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Introduction by the Organisers

This meeting had over 45 participants from 11 countries (Australia, Belgium,
Canada, France, Germany, Italy, Israel, Norway, Russia, UK and the US) and
26 lectures were presented during the five day period. The sponsorship of the
European Union allowed the organizers to invite and secure the participation of
a number of young investigators. Some of these young mathematicians presented
thirty minute lectures. As always, there was a substantial amount of mathematical
activity outside the formal lecture sessions.

This meeting explored the applications of ideas and techniques from algebraic
geometry to noncommutative algebra . Several lecturers presented open problems
to stimulate the interest of researchers in other areas. Areas covered include

• noncommutative projective algebraic geometry,
• Hopf algebras,
• combinatorial ring theory,
• symplectic reflection algebras,
• representation theory of quivers and preprojective algebras
• homological techniques and derived categories
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The sweep of the meeting can be seen from de Jong’s contribution that uses
contemporary algebraic geometry to prove a theorem in the classical theory of
finite dimensional division algebras to the works of Keller-Reiten and Ingalls on
cluster algebras. Additionally, de Jong notes a result obtained during the workshop
with van den Bergh. Looking to the future, Goodearl and Zelmanov propose a
number challenging problems. Zelmanov discusses both an interesting Lie algebra
example and a possible connection to an old problem of Kurosh.

The previous paragraph represents just a sampling of the scope and variety of
the mathematics at the meeting. The abstracts following will give the whole story.
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Abstracts

Primitivity in twisted homogeneous coordinate rings

Jason Bell

(joint work with Dan Rogalski)

Let X be a projective variety over an uncountable algebraically closed field k and
let σ be an automorphism of X . Given an invertible sheaf L over X , we can define
the twisted homogeneous coordinate ring

B(X,L, σ) =

∞⊕

i=0

H0(X,Ln),

where Ln is the sheaf L ⊗ σ∗(L) ⊗ · · · ⊗ (σn−1) ∗ (L). We examine the question
when such algebras are primitive. We prove in particular that primitivity for such
rings can be reduced to a geometric condition. That is, we show that primitivity
is equivalent in such rings to the property that the set of points x ∈ X which fail
to have a dense orbit under σ is not itself a dense subset of X . Furthermore, we
show that if X has a dense subset Y such that every y ∈ Y fails to have a dense
orbit in X under σ then there is f ∈ k(X) such that f ◦ σ = f .

Using this fact, we are able to obtain the following result. Let P be a prime
ideal of B(X,L, σ). Then the following are equivalent:

(1) P is primitive;
(2) Q(B(X,L, σ)/P ), the quotient division algebra, has centre equal to k;
(3) B(X,L, σ)/P has only finitely many height one primes.

This can be regarded as a twisted-homogeneous coordinate ring analogue of the
Dixmier-Moeglin equivalence for enveloping algebras of finite dimensional Lie al-
gebras [2, §14.4.1]. It was previously known for connected finitely graded domains
of GK dimension two [1]. This correspondence indicates that for such algebras
the number of height one primes is either uncountable or finite; in particular, it
is impossible to have a countably infinite number of height one primes. We thus
pose the following question.

Question. Let k be an uncountable field and let A be a finitely generated Noether-
ian k-algebra of finite GK dimension. Suppose the number of height one primes
of A is countable. Is it then necessarily finite?

References

[1] M. Artin and J.T. Stafford, Noncommutative graded domains with quadratic growth, Inven-
tiones Math. 122 (1995), 231–276.

[2] J.C. McConnell and J.C. Robson, Noncommutative Noetherian rings. With the coopera-
tion of L. W. Small. Pure and Applied Mathematics (New York). A Wiley-Interscience
Publication. John Wiley & Sons, Ltd., Chichester, 1987.
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Deformed Preprojective Algebras and Calogero-Moser Spaces

Yuri Berest

(joint work with Oleg Chalykh)

We clarify the relation between the following objects: (a) the rank 1 torsion-free
modules (ideals) over the first Weyl algebra A1(C); (b) simple modules over de-
formed preprojective algebras Πλ(Q) introduced by Crawley-Boevey and Holland
[5]; and (c) simple modules over the rational Cherednik algebras H0,c(Sn) associ-
ated to symmetric groups [8]. The isomorphism classes of each type of these objects
can be parametrized geometrically by the same space (namely, the Calogero-Moser
algebraic varieties); however, no direct links (functors) between the corresponding
module categories seem to be known. We construct such functors by translating
our earlier results on A∞-modules over A1 (see [3]) to the more familiar language
of quiver representations. We mention that the question of explaining the “mys-
terious bijection” between ideal classes of A1 and simple modules of Cherednik
algebras was first raised in [8] and emphasized further in [2] (see loc. cit., Re-
mark 1.1).

1. For each n ≥ 0 , let C̃n be the space of linear maps

{(X̄, Ȳ , v̄, w̄) : X̄, Ȳ ∈ End(Cn) , v̄ ∈ Hom(C, Cn), w̄ ∈ Hom(Cn, C)} ,

satisfying the equation [X̄, Ȳ ]+Id = v̄ w̄ . The group GL(n, C) acts on C̃n in the
natural way:

(X̄, Ȳ , v̄, w̄) 7→ (gX̄g−1, gȲ g−1, gv̄, w̄g−1), g ∈ GLn(C) ,

and, following [9], we can define the n-th Calogero-Moser space Cn to be the

quotient variety C̃n//GLn(C) modulo this action. In fact, GLn(C) acts freely on

C̃n , and Cn turns out to be a smooth affine variety of dimension 2n (see [9]).

2. Let Q = (I, Q) be a finite quiver with vertex set I and arrow set Q, and let
Q̄ be its double (i.e. the quiver obtained from Q by adding a reverse arrow a∗ to
each arrow a ∈ Q). Following [5], for each λ = (λi) ∈ CI , we define the deformed
preprojective algebra of weight λ by

Πλ(Q) := CQ̄

/〈
∑

a∈Q

[a, a∗]−
∑

i∈I

λiei

〉
.

Here CQ̄ denotes the path algebra of the double quiver Q̄ and ei ∈ CQ̄ stand for
the orthogonal idempotents corresponding to the trivial paths in Q̄.

We will be concerned with the following example. Let QCM be the quiver
consisting of two vertices {0, 1} and two arrows v : 0→ 1 and X : 1→ 1 . Write
w := v∗ and Y := X∗ for the opposite arrows in Q̄. The algebra Πλ := Πλ(QCM)
is then generated by X, Y, v, w and the idempotents e0 and e1, which, apart
from the standard path algebra relations, satisfy [X, Y ] + vw − λ1e1 = 0 and
wv + λ0e0 = 0 .



Interactions between Algebraic Geometry and Noncommutative Algebra 1325

3. Now, fix an integer n ≥ 0 and let λ = (−n, 1). Then, to each point of

the variety C̃n we can naturally associate a right module over Πλ of dimension
n + 1. All such modules are simple and, as was originally observed by Crawley-
Boevey [6], all simple modules of Πλ having dimension vector α = (1, n) are of
this form [7]. Thus, we can identify the space Cn with the representation variety
Rep(Πλ, α)//G(α) parametrizing the isomorphism classes of simple Πλ-modules
of dimension α = (1, n).

On the other other hand, according to [4], the varieties Cn also parametrize the
isomorphism classes of right ideals of the first Weyl algebra A1(C). Our aim is to
relate the simple modules of Πλ to ideals of A1 in a natural (functorial) way. To
this end, we will use the following simple, but crucial observation.

Lemma 1. A1(C) is isomorphic to the quotient of Πλ by the two-sided ideal
generated by the idempotent e0 .

Indeed, combined with the canonical projection Πλ ։ Πλ/〈e0〉 , the algebra
map C〈x, y〉 → Πλ , x 7→ X , y 7→ Y , is an epimorphism with kernel containing
xy− yx−1 . The induced map A1(C) := C〈x, y〉/〈xy− yx−1〉 → Πλ/〈e0〉 is then
an isomorphism of algebras, since A1 is simple.

4. Let Π := Πλ (with λ = (−n, 1) as above), A := Π/〈 e0 〉 ∼= A1(C) , B :=
e0 Π e0 , and let Mod(Π) , Mod(A) and Mod(B) denote the corresponding categories
of (right) modules. Then we have the following six functors

Mod(A)

�
i∗

i∗
-

�
i!

Mod(Π)

�

j!

j∗
-

�

j∗
Mod(B)

satisfying the standard “recollement” conditions (see [1]). Briefly, i∗ is the re-
striction functor corresponding to the canonical epimorphism i : Π → A ; it has
both the right adjoint i! = HomΠ(A, — ) and the left adjoint i∗ = —⊗Π A , sat-
isfying i! i∗ ≃ i∗i∗ ≃ IdMod(A) . Next, the functor j∗ is defined by j∗(X) = Xe0 ;
it is exact and has also the right adjoint j∗ = HomB(Πe0, — ) and the left adjoint
j! = — ⊗B e0Π , satisfying j∗j∗ ≃ j∗j! ≃ IdMod(B) . Moreover, we have j∗i∗ = 0,

i∗j! = i!j∗ = 0 , so j∗ : Mod(Π) → Mod(B) identifies Mod(B) as the quotient cate-
gory of Mod(Π) by the (strict) image of i∗, i. e. Mod(B) ≃ Mod(Π)/Mod(A) . Our
main result is the following

Theorem 2. The composition of functors

F : Mod(Π)
j∗→ Mod(B)

j!−→ Mod(Π)
i!→ Mod(A)

maps injectively the set of isomorphism classes of simple Π-modules of dimension
α = (1, n) into the set of isomorphism classes of rank 1 torsion-free modules over
A. If we identify Cn = Rep(Πλ, α)//G(α) as above, then the map induced by F
agrees with the Calogero-Moser map ω constructed in [4] and [3].

Remark. Using the results of [7], one can easily compute the dimension vectors
of all simple modules of the algebra Π : these are (k, kn) , where k = 0, 1, 2, . . ..
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Theorem 2, however, is only true for modules of dimension (1, n), and it does not
seem to extend to simple Π-modules of higher dimensions.

5. Let H := H0,1(Sn) be the rational Cherednik algebra associated to the sym-
metric group Sn and the parameters t = 0 and c = 1 (see [8], Section 4). Explicitly,
H is generated by two polynomial subalgebras C[x1, x2, . . . , xn] , C[y1, y2, . . . , yn]
and the elementary transpositions sij ∈ Sn subject to the relations sijxi = xjsij ,
sijyi = yjsij , [yi, xj ] = sij (i 6= j) , and [yk, xk] = −∑

i6=k sik . Write e :=
1
n!

∑
σ∈Sn

σ for the symmetrizing idempotent in CSn ⊂ H , and U := eHe for

the corresponding spherical algebra of H . It is known (see [8], Theorem 1.24) that
H is Morita equivalent to U , the corresponding equivalence being e : Mod(H) →
Mod(U) , N 7→ Ne .

Lemma 3. The map θ : w a(X, Y ) v 7→ ∑n
i=1 e a(xi, yi) e defines an algebra

homomorphism from B = e0Πe0 to the spherical algebra U = eHe .

Write θ∗ : Mod(U) → Mod(B) for the restriction functor corresponding to θ.
Then our second result can be formulated as follows.

Theorem 4. The composition of functors

G : Mod(H)
e−→ Mod(U)

θ∗−→ Mod(B)
j∗−→ Mod(Π)

maps the set of isomorphism classes of simple H-modules bijectively onto the set of
isomorphism classes of simple Π-modules of dimension α = (1, n). If we identify
Cn = Rep(Πλ, α)//G(α) as above, then the map induced by G agrees with an
explicit construction of [8] (see loc. cit., Section 11).

Finally, combining Theorems 2 and 4 together, we get

Theorem 5. The composition of functors

Mod(H)
e−→ Mod(U)

θ∗−→ Mod(B)
j!−→ Mod(Π)

i!→ Mod(A)

maps the set of isomorphism classes of simple H-modules injectively into the set
of isomorphism classes of rank 1 torsion-free modules over A.

6. The above results can be extended to an arbitrary affine Dynkin quiver related
(via the McKay correspondence) to a finite subgroup Γ of SL2(C) . In that case
the Weyl algebra A1 is replaced by the “quantized coordinate ring” Oλ(Γ) of
the Kleinian singularity C2//Γ (see [5]) and the rational Cherednik algebra H by
the symplectic reflection algebra H0,τ (Γn) associated to the n-th wreath product
Γn := Sn ⋉ (Γ× Γ× . . .× Γ) (see [8]).
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Graded Calabi Yau Algebras and Superpotentials

Raf Bocklandt

A finitely generated algebra A over C is called 3-Calabi Yau if the third shift in the
bounded derived category of finite dimensional modules is a Serre functor. This
means there exist natural isomorphisms

HomDbRepA(M, N) ∼= HomDbRepA(N, M [3])∗, ∀M, N ∈ DbRepA,

where the ∗ indicates the complex dual. Following Van den Bergh and Reiten
[4], this condition can be restated in terms of traces: there exist trace functions
TrM : HomDbRepA(M, M [n])→ C for every M ∈ DbRepA such that

∀f ∈ HomDbRepA(M, N) : g ∈ HomDbRepA(N, M [n]) : TrM (g ◦ f) = TrN (f [n] ◦ g).

Furthermore these pairings must be nondegenerate. Instead of working in the de-
rived category one would like to translate these traces to traces on the ExtnA(M, M).
This is indeed possible but the commutation relation above will get extra minus
signs because the correct way to do this is using graded functors for the triangu-
lated category (see [3],[5] and the appendix in [7])

∀f ∈ ExtiA(M, N) : g ∈ Extn−i
A (N, M) : TrM (g ∗ f) = (−1)i(n−i)TrN (f ∗ g).

The existence of these trace functions will enable us to give a characterization of
graded 3-dimensional Calabi Yau algebras in terms of generators and relations.

In this talk we will consider the cases of graded quotients of path algebras, an
extended version of our results can be found in [7]. Similar results in different
settings have been obtained by Reiten and Iyama [6], Rouquier and Chuang and
Ginzburg.

In order to state our result, we need to introduce superpotentials. Let CQ be
the path algebra of a quiver Q and put a gradation on CQ using the length of the
paths.

The vector space CQ/[CQ, CQ] will be called the space of superpotentials. It
has as basis the set of cycles up to cyclic permutation of the arrows. We can
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embed this space into CQ by mapping a cycle onto the sum of all its possible
cyclic permutations:

σ : CQ/[CQ, CQ]→ CQ : a1 · · ·an 7→
∑

i

ai · · ·ana1 · · · ai−1.

Another convention we will use is the inverse of arrows: if p := a1 · · · an is a path
and b an arrow, then pb−1 = a1 · · ·an−1 if b = an and zero otherwise. Similarly
one can define b−1p. These newly defined maps can be combined to obtain a
‘derivation’

∂a : CQ/[CQ, CQ]→ CQ : p 7→ σ(p)a−1 = a−1σ(p).

From now on A will denote the quotient algebra CQ/I by a finitely generated
graded ideal I ⊂ CQ≥2. For each vertex i ∈ CQ we denote the standard projective
A-module by Pi := Ai and the basic simple A-module by Si = Pi/A≥1Pi.

Theorem 1. If A is Calabi Yau of dimension 3 then

(1) there is a homogeneous superpotential W ∈ CQ/[CQ, CQ] such that

A ∼= AW := CQ/(∂aW : a ∈ Q1),

(2) every arrow in Q is contained in a cycle of σW ,
(3) every vertex in Q is the source of two arrows and the target of two arrows.

Sketch of the proof. As the global dimension and the CY-dimension coincide one
can construct projective resolutions of the Si like this

P
(fr)→

⊕

t(r)=i

Ph(r)
(rb−1)→

⊕

t(b)=i

Ph(b)
(·b)→ Pi→Si.

Calculating dimensions of extension spaces ExtkA(Si, Sj) leads to the conclusion
that P ∼= Pi and the number of relations between i and j is the same as the
number of arrows between j and i. Also the fr must be of degree one, so we can
consider them as arrows. This enables us to match each arrow with a corresponding
relation: r = ra ⇐⇒ fr = a. One can use the grading and the connectedness of
Q to show that all relations must have the same degree. This implies that because
resolutions above are complexes, we must have that

∑

a

arab−1 =
∑

a

gbcrc,

where the gbc ∈ C. These coefficients also appear in the calculation of the com-
position of Ext2A(Si, Sj) with Ext1A(Sj , Si) and using the commutativity property
of the traces one can show that gbc can be rescaled to the identity matrix. If we
define W =

∑
a ara =

∑
a raa mod [CQ, CQ] then we see that W must be the

superpotential which generates the relations. Finally the structural conditions on
the quiver ensure that the resolutions can indeed be exact. �
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The theorem only goes in one direction: not every superpotential gives rise to
an algebra that is Calabi Yau. However for every such algebra A one can construct
a complex of A-bimodules (see also [2])

CW :
⊕

i∈Q0

Fii
(·τda·)→

⊕

a∈Q1

Ft(a)h(a)
(·∂2

baW ·)→
⊕

b∈Q1

Fh(b)t(b)
(·db·)→

⊕

i∈Q0

Fii
m→ A

where Fij := Ai⊗ jA, db = b ⊗ 1− 1⊗ b and if c is a cycle then

∂2
bac =

∑

σ(ap1bp2)=σ(c)

p1 ⊗ p2.

This complex is selfdual in the sense that HomA−A(CW , A⊗A)[3] ∼= CW (use the
inner bimodule structure on A⊗A to get a bimodule structure on HomA−A(CW , A⊗
A)). Using this fact and results of King and Butler [1] on the minimal resolutions
of path algebras with relations one can prove:

Theorem 2. An algebra A derived from a superpotential is 3-Calabi Yau if and
only if CW is exact. If this is the case then CW is the minimal resolution of A as
an A-bimodule.

This fact has a nice interpretation for the classification of good superpotentials
i.e. superpotentials with an algebra that is indeed Calabi Yau.

Corollary. For a given quiver Q and a given dimension d, the subset of SupdQ
of good superpotentials of degree d is either the empty set or almost everything (in
the measure theoretic sense).

This is because we can check whether CW is exact separately for every degree.
The subspace of good superpotentials is an intersection of a countable number
of Zariski open sets. If one of these sets is empty we’re in the first case and
otherwise the complement of this set is a countable union of hypersurfaces, which
has measure zero for the standard measure on Cn.

Finally, to obtain a list of the degrees that have good superpotentials for a given
quiver, it is possible to use Groebner basis techniques if the structure of the quiver
is not too complex (e.g. two vertices or a ring of vertices with multiple arrows
between consecutive vertices).
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Noetherian Hopf Algebras

Ken Brown

(joint work with James J. Zhang)

I briefly review progress in studying infinite dimensional noetherian Hopf algebras
over the past 10 years, before describing recent work of Zhang and myself [1] on the
existence and nature of dualizing complexes for noetherian Hopf algebras. Finally,
I explain how the results apply to (i) the study of Hochschild (co)homology of Hopf
algebras, and (ii) the nature of the antipode. I include various open questions.

1. Hopf algebra background. Throughout, k will denote an algebraically closed
field and A will be a noetherian Hopf k−algebra. Thus, A is equipped with a co-
multiplication ∆ : A −→ A ⊗ A : a 7→ ∑

a1 ⊗ a2, an algebra homomorphism; a
counit ǫ : A −→ k, an algebra homomorphism; and an antipode S : A −→ A, an
algebra antihomomorphism. Throughout,

we will assume that S is bijective.

Question 1 (Skryabin). Is S bijective for all noetherian Hopf algebras A?

There is considerable evidence in support of a positive answer:

Proposition 2 (Skryabin, 2006, [7]). For a noetherian Hopf algebra A, S is always
injective. When A is semiprime or satisfies a polynomial identity, Question 1 has
a positive answer.

We very briefly recall some very basic properties of finite dimensional Hopf alge-
bras, which we will aim to generalise in the sequel. Details can be found in [4],
for example. Let F be a finite dimensional Hopf k−algebra. Then F is a Frobe-
nius algebra, so, in particular, F is self-injective. Indeed, the injective cogenerator
Homk(F, k) ∼= F as both left and right F−modules, although not in general as a
bimodule; to make this an isomorphism of bimodules, we have to twist the action
on one side using a suitable algebra automorphism ν, to obtain

Homk(F, k) ∼= νF 1.

The automorphism ν, which is clearly uniquely determined up to an inner au-
tomorphism, is called the Nakayama automorphism in the theory of Frobenius
algebras.

The self-duality resulting from the Frobenius property of F leads to the concept
of the integrals of F , which are fundamental to the study of the structure of F .

Namely, the left integral
∫ ℓ

F is the unique copy of the trivial left F−module ǫk
occurring as a left ideal of F ; uniqueness means that it is an ideal of F . Similarly,
the right integral

∫ r

F
is a one-dimensional ideal of F , trivial on the right; F is

called unimodular if the two integrals are equal. Later, we’ll generalise
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Proposition 3 (Oberst-Schneider, 1973, [5]). For a finite dimensional Hopf al-
gebra F , the Nakayama automorphism ν is trivial if and only if F is unimodular
and S2 = 1.

2. AS-Gorenstein Hopf algebras, and integrals. How should the above ideas
generalise to an infinite dimensional Hopf algebra A? Recall the following well-
known definition, which applies in fact to any augmented algebra.

Definition 4. The Hopf algebra A is AS-Gorenstein if

(1) the injective dimension of AA is finite, say d;

(2) ExtiA(Ak, AA) = 0, for i < d;

(3) dimkExtdA(Ak, AA) = 1;
(4) the right-hand versions of the above also hold.

In this case, the right injective dimension of A is also d. If A is AS-Gorenstein
with finite global dimension (which is then necessarily d), A is called AS-regular.

I suggest that the correct analogue of the Frobenius property of finite dimen-
sional Hopf algebras may be:

Question 5 (Brown-Goodearl, 1997, [2]). Is every noetherian Hopf algebra AS-
Gorenstein?

Question 5 remains open at the time of writing. Positive answers are known for

(1) A = U(g), the enveloping algebra of a finite dimensional Lie algebra g,
with d = dimkg;

(2) A = Uq(g), the quantised enveloping algebra of a finite dimensional Lie
algebra g, with d = dimkg;

(3) A = Oq[G], the quantised function algebra of a semisimple group G, with
d = dimG;

(4) A = kG, the group algebra of a polycyclic-by-finite group G, with d the
Hirsch number of G;

(5) A an affine noetherian algebra satisfying a polynomial identity, with d the
Gel’fand-Kirillov (GK) dimension of A.

Details for the first four of these classes can be found in [1, Section 6]; the fifth
class requires by far the most difficult proof; for that, see [10].

In view of the substantial number of cases where Question 5 has a positive
answer, it now makes sense to begin the systematic study of noetherian AS-
Gorenstein Hopf algebras. The first step is to extend the definition of integral.
This was achieved by Lu, Wu and Zhang in 2005: they defined [3] the left integral
of the AS-Gorenstein noetherian Hopf algebra A of injective dimension d to be the
one-dimensional A−A−bimodule

∫ ℓ

A

:= Extd
A(Ak, AA);

notice that, exactly as when d = 0, this is a trivial left module, but the right
structure may not be trivial. The right integral

∫ r

A is defined analogously.
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The integrals were used in [3] to prove an infinite-dimensional analogue of a
famous result of Larson and Sweedler characterising when a finite dimensional
Hopf algebra has finite global dimension, and to initiate the study of (infinite-
dimensional) Hopf algebras of low GK-dimension. The latter project is still in its
infancy, so we state here as a sample problem:

Problem 6. Describe all prime affine Hopf algebras of GK-dimension 1.

In this talk, however, I will describe another application of the integral.

3. Dualising complexes. For the moment, we take B to be an arbitrary noe-
therian k−algebra, and we write Be for B ⊗k Bop.

Definition 7. A complex R ∈ Db(Be −mod) is a dualising complex if

(1) BR and RB have finite injective dimension;
(2) R is homologically finite;
(3) the canonical maps B −→ RHomB(|R, |R) and B −→ RHomB(R|, R|)are

isomorphisms in D(Be −mod).

Moreover R is rigid if there is a canonical isomorphism R ∼= RHomBe(B, R⊗Rop).

When B has a dualising complex the functors RHomB(−, R) and
RHomBop(−, R) give a duality between Db(B − mod) and Db(Bop − mod). To
give one example which we’ll generalise below in the case of Hopf algebras, if B
is finite dimensional then B∗ = Homk(B, k) is a rigid dualising complex for B.
Dualising complexes were introduced and studied in a noncommutative context
by Yekutieli [9]. To improve the functoriality and uniqueness properties, rigid
complexes were introduced by Van den Bergh in 1997, in [8]. Using his work, we
prove our main result, whose statement needs some notation. First, −[d] denotes
the shift operator on complexes, moving d places to the left. Second, given a 1-
dimensional representation π of a Hopf algebra A, the left winding automorphism
τ ℓ
π of A is defined by τ ℓ

π(a) =
∑

π(a1)a2, for a ∈ A; there is an analogous definition
of a right winding automorphism.

Theorem 8. [1] Let A be a noetherian AS-Gorenstein Hopf algebra of injective
dimension d.

(1) A has rigid dualising complex νA1[d]. Here, ν is (by definition) the Naka-
yama automorphism of A; it is unique up to an inner automorphism.

(2) ν = S2τ ℓ
π, where π is the representation defined by the right action of A

on the left integral.

Note that part (2) of the theorem generalises Proposition 3. There are appli-
cations of this result to (twisted) Poincaré duality of Hochschild (co)homology,
but rather than give details here, I end by noting an amusing application to the
antipode. Given A as in the theorem, (A, ∆op, S−1, ǫ) is also a Hopf algebra, to
which the theorem can be applied. By Van den Bergh’s uniqueness result [8]for
rigid dualising complexes, the resulting Nakayama automorphism of A must equal
the one in part (2) of the theorem, to within an inner automorphism. Equating
the two answers, one obtains the
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Corollary 9. With the notation and hypotheses of the theorem, S4 = γ◦τr
π◦(τ ℓ

π)−1,
for some inner automorphism γ of A.

When A has finite dimension, this is a 1976 result of Radford [6], with an
explicit γ. We therefore propose

Problem 10. Determine γ.
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Brauer groups of surfaces

A.J. de Jong

(joint work with J. Starr)

In this talk we explained some of the results and methods of the papers [1], [2]
and [3]. The main result mentioned is the following.

Theorem 1. Let F be the function field of an algebraic surface over an alge-
braically closed field k. Then every element in the Brauer group of F has period
equal to its index.

From this theorem we deduced in the talk the following consequence, which was
pointed out to us by Michel van den Bergh in a conversation.

Proposition 2. For ever integer n, there exists a constant B(n) with the following
property: For every function field F as in the theorem of characteristic prime to
n, for every Brauer class α over F of order dividing n, the class α is a sum of at
most B(n) classes of cyclic algebras over F .
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In order to prove this we use the map from Milnor K-theory to the Brauer group

MSn : K2(F )/n −→ Br(F )[n],

whose definition depends on the choice of a primitive nth root of 1. In fact, the
celebrated Merkurjev-Suslin theorem tells us this map is an isomorphism as soon
as F has a primitive nth root of 1. However, our proof does not use this theorem
and it actually gives a proof of the surjectivity of MSn the case of function fields
of surfaces as well. This abstract for the Oberwolfach workshop seemed like a good
place to point this out.

We sketch quickly the proof of the proposition. There is a reduction to the
case where n is prime which we omit. The proof in the prime order case uses the
compatibility of MSn with norms. Namely, for a finite field extension F ⊂ F ′ the
maps MSn and MS′

n (defined using the same root of 1) are compatible with both
the restriction maps

K2(F )→ K2(F
′) and Br(F )→ Br(F ′)

and the norm maps

K2(F
′)→ K2(F ) and Br(F ′)→ Br(F ).

Note that the composition K2(F ) → K2(F
′) → K2(F ) is equal to multiplication

by the degree [F ′ : F ] of F ′ over F . For a nice writeup of the definition of norm
maps in Milnor K-theory see the expository note [4].

Thus we start with an element α in Br(F ) of prime order n. Since the period
is equal to the index by the theorem, we know there is an extension of prime
degree n splitting α. Thus there is an extension F ′ of F , of degree [F ′ : F ]
dividing (n − 1)! prime to n such that α|F ′ is split by a cyclic extension. Thus
there is a symbol {f, g} ∈ K2(F

′) which maps to α|F ′ . We conclude that α =
MSn(Norm{f, g})/[F ′ : F ]. The final step is to analyze how the norm map in
Milnor K-theory is defined.

Suppose that L/K is a field extension of degree d and suppose that K contains
an algebraically closed field. Reading carefully in the write up [4] it follows that
one can write the norm of a symbol in K2(L) as a sum of at most Bd ≤ 3 +
2Bd−1 symbols. Here Bd is defined the number of symbols needed for norms from
separable algebra extensions of K of degree at most d. So it follows that Bd ≤ 3d.
Note that this implies the bound B(n) in the proposition that one obtains from
this is B(n) ≤ 3(n−1)!.

Of course this bound is probably far from optimal. For example if n = 2, 3 then
the optimal bound is 1 (i.e., everybody is cyclic in this case of period 2,3 over the
function field of a surface). The author of this note is not sure whether the bound
B(n) of the proposition should be 1 always.
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Quantized coordinate rings and torus orbits of symplectic leaves

K. R. Goodearl

A major goal in the study of a quantized algebra A (as for other noncommutative
algebras appearing in representation theory) is to determine the primitive ideal
space (= primitive spectrum), primA. Further, there should be tight relations
between the quantized and classical situations. Anticipated connections between
a classical object and a quantization may be briefly summarized in the following
way:

Conjecture. The primitive ideal space of a generic quantized coordinate ring
matches the space of symplectic leaves in the classical object.

To make this a little more precise:
(a) The given formulation assumes that the classical object (an affine variety

or group) is defined over C, that the quantization is a standard one relative to a
single parameter q which is not a root of unity, and that the symplectic leaves are
taken with respect to the Poisson structure induced by the quantization process.

(b) The desired “match” should include as much structure as possible. In
particular, it should be not just a bijection, but a homeomorphism with respect
to the Zariski topologies, and it should be equivariant with respect to appropriate
group actions.

(c) If the situation is one in which the symplectic leaves are algebraic (i.e.,
locally closed in the Zariski topology), then the symplectic leaves in the classi-
cal object correspond to the Poisson-primitive ideals in its coordinate ring. The
conjecture can then be rephrased in terms of matching the primitive spectrum of
the quantized coordinate ring with the Poisson-primitive spectrum of the classical
coordinate ring. In that formulation, the desired relationships should also hold for
the quantized and classical coordinate rings relative to any base field over which
the objects are defined.

(d) There exist multiparameter quantizations in which the symplectic leaves are
not algebraic and do not match the primitive ideals in the quantized coordinate
ring. We conjecture that in such situations the difficulty resides in the differential
geometry, not in the algebra, and that the reformulated conjecture as in (c) should
still hold.

To fix a basic example, let Oq(SLn(C)) be the generic standard quantized co-
ordinate ring of SLn(C). Hodges and Levasseur [2, 3] developed a bijection

primOq(SLn(C))←→ symp SLn(C).
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These spaces have finite stratifications such that the above bijection restricts to
homeomorphisms on each stratum, but it is not yet known (except for the easy
case n = 2) whether the bijection as a whole is a homeomorphism. The usual max-
imal torus H of SLn(C) acts on Oq(SLn(C)) by winding automorphisms and on
symp SLn(C) by left translation; with respect to these actions, the above bijection
is H-equivariant.

A generic standard quantization of SLn can be defined over any field k contain-
ing a nonzero scalar q which is not a root of unity. Modulo some technical work
(to free some present proofs from dependence on C), it appears that the above
picture generalizes to an H-equivariant bijection

primOq(SLn(k))←→ Poisson-primO(SLn(k)),

where H is now the diagonal subgroup of SLn(k).

In typical situations in which the conjecture (either over C or over a more
general base field) has been studied, there is a natural action of a torus H , and
there are only finitely many H-orbits in the given spaces. Thus, the H-orbits
provide a useful framework to which to tie information.

In the SLn example, the H-orbits of symplectic leaves in SLn(C) are exactly
the double Bruhat cells. On the quantum side, the H-orbits in primOq(SLn(C))
correspond to the H-stable prime ideals in Oq(SLn(C)). Although not stated this
way in [2, 3], one can see (with hindsight, and investing results of Joseph [4, 5])
the following path underlying the work of Hodges and Levasseur. First, the double
Bruhat cells in SLn(C) can be described by vanishing and nonvanishing of certain
specified sets of minors. When these minors are changed to quantum minors in
Oq(SLn(C)), one obtains generating sets for the H-stable prime ideals and for Ore
sets of elements regular modulo these ideals.

In addition to completing the picture for SLn and other semisimple groups (es-
pecially, developing the conjectured homeomorphisms, and making the machinery
work over arbitrary base fields), one would like to develop similar pictures for other
quantizations. Moving beyond algebraic groups, probably the most fundamental
case is that of quantum matrices:

Problem. Develop “all of the above” for Oq(Mn(C)) and Oq(Mn(k)).

Our exegesis of Hodges and Levasseur’s work highlights the problem of finding
and describing torus orbits of symplectic leaves in Mn(C) as an important step. As
before, the Poisson structure comes from the quantization – O(Mn(C)) is viewed
as the semiclassical limit of the family of Oq(Mn(C))’s (as q varies). Here, one
needs the maximal torus (C×)n ⊂ GLn(C) to act by both left and right translation
to get finitely many orbits, and so we use H = (C×)n× (C×)n as our acting torus.
In recent work with Brown and Yakimov [1], several equivalent descriptions of the
H-orbits of symplectic leaves in Mn(C) were developed, including one description
via the vanishing and nonvanishing of explicit sets of minors.

This leads to a precise conjecture identifying generating sets of quantum minors
for the H-stable prime ideals in Oq(Mn(C)). It had already been shown by Launois
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[6], in response to an earlier conjecture of Lenagan and myself, that all the H-
stable prime ideals in Oq(Mn(C)) can be generated by sets of quantum minors.
However, his methods do not explicitly describe these sets. He has also [7] verified
a conjecture of Lenagan, McCammond and myself, namely, that the poset of H-
stable prime ideals in Oq(Mn(C)) (with respect to inclusion) is isomorphic to the
following sub-poset of S2n (with respect to the Bruhat order):

{
σ ∈ S2n

∣∣ |σ(i)− i| ≤ n for i = 1, . . . , 2n
}
.

(This poset also appears in [1]; we showed that it is anti-isomorphic to the poset of
H-orbits of symplectic leaves in Mn(C), with respect to the relation of inclusions
of closures.) However, as with the previous result, the isomorphism is not explicit.
Work is ongoing to make both results explicit.
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Rational Cherednik algebras, q-Schur algebras and quiver varieties

Iain Gordon

This is a report on work-in-progress.
Let Gn = Sn ≀µℓ, the complex reflection group of type G(ℓ, 1, n) with reflection

representation h. We are interested in the representation theory of A(h), the
rational Cherednik algebra associated to Gn. This algebra is a non-commutative
deformation of the smash product C[h ⊕ h∗] ∗ Gn which depends on parameters
h = (h, H1, . . . , Hℓ−1) ∈ Qℓ. (Typically the parameters are taken to be complex
numbers, but much of the most interesting representation theory already occurs
for the rational numbers.)

There is a triangular decomposition of A(h) as a vector space

A(h) ∼= C[h]⊗ CGn ⊗ C[h∗].

Thus it can be expected that A(h) shares many properties with enveloping algebras
of semi-simple Lie algebras, or rather central quotients of enveloping algebras of
semi-simple Lie algebras. From this point of view the parameter space Qℓ should
be compared with the central character space h/W for a semi-simple Lie algebra.
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Category O(h) is defined to be the category of finitely generated A(h)-modules
on which h ⊂ C[h∗] acts locally nilpotently. It is a highest weight category whose
simple objects are parametrised by the irreducible representations of Gn, and
whose ordering on simples is defined by Lusztig’s c-function which is the scalar
by which a certain central element z(h) ∈ CGn acts: E1 > E2 if and only if
χE1

(z(h)) − χE2
(z(h)) ∈ N. It was proved by Ginzburg–Gan–Opdam–Rouquier

that O(h) is a highest weight cover of the Ariki–Koike algebra H(q) of type Gn

(where q = exp(2πh
√
−1)). This means that there is an exact functor

KZ : O(h) −→ H(q)-mod

which is fully faithful on projective objects. Of course, if we have parameters h and
h′ such that h− h′ ∈ Zℓ then the associated values q are equal. In [1], Rouquier
proved that if in addition the ordering on irreducible representations of Gn does
not change then O(h) andO(h′) are equivalent. Thus if we refine the order slightly
to say that E1 > E2 if and only if χE1

(z(h)) > χE2
(z(h)) then parameter space

splits up into a finite number of chambers; in the interior of each chamber there is
a well-defined total order on the irreducible representations of Gn. As remarked
on by Rouquier, this order is actually a little too strong: sometimes there are is a
more natural partial order to take on the irreducible representations, and often this
itself is refined by several chambers. In the Lie theoretic analogue, associated to
each point in h/W there is an orbit of weights and these are given the dominance
order.

To understand better this ordering on irreducible representations of Gn, we
relate the representation theory of A(h) to the geometry of resolutions of the orbit
space (h⊕ h∗)/Gn. This singular space has many crepant=symplectic resolutions
given by Nakajima quiver varieties Mθ(n). These varietes depend on a stability
parameter θ ∈ Qℓ and are moduli spaces of certain θ-polystable representations of
the doubled quiver of Q∞, a cyclic quiver with ℓ vertices together with one extra
arrow attached to a single vertex of the cyclic quiver. Not all choices of θ ∈ Qℓ

given a resolution of the orbit space: the space of stability parameters splits up into
a finite number of chambers; in the interior of each chamber the stability parameter
produces a resolutionMθ(n) together with a tautological vector bundle on it and
this is constant in the chamber; on the wallsMθ(n) is singular.

Theorem 1 (G-Stafford, Boyarchenko, Musson, Vale). There exists (for most h)
a Z–algebra Z(h) such that

Coh-Z(h)
gr−−−−→ (Coh-)Mθ(n)

≀

y
yπ

A(h)-mod
gr−−−−→ (Coh-)(h ⊕ h∗)/Gn.

Here θ = (h + H1 + · · ·+ Hℓ−1,−H1, . . . ,−Hℓ−1).

From now on let θ = (h + H1 + · · ·+ Hℓ−1,−H1, . . . ,−Hℓ−1) and assume h is
in the interior of a Rouquier chamber.
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Theorem 2 (G).

(1) πθ :Mθ(n) −→ (h⊕ h∗)/Gn is a symplectic resolution.
(2) Ln

θ = π−1(y1 = · · · = yn = 0) is a Lagrangian subvariety whose compo-
nents are in natural bijection with the irreducible representations of Gn.

(3) There is a natural ordering on components; it is refined by Rouquier’s
ordering.

(4) This ordering arises in Uglov’s combinatorics on higher level Fock space
(the charge is related to θ).

The key to the proof of this is that there is a Morse function onMθ(n) whose
critical points are labelled by certain representations called baby Verma modules
which are parametrised by the irreducible representations of Gn. Moreover, the
value of this Morse function at the critical points is just Lusztig’s c-function.

Thus Mθ(n) (for the given θ) can accept much of the combinatorics of O(h).
This leads to a few questions.

• Are there more equivalences between differentO’s than Rouquier predicts?
(And are all chambers related by derived equivalences?)
• Under the mappings of the first theorem, does the coherent sheaf onMθ(n)

corresponding to A(h) give a generalisation of the Procesi bundle?
• Is the combinatorics of O(h) related to Shoji’s generalised Green func-

tions?
• (Rouquier/Yvonne) Are the multiplicities in O(h) described by combina-

torics of Uglov’s higher level Fock spaces?
• Is there a Heisenberg action on ⊕n≥0H

2n(Ln
θ , Z)?
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Strongly exceptional sequences of line bundles on toric varieties

Lutz Hille

(joint work with Markus Perling)

1. Strongly exceptional sequences

1. Motivation. We work over the field of complex numbers C and consider the
n–dimensional projective space Pn.

Theorem 1.1 ([B]). Define

Φ = HomPn(⊕n
i=0O(i),−) : CohPn → modA.

Then RΦ : Db(CohPn)→ Db(modA) is an equivalence of derived categories, where
A = End(⊕n

i=0O(i)).

We want to extend this to smooth projective toric varieties.
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2. Exceptional Sequences. Let X be a smooth projective variety and assume
H l(X ;OX) = 0 for all l 6= 0 (this holds in particular for toric varieties). We
assume n is the rank of the Grothendieck group K0(X) (where we already assume
it is finitely generated, is also satisfied for toric varieties). Let ε = (L1, . . . ,Ln) be
a sequence of line bundles on X .

We say ε is

(1) complete if n = rankK0(X);
(2) full if 〈L1, . . . ,Ln〉 = Db(X);

(3) exceptional if Extl(Lj ,Li) = 0∀j > i and l 6= 0;

(4) strongly exceptional if Extl(Li,Lj) = 0 for all l 6= 0. In that case one can
change the ordering so that Hom(Lj ,Li) = 0 ∀j > i.1

3. Conjectures. Let X be a smooth projective toric variety from now on!

1. (A. King [Ki]) Every such X has a full, strongly exceptional sequence.
2. On any toric Fano variety X there exists a helix: i.e., if we extend the

sequence ε to an infinite sequence S(ε) = {Li} with Li+nl := Li⊗ω−l
X then

each length n subsequence (Li, Li+1, . . . , Li+n−1) of S(ε) is also strongly
exceptional.

3. On X a full exceptional sequence of line bundles exists.

Kawamata [Ka] proved X always has a full exceptional sequence of sheaves.

4. Toric varieties. Write ΣX for the fan of the toric variety X .
Write n = rankK0(X), d = dimX and t=rank of the equivariant Picard group.

Then rankPic (X) = t − d and there are T -invariant prime divisors D1, . . . , Dt

that provide a basis for the equivariant Picard group. Moreover, the canonical
divisor is ω−1

X = O(
∑t

i=1 Di).
A fan consists of a set of cones σ ∈ ΣX = Σ. The cones are in order reversing

bijection with the orbits of X under the torus action (the cones are partially
ordered by the face relation; the orbits by the closure relation). The zero cone {0}
corresponds to the dense orbit, the maximal cones correspond to the fix points.
The torus–invariant prime divisors correspond to the rays in Σ (cones of dimension
one). Each ray is of the form τi = R≥0vi for a unique indivisible lattice point vi

(it is the first lattice point along the ray τi).

5. The graph of a toric variety. Write P (Σ) = ∪σ∈Σconv{0, vi | vi ∈ σ}, the
union of the convex hull of the polytope P (σ) with vertices vi for vi in σ and the
origin. Then X is a Fano variety if and only if P (Σ) is strictly convex. In that
case, one has a polytope P (Σ) from which one can recover the fan.

Define a graph ΓX as the 1–skeleton of the simplicial complex (Σ∩Sd−1). The
vertices are the Dis, and there is an edge between i and j if codim Di

Di ∩Dj = 1.

When dimX = 2, this graph is Ãt−1 (and t = n). If dimX = 3 this graph is a
planar graph (is is embedded in the 2–sphere).

1Can do this because if L and L′ are non-isomorphic bundles only one of Hom(L,L′) and
Hom(L′,L) can be non-zero—enoough to prove this when L′ = O; think about O → L → O
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Example. The Hirzebruch surface X = Fr: it has rays through (0, 1), (1, 0),
(0,−1), (−1, r), four maximal cones generated by pairs of two neighboured rays
and the cone {0}. Then n = 4 = t. In this case one can classify all full (strongly)
exceptional sequences (see [H]).

2. Results

1. Constructions. For simplicity will focus on line bundles of the form L =
O(

∑
aiDi) ai ∈ {0,±1} and a particular sequence of line bundles. Note that

ω−1
X = O(

∑t
i=1 Di).

Theorem 2.1. Let ε = (O,O(D1),O(D1 + D2), . . . ,O(D1 + · · ·+ Dt−1)).

(1) If ε exceptional ⇒ v1, . . . , vt, v1 is a Hamiltonian cycle in ΓX .
(2) If dimX ≤ 3 then we have if and only if in (1).
(3) ε is complete ⇔ ε is full ⇔ t = n⇔ X = Pn or dimX = 2.
(4) If X Fano and ε exceptional, then ε is strongly exceptional.

As a corollary we get some full (strongly) exceptional sequences, respectively
helices, on toric surfaces:

Theorem 2.2. Let ε = (O,O(D1),O(D1 + D2), . . . ,O(D1 + · · · + Dt−1)) and
dimX = 2.

(1) Then ε is full exceptional if we take the cyclic orientation on the divisors
(2) ε is strongly exceptional iff D2

i ≥ −1 for all i = 1, . . . , t− 1
(3) S(ε) is a helix iff D2

i ≥ −1 for all i.

2. Counterexample. Take X equal to F2 iteratively blown up three times as
described by the following fan. The fan is the fan of F2 as above and has three
additional rays through (1,−1), (2,−1), (3,−1).

Theorem 2.3 ([HP]). On the surface X there is no complete (of length 7) strongly
exceptional sequence of line bundles.

3. 3–dimensional toric Fano varieties.

Theorem 2.4. Suppose X is Fano and dimX = 3. Then a complete strongly
exceptional sequence exists and can be completed to a helix.

4. Maximal toric fano Varieties. Complete strongly exceptional sequences ex-
ist on the maximal Fanos (recent joint work with B. Nill).

5. Conclusions. Conjecture 1 is false even for some surfaces. For Conjecture 2
we have a proof in dimension less or equal to 3 and for maximal toric Fano varieties.
We have also checked the conjecture for many examples in dimension 4. A possible
counterexample to Conjecture 3 seems to be out of any computable range.
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Classifying graded finite dimensional representations

Birge Huisgen-Zimmermann

(joint work with E. Babson, S.O. Smalø, and R. Thomas)

The following is an excerpt of joint work with E. Babson and R. Thomas [1]; the
last result is taken from [2].

Let A be a basic, positively graded, finite dimensional algebra over an alge-
braically closed field K, and J its radical, L its Loewy length. Primarily, we
address classifiability of the d-dimensional graded representations of A, for a given
positive integer d, through coarse or fine moduli spaces (Theorems A and B). The
final result shows how such graded classification problems impinge on the ungraded
representation theory of A, more specifically, on a better understanding of the ir-
reducible components of varieties parametrizing the representations of dimension
d.

Here are the basic results, the first addressing the local case, that is, the case
of A-modules with fixed simple top.

Theorem A. For any d and any simple A-module T , the d-dimensional graded
A-modules with top T have a fine moduli space classifying them up to graded-
isomorphism. This moduli space is a projective variety. It has a natural partition
into closed subvarieties such that each of the projective varieties in this partition
classifies the graded representations M with fixed radical layering

S(M) = (M/JM, JM/J2M, . . . , JLM/JL+1M)

up to graded-isomorphism.

This sweeping classifiability of graded local modules stands in marked contrast
to the ungraded situation, which has been addressed in [8, 10]: Namely, if P de-
notes the projective cover of T , the d-dimensional A-modules with fixed simple top
T have a fine (or equivalently, a coarse) moduli space if and only if all submodules
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of JP which have codimension d in P are invariant under the endomorphisms
of P . The latter is obviously a fairly stringent condition, as simple examples of
low dimension already illustrate. The subcategory of graded objects, by contrast,
shows sufficient additional rigidity to prevent existence of proper degenerations.
On the side, we mention that geometric features of the arising moduli spaces –
the number of irreducible components, for instance – become combinatorially ac-
cessible from a presentation of A in terms of quiver and relations; this direction is
pursued in [8, 2].

The situation of a general top T is addressed by the following result.

Theorem B. Let S = (S0, . . . , SL) be any sequence of L + 1 finite dimensional
semisimple A-modules and G(S) the class of all d-dimensional graded A-modules
M with S(M) = S.
• If the objects in G(S) which are generated in degree zero possess a coarse

moduli space, classifying their graded-isomorphism classes, then all objects in G(S)
are direct sums of local modules (= modules with simple tops).
• Conversely, suppose that all objects in G(S) are direct sums of local modules.

Then G(S) has a “concretely describable” finite partition such that each of the
resulting subclasses is classified by a fine moduli space, up to graded-isomorphism.

Arbitrary projective varieties arise as moduli spaces in this context; examples
can be found in [6] and, accessed through alternate methods, in [1]; these exam-
ples are projective completions of the affine examples constructed in [7, Section
6]. Our final theorem singles out a class of algebras which motivated our interest
in moduli spaces of graded representations, in that the latter make a natural ap-
pearance in the description of the irreducible components of varieties of ungraded
representations.

Before we specialize, we include a few general comments on such irreducible
components. Letting Modd be the classical affine variety of all d-dimensional
left A-modules and C an irreducible component, one aims at describing generic
properties of the modules parametrized by C (that is, properties shared by all
modules corresponding to the points in a nonempty open subset of C). This line
of inquiry was opened up by Kac and Schofield, and extended by Crawley-Boevey
and Schröer via a different angle of approach (see [9], [11], [5]).

Since, generically, the modules M parametrized by C have fixed radical layering
S = S(M), one reduces this task to a, in many ways more manageable, subvariety of
a Grassmannian variety; this variety, Grass(S), was first introduced and studied
by Bongartz and the author in [3, 4]. It provides an alternate parametrization
of the modules with fixed radical layering S, next to the parametrization by a
suitable subvariety of the standard module variety Modd. The relevant geometric
information can be shifted back and forth between the Grassmannian and the
affine settings.

In the final result cited, we specialize to truncated path algebras , i.e., to algebras
of the form A = KQ/I, where KQ is the path algebra of a quiver Q and I the
ideal generated by all paths of length L + 1. Such an algebra is endowed with
a natural grading by path lengths; in other words, it coincides with the graded
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algebra associated to the radical filtration A ⊇ J ⊇ J2 ⊇ · · · . By Gr-Grass(S),
we denote the subvariety of Grass(S) consisting of the points corresponding the
graded modules with radical layering S which are generated in degree zero. When-
ever these graded modules possess a moduli space (see above), this moduli space
coincides with Gr-Grass(S).

Theorem C. Again, let S = (S0, . . . , SL) be a sequence of L+1 finite dimensional
semisimple A-modules.

(1) The variety Gr-Grass(S) is irreducible, projective, smooth, and rational.
(2) The ungraded counterpart, namely Grass(S), is an iterated vector bundle

over Gr-Grass(S).

Theorem C yields a detailed understanding of “the” generic module with radical
layering S; see [2].
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Clusters, wide subcategories, and noncrossing partitions

Colin Ingalls

(joint work with Hugh Thomas)

For a general hereditary algebra A, there is a well-known bijective correspondences
between finitely generated torsion classes, partial tilting objects which are tilting
on their support, and clusters. We show that there is another family in bijective
correspondence: finitely generated, exact abelian, extension-closed subcategories
of the representations of A. Subcategories which are exact abelian, and extension-
closed are called wide subcategories, and have been studied by Hovey [Ho].
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The motivation for our interest here comes from a topic in geometric group
theory, the noncrossing partitions of a Coxeter group. (There is an order on
a Coxeter group called absolute order, and the noncrossing partitions are those
elements of the group in the interval between the identity element and a fixed choice
of Coxeter element.) The connection between hereditary algebras and Coxeter
groups is made by interpreting the quiver of A as a Coxeter diagram, and using
the edge orientations to determine the choice of Coxeter element.

If A is of finite or tame type, we show that the finitely generated wide subcat-
egories of rep A, ordered by inclusion, form a partially ordered set isomorphic to
the noncrossing partitions.

In finite type, all wide subcategories are finitely generated, so it is a triviality
that they form a lattice under inclusion. Thus, we recover the result that in finite
type, the noncrossing partitions form a lattice. This was originally proved using the
classification of finite reflection groups and a computer check for the exceptional
groups, and the first case free proof was given in 2005 by Brady and Watt [BW].
We also recover the bijection between clusters and noncrossing partitions found
by Reading in 2005 [Re].

Once we leave finite type, the noncrossing partitions do not form a lattice.
However, we believe that the respresentation-theoretic perspective will still be
helpful in better understanding these posets.

We conjecture that the bijection between noncrossing partitions and finitely
generated wide subcategories extends to wild type.
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Acyclic Calabi-Yau categories are cluster categories

Bernhard Keller

(joint work with Idun Reiten)

Let k be a field and Q a finite quiver without oriented cycles. Let kQ be the path
algebra of Q and mod kQ the category of k-finite-dimensional right kQ-modules.
The cluster category CQ was introduced in [1] (for general Q) and, independently,
in [4] (for Q of type An). It is defined as the orbit category of the bounded derived
category Db(mod kQ) under the action of the automorphism Σ−1 ◦ S2, where S
is the suspension (=shift) functor of the derived category and Σ its Serre functor,
characterized by the Serre duality formula

D Hom(X, Y ) = Hom(Y, ΣX) ,
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where D is the duality functor Homk(?, k). The motivation behind this defini-
tion was to find a ‘categorification’ of the cluster algebras introduced by Fomin-
Zelevinsky in [6]. This program has been quite successful, cf. e.g. [3] [5] and the
references given there. The cluster category has the following properties (explained
below in more detail):

a) CQ is a triangulated category. In fact, it is even an algebraic triangulated
category, i.e. there is a triangle equivalence between CQ and the stable
category E of a Frobenius category E .

b) CQ is Hom-finite (i.e. all its morphism spaces are finite-dimensional) and
Calabi-Yau of CY-dimension 2. By this, one means that it admits a Serre
functor Σ (which is induced by that of the derived category) and that
there is an isomorphism of triangle functors between Σ and S2. Note that
this last property holds almost by definition of CQ.

c) If TQ denotes the image of the free module kQ under the projection from
the derived category to the cluster category, then TQ is a cluster-tilting
object in CQ, i.e. we have
c1) Hom(TQ, STQ) = 0 and
c2) for each object X , if we have Hom(TQ, SX) = 0, then X is in add(TQ).

d) The endomorphism algebra of TQ is isomorphic to kQ. In particular, its
ordinary quiver does not admit oriented cycles.

These properties were proved in [1] except for a), which was proved in [9]. We
say that a k-linear category is a 2-Calabi-Yau category if it satisfies a) and b).
Our main result is that properties a) to d) characterize the cluster category if k is
algebraically closed:

Theorem. Suppose that k is algebraically closed. If C is an algebraic 2-Calabi-
Yau category and admits a cluster-tilting object T such that the ordinary quiver Q
of the endomorphism algebra of T does not contain oriented cycles, then there is
a triangle equivalence from CQ to C which takes the object TQ to T .

The theorem allows one to show that cluster categories, whose definition may
seem artifical at first glance, do occur in nature: Let k be an algebraically closed
field of characteristic 0, S the completed power series algebra k[[X, Y, Z]] and G
the cyclic group of order three acting linearly on S such that a generator of G
multiplies the three variables by the same primitive third root of unity. It is
not hard to show that the fixed point algebra R = SG is a Gorenstein complete
local normal domain that has an isolated singularity. We consider the Frobenius
category E = CM(R) of its maximal Cohen-Macaulay modules. By a theorem of
Auslander’s, the stable category C = E is 2-Calabi-Yau. Work of Iyama [8] shows
that T = S considered as an R-module is a cluster-tilting object in C. Its ring
of R-linear endomorphisms is isomorphic to the skew group algebra S ∗G and its
endomorphism ring in E is the path algebra of the generalized Kronecker quiver Q
with three arrows. Thus the hypotheses of the theorem are satisfied and we obtain
a triangle equivalence between CQ and CM(R). In particular, this allows us to
compute the Auslander-Reiten quiver of CM(R). It also shows that Yoshino’s
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classification of the rigid Cohen-Macaulay modules [12] in CM(R) is equivalent
to the classification of the cluster-tilting objects in the cluster category of the
generalized Kronecker quiver with three arrows and thus [5] to that of the cluster
variables in the corresponding cluster algebra [11].

Assume that k is algebraically closed. Let C be a 2-Calabi-Yau category ad-
mitting a cluster-tilting object T . One can show that the number of pairwise
indecomposable non isomorphic direct factors of T does not depend on the choice
of T , cf. [10]. We call this number the rank of C. We say that C is acyclic if it
admits a cluster tilting object the quiver of whose endomorphism algebra does
not have oriented cycles (or equivalently, if it is triangle equivalent to a cluster
category).

Conjecture. If C is of rank at most three and the quivers of the endomorphism
algebras of its tilting objects admit neither loops nor 2-cycles, then it is acyclic.

It was shown in [7] that if C is the stable module category mod Λ(∆) of a
preprojective algebra associated with a simply laced Dynkin diagram ∆, then the
quivers of the endomorphism algebras of its cluster-tilting objects admit neither
loops nor 2-cycles. It follows that this property also holds if C is constructed as a
‘CY-subquotient’ of modΛ(∆) (for the ‘CY-subquotient’ construction, cf. section 2
of [2] and section 5.4 of [5]). Thus the conjecture implies that any CY-subquotient
of rank ≤ 3 of mod Λ(∆) is acyclic. This holds indeed in all the examples we have
checked.
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Moduli of sheaves from moduli of Kronecker modules

Alastair King

(joint work with Luis Álvarez-Cónsul)

Let X be a projective scheme over an algebraically closed field and with structure
sheafO. Let Coh(X) be the category of coherent sheaves on X . The projectivity of
X can be encoded by a group of automorphisms of Coh(X), denoted E 7→ E(n) for
n ∈ Z, given by tensoring n-times by an ample invertible sheaf O(1). The ample-
ness here implies in particular that the dimension of H0(E(n)) := Hom(O(−n), E)
is, for n≫ 0, given by a polynomial PE(n), called the Hilbert polynomial of E.

Now, to X or Coh(X), we can associate the moduli spaces MX(P ) of semistable
coherent sheaves of given Hilbert polynomial P . The aim of our work [1] is to
shed new light on the construction of the schemes MX(P ), on why they are also
projective and on their natural homogeneous coordinates, called ‘theta functions’.

The simple answer to the question of why MX(P ) is projective is that it is
constructed by Geometric Invariant Theory, as developed by Mumford [2] for pre-
cisely such purposes. However, we wish to give a more natural answer, in terms
of the functors

Φ: Coh(X)→ Mod(A) : E 7→ Hom(T∨, E)

where T = O(n0)⊕O(n1) and A = End(T ) for suitable n1 > n0 ∈ Z. Concretely,
the A-module V = Φ(E) is precisely specified by the H-Kronecker module

φE : V0 ⊗H → V1,

where Vi = H0(E(ni)) and H = Hom(O(n0),O(n1)). Note that Φ has a left
adjoint

Φ∨ : Mod(A)→ Coh(X) : V 7→ T∨ ⊗A V.

More concretely, Φ∨(V ) is the cokernel of the obvious map

V0 ⊗H ⊗O(−n1) −→ V0 ⊗O(−n0)⊕ V1 ⊗O(−n1).

Note also that, for every dimension vector v = (v0, v1), there is a naturally
projective variety MH(v) which is the moduli space of semistable H-Kronecker
modules of dimension vector v. Thus, our more natural answer to the question of
why MX(P ) is projective is the following.

Theorem 1. For n1 ≫ n0 ≫ 0 (i.e. ∃N0 ∀n0 ≥ N0 ∃N1 ∀n1 ≥ N1), the functor
Φ gives a closed embedding MX(P ) →֒MH(P (n0), P (n1)).

Observe that a special case of this, applied to the simple point sheaves Ox,
gives the usual embeddings X →֒ P(H∗) = MH(1, 1), which exhibit X itself as a
projective scheme.

We remark that this provides a new interpretation of the known construction of
MX(P ) by Simpson [5]. We also note an important technical caveat : the embed-
ding is scheme-theoretic except possibly at strictly semistable points in positive
characteristic, when it may only be set-theoretic. However, the embedding is
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also functorial, so it should be a genuine embedding of ‘non-commutative moduli
spaces’, in any sensible interpretation of that term.

Indeed, the functoriality of the embedding actually extends from semistable
sheaves to regular sheaves, in the sense of Castelnuovo-Mumford. Recall that
E is m-regular if Hi(E(m − i)) = 0 for i ≥ 1. This implies in particular that
dimH0(E(n)) = P (n) for n ≥ m.

Theorem 2. If O(−n0) is n1-regular, then Φ is fully faithful on all n0-regular
sheaves E, i.e. the natural map εE : T∨ ⊗A Hom(T∨, E)→ E is an isomorphism.

Note that the standard ‘boundedness’ lemma says that, given P , for n ≫ 0,
all semistable E of Hilbert polynomial P are n-regular. Now, to get from Theo-
rem 2 to Theorem 1, we must compare the notions of semistability for sheaves and
Kronecker modules.

Definition 3. An A-module V , i.e. a Kronecker module φ : V0 ⊗ H → V1, is
semistable iff, for all V ′ ⊂ V

dimV ′
0

dimV ′
1

≤ dimV0

dimV1

The standard definition of semistability for sheaves involves the condition of
purity: E is pure iff it has no proper subsheaves with lower dimensional support.
Note that dim SuppE = deg PE .

Definition 4. A sheaf E is semistable iff E is pure and, for all E′ ⊂ E,

PE′(n)

rE′

≤ PE(n)

rE
for n≫ 0,

where rE is the ‘multiplicity’ of E, i.e. the leading coefficient of PE .

However, for our purposes, this definition has a crucial reformulation.

Lemma 5. A sheaf E is semistable if and only if, for all E′ ⊂ E,

PE′(n0)

PE′(n1)
≤ PE(n0)

PE(n1)
for n1 ≫ n0 ≫ 0.

Thus E is semistable if and only if for all E′ ⊂ E, Φ(E′) does not destabilise
Φ(E) for n1 ≫ n0 ≫ 0. Note also that purity is now more clearly a consequence of
semistability, rather than simply a necessary condition for the definition to make
sense (cf. [3] for a similar conclusion).

Working from the reformulation in Lemma 5, one can then show that, as long
as E is pure, such n0, n1 can be found uniformly, i.e. independent of E, and
that the submodules of the form Φ(E′) are the critical ones for determining the
semistability of Φ(E). We do not know whether the purity assumption can be
removed from this argument, but it seems quite possible that it cannot be. Thus
we obtain the following uniform characterisation of semistability of sheaves.

Theorem 6. Given P , for n1 ≫ n0 ≫ 0, any E of Hilbert polynomial P is
semistable if and only if E is n0-regular and pure, and Φ(E) is semistable.
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With further work, including Langton’s method to prove the properness of
MX(P ), the forward implication (E semistable⇒ Φ(E) semistable) of Theorem 6,
together with Theorem 2, yields Theorem 1.

Finally, we turn to the question of the natural homogeneous coordinates. For
MH(v), these come from the theory of determinantal semi-invariants of quivers, as
formulated by Schofield & Van den Bergh [4]. Firstly, they show that an A-module
V is semistable if and only if there is a map of projective modules

γ : P k1

1 → P k0

0

such that Hom(γ, V ) : V k0

0 → V k1

1 is an isomorphism, i.e. θγ(V ) 6= 0 where
θγ(V ) := detHom(γ, V ). Note the necessary restriction k1/k0 = dimV0/ dimV1,
which leaves one degree of freedom, corresponding to the degree of θγ as a semi-
invariant. Secondly, such ‘theta functions’ θγ actually span the graded ring S•(v)
of semi-invariants and hence give homogeneous coordinates for the projective em-
beddings of MH(v) := ProjS•(v).

Now, the adjunction Hom(γ, Φ(E) = Hom(Φ∨(γ), E) tells us that the restriction
of such θγ to MX(P ) is of the form θδ(E) := detHom(δ, E) for

δ : O(−n1)
k1 → O(−n0)

k0 ,

with k1/k0 = P (n0)/P (n1). Thus, firstly, the condition in Theorem 6 that Φ(E)
is semistable may be replaced by the condition that θδ(E) 6= 0 for some such δ
and, secondly, such theta functions yield projective embeddings of MX(P ), except
possibly at strictly semistable points in positive characteristic.

To conclude, one may roughly consider that the philosophy of [4] has been
imported to Coh(X). Thus the invertible sheaves O(−n) for n > m behave like
indecomposable projective objects for m-regular sheaves E and the theta functions
which detect semistability come from maps δ between projectives as above. How-
ever, technicalities such as the role of purity and the uniformity in the condition
“n1 ≫ n0 ≫ 0” make things a little more complicated in this case.
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DG deformation theory of objects in homotopy and derived categories

Valery Lunts

(joint work with D. Orlov)

For an object E which is a DG module over a DG category A, we develop its
deformation theory in the corresponding homotopy and derived categories. These
functors depend only on the (quasi-isomorphism class of the) DG algebra C =
End(E). As a “base” of our infinitesimal deformations we allow any artinian
(noncommutative) DG algebra. The main result is the pro-representability of the

derived deformation functor by the complete DG algebra Ŝ = (BC)∗ — the linear
dual of the bar construction BC of C.

The main theorem is proved in conjunction with a result about the Fourier-
Mukai transform from the derived category of Ŝ-modules to that of C-modules.
Namely, it is proved that the bar complex BC⊗C defines a full and faithful functor
on the subcategory generated by the Ŝ-module k.
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Symplectic reflection algebras at t = 0 and deformed preprojective
algebras

Maurizio Martino

Let X be an affine algebraic variety over the complex numbers with coordinate ring
C[X ]. We say that X is Poisson if there exists a map {−,−} : C[X ]×C[X ]→ C[X ]
satisfying:

i) C[X ] equipped with the bracket {−,−} is a Lie algebra over C;
ii) for all x, y, z ∈ C[X ], {x, yz} = y{x, z}+ {x, y}z.

Suppose that X is Poisson. There is a natural stratification of X as follows. For
each x ∈ C[X ] one defines the vector field Ξx = {x,−}. For p1, p2 ∈ X we say
that p1 ∼ p2 if there exists a piecewise holomorphic curve from p1 to p2 such
that each smooth piece is the integral curve to Ξx for some x. This defines an
equivalence relation on X and the equivalence classes are called symplectic leaves.
It is a theorem going back to A.A.Kirillov [4] (see also [6]) that the symplectic
leaves of X are symplectic manifolds which are Poisson embedded in X , and are
maximal with respect to this property. In general, the calculation of symplectic
leaves for an affine algebraic Poisson variety is a difficult problem. We consider
two cases arising in context of noncommutative algebra.

Symplectic reflection algebras were introduced by Etingof and Ginzburg in [3],
we recall briefly the definition. Let V be a finite dimensional complex vector space
with symplectic form ω. Suppose that a finite subgroup of the symplectic group
of V acts in such a way that V cannot be written as the direct sum of two proper
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symplectic G-stable subspaces. The set of symplectic reflections, S, consists of
elements in G which fix a subspace of codimension two. For each s ∈ S we define
an alternating form, ωs, on V whose radical is Ker(1 − s) and which agrees with
ω on Im(1 − s). Let TV ∗ G be the skew group algebra of the tensor algebra,
TV , with G. Then for t ∈ C and a class function c : S → C the corresponding
symplectic reflection algebra is

Ht,c = TV ∗G/〈v ⊗ w − w ⊗ v − tω(v, w) −
∑

s∈S

c(s)ωs(v, w)s : v, w ∈ V 〉.

In the case that t = 0 the centre, Zc, of H0,c is a Poisson algebra via a quantisation
procedure and the symplectic leaves of Xc := SpecZc play an important role in
the representation theory of H0,c, see [1].

Deformed preprojective algebras were introduced in [2]. Let Q be a finite quiver
with vertex set I. Let Q be the quiver obtained from Q by adding a reverse arrow
a∗ for each arrow a in Q. Denote its path algebra by CQ and the trivial paths by
ei. For λ ∈ CI the corresponding preprojective algebra is

Πλ(Q) = CQ/〈
∑

a∈Q

(aa∗ − a∗a)−
∑

i∈I

λiei〉.

For a dimension vector α ∈ ZI
≥0 the space parametrising all α-dimensional rep-

resentations of Πλ(Q), Rep(Πλ(Q), α), is the fibre of a moment map for the
symplectic space Rep(Q, α) :=

∑
a∈Q Mat(αhead(a) × αtail(a), C) with the action

of G(α) :=
∏

i∈I GL(αi, C) by simultaneous conjugation. The affine quotient

N (λ, α) := Rep(Q, α)//G(α) is then a Marsden-Weinstein reduction so naturally
carries the structure of a Poisson variety. On the level of representations, N (λ, α)
parametrises semisimple representations of Πλ(Q). Given a semisimple Πλ(Q)-
module, M , we can split it into its isotypic components M = Mn1

1 ⊕ · · · ⊕Mnt

t

and then we say that M has representation type (defined only up to permutation
of direct summands) equal to (β1, n1; . . . ; βt, nt), where βi is the dimension vector
of Mi.

We can now state the main result which is contained in [5].

Theorem.

(1) For any quiver Q, dimension vector α and parameter λ the symplectic
leaves of N (λ, α) are equal to the representation type strata.

(2) Let V be the symplectic vector space (C2)⊕n acted on by the wreath product
Sn ≀ Γ where Γ is a finite subgroup of SL(2, C). The Poisson varieties Xc,
corresponding to (V, G), are isomorphic to certain reductions N (λ, α) and
this isomorphism maps symplectic leaves to symplectic leaves.

References

[1] K.A. Brown and I. Gordon, Poisson orders, symplectic reflection algebras and representation
theory, J. Reine Angew. Math. 559 (2003), 193–216.

[2] W. Crawley-Boevey and M.P. Holland, Noncommutative deformations of Kleinian singu-
larities, Duke Math. J. 92 (1998), no. 3, 605–635.



Interactions between Algebraic Geometry and Noncommutative Algebra 1353

[3] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space and
Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348.

[4] A. A. Kirillov, Local Lie algebras, Uspehi Mat. Nauk 31 (1976), no. 4 (190), 57–76.
[5] M. Martino, Stratifications of Marsden-Weinstein reductions for representations of quivers

and deformed symplectic quotient singularities, arXiv:math.RT/0603562.
[6] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983),

no. 3, 523–557.

Hopf algebra actions and stability of radicals of algebras

Susan Montgomery

Let A be an algebra over a field k, and let H be a finite-dmensional Hopf algebra
acting on A (that is, A is an H-module algebra). In this talk we consider the
question as to when the Jacobson radical J(A), or the prime radical P (A), is
stable under the action of H . We also discuss the related question as to when the
smash product A#H is semiprime.

Both questions have a long history. First, both radicals are trivially stable if
H = kG, for G a group, since then G acts as automorphisms. In 1975, Fisher [5]
looked at the H-Jacobson radical, although not much progress was made. Also
in 1975, G. Bergman [1] asked whether J(A) is a graded ideal, if A is graded by
the group G and |G| is a unit in A (the hypothesis on |G| is necessary: consider
A = kG itself, where char k = p > 0 and p divides |G|).

Translated into Hopf algebra language, Bergman’s question asks if J(A) is stable
under the action of the Hopf algebra H = kG, the dual of kG; the hypothesis on
|G| says that H∗ is semisimple. Bergman’s question was answered positively in
1984 in [3], but there has been almost no progress on the general question until
recently.

Second, in 1984 it was asked by Cohen and Fischman [2] whether A#H was
semiprime, assuming that A was semiprime and H was semisimple. This question
remains open, although there are many partial results in the literature, mostly
with some additional assumptions about H or about its action on A.

In the last few years there has been progress on both questions, in particular
when A itself is either Noetherian or a PI-algebra. First note that the prime radical
question can be thought of as “dual” to the semiprimeness question:

Proposition 1. [11][12, Remark 5.8] Let C be a class of algebras over k such
that C is closed under finite extensions and under homomorphic images. Then the
following are equivalent:

(1) P (A) is H-stable for all H-module algebras A in C;
(2) for all H∗-semiprime H∗-module algebras A′ in C, A′#H∗ is semiprime.

The proof is an elementary application of the Duality Theorem. More generally
it is not difficult to see that a necessary condition for stability of P (A), for all A,
is that H is cosemisimple, and dually that a necessary condition for A#H to be
semiprime for all H-semiprime algebras A, is that H is semisimple.
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The first recent result on radicals is due to Linchenko [6]; he proved that if A
has dimension n < ∞, and the antipode S has order 2, then J(A) is H-stable if
either k has char 0 or char p where p > n.

To simpilfy the statement of results, we will assume from now on
that k has characteristic 0. It is known in this case that S2 = id ⇐⇒ H is
semisimple ⇐⇒ H is cosemisimple, by results of Larson and Radford.

Linchenko’s result was extended in [7] by showing that for any algebra A, the
“finite radical” Jfin(A) is always H-stable, provided H is (co)semisimple. Here
Jfin(A) is the intersection of the annihilators of the finite-dimensional irreducible
modules of A. The stability of Jfin(A) was used in [7] to show stability of J(A)
for affine PI-algebras.

Now for affine PI-algebras, P (A) = J(A). Looking at P (A) instead of J(A),
the affine hypothesis can be removed:

Theorem 2. [8] Let A be a PI-algebra and assume H is cosemisimple. Then P (A)
is H-stable.

A similar result holds for Noetherian algebras:

Theorem 3. [14] Let A be a Noetherian algebra and assume H is cosemisimple.
Then P (A) is H-stable.

By the duality proposition 1, one immediately has:

Corollary 4. Let A be either PI or Noetherian, and assume that A is H-semiprime
and that H is semisimple. Then A#H is semiprime.

The general case of Theorems 2 and 3, for arbitrary A, remains open.
The case of the Jacobson radical appears to be more difficult, and the stability

of J(A) is unknown even if A is either Noetherian or PI and H is (co)semisimple.
Examples exist in characteristic 0 in which P (A) is H-stable but J(A) is not;
however in these examples, either H is not finite-dimensional or is not semisimple.
One result is known relating the two radical questions:

Theorem 5. [7] Assume that J(A) is H-stable for all H-module algebras A. Then
P (A) is H-stable for all H-module algebras A

The proof of Theorem 5 works if the algebras A are all PI-algebras.
We close with another possible approach to these problems. We assume that the

Hopf algebra H is an abelian extension, as follows. Let L be a factorizable group,
that is L = FG, where F and G are subgroups of L with F ∩ G = (1); a basic
example is L = Sn = CnSn−1, where we identify Cn with the subgroup generated
by (12 · · ·n). Then {F, G} forms a matched pair of groups in the sense of Takeuchi,
and we may construct a bicrossed product H = kG#τ

σkF , where σ : F × F → kG

and τ∗ : G × G → kF are 2-cocycles. Such Hopf algebras are classified by the
group OpExt(F, G), consisting of equivalence classes of pairs [σ, τ ]; see Masuoka’s
survey [10].

Moreover, for any Hopf algebra H and a “dual cocycle” Ω ∈ H ⊗H , one may
form a new Hopf algebra HΩ by twisting the comultiplication of H using Ω (this
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construction is due to Drinfeld). If H acts on A, one may also twist A to a new
algebra AΩ on which HΩ acts.

Theorem 6. [12] Let H = (kG#τ
σkF )Ω, the twist of a bicrossed product. Let A

be an H-semiprime H-module algebra. Then A#H is semiprime.

Bicrossed products of groups are an important class of Hopf algebras, as they
are closely related to the group-theoretical quasi-Hopf algebras studied in [15]
[4][13]. By definition a quasi-Hopf algebra is group theoretical if its category of
representations is a group theoretical category C(L, ω, F, α), where L is a finite
group, F ⊂ L is a subgroup, ω : G×G ×G → k× is a normalized 3-cocycle, and
α : F×F → k× is a normalized 2-cocycle such that ω|F = 1 [15]. A major example
is given by the quasi-Hopf version of the bicrossed products above, although in
the quasi-Hopf case, G might not be a group and is replaced by a fixed set Q of
coset representatives of F in L. It is shown in [13] that any group-theoretical Hopf
algebra H is gauge-equivalent to some quasi-Hopf algebra M = kQ#τ

σkF , where σ
and τ are defined using ω. This means that H = MΓ, a twist of M by Γ ∈ H⊗H ,
although in this case the twisting element Γ does not have to be a cocycle.

It is an open question as to whether every semisimple Hopf algebra over C is
group-theoretical [4]. However even if this question from [4] turns out to be true
(and it looks very difficult), the semiprimeness problem would not automatically
follow from Theorem 6, since its proof required that the twisting element be a
cocycle. In fact twisting the corresponding algebra A by a Γ which is not a cocycle
can give an algebra AΓ which is not associative.
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(Non-)singular quiver moduli

Markus Reineke

1. Motivation

As an example of the interaction between Noncommutative Algebra and Alge-
braic Geometry, one may consider the interplay between the path algebra CQ of a
quiver and a series of moduli spaces (Md(Q))d for d-dimensional representations of
Q. In the following, questions concerning the global geometry of such moduli will
be considered, with emphasis on computation of topological invariants like Betti
numbers. The background is the problem of classification of (or producing normal
forms for) classes of quiver representations. Explicit knowledge of topological in-
variants can sometimes hint on such normal forms (see e.g. [6]), or at least give a
measure for the complexity of this problem.

2. Notation

Let Q be a finite quiver with set of vertices Q0 and set of arrows Q1, with asso-
ciated Euler form 〈 , 〉. Let d ∈ NQ0 be a dimension vector, and let Θ ∈ (QQ0)

∗

be a stability condition. The slope µ(X) of a non-zero complex representation
X of Q is defined as µ(X) := Θ(dimX)/dimX . The representation X is called
stable (resp. semistable) if µ(U) < µ(X) (resp. µ(U) ≤ µ(X)) for all non-zero
proper subrepresentations U of X . Note that in case Θ = 0, the notion of stability
reduces to simplicity.

By [3], there exists a complex algebraic variety M st
d (Q) whose points corre-

spond to isomorphism classes of stable representations of Q of dimension vector
d. Moreover, there exists a complex algebraic variety M sst

d (Q) whose points cor-
respond to isomorphism classes of polystable representations of Q of dimension
vector d, where a representation is called polystable if it is the direct sum of stable
representations of the same slope.

Both moduli spaces are defined using Geometric Invariant Theory. Basic facts
on their geometry are the following: the variety M st

d (Q) is always smooth, and it
is an open subset of M sst

d (Q). The latter moduli admits a projective morphism

to the affine variety M ssimp
d (Q), the moduli of semisimple representations of Q of

dimension vector Q (defined with the aid of the stability Θ = 0). In particular,

if Q has no oriented cycles, M ssimp
d (Q) reduces to a single point, thus M sst

d (Q) is
projective in this case.
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We call d coprime for Θ if µ(e) 6= µ(d) for all 0 < e < d. In this case, we have
M st

d (Q) = M sst
d (Q) by definition. If, in addition, Q does not contain oriented

cycles, we thus arrive at a smooth projective complex algebraic variety.

3. The coprime case

Theorem 1 ([5]). Given (Q, d, Θ) as above, define

Pd(q) :=
∑

d∗

(−1)s−1q−
P

k≤l〈d
l,dk〉

s∏

k=1

∏

i∈Q0

dk
i∏

l=1

(1− q−l)−1 ∈ Q[[q]],

where the sum runs over all tuples (d1, . . . , ds) of non-zero dimension vectors such
that

∑
k dk = d and µ(d1 + . . . + dk) > µ(d) for all k < s. If d is coprime for Θ,

then the Poincare polynomial in rational singular cohomology of M st
d (Q) is given

by

(q − 1) · Pd(q) =
∑

i

dimHi(M st
d (Q),Q)qi/2

(the fractional power on the right hand side is reasonable since the odd cohomology
vanishes).

No explicit formula for the Euler characteristic of M st
d (Q) can be derived from

this, since all summands in the definition of Pd(q) have poles at q = 1. Moreover,
no positive (combinatorial) formula for the Betti numbers can be derived from
this.

Based on a string-theoretic argument by M. Douglas, the following conjecture
on the asymptotic behaviour of the Euler characteristic has been found with the
aid of computer experiments by T. Weist:

Conjecture 2. Assume Θ generic. There exists a constant CQ ∈ R such that for
large d coprime to Θ, we have

log χ(M st
d (Q)) ≈ CQ ·

√
dimM st

d (Q)− 1.

4. The non-coprime case

For general d, one has the choice to study the non-projective moduli M st
d (Q), the

singular moduli M sst
d (Q), or a closely related moduli, which is hopefully smooth

and projective (over the affine base M ssimp
d (Q)).

1. M st
d (Q). The following two results are proved in [8, 9]. The first is general,

and basically means that the arithmetic geometry of the moduli M st
d (Q) is of a

very special (simple) nature. The second is more special, only applying to moduli
of simple representations, and gives a closed formula for the Euler characteristic
in this case.

There exists an integral modelMd of M st
d (Q), i.e. a scheme over SpecZ whose

base extension to SpecC is isomorphic to M st
d (Q).
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Theorem 3. For all (Q, d, Θ) as above, there exists a (recursively computable)
polynomial Ad(t) ∈ Z[t] such that, for all finite fields k, the evaluation Ad(|k|)
equals the number of k-rational points of the reduction of Md to k.

The multiplicative group C∗ acts naturally on M simp
d (Q) by scalar multiplica-

tion of the linear maps representing the arrows of Q in a representation. Formation
of the quotient by this action yields a projectivization PM simp

d (Q).

Theorem 4. For all d, the Euler characteristic in cohomology with compact sup-
port of PM simp

d (Q) equals the number of cyclic equivalence classes of primitive
cycles in Q of dimension vector d.

2. Smooth models. The results of this subsection will appear in [10]. Choose
another dimension vector n ∈ NQ0 and consider the projective representation
Pn :=

⊕
i∈Q0

Pni

i .

There exists a complex algebraic variety MΘ
d,n(Q) parametrizing pairs (M, f :

Pn →M) consisting of a semistable representation M of Q of dimension vector d
and a morphism f such that all proper subrepresentations containing the image of
f have slope strictly smaller than the one of M . This moduli space arises naturally
by framing (see e.g. [7]).

The moduli MΘ
d,n(Q) is always smooth and admits a projective morphism π :

MΘ
d,n(Q)→M sst

d (Q), whose generic fibre is a projective space. In case d is coprime,

this moduli can be identified with the total space P(
⊕

i∈Q0
Vni

i ), where the Vi are

the tautological bundles on the fine moduli M sst
d (Q).

The Betti numbers of MΘ
d,n(Q) are given by the following identity of generating

functions:∑

d

(
∑

i

dimHi(MΘ
d,n(Q),Q)qi/2)td = (

∑

d

Pd(q)t
d)−1 · (

∑

d

qn·dPd(q)t
d),

where the calculation has to be carried out formally in a skew polynomial ring
with te · tf = q−〈e,f〉te+f .

In the special case Θ = 0, there even exist positive formulas for the Betti
numbers, in terms of numbers of multipartitions fulfilling certain inequalities.

Building on [1, 2, 4], the fibres of π can be described (locally, analytically) as

moduli of the form M0,nilp
d′,n′ (Q′), the superscript indicating nilpotent representa-

tions.

3. M sst
d (Q). Using the smooth models π : MΘ

d,n(Q) → M sst
d (Q), it should be

possible to compute the intersection Betti numbers of M sst
d (Q). Applying the

decomposition theorem to the push-forward of the constant perverse sheaf on
MΘ

d,n(Q), the multiplicities of the resulting intersection cohomology complexes
should be computable using the description of the fibres of π and the cohomology
of the smooth models.
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Tilting modules over Calabi-Yau algebras

Idun Reiten

(joint work with Osamu Iyama)

Tilting theory is well developed for finite dimensional algebras, due to work of a
large number of people. It has played an important role in this area, in particular
after Happel discovered the connection with derived categories. The theory has
had interesting applications within for example algebraic groups and in algebraic
geometry. Here we deal with some classes of noetherian rings, and point out
connections with cluster algebras and with noncommutative crepant resolutions.
We refer to [1] and the references given there.

1. Calabi-Yau algebras

Let R be a commutative noetherian ring of Krull dimension d and Λ a module-
finite R-algebra. We say that Λ is Calabi-Yau of dimension n (n− CY for short)
if we have a functorial isomorphism Hom(X, Y [n]) ≃ D Hom(Y, X) for all X , Y
in the bounded derived category Db(f. l Λ) of finite length Λ-modules, where D
denotes the Matlis dual.

We say that Λ is n − CY− if the same formula holds for X in Db(f. l Λ) and
Y in Kb(pr Λ), the bounded complexes of finitely generated projective Λ-modules.
Then if Λ is n−CY, it is n−CY− [Rickard]. There is the following characterization
of these properties under more assumptions on R.

Theorem 1. Let R be a local Gorenstein of dimension d and R ⊂ Λ. Then we
have the following:

(a) Λ is n− CY or n− CY− implies that n = d.
(b) Λ is d− CY− if and only if Λ is symmetric R-order.
(c) Λ is d− CY if and only if Λ is symmetric order and gl. dimΛ = d.
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Here Λ is a symmetric R-algebra if we have a two-sided Λ-isomorphism Λ ≃
HomR(Λ, R) and Λ is an R-order if Λ is a (maximal) Cohen-Macaulay R-module.

Note that if Λ = R is local commutative then Λ is d− CY− if and only if Λ is
Gorenstein of dimension d, and Λ is d−CY if and only if Λ is regular of dimension
d.

Examples of CY-algebras come from skew group rings S ⋆ G where the ring
S = C[X1, · · · , Xd] and G is a finite subgroup of SL(d, C).

2. Tilting theory

Assume that R is a complete local normal Gorenstein domain and R ⊂ Λ. Recall
that a finitely generated Λ-module T is a classical tilting module if pdΛ T ≤ 1,
Ext1Λ(T, T ) = 0 and there is an exact sequence 0 → Λ → T0 → T1 → 0 with
Ti in addT . The last condition can be replaced by saying that the number of
nonisomorphic indecomposable summands of T is the number t of nonisomorphic
simple Λ-modules. We shall mainly deal with tilting modules which are reflexive
R-modules and with the case d = 3.

Let now P1

∐ · · ·∐Pt, where we assume that the Pi are indecomposable and
pairwise nonisomorphic. Then for each k = 1, . . . , t there is a unique indecompos-
able Λ-module P ∗

k 6≃ Pk such that T = P/Pk

∐
P ∗

k is a tilting module, and it is
reflexive as an R-module. We write µk(Λ) = Λ′, where Λ′ = EndΛ(T ). We can
show that µk(µk(Λ)) = Λ. Continuing this way, we get a sequence Λ, Λ′, . . . , Λ(r)

of 3−CY-algebras such that we get from one algebra to the next one via a special
tilting module. An interesting property is that we can get directly from Λ to Λ(r)

using a tilting Λ-module. This is based upon the following result which we prove
working in a more general context (see section 3).

Theorem 2. Let Λ be a 3−CY, T1, T2 reflexive tilting modules, Γi = EndΛ(Ti) for
i = 1, 2. Then U = HomΛ(T1, T2) is a reflexive tilting Γ1-module and EndΓ1

(U) =
Γ2.

3. Connection with noncommutative crepant resolutions (NCCR) of
Van den Bergh

The above theorem is proved by working in the more general setting of NCCR.
Let R be a 3-dimensional normal Gorenstein domain and R ⊂ Λ.

We say that the Λ-module M gives a NCCR if
(i)M is reflexive (as R-module) and is a height one generator (that is MP is a
ΛP -generator for all prime ideals P in R of height ≤ 1).
(ii)ΓP is an RP -order with gl. dimΓP =height P for P a maximal ideal in R, where
Γ = EndΛ(M).

Then we have the following contribution to the solution of a conjecture of Van
den Bergh.

Theorem 3. Let Λ be as above, and assume that M1 and M2 are Λ-modules giving
NCCR, and let Γi = EndΛ(Mi).Then U = HomΛ(M1, M2) is a reflexive tilting Γ1-
module with EndΛ(U) = Γ2, and hence Γ1 and Γ2 are derived equivalent.
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A crucial step in the proof is the following.

Lemma 4. If R is a local ring and Λ is an isolated singularity, then
depth HomΛ(M, N) ≥ 3 implies that Ext1Λ(M, N) = 0.

The following result gives the connection with section 2.

Theorem 5. Let Λ be a 3−CY-algebra. Then the Λ-modules M giving an NCCR
are exactly the reflexive tilting modules.

4. Connection with cluster algebras

Let R be complete local Gorenstein ring with maximal ideal m such that R/m =
K is an algebraically closed field and Λ a module-finite R-algebra as before. We
give a brief indication of how to use this theory to model some of the essential
ingredients in the definition of the cluster algebras of Fomin-Zelevinsky.

Let Q be a finite quiver with vertices 1, · · · , n, and no loops or cycles of length
2. Associated with this is a cluster algebra A(Q) which is a subalgebra of the
rational function field Q(X1, · · · , Xn). For each i = 1, · · · , n there is the Fomin-
Zelevinsky mutation, which gives a new quiver µi(Q). If we start with the quiver
of a 3 − CY algebra Λ with no loops or 2-cycles, we give an interpretation of
µi(Q) as the quiver obtained from the quiver EndΛ(T ), where T is an appropriate
tilting module, after removing possible 2-cycles. It is a open problem if in fact
2-cycles can appear this way. If we start with the skew group ring S ⋆ G, where

G = 〈
(

ρ 0 0
0 ρ 0
0 0 ρ

)
; ρ3 = 1〉 then the quiver Q is •

3��•
3 ??~~~ •
3
oo

, and no 2-cycles will appear.

In such cases we get a better modelling, and can view reflexive tilting modules as
analogs of cluster, using the results of section 2.
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Degeneration of modules and the construction of Prüfer modules

Claus Michael Ringel

Let Λ be an artin algebra (this means that Λ is a module-finite k-algebra, where k
is an artinian commutative ring). Bautista-Peres [1] and Smalø [6] have recently
shown the following: Let W, W ′ be Λ-modules of finite length with isomorphic top
and isomorphic first syzygy modules. If W and W ′ have no self-extensions, then
W and W ′ are isomorphic. This is well-known in case k is an algebraically closed
field, but it is of interest to know such a result also for example for Λ being a finite
ring. Actually, for k an algebraically closed field, the usual algebraic geometry
arguments allow a stronger conclusion: If W has no self-extension, then W ′ is a
degeneration of W (in the following sense: W ′ belongs to the closure of the orbit
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of W in the corresponding module variety). The first aim of the lecture was to
show a corresponding result for general Λ, using the notion of a degeneration as
introduced by Riedtmann-Zwara [7]: the module W ′ is said to be a degeneration
of W provided there is an exact sequence of finite length modules of the form:
0 → X → X ⊕ W → W ′ → 0 (in case k is algebraically closed, the notions
coincide, as Zwara [8] has shown).

Proposition 1. Let U0, U1 be finite length modules, and w, w′ : U0 → U1 mono-
morphisms. Denote by W, W ′ the cokernels of w, w′, respectively. If W has no
self-extensions, then W ′ is a degeneration of W .

Indeed, let us describe in which way one obtains a corresponding Riedtmann-
Zwara sequence. In order to do so, let us deal with a slightly more general setting:
Start with a pair of maps w0, v0 : U0 → U1 between finite length modules, such that
w0 is a proper monomorphism with cokernel W . Forming inductively pushouts,
we obtain a sequence of maps wi, vi : Ui → Ui+1 with i ≥ 0, such that all the
maps wi are monomorphisms with cokernel W (and such that wi+1vi = vi+1wi

for all i). We form the direct limit U∞ of all the modules Ui with respect to the
monomorphisms wi (and we may assume that these maps wi are inclusion maps),
and consider also the module U∞/U0.

If we assume that W has no self-extensions, then U∞/U0 is an (infinite) direct
sum of copies of W , and this implies that one of the inclusion maps wi is a
split monomorphism: thus Ui+1 is isomorphic to Ui ⊕ W . Now, if v0 is also
a monomorphism, say with cokernel W ′, then the inductive constuction of the
module Ui+1 yields an exact sequence 0 → Ui → Ui+1 → W ′ → 0. As we have
seen, we can replace Ui+1 by Ui ⊕ W , thus we deal with a Riedtmann-Zwara
sequence. This completes the proof of Proposition 1.

Let us return to the general setting of dealing with a pair of maps w0, v0 : U0 →
U1 between finite length modules, such that w is a proper monomorphism with
cokernel W . The maps vi : Ui → Ui+1 yield a map v∞ : U∞ → U∞ which maps U0

into U1 and which induces an isomorphism v : U∞/U0 → U∞/U1. If we compose
the canonical projection U∞/U0 → U∞/U1 with the inverse of v, we obtain a
locally nilpotent surjective endomorphism of U∞/U0 with kernel W . Let us call a
module M a Prüfer module with basis W , provided there exists a locally nilpotent
surjective endomorphism of M with kernel W of finite length; thus U∞/U0 is a
Prüfer module with basis W.

A module M is said to be of finite type provided it is a direct sum of copies
of a finite number of indecomposable modules of finite length (thus if and only if
M is both endo-finite and pure-projective). Note that for the tower construction
exhibited above, the module U∞ is of finite type if and only if the Prüfer module
U∞/U0 is of finite type. We are interested in Prüfer modules which are not of
finite type, since there is the following result:

Proposition 2. Let M be a Prüfer module which is not of finite type, and let
I be an infinite set. Then the product module M I has an indecomposable direct
summand G which is of infinite length and endo-finite.
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Indecomposable infinite length modules which are endo-finite have been la-
belled generic modules by Crawley-Boevey [2]. He has shown that the existence
of a generic module implies that there are infinitely many isomorphism classes of
indecomposable finite-length modules of some fixed endo-length d (and actually
the proof shows that there are infinitely many natural numbers d such that there
are infinitely many isomorphism classes of indecomposable finite-length modules
of endo-length d).

Proposition 2 is based on previous investigations of Krause [3], see also [4]: Let
M be a Prüfer module, thus there is a surjective locally nilpotent endomorphism
f with kernel of finite length; denote by W [n] the kernel of fn. Then M I contains
the union U =

⊕
n W [n]I . This submodule is a direct sum of copies of M , and

it is a direct summand of M I , say M I = U ⊕ U ′. The module U ′ is endo-finite,
thus a direct sum of copies of finitely many indecomposable endo-finite modules.
In case the latter modules all are of finite length, then one can show that M is of
finite type. This then completes the proof of Proposition 2.

We want to use the tower construction in order to obtain a wealth of Prüfer
modules. For this, one needs submodules U0 ⊂ U1 with additional homomorphisms
(or even embeddings) U0 → U1, and of special interest seems to be the take-off
part of the category of all Λ-modules of finite length (as introduced in [5]).
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[5] , The Gabriel-Roiter measure, Bull. Sci. Math. 129 (2005), 726–748.
[6] S. Smalø, Homological conjectures and degenrations of modules, Lectures. Mar del Plata,

2006.
[7] G. Zwara, A degeneration-like order for modules, Arch. Math. (Basel) 71 (1998), 437–444.
[8] , Degenerations of finite-dimensional modules are given by extensions. Compositio

Math. 121 (2000), 205–218.



1364 Oberwolfach Report 23/2006

Classifying birationally commutative surfaces

D. Rogalski

(joint work with J.T. Stafford)

This report describes joint work with Toby Stafford on the classification of special
kinds of noncommutative surfaces. The main theorem is a bit complicated to
state, so (as in the half-hour talk presented at Oberwolfach), we will get right
to the the statement of the theorem and then proceed with some comments and
explanations. Throughout, k is an algebraically closed base field.

Theorem 1. Let A be a connected N-graded k-algebra (so A = k⊕A1⊕A2⊕ . . . )
satisfying the following hypotheses:

(1) A is a noetherian domain which is generated as an algebra in degree 1.
(2) A is a birationally commutative surface. This means that the homogeneous

quotient ring of A has the form Q(A) = K[t±1; σ] where K is a field with
tr. deg K/k = 2.

(3) The field automorphism σ ∈ Aut(K) is geometric. This means that there
exists a projective surface Y with k(Y ) = K and an automorphism η of
Y , such that η induces σ via pullback of rational functions.

Then A is isomorphic in large degree to a näıve blowup R(X,L, τ, Z), where
X is a projective surface with k(X) = K, τ ∈ Aut(X), L is a τ-ample invertible
sheaf, and Z is a 0-dimensional subscheme of X.

The main success of the theorem is that the quite general class of algebras
described by the hypotheses is now completely classified in terms of the geometric
data of näıve blowups. Now let us describe the various parts of the theorem in more
detail. First we make some comments about the list of hypotheses. Hypothesis
(1) is very mild; our current understanding of noncommutative surfaces is very
rough, and so the removal of any of these assumptions is beside the point at the
moment. The point of Hypothesis (2) is to restrict to a class of rings in which the
connection with algebraic geometry is especially strong. The method of the proof
(which we will not otherwise touch on much) is to construct the needed surface
X using the point modules for the ring A. Under hypothesis (2) Q(A)≥0 is itself
a K-point module for A, and in essence this is what makes the theorem work.
Hypothesis (3) is the most curious one, and we will make some further comments
about it below.

Now we explain the conclusion of the theorem further. The näıve blowups
appearing there were first studied by Keeler, Stafford, and the author in [KRS].
Suppose one is given a projective scheme X , a subscheme Z of X , an invertible
sheaf L, and an automorphism τ of X . For each n ≥ 0, set Ln = L ⊗ σ∗L ⊗
· · · ⊗ (σn−1)∗L. Let I be the sheaf defining the subscheme Z, and define also
In = I ·σ∗I · · · · · (σn−1)∗I. Then the graded ring B(X,L, σ) =

⊕
n≥0 H0(X,Ln)

has a natural multiplication defined by x ∗ y = x⊗ (σm)∗(y) for x ∈ Bm, y ∈ Bn.
B is called a twisted homogeneous coordinate ring and its properties were studied
by Artin and Van den Bergh in [AV], and in greater detail by Keeler in [Ke].
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The property of σ-ampleness is technical so we will not define it; when satisfied
the ring B is noetherian and the noncommutative space proj−B associated to B
is simply X itself. Finally, the näıve blowup R(X, Z,L, σ) is simply the subring⊕

n≥0 H0(X,Ln ⊗ In) of B. These rings R have many interesting and unusual
properties. The definition mimics the definition of a commutative blowup of X
at Z using Rees rings, but twisted by σ. The associated noncommutative space
proj−R does not quite have the formal properties one expects of a blowup. Still,
the point is that these rings are entirely geometrically defined and the study of
their properties reduces to commutative algebraic geometry.

Example 2. One of the simplest examples of a näıve blowup is the following.
Take X = P2, L = O(1), Z the single reduced point (1 : 1 : 1), and σ an
automorphism given by a generic diagonal matrix in PGLk(2). Then B(X,L, σ)
has a presentation k〈x1, x2, x3〉/{xixj − pijxjxi|i < j} for some constants pij ∈ k
(depending on σ) which satisfy p12p23 = p13. Then R(X, Z,L, σ) is simply the
subring of B generated by x1 − x3 and x2 − x3.

In the last part of the talk, we discussed the subtle property of geometricity
appearing in the hypothesis (3) of the theorem in more detail. It is not at all
obvious at first glance, for example, that non-geometric automorphisms of finintely
generated field extensions of k even exist. To show that they do, we discussed the
following example which was suggested to us by Michael Artin.

Let K/k be a field extension with tr. deg K/k = 2, and let σ ∈ Autk(K). Let
Y be any nonsingular surface with function field k(Y ) = K, and consider the
corresponding birational map σ : Y 99K Y (which we give the same name). If σ is
geometric, then there also exists a surface Z with k(Z) = K and an automorphism
τ : Z → Z corresponding to σ. Letting f : Y 99K Z be a compatible birational
map, we have fσn = τnf for all n. Then it is easy to check using simple facts
from the theory of nonsingular projective surfaces (as in [Hr, Chapter V]) that
there is an bound N such that the birational map σn : Y 99K Y has at most N
fundamental points for all n ≥ 0.

Now let K = k(u, v) be rational functions and Y = P2. Let σ1 : Y 99K Y be
the Cremona transformation defined by (a : b : c) 7→ (bc : ac : ab) which has three
fundamental points {(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)}. Let σ2 ∈ PGLk(2) = Aut(Y )
be chosen generically. Setting σ = σ2σ1 : Y 99K Y , then one may check that σn has
3n fundamental points for each n (the idea is that σ2 moves all of the previously
contracted points “out of the way” before σ1 is applied again). By the discussion
above, σ cannot be geometric.

In fact, the author recently discovered that Diller and Favre have developed
a rather complete theory of the dynamics of birational maps of surfaces over C

[DF], which along the way answers many of the fundamental questions about
geometricity in the surface case. Using their results, we have been able to obtain
the following amusing ring-theoretic characterization (which is work in progress).
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Theorem 3. Let A be a connected graded birationally commutative surface, so
Q(A) ∼= K[t±1; σ] with tr. deg K/k = 2, and assume that A does not have expo-
nential growth. Then if σ is geometric, then GKA = 3 or GKA = 5, while if σ is
non-geometric then GKA = 4.

This theorem allows one to replace hypothesis (3) of the main theorem by a
hypothesis that GKA = 3 or GK A = 5 if one wishes (since a noetherian graded
ring cannot have exponential growth [SZ]).
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A combinatorial approach to the dual of Lusztig’s semicanonical basis

Jan Schröer

(joint work with Christof Geiß, Bernard Leclerc)

Let g be a finite-dimensional complex Lie algebra of Dynkin type ∆ ∈ {An(n ≥
1), Dn(n ≥ 4), En(n = 6, 7, 8)}. By n we denote a maximal nilpotent subalgebra
of g, and let C[N ] be the graded dual of the universal enveloping algebra U(n) of
n. (Thus C[N ] is the commutative algebra of polynomial functions on a Lie group
N with Lie algebra n.)

Berenstein, Fomin and Zelevinsky have shown that C[N ] can be equipped nat-
urally with a cluster algebra structure. In [3] we “categorify” the cluster algebra
C[N ], i.e. we realize it inside the category of finite-dimensional modules over a
preprojective algebra.

Let Λ be the preprojective algebra associated to a Dynkin quiver Q of Dynkin
type ∆. This is the finite-dimensional associative algebra

Λ = CQ/〈
∑

a∈Q1

[a, ā]〉,

where Q denotes the double of Q and Q1 is the set of arrows of Q. We denote by I
the set of vertices of Q, and by Λd the affine variety of Λ-modules with dimension
vector d = (di)i∈I .

Let r be the number of positive roots of Q. A Λ-module T is maximal rigid
if Ext1Λ(T, T ) = 0 and if T = T1 ⊕ · · · ⊕ Tr with Ti indecomposable and Ti 6∼= Tj

for all i 6= j. Without loss of generality, Tr−n+1, . . . , Tr are projective. By ΓT we
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denote the quiver of the endomorphism algebra EndΛ(T ). It’s vertices are indexed
by the Ti.

Let B(T ) = (tij)1≤i,j≤r be the r × r-matrix defined by

tij = (number of arrows j → i in ΓT )− (number of arrows i→ j in ΓT ).

The quiver ΓT does not have 2-cycles, so at least one of the two summands in the
definition of tij is zero. Define B(T )◦ = (tij) to be the r× (r−n)-matrix obtained
from B(T ) by deleting the last n columns.

For k ∈ [1, r − n] there is a short exact sequence

0→ Tk
f−→

⊕

tik>0

T tik

i → T ∗
k → 0

where f is a minimal left add(T/Tk)-approximation of Tk (i.e. the map HomΛ(f, T )
is surjective, and every morphism g with gf = f is an isomorphism). Set

µTk
(T ) = T ∗

k ⊕ T/Tk.

Then µTk
(T ) is again a maximal rigid module. In particular, T ∗

k is indecomposable.
We call µTk

(T ) the mutation of T in direction Tk.

If B̃ = (bij) is any r× (r−n)-matrix, then the principal part B of B̃ is obtained

from B̃ by deleting the last n rows. The following definition is due to Fomin and

Zelevinsky: Given some k ∈ [1, r−n] define a new r×(r−n)-matrix µk(B̃) = (b′ij)
by

b′ij =




−bij if i = k or j = k,

bij +
|bik|bkj + bik|bkj |

2
otherwise,

where i ∈ [1, r] and j ∈ [1, r − n]. One calls µk(B̃) a mutation of B̃.
The quivers of the endomorphism algebras EndΛ(T ) and EndΛ(µTk

(T )) are
related via Fomin and Zelevinsky’s mutation rule:

Theorem 1. Let Λ be a preprojective algebra of Dynkin type ∆. For a maximal
rigid Λ-module T as above and k ∈ [1, r − n] we have

B(µTk
(T ))◦ = µk(B(T )◦).

Lusztig [4] proved that the enveloping algebra U(n) is isomorphic to

C =
⊕

d∈NI

C(d),

where the C(d) are certain vector spaces of GLd-invariant constructible functions
on the affine varieties Λd. This yields a new basis S of U(n) indexed by the
irreducible components of the varieties Λd, called the semicanonical basis [4].

Let C∗ be the graded dual of C. A multiplication on C∗ is defined via the natural
comultiplication of the Hopf algebra U(n) ∼= C. One can identify C∗ and C[N ] in
a natural way. In [1] we considered the basis S∗ of C∗ dual to the semicanonical
basis of C, and began to study its multiplicative properties.
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For a Λ-module x ∈ Λd define the evaluation form δx : C → C which maps a
constructible function f ∈ C(d) to f(x). Define

〈x〉 := {y ∈ Λd | δy = δx}.
This is a constructible subset of Λd. We can choose a finite set R(d) ⊂ Λd such
that

Λd =
⊔

x∈R(d)

〈x〉.

Each irreducible component Z of Λd has a unique stratum 〈x〉 ∩ Z containing a
dense open subset of Z, and the points of this stratum are called the generic points
of Z. We can then reformulate the definition of S∗ as follows: the element ρZ of
S∗ labelled by Z is equal to δx for a generic point x of Z.

A Λ-module x is called rigid if Ext1Λ(x, x) = 0. If x is rigid, it is generic and δx

is a dual semicanonical basis vector.
Using our “categorification” of the cluster algebra structure on C[N ] we obtain

the following result [3]:

Theorem 2. Let

T = T1 ⊕ · · · ⊕ Tr

be a maximal rigid Λ-module with Tr−n+1, . . . , Tr projective. For k ∈ [1, r− n] let
µTk

(T ) = T ∗
k ⊕ T/Tk be the the mutation of T in direction k. Then the following

hold:

• {δTi
| 1 ≤ i ≤ r} is a multiplicative subset of the dual semicanonical basis

of C[N ], i.e.

δn1

T1
· δn2

T2
· · · δnr

Tr
= δT

n1
1

⊕···⊕T nr
r

is again in the dual semicanonical basis for all ni ≥ 0;
•

δT∗
k

=

∏
i δaik

Ti
+

∏
j δ

akj

Tj

δTk

where aij denotes the number of arrows from j to i in ΓT .

Thus, starting with some nice maximal rigid module T = T1 ⊕ · · · ⊕ Tr, where
all the δTi

are explicitely known (such modules T can be constructed), our results
yield a combinatorial construction of numerous other dual semicanonical basis
vectors.

The proof of the above theorem uses a general multiplication formula for eval-
uation forms, see [2].

References
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On some domains with small GK dimension

Agata Smoktunowicz

The structure of finitely graded domains with quadratic growth was described in
[1]. Bell and Small showed that given a finitely graded Goldie non-PI domain of
Gelfand-Kirillov (GK) dimension 2 over an algebraically closed field, the centralizer
of a non-scalar element of this domain is an affine commutative domain of Gelfand-
Kirillov dimension 1. They conjectured that the same holds in the ungraded
case [2]. Small and Warfield [6] proved that if R is a finitely generated prime
algebra over a field of Gelfand-Kirillov dimension 1 then the center of R is a
finitely generated F–algebra of Gelfand-Kirillov dimension 1. Another important
result is a theorem of Small, Stafford and Warfield [5] which says that if R is
a finitely generated semiprime algebra of GK dimension 1, then the center of R
is a Noetherian domain of GK dimension 1. A result of Zhang [12] says that if
R is an affine domain with quotient division algebra Q and A is a commutative
subalgebra of Q, then GKdimA ≤ GKdimR where GKdimR denotes the Gelfand-
Kirillov dimension of R. Given these results it seems natural to look at centers in
domains of Gelfand-Kirillov dimension 2. Smith and Zhang [7] showed that if R
is a finitely generated non-PI domain with quotient division ring Q, then the GK
dimension of the center of Q is at most GKdimR− 2. Therefore, if R is a finitely
generated non-PI F–algebra which is a domain with quadratic growth and Z is
the center of R then GK dimension of Z is 0, hence Z is algebraic over F . The
main results of this talk are the following.

Theorem 1 ([9]). Let F be a field, and let R be a non-PI affine F -algebra (not
necessarily graded) which is a domain with quadratic growth, and let x ∈ R be
transcendental over F . Then the centralizer C of x is a PI domain. Moreover,
the quotient ring of C is a finite dimensional vector space over F (x), the field of
rational functions in the indeterminate x.

As a corollary the following theorem may be stated.

Theorem 2 ([9]). Let F be a field, and let R be an affine F–algebra (not nec-
essarily graded) which is a domain with quadratic growth. If the center of R is
infinitely generated F–algebra, then either R is PI or else R is algebraic over F .

In the proofs of these results some special types of algebras appear. This is the
motivation for prove the following theorem [8].

Theorem 3. Let F be a field, m, c and let R be a K-algebra which is a domain
of Gelfand-Kirillov dimension smaller than 3 and larger than 1. Let x ∈ R be
transcendental over F , and let x, y generate R. Assume that

∑
i,j≤c αi,jx

iyxj = 0,

for some αi,j ∈ F (and not all αi,j equal 0). Then R is a homomorphic image of
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a finitely presented algebra with quadratic growth. Moreover, if K is a finite field
then R satisfies a polynomial identity.

In [1] Artin and Stafford described the structure of finitely graded domains
with quadratic growth in terms of algebras associated with automorphisms of
elliptic curves. They also proved that there are no finitely graded domains with
GK dimension strictly between 2 and 11

5 . Artin, Stafford and Van den Bergh
conjectured [1, 11] that a finitely graded domain cannot have Gelfand-Kirillov
dimension strictly between 2 and 3. It was shown in [10] that this conjecture is
true. In the talk we will give some ideas of the proof.

Theorem 4 ([10]). Let K be a field, and let R be a finitely graded K-algebra which
is a domain. Then R cannot have Gelfand-Kirillov dimension strictly between 2
and 3.

Recall that, by Bergman’s Gap Theorem, there are no algebras with GK di-
mension strictly between 1 and 2 [3], [4, p. 18].

We use the same terminology as in [1]. We call a graded K-algebra R =⊕
n≥0 Rn finitely graded if it is a finitely generated algebra, and if R0 is a finite

dimensional vector space over K. Fix a finitely graded domain R with GKdimR <
3. The graded ring of fractions Q = Q(R) of R is the ring obtained by inverting
homogeneous elements from R. It is described as a skew Laurent polynomial ring
D[z, z−1; σ], in which σ is an automorphism of a division ring D, and multiplication
is defined by zd = dσz.

In the proof of Theorem 4 the following theorem proved by Artin and Stafford
in [1] is used.

Theorem 5 ([1]). Let R be a finitely graded K-algebra and assume that R is an
Ore domain with graded quotient division ring Q(R) = D[z, z−1; σ]. If we have
GKdimD < 2, then GKdimR ≤ 2.
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Serre functors, symmetric algebras and TQFT

Catharina Stroppel

In this talk we first recall the notion of a Serre functor and a characterisation
of symmetric algebras via Serre functors. We describe the Serre functor for the
bounded derived category Db(PervB(G/P )) of B-equivariant sheaves on the flag
variety G/P . The Serre functor can be thought of being the square of the Ringel
duality functor. On the other hand we can build up the Serre functor for these
categories from a braid group action via derived auto-equivalences. Our main
result will be that for G = SL(n, C) we also get braid group actions on cer-
tain Db(PervB(G/P )), giving rise to a functorial invariant of oriented tangles and
cobordisms. More precisely, we will describe a 3-dimensional TQFT with corners.
We finish with a conjectural connection to Khovanov homology.

1. Serre functors

Let C be a C-linear category with finite dimensional homomorphism spaces. A
functor S : C → C is a (right) Serre functor if it is an auto-equivalence and

HomC(M, N) ∼= HomC(M, SN)∗,(1)

naturally in M and N . In general, a Serre functor does not need to exists, but if it
exist, then it is unique up to isomorphism. Let A be a finite dimensional algebra
over C and A−mod the category of finitely generated A-modules.

Example 2. Let C be the category of finite dimensional free A-modules. Assume
S is a Serre functor then we have isomorphisms

A ∼= HomC(A, A) ∼= HomC(A, SA)∗ ∼= (SA)∗,(3)

of vector spaces, even of A-bimodules by the naturality condition in (1). Hence
S ∼= ID iff A ∼= A∗ as A-bimodule, hence if and only if A is a symmetric algebra.

The following theorem is due to Happel ([6]):

Theorem 4. Db(A) = Db(A −mod) has a Serre functor S if and only if A has
finite global dimension. In this case S ∼= L(A∗ ⊗A •).

Bondal and Kapranov ([4]) asked (with a conjectural answer) the following
question: What is the Serre functor for Db(PervB(G/B)), where G = SL(n, C), B
is the Borel subalgebra of all upper triangular matrices and PervB(G/B) denotes
the category of B-equivariant perverse sheaves on the flag variety G/B. It is known



1372 Oberwolfach Report 23/2006

that PervB(G/B) ∼= An −mod for some finite dimensional C-algebra An of finite
global dimension. In particular, Happel’s theorem holds, and gives a description of
the Serre functor. For example A2 is given by the following quiver with relations

0
f // 1,
g

oo g ◦ f = 0

Since, however, the algebras An are not explicitly known for n > 4, Happel’s
description of the Serre functor is not satisfying. Instead we propose the following

Theorem 5 (joint with V. Mazorchuk, [9]). For any n ≥ 2, 1 ≤ i ≤ n− 1, there
are right exact functors Ci : An −mod→ An −mod, such that

(1) the left derived functors LCi define auto-equivalences of Db(An −mod),
(2) these functors define a (weak) braid group action,
(3) if wo = si1si2 · · · sir

is a reduced expression of the longest element of
Sn and LCw0

= LCsi1
LCsi2

· · · LCsir
the corresponding functor, then

(LCw0
)2 is the Serre functor of Db(An −mod).

Example 6. In the example above we could take the idempotent e1 to the vertex
1 and consider the A := A2-bimodule Ae1 ⊗ e1A. It defines an exact endofunctor
θ1 of A−mod. There is a canonical map Ae1 ⊗ e1A→ A given by multiplication
and dually c : A → Ae1 ⊗ e1A defining a natural transformation ID → θ1. The
functor LC1 is then nothing else then Cone(ID → θ1). (If we identify A − mod
with the principal block O0(sl2) of the Bernstein-Gelfand-Gelfand category O for
sl2 then θ1 is exactly the translation functor through the wall and the C1 is Irving’s
shuffling functors.)

Remark 7.

(1) An independent, geometric proof is given in [2].
(2) There are at least two different ways to define these functors in question,

either as so-called twisting functors (as for example studied in [1] and
geometrically in [2]) or as Irving’s shuffling functors (see e.g. [10]).

(3) One can show that LCw0
is, up to isomorphism, independent of the chosen

reduced expression of w0. It maps projectives to tilting modules.
(4) Since a Serre functor commutes with auto-equivalences, it should com-

mute with all LCi. Hence it makes perfectly sense that the Serre functor
corresponds to the element w2

0 , the generator of the centre of the braid
group.

2. Some symmetric algebras

If we choose the functors to be given by Irving’s shuffling functors then they even
restrict to functors Ci : AP

n −mod→ AP
n −mod, where AP

n −mod ∼= PervB(G/P ).
(This is not true for the functors studied in [2]). For G/P , we get the same result
([9]) as in Theorem 5, except that S ∼= (LCw0

)2[k] for some shift [k]. Using results
of [7] one can show that in all cases the Serre functor is trivial when restricted

to the additive category AddP
n of projective-injective (and therefore also tilting)

modules in AP
n − mod. In fact, the Serre functor can be described as a partial
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coapproximation with respect to projective injective modules (in the sense of [8]).
Together with the characterisation of symmetric algebras in Example 2 we get the
following theorem verifying a conjecture of M. Khovanov:

Theorem 8 (joint with V. Mazorchuk, [9]). If T P
n is a minimal generator of AddP

n

then EndAn
(T P

n ) is a symmetric algebra. Up to isomorphism it only depends on
the partition of n defined by P , not on the composition or Young subgroup.

It is known ([3]) that the algebras AP
n are Koszul, hence can be equipped with

a Z-grading which we will fix from now on and consider the category AP
n −modZ

of finitely generated graded AP
n -modules. the functors Ci have standard graded

lifts which we denote by Ci as well. We define the category Cn := Bn −modZ =
⊕i=0nAPi

n −modZ, where Pi is the parabolic subgroup corresponding to the Young
subgroup Si × Sn−i of Sn and set Cn := C−mod if 0 ≤ n < 2.

3. Tangle invariants and TQFT

One can show ([10]) that Db(Cn) categorifies the n-fold tensor product of the
2-dimensional representation of quantum sl2, with commuting action of the Tem-
perley-Lieb algebra. This is the space where the Jones polynomial of tangles can
be defined. We want to enrich this to a functorial tangle invariant as follows: Let
us first consider (n, n)-tangle diagrams. To the identity tangle diagram with n
strands we associate the identity functor on Db(Cn). To the i-th right twisted curl
we associate the functor Ci〈1〉 (where 〈1〉 denotes a shift in the grading). To the
i-th left twisted curl we associate its inverse functor. For the U-turns we assign the
functors θi which are the translation through the i-th walls as mentioned in the
example earlier. On the other hand, the θi are compositions of two other functors
(roughly speaking translation to the wall and translation out of the wall) which
we assign to the diagrams

1   2       i-1  i   i+1 i+2     n-1 n

.... ....

and

1   2       i-1            i       n-1  n

.... ....

Let T an denote the category of tangles, i.e. objects are the positive integers and
morphisms are unframed tangle diagrams. Let T anor be the 2-category of oriented
tangles and cobordisms, i.e. objects are the positive integers, morphisms are un-
framed oriented tangles and 2-morphisms are diagrams of tangle cobordisms. For
details see for example [5]. Let Func denote the 2-category defined as follows:
the objects are the bounded homotopy categories Db

per(Bn−mod) of perfect com-
plexes of graded Bn-modules. The 1-morphisms are roughly speaking functors
between these categories. More precisely they are objects in the homotopy cate-
gory of graded Bn−Bm-bimodules (considered as functors given by tensoring with
the complexes of graded Bn − Bm-bimodules). The 2-morphisms are the natural
transformations between the functors, but after forgetting the grading and only
up to a multiplication with a homogeneous element of degree 0 of the centre of the
source or image category. We get the following
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Theorem 9 (see [11]). There is a functor of 2-categories

Φor : T anor → Func

which is given on objects by

n ∈ Z>0 7→ Db
per(modZ -Bn),

and on elementary 1-morphisms by the assignments mentioned above such that

(1) if t1 and t2 are 1-morphisms which differ by a sequence of Reidemeister
moves then there is an isomorphism of functors Φor(t1) ∼= Φor(t2).

(2) if c1 and c2 are sequences of generating 2-morphisms which differ by a
sequence of movie moves then Φor(c1) = Φor(c2).

Hence we constructed a 3-dimensional TQFT with corners. Under this functor
the Euler characteristic of the cobordisms corresponds to the degrees of the natural
transformations. For more details we refer to [10], [11].

4. The role of EndP
T

We associated in particular to each (2m, 2n)-tangle t a functor Φor(t). Recall

that for each APk

2n we have a full projective tilting module T Pk

2n . If we first restrict

Φor(t) to a functor from Db(APn

2n −modZ) to Db(APm

2m−modZ), and then to perfect
complexes of projective-injective-tilting modules we finally assign to each (2m, 2n)-
tangle a functor which can be realized as tensoring with a complex X̌(Φor(t))

of (EndA2m
(T Pm

2m ), EndA2n
(T Pn

2n ))-bimodules. We conjecture the following direct
connection to Khovanov homology:

Conjecture 10 ([11]).

(1) For any natural number m, there is an isomorphism of algebras pm :

EndA2m
(T Pm

2m ) ∼= Hm, where Hm denotes Khovanov’s algebra.

(2) The homological tangle invariant t 7→ H•(X̌Φor(t)) is Khovanov’s invari-
ant.

This conjecture is illustrated for n = m = 2 in [11]. Work in progress connects

EndP
T with the corresponding Springer fibre (thanks to Theorem 8).
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547–557.
[3] A. Beilinson, V. Ginzburg, and W. Soergel,, Koszul duality patterns in representation theory,

J. Amer. Math. Soc., 9, (1996), 473–527.

[4] A. I. Bondal and M.M. Kapranov, Representable functors, Serre functors, and reconstruc-
tions, Izv. Akad. Nauk SSSR Ser. Mat., 53, (1989), 1183–1205.

[5] J. S. Carter, J. H. Rieger, and M. Saito, A combinatorial description of knotted surfaces
and their isotopies, Adv. Math., 127, (1997), 1–51.

[6] D. Happel, Triangulated categories in the representation theory of finite-dimensional alge-
bras, London Mathematical Society Lecture Note Series 119 (1988).

[7] O. Khomenko, Categories with projective functors, Proc. London Math. Soc., 90, (2005),
711-737.



Interactions between Algebraic Geometry and Noncommutative Algebra 1375

[8] O. Khomenko and V. Mazorchuk, On Arkhipov’s and Enright’s functors, Math. Z., 249,
(2005), 357–386.

[9] V. Mazorchuk and C. Stroppel, Projective-injective modules, Serre functors and symmetric
algebras, arXiv:math.RT/0508119.

[10] C. Stroppel, Categorification of the Temperley-Lieb category, tangles, and cobordisms via
projective functors, Duke Math. J., 126, (2005), 547–596.

[11] , TQFT with corners and tilting functors in the Kac-Moody case,
arXiv:math.RT/0605103.

Noncommutative Poisson Geometry

Geert Van de Weyer

Double Poisson algebras were introduced by M. Van den Bergh in [1] as a general-
ization of classical Poisson geometry to the setting of noncommutative geometry.
The key fact being that an algebra A equipped with a double Poisson bracket has
a canonical Poisson structure on all its finite dimensional representation spaces
repn(A). More specifically, a double Poisson algebra A is an associative unital
algebra equipped with a linear map

{{−,−}} : A⊗A→ A⊗A

that is a derivation in its second argument for the outer A-bimodule structure on
A⊗A, where the outer action of A on A⊗A is defined as a.a′⊗a′′.b := (aa′)⊗(a′′b).
Furthermore, we must have that {{a, b}} = −{{b, a}}o and that the double Jacobi
identity holds for all a, b, c ∈ A:

{{a, {{b, c}}′}} ⊗ {{b, c}}′′ + {{c, a}}′′ ⊗ {{b, {{c, a}}′}}
+ {{c, {{a, b}}′}}′′ ⊗ {{a, b}}′′ ⊗ {{c, {{a, b}}′}}′ = 0,

where we used Sweedler notation, that is {{x, y}} =
∑{{x, y}}′ ⊗ {{x, y}}′′ for all

x, y ∈ A. Such a map is called a double Poisson bracket.
A double Poisson bracket yields, for each n, a classical Poisson bracket on the

coordinate ring C[repn(A)] of the variety of n-dimensional representations of A
through {aij , bkℓ} := {{a, b}}′kj{{a, b}}′′iℓ. This bracket restricts to a Poisson bracket

on C[repn(A)]GLn , the coordinate ring of the quotient variety issn(A) under the
action of the natural symmetry group GLn of repn(A).

We will study double Poisson brackets on a direct sum S = Md1
(C) ⊕ · · · ⊕

Mdk
(C) of matrix algebras over C. Because such algebras are formally smooth,

we know from [1] that all double Poisson brackets are determined by double Pois-
son tensors. That is, elements of degree 2 in DS = TSDer(S) where Der(S) =
Der(S, S ⊗ S) is the module of double derivations, i.e. the module of derivations
from S to the S-bimodule S ⊗S, where the S-action on S⊗ S is the outer action.
Der(S) is an S-bimodule through the inner action: (s.ϑ.t)(u) = ϑ(u)′t ⊗ sϑ(u)′′.
A first important result is the explicit description of Der(S) and DerT (S). Here,
DerT (S) is the bimodule of T -linear double derivations with T ⊂ S a subalgebra.



1376 Oberwolfach Report 23/2006

That is, double derivations that are identically zero on T . We have that

Der(S) ∼=
k⊕

i=1

Mdi
(C)⊕d2

i −1 ⊕
⊕

i6=j

Mdi×dj
(C)⊕didj

as S-bimodules where S acts on the right hand side expression by matrix multipli-
cation. If T = Me1

(C)⊕ . . .Meℓ
(C) is a finite dimensional semi-simple subalgebra

of S with Bratelli diagram with respect to S given by (aij)
(k,ℓ)
(i,j)=(1,1), then

DerT (S) ∼=
k⊕

i=1

Mdi
(C)⊕ri ⊕

⊕

i6=j

Mdi×dj
(C)⊕rij

as S-bimodules, with ri =
∑l

u=1 a2
iu − 1 and rij =

∑l
u=1 aiuaju.

Using these two theorems, we are able to formulate an explicit description of
the graded Lie algebra DS/[DS, DS][1], where the bracket on DS/[DS, DS][1] is
the bracket associated to the double Schouten-Nijenhuis bracket on DS. This
description is formulated in terms of the double derivation quiver QS associated
to S. Assign to S a quiver QS on k vertices with didj arrows between each two
vertices i 6= j and d2

i − 1 loops in all vertices i, where the arrows are indexed
by index sets Cji = {1, . . . , dj} × {1, . . . , di} if i 6= j and Cii = {1, . . . , dj} ×
{1, . . . , di}\{(1, 1)}. Then DS/[DS, DS][1] is isomorphic as a graded Lie algebra
to CQS/[CQS, CQS ]super , where the bracket on two words ω1 = v1 . . . vn and

ω2 = u1 . . . um in CQS/[CQS , CQS ]super is given by

∑

a∈(QS)0

(−1)(i+j)(n−1)A− (−1)(i+j+1)(n−1)B
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where
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This result can then be used to dermine all monomials of degree 2 in DS that yield
nontrivial double Poisson structures on S. It can also be used to compute the first
double Poisson-Lychnerowicz cohomology groups for S.

Although the representation varieties of finite dimensional semi-simple alge-
bras are rather simple and the quotient varieties consist of a finite number of
points, double Poisson structures on these algebras yield interesting noncommu-
tative geometry as they can be extended to double Poisson structures on the free
product of such algebras. For such a free product S ∗ T , the quotient variety
issn(S ∗ T ) is no longer trivial and double Poisson structures can yield nontrivial
Poisson structures on this variety.
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Rigid Dualizing Complexes via Differential Graded Algebras

Amnon Yekutieli

(joint work with J.J. Zhang)

Rigid dualizing complexes were introduced by Van den Bergh in the context of non-
commutative algebraic geometry, where they proved to be extremely useful. The
advantage of rigidity is that it eliminates automorphisms, thus making dualizing
complexes unique, and even functorial.

This talk is about rigid dualizing complexes over commutative K-algebras. If
K is a field then the ”noncommutative” results specialize to yield an enormous
amount of information on rigid dualizing complexes and their variance properties.
Indeed, one can recover most of the important features of Grothendieck duality
(for affine schemes), including explicit formulas, with relatively little effort.

However we want to consider commutative algebras over any noetherian com-
mutative base ring K. It turns out that this causes serious technical issues, due to
lack of flatness. Even defining rigidity (i.e. writing Van den Bergh’s rigidity equa-
tion) is a problem! Our solution was to use differential graded algebras. Thus,
if A is a K-algebra which is not flat, we replace A with a quasi-isomorphic DG
K-algebra Ã which has suitable flatness properties, and use Ã to formulate the
rigidity equation for complexes of A-modules.

Actually, this method enables us to work with relative rigid complexes. Namely,
given a homomorphism A → B between K-algebras, we can consider rigid com-
plexes of B-modules relative to A. (This is nontrivial even when the base K is a
field.) The theory of rigid complexes we developed is quite rich, and may be of
independent interest in ring theory.

When our base ring K is regular (e.g. the ring of integers) we obtain a com-
prehensive theory of rigid dualizing complexes, once again producing most of the
important features of Grothendieck duality for affine K-schemes.

Full details can be found in the papers [5, 6].
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Some ring theoretic problems inspired by combinatorial group theory

Efim Zelmanov

The talk focused on several open problems in Ring Theory. Here are some samples.

Problem 1. Does there exist an infinite dimensional quadratic nil algebra?

If not then the Kurosh Problem has positive solution for graded finitely pre-
sented algebras.

Let p > 0 be a prime number and F be a field of characteristic p. Consider the
algebra of truncated polynomials in countably many variables

F [t0, t1, t2, ...|tip = 0, i ≥ 0].

Let

∂i = ∂/∂ti,

V1 = ∂1 + t0
p−1∂2 + t0

p−1t1
p−1∂3 t . . . ,

V2 = ∂2 + t1
p−1∂3 + t1

p−1t2
p−1∂4 t . . . .

Theorem 2 (Petrogradsky, Shestakov-Zelmanov). The Lie algebra L generated
by V1, V2 is nil and 1 < GKdimL < 2.

Problem 3. Is the associative algebra generated by V1, V2 nil?

Let U be the universal enveloping algebra of L, Z be the center of U , and
D = (Z − {0})−1U .

Problem 4. Is D an algebraic division algebra?

Artin-Schelter regular algebras of global dimension 4

James J. Zhang

(joint work with Diming Lu, John Palmieri, Quanshui Wu, Jun Zhang)

One of the main questions in noncommutative algebra and noncommutative
algebraic geometry is the classification of Artin-Schelter regular algebras of global
dimension four. A connected N-graded algebra A is called Artin-Schelter regular if
(a) gldimA = d <∞, (b) ExtiA(A/A≥1, A) = 0 for all i 6= d and Extd

A(A/A≥1, A) =
A/A≥1, and (c) GKdimA <∞ [1]. The classification of Artin-Schelter regular al-
gebras of global dimension three was finished in 1990s by Artin, Schelter, Tate, Van
den Bergh and Stephenson. The associated projective schemes of Artin-Schelter
regular algebras of global dimension three are quantum projective 2-spaces, de-
noted by qP2. Artin-Schelter regular algebras have been used more and more
recently. For example, Artin-Schelter regular algebras of global dimension four
are used to construct quantum projective 3-spaces, denoted by qP3s, and other
noncommutative subspaces.
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In this talk we introduce two new general methods in the study of Artin-Schelter
regular algebras of global dimension four. One is the A∞-algebra method and the
other is the extension method. The A∞-algebra was introduced by Stasheff in
the study of topology. Roughly speaking, an A∞-algebra E is a graded vector
space equipped with a sequence of multiplications mn : E⊗n → E of degree 2−n.
For n ≥ 3, mn are called higher multiplication, as m2 plays the role of the usual
multiplication and m1 is the differential. A general principle of Keller says that
when E := Ext∗A(k, k) is the Ext-algebra of an Artin-Schelter regular A (where
k = A/A≥1), the multiplications mn of the Ext-algebra E are determined by the
degree n relations of A and vice versa. When A is not Koszul, E has non-trivial
higher multiplications. In certain cases, we are able to classify all possible A∞-
structures in the Ext-algebra E. Therefore we can recover Artin-Schelter regular
algebras by using Keller’s general principle. By using the A∞-algebra method we
completely classify N2-graded Artin-Schelter regular algebras of global dimension
four that are generated by two elements of degrees (1, 0) and (0, 1) into four families
[2].

The extension method is a generalization of two classical constructions, namely,
the Ore extension A[y; σ, δ] and the normal extension. In general the extension of
two graded rings are not well-understood. Note that the Ore extension is a kind of
construction by adding one element. We are mainly working on so-called double
extensions, denoted by AP [y1, y2; σ, δ, ω], that can be obtained by adding two
generators simultaneously. The double extension method is a simple and efficient
way of producing many Artin-Schelter regular of global dimension four (or higher)
and we also manage to prove some nice results about homological properties.
There are many open questions about the double extensions and more general
extensions. By using double extensions we classify all N2-graded regular algebras
of global dimension four that are neither Ore extensions nor normal extensions [3].

Both the A∞-algebra method and the extension method are useful for other
classes of noncommutative algebras. This talk was based on some joint work with
Lu, Palmieri and Wu [2] and with Zhang [3].
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