, see [6, 24]). These graphs
are logarithmically divergent if the two points in the second broken face are joined
by a single line at a lower scale. They converge if it is not the case. Whereas those
connected components are not renormalizable by a vertex-like counterterm of the
initial Lagrangian, they are nevertheless renormalizable by the corresponding two-
point function. The second feature is that the vacuum graphs recover translation
invariance.
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Towards a complete renormalization group trajectory between two

fixed points

Abdelmalek Abdesselam

This is a report on work in progress [1] aiming at constructing a complete RG
trajectory, with rigorous control across all scales, joining a Gaussian ultraviolet
fixed point to a nontrivial infrared fixed point. Note that since this is ongoing
work, some statements and definitions might be altered in future accounts. The
model we consider is the φ4

3,ǫ Euclidean quantum field theory studied by Brydges,

Mitter and Scoppola [3]. It is a three-dimensional φ4 model in infinite volume
with a modified free propagator depending on a bifurcation parameter ǫ. When
ǫ = 1 this is the usual φ4

3 model; whereas at ǫ = 0 the coupling constant becomes
marginal as in the φ4

4 model. Here we consider the situation where ǫ > 0 is very
small.

More precisely, let v : R3 → R be a pointwise nonnegative C∞ and rotation
invariant function which vanishes when |x|∞ ≥ 1

2 where |x|∞ = max1≤i≤3(xi),

for x = (x1, x2, x3) ∈ R
3. Let u = v ∗ v be the convolution of v with itself.

The u function is positive both in direct and momentum spaces; it is also strictly
short-ranged in direct space. We define the smooth UV-regularized covariance

C(x, y) =

∫ +∞

1

dl

l
l−( 3−ǫ

2 )u

(
x− y

l

)

as well as the corresponding Gaussian measure dµC(φ). The model we consider is
that of functional integrals Z =

∫
dµC(φ) . . . e−V (φ) with an interaction potential

V (φ) = g
∫
d3x : φ4 :C (x) + µ

∫
d3x : φ2 :C (x) with Wick ordering with respect

to the covariance C. The RG transformation we use in order to study this model
is that of [3], in the formal infinite volume limit. It is given by a recursion





gn+1 = Lǫgn − L2ǫa(L, ǫ)g2
n + ξg,n(gn, µn, Rn)

µn+1 = L
3+ǫ
2 µn + ξµ,n(gn, µn, Rn)

Rn+1 = Ln(Rn) + ξR,n(gn, µn, Rn)

where the integer L > 1 is the scale ratio of a single RG step; a(L, ǫ) = O(logL) is
the, second order in perturbation theory, contribution given by the bubble graph
to the renormalization of the coupling g; and the Rn live in a family of Banach
spaces BR,n of polymer activities in the sence of [4]. The map Ln is a linear
operator BR,n → BR,n+1 which incorporates the integration over the fluctuation
field, rescaling, volume effect (summing small cubes inside big ones), and the
substraction of dangerous relevant parts. The map actually depends on the other
two dynamical variables gn and µn, but we suppressed this dependence in what
follows for ease of exposition.

Our aim is to construct a double-sided sequence s = (gn, µn, Rn)n∈Z which
solves this recursion and such that lim

n→−∞
(gn, µn, Rn) = (0, 0, 0) the Gaussian ul-

traviolet fixed point, and lim
n→+∞

(gn, µn, Rn) = (g∗, µ∗, R∗) the BMS nontrivial

infrared fixed point [3]. As sets and even as topological vector spaces the BR,n
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are the same; what changes is the norm. Indeed, BR,n is equipped with a norm
|| · ||R,n which incorporates a measurment of the typical size of a low-momentum

field |φ(x)| ∼ hn ∼ g
− 1

4
n . This is an avatar of the large-field problem and the dom-

ination procedure addressed for instance in [6, 5, 7, 2]. In addition to adapting the
estimates of [3] to the present context (already a rather time consuming process),
the main new difficulty we had to overcome is due to this variation of the norms
with the discrete coordinate n along the trajectory.

We begin by considering the approximate sequence s̄ = (ḡn, 0, 0)n∈Z where
ḡn+1 = f(ḡn) with f(x) = Lǫx − L2ǫa(L, ǫ)x2; and construct the deviation δs =
s − s̄ by a contraction mapping argument in a Banach space of sequences with a
weighted norm

||s|| def
= sup

n∈Z

(
max

{
|gn|ḡ−1

n , |µn|ḡ−λµ
n , ||Rn||R,nḡ−λR

n

})
.

The only free parameter is g0 = ḡ0 the coupling at the “anthropic” (or perhaps
“antropic”) scale. One uses the approximate sequence ḡn in order to define the
polymer activity norms || · ||R,n. One also needs λµ slightly smaller than 2, and
λR slightly smaller than 3, for the construction to work. In terms of the deviation
δs = (δgn, µn, Rn)n∈Z the RG map is





δgn+1 = f ′(ḡn)δgn +
[
−L2ǫa δg2

n + ξg,n(ḡn + δgn, µn, Rn)
]

µn+1 = L
3+ǫ
2 µn + ξµ,n(ḡn + δgn, µn, Rn)

Rn+1 = Ln(Rn) + ξR,n(ḡn + δgn, µn, Rn) .

When the latter is iterated, using both forward and backward discrete integral
equations, we obtain our contraction mapping s 7→ s′, or rather δs 7→ δs′, as

δg′0
def
= 0 ,

∀n > 0

δg′n =
∑

0≤p<n




∏

p<j<n

f ′(ḡj)


 [

−L2ǫa δg2
p + ξg,p(ḡp + δgp, µp, Rp)

]
,

∀n < 0

δg′n = −
∑

n≤p<0




∏

n≤j≤p

1

f ′(ḡj)


[

−L2ǫa δg2
p + ξg,p(ḡp + δgp, µp, Rp)

]
,

∀n ∈ Z

µ′
n = −

∑

p≥n
L−( 3+ǫ

2 )(p−n+1) ξµ,p(ḡp + δgp, µp, Rp) ,

∀n ∈ Z

R′
n =

∑

p<n

Ln−1 ◦ Ln−2 ◦ · · · ◦ Lp+1 (ξR,p(ḡp + δgp, µp, Rp)) .
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The crux of the construction relies on choosing the RG map, and in particular
the so-called extraction step, appropriately so that the linear operators Ln are
uniformly contractive. This is a translation of the fact the R’s are irrelevant
terms.

Finally, this work which is a follow up on [3], is only the second step in a
vast program aiming at a rigorous mathematical investigation of the finer features
of K. G. Wilson’s theory [8]. In the abscence of a nonperturbative definition of
dimensional regularization, the φ4

3,ǫ model probably provides the best available
testing ground for this enterprise. Future work should address the true infinite
volume and scaling limits, as well as the construction of correlation functions, the
investigation of the presence or abscence of anomalous dimensions for primary or
composite fields, and eventually the operator product expansion. Also note that an
interesting feature of our framework is that by varying the g0 one should obtain a
sequence of interval patches along a conjectural one-dimensional invariant manifold
joining the two fixed points. One could try to see if one can glue together these
patches into a curve parametrized by the logarithmic scale. This could possibly
open the door to the investigation of the Stückelberg–Peterman/Gell-Mann–Low
Prewilsonian continuous RG equation which has so far remained elusive in Bosonic
constructive field theory. As one can surmise, this program might very well provide
twelve tasks each for twelve clones of Hercules.

References

[1] A. Abdesselam, A complete renormalization group trajectory between two fixed points, In
preparation.

[2] A. Abdesselam, and V. Rivasseau, An explicit large versus small field multiscale cluster
expansion, Rev. Math. Phys. 9 (1997), 123–199.

[3] D. C. Brydges, P. Mitter, and B. Scoppola, Critical (Φ4)3,ǫ, Comm. Math. Phys. 240 (2003),
281–327.

[4] D. C. Brydges, and H. T. Yau, Grad φ perturbations of massless Gaussian fields,
Comm. Math. Phys. 129 (1990), 351–392.

[5] J. Feldman, J. Magnen, V. Rivasseau, and R. Sénéor, Construction and Borel Summability
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Limiting Absorption Principle and Local Decay for the Standard

Model of the Non-relativistic QED

Israel Michael Sigal

(joint work with Jürg Fröhlich, Marcel Griesemer)

The mathematical framework of the theory of non-relativistic matter interacting
with the quantized electro-magnetic field (non-relativistic quantum electrodynam-
ics) is well established. It is given in terms of the standard quantum Hamiltonian

(1) HSM
g =

n∑

j=1

1

2mj
(i∇xj + gA(xj))

2 + V (x) +Hf

acting on the Hilbert space H = Hel ⊗ F , the tensor product of the state spaces
of the particle system and the quantized electromagnetic field. Here SM stands
for ’standard model’ and g := α3/2 where α ≈ 1

137 is the fine-structure constant.
(The notation above and units we use are explained below.) This model describes,
in particular, the problem of radiation — emission and absorption of radiation by
systems of matter, such as atoms and molecules — as well as other processes of
interaction of quantum radiation with matter (e.g. photoeffect).

For reasonable potentials V (x) the operatorHSM
g is self-adjoint and its spectral

and resonance structure - and therefore dynamics for long but finite time-intervals
- is well understood. However, we still know little about its asymptotic dynamics.
In particular the scattering theory for this operator does not, at present, exist.

At the foundat ion of the construction of the modern quantum scattering theory
lies the property of local decay (or limiting absorption principle) which states that
the system under consideration is either in a bound state, or, as time goes to
infinity, it breaks apart in the sense that the probability to occupy any bounded
region of the physical space tends to zero (average distance between the particles
goes to infinity).

So far the local decay for the Hamiltonian HSM
g is proven only for the energies

away from an O(g2) neighborhood of the ground state energy. This situation is
not satisfactory, since starting from any energy, the system eventually winds up in
this neighborhood. Indeed, while the total energy is conserved, the photons carry
away the energy from regions of the space where matter is concentrated. In this
presentation we report on a proof of local decay of states in the spectral interval
for HSM

g in the (e1−e0)/12-neighborhood of the ground state energy. Here e0 and
e1 are the ground state and the first excited state energies of the particle system.

However, the main achievement of this paper, we feel, lies in its method, namely,
in application of the spectral renormalization group, developed in [2, 3, 1], to analy-
sis unitary quantum dynamics - to proving the local decay property mentioned
above.

In this presentation we use the dimensionless units in which the Planck constant
divided by 2π and speed of light are equal to 1, ~ = 1 and c = 1, and the electron
charge is equal to −√

α (e = −√
α). In these units the distance is measured
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in the units of the Bohr radius rbohr = (mα)−1, and the energy, in the units of
mα2 = 2(Rydberg).

Next, we explain the notation employed in (1). Our particle system consists of
n particles of masses mj (the ratio of the mass of the j-th particle to the mass of
an electron) and positions xj , where j = 1, ..., n. We write x = (x1, . . . , xn). The
total potential of the particle system is denoted by V (x). The Hilbert space of
the particle system, denoted by Hel, is either L2(R3n) or a subspace of this space
determined by a symmetry group of the particle system.

The quantized electromagnetic field is described by the quantized vector poten-
tial

(2) A(y) =

∫
(eikya(k) + e−ikya∗(k))

χ(k)d3k

(2π)3
√

2|k|
,

where χ is an ultraviolet cut-off: χ(k) = 1 in a neighborhood of k = 0 and it
vanishes sufficiently fast at infinity, and its dynamics, by the quantum Hamiltonian

(3) Hf =

∫
d3k a∗(k) ω(k) a(k) ,

both acting on the Fock space F . Above, ω(k) = |k| is the dispersion law
connecting the energy, ω(k), of the field quantum with wave vector k, a∗(k) and
a(k) denote the creation and annihilation operators on F and the right side can
be understood as a weak integral.

One verifies that Hf defines a positive, self-adjoint operator on F with purely
absolutely continuous spectrum, except for a simple eigenvalue 0 corresponding to
the eigenvector Ω (the vacuum vector).

To obtain expression (1) we first assume that V (x) is the total Coulomb po-
tential of the particle system and rescale the original Hamiltonian appropriately
(see [4]); but then we relax this restriction on V (x) and consider rather general
Kato potentials V (x). In order not to deal with the problem of center-of-mass we
assume that either some of the particles (nuclei) are infinitely heavy or the system
is placed in an external potential field.

In this presentation we will be also consider the Nelson model. We will not
describe the Hamiltonian HN

g for this model here but mention only that here, as
before, g is a positive parameter - a coupling constant - which we assume to be

small, and the coupling function is taken to be κ(k)
|k|1/2 e

−ikx . Here, κ = κ(k) is a

real function with the property that

(4) ‖κ‖µ :=
( ∫

d3k

|k|3+2µ
|κ(k)|2

)1/2

< ∞ ,

where d ≥ 1 is the dimension of the physical space and µ > 0, and g ≥ 0 is a
coupling constant.

In this presentation we describe results of [7] on the limiting absorption prin-
ciple implies the local decay property for the Hamiltonians HSM

g and HN
g . (Note

that our approach can also handle the perturbations quadratic in creation and
annihilation operators, a and a∗.) The limiting absorption principle states that
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the resolvent sandwiched by appropriate weights has Hölder continuous limit on
the spectrum. The local decay property which we establish below says roughly
that in evolving states with energies away from the eigenvalues the Hamiltonian
the photons (or phonons) move out of any bounded region of the physical space.
This result, important in its own right, serves also as the first step in constructing
modern scattering theory for quantum particles and massless fields.

Let B denote the self-adjoint generator of dilatations on the Fock space F . It
can be expressed in terms of creation- and annihilation operators as

(5) B =
i

2

∫
d3k a∗(k)

{
k · ∇k + ∇k · k

}
a(k) .

We further extend it to the Hilbert space H = Hel ⊗F . Let 〈B〉 := (1{+}B
2)1/2.

Let furthermore e0 and e1 are the ground state and first excited state energies of
Hel. Henceforth the restriction g ≪ 1 will mean that there is a positive number
g0 depending on the norms like (4) and g ≤ g0 and similarly for other parameters.
In [7] we prove the following

Theorem 4. Let H be either HSM
g or HN

g , the two Hamiltonians defined above,

and let g ≪ 1. Let ∆ ⊂ (Eg, Eg + 1
2 (e1 − e0)), where Eg is the ground state energy

of H. If s > 1/2, then

(6) 〈B〉−s(H − λ− i0)−1〈B〉−s ∈ Cα(∆).

for 0 < α < s− 1
2 .

The above theorem has the following consequence.

Corollary 5. For ∆ as above and for any function f(λ) with suppg ⊆ ∆ and for
α < s− 1

2 , we have

(7) ‖〈B〉−se−iHtf(H)〈B〉−s‖ ≤ Ct−α.

The statement follows, in a standard way, from (6) and the formula

〈B〉−se−iHtf(H)〈B〉−s =

∫ ∞

−∞
dλf(λ)e−iλtIm〈B〉−s(H − λ− i0)−1〈B〉−s.

Remark 6. . We conjecture that one can extend the method of this paper to the
more general energy interval σ(H) \ σpp(H) for the Nelson model and

(
σ(H) \

σpp(H)
) ⋂

(−∞,Σel), where Σel := inf σ(Hel).

Previously the limiting absorption principle and local decay estimates were
proven in [5] for the standard model of non-relativisitic QED and for the Nel-
son model away from neighborhoods of the ground state energy and ionization
threshold and in [8, 9], under rather stringent assumptions, including that on the
infra-red behavior of the coupling functions, but for all values of the coupling
constant, for the Nelson model (see also [2, 3, 4, 10, 12, 6, 11] for earlier works).

We prove the theorem by combining the Mourre estimate with the renormaliza-
tion group (RG) approach of [2, 3, 1]. We do this in three steps. In the first step
we apply a specially designed renormalization map, R0

ρ0 , to the family H − λ1,
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where H is either HPF
g or HN

g . We show that the result of this application,

H(0)(λ) := R0
ρ0(H −λ1), is in a polidisc in certain Banach space. On this Banach

space we construct a renormalization group transformation, Rρ, which we apply

iteratively to the family of operators H(0)(λ) . After sufficiently many iterations
we obtain an operator, H(n)(λ) := Rn

ρ (H
(0)(λ)), which is close to the operator

wHf for some w ∈ R+. We then analyze H(n)(λ) using the Mourre theory.

Since the operators H(n)(λ), n ≥ 0 are bounded most of the Mourre theory (the
virial theorem, the second commutator estimate) become rather simple. Also, a
specific form of the interaction and the coupling functions becomes irrelevant. In
particular, as was mentioned above, our approach can handle the perturbations
quadratic in creation and annihilation operators, a and a∗. Also, with little more
work one can establish an explicit restriction (in terms of the particle energy
difference e1 − e2) on the coupling constant g.
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The strange world of nonlinear sigma models with non-amenable

target space

Erhard Seiler

(joint work with Anthony Duncan and Max Niedermaier)

Nonlinear sigma models with noncompact target space and non-amenable symme-
try group were introduced in 1979 by F. Wegner in the study of disordered electron
systems. They also occur in dimensionally reduced quantum gravity.

Duncan, Niedermaier and the author [1, 2] investigated these models and found
that in any dimension, even one and two, spontaneous symmetry breaking neces-
sarily occurs as a consequence of the non-amenability of their symmetry group.
Superficially this might seem to be in conflict with the Mermin-Wagner theo-
rem, but on closer inspection it is not. There are large fluctuations of ‘divergent
variance’ in spite of the symmetry breaking; nevertheless the fluctuations are in-
sufficient to restore the symmetry. A result which is in some sense complementary
has been obtained recently by Spencer and Zirnbauer [3]: they showed that in
dimension 3 and higher these models show conventional spontaneous symmetry
breaking with normal fluctuations.

The one-dimensional model is analyzed to a large extent by explicit computa-
tion, whereas for the two-dimensional one we employ numerical as well as analytic
methods (such as the limit of infinitely many dimensions in target space).

In addition to the symmetry breaking we find that the low-dimensional mod-
els show other peculiarities, such as dependence on boundary conditions even for
invariant observables and after the thermodynamic limit has been taken. The
Osterwalder-Schrader reconstruction yields a nonseparable Hilbert space and in
addition to a unitary, continuous representation on the ground state space, also
discontiuous representations occur. In one dimension this might be considered
a pathology of this reconstruction, since the corresponding quantum mechanical
model can be defined directly on a separable Hilbert space carrying a continuous
unitary representation; in two dimensions, however, this reconstruction seems to
be the only possible path for obtaining a quantum mechanical interpretation (or
possibly a quantum field theory) corresponding to these models; so this nonsepa-
rability has to be taken seriously.

In [4] Niedermaier and the author analyze the generalized ground state space
from the point of view of harmonic analysis of the global symmetry group. This
is done in any dimension, but on a spatially finite lattice. The problem requires
solving a problem analogous to the separation of the center of mass motion in
n-particle qunatum mechanics, but this time not in euclidean space but rather
on a symmetric Riemnannian space of constant negative curvature. Under rather
general conditions it turns out that the ground state space carries a distinguished
unitary irreducible representation of the symmetry group, namely the limit of the
spherical principal series.

Perturbative Renormalization Group analysis predicts for 2 dimensions asymp-
totic freedom in the infrared (as in the Φ4

4 model) [5]. Whether this is confirmed by
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a rigorous nonperturbative analysis or turns out to be an artefact of perturbation
theory remains a challenging question. Likewise rigourous control of the thermo-
dynamic limit in more than one dimension remains a challenging open problem.
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Renormalization on Riemannian Manifolds

Volkhard F. Müller

(joint work with Christoph Kopper)

Since the pioneering work of Polchinski [1] perturbative renormalization based on
Wilson’s differential flow equation has attracted much attention, leading to exten-
sions in various directions. Technically, the translation symmetry of Minkowski
space and of its Euclidean descendant proved very efficacious, it allows in particu-
lar to treat the perturbative flow equations in momentum space. On a given curved
spacetime, however, renormalization via flow equations has to be approached in
the position space. In our work [2] such an approach is being developed, albeit
only on a Euclidean version of curved spacetime, i.e. on a Riemannian manifold.
In contrast to flat space, there is no Wick rotation on curved spacetime, in gen-
eral. Nevertheless, Bros, Epstein and Moschella [3], and, with a different method,
Birke and Fröhlich [4] have shown that quantum field theories defined on particular
curved spacetimes can be analytically continued to a corresponding Euclidean ver-
sion, and that furthermore this Euclidean formulation allows Osterwalder-Schrader
reconstruction.

Using functional integration, we consider the quantum field theory of a self-
interacting real scalar field φ with mass m on a four-dimensional simply-connected
(noncompact) Riemannian manifold (M, g) without boundary, which is assumed
to be geodesically complete and whose sectional curvatures are bounded between
two constants −k2 and κ2 . Our aim is to demonstrate perturbative renormalizabil-
ity of this theory by way of Wilson’s differential renormalization group equation.
In the regularized free propagator considered

C ε, t(x, y) =

∫ t

ε

dt′ e−m
2t′K(t′, x, y), K(t, x, y) := kernel e t∆
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with 0 < ε ≤ t < ∞ and ∆ the Laplace-Beltrami operator associated to the
Riemannian manifold, the short distance cutoff ε is kept fixed, to be removed
finally, whereas t acts as the Wilsonian flow parameter. The free propagator
(−∆ + m2)−1 emerges in the limit t → ∞, ε → 0. Our treatment relies heavily
on rather sharp pointwise bounds on the heat kernel K(t, x, y) and its deriva-
tives found in the mathematical literature, see e.g.[5], [6], [7]. From Wilson’s
differential equation follows the system of flow equations relating the connected
free-propagator-amputated Schwinger functions L ε, t

n, l (x1, · · · , xn), n ∈ 2N, after a
formal loop expansion, l ∈ N0. Estimating bounds, the distributional character of
these amputated Schwinger functions is accounted for by smearing n−1 arguments
of an n-point function with a test function appropriately chosen. To extract the
relevant parts in the 2- and 4-point function a covariant Taylor expansion with
remainder term of the respective test functions is performed,

Lε,t2,l(x1, ~p) = aε,tl (x1) ~p(x1) − fµ,ε,tl (x1) (∇µ~p)(x1) − bµν,ε,tl (x1)(∇µ∇ν~p)(x1)

+ ℓ ε,t2,l (x1, ~p) ,

Lε,t4,l(x1, ~p) = cε,tl (x1) ~p(x1, x1, x1) + ℓ ε,t4,l (x1, ~p) ,

with the relevant terms

aε,tl (x1) =

∫

x2

Lε,t2,l(x1, x2) , fµ,ε,tl (x1) =

∫

x2

σ(x2, x1)
µ Lε,t2,l(x1, x2) ,

bµν,ε,tl (x1) = − 1

2

∫

x2

σ(x2, x1)
µ σ(x2, x1)

νLε,t2,l(x1, x2) ,

and cε,tl (x1) similarly. This procedure entails to treat in parallel a system of flow
equations for Schwinger functions which involve insertions σ(xi, x1)

µ resulting
from this expansion. The renormalization problem, primarily related to the behav-
iour of the heat kernel at small values of t, is essentially solved if we can integrate
the flow equations up to some finite value tR of t . Therefore, in a first stage renor-
malization conditions are posed at tR = 1 , fixing there the relevant terms speci-
fied above as a given smooth scalar-, vector-, symmetric tensor- and scalar-field,
respectively. Via the flow equations we then inductively establish bounds which
guarantee the existence of finite Schwinger functions limε→0 L ε, t

n, l (x1, · · · , xn) upon
removing the short distance regularization.

In a second stage, presently still under investigation, we aim at demonstrat-
ing that a particular choice of the renormalization conditions exists which leads
at t = ε to a ‘minimal form’ of the bare interaction with a ε, εl (x) = a εl +
R(x) ξ εl , f

µ,ε, ε
l (x) ≡ 0, bµν, ε, εl (x) = g µν(x) b εl , c

ε, ε
l (x) = c εl , where R(x) de-

notes the scalar curvature of the manifold and a εl , ξ
ε
l , b

ε
l , c

ε
l do not depend on

position.
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A Functional Integral Representation for Many Boson Systems

Horst Knörrer

(joint work with T.Balaban, J.Feldman, E.Trubowitz)

We are developing a set of tools and techniques for analyzing the large dis-
tance/infrared behaviour of many boson systems as the temperature tends to zero.
The first tool is a functional integral representation for the grand canonical par-
tition function and correlation functions of many bosons moving in a space X
with a finite number of points. This tool provides a rigorous version of the formal
functional integral representation used by physicists [2, §2.2].

Informally, the statement of one of our main results is

(1) Tr e−β(H−µN) = lim
p→∞

∫ ∏
τ∈Tp

dµR( β
p )(φ

∗
τ , φτ ) eF( β

p , φ
∗,φ)

Here, H is the Hamiltonian andN is the number operator of our system of identical
bosons. As usual, µ is the chemical potential and the temperature is 1

kβ > 0. For

each natural number p, the discrete time interval Tp is given by

Tp =
{
τ = q βp

∣∣ q = 0 , · · · , p− 1
}

For each point (x, τ) in the discrete space–time X ×Tp, we introduce the complex

variable φ(τ,x) = φτ (x) and the measure
dφ∗

τ (x)∧ dφτ(x)
2πı = 1

π dℜφτ (x) dℑφτ (x) on
the complex plane C. For each r > 0, we set

dµr(φ
∗, φ) =

∏

x∈X

[
dφ∗(x)∧ dφ(x)

2πı χr(|φ(x)|)
]

where, χr is the characteristic function of the closed interval [0, r]. The sequence

R(βp ) > 0 in (1) tends to infinity at an appropriate rate as p → ∞. The “action”

F(ε, φ∗, φ) is given by

F(ε, φ∗, φ) =

∫∫
dτdx φ∗τ (x)(∂εφτ )(x) −

∫∫
dτdx φ∗τ (x)(hφτ )(x)

+µ

∫∫
dτdx φτ (x)∗φτ (x) −

∫∫∫
dτdxdy φτ (x)∗φτ (x) v(x,y)φτ (y)∗φτ (y)
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where h is the single particle operator (for example discrete Laplacian), v the two
body interaction ∫∫

dτdx ψ(τ,x) = ε
∑

τ ∈Tp

∑

x∈X
ψ(τ,x)

∫∫∫
dτdxdy ψ(τ,x,y) = ε

∑

τ ∈Tp

∑

x∈X

∑

y∈X
ψ(τ,x,y)

and the difference operator ∂ε acts by

∂ε φ(τ,x) = ε−1
(
φ(τ + ε,x) − φ(τ,x)

)

In (1), φβ is determined by the periodic boundary condition φβ = φ0.
During the course of the proof we derive a rigorous version of the formal reso-

lution of the identity

1l =

∫ ∏

x∈X

[
dφ∗(x)dφ(x)

2πı

]
e−

R
dy |φ(y)|2 |φ 〉 〈φ |

We also show that the trace formula

TrB =

∫
dµ(φ∗, φ) e−

R
dy |φ(y)|2 〈φ |B | φ 〉

applies rigorously to a certain class of operators B. These are then used to prove
a rigorous variant of the formal integral representation

Tr e−β(H−µN) = lim
p→∞

∫ ∏
τ∈Tp
x∈X

[
dφ∗

τ (x)dφτ(x)
2πı e−

R
dy |φτ (y)|2

]

∏
τ∈Tp

〈
φτ

∣∣∣ e−ε (H−µN)
∣∣∣ φτ+ β

p

〉

Following an analysis of
〈
α

∣∣ e−ε(H−µN)
∣∣ φ

〉
, we prove the functional integral rep-

resentation (1).
The next step towards controlling the thermodynamic limit of a many boson

system in d space dimensions, is to express the temporal, ultraviolet limit p→ ∞ in
(1) in a form suitable for an infrared renormalization group analysis. Principally, to
extract an effective potential that exhibits the mechanism for symmetry breaking.
This is quite subtle because the exponential of 〈φ∗, ∂εφ〉ε is highly oscillatory. The
analogous step in the analysis of a many fermion system is given in [1].
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Hönggerberg
CH-8093 Zürich
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