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Introduction by the Organisers

This mini-workshop brought together number theorists, analysts, geometers and
mathematical physicists to discuss current issues at the common boundary of
mathematics and physics. Topics covered included the number theoretic and alge-
braic structures underlying renormalization, twisted K-theory and higher algebraic
structures, modular forms, and arithmetic and spectral zeta functions. A particu-
lar theme was around developing interconnections between arithmetic (multiple)
zeta functions, spectral zeta functions associated with elliptic operators (and re-
lated spectral invariants such as spectral flow) and current issues in physics such
as renormalization and mirror symmetry. Multiple zeta functions appear in index
theory and K-theory via their relation to anomalies, in number theory in their
relation to polylogarithms, in renormalization questions in perturbative quantum
field theory and Hopf algebras, in duality issues and in twisted K-theory for index
theorems for projective families of elliptic operators, thereby providing a rich set
of overlapping topics with common analytical issues.



1246 Oberwolfach Report 21/2006

This meeting was organized around one hour talks, four each day, with plenty
of time between talks for informal discussion and a 45 minute talk in the after-
noon for students; three graduate students were among the 16 participants. Some
participants lectured for two hours in order to have time to introduce the audience
to the subject before entering the technical details.

The organizers and participants would like to thank the Mathematisches For-
schungsinstitut Oberwolfach for providing a pleasant and stimulating enviroment
for this meeting.
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Abstracts

What a geometric series can do in Quantum Field Theory

Dirk Kreimer

(joint work with Karen Yeats)

In my two talks I discussed the structure of nonperturbative quantum field the-
ory from the viewpoint of Dyson–Schwinger equations and the Hopf algebra of
perturbation theory. They covered three recent papers [1, 4, 5].

1. Dyson–Schwinger equations

First we considered Dyson–Schwinger equations for one-particle irreducible re-
normalized Green functions. The talks focussed on the question how to treat the
non-linearity of such Dyson–Schwinger equations systematically in the context of
a renormalizable quantum field theory. Such a theory provides a finite set R
of amplitudes which need renormalization. These amplitudes are in one-to-one
correspondence with the monomials in the underlying Lagrangian L,

(1.1) L =
∑

r∈R

ϕ(r).

For a given superficially divergent amplitude r ∈ R we let Γr be the sum

(1.2) Γr = I +
∑

Γ

α|Γ| Γ

sym(Γ)

over all 1PI graphs Γ contributing to that amplitude, where 0 < α ≪ 1 is a
loop-counting small parameter.
Following [4] we have

(1.3) Γr = I +B+(Γr, Q({Γi})).
The Hochschild one-cocycle

(1.4) Br
+(Γr, Q) =

∑

k≥1

αkBk;r
+ (ΓrQk)

is a sum of one-cocycles Bk,r
+ and Q is a monomial in the Γr. The uniqueness of Q

implies the Slavnov–Taylor identities for the renormalized couplings [4], and in this
way internal symmetries of a Lagrangian field theory are captured by Hochschild
cohomology.
We set

(1.5) Γr = I +
∑

j

crjα
j

and those crj are the linear generators of a sub-Hopf algebra [4]:
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Theorem 1. There exists maps Bk;r
+ , polynomials P r

k,j in those linear generators
and integers sr such that

Γr = I +
∑

k

αkBk;r
+

(
ΓrQk

)
,(1.6)

∆Bk;r
+ = Bk;r

+ ⊗ I +
(
id⊗Bk;r

+

)
∆,(1.7)

Q = α
∏

r∈R

[Γr(α)]sr ,(1.8)

∆crk =

k∑

j=0

P r
k,j ⊗ crk−j ,(1.9)

which make the system {crk} into a sub Hopf algebra H(∆,m, S, ε) of the Feynman
graph Hopf algebra.

We refer the reader to [4] for details.
Feynman rules ϕ are then defined in accordance with the Hochschild cohomology
so that the iterative structure of subintegrals corresponds to iterated applications
of Hochschild one-cocycles.
In perturbation theory the renormalized Feynman rules ϕR allow to write

(1.10) Gr
R(α,L) = ϕR(Γr) = 1 +

∑

k

αkϕR(crk)(L).

We can expand in a different manner

(1.11) Gr
R(α,L) = 1 +

∑

k

γr
k(α)Lk,

and the renormalization group dictates relations between the γr
k. Here, we restrict

ourselves to Green functions which depend on a single kinematical variable L =
ln q2/µ2, which is legitimate if one studies short-distance singularities.
Straightforward algebra delivers the desired formula for the expansion in L:

(1.12) γr
k(α) =

1

k


γr

1(α)γr
k−1(α) +

∑

j

sjγj
1(α)α∂αγ

r
k−1(α)


 .

Next, we introduced the Mellin transforms F (ρ) for each Hopf primitive ϕ(B+(I)).
Then, the Dyson–Schwinger equation determines the remaining unknown γ1(α),

(1.13) γ · L = α(1 + γ · ∂−ρ)
−1[e−Lρ − 1]F (ρ)|ρ=0,

where we evaluate the rhs at ρ = 0 after taking derivatives.
This equation determines the Taylor coefficients γ1,j through the Taylor coefficients
of the Mellin transform.
We hence have resolved the computation of a problem in non-perturbative physics,
an infinite resummation of graphs, to the determination of Mellin transforms of
Hopf primitives. This summarizes a research program which I have been pursuing
for a couple of years, and emphasizes the need to understand better the Mellin
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transforms of those primitives. The Taylor coefficients of these Mellin transforms
are interesting periods, starting from the residue assigned to the underlying graph,
which is a particular important period of motivic origin [2].
In the talk, we then looked at the results of [3] as an example and rederived the

resummation Σ̃(a, p) of one-loop fermion propagators in Yukawa theory, whose
Mellin transform is a geometric series. Particularly intriguing is the possibility
to find connections to ζ functions as described in [5]. In the talk we discussed
the appearance of single Riemann ζ(2l + 1), l ≥ 1, for coupled Dyson–Schwinger
equations following [5].

2. A functional equation

Inspection of the solution in [3] shows

(2.1) Σ̃(a, p) = −
√
a/(2π)

exp(p2)erfc(p)
× Σ̃

(
(exp(p2)erfc(p))4

a/(2π)2
, p

)
,

where a is now the loop counting parameter and p is another variable such that

with z = e2L, p = d
dz

√
2
a

(
z − zΣ̃

(
µ2
√
z
))

. Note that on the lhs of (2.1) we have

a weak coupling expansion for a, on the rhs we have a strong coupling expansion,
hence an expansion in 1/a.

With T = a/(2π), u = (exp(p2)erfc(p))−4, and Z(T, u) = Σ̃(a, p) we get a func-
tional equation reminiscent of a functional equation for a ζ-function in two vari-
ables for the function field case for the non-perturbative renormalized Green func-
tion

(2.2) Z(T, u) = −u 5
4
−1T 2( 5

4
−1)Z

(
1

Tu
, u

)
.

The propagator coupling duality of this Green function can now be expressed with
u = exp(s+ t), T = exp(−t), and ζ(s, t) = exp( t−s

8 )Z(T, u) as

(2.3) ζ(s, t) = −ζ(t, s).
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Locality and Dyson Schwinger equations from Hochschild cohomology
of renormalization Hopf algebras

Christoph Bergbauer

(joint work with Dirk Kreimer)

In quantum field theory, Feynman graphs and the corresponding analytic ex-
pressions – Feynman integrals – constitute the building blocks of perturbative
expansions. In realistic quantum field theories, Feynman integrals typically di-
verge when their graphs contain cycles. The process of assigning a sensible value
to these divergent integrals is called renormalization. In simple cases it suffices,
for example, to subtract off the first terms of the Taylor series with respect to
the external momentum. In more general cases, that is when already subgraphs
contain cycles and thus already subintegrals diverge, the renormalization process
is described by the Bogoliubov recursion. It was Kreimer’s discovery that the so-
lution of the Bogoliubov recursion is essentially given by the antipode map of a
Hopf algebra (H,m,∆, 1, ε) on rooted trees [4] where the rooted trees keep track
of nested and disjoint subdivergences. Similarly, Hopf algebras based directly on
Feynman graphs can be considered [2]. As an algebra, H is free commutative, and
the coproduct ∆ cuts rooted trees into pieces. We describe the first Hochschild
coalgebra cohomology of H [3] and show how the fact that certain linear endomor-
phisms B+ satisfy the 1-cocycle condition

(0.1) ∆B+ = (id⊗B+)∆ +B+ ⊗ 1

translates into physics: A proof that the renormalization procedure provides a
finite result using local counterterms is easily afforded by (0.1). This is illustrated
using a two-loop example in dimensional regularization with minimal subtraction
and on-shell scheme, respectively.

On the nonperturbative side, the same Hochschild 1-cocycles provide (combinato-
rial) Dyson-Schwinger equations, for example

X = 1 + αB+(X2) + α2B+(X3)

with solution X ∈ H[[α]]. An important consequence of B+ satisfying the cocycle
condition is that if X is decomposed as X =

∑
Xnα

n, the Xn generate a Hopf
subalgebra of H. Indeed,

(0.2) ∆Xn =
n∑

i=0




∑

l1+...+li+1=n−i

Xl1 . . .Xli+1


⊗Xi,

which holds for various other Dyson-Schwinger equations as well [1]. See Kreimer’s
talk for physical implications.

The talk is based on the recent review paper [1] which also contains a proof of
(0.2).
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Invariants of Graph C∗-Algebras

Alan Carey

(joint work with Adam Rennie, John Phillips)

I discussed some recent (unpublished) work on invariants of graph C∗-algebras
constructed via extensions of the semifinite local index theorem in noncommutative
geometry (see [3, 4, 5]. The motivation for this study stems from three sources.
The first is a desire to construct invariants for algebras which are purely infinite and
for which K-theory provides little information. Our invariants depend not only on
the algebra but also on an automorphic circle action. The key idea is to use states
or weights on the algebra that are KMS with respect to the circle action. The
second motivation arises from comments of Matilde Marcolli on directed graphs
that are associated to Mumford curves. The latter are algebraic curves over finite
field extensions of the p-adic completion of the rationals (for p a fixed prime). The
idea here is that there may be a way to get information about Mumford curves
using invariants from the associated graph algebras. The third motivation arises
from the possibility of using the graph algebra presentation of SUq(2) to obtain
new information about this algebra. (Contributions by David Pask, Ryzsard Nest,
Jens Kaad, Matilde Marcolli and Kester Tong are gratefully acknowledged.)

Let E = (E0, E1) be a directed graph, where E0 consists of the vertices and
E1 the edges with r, s : E1 → E0. A Cuntz-Krieger E-family in a C∗-algebra B
consists of mutually orthogonal projections {pv : v ∈ E0} and partial isometries
{Se : e ∈ E1} satisfying the Cuntz-Krieger relations

S∗
eSe = pr(e) for e ∈ E1 and pv =

∑

{e:s(e)=v}

SeS
∗
e whenever v is not a sink.

We let A(E) be the corresponding universal C∗-algebra generated by the oper-
ators satisfying these relations. We can consider circle actions on such algebras
by mapping some or all of the operators Se to multiples by a phase zSe where
|z| = 1. This does not change the defining relations and can be seen to define an
automorphic circle action on the algebra. (Note that higher dimensional tori also
act automorphically.)
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We will consider the fixed point algebra F under such a circle action and take
the projection Φ0 : A(E)→ F . We assume there exists a faithful trace τ on F and
we extend it to a state on A(E) by composition with Φ0, ie τ ◦ Φ0. We can form
the GNS Hilbert space L2(A(E), τ). This is a bimodule for A(E) acting on the left
and F acting on the right. We introduce the rank one operators ΘR

x,yz = xΦ0(y
∗.z)

for x, y, z ∈ A(E). We define N to be the von Neumann algebra generated by the
rank one operators. Then one can prove there exists a trace τ̃ on N such that
τ̃ (ΘR

x,y) = τ ◦ Φ0(y
∗x).

In the case of the Cuntz algebra On for example we can apply this procedure
to the canonical gauge action and obtain the standard type III1/n representation
corresponding to the KMS state τ ◦Φ0 with τ in this case being the unique faithful
trace on the fixed point algebra. There is a modular operator ∆ on L2(On, τ ◦Φ)
such that the gauge action σt on On is given by a → ∆ita∆−it. (In the talk I
gave a number of examples but in this summary I will stick to On) We want to
extract from these constructions some invariants of the pair F,On. There is a
dense subalgebra Oc of On such that the map σ defined by σ(a) = ∆a∆−1. is a
non ∗-automorphism (polynomials in the generators will suffice for this purpose).

We say that a unitary u in a matrix algebra Õc over Oc satisfies the modular
condition with respect to the non∗ automorphism σ given by conjugation with
∆⊗ Id (where Id is the identity matrix) if both the operators

uσ(u∗), u∗σ(u)

are in a matrix algebra F̃ over the algebra F .
Let ∆ = elog nD where D is an unbounded densely defined operator. We would

like to construct a semifinite spectral triple using D but D does not satisfy the
summability condition that is

τ̃ ((1 +D2)−1/2−r)

is not trace class for all r > 0 So we define a new functional on N by

τ∆(T ) := τ̃(∆T ).

Then as τ̃ is a faithful semifinite normal trace on N , and ∆ is a positive invertible
operator affiliated to N we may show that τ∆ is a faithful semifinite normal weight
on N . If we restrict τ∆ to the fixed point algebra of N , sayM under the conjuga-
tion action of ∆it then we get a faithful semifinite normal trace. Similar remarks
apply when we work with matrix algebras over these algebras. Henceforth we will
drop the ⊗Id from the notation for simplicity.

We now introduce (a special case of) the analytic spectral flow formula of [1, 2].
This formula starts with a semifinite spectral triple (A,H,D) and computes the
spectral flow from D to uDu∗, where u ∈ A is unitary with [D, u] bounded, in
the case where (A,H,D) is of dimension p ≥ 1. Thus for any n > p we have by
Theorem 9.3 of [2]:

sfτ∆
(D, uDu∗) =

1

Cn/2

∫ 1

0

τ(u[D, u∗](1 + (D + tu[D, u∗])2)−n/2)dt,
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with Cn/2 =
∫ ∞

−∞(1 + x2)−n/2dx.

Theorem[7] The pairing (denoted < >) between the K-class of u and the K-
homology class represented by the spectral triple is given by

< [u], (A,H,D) >= lim
r→0+

rτ(u[D, u∗](1 +D2)−1/2−r).

In particular, the limit on the right exists.
Definition Let ut be a continuous path of modular unitaries such that utσ(u∗t )
and u∗tσ(ut) are also continuous paths in F . Then we say that ut is a modular
homotopy, and say that u0 and u1 are modular homotopic. There is a binary
operation on modular homotopy classes which makes these into a semigroup.
Definition. Let K1(A, σ) be the abelian semigroup with one generator [u] for
each unitary u ∈ Ml(A) satisfying the modular condition and with the following
relations:

1) [1] = 0,

2) [u] + [v] = [u⊕ v],
3) If ut, t ∈ [0, 1] is a continuous paths of unitaries in Ml(A)

satisfying the modular condition then [u0] = [u1].

Example. For Sµ ∈ Onc we write Pµ = SµS
∗
µ. Then for each µ, ν we have a

unitary

uµ,ν =

(
1− Pµ SµS

∗
ν

SνS
∗
µ 1− Pν

)
.

It is simple to check that this a self-adjoint unitary satisfying the modular condi-
tion.

This construction generalises to other partial isometries with range and source
projections in F . One of the main results we obtain, from which one can compute
particular numerical values for the spectral flow corresponding to unitaries in the
above example is the following theorem.

Theorem For any modular unitary of the form uv with v ∈ Õc a partial
isometry with range and source projections in F̃ and vσ(v∗), v∗σ(v) ∈ F̃ , and any
Dixmier trace ϕω we have

sfϕ(D, uvDu∗v) = lim
r→0

rϕ(uv[D, u∗v](1+D2)−1/2−r) =
1

2
ϕω(uv[D, u∗v](1+D2)−1/2).

The functional

Õc ⊗ Õc ∋ a0 ⊗ a1 → lim
r→0

rϕ(a0[D, a1](1 +D2)−1/2−r)

is a twisted b, B-cocycle. Moreover, the spectral flow depends only on the modular
homotopy class of uv.
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T-duality in string theory via noncommutative geometry

Varghese Mathai

(joint work with P. Bouwknegt, J. Evslin, K. Hannabuss, J. Rosenberg)

We begin by recalling T-duality in Type II string theory with trivial background
H-flux on spacetime that is compactified on a torus, M × Tn. Then the T-dual
spacetime is topologically the same spacetime M × T̂n, where T̂n denotes the
dual torus, and T-duality is realized via the smooth analog of the Fourier-Mukai
transform, which we now recall. Consider the correspondence

(0.1) M × Tn × T̂n

p

yysssssssssssssssssss

p̂

%%KKKKKKKKKKKKKKKKKK

M × Tn M × T̂n

Recall that there is a canonical line bundle P called the Poincaré line bundle,

over the torus Tn× T̂n, which is defined as follows. Consider the free action of Zn

on Rn × T̂n × C given by,

Zn × (Rn × T̂n × C) → Rn × T̂n × C

(n, (r, ρ, z)) → (r + n, ρ, ρ(n)z)

The Poincaré line bundle is defined as the quotient, P = (Rn × T̂n × C)/Zn. We

denote its pullback to the correspondence space M × Tn × T̂n also by P . In the
late 1990s, it was argued by Minasian-Moore, Horava and Moore-Witten that for
a spacetime X , in Type IIA string theory, the RR fields are classified by K0(X)
and the charges classified by K1(X) whereas in Type IIB string theory, the RR
fields are classified by K1(X) and the charges classified by K0(X).

In this case, T-dualizing on Tn, the Buscher rules for the Ramond-Ramond
(RR) fields are concisely encoded by the Fourier-Mukai transform,

T! = p̂! (P ⊗ p!( · )) .
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which induces a T-duality isomorphism of K-theories,

(0.2) T! : K•(M × Tn)
∼=−−−−→ K•+n(M × T̂n).

That is, T-duality in the absence of a background field, gives an equivalence
betweenType IIA string theory and Type IIB string theory.

This formulation of T-duality continues to work nicely for principal circle bun-
dles with background H-flux, [8, 6]. However, it is problematic for general for
higher rank principal torus bundles with background H-flux. To overcome this, we
reformulate the Fourier-Mukai theory in terms of noncommutative geometry. We
begin by recalling some fundamental facts about C∗-algebras.

Let A be a C∗-algebra with an action α of a locally compact group H . i.e. there
is a homomorphism α : H → Aut(A) such that h 7→ αh(a) is norm continuous ∀a ∈
A. Consider the space Cc(H,A) of all compactly supported A-valued continuous
functions on H . It is a ∗-algebra as follows: for fj ∈ Cc(H,A) and g, h ∈ H and
the product is given by α-twisted convolution,

f1 ∗ f2(h) =

∫

H

f1(g)αg(f2(g
−1h))dg

and ∗-operator
f∗(g) = ∆(g)−1αg(f(g−1)∗)

where ∆ : H → R+ is the modular function relating left and right Haar measure
on H .
The crossed product C∗-algebra A ⋊α H is the completion of Cc(H,A) in a
universal norm.

(1) P. Green’s theorem (version 1): Let A be a C∗-algebra with an action
α of a locally compact group H , and suppose that H is a normal closed subgroup
of another locally compact group G. Then one can form the induced C∗-algebra

B = IndG
H (A,α)

= {f : G→ A : f(t+ g) = α(g)(f(t)), t ∈ G, g ∈ H}
which has an action β of G given by translation. Then the C∗-algebras, A ⋊α H
and B ⋊β G are Morita equivalent.

P. Green’s theorem (version 2): Let G be a locally compact group, and H ,
K be closed subgroups of G. Then the C∗-algebras C(G/K)⋊H and C(H\G)⋊K
are Morita equivalent.

(2) Connes Thom isomorphism: Let A be a C∗-algebra with an action α
of G = Rd. Then there is a natural isomorphism,

Kj(A) ∼= Kj+d(A⋊α Rd).

The striking aspect of the result is that theK-theory of the crossed product algebra
A⋊α Rd is independent of the action α.

(3) Takai duality: Let A be a C∗-algebra with an action α of G = Rd. Then
the crossed product C∗-algebra A⋊α Rd has a natural action α̂ of the Pontrjagin

dual group R̂d given by
(α̂g′(f))(g) = 〈g, g′〉f(g)
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for all f ∈ Cc(R
d, A), g ∈ Rd, g′ ∈ R̂d. Then Takai duality asserts that the

C∗-algebras A and A⋊α Rd ⋊α̂ R̂d are Morita equivalent.
We are now in a position to rephrase T-duality (i.e the Fourier-Mukai transform)

in terms of noncommutative geometry. We first make the following observations.
(1) C(M × Rn/Zn) ⋊ Rn and C(M × Rn\Rn) ⋊ Zn are Morita equivalent, by

P. Green’s theorem (version 2). Simplifying, we see that C(M × Rn\Rn) ⋊ Zn =

C(M) ⊗ C∗(Zn), is isomorphic to C(M) ⊗ C(T̂n) = C(M × T̂n) by the Fourier
transform. Moreover, the radius R of the torus transforms as R↔ 1/R.

(2) Kj(C(M × Rn/Zn) ⋊ Rn) and Kj+n(C(M × Rn/Zn)) are isomorphic by
Connes Thom isomorphism theorem.

(3) C(M × Rn/Zn) ⋊ Rn ⋊ R̂n and C(M × Rn/Zn) are Morita equivalent, by
Takai duality.

Therefore the Fourier-Mukai transform is equivalent to taking the crossed prod-
uct with Rn of the algebra of continuous functions on spacetime, C(M ×Rn/Zn).

We are now in a position to further abstract T-duality (i.e. the Fourier-Mukai
transform) for general C∗-algebras as follows.

Let A belong to some subcategory C of C∗-algebras, and A → T(A) be a
covariant functor on C satisfying the following two properties:

(1) (A,T(A)) are K-equivalent. (we allow for shifts in degree).
(2) (A,T(T(A))) are Morita equivalent.
Then we call T(A) an abstract T-dual of A.
Example. Let A be a G-C∗-algebra, where G = Rn. Set T(A) = A⋊G. Then

it is easily deduced that T(A) is an abstract T-dual of A.
This reformulation of T-duality (i.e the Fourier-Mukai transform) enables us in

[5], to give a complete characterization of T-duality for principal 2-torus-bundles
with H-flux. As noticed in [7] for instance, principal torus bundles with H-flux
do not necessarily have a T-dual which is a torus bundle. A big puzzle has been
to explain these mysterious “missing T-duals.” It turns out that every principal
2-torus-bundle with H-flux does indeed have a T-dual, but in the missing cases
(which we characterize), the T-dual is non-classical and is a continuous field of
stabilized noncommutative tori, or in other words, a bundle of Kronecker foli-
ated tori. This suggests an unexpected link between classical string theories and
noncommutative string theories, obtained by compactifying on noncommutative
tori.

In general, for higher rank principal torus bundles [4, 1], it appears to be nec-
essary to even further abstract the notion of T-duality (i.e. the Fourier-Mukai
transform) to C∗-algebras internal to a category with non-trivial associator, as
done in [3, 2].
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Quasi-symmetric functions, multiple zeta values, and rooted trees

Michael E. Hoffman

My first talk was about the algebra of multiple zeta values, and the second about
Hopf algebras of rooted trees. A thread that connects the two is the Hopf algebra
QSym of quasi-symmetric functions. First defined by Gessel [4], QSym consists of
those formal power series f ∈ Q[[t1, t2, . . . ]] (each ti having degree one), such that
f has bounded degree, and the coefficient in f of

tp1

i1
tp2

i2
· · · tpk

ik

equals the coefficient in f of tp1

1 t
p2

2 · · · tpk

k whenever i1 < i2 < · · · < ik. As a vector
space, QSym is generated by the monomial quasi-symmetric functions

Mp1p2···pk
=

∑

i1<i2<···<ik

tp1

i1
tp2

i2
· · · tpk

ik
.

The algebra Sym of symmetric functions is a proper subalgebra of QSym: for
example, M11 and M12 +M21 are symmetric, but M12 is not.

As an algebra, QSym is generated by those monomial symmetric functions
corresponding to Lyndon words in the positive integers [11, 6]. The subalgebra
of QSym0 ⊂ QSym generated by all Lyndon words other than M1 has the vector
space basis consisting of all monomial symmetric functions Mp1p2···pk

with pk > 1

(together with M∅ = 1). There is a homorphism QSym0 → R given by sending
each ti to 1

i ; that is, the monomial quasi-symmetric function Mp1···pk
is sent to

the multiple zeta value

(0.1) ζ(pk, pk−1, . . . , p1) =
∑

i1>i2>···>ik≥1

1

ipk

1 i
pk−1

2 · · · ip1

k

.

In particular, the subalgebra Sym0 = Sym∩QSym0 (which is the subalgebra of
Sym generated by the power-sum symmetric functions Mi with i > 1) has a
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homomorphic image in the reals generated by the values ζ(i) of the Riemann
zeta function at integers i > 1. It is also convenient to think of Mp1···pk

as the
monomial xpk−1y · · ·xp1−1y in the noncommutative polynomial ring Q〈x, y〉 (with
QSym0 corresponding to H0 := Q1 + xQ〈x, y〉y), so that the quantity (0.1) is the
image under a homomorphism ζ : H0 → R of xpk−1y · · ·xp1−1y. In fact, it appears
that all identities of multiple zeta values follow from the interaction between the
algebra structure of QSym and a second algebra structure on H0 coming from the
shuffle product in Q〈x, y〉; see, e.g., [7, 9].

To give QSym the structure of a graded connected Hopf algebra, one defines a
coproduct ∆ by

∆(Mp1···pk
) =

k∑

j=0

Mp1···pi
⊗Mpi+1···pk

.

This coproduct makes the power-sum symmetric functions Mi primitive, and the
elementary symmetric functions M1···1 divided powers. Using this Hopf algebra
structure, one can define an action of QSym on Q〈x, y〉 that makes Q〈x, y〉 a
QSym-module algebra (see [7] for details). In terms of this action one can state a
result of Y. Ohno [12] as follows: for any word w of H0 and nonnegative integer i,

ζ(hi · w) = ζ(hi · τ(w)).

(Here · denotes the action, hi is the complete symmetric function of degree i, and
τ is the antiautomorphism of Q〈x, y〉 that exchanges x and y.)

My second talk concerned the relationship between QSym and some Hopf al-
gebras of trees (or more precisely forests) defined by Kreimer [10] and Foissy [2].
Kreimer’s commutative Hopf algebra HK , which has as its algebra generators
rooted trees, is the graded dual of the noncommutative Hopf algebra T of rooted
trees defined by Grossman and Larson [5]. Foissy’s noncommutative Hopf algebra
HF , which is generated by planar rooted trees, is self-dual.

Now Sym is a self-dual Hopf algebra. The larger Hopf algebra QSym is com-
mutative but not cocommutative, and so cannot be self-dual: its graded dual is
the Hopf algebra NSym of noncommutative symmetric functions in the sense of
Gelfand et al. [3]. As an algebra, NSym is the noncommutative polynomial al-
gebra Q〈e1, e2, . . . 〉, with ei in degree i, and the ei are divided powers. There
is an abelianization homomorphism NSym → Sym sending ei to the elementary
symmetric function of degree i.

The Hopf algebra structure on HK is such that the “ladder” trees ℓi (where
ℓi is the unbranched tree with i vertices) are divided powers: so the map ϕ :
Sym→ HK sending the ith elementary symmetric function to ℓi is a Hopf algebra
homomorphism. In fact, there is a commutative diagram of Hopf algebras

(0.2)

NSym
Φ−−−−→ HFy

y

Sym
ϕ−−−−→ HK
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where Φ sends ei to the unbranched planar rooted tree having i vertices. (The
map HF → HK sends each planar rooted tree to the corresponding rooted tree,
and forgets order in products.) The commutative diagram (0.2) dualizes to give

(0.3)

QSym
Φ∗

←−−−− HFx
x

Sym
ϕ∗

←−−−− T
and the diagram (0.3) makes it easy to establish some interesting properties of the
elements of the Hopf algebras involved. For example, if for a rooted tree t we let
|t| be the number of non-root vertices of t and Symm(t) the symmetry group of t,
then

κn =
∑

|t|=n

t

| Symm(t)| ∈ T

can be seen to form a set of divided powers in T , and ϕ∗(κn) = hn, the complete
symmetric function of degree n. In fact, εn := (−1)nS(κn), where S is the antipode
in T , is an element that maps under ϕ∗ to the nth elementary symmetric function:
further, n!εn is exactly the rooted tree in which n vertices are directly connected
to the root.

If we define an operator N : T → T by N(t) = ℓ2 ◦ t, where ◦ is the Grossman-
Larson product, then we can define coefficients n(t; t′) by

N
k(t) =

∑

|t′|=|t|+k

n(t; t′)t′.

If ℓ1 = • is the tree consisting of just the root vertex, then n(•; t) is nonzero
for every rooted tree t: in the terminology of Brouder [1], n(•; t) is the “tree
multiplicity” of t. For a forest t1 · · · tk of rooted trees, let B+(t1 · · · tk) be the
rooted tree obtained by attaching the root of each ti to a new root vertex. Then
using diagram (0.3) it is easy to see that

n(•;B+(ℓn1
ℓn2
· · · ℓnk

)) =
1

m1!m2! · · ·

(
n1 + · · ·+ nk

n1 n2 · · · nk

)
,

where mi is the number of the nj equal to i. Cf. equation (1) of [1].
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Some Aspects of CQFT in D = 4 Dimensions

Ansgar Schneider

In quantum field theory (QFT) the concept of global conformal invariance (GCI)
has far reaching consequences. E.g. it implies Huygens principle and rationality
of the Wightman distributions (the n-point-functions) [NT]. Furthermore the 2-
point-function of a field is fixed and characterized by the spin (j1, j2), jk ∈ 1

2N and
the scaling dimension δ ∈ N of the field. The condition of Wightman positivity
leads to so-called unitary bounds for δ, namely δ ≥ 1 + j1 + j2 ,if j1j2 = 0, and
δ ≥ 2 + j1 + j2 ,if j1j2 6= 0. Thus a scalar field (j1 = j2 = 0) must have at least
scaling dimension δ ≥ 1, a vector field (j1 = j2 = 1

2 ) at least δ ≥ 3.
All in all the condition of GCI is rather strong and gives a priori much structure

to the theory. One may hope that it is one of the most promising approaches in
constructive QFT.

Due to [NST] a scalar field satisfying GCI and having scaling dimension δ = 4
is of particular interest. There is a natural candidate for such a field, namely
the scalar Wick square Φ :=

∑3
µ=0 :BµB

µ : of the free spin 1 vector field B =

(Bµ)µ=0,1,2,3 of dimension 2, which itself violates the axiom of Wightman positiv-
ity. I.e. {B(f) | f ∈ S (R4,C4)} are operators on a (non degenerate) indefinite(!)
inner product (“Fock”) space

(
D =

⊕
n S (R

4n, (C4)⊗n)sym, 〈 , 〉
D

)
. Keep in mind

that one of the major difficulties in constructive QFT is to satisfy the axiom of
Wightman positivity, which is caused by its non-linear nature. E.g. the Wightman
distributions

Wn : S (R4n) ∋ h1 ⊗ · · · ⊗ hn 7→ 〈Ω,Φ(h1) . . .Φ(hn)Ω〉
D
,

Ω := vacuum := (1, 0, 0, . . . ),

of our real scalar field Φ have to fulfil
N∑

n,m=0

Wn+m(ϕ̃n ⊗ ϕm) ≥ 0,

for all N ∈ N and all test functions ϕk ∈ S (R4k). Here we used the notation
ϕ̃k(x1, . . . , xk) := ϕ̄k(xk, . . . , x1).
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By construction Φ satisfies all the linear Wightman axioms and only the non-
linear axiom of Wightman positivity is unclear.

In fact Wightman positivity is satisfied at the level of the 2-point-function,
since the Wick square has scaling dimension δ = 4 and the unitary bound for a
scalar field is δ ≥ 1, furthermore, and that is remarkable, Wightman positivity is
satisfied also at the level of the 4-point-function [NRT]. So one might conjecture
that Wightman positivity is satisfied in general.

Unfortunately some careful analysis [A] on the generated algebra of the scalar
Wick square shows that Wightman positivity fails at the level of the 12-point-
function, i.e.

6∑

n,m=0

Wn+m(ϕ̃n ⊗ ϕm) ≥ 0

is not satisfied for all test functions ϕk ∈ S (R4k).
More precisely one can show that one can approximate all bilocal field operators

B(f)B(g), f, g ∈ S (R4k,C4), by sixth order elements of A(Φ(h)|h ∈ S (R4)), the
operator algebra generated by Φ. As easily seen, the bilocal operators violate
Wightman positivity, hence the Wick square does.

Since one may define Φ as a certain limit of a sum of bilocal operators B(f)(g),
the above result can be formulated as an equality of algebras

limA(Φ(h)|h ∈ S (R4)) = limA(B(f)B(g))|f, g ∈ S (R4,C4)),

and we know that elements of the r.h.s violate Wightman positivity.
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Sheaf theory for smooth and topological stacks and twisted
cohomology

U. Bunke

(joint work with Th. Schick and M. Spitzweck)

1. Twisted cohomology - de Rham models

We consider a smooth manifold X with a closed three from λ. Then we can
form the two-periodic λ-twisted de Rham complex

(1.1) · · · dλ→ Ωeven(X)
dλ→ Ωodd(X)

dλ→ Ωeven(X)
dλ→ . . . ,

where dλ := ddR + λ.

Definition 1.1. The cohomology of the complex (1.1) is called the λ-twisted
two-periodic cohomology of X and will be denoted by H∗(X ;λ).

The important motivation for this definition is that H∗(X ;λ) can serve as a
target of the Chern character from twisted K-theory. This distinguishes the choice
of a closed three from among the possibility to choose closed froms of arbitrary
odd degree.

A natural choice of the twist for twisted K-theory K∗(X ;P ) is a PU -principal
bundle P → X , where PU is the projective unitary group of a separable infinite-
dimensional Hilbert spaces. The definition of twisted cohomology above has the
following draw-backs.

(1) H∗(X ;λ) does not depend in a functorial way on P . In fact, it depends
on the choice of the closed form λ.

(2) The image of the Chern character is a lattice. In order to study integral-
ity questions one should be able to define an integral version of twisted
cohomology. This goes beyond the de Rham model.

(3) The use of the de Rham model is tied to the smooth case. A generalization
to orbifolds is possible. But twisted cohomology should be defined in the
topological category.

2. Non-periodic twisted de Rham cohomology

Let Ω(X)[[z]] denote the space of formal power-series of smooth differential
forms on X , where z is a formal variable of degree deg(z) = 2. On this space we
define the differential dz

λ := ddR + λ d
dz . The complex (Ω(X)[[z]], dz

λ) admits an

action of T := d
dz of degree −2. We form the Nop-indexed system

Set : 0← Ω(X)[[z]]
T← Ω(X)[[z]][2]

T← Ω(X)[[z]][4]
T← Ω(X)[[z]][6] . . .

of complexes of abelian groups. We introduce the shifts so that the connecting
maps have degree zero.

Lemma 2.1. The limit limSet in the category of complexes of abelian groups
C(Ab) is isomorphic to the complex (1.1).
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Localizing this construction to open subsets ofX we obtain a complex of sheaves
U → (Ω(U)[[z]], dz

λ|U
) which we will denote by ΩX [[z]]λ.

3. Gerbes and twisted sheaves

In order to construct ΩX [[z]]λ we first associate to P → X the smooth gerbe of
its U -reductions f : G→ X . To each smooth stack X we associate a Grothendieck
site X∞ of manifolds over X (with submersive structure maps). The covering
families of an object M → X are the coverings of M by families of open subsets.
If f : X → Y is a map of smooth stacks, then we define an adjoint pair of functors
f∗ : ShY∞ ⇔ ShX∞ : f∗. The functor f∗ is left-exact and thus has a right-derived
descendent Rf∗ : D+(ShAbX

∞)→ D+(ShAbY
∞).

Let RG ∈ ShAbG
∞ denote the constant sheaf on G∞ with value R.

Theorem 2. There is a non-canonical isomorphism

Rf∗(RG) ∼= ΩX [[z]]λ in D+(ShAbX
∞).

It is now easy to generalize to the topological category and arbitrary coefficients.

4. T -duality and periodization diagrams

Recall that automorphisms of a gerbe over a stack X are classified by H2(X ; Z).
We consider the diagram

pr∗XG

p

""EEEEEEEE

u // pr∗XG

p
||yyyyyyyy

G

f

��
X

,

where prX : X × T 2 → X is the projection, and the automorphism u of gerbes
over X × T 2 is classified 1× orT 2 . We set m := p ◦ u. We call the diagram

(4.1) pr∗XG
m

==

p !!
G

f
// X

the periodization diagram.

5. Integration and periodization

Consider topological stacks X and Y and a map f : X → Y . Since Rf∗ :
D+(ShAbX)→ D+(ShAbY) admits a left-adjoint f∗ we have a unit transformation
αf : id→ Rf∗ ◦ f∗. Assume in addition that f : X → Y is a locally trivial bundle
of oriented closed manifolds of dimension n ∈ N.
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Lemma 5.1. There is a natural transformation
∫

f

: Rf∗ ◦ f∗ → id ,

the integration map.

Note that the map p : pr∗XG→ G in (4.1) is a T 2-principal bundle.

Definition 5.2. The periodization map associated to G→ X is the transforma-
tion

TG : Rf∗ ◦ f∗ αm→ Rf∗ ◦Rm∗ ◦m∗ ◦ f∗ f◦m=f◦p→ Rf∗ ◦Rp∗ ◦ p∗ ◦ f∗

R
p→ Rf∗ ◦ f∗ .

For any sheaf F ∈ D+(ShAbX) we consider the diagram

SetG(F) :

0← Rf∗ ◦ f∗(F)
TG← Rf∗ ◦ f∗(F)[2]

TG← Rf∗ ◦ f∗(F)[4]
TG← Rf∗ ◦ f∗(F)[6]

TG← . . .

in the unbounded derived category D(ShAbX).

Definition 5.3. The periodic G-twisted sheaf associated to F is defined by

PG(F) := holimSG(F) .

Note that the homotopy limit of an Nop-indexed diagram in a triangulated
category as D(ShAbX) is well-defined up to non-canonical isomorphism.

Theorem 3. There exists a refinement of the constructions above providing a func-
tor

PG : D+(ShAbX)→ D(ShAbX)

which depends functorially on G.

Definition 5.4. We define the periodic G-twisted cohomology of X with coeffi-
cients in F ∈ D+(ShAbX) by

H∗
per(X,F) := H∗(X ;PG(F)) .

6. Examples

As an illustration we calculate the two-periodic cohomology H∗(X ;PG(RX)) in
the case where X is a point and F = RX for certain abelian groups R.

Proposition 6.1.

R Hev Hodd

Q Q 0
Z/n 0 0

Q/ A
Q
f 0

0 A
Q

f /Q

,

where A
Q

f denotes the finite adeles of Q.
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A formula for the basic zeta coefficient for pseudodifferential
boundary operators

Gerd Grubb

In the introductory part of the talk we have recalled some of the modern general-
izations of trace functionals, to operators that are not necessarily trace-class. For
a classical pseudodifferential operator (ψdo) A of order σ on a closed manifold X
there is, on one hand, the noncommutative residue resA introduced by Wodzicki
[14] and Guillemin [8] ca. 1984; a functional depending, in local coordinates, only
on a finite number of homogeneous symbol terms (we call such functionals sym-
bolic). It vanishes on operators of noninteger or low order and is expressible by
an integral over X of a form resx(A) dx, where resx(A) is in local coordinates the
integral of the fiber trace tr of the symbol term a−n(x, ξ) for |ξ| = 1. On the other
hand there is the canonical trace TRA introduced by Kontsevich and Vishik [9]
ca. 1995, defined only for a subset of the operators and global (depending on the
full structure). It extends the usual trace and is expressible by an integral over X
of a form TRxAdx, where TRxA is a finite-part integral of tr a(x, ξ) in ξ in the
sense of Hadamard (see Lesch [10] and Grubb [5] for this characterization). The
expression TRxA is defined pointwise in local coordinates, but is not in general
invariant under coordinate changes.

When P1 is an auxiliary m’th order elliptic operator on X with no eigenvalues
on R−, one can define the generalized zeta function ζ(A,P1, s) = Tr(AP−s

1 ) for
large Re s and extend it meromorphically to the complex plane, with simple poles
at (σ + n − j)/m, j = 0, 1, 2, . . . . The basic zeta coefficient C0(A,P1) is then
defined as the regular value of ζ(A,P1, s) at s = 0, i.e., the coefficient of s0 in the
Laurent expansion at s = 0. In a number of cases where resA vanishes, C0(A,P1)
equals TRA.

It is known from works of Okikiolu [12], Kontsevich and Vishik [9], Melrose and
Nistor [11], that the trace defects C0(A,P1) − C0(A,P2) and C0([A,A

′], P1) are
symbolic, expressible in terms of residues of classical ψdo’s involving logP1 and
logP2. Paycha and Scott [13] have recently shown a formula for C0(A,P1) itself:

(0.1) C0(A,P1) =

∫

X

(
TRxA− 1

m resx,0(A logP1)
)
dx,
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where the terms in the integrand are defined in local coordinates, resx,0(A logP1)
being defined from the term in the symbol of A logP1 that is homogeneous of
degree −n (without a log-factor).

The main purpose of the talk is to report on how this formula can be extended
to operators on manifolds with boundary. From here on X denotes a compact
n-dimensional C∞ manifold with boundary ∂X = X ′. We can assume that X ⊂
X̃ for a smooth n-dimensional manifold X̃ without boundary, so that ∂X is its

boundary there. X̃ is provided with a vector bundle Ẽ, and E = Ẽ|X . We consider
an operatorB = P++G onX of order σ ∈ Z acting in E, where P+ = r+Pe+ is the

truncation to X of a classical ψdo P defined on X̃ and satisfying the transmission
condition at X ′, and G is a singular Green operator (s.g.o.) of class 0, as defined

by Boutet de Monvel [1]. (Here r+ restricts from X̃ to X , and e+ extends by 0

from X to X̃.) Taking the trace with respect to the normal variable xn near the
boundary induces a classical ψdo trnG on X ′ from G.

For such operators, Fedosov, Golse, Leichtnam and Schrohe [2] defined a non-
commutative residue (symbolical), and Grubb and Schrohe [7] introduced a canon-
ical trace (global) in particular cases; the latter is an integral of finite-part integrals
TRx P and TRx′(trnG) that can always be defined pointwise in local coordinates.

With P1 denoting an auxiliary second-order elliptic differential operator on X̃
having no eigenvalues on R−, we can define the zeta function ζ(B,P1,+, s) =

Tr(B(P−s
1 )+) for large Re s and show that it extends meromorphically across 0,

having a simple pole there; then C0(B,P1,+) denotes the regular value at 0.
Trace defect formulas for C0(B,P1,+)−C0(B,P2,+) and C0([B,B

′], P1,+) were
worked out in [7] and [4].

One of the difficulties with generalizing (0.1) is that little is known about log-
arithms of operators in the Boutet de Monvel calculus. One can easily define
(logP1)+, but its behavior under compositions with operators in the Boutet de
Monvel calculus needs also to be studied, and so do derived operators such as
G+(logP1) = r+(logP1)e

−J and G−(logP1) = Jr−(logP1)e
+, where J stands

for reflection in the boundary. The latter are generalized s.g.o.s with a certain
singular behavior at the boundary.

The formula we have found contains extra terms stemming from the truncation
at the boundary. Namely, C0(B,P1,+) is a finite sum of locally defined pieces of
the form:

(0.2)

∫

X

[TRx P − 1
2 resx,0(P logP1)] dx+ 1

2

∫

X′

resx′ trn(G+(P )G−(logP1)) dx
′

+

∫

X′

[TRx′ trnG− 1
2 resx′,0 trn(G(logP1)+)] dx′.

The strategy of the proof is to combine the knowledge of the trace defect formu-
las from [4] with an exact calculation in one particular case, where P1 is taken as
simple as possible. The symbol estimates are based on the parameter-dependent
symbol calculus of [3]. For the calculation of the contribution from G we moreover
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need to invoke Laguerre expansions, treating the diagonal part of the symbol of G
in a different way than the off-diagonal part. Details are written up in [6].
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Relative pairing in cyclic cohomology and divisor flows

Matthias Lesch

(joint work with Henri Moscovici, Markus Pflaum)

Cyclic cohomology of associative algebras, viewed as a noncommutative ana-
logue of de Rham cohomology, provides via its pairing with K-theory a natural
extension of the Chern-Weil construction of characteristic classes to the general
framework of noncommutative geometry [1]. In this capacity, cyclic cohomology
has been extensively and successfully exploited to produce geometric invariants
for K-theory classes (see Connes [2] for an impressive array of such applications,
that include proving the Novikov conjecture for all word-hyperbolic groups [3]).

In this work [5] we present a new application of this method to the construction
of geometric invariants in the relative setting, which takes full advantage of the
excision property not only in topological K-theory but also in (periodic) cyclic
cohomology (cf. Wodzicki [8], Cuntz–Quillen [4]).
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After reviewing the relative Chern character and the relative pairing in the
general framework of cyclic (co)homology, and briefly illustrating it in the famil-
iar context of de Rham (co)homology on manifolds with boundary, we recast in
this light the divisor flow for suspended pseudodifferential operators introduced by
Melrose [7], as well as its multiparametric versions defined in Lesch–Pflaum

[6]. More precisely, we show that the divisor flow for parametric pseudodiffer-
ential operators on a closed manifold can be expressed as the pairing between a
relative cyclic class determined by the regularization à la Melrose of the operator
trace together with its symbolic ‘boundary’ and the relative K1-group of the pair
consisting of parametric pseudodifferential operators together with their symbol
algebra. This representation gives a clear and conceptual explanation to all the
essential features of the divisor flow – its homotopy nature, additivity and inte-
grality. In addition, it provides a cohomological formula for the spectral flow along
a smooth path of self-adjoint elliptic first order differential operators, between any
two invertible such operators on a closed manifold.

In the sequel we give some more details. For those notions which are mentioned
but not explained here see [5]. Consider two unital Fréchet algebras A,B and

0 −→ J −→ A σ−→ B −→ 0

an exact sequence of Fréchet algebras and unital homomorphisms such that A
(and hence B) is a good Fréchet algebra.

It is well–known that the Chern character in noncommutative geometry is a
natural transformation

ch• : K•(A) −→ HC•(A)

from K–theory to cyclic homology. Since excision holds in many cases for K–theory
and cyclic (co)homology there seemed to be no need to develop the corresponding
relative theories. We show in various examples that this point of view should be
questioned.

Therefore, we first identify the relative objects in the various theories. Let
Eℓℓ∞(A) = σ−1(GL∞(B)),GL∞(B) = lim

N→∞
GLN (B), and denote by

π1(Eℓℓ∞(B),GL∞(A); a0)

the set of homotopy classes of paths (as)0≤s≤1 ⊂ Eℓℓ∞(B) with as|s=0 = a0 ∈
GL∞(A) and a1 ∈ GL∞(A). It is clear that for different a0, ã0 there is a canonical
bijection between the corresponding homotopy sets. Hence it suffices to consider
a0 = I.
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Theorem.

(1) π1

(
Eℓℓ∞(A),GL∞(A); I

)
is canonically isomorphic to the relative K-the-

ory group K1(A,B) = K1(J).
(2) The relative cyclic homology HC•(A,B) is the homology of the first quad-

rant double complex
(
Tot⊕• BC•,•(A,B), b̃+ B̃

)
, where

BCp,q(A,B) = BCp,q(A)⊕ BCp,q+1(B), while

b̃ =

(
b 0
−σ∗ −b

)
, and B̃ =

(
B 0
0 −B

)
.

(3) The Chern character of a relative K-theory class represented by (as)0≤s≤1

is given by a pair representing a relative cyclic homology class as follows:

ch•

(
(as)0≤s≤1

)
=

(
ch•(a1)− ch•(a0),

∫ 1

0

/ch
(
σ∗(as), σ∗(ȧs)

)
ds

)
.

Here, ch• is the ordinary odd Chern character and /ch is the transgressed
Chern character.

Connes’ concept of a cycle over an algebra has a natural extension to the relative
case:

Definition. A relative cycle of degree k over (A,B) consists of the following

data:

(1) differential graded unital algebras (Ω, d) and (∂Ω, d) over A resp. B to-

gether with a surjective unital homomorphism r : Ω→ ∂Ω of degree 0,

(2) unital homomorphisms ̺A : A → Ω0 and ̺B : B → ∂Ω0 such that r ◦̺A =
̺B ◦ σ,

(3) a graded trace
∫

on Ω of degree k such that
∫
dω = 0 , whenever r(ω) = 0.

The graded trace
∫

induces a unique closed graded trace
∫ ′

on ∂Ω of degree
k − 1, such that Stokes’ formula

∫
dω =

∫ ′

rω , for ω ∈ Ω

is satisfied.
The boundary (∂Ω, d,

∫ ′
) is just a cycle over the algebra B. For (Ω, d,

∫
), this

is in general not the case, unless the trace
∫

is closed.

We next define the character of a relative cycle C. Define (ϕk, ψk−1) ∈ Ck(A)⊕
Ck−1(B) as follows:

ϕk(a0, . . . , ak) :=
1

k!

∫
̺(a0)d̺(a1) . . . d̺(ak),

ψk−1(b0, . . . , bk−1) :=
1

(k − 1)!

∫ ′

̺(b0)d̺(b1) . . . d̺(bk−1).

Then (ϕk, ψk−1) is a relative cyclic cocycle in Totk
⊕ BC•,•(A,B).
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In [5] it is shown that a de Rham cohomology class on a manifold with boundary
naturally gives rise to a cycle with boundary. As a less trivial example in loc. cit.
we study in detail the algebra of parametric pseudodifferential operators on a
closed manifold. We show that the divisor flow [7] can be expressed expressed
as the pairing between a relative cyclic class determined by the regularization à
la Melrose of the operator trace together with its symbolic ‘boundary’ and the
relative K1-group of the pair consisting of parametric pseudodifferential operators
together with their symbol algebra.
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Arithmetic Mirror Symmetry

Noriko Yui

Definition:A smooth projective variety X of dimension 3 over C is called a
Calabi–Yau threefold if (1) Hi(X,OX) = 0 for each i = 1, 2, and (2) the canonical
bundle KX is trivial.

Introduce the Hodge numbers hi,j(X) := dimCH
j(X,Ωi

X) for 0 ≤ i, j ≤ 3.
Then (1) ⇔ h1,0(X) = h2,0(X) = 0 and (2) implies that h3,0(X) = pg(X) = 1.
The Hodge numbers are concocted to the Hodge diamond:

1
0 0

0 h1,1 0
1 h2,1 h1,2 1

0 h2,2 0
0 0

1

The Serre duality asserts that h1,1 = h2,2 and the complex conjugation gives rise
to the equality h1,2 = h2,1. The Betti numbers are given by

B0 = B6 = 1, B1 = B5 = 0, B2 = h1,1 = h2,2 = B4, B3 = 2(1 + h2,1)
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and the Euler characteristic is χ = 2(h1,1 − h2,1).
Topological Mirror Symmetry Conjecture:Given a family of Calabi–Yau

threefolds M, there is a mirror family of Calabi–Yau threefolds W in the sense

that the mirror map interchanges the Hodge numbers:

h1,1(W) = h2,1(M), h2,1(W) = h1,1(M)

so that the Euler characteristics change the sign: χ(W) = −χ(M). Furthermore,

there is a linear isomorphism

Φ : H1,1(W)→ H2,1(M)

which identifies the Type IIA and the Type IIB prepotentials.

In this talk, I will introduce the so-called “Arithmetic Mirror Symmetry” for
Calabi–Yau threefolds defined over Q. Our aim is to interpret the mirror symmetry
phenomenon by means of arithmetic invariants of the Calabi–Yau threefolds, e.g.,
zeta-functions, Galois representations and L-series.

Suppose that X is a Calabi–Yau threefold defined over Q. Then X always has
an integral model. Let p be a “good” prime. We define the congruence zeta-
function ζp(X,T ) of X (mod p) by encoding the numbers of Fq–rational points
on X (mod p) for q = pa, a ∈ N. We have

ζp(X,T ) =

6∏

i=0

P i
p(T )(−1)i+1

where P i
p(T ) := det(1 − Frob∗

p T |Hi
et(X̄,Qℓ)) ∈ 1 + TZ[T ] with degree Bi. The

i-th L-series of X is

Li(X, s) := L(Hi
et(X̄,Qℓ), s) =

∏

p:good

1

P i
p(p−s)

,

and globally, the L-series of X is L(X, s) :=
∏6

i=0 Li(X, s)
(−1)i

.
Construction of Calabi–Yau orbifolds: We construct Calabi–Yau three-

folds using orbifolding construction in weighted projective 4-spaces. The starting
point is the Fermat hypersurface of degree m in P4:

Xm
0 +Xm

1 +Xm
2 +Xm

3 +Xm
4 = 0.

Let Q = (q0, q1, q2, q3, q4) ∈ N5. We say that < m,Q > is an admissible pair if
(1) gcd(q0, · · · , q̂j , · · · , q4) = 1 for every j, 0 ≤ j ≤ 4 ( q̂j means deletion of qj),
(2) qi|m for every i, 0 ≤ i ≤ 4 and
(3) m = q0 + q1 + q2 + q3 + q4 (the Calabi–Yau condition).

Let µQ =
∏5

i=0 µqi
where µqi

= Spec(Q[X ]/(Xqi −1) is a finite group (scheme) of
order qi for each i. Then µQ acts on V by componentwise multiplication. Define
the quotient Y := V/µQ. Then the Calabi–Yau condition (3) guarantees that
Y is a singular Calabi–Yau threefold. Y has only cyclic quotient singularities,
which are defined over Q. These singularities are well understood. The exists
a crepant resolution, X , of Y , i.e.,a resolution preserving the triviality of the
canonical sheaf of Y . X is a smooth Calabi–Yau threefold defined over Q. There
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are altogether 147 admissible pairs with < 5, (1, 1, 1, 1, 1) > the smallest and <
1806, (1, 42, 258, 602, 903)> the largest.

Fermat motives: One problem here is that the Betti numbers B3 could
be rather large, implying the associated Galois representations could have very
high dimension. To go around this difficulty, we introduce the concept of “Fermat
motives”, which are defined explicitly by means of projectors. The cohomological
realizations of Fermat motives enable us to decompose any Weil cohomology groups
of X into the product of motivic cohomology groups and the cohomology group
associated to the singular locus. In particular, the polynomial P 3

p (T ) factors into
the product of motivic characteristic polynomials (of degree at most ϕ(m) where
ϕ is the Euler function), and the polynomials associated to the singular locus.
Passing to Fermat motives, we are able to compute the congruence zeta-functions
and L-series for our 147 Calabi–Yau orbifolds.

Mirror Calabi–Yau threefolds: We construct mirror partners of our Calabi–
Yau threefolds by the Greene–Plesser method, namely, first deforming them and
then taking quotients by discrete groups of symmetries. This process switches
the Hodge numbers and we obtain mirror partners satisfying Topological Mirror
Symmetry Conjecture. We can compute the congruence zeta-functions and L-
series of these mirror Calabi–Yau threefolds. One consequence of the topological
mirror symmetry can be observed arithmetically as in the following theorem.

Theorem: The characteristic polynomial of the motive MQ corresponding to

the weight Q = (q0, q1, q2, q3, q4) divides both P 3
p (M, T ) and P 3

p (W , T ) in Z[T ].
In particular, the motive MQ remain invariant under the mirror map.

“Quantum” zeta-function and “quantum L-series: String theorists wish
to have a relation something like T -duality for zeta-functions and L-series of mir-
ror pairs of Calabi–Yau threefolds. However, the classical zeta-functions and L-
series are NOT the right kind of objects. This leads us to the search of a “quan-
tum” zeta-function and L-series. We offer two candidates for such a quantum
object. We argue at local level, i.e., for “quantum” zeta-functions. For a mir-
ror pair (M,W), we define ζp(M,W , p−s) := P 3

p (M, p−s) · P 3
p (W , p−s)−1. Then

ζp(M,W , s) satisfies the required “T -duality”, but results in throwing away the
most essential factor P 3

p (MQ, p
−s) corresponding to the weight motive MQ. The

other candidate is the slope zeta-function due to D. Wan. Note that the recip-
rocal roots of P i

p(M, T ) are all algebraic integers. Factor ζp(M, T ) over Zp, and

write ζp(M, T ) =
∏

i(1− αiT )±1 where αi are algebraic integers in Z̄p. Then the
(normalized) slopes ordq(αi) are rational numbers in the interval [0, 3]. The slope

zeta-function is defined by Sp(M, u, T ) :=
∏

i(1− uordq(αi) T )±1.
Proposition: Let (M,W) be a mirror pair of Calabi–Yau orbifolds over Q

constructed above. Let p be a good prime. Suppose that bothM⊗Fp andW⊗Fp

are ordinary, that is, the Newton polygon coincides with the Hodge polygon. Then

Sp(W , u, T ) =
1

Sp(M, u, T )
.

The ordinarity condition holds for primes p ≡ 1 mod m.
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However, neither candidates would fit the bill, and our search for the right
“quantum” zeta-functions goes on.

Remark: Several people have asked the question of how our Arithmetic Mirror
Symmetry is related to the Mirror Symmetry story in String Theory. The idea of
mirror symmetry first appeared as a physics prediction that two different physical
theories (Type IIA and Type IIB) in space-time dimension 10, would give rise, after
compactification, isomorphic physical theories in space-time dimension 4, except
that the role of A-model and B-model correlation functions (prepotentials) are
reversed. In particular, this would imply that there is a mirror pair of Calabi–Yau
threefoldsM andW and a linear isomorphism (mirror map) relating the A-model
prepotential (which count the number of rational curves onM) and the B-model
prepotential (which can be computed by the period integrals on W). This theory
has presented a spectacular advance in Enumerative Geometry, e.g., counting the
number of rational curves (or higher genus curves), the Gromov-Witten invariants,
the BPS states, on Calabi–Yau threefolds. However, this theory misses completely
the dimension zero objects, namely, points on Calabi–Yau threefolds. Arithmetic
Mirror Symmetry tries to remedy this situation.

The book Mirror Symmetry V (AMS/IP Stud. in Adv. Math. Series (2006), to
appear) contains a number of articles addressing “Arithmetic Mirror Symmetry”.

A splitting formula for the su(N) spectral flow of the odd signature
operator coupled to a path of SU(N) connections

Benjamin Himpel

Introduction. A splitting formula is a tool for computing spectral flow of a path
of self-adjoint elliptic differential operators, which is roughly the net number of
eigenvalues that change sign. We consider a 3-manifold M = X ∪T Y split along
a torus, a trivialized SU(N) bundle over M , and the odd signature operator DAt

coupled to a path At ∈ A = Ω1(M)⊗su(N) of SU(N) connections, t ∈ [0, 1]. The
odd signature operator twisted by an SU(N)-connection A is given by

DA : Ω0+1(M)⊗ su(N)→ Ω0+1(M)⊗ su(N)

(α, β) 7→ (d∗Aβ, dAα+ ∗dAβ),

where dAω := dω + [A,ω] is the twisted exterior derivative on the 0- and 1-forms
Ω0+1(M)⊗ su(N) := Ω0(M)⊗ su(N)⊕Ω1(M)⊗ su(N), [·, ·] is the wedge product
on forms combined with the Lie bracket on the coefficients, and d∗A is its dual.

Because the space of all connections is contractible, the spectral flow depends
only on the endpoints. We let SF(A0, A1) := SF(DAt

). Henceforth we as-
sume, that A0 and A1 are flat, that is, d2

A = 0, because by dim(KerDAε
) =

dim(H0+1(M,dAε
)) the spectral flow turns out to be a topological invariant. We

are interested in finding a formula of the form

SF(A0, A1) = SF(DAt
|X ;P+

t ) + SF(DAt
|Y ;P−

t ) + C(A0)− C(A1),
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where P±
t are paths of certain Atiyah-Patodi-Singer boundary conditions and C

is a correction term, which only depends on Aε, ε = 0, 1.
The usual situation to keep in mind, in which a splitting formula can be applied

to compute spectral flow, is when At|X is flat and Y is a simple manifold, e.g. a
solid torus. In such a situation SF(DAt

|X ;P+
t ) may be computed by topological

means, while SF(DAt
|Y ;P−

t ) may be computed once and for all by a different
method. See for example [8]. In this talk I will also present a splitting formula,
which can be useful whenever the representation varieties of X and Y are con-
nected. Note that this is the case whenever X and Y are complements of torus
knots.

Motivation. The connection between topology and Chern-Simons gauge theory is
given by the identification of SU(N) representations and flat SU(N) connections
up to conjugation and the action of the gauge group G respectively. The flat
SU(N) connections are precisely the critical points of the Chern-Simons function
cs(A) = 1

8π2

∫
M tr(A ∧ dA +A ∧A ∧ A) on the space of SU(N) connections, and

the Chern Simons function factors through A/G as an R/ valued function.
Taubes [11] laid the groundwork for new topological invariants based on gauge

theory by showing that the SU(2) Casson invariant for integral homology 3-spheres
[1] has a gauge theoritical interpretation as the Euler characteristic on A/G in
the spirit of the Poincaré-Hopf theorem. See also [9] for a new proof of this
result. Taubes realized that the Hessian of the Chern-Simons function and the
odd signature operator coupled to the same path of SU(2) connections have the
same spectral flow. Floer extended this idea around the same time to instanton
Floer homology, which has the SU(2) Casson invariant as its Euler characteristic,
by viewing the critical points of the Chern-Simons function as a /8 graded Morse
complex.

Generalizations of the SU(2) Casson invariant to SU(N) [2, 4, 5] via gauge
theory followed, as well as integer graded instanton Floer homology [6], providing
finer topological invariants of homology 3-spheres. In order to compute any of these
invariants, one needs to compute the spectral flow of the odd signature operator
coupled to a path of SU(N) connections.

Witten [12] introduced new 3-manifold invariants for each k ∈ Z by the integral
Zk(M) =

∫
A/G e

2πkics(A), which is as beautifully intuitive as it is mathematically

non-rigorous. However, this invariant can be defined rigorously by the axioms of
topological quantum field theory, as well as interpreted as an asymptotic expansion
by the method of stationary phase. The conjectured correspondence between these
two approaches is known as the asymptotic expansion conjecture [7]. Among
other things, one must compute spectral flow to verify the asymptotic expansion
conjecture.

Some Details. We may assume that M is cylindrical in a neighborhood of T ,
because the spectral flow does not depend on the metric. Given a connection
A on M , we may assume after gauge transformation, that A is in cylindrical
form and flat near T , with A|T = au,v := −idiag(u) dl − idiag(v) dm ∈ AT ,
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u, v ∈ Λ := {u ∈ RN | ∑N
j=1 uj = 0}. The restriction of Ω0+1(M ; su(N)) to

T is isomorphic to Ω0+1+2(T ; su(N)). Therefore, boundary conditions are cer-
tain Lagrangian subspaces of L2(Ω0+1+2(T ; su(N))). Our Atiyah-Patodi-Singer
boundary conditions for DA are of the form P+

u,v,θ := P+
au,v
⊕Lu,v,θ, continuously

parametrized by Λ ⊕ Λ ⊕ (S1)N−1 with A|T = au,v, where P+
a is the L2-span of

the positive eigenspace of de Rham operator twisted by a

Sa : Ω0+1+2(T ; su(N)) → Ω0+1+2(T ; su(N))

(α, β, γ) 7→ (∗daβ,− ∗ daα− da ∗ γ, da ∗ β).

and Lu,v,θ are finite Lagrangian subspaces of KerSau,v
∼= H0+1+2(T, dau,v

). The
definition of these boundary conditions are technical, but explicit, making spectral
flow computations along a path of flat connections possible. The correction terms
C(Aε), ε = 0, 1, are certain Maslov triple indices of Lagrangian subspaces of
Ker(Saε

) associated to Aε as defined in [8, 10].

An Application. There has been a recent conjecture by [3] relating the SU(3)
Casson invariant of unions of certain torus knots M = T2,p ∪T T2,p′ to the SU(2)
Casson knot invariants of its pieces: λSU(3)(M) = 4λSU(2)(T2,p)λSU(2)(T2,p′). For
the SU(3) Casson invariant one needs to compute SU(3) spectral flow from the
trivial connection to other flat connections. In order to apply the splitting formula
in this situation we will refine it in the following way.

It is a simple consequence of the splitting formula that the spectral flow of the
odd signature operator coupled to a loop of SU(N) connections on a manifold
with boundary only depends on its restriction to the boundary. Let ρ̃t be an
arbitrary loop in Λ2 × (S1)N−1. Let At be a loop of SU(N) connections on
the solid torus restricting to aρt

on the boundary, such that ρt lifts to ρ̃t. Let
SF(ρ̃t) := SF(DAt

|S ;P+
ρ̃t

). This can be computed just like in [8] for SU(2).

Consider two flat connections A0 and A1 on M = X ∪T Y . Let Bt and B′
t

be paths of SU(N) connections on X and Y respectively with Aε|X = Bε and
Aε|Y = B′

ε, ε = 0, 1, with ρ̃ and ρ̃′ the corresponding paths in Λ2 × (S1)N−1.
Then

SF(A0, A1) = SF(DBt
|X ;P+

˜̺t
) + SF(DB′

t
|Y ;P−

˜̺′t
) + SF(ρ̃1−t ∗ ρ̃′t) +C(A0)−C(A1).

Since the representation variety of the complement of a torus knot is path
connected, we can find for two flat connections A0 and A1 paths of flat connections
Bt and B′

t on T2,p and T2,p′ as above. Now we can compute the SU(3) spectral
flow and check the conjecture.

References

[1] S Akbulut, J McCarthy Casson’s invariant for oriented homology 3-spheres. An expo-
sition. Mathematical Notes, 36. Princeton University Press, Princeton, NJ, 1990.

[2] H U Boden, C M Herald The SU(3) Casson Invariant for Integral Homology 3-Spheres.
J. Diff. Geom. 50 (1998), 147–206

[3] H U Boden, C Herald The SU(3) Casson invariant for 3-manifolds split along a 2-sphere
or a 2-torus. Proceedings of the 1999 Georgia Topology Conference (Athens, GA). Topology
Appl. 124 (2002), no. 2, 187–204.



1278 Oberwolfach Report 21/2006

[4] H U Boden, C M Herald, P A Kirk An integer valued SU(3) Casson invariant. Math.
Res. Lett. 8 (2001), no. 5-6, 589–603.

[5] S E Cappell, R Lee, E Y Miller A perturbative SU(3) Casson invariant. Comment.
Math. Helv. 77 (2002), no. 3, 491–523.

[6] R Fintushel, R Stern Integer graded instanton homology groups for homology three-
spheres. Topology 31 (1992), no. 3, 589–604.

[7] S K Hansen, T Takata Quantum invariants of Seifert 3-manifolds and their asymp-
totic expansions. Invariants of knots and 3-manifolds (Kyoto, 2001), 69–87, Geom. Topol.
Monogr., 4, Geom. Topol. Publ., Coventry, 2002.

[8] B Himpel A splitting formula for the spectral flow of the odd signature operator on 3-
manifolds coupled to a path of SU(2) connections. Geom. Topol. 9 (2005), 2261–2302.

[9] B Himpel, P Kirk, M Lesch Calderón projector for the Hessian of the perturbed Chern-
Simons function on a 3-manifold with boundary. Proc. London Math. Soc. (3) 89 (2004),
no. 1, 241–272.

[10] P Kirk, M Lesch The η-invariant, Maslov index, and spectral flow for Dirac-type operators
on manifolds with boundary. Forum Math. 16 (2004), no. 4, 553–629.

[11] C H Taubes Casson’s invariant and gauge theory. J. Differential Geom. 31 (1990), no. 2,
547–599.

[12] E Witten Quantum field theory and the Jones polynomial Commun. Math. Phys. 121
(1989) 351–399.

Chen integrals of symbols and renormalised multiple zeta values

Sylvie Paycha

(joint work with Dominique Manchon)

The operator P defined on functions on integers f : N→ C by

P (f)(n) =
∑

n>m>0

f(m)

is a Rota-Baxter operator of weight θ = −1:

P (f)P (g) = P (f P (g)) + P (g P (f)) + P (fg).

When applied to f(n) = n−s1 , g(n) = n−s2 , these relations lead to “stuffle” or
“second shuffle relations” for multiple zeta functions 1. For double zeta functions,
they read:

ζ(s1) ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2)

where ζ(s) =
∑

n>0 n
−s for s > 1 and ζ(s1, s2) =

∑
n1>n2

n−s1

1 n−s2

2 for s1 > 1
and s2 ≥ 1.
Correspondingly, starting from f ∈ L1(R+,C), one can build the map P̃r(f) :
R+ → C defined for r > 0 by:

P̃r(f)(y) =

∫

y≥x≥r

f(x) dx.

Then the classical Rota-Baxter relation (of weight zero)

P̃r(f) P̃r(g) = P̃r(f P̃r(g)) + P̃r(g P̃r(f))

1We refer the reader to e.g. [H], [Z], [W], [ENR], [CEMP], [Mi], [Zu] among a long list of
articles on algebraic relations obeyed by multiple zeta functions
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is an integration by parts in disguise. When applied to f(x) = x−s1 χ(x), g(x) =
x−s2 χ(x), with χ a smooth cut-off function around the origin which is 1 outside
the interval ]− r, r[ for some positive real number r, this leads to shuffle relations
for continuous analogs of multiple zeta functions. These generalise the following
relation:

ζ̃r(s1) ζ̃r(s2) = ζ̃r(s1, s2) + ζ̃r(s2, s1),

where ζ̃r(s) =
∫

x≥r
x−s dx for s > 1 and ζ̃r(s1, s2) =

∫
x1>x2≥r

x−s1

1 x−s2

2 dx1 dx2

for s1 > 1 and s2 ≥ 1.

We use a renormalisation procedure à la Connes and Kreimer [CK] to obtain
an extension of multiple zeta functions at all integer arguments (in particular at
nonpositive arguments) which obey the stuffle (or second shuffle) relations. The
requirement that the extended multiple zeta functions should also obey stuffle re-
lations naturally leads to requiring that certain maps define characters on some
Hopf algebra equipped with the stuffle product (the coproduct being the decon-
catenation). The extension of multiple zeta functions at integer arguments si ≥ 1
(which respects the stuffle product) carried out by number theorists can be under-
stood in those terms.2 3

It was shown in [MP1] that the Euler-Zagier-Hoffmann multiple zeta function

ζ(s1, · · · , sk) :=
∑

0<nk<···<n1

1

ns1

1

· · · 1

nsk

k

relates via an Euler-MacLaurin formula to a Chen integral of symbols on R (as-
suming temporarily that the sums and integrals converge):

ζ̃r(s1, · · · , sk) :=

∫ Chen

[r,+∞[

f1(s1)⊗ · · · ⊗ fk(sk)

=

∫

r≤xk≤···≤x1

d x1 · · ·d xk f1(s1)(x1) · · · fk(sk)(xk),

where fi(x) = χ(x) |x|−si .
The fi’s can be interpreted as classical symbols on R. Using the well-known exten-
sion of the ordinary Lebesgue integral to cut-off integrals on (log-)polyhomogeneous
symbols, one can define cut-off Chen integrals for tensor products σ1 ⊗ · · · ⊗ σk of
classical symbols:

−
∫ Chen

|ξ|≥r

σ1 ⊗ · · · ⊗ σk = −
∫

r≤|ξk|<···<|ξ1|

σ1(ξ1) · · ·σk(ξk).

2In [GZ], the authors have a similar approach using a Birkhoff factorisation to renormalise

multiple zeta functions. Our construction relates to theirs via a Mellin transform.
3There is another extension of multiple zeta functions at integer arguments si ≥ 1, which is

compatible with the shuffle relations. But compatibility of an extension to integer arguments
si ≥ 1 with both sets of relations is impossible (see e.g. [ENR], [W]).
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¿From there, using the Euler-Mac-Laurin formula, one can then extend ordinary
Chen sums to cut-off Chen sums:

Chen

−
∑

σ1 ⊗ · · · ⊗ σk = −
∑

0<|nk|<···<|n1|

σ1(n1) · · ·σk(nk).

A holomorphic regularisation R : σ 7→ σ(z) on classical symbols (e.g. dimensional
regularisation) leads to meromorphic maps

ΦR
r (σ1 ⊗ · · · ⊗ σk) : z 7→ −

∫ Chen

|ξ|≥r

σ1(z)⊗ · · · ⊗ σk(z),

ΨR(σ ⊗ · · · ⊗ σk) : z 7→
Chen

−
∑

σ1(z)⊗ · · · ⊗ σk(z)

with poles of order ≤ k + 1.
The meromorphicity property for cut-off Chen integrals follows from that of cut-off
integrals of holomorphic families of log-polyhomogeneous symbols. The meromor-
phicity property of cut-off Chen sums of holomorphic symbols, which we derive in
dimension 1, then follows from the Euler-MacLaurin formula.
One thereby obtains two characters ΦR

r , resp. ΨR with values in meromorphic
functions defined on Hopf algebras, the tensor algebra of classical symbols with
constant coefficients on R equipped with the appropriate shuffle, resp. stuffle prod-
uct. The Birkhoff factorisation of these characters then provides renormalised
values at z = 0

ϕR
r (σ1⊗· · ·⊗σk) = −

∫ Chen,R

|ξ|≥r

σ1⊗· · ·⊗σk, ψR(σ⊗· · ·⊗σk) =

Chen,R

−
∑

σ1⊗· · ·⊗σk

which obey the same shuffle, resp. stuffle relations. Applying this to σi(ξ) =

|ξ|−siχ(ξ) and a regularisation σ 7→ σ(z)(ξ) = σ(ξ) |ξ| z
1+µz for some real number

µ leads to renormalised “multiple zeta values” ζ̃µ
r (s1, · · · , sk), resp. ζµ(s1, · · · , sk)

which obey the expected shuffle, resp. stuffle relations.
In particular, the latter gives renormalised multiple zeta values (depending on the
parameter µ) at all integers (positive or not), which verify the stuffle relations.
Confirming known results, we show that the renormalised multiple zeta values at
integers si ≥ 1 is completely determined by the finite part fpz=0ζ(1 + z

1+µz ).
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