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Abstract. This years meeting on Mathematical Biology focussed on the
mathematical modeling and analysis of some specific bio-medical questions,
where quite detailed experimental findings are available. A main aim for

this decision was to further deepen the exchange between the fields, on the
long run in a similar manner as known e.g. from mathematics and physics.
Talks by mathematicians and talks by experimentalists on related scientific
questions were put back to back, wherever possible.
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Introduction by the Organisers

This meeting on Mathematical Biology tied in with the long tradition of these
workshops in Oberwolfach and at the same time aimed to account for the fast
growing synergy between biology and mathematics of the recent years. The use of
new instrumentation and visualization methods at the molecular scale in biological
and medical experiments allows for measurements which have not been possible a
few years ago. Major questions for theoreticians and experimentalists are how to
tackle this vast complexity of biological information and data, and, more impor-
tant, if underlying principles can be found. Finding these would enable the field to
become more predictive. Here is exactly where mathematical modeling, analysis,
and simulation can contribute. On the other hand, mathematical biologists and
mathematicians are now providing first new models to explain the measurements,
and these models are ready for mathematical analysis.

The synergy between mathematics and physics, chemistry, engineering, and ma-
terial sciences, has already proven to greatly advance the respective sciences and
mathematics itself. To further deepen the connections between mathematics and
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biology, a group of experimental biologists, mathematical biologists, and math-
ematicians - especially many young scientists - met, joining the lively talks and
discussions in this workshop.

The meeting intentionally focussed on some specific biological topics this time.
Among those were cell movement, where results on the dynamics of the cellular cy-
toskeleton were presented, as well as on chemotaxis and cell adhesion. Questions of
pattern and structure formation in cell systems were discussed for self-organizing
microorganisms and cancer invasion. The analysis of structured population mod-
els in this context is new, but has a long tradition in ecology and epidemiology.
Further topics of interest with clear mathematical challenges were transport and
molecular motors, the organization of cell membranes, and the process of photo-
transduction

Wherever possible, the experimentalists talks were placed in tandem with re-
lated presentations on mathematical modeling.

Mathematical topics were: reaction-diffusion equations, parabolic and hyper-
bolic chemotaxis equations, fluid dynamics, variational principles and methods
based on the Wasserstein distance, homogenization, singular perturbations, bifur-
cation analysis, and numerical simulations.

Besides the lectures, two discussion groups were organized, one on mathematical
results for chemotaxis equations and one on cell motility. A round table discussion
on ‘mathematical modeling in biology, aims and scopes’ rounded off the meeting,
not to forget the nice concert, organized by some of the participants.

We would like to express our sincere thanks to the very dynamic and kind
support of the Oberwolfach team before and during the workshop.
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Abstracts

Control of actin assembly in cell motility

Marie-France Carlier

Living cells change shape and move in response to environmental signals. Motile
processes play a pivotal role in morphogenesis, migration of embryonic and metas-
tasis cells, angiogenesis, synaptic plasticity, immune response and interaction of
the host cells with pathogens. They are generated by polarized, spatially directed
actin assembly in filaments organized in specific structures. Protrusive force at
the leading edge as well as tensile forces at focal contacts are produced by barbed
end growth of actin filaments, locally stimulated at the membrane and globally
inhibited in solution. The number of filaments and the rate of barbed end growth,
fed by the treadmilling of actin filaments, determines the force. These parame-
ters are controlled by protein machineries that initiate filaments in a spatially
restricted fashion either by nucleation or by end branching, and by proteins that
bind monomeric actin in a complex that has specific assembly rate parameters.

Two protein machineries are responsible for spatially directed initiation of actin
filaments. They operate with different mechanisms and in distinct processes, 1)
the WASP-Arp2/3 system is at the origin of the formation of a branched filament
array responsible for protrusion of lamellipodium; 2) formins, in association with
profilin, catalyze the rapid processive assembly of non-branched actin filaments
arranged in parallel bundles, in the cytokinetic ring and in adhesive structures.
We have combined a biochemical and a biomimetic approach to understand the
molecular mechanisms of these auto-organized processes. We have reconstituted
the sustained actin-based movement of a N-WASP- or formin-functionalized solid
particle or giant liposome in a biochemically controlled medium, which enables
measurements of force production in correlation with structure and motility, and
we can derive informations on the molecular mechanism of movement by single
molecule measurements. The dependence of continuous or saltatory (periodic)
movement on the solution components has been analyzed for solid particles and
liposomes.
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Models for Hard and Soft Particle Propulsion by Actin-Based Motility

Richard B. Dickinson

(joint work with Daniel L. Purich)

Invasive pathogens (such as Listeria monocytogenes) and vesicles can be propelled
intracellularly by actin polymerization in a mechanism that remains controversial
and poorly understood. Several recent studies have examined the propulsion of
particles such as polystyrene microspheres, oil droplets, and vesicles, under rela-
tively well-defined conditions in vitro. Propulsion requires particles to be coated
with filament-nucleation protein factors such as Listeria ActA, N-WASP (neural
Wiskott-Aldrich Syndrome Protein), or the N-WASP VCA domain, which poly-
merize actin filaments from the particles surface to generate a dense F-actin ”rocket
tail”, similar to that formed by invasive intracellular microorganisms like Listeria.
There is increasing evidence that these surface-bound factors also play a role in
facilitating (+)-end assembly following filament nucleation [1, 2, 3, 4] (ActA by
its interaction with Vasodilator-Stimulated Phosphoprotein or VASP).

Based on thermodynamic, mechanical, and kinetic arguments and supporting
mathematical models, we have previously proposed that the dominate mechanism
of polymerization actin-based motility is by filament end-tracking motors, which
are particle surface-bound proteins that tether the elongating filament end and
facilitate monomer addition in a force-insensitive manner [1, 5]. In this view,
the propelled particle is in a quasi-static equilibrium between the forces caused
compressed versus tense filaments, and other forces on the propelled particle (e.g.
hydrodynamic drag forces) are comparatively negligible. Filaments in the different
compressed or tense states can arise simply from stochastically variable elonga-
tion rates, or, for larger particles, from the monomer concentration gradients that
are created by local consumption of monomers at the surface. Our proposed
filament end-tracking motor mechanism is fundamentally different from the con-
ventional view the filaments push by a free-filament thermal ratchet mechanism
[6, 7], in which working filaments must be free to add subunits and the resistance
to propulsion and attachment to the generated actin network are caused by other
mechanism(s).

Under the key assumption of force-insensitive elongation of (+)-end-tethered
actin filaments, our filament-scale and continuum modeling of the actin network
and reaction-diffusion models for monomer consumption by end-tracking motors is
sufficient to fully recapitulate the key experimental observations of particle propul-
sion by actin based motility: (1) stepwise motion, small fluctuations, rotation and
helical paths of Listeria trajectories; (2) the dependence of particle velocity on
particle radius; (3) the critical radius for saltatory motion of biomimetic hard par-
ticles; and (4) evolution of biomimetic soft particles (vesicles and oil drops) into
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teardrop shapes as well as the observed periodic distension and round of these
shapes.
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Control of integrin clustering by nanopatterned interfaces and
micromechanical devices

Achim Besser

(joint work with Patrick Heil, Ada Cavalcanti-Adam, Marco Arnold,
Joachim P. Spatz)

Focal adhesions are micrometer-sized protein aggregates that connect the actin
cytoskeleton to the extracellular matrix (ECM). The essential link through the
plasma membrane is provided by the transmembrane protein integrin. Integrin is
on the one hand connected via an elaborated architecture of plaque proteins [1] to
actin filaments and on the other hand binds to extracellular proteins offering the
RGD-sequence. It is known that the integrin protein exists in a variety of active
and inactive conformations [2] and that it has to be activated to promote focal
adhesion formation.
To investigate molecular details of integrin clusters one has to provide an experi-
mental method to control the interface between a cell and the ECM on a nanome-
ter length scale. Our approach is to use nanostructured, biofunctionalized surfaces
that mimic the ECM. However, in order to get significant statistics in a biological
assay one has to observe at least 100 cells under the same experimental conditions
which require a homogeneously nanostructured substrate up to a millimeter scale.
In principle conventional methods like photolithography or e-beam lithography
fail to fabricate such a substrate. Photolithography does not reach the required
resolution; e-beam lithography gives access to this resolution but since it is a ser-
ial writing method it is tedious to extend the nanopatterns to a millimeter scale.
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For this reason we developed a new method called block copolymer micelle nano-
lithography that uses the feature of self assembly to extend nanometer patterns
to macroscopic length scales. The self assembly blocks consist of block copolymer
micelles filled with gold nanoparticles. To obtain a mono-micellar film we dip the
substrate into the micelle solution and pull it out with constant velocity. Because
of evaporation the solvent toluene retracts and thereby forces a dense packing of
the micelles on the substrate, leaving a regular, hexagonal pattern behind (see fig-
ure 1a) [3]. At this stage the gold nanodots are shielded by a polymer shell which
can be removed in a second step by plasma treatment. Thereby plain gold dots
are deposited onto the substrate. With this method we can precisely control the
size of the gold nanoparticles (about 10nm) and also the spacing in the hexagonal
pattern (by varying the polymer chain length) from 20 up to 100nm [4].
Subsequently, the homogenous nanopatterns are biofunctionalized by binding the
RGD-sequence specifically to the gold nanoparticles whereas the plain substrate
is passivated with poly ethylene glycol (PEG), mimicking an ECM with defined
geometry. If a cell approaches such a substrate, only gold particles offering the
RGD-sequence are possible anchor points for the integrins. In addition, because
of steric means, it is expected that each gold particle can be occupied by only
one integrin protein. Substrates with different spacings (28, 58, 73 and 85nm)
are incubated with cells. After 24 hours we counted the number of spreaded cells
per square millimeter. We find that the cells nicely adhere on 28 and 58 nm
substrates but adhesion completely fails on 73 and 85nm spacings with a sharp
transition at 73nm (see figure 1b) [5]. There are two possible reasons that may
cause the adhesion failure: either the decrease in offered ligand density or the
reduced total number of offered ligands. To distinguish between these two pos-
sibilities we create a new class of micro-nano structured interfaces by combining
e-beam lithography with block copolymer micelle nanolithography [6, 7, 8]: Parts
of the block copolymer micelle layer are exposed to an e-beam and get cross-linked.
Thus by performing a lift off process with an appropriate solvent the illuminated
regions remain on the substrate whereas the inviolate micelles are washed away. In
this vein we fabricate substrates with separated squares (2µm x 2µm) of densely
packed gold nanoparticles. The coarse grained density of offered ligands, however,
is low because of the large separation of the high density regions. Cells plated on
such substrates show spreading to a similar extent as cells plated on homogenous
high density substrates. These experiments strongly suggest that indeed only the
local concentration of offered ligand matters (and not the total amount of offered
ligand). Thus we conclude that the integrins have to come into close contact to
each other to get activated. This clustering then initiates focal adhesion forma-
tion. We performed these experiments with different cell types (3T3-Fibroblasts,
REF52-Fibroblasts, MC3T3-Osteoblasts, B16-Melanocytes) and found 73nm to be
a universal length scale for all cell types indicating that this spacing is a specific
measure of the cluster-architecture itself.

Experiments have shown that mature focal adhesions (FA) undergo an aniso-
tropic force-induced growth (along the force direction) when the actin stress is
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(a)
(b)

Figure 1. (a) Fabrication of nanopatterned surfaces. (b) Ex-
perimental results: Inhibition of cell spreading on 73nm patterns
because of restricted integrin clustering [5].

increased [9]. The link between the force and the protein adsorption dynamics is
the assumption that the force causes conformational changes of mechano-sensitive
proteins located in the FA that in turn promote protein aggregation. Starting from
these assumptions we first calculate the elastic deformations within the FA caused
by the external stress. According to our model these local deformations determine
the activation state of the mechano-sensitive proteins in the FA. When active these
proteins can bind additional plaque proteins recruited from the cytosol and cause
the adhesion to grow. We derive a partial differential equation that governs this
change of plaque protein concentration within the focal adhesion in space and
time:

(1)
∂ψ(x, t)

∂t
= µ(ρ) + ǫψ − cψ3 − g(ρ)

∂ψ

∂x
+B

∂2ψ

∂x2
,

where ψ+1/2 is the plaque protein concentration ǫ, c, B are positive constants and
µ, g are functions of the applied stress, denoted by ρ. For a physical description of
the coefficients see [10]. Solving Eq.1 numerically we find that an initial step-like
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front propagates into the low density domain (provided that the stress is in the
appropriate regime) and reaches a steady state profile. By looking for moving front
solutions ψ(x, t) = ψ(x−vt) we determine the velocity at the front and at the back
of the FA as a function of the applied stress. From this we can predict a variety
of qualitative growth behavior for the FA in different force regimes including the
anisotropic growth mentioned above, compare figure 8 in [10].

To quantitatively study this mechanosensitivity, we use microfabricated arrays
of elastic polymer pillars coated with fibronectin to apply a lateral force to the
cell. First we bring the pillar into contact with the cell. Because of the fibronectin
the cell is recognizing the pillar and starts to reorganize its cytoskeleton. At this
stage the intracellular tensions, built up by the actin-myosin contractility, are
equilibrated over the whole cell. Now we displace the pillar relatively to the cell
and thereby disturb the intracellular tension in such a way, that on one side of
the cell, the forces on the FAs are increased whereas on the opposite side prestress
is relieved and the forces on the FAs are decreased. Subsequently we expect a
polarized behaviour of the cell: In the region where tension is increased the FAs
are supposed to grow in size whereas in the region of decreased tension the FAs
are expected to shrink. The resultant growth rates of FAs versus applied force are
systematically measured and show the expected growth characteristics. By varying
the external forces we are able to scan through the growth regimes predicted by
our model [11].
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Aspects of modeling transport in small systems with a look at motor
proteins

David Kinderlehrer

Diffusion-mediated transport is a phenomenon in which directed motion is achieved
as a result of two opposing tendencies: diffusion, which spreads the particles uni-
formly through the medium, and transport, which concentrates the particles at
some special sites. It is implicated in the operation of many molecular level sys-
tems. These include some liquid crystal and lipid bilayer systems, and, especially,
the motor proteins responsible for eukaryotic cellular traffic. All of these sys-
tems are extremely complex and involve subtle interactions on widely varying
scales. The chemical/mechanical transduction in motor proteins is, by contrast to
many materials microstructure situations, quite distant from equilibrium. These
bio-systems function in a dynamically metastable range. There is an enormous
biological literature about this, [15] for a recent collection of reviews, and a con-
siderable math-biology and biophysics literature, including [1],[2],[5],[13],[14].

Our approach is to look at a dissipation principle for such situations and its
relationship to the Monge-Kantorovich mass transfer problem, eg. [16]. In effect,
we begin with simple - but not too simple - assumptions of motion along a track
followed by statistical assumptions which provide us an ensemble. The procedure
permits us to establish consistent thermodynamical dissipation principles from
which evolution equations follow. In a given instance, the dissipation principle
identifies the thermodynamic free energy, the conformational changes that result,
for example, from ATP hydrolysis reactions, and dissipation.

For illustration, suppose that our system admits n possible states governed by
potentials ψ1, ..., ψn and populated by elements with densities ρ1, ..., ρn, which are
subject to conformational changes governed by a rate matrix A = (aij). Sup-
pose it lives on the unit interval Ω = (0, 1) and the potentials are periodic of
period λ = 1/N . The dissipation principle we study is simply this: from a state
ρ∗ = (ρ∗1, ..., ρ

∗
n), determine a successor state ρ = (ρ1, ..., ρn) by the minimization

principle
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(1)

1

2τ

∑

i=1,,n

d(ρi, (ρ
∗P )i)

2 + F (ρ) = min

F (ρ) =
∑

i=1,,n

∫

Ω

(ψiρi + σρi log ρi)dx

P = 1 + τA

Above, d denotes the Wasserstein (2) metric, σ is a diffusion constant, and τ is
a relaxation time. We may easily identify F as the free energy of the system and
the dissipation principle shows that the Wasserstein term represents dissipation.
Conformational change is governed by changing ρ∗ → ρ∗P prior to executing the
move governed by the potentials. The minimum is taken over an appropriate set
of nonnegative densities subject to

(2) ρi ≧ 0,
∑

i=1,,n

∫

Ω

ρi = 1

Variational principles of this form with n = 1 have been known for some time,
Jordan, Kinderlehrer [7], Otto [9], [10], Kinderlehrer and Walkington [8]. What
may be less known is that (1) leads to a system, specifically,

(3)

∂ρ

∂t
=

∂

∂x
(σ
∂ρ

∂x
+ ρψ′) + ρA in Ω

σ
∂ρ

∂x
+ ρψ′ = 0 on ∂Ω

We then seek simple paradigms, analogous to coin toss, for transport and at-
tempt to derive them from the dissipation principle or the differential equations.
This will provide diagnostics for attempts at more detailed theories where more
details of the transformation pathway are accomodated. At the simplest level of
counting kinesin heads as ATP bound, ADP bound, or product bound or attached
or detached from the microtuble, there are already 26 = 64 combinatorial possi-
bilities, of which (1) represents a ’most likely’ choice. We are lead to investigate
the conditions on interaction potentials and conformation change which lead to
a not-very-simple demonstration of the paradigm. These involve asymmetry of
the ψi within its period intervals and, second, locating the sites of conformational
change. Considerations reminiscent of ergodicity for the probability matrix P in
(1) play an interesting role.

A very interesting entropy-based proof on trend to stationarity is given by
Perthame [12]. There are a number of fascinating examples related to the flashing
rachet, perhaps a mechanism in KIF-1A transport, conventional kinesin, and even
a gaming opportunity known as Parrondo’s Paradox.

This is joint work with Michel Chipot, Stuart Hastings, David Heath, Michal
Kowalczyk, and Bryce McLeod. Versions of papers, in particular, [3], [4], and [6],
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are available at
http://www.math.cmu.edu/cna/publications.html
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Mathematical modeling of cell membrane organization, dynamics and
trafficking

Anne Kenworthy

Cell membranes are organized in a bilayer structure, consisting of both protein and
lipid components. A major question concerning membrane organization is whether
these components are randomly distributed or instead form microdomains, spa-
tially distinct regions of specialized protein and lipid composition. Among the
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most widely studied, yet least well understood types of microdomains are a class
of cholesterol-enriched domains termed lipid rafts. Lipid rafts have been pos-
tulated to participate in numerous cellular events ranging from cell signaling to
membrane trafficking. A major challenge to understanding the mechanisms by
which such domains function is the limited amount of structural information cur-
rently available about these domains. We have therefore employed biophysical
approaches to probe the size, composition, and number of these domains present
in cell membranes.

One such biophysical approach, fluorescence resonance energy transfer (FRET),
is a method that can detect the distance between two fluorescently labeled mole-
cules. We have used this technique to test the hypothesis that putative pro-
tein components of lipid rafts are distributed non-randomly in membranes, and
in particular that they are enriched in domains that are sub-micron in dimen-
sions [1, 2, 3]. FRET is sensitive to distances, yet we wish to discern underlying
two-dimensional patterns of proteins. To address this mathematically underde-
termined problem, we have used a Monte-Carlo based simulation of FRET in
order to identify characteristic FRET signatures of different types of domains [4].
This approach has suggested a new experimental approach to the design of FRET
measurements to determine the domain radius and inter-domain distance. We are
currently extending these studies to consider effects of domain inter-connectedness
and shape, as well as compare the predictions of several different models for lipid
raft formation (partitioning, lipid shells, and actively maintained domains) which
we will then test experimentally.

In a second line of study, we have examined the role lipid rafts play on the
lateral diffusion of membrane proteins. Current models predict that association
of proteins with lipid rafts should either slow protein diffusion or lead to the im-
mobilization of raft-association proteins (Figure 1). To test this hypothesis, we
have used a technique known as fluorescence recovery after photobleaching [5]. We
found that the lateral mobility of a variety of proteins predicted to associate with
lipid rafts based on biochemical criteria show little evidence for either immobile
rafts or stable raft association, as predicted by qualitative models (Figure 1, mod-
els 1 and 2). However, we noted a ten-fold difference in the diffusion coefficient for
the proteins studied. We are currently testing the source of this variation, which
could either reflect dynamic partitioning of different proteins with lipid rafts (Fig-
ure 1, model 3) or other differences among these proteins (Figure 1, model 4),
such as the size of the membrane-embedded region of the various proteins [6]. We
are also interested in examining the possibility that these proteins exhibit anom-
alous diffusion, which could potentially provide some clues as to the mechanisms
contributing to their differential diffusional mobilities.
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Figure 1. Models for how lipid rafts could influence the lateral
diffusion of raft-associated membrane proteins. Lipid rafts are in-
dicated by the yellow disks. The surrounding non-raft membrane
is gray. Raft-preferring proteins are shown in red, and non-raft
proteins in blue. (1) Stable, immobile rafts. Hypothetical
barriers to lipid raft diffusion are depicted by the red lines. This
model predicts that raft-associated proteins would be immobi-
lized. (2) Stable, mobile rafts. Here, lateral diffusion is domi-
nated by the diffusion of the raft rather than individual proteins.
(3) Dynamic partitioning of raft proteins. Here, individual
raft proteins could exhibit varying diffusional mobilities, reflect-
ing a combination of their diffusion inside and outside of rafts.
(4) No rafts. In the absence of rafts, the diffusion of individual
proteins should be governed by both their structure (for example,
lipid anchored versus transmembrane) and their interactions with
other components of cell membranes (not shown). Reproduced
from The Journal of Cell Biology, 2004, vol. 165 pp. 735-746 by
copyright permission of The Rockefeller University Press.
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Modeling of cytoplasm motion and cell migration

Wolfgang Alt

(joint work with Esa Kuusela)

Interactive Motion of Actin Filaments. The movement and interaction of
actin filaments as semi-flexible inextensible rods can be represented by the dy-
namics of a few nodes along each filament, interpolated by linear or cubic spline
curves. Forces acting on any filament point are condensed to the nearest nodes
and can consist of bending or friction forces, random or interaction forces, so that
a system of stochastic ordinary differential equations for positions and velocities
of all nodes arises. Resulting simulations reproduce the “flickering” behavior of
single actin filaments with a mean directional persistence length of several µm.
In the easiest case interactions between two filaments, e.g. via binding of cross-
linking dimers as myosin, can be modeled by attractive forces between nodes of
different filaments, provided their distance falls into a certain interaction range.
More general, the stochastic interaction forces by transient binding and unbinding
of cross-linkers can be lumped in a mean interaction kernel which, at least for
straight rod segments, can be explicitly written in terms of interaction angle and
distance. Resulting numerical analysis and simulations show partial alignment
with deviations depending on the type of stochastic inputs (ongoing joint work
with Dagmar Bär and Andreas Hilboll, Bonn).

Viscous Two-phase Flow Model for the Cytoplasm. The cytoplasmic actin-
myosin system is embedded into an aqueous environment containing all kinds of
monomers, oligomers and other regulating proteins and can thus biophysically be
regarded as an “active fluid”, namely a contractile, reactive and highly viscous
two-phase fluid, mathematically modeled by a hyperbolic-elliptic system of mass
and force balance equations (see Alt&Dembo 1999). In the case of negligible water
viscosity, it essentially consists of the compressible Stokes equations for the actin
polymer network with a hydrodynamic pressure due to drag flow between water
and polymers, satisfying Darcy’s law, and a “cubic like” pressure state function
expressing dispersing and swelling pressures for low and high network concentra-
tions, but contractile stresses for intermediate concentrations where myosin dimers
can cross-link the network filaments.

Already in the simplest case of a fixed 1-dimensional domain with no-flux bound-
ary conditions, the contractile flow model with simple linear assembly kinetics re-
veals a rich repertoire of different dynamical behavior as steady states, periodic
solutions with repetitive waves as well as chaotic dynamics, see Fig. 1.

In a biological cell, or a cell fragment, this “active fluid” of actin-myosin poly-
mers is surrounded by a plasma membrane, in which many kinds of proteins and
receptors are more or less freely floating. The kinetic and dynamic interaction
of actin filaments with such membrane proteins (e.g. integrins) determine the
boundary conditions for velocities and pressures at the free or fixed parts of the
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Figure 1. Simulation of the 1-d two-phase flow model with drag
coefficient phiw = 15 induces a chaotically moving center of con-
tracted F-actin in the middle region, performing different modes
of spatial coupling between the two contraction-relaxation oscil-
lators near the boundaries.

cell boundary. The latter is representing the boundary between lamellipodium and
the cell body and there the network is sticking, but water can stream in or out de-
pending on the given cell body pressure. At the free lamella tip boundary, normal
velocity of F-actin could be less than or equal to the normal water and membrane
velocity. The case of inequality means that the actin network is ruptured from
the membrane, which then can be pushed forward by hydrodynamic or swelling
pressures, while in the case of equality the actin network is locally attached to
membrane proteins, whereby protrusion of the membrane can be withhold.

1-D and 2-D simultions reflect typical phenomena such as cell spreading, steady
contraction patterns, cyclic protrusion-retraction activity of the leading lamella
and periodic “ruffle” waves, all observed in experimental images of stationary or
migrating tissue cells as, for example, keratinocytes (human epidermal cells), see
Fig. 2.

1-D Model of Cell Adhesion and Migration. In order to model cell adhesion
and migration, the one-dimensional cytoplasm flow model for a section through
the leading lamella (or a corresponding cell fragment) described by the above-
mentioned hyperbolic-elliptic transport system, is coupled to a four-state system
for the kinetics of integrin receptors, which are either freely diffusing, or only bound
to actin and then transported, or bound to the underlying substratum and then
fixed; in case of additional binding to actin, the substratum experiences contractile
or viscous shear forces applied by actin filaments in connection to so-called “focal
adhesion complexes”. The dissociation rate of these adhesive bonds is modeled to
exponentially increase with increasing force. All the kinetic rates can be regulated
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Figure 2. Shown are two consecutive plots of actin concentration
in a lamellipodium model with free boundary at the lamella tip,
performing irregular protrusions and re-tractions combined with
the appearance of slight “ruffles”. Regions of free boundary where
membrain velocity equals F-actin velocity is drawn black.

by internal signalling molecules, which we assume to be constant for the considered
time span of several minutes.

Figure 3. Schematic section through the tip of a protruding
lamella with retrograde F-actin flow, denoted by v in moving
lamella coordinates. If vb denotes the lamella tip speed, then the
force locally transmitted is proportionally to the local concentra-
tions of F-actin (a), adhesion complexes (Csa) and the retrograde
flow speed v + vb relative to the fixed substratum.
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The main result is spontaneous symmetry breaking and cell polarization (joint
work with Christoph Möhl, now at FZ Jülich), and the corresponding model sim-
ulations reproduce experimental observations with cell lamella fragments. The
migration speed can be shown to depend on various mechanical and chemical pa-
rameters as, for instance, the adhesive binding rate, which is proportional to the
mean concentration of adhesion sites available at the substratum (experimentally
realized by covering with differing concentrations of collagen or fibronectin fila-
ments).
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The role of chemotactic cell movement during development of the
social amoebae Dictyostelium discoideum and gastrulation in the chick

embryo

Cornelis J. Weijer

Development of multicellular organisms is critically dependent on a number of dis-
tinct cellular behaviours especially cell division, cell death, cell differentiation and
cell movement. These processes all have to be precisely controlled in space and
time. We investigate the molecular mechanisms by which cells signal each other
during development and furthermore how cells detect these signals and translate
this information into directed coordinated movement. We study these questions in
two different experimental systems, the social amoebae Dictyostelium discoideum,
a simple genetically tractable micro-organism showing a relatively simple star-
vation induced multicellular development, and during gastrulation in the chick
embryo, a model system for early amniote (human) development.

In Dictyostelium starvation for food (bacteria) induces the aggregation of thou-
sands of individual amoebae into a multi-cellular aggregate. During aggregation
the cells differentiate into a number of distinct celltypes, which form a migrating
slug that transforms into a fruiting body consisting of a stalk supporting a mass
of spores. The chemotactic aggregation of the cells is controlled by propagat-
ing waves of cyclic-AMP emanating periodically from aggregation centres. These
cAMP waves generally propagate as spiral waves from the aggregation centre out-
ward and direct the periodic chemotactic movement of amoebae during the rising
phase of the wave towards the aggregation centres. Cells move during the ris-
ing phase of the waves in the direction of the rising gradient and are refractory
when the wave passes and the concentrations of cAMP are falling. Experiments
show that also in the multicellular stages of development the migration of the cells
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Figure 1. Spiral waves control cell movement during aggrega-
tion, stream formation, mound and slug formation, and migra-
tion. Red arrows indicate direction of wave propagation, blue
arrows indicate direction of cell movement.

is guided by propagating waves of cAMP. Furthermore a combination of experi-
mental data and analysis of mathematical models describing the dynamics of the
interactions between wave propagation and chemotaxis, have shown that these two
mechanisms, wave propagation and directed chemotactic movement in response to
these waves, are sufficient to explain the principles of Dictyostelium morphogenesis.
Detailed calculations have shown that the interactions between wave propagation
and the resulting directed cell movement can explain the formation of aggregation
streams and aggregation territories. All the cells in a given aggregation territory,
aggregate into a hemispherical structure, the mound. The movement of the cells in
the mound is still organised by propagating waves of cAMP, resulting in rotational
movement of the cells in the mound. During aggregation cells start to differentiate
into precursors of the stalks and the spore cells, the so called prestalk and prespore
cells. The prestalk cells are able to develop more chemotactic movement force in
response to the cAMP signals and as a result they are able to out-compete the pre-
spore cells and move towards the source of the cAMP signal, the core of the spiral
wave in the centre of the aggregate. Since only prestalk cells are able to relay the
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cAMP signal, this separation of cell types results in a change of signal geometry
from scroll waves (3D spirals) in the mound before cell sorting to twisted scroll
waves and planar waves in the forming slug. This change in wave geometry results
in formation and elongation of the slug and controls its migration (figure 1). This
is one of the first cases where the morphogenesis of a multicellular organism can
be understood at the level of rules for cell behaviour and signalling interactions
between cells that control these cell behaviours [1].

We are now analysing the in-vivo spatio-temporal dynamics of the signaltrans-
duction processes leading to polarised activity of the actin-myosin cytoskeleton,
which is ultimately responsible for force generation and movement [2].

We have also started to investigate whether similar principles of signal propaga-
tion controlling chemotactic movement are involved in the development of higher
organisms, especially amniotes. Our experiments have shown that chemotaxis also
appears to play a critical role in the control of cell movement during early devel-
opment in the chick embryo. A developmental stage where cell movements are
very important is gastrulation. During gastrulation cells that will form the meso-
derm and endoderm move into the embryo to take up their correct topographical
position in the embryo. During gastrulation the induction of the nervous system
takes place as well and defects in the control of cell movement during gastrula-
tion cause some of the most severe congenital defects, such as spina- bifida and
malformations of the brain and heart defects. In higher organisms (amniotes)
gastrulation involves the formation of a structure known as the primitive streak.
This develops from the posterior pole of the embryo and extends into an anterior
direction during a process known as streak formation. Before gastrulation the
embryo consists of two cell layers: the epiblast, the cells of which will give rise
to the embryo proper, and the hypoblast which will mainly form extra-embryonic
structures, such as part of the umbillical cord and the placenta in humans. During
gastrulation epiblast cells move towards the primitive streak, where they undergo
an epithelial to mesenchymal transition and delaminate to become individual mes-
enchymal cells. These single cells now move into the streak in the space between
the epiblast and the hypoblast. There they migrate away to form the mesoderm
and definitive endoderm. During this process the cells migrate over large distances
and so far their detailed movement patterns have not been well described, nor is
it known which signals control their movement.

As a first step in the analysis of this process we have tracked the migration
of mesoderm cells during gastrulation over a period of 18 hours of development
(Figure 2) [3]. We have shown that the movement of mesoderm cells is controlled
by a combined action of chemo-attractants and repellents. Cells in the streak are
instructed to migrate away from the place of invagination by a repellent made
in the streak. We have identified this repellent as a member of the fibroblast
growth factor family, FGF8. After the cells have migrated out, a process known
as regression starts, in which the tip of the streak moves back towards the posterior
pole in the embryo. During the process of regression the most anterior structures of
the embryo start to form, first the head followed by more posterior structures such
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Figure 2. A: cell movement patterns observed during gastrula-
tion. The node lays down the notochord (blue line) during re-
gression. The mesoderm cells behind the node (red) migrate out
of the streak and then move back towards the central midline
to form the somites, the middle streak cells (green) form lateral
plate mesoderm after their invagination, the posterior streak cells
(yellow) form the haemopoietic cells (blood islands) after their
migration from the streak. B: the migration away from the streak
is controlled by a chemo-repellent action of FGF8 (blue) formed
in the streak, while the anterior and middle streak cells are at-
tracted back in towards the midline after regression of the node
by FGF4 (red) made by the forming notochord.
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as the somites. Somites are periodic structures formed of aggregates of mesoderm
cells that will give rise to the segmented parts of the body, especially the muscles
and the skeleton (ribs). The formation of somites requires a re-aggregation of the
mesenchymal mesoderm cells that have migrated out of the streak. This process
appears to be controlled by an attractant Fibroblast Growth Factor 4 (FGF4)
produced by the notochord, the precursor of the vertebral column, that is laid
down by the regressing tip of the streak and that attracts the cells in towards the
central midline. FGF4 may also be involved in the control of the mesenchymal to
epithelial transition during somite formation and compaction.

We now investigate how these FGF’s are detected and result in directed at-
tractive and repulsive cell movements of mesoderm cells. Furthermore we wish to
understand how signalling and movement are integrated to result in the various
stages including the formation of the primitive streak [4, 5].
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Some mathematical problems in the modelization of Dd aggregation

Juan J. L. Velázquez

(joint work with G. Litcanu)

In this seminar I discuss two mathematical problems that arise in the study of
the aggregation of the slime mold Dictyostelium discoideum. This organism lives
during a large part of its life-cycle as an unicellular organism, but upon starvation
conditions begins a process of aggregation that leads to the formation first of semi-
spherical aggregates called mounds, and later some elongated cellular aggregates
termed as slugs. In these aggregates the cells begin a process of differentiation that
eventually leads to the formation of a fruiting body in the top where the sporae
of the organism remain in a latent state until they find the right environmental
conditions to develop again in the form of individual amobae.

The main idea of the talk is that there exist mathematical analysis techniques
that allow to compute formulae from the models that eventually could be compared
with experimental data.

During the process of aggregation the cells use a signalling mechanism based
in the propagation of chemical waves of cAMP. Several models, based in different
biochemical assumptions have been suggested in the literature (cf. [2], [4], [5], [6]).
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In [3] we have analyzed, using singular perturbation methods, the models of
Martiel-Goldbeter and Goldbeter-Segel. We analyzed first the Martiel-Goldbeter
system, that reduces to a system of three differential equations for three vari-
ables γ, β, ρT that represent respectively the concentration of extracellular cAMP,
intracellular cAMP and the fraction of occupied cell receptors. The differential
equations that describe the evolution of these variables are then (cf. [4]):

∂ρT

∂t
= −f1 (γ) ρT + f2 (γ) (1 − ρT )

∂β

∂t
= qσφ (ρT , γ) − (ki + kt) β

∂γ

∂t
=
kt

h
β − keγ +D∇2γ(1)

f1 (γ) =
k1 + k2γ

1 + γ
, f2 (γ) =

k1L1 + k2L2cγ

1 + cγ

φ (ρT , γ) =
α

(
λθ + ǫY 2

)

1 + αθ + ǫY 2 (1 + α)
, Y =

ρTγ

1 + γ
(2)

where the numbers D, k1, k2, L1, L2, c, λ, θ, α, ǫ, ki, kt, ke, q, h, σ are positive para-
meters. Using the numerical values of these parameters it is possible to rewrite
this set of equations as a singular perturbation problem containing several small
parameters. Using then the method of matched asymptotics we have checked
that there exist travelling wave solutions of (1), (2) with the form of a pulse, and
we have computed formulae for the wave speed, the width of the wave, and the
concentrations of the different chemical species in the pulse.

In a second part of the talk, I discuss the main quantitative consequence of
the Keller-Segel model. This model suggests that cellular concentrations might
be described using continuous cell densities. It assumes also that the main effects
that determine the number of cells that aggregate in a chemotaxis process are cell
diffusion and chemotaxis attraction. The model might be written as:

∂n

∂t
= Dn∇2n− χ∇ (n∇c) , x ∈ IR2 , t > 0

∂c

∂t
= Dc∇2c+ αn− βc , x ∈ IR2 , t > 0(3)
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where the meaning of the parameters in the model is the following:

Dn = Cell diffusivity

Dc = cAMP diffusivity

α = Production rate of cAMP for cell.

χ = Cell velocity induced for

unit of chemical gradient.

β = Degradation rate of chemical.

There exists an extended mathematical theory describing the solutions of (3). In
particular, it was derived by Childress (cf. [1]) that the number of cells aggregating
in the ”mound” is given by the following simple formula:

Ncells =
8πDcDn

αχ
.
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Macroscopic Taxis Equations from Cell-based Models

Hans G. Othmer

(joint work with Radek Erban)

Cell movement is an essential process at various stages in the life cycle of most
organisms. Motile organisms sense their environment and can respond to it either
by directed movement toward or away from a signal, which is called taxis, or by
changing their speed of movement and/or frequency of turning, which is called
kinesis, but for simplicity we denote both as taxis. Let Ω be a compact subset
of R

N with smooth boundary. The classical Patlak-Keller-Segel chemotaxis equa-
tions, which govern the evolution of the macroscopic “particle” density n and the
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“signal” density S, are

∂n

∂t
= ∇ · (∇n− nχ∇S)(1)

∂S

∂t
= D∆S + f(n, S)

in Ω, with homogeneous Neumann data on the boundary. Here χ is the chemo-
tactic sensitivity coefficient. These equations have been studied intensively over
the last thirty years, and a great deal is known about the existence and unique-
ness of solutions for specific forms of χ and f [4]. However, except in examples
described later, little is known about how an individual-based description of signal
transduction and movement translates into the chemotactic sensitivity. Until re-
cently these coefficients were either simply postulated or derived from experimental
population-level statistics of movement.

Many bacteria, such as Escherichia coli and Proteus mirabilis, use a “run-and-
tumble” strategy for movement, and in this case χ can be expressed in terms of
microscopic properties of individual cells. This case is treated in detail in [1, 2],
where we describe the movement of cells using a velocity-jump process [5], and
incorporate internal state variables of individual cells into the governing transport
equation. Thus suppose that the internal variables y ∈ Y ⊂ R

m involved in signal
transduction and control of movement evolve according the equations

dy

dt
= f(y, Ŝ)

where Ŝ is some functional of the external signal and f(·, Ŝ) : Y → R
m. Inclusion

of internal state variables in the velocity-jump process leads to the equation

(2)
∂p

∂t
+ ∇x · vp+ ∇y · fp = −λ(y)p+

∫

V

λ(y)T (v,v′,y)p(x,v′,y, t)dv′

where p(x,v,y, t) is the density of cells with internal state y at position x, moving
with velocity v ∈ V ⊂ R

N at time t ≥ 0. Here we assume that the random
velocity changes are the result of a Poisson process of intensity λ(y), and the kernel
T (v,v′,y) gives the probability of a change in velocity from v′ to v, given that a
reorientation occurs. The kernel T is non-negative and satisfies the normalization
condition

∫

V T (v,v′,y)dv = 1. To connect this with the chemotaxis equation (1),
one has to derive an evolution equation for the macroscopic density

(3) n(x, t) =

∫

Y

∫

V

p(x,v,y, t)dvdy

of individuals and formulate the evolution equation for the extracellular signal.
This has been carried out in detail for a simplified description of the internal
dynamics where y = (y1, y2)

T evolves according to

dy1
dτ

=
g(S(τ)) − (y1 + y2)

τe
,

dy2
dτ

=
g(S(τ)) − y2

τa
, and λ(y) = λ0−by1.
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Here the first equation captures the rapidly-varying excitation step, whereas the
second reflects the slower adaptation step. Clearly y1 adapts perfectly to any
signal, and thus it is used to modulate the turning rate as indicated. The reduction
of (2) to the form (1) is done by an asymptotic analysis on suitable space and time
scales, with the result that n evolves according to

∂n

∂t
= ∇ ·

(
s2

Nλ0
∇n− n · g′(S(x))

bs2τa
Nλ0(1 + λ0τa)(1 + λ0τe)

∇S
)

where S is a time-independent signal field. Therefore the chemotactic sensitivity
is given by

χ = g′(S(x))
bs2τa

Nλ0(1 + λ0τa)(1 + λ0τe)
.

This incorporates the microscopic cell speed s, the sensitivity of the turning rate
to the internal variable y1, and the excitation and adaptation time scales τe and
τa; for details of the derivation see [2].

A fundamental assumption in the use of velocity-jump processes to describe
cell motion is that the jumps are instantaneous, and therefore the forces are Dirac
distributions. This approximates the case in which very large forces act over very
short time intervals, and even if one incorporates a resting or tumbling phase,
as was done in [6, 1], the macroscopic description of motion is unchanged. This
is appropriate for the analysis of bacterial motion (and other systems that use a
“run-and-tumble” strategy), as summarized above, since there is no evidence that
the signal affects the force generation mechanism itself.

However, the situation is very different when analyzing the movement of crawl-
ing cells such as leukocytes or fibroblasts, for here the control of the force-genera-
tion machinery is an essential component of the response. Therefore it is necessary
to incorporate the force-generation machinery as part of the internal state, and as
a first step we condense this all into a description of how the force exerted by a
cell on its surroundings depends on the external signal. We denote the internal
state by y ∈ Y, and the force per unit mass on the centroid of a cell by F(x,v,y).
Here Y is a suitable, in general infinite-dimensional, Banach space. The internal
state and velocity now evolve according to

(4)
dy

dt
= G(y, S),

dv

dt
= F(x,v,y).

Here G : Y×S → Y is a mapping between Banach spaces and F : R
N ×R

N ×Y →
R

N where N = 1, 2, or 3 is the dimension of the physical space. This generality
is needed because the internal state y can include quantities that depend on the
location in the cell or on the membrane, and which may, for example, satisfy a
reaction-diffusion equation or another evolution equation.

The cell is therefore described by the position and velocity of its centroid, and
the internal state y ∈ Y. In some cases there is a projection P : Y → Z ⊂ Y from Y

onto a suitable finite-dimensional subspace Z, obtained for example by considering
the first few modes in a suitable basis for Y, such that

P(G(y, S)) = G(z, S) and F(x,v,y) = F(x,v, z), where z ≡ Py.
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Here G(·, S) : Z → Z and F(·, ·, ·) : R
N × R

N × Z → R
N are mappings between

finite-dimensional spaces. The first equality defines the function G, whereas F is
explicitly given by the second equality when the reduction is possible. Given a
suitable choice of the projection P , one can reduce the infinite-dimensional system
(4) to the set of ordinary differential equations for the evolution of the internal
state of individual cells.

(5)
dz

dt
= G(z, S)

dv

dt
= F(x,v, z)

The transport equation (2) can now be written in the form

(6)
∂p

∂t
+∇x ·vp+∇v ·Fp+∇z ·Gp = −λ(z)p+

∫

V

λ(z)T (v,v′, z)p(x,v′, z, t)dv′.

where here the right-hand side accounts for small random fluctuations of speed
and direction.

In [3] we develop an infinite-dimensional model of the form (4) for a single
cell and show that it can be reduced to a finite-dimensional version as given by
(5). We show that the model for cell movement captures the essential features of
movement in response to traveling waves of chemoattractant. Asymptotic analysis
of the transport equation (6) then leads to a system of macroscopic hyperbolic
equations, but it is not known if that system can in turn be reduced to (1). Details
are given in [3].
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Bacterial pattern formation, a poorly understood phenomenon
controlled by a complex interplay of chemistry, fluid mechanics and

genetics: can a mathematical treatment simplify the analysis?

Simone J. Séror and I. Barry Holland

Bacterial cells (rod shaped, 1 µ by 3-6 µ) can form large (approximately 50 sq/cm2),
intricately branched patterns, on a nutrient agar gel-like surface within a few hours.
This involves a rapid mass migration over the surface from a central inoculation
spot, in a process known as swarming. This process, ultimately producing bil-
lions of cells through growth and division, allows the bacteria to occupy a large
surface territory. Swarming proceeds through a series of specific stages, including
periods of aggregation of the cells into extended columns (dendrites). These den-
drites grow and branch frequently as the swarm community expands, producing
a pseudo-fractal formation. We have now documented the stages in this process
in great detail, both micro- and macroscopically, for the soil bacterium and model
laboratory organism, B. subtilis [1, 2, 3].

Swarming is dependent upon the presence of the long bacterial flagellum, nor-
mally used for propulsion (swimming), although the precise role in swarming is
unclear. However, swarming also requires the production and release from the
bacteria of a chemical, a small peptide, surfactin, that spreads ahead of the ad-
vancing swarm front [2]. Surfactin dramatically modifies the fluid mechanics of
the surface water film on the agar, with effects that include an increased depth of
this film at the swarm front. This may allow the cells to deploy more easily their
flagella in some way.

The production of surfactin is controlled by a complex system of intercellular
chemical signals generated by the bacteria. This is controlled by several genes, that
induce the necessary number of cells to produce surfactin, via a quorum sensing
mechanism. These signalling or communication systems mobilize the bacteria, in
as yet poorly understood way, to behave cooperatively and in unison to achieve
the observed coordinated swarming migration.

Thus, from our knowledge so far, a picture emerges of the swarming process as
a complex interplay between chemical, physical and genetical elements. On the
other hand, bacterial swarming does not appear to be driven by nutrient limitation.
Indeed, the resulting pattern formation cannot be explained by existing theories,
based on diffusion limited aggregation or classical chemotaxis towards nutrients.
We suggest that mathematical modelling and simulations, based on relevant key
parameters obtained from experimental measurements, can be successfully applied
to this phenomenon. Currently, we are trying therefore to measure with precision
over time, the number and speed of migration of cells, and the rate of diffusion and
concentration of surfactin in situ. Initially, we hope to produce a mathematical
model, based on a non-classical chemotaxis mechanism, that satisfactorily mimics
the process. However, we hope ultimately this approach will lead to predictions
that will rationalize the design of further experiments to elucidate more precisely
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(1)

(2) (3)

Figure 1. (1) Wild type swarming pattern (successive waves)
shown in upper panel; (2,3) different patterns generated by two
mutants in lower panels.

the contribution and mechanism of action of the different physico-chemical and
genetic factors involved.
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Modelling populations of swimming micro-organisms

Timothy J. Pedley

(joint work with Takuji Ishikawa)

Bioconvection patterns are observed in shallow suspensions of randomly, but on
average upwardly, swimming micro-organisms which are a little denser than wa-
ter. The basic mechanism is analogous to that of Rayleigh-Benard convection, in
which an overturning instability develops when the upper regions of fluid become
denser than the lower regions. The reason for the upswimming however depends
on the species of micro-organism: certain biflagellate algae are bottom-heavy, and
therefore experience a gravitational torque when they are not vertical; certain oxy-
tactic bacteria swim up oxygen gradients that they generate by their consumption
of oxygen. Rational continuum models can be formulated and analysed in each of
these cases, as long as the cell volume fraction n is low enough for hydrodynamic
or other cell-cell interactions to be neglected (n ≤ 0.1%). The key mathematical
step is the calculation of the probability density function for the cells’ swimming
velocity from a suitable Fokker-Planck equation, when that is justifiable. Both
examples will be discussed from this point of view.

Another sort of pattern-formation (”whorls and jets”) is observed in very con-
centrated, very shallow (effectively two-dimensional) cultures of swimming bacteria
on agar plates. Something similar is seen in three dimensions, for example at the
edge of a drop resting on a horizontal plate (see [1]). In both examples cell-cell in-
teractions are crucial, but it is not clear how to derive an appropriate macroscopic
model that is consistent with the laws of mechanics at the cellular level. A recent
attempt [2] succeeds in generating 2D patterns on the correct scale, but appears
not to be rationally justified.

Here we examine the deterministic swimming of model organisms which interact
hydrodynamically but do not exhibit intrinsic randomness except in their initial
positions and orientations. A micro-organism is modelled as a squirming, inertia-
free sphere with prescribed tangential surface velocity. Pairwise interactions have
been computed using the boundary element method, supplemented by lubrication
theory, and the results stored in a database. The movement of many identical
squirmers is computed by the Stokesian Dynamics method, with the help of the
database (the restriction to pairwise interactions requires that the suspension be
semi-dilute, with particle volume fraction less than about 0.1). It is found that in
three dimensions the spreading of the squirmers is correctly described as a diffusive
process sufficiently long after the motion is initiated, although all cell movements
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are deterministic. The effective translational and rotational diffusivities depend
strongly on volume fraction and mode of squirming. However, in two dimensions
there is a definite tendency towards aggregation, again entirely as a consequence
of the hydrodynamic interactions. Bottom-heavy squirmers, which tend to swim
upwards, additionally show a tendency to form horizontal stripes in two dimen-
sions, the stripes having an internal crystalline structure that has not yet been
explained theoretically.

References

[1] C. Dombrowski et al, Self-Concentration and Large-Scale Coherence in Bacterial Dynamics,
Phys. Rev. Lett. 93 (2004), 98103.

[2] J. Lega and T. Passot, Hydrodynamics of bacterial colonies: A model, Phys. Rev. E 67

(2003), 031906.

Integrative Mathematical Biology of Cancer Invasion

Alexander R. A. Anderson, Vito Quaranta

Cancer is a complex, multiscale process, in which genetic mutations occurring at
a subcellular level manifest themselves as functional changes at the cellular and
tissue scale. Existing models of solid tumour growth tend to focus on a single
spatial scale, but often ignore the importance of the tumour microenvironment
and lack clinical relevance. The importance of tumour cell/microenvironment
interactions is currently of great interest to the biological community. In particular,
both the immediate microenvironment (cell-cell or cell-matrix interactions) and the
extended microenvironment (e.g. vascular bed) are thought to play crucial roles
in both tumour progression and suppression.

In this joint presentation we will try to highlight the importance of multi-
scale mathematical models and the evolutionary implications of tumour growth
in either harsh or mild microenvironmental conditions. We will present a hybrid
multiscale mathematical model of the invasion of healthy tissue by a solid tumour
and examine how changes in cell phenotypic attributes (e.g. p53 mutation, cell-cell
adhesion, invasiveness) affect both tumour morpholgy and genetic makeup [4]. In
particular we consider early vascular growth, just after angiogenesis has occurred
and examine how the geometry of the growing tumour is affected by tumour cell
heterogeneity caused by genetic mutations. As the tumour grows mutations oc-
cur leading to a heterogeneous tumour cell population with some cells having a
greater ability to migrate, proliferate or degrade the surrounding tissue. All of
these cell properties are closely controlled by cell-cell and cell-matrix interactions
and as such the physical geometry of the whole tumour will be dependent on these
individual cell interactions.

The hybrid discrete-continuum model [3] focuses on four key variables impli-
cated in the invasion process: tumour cells, host tissue (extracellular matrix),
matrix-degradative enzymes and oxygen. The model is considered to be hybrid
since the latter 3 variables are continuous (i.e. concentrations) and the tumour
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cells are discrete (i.e. individuals). Since the cells are considered as individuals we
can assign each cell an individual life-cycle flow chart that takes into account both
cell phenotype and microenvironmental influences. Its components include both
basic metabolic processes, such as proliferation and oxygen consumption rates, as
well as motility-related ones, such as the propensity to undergo haptotaxis and
engage in cell-cell adhesion. The life-cycle flow chart is the core engine of the
hybrid model, and provides a natural link between mathematics and biological
experimentation. This is because, in the model as in reality, each cell behaves on
its own, based on a phenotype determined both by genetic make-up and microen-
vironmental interactions.

Since the ability to assign a phenotype to each individual cell is a fundamen-
tal property of our hybrid discrete-continuum approach we shall present results
from two separate algorithms for phenotype assignment: linear and random. In
the linear scheme cells can unidirectionally mutate along a linear pathway of four
increasingly aggressive phenotypes. For the random algorithm cells mutate with-
out restriction to one of 100 predefined phenotypes. These phenotypes are initially
generated by randomly selecting trait values with the same upper and lower bounds
as the linear mutation scheme.

We shall examine how individual-based cell interactions (with one another and
the microenvironment) can affect the tumour morphology and discuss which of
these interactions is perhaps most crucial in influencing the tumour’s final struc-
ture. We will also discuss the evolutionary influence that the microenvironment
has upon the tumour’s genetic makeup by considering growth in both mild and
harsh environments. This link can be tested experimentally both in vitro, ex vivo
and in vivo. We will discuss types of experimentation that are possible within the
context of current technology.

Computational simulations of our model show that harsh conditions in the
tumour microenvironment (e.g., heterogeneous extracellular matrix or hypoxia)
result in tumours that grow with irregular, fingering margins (figure 1) and that
consist of a few aggressive cancer cell clones which dominate. In contast, in mild
microenvironment conditions (e.g., normoxia or homogeneous ECM concentra-
tions) such aggressive clones do not invade nor dominate. The tumour grows with
smooth margins (no fingering) and is comprised of a larger number of mixed phe-
notypes i.e. less aggressive phenotypes in addition to more aggressive ones. These
simulation outcomes clearly show that it is possible to identify the physical selec-
tive forces that operate in the microenvironment, and the effect they may have on
tumour growth. Experimental validation will provide a quantitative foundation
for the model. In addition, the simulations establish a clear link between selected
phenotypes and emergent properties of the tumour mass, i.e. invasive (fingering
margins) or non-invasive (smooth margins).

The selective forces of the microenvironment ultimately act upon genes or their
products, though they effectively select cell phenotypes. Therefore, it is easy to see
how the model spans biological scales, from molecules (genes and their products)
to tissue (tumour mass). In fact, the hybrid discrete-continuum model focuses
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Figure 1. Heterogeneous tumour simulation results, showing a
tumour growing over a period of 21 weeks. Starting initially with
only 50 cells and ending with over 200,000 cells. Colouration
signifies the aggressiveness of the tumour cells, blue being the
most aggressive and orange the least, with yellow/green being
intermediate and brown represents dead cells.

on the micro-scale (individual cell) level to produce computational simulations
of tumour at the tissue scale. This technique, developed in previous models of
angiogenesis [2], and nematode movement [1] is intrinsically multiscale and can
easily incorporate a range of scales i.e. genetic, sub-cellular, cellular and tissue.
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Post-transplantation Dynamics of the Immune Response to Chronic
Myelogenous Leukemia

Doron Levy

(joint work with Rob DeConde, Peter Kim, Peter Lee)

Chronic myelogenous leukemia (CML) is a blood cancer with a common acquired
genetic defect resulting in the overproduction of malformed white blood cells. It
constitutes nearly 20% of all leukemias, affecting roughly 1 in 100,000 people [15].
Prior to the recent introduction of the drug Gleevec (imatinib or STI571), the life
expectancy of CML patients was about 4 years, with only 10% of all patients living
beyond 8 years [3]. While these statistics are changing for the better with this
new therapy, the requisite large-scale clinical studies have not yet been completed
[14]. Gleevec is proving to be effective at controlling CML, but patients still
have detectable disease at low levels [11]. Allogeneic bone-marrow or stem-cell
transplantation (ABMT or ASCT) is the only known curative treatment for CML
[13], and is thus the focus of this work.

There is an abundance of evidence that the immune system plays a critical
role in the control of leukemia [1, 2, 9, 10, 12, 15], but the exact mechanism of
action remains unclear. Infusion of allogeneic donor lymphocytes induces com-
plete cytogenetic response (CR) in 75% of CML patients who relapse after ABMT
[4, 7]. The enhanced efficacy of allogeneic over autologous SCT and the potent
activity of donor lymphocyte infusion (DLI) have lead to the proposal of a graft-
versus-leukemia (GVL) effect, which suggests that the donor lymphocytes mediate
the removal of the cancer. Further evidence is found in the correlation between
complete remission and both graft-versus-host disease (GVHD) and the loss of
chimerism [8, 16]—but only when the donor hematopoietic cells prevail as the
dominant lineage. Given that GVHD is mediated primarily by T cells, specifically
CD8+ cells [6], the above evidence indicates a necessary role for donor T cells
in cancer removal. Researchers have worked to dissect the mechanism by which
donor T cells eliminate cancer, with varied results.

In this work, our goal is to simulate the immune dynamics of a stem-cell trans-
plant in order to elucidate the mechanism of complete remission and to provide
insight into potential future therapeutic strategies for treating CML. Our approach
is based on following the time evolution of six cell populations: From the donor,
we consider anti-cancer T cells (cells specific for leukemia and nothing else), anti-
host T cells (those that would mediate a blood-restricted GVHD), and general
donor blood cells. From the host, we consider cancer cells, anti-donor T cells (that
may be responsible for graft rejection), and general host blood cells. The model
is written in terms of a system of delayed differential equations (DDEs), using the
delays to account for the progression of cells through various states.

We explore possible mechanisms behind a successful cure, whether mediated
by a blood-restricted immune response or a cancer-specific graft-versus-leukemia
(GVL) effect. Characteristic features of this model include sustained prolifera-
tion of T cells after initial stimulation, saturated T cell proliferation rate, and
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the possible elimination of cancer cells, independent of fixed-point stability. In
addition, we use numerical simulations to examine the effects of varying initial cell
concentrations on the likelihood of a successful transplant. Among the observed
trends, we note that higher initial concentrations of donor-derived, anti-host T cells
slightly favor the chance of success, while higher initial concentrations of general
host blood cells more significantly favor the chance of success. These observations
lead to the hypothesis that anti-host T cells benefit from stimulation by general
host blood cells, which induce them to proliferate to sufficient levels to eliminate
cancer.

At present, DLI is a standard treatment for patients that relapse after a stem
cell transplant, which for the purposes of our model provides an increase in TH .
While this does have a positive effect in eliminating the resurgent cancer, both
within our model and biologically, our model suggests a novel treatment strategy:
it may be more effective to infuse host cells, thus raising H and driving a stronger
antigen response. These infusions would require prior irradiation or some other
treatment to prevent the reintroduction of viable cancer cells, but would likely
carry a lower risk of initiating GVHD, since the cells were originally taken from
the host.

The timing of the infusion is also important in eliminating cancer. An open
treatment question is whether preemptive DLI (before any evidence of a relapse)
would be beneficial, reasoning that it may be better to go after the remaining
cancer before waiting for a relapse. One problem with this approach is that there
is no way to know a priori which patients will relapse and which are already cured,
and hence some healthy patients will be subjected to the risks associated with an
unnecessary procedure. We have already mentioned the potentially reduced risk
of infusing host cells over donor cells, but in addition, the model indicates that a
preemptive DLI using standard donor cells will be less effective than waiting for a
relapse. This derives from the antigen driven response, where if the level of cancer
is sufficiently low to be cytogenetically undetectable (as with patients in relapse),
it will provide no supportive stimulus to the infused cells. Thus, the infusion will
dwindle and die with only a small probability of locating and eliminating all of
the few remaining cancer cells. In contrast, infusion of proxy cells that stimulate
or maintain a blood-restricted GVHD response can keep the effector-cell-to-cancer
ratio high for extended periods of time, maximizing the probability that the cancer
will be eliminated.

The results of this work are summarized in [5].
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Modelling of moving boundaries with the phase-field method:
Interfaces, membranes, and skins

Mathis Plapp

(joint work with Vincent Fleury, Thi-Hanh Nguyen)

Branched shapes are ubiquitous in nature. They are abundant in biological sys-
tems, both as parts of complex organisms (examples are organs such as lungs,
kidneys, and the vascular tree) and as shapes taken by groups of organisms (coral
trees, bacterial colonies). But they can also be created by purely abiotic processes
such as crystallization (which can lead to symmetric shapes like snowflakes or
irregular branched structures such as metal deposits on rocks), fingering of one
liquid pushed into a region occupied by another, or crack formation. Whereas the
mechanisms underlying the pattern formation processes in non-living systems are
fairly well understood, the question to what extent the same processes also play
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a role in biological pattern formation, and how the interplay of physical and bio-
logical processes creates the complex shapes of biological systems, is largely open
[1].

From the point of view of mathematical modelling, a major challenge is to deal
with the complicated shape of these objects, especially during growth when their
geometry evolves with time. Classically, the equations of motion are formulated in
terms of moving boundary problems, where the boundary can represent a surface,
an interface between two distinct thermodynamic phases, a membrane, or a skin.
The motion of this boundary is normally governed by fluxes of matter and/or en-
ergy which can arise inside and outside the growing structure. Furthermore, the
physical properties on both sides of the boundary are often very different. There-
fore, partial differential equations have to be solved separately inside and outside
the structure and connected at the boundary in order to determine its motion.
This requires an explicit representation of the boundary which is cumbersome for
complex-shaped objects, especially in three dimensions.

An alternative approach to this kind of problems which has emerged in recent
years is the phase-field method, in which an auxiliary field (phase field) is intro-
duced, which is a smoothed indicator function; the boundary in then represented
by a level set of this function. In contrast to the so-called level set method, in
which a signed distance function is used instead of a smoothed indicator function,
the phase field often has a direct physical interpretation as an order parameter
or density. The advantage is that an equation of motion can then be obtained
from basic principles of out-of-equilibrium thermodynamics. Most commonly, this
equation is a Ginzburg-Landau type equation which can be obtained from a free
energy functional and which is coupled to the other variables of the problem. All
physical properties are then interpolated trough a diffuse but thin interface. The
new coupled problem can be solved without explicit knowledge where the bound-
ary is, which leads to great simplification of the numerics. The connection between
the phase-field model and the classic moving boundary problem is established by
matched asymptotic expansions.

In its beginnings, the phase-field method was developed mainly to describe
phase transformations in materials, such as precipitation [2] or solidification (for
a recent review, see [3]). More recently, the method has been extended to number
of different moving boundary problems, including fracture [4], polyphase flows [5],
and electrocrystallization [6]. Furthermore, applications to biological systems start
to emerge, for example the modelling of vesicle motion in shear flows [7].

We have developed a phase-field model for the equilibrium and growth shapes of
fiber-covered surfaces. This is originally motivated by the observation that many
organs of complex organisms are branched, but different organs can exhibit very
different architectures, ranging from ordered, dichotomous branching to quite ran-
dom structures. It is known from crystal growth that the detailed structure of the
interface, and above all its anisotropy, play a crucial role in shaping ramified struc-
tures. For instance, the regular shape of a snowflake is created by the underlying
crystal structure. In biological systems, there is no crystalline structure; however,
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the “skins” of many organs exhibit line patterns created by arrangements of fi-
broblasts and/or collagen fibers. This creates an anisotropic bending rigidity: the
surface is easier to bend in the direction normal to the fibers than in the direction
parallel to the fibers. We have developed a phase-field model that can determine
the optimal form of line patterns on arbitrary surfaces and explore the effects of
this anisotropy. The main ingredients of the model are the following.

• The geometry of the surface is described by a scalar phase field φ.
• Growth is limited by diffusion of a scalar quantity u, in analogy with crystal

growth and viscous fingering. This mode of growth is the simplest one
which leads to the self-organized emergence of ramified structures.

• The fiber pattern is described by a traceless tensor Qij of rank two, in
analogy with nematic liquid crystals. This is motivated by the fact that,
for example, fibroblasts or other cells exhibit local orientational order and
the same topological defects as nematic liquid crystals [8].

• The fiber pattern is localized at the surface by including a suitable coupling
to the phase field. The fibers are forced to remain tangential to the surface
by an anchoring term.

• The anisotropic bending rigidity is implemented by a contraction of the
curvature tensor with the tensorial order parameter Qij .

Preliminary simulations using this model yield the following results:

• The model is able to find optimal line patterns for any given geometry of
the surface.

• The anisotropic bending rigidity creates equilibrium shapes in which high
curvatures occur in directions normal to the predominant fiber direction.

• Topological singularities are attracted to regions of the surface with high
curvature.

• As a result, the singularities move to the tips of branches created by the
instability of an initial round shape, and trigger a fast growth of slender
branches with sharp tips (“thorns”).

Such growth patterns cannot be observed with a “classical” anisotropy such as
found in crystals. Our results therefore demonstrate that the presence of fibers
together with an anisotropic bending rigidity can create new and unique growth
shapes. The relevance of this mechanism to biological pattern formation, however,
has yet to be assessed.

We wish to acknowledge the support of ANR for this work.
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New dimension in Biology: two examples of 3D phenomenological
models

Giovanni Naldi

Although computational and experimental models for cell migration and dynam-
ics on two-dimensional (2D) substrata have described how various molecular and
cellular properties and biochemical processes are integrated to accomplish cell func-
tions, biologists are increasingly turning to three-dimensional cell cultures, where
they are discovering biological activities that more closely mirror what happens
in living organisms (see e.g [1, 10, 9]). In fact, the in situ environment of a cell
in living organism has a three-dimensional architecture. This “new dimension”
may represent a challenge in mathematical and computational modelling in or-
der to better understand physiological and biochemical processes. We report here
two examples regarding phenomenological description of early stages of vascular
network assembly [4] and, respectively, of olfactory system in embryogenesis [2].

Mathematical models in 3D Vasculogenesis. Vascular networks [3] form by
the spontaneous aggregation of individual endothelial cells migrating toward vas-
cularization sites (vasculogenesis). The study of this process is performed by
biologists using in vitro and in vivo assays, both in two-dimensional and, recently,
three-dimensional settings. A succesfull theoretical model of two-dimensional ex-
perimental vasculogenesis has been recently proposed [5, 8], showing the relevance
of percolation concepts and of cell cross-talk (chemotactic autocrine loop) to the
understanding of the self-aggregation process. We study the natural 3D extension
of the earlier proposed computational model, which we take as a starting point
for the investigation of the genuinely three-dimensional process of vasculogenesis
in vertebrate embryos. The computational and phenomenological model obtained
by experimental data is based on the following system for the cell density n(x, t),
their velocity field v and for the concentration field c(x, t) of the soluble chemical
factors (x ∈ Rd, d = 2, 3 is the space variable, and t ≥ 0 is the time variable),

(1)







∂n
∂t + ∇ · (nv) = 0

∂v

∂t + v · ∇v = µ(c)∇c−∇φ(n) − β(c)v

∂c
∂t = D∆c+ α(c)n − c

τ

Here µ measures the cell response to the chemotactic factor, while D and τ are
respectively the diffusion coefficient and the characteristic degradation time of the
soluble chemoattractant. Finally the function α determines the rate of release of
the chemical factor. The friction term −βv mimics the adhesion of the cells to the



Mathematical Biology 1425

Figure 1. Plot of the initial and stationary state of a numerical simulation
with 2500 cells/mm3. A well developed network-like structures is observed

extracellular matrix while the term ∇φ(n) is a density dependent pressure term
where φ(n) is zero for low densities, and increases for densities above a suitable
threshold: this pressure is a phenomenological term which models short range in-
teraction between cells. The numerical approximation of the model poses several
technical problems. Starting from initial conditions mimicking the experimentally
observed ones the numerical simulations produce network-like structures qualita-
tively similar to those observed in the early stages of in vivo vasculogenesis. Our
numerical scheme is obtained by a suitable relaxed approximation [6, 7] and by
coupling IMEX schemes for time integration and ENO-WENO schemes for space
discretization. A numerical simulation with randomly assigned initial cell posi-
tions is shown in Figure 1. Theoretical and numerical analysis of the proposed
models are under study. We are also developing the computation of critical per-
colative indices as a robust measure of the network geometry. This is a joint work
with F. Cavalli and M. Semplice (University of Milano), A. Gamba and G. Puppo
(Politecnico di Torino, Italy), and G. Serini (Institute for Cancer Research and
Treatment, Italy).

Olfactory system in embryogenesis. The olfactory system is formed by the co-
ordinated development of two embryonic structures: the olfactory placode (OPL)
and the anterior forebrain (FB), precursors of the olfactory epithelium (OE) and
olfactory bulb (OB), respectively. Olfactory axons elongate from the OPL and
reach FB where they establish the primitive connections. The molecular signals
that control early patterning and axon extension are beginning to be function-
ally characterized. However, little is known about axon-mesoderm and forebrain-
mesoderm signals. A 3D reconstruction and an associated mathematical model of
the olfactory development is being generated, that might help to decipher the rela-
tionships between all the variables involved. The first results indicate the existence
of a complex interplay between cells of different embryonic origins for the estab-
lishment of olfactory connections, in which Wnt signals play a key role. Numerical
simulations of the olfactory placode are performed by using simple discrete scheme
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with stochastic terms in order to reproduce the biological environment. A complete
model involving genetic information is under study. Biological experiments, data
and support come from G. Merlo, A. Zaghetto, and M. Gozzo (Dulbecco Telethon
Institute, Italy). The modelling and numerical simulations are joint work with G.
Aletti and P. Causin (Universityt of Milano).
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Gradient-driven dynamic pattern formation in mathematical models
of cancer cell invasion of tissue

Mark A.J. Chaplain

The growth of solid tumours proceeds through two distinct phases: the avascular
and the vascular phase. It is during the latter stage that the insidious process of
cancer invasion of peritumoral tissue can and does take place. Vascular tumours
grow rapidly allowing the cancer cells to establish a new colony in distant organs,
a process that is known as metastasis. The progression from a single, primary
tumour to multiple tumours in distant sites throughout the body is known as
the metastatic cascade. This is a multistep process that first involves the over-
expression by the cancer cells of proteolytic enzyme activity, such as the urokinase-
type plasminogen activator (uPA) and matrix metalloproteinases (MMPs). uPA
itself initiates the activation of an enzymatic cascade that primarily involves the
activation of plasminogen and subsequently its matrix degrading protein plasmin.
Degradation of the matrix then enables the cancer cells to migrate through the
tisse and subsequently to spread to secondary sites in the body.
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In this talk we consider a mathematical model of cancer cell invasion of tissue
(extracellular matrix) which focuses on the role of the the plasminogen activa-
tion system. The model consists of a system of reaction-diffusion-taxis partial
differential equations describing the interactions between cancer cells, urokinase
plasminogen activator (uPA), uPA inhibitors, plasmin and the host tissue. The
focus of the modelling is on the spatio-temporal dynamics of the uPA system and
how this influences the migratory properties of the cancer cells through random
motility, chemotaxis and haptotaxis. The results obtained from numerical compu-
tations carried out on the model equations produce rich, dynamic heterogeneous
spatio-temporal solutions and demonstrate the ability of rather simple models to
produce complicated dynamics, all of which are associated with tumour hetero-
geneity and cancer cell progression and invasion. Full details of the model can be
found in the paper of Chaplain and Lolas (2005).

The specific system to be studied is the following:

∂c

∂t
= Dc

∂2c

∂x2
︸ ︷︷ ︸

Random Motion

− ∂

∂x
( χcc

∂u
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uPA−chemo

+ ζcc
∂p
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PAI−1−chemo

+ ξcc
∂v
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,

∂v
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This is solved numerically in 1D and 2D domains with appropriate initial data
and boundary conditions.
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The encapsulation of particles and bubbles by an advancing
solidification front in cryopreservation

Stephen H. Davis

(joint work with Min S. Park, Alexander A. Golovin)

Cryopreservation is used to store and transport biological tissue. Among the
scientific issues involved are the stresses to which the cell is exposed and the
possibility that upon remelting the cell will be functional.

To begin such a study, we examine the fate of solid spheres and spherical bubbles
approached by a solidification front. Such an insoluble particle, submerged in a
liquid and approached by an advancing solidification front, may be captured by the
front or rejected. The particle behavior is determined by an interplay among van
der Waals interactions, thermal conductivity differences between the particle and
melt, solid-liquid interfacial energy, the density change caused by the liquid-solid
phase transition, and in the case of a bubble, the Marangoni effect at the liquid-
gas interface. We calculate the particle velocity and the deformation of the front
when the particle is close to the front, using the lubrication approximation, and
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investigate how the particle speed, relative to the front, depends on the parameters
that characterize the described effects.

Rather than detailing the analysis, we give the results in which in the simplest
case involves repulsion due to van der Waals forces and attractions due to hydro-
dynamic forces. How these two balance determines the velocity u of the particle
sensed away from the front, which moves at velocity V in the same direction. Fig-
ure 1a shows u versus δ0, the minimum gap between particle and front. When
V > umax, the front overtakes the particle and captures it. When V < umax there
are two possibilities: (i) δ0 > δu and there is evolution to the point u = V at
δ0 = δs, after which the spacing remains constant, and (ii) if δ0 is small enough,
δ0 < δu, then encapsulation takes place. The remaining figures illustrate how the
additional physical effects act. Of course the next step is to model a cell with a
semi-permeable, elastic membrane surrounding a gel-like interior.
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Diffusion and Homogenization in Phototransduction

Daniele Andreucci, Giovanni Caruso, Heidi Hamm

The talk was divided into three parts, delivered by Heidi Hamm, Daniele Andreucci
and Giovanni Caruso, introducing respectively the biological, mathematical and
numerical aspects of the problem.

1. Diffusion in the rod outer segment

The phototransduction cascade is a quite complex sequence of chemical reac-
tions and diffusion phenomena taking place in the retina photoreceptors. We deal
here with the rod, and more specifically with the processes taking place in the rod
outer segment (ROS); we refer to [1] for more information.

With reference to Figure 1, we recall that the space available for diffusion of
the species cGMP and Ca is the part outside of the discs (which are represented
as black boxes). The output of the model we are mainly interested in, i.e., the

current (see Section 2), is linked to the flux of [Ca
2+

] across the outer boundary;
however we focus here on the diffusion-reaction problem for [cGMP], for the sake
of brevity.

We simplify the complex geometry of the rod outer segment (ROS) by means
of the mathematical devices of concentration of capacity and homogenization (see
also Figure 1 for notation).

Namely, the outer shell

Σε = {R <| x̄ |< R+ σε , 0 < z < H} ,
the incisure

Bε = {x̄ ∈ Vε , 0 < z < H} ,
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Figure 1. Schematic representation of engulfment conditions
based on the dependence of a particle or bubble dimensionless
speed on the dimensionless separation distance from the front,
u(δ0). (a) typical dependence u(δ0) with one maximum; δu - un-
stable steady state, δe - stable steady state, (b) dependence u(δ0)
for a solid particle in the presence of the bulk flow caused by
the density change upon solidification; (c) dependence u(δ0) for
a bubble with thermocapillary effect with two extrema; dashed
line corresponds to an asymptotic value of thermocapillary mi-
gration speed which is beyond the validity of the lubrication ap-
proximation; (d) monotonic dependence u(δ0) for a bubble with
thermocapillary effect for large Marangoni numbers.

and the interdiscal space I∗j adjacent to the activation site are concentrated, while
the rest of the interior cylinder

Ω = {| x̄ |< R , 0 < z < H}
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H
R+ σε

R

Vε

Figure 1. Left side view. The shaded area is the region undergoing con-

centration of capacity as ε → 0. Right: top view. The widths ε of the discs,

σε of the outer shell, νε of the interdiscal spaces, as well as the maximum

width of the incisure Vε, are much smaller than R and H. Typical dimensions

(for the salamander) are: H ≃ 20–28 µm , R ≃ 5.5 µm , ε ≃ 0.01–0.014 µm ,

σ ≃ 1, ν ≃ 1. The total number of discs ranges in 800–1000. The axial

coordinate is denoted by z, and the transversal coordinates by x̄ = (x1, x2).

is homogenized as ε→ 0. Technically we achieve this result in the limit ε→ 0 by
introducing the sequence of approximating equations for diffusion in the cytosol

(1) aε(x)
∂uε

∂t
−∇ ·

(
DcGaε(x)∇uε

)
= 0 ,

where we have set uε =[cGMP], and

aε(x) =

{ εo

ε
, in the regions to be concentrated: Σε, Bε, I

∗
j ;

1 , elsewhere in the cytosol.

Here εo denotes the physical value of ε. The variable vε = [Ca2+] satisfies a similar
equation.

The problem is completed by suitable initial and boundary data. For example,
the boundary flux condition for uε on the side of the discs is

(2) ∇uε · −→n out = −1

2
νε

(
βuε − α(vε)

)
− χ{z=z∗}[PDE∗]σuε ,

where z∗ is the level corresponding to the activated side. The first term on the right
hand side of (2) corresponds to the chemical activity on all discs and therefore
contains the homogenization scaling factor ε, while the second term accounts for
depletion of cGMP by activated PDE and appears only on the side hit by the
photon.
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In the limit we obtain a set of diffusion equations in the domains Ω, and

Σ = limΣε = {| x̄ |= R , 0 < z < H} ,
B = limBε = {ro < x1 < R , x2 = 0 , 0 < z < H} ,

DR = lim I∗j = {| x̄ |< R} .
Note that Σ, B, and DR are surfaces so that the diffusion operator on them must
be understood in the suitable sense. The equations are coupled in two ways: first,
the limits of uε in the different compartments agree on the intersections of their
domains; second, the mass exchanges between compartments appear as sources in
the relevant diffusion equations. We refer for more details to [1], [2], [3].

2. Numerical setup

A finite element scheme is here presented and used to obtain a numerical so-
lution of the nonlinear diffusion equations relevant to the phototransduction ho-
mogenized model described in section 1. To this end a weak form of the governing
equations is considered [2], not reported here for the sake of brevity, suitable for
the application of the finite-element method.

The equations are set in a domain composed of a cylinder (the interior of the
rod), its lateral boundary (the outer shell), several rectangular surfaces cutting
the cylinder along radial directions (the incisures) and some circular cross sections
(the activated discs). Due to the homogenization technique used in the analysis,
the intricate geometry of the rod, containing 800 discs, has disappeared and the
homogenized equations are set in homogeneous domains, which can be efficiently
discretized by a relatively small number of elements. This implies a relevant re-
duction in the time required to perform the numerical computations; moreover, as
shown in [4], the obtained results are in close agreement with the ones obtained
using a model of the rod taking into account its actual intricate geometry.

A dedicated program in Matlab language has been developed, capable of in-
corporating any number of incisures and any number of activation sites, with any
given distribution on the ROS. Thus the code is aimed at being an operational
tool to perform numerical experiments of phototransduction, in rods of different
geometry and structure, under a wide spectrum of operating conditions. A finite
element mesh is created by using six-node prismatic elements for the interior of
the rod, four-node rectangular elements for the outer shell and the blades relevant
to each incisure, and three-node triangular elements for each of the activated discs.
As the greatest rates of change occur near the activated disc, a mesh-generation al-
gorithm has been written to accomplish local logarithmic refinements of the mesh
in a chosen region around each of the activated discs. This enables us to obtain an
accurate solution using fewer elements, thereby considerably reducing the compu-
tational cost. In Figures 2 and 3 a typical mesh of a salamander rod outer segment
is reported; the rod contains 23 incisures and a photon activates the disc placed
at half height of the rod.

Time integration was performed with the Crank-Nicolson scheme, which guar-
antees stability and convergence without requiring too small time steps. The
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Figure 2. Mesh of the interior (left) and outer shell (right).
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Figure 3. Mesh of the incisures (left) and of the activated disc (right).

nonlinear forcing terms have been approximated, within each element, by interpo-
lating their nodal values. Their nodal values have been computed at the current
time-step by weighting the values at the old and new time, as prescribed by the
semi-implicit integration method. Accordingly, an iterative procedure has been
used to advance the solution to the new time.

Simulation results. The numerical solution computed by the matlab program

is expressed in terms of the nodal concentrations [cGMP] and [Ca
2+

] at each
considered time. Then the local current density J(θ; z; t) can be evaluated in

terms of the nodal values of [cGMP] and [Ca
2+

] on the outer shell. The global
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Figure 4. Global normalized response (left) and local normal-
ized response at different times (right).

current i(t) across the entire plasma membrane is the surface integral of the cur-
rent density over the lateral boundary of the ROS. Results can be presented in
terms of the global relative response i(t)dark − i(t), the global normalized response
1 − i(t)/i(t)dark, and local normalized response 1 − J(θ; z; t)/Jdark, where ‘dark’
denotes quantities in the dark. As an example, at the left of Figure 4 the global
normalized response is reported for a simulation of the typical salamander single
photon response; peak time occurs at about 0.8s and the maximum normalized
drop of global current is about 0.8%. The superimposed (less smooth) curve
has been obtained by averaging several experimental single photon responses on
salamander rods (F. Rieke). On the right part of Figure 4 the local normalized
response along a vertical line of the outer shell is reported for different times; it
clearly appears that just a small portion of the outer shell around the activated
disc contributes to the visual signal, thus confirming the localized nature of the
single photon response.

These are just some of the possible outputs produced by the Matlab program;
concentrations [cGMP] and [Ca2+] can be computed at any location in the rod
and visualizations of the current density evolving in the time at any position of
the outer shell are possible. Many kinds of analysis can be performed, by varying
the geometry of the rod, the number and positions of incisures and the number
and positions of the photons hitting the proteinic discs. To this end, a detailed
study about the influence of incisures on the phototransduction signal is presented
in [5]. Moreover it is possible to consider different typologies of activation models
and take into account several effects as random walk of rhodopsin, deterministic
or stochastic sudden shutoff of rhodopsin or different phosphorylation states for
rhodopsin.

References

[1] D. Andreucci, P. Bisegna, G. Caruso, H.E. Hamm and E. DiBenedetto, Mathematical model
of the spatio-temporal dynamics of second messangers in visual transduction, Biophysical
Journal 85 (2003), 1358–1376.



Mathematical Biology 1435

[2] D. Andreucci, P. Bisegna and E. DiBenedetto, Homogenization and Concentrated Capacity
for The Heat Equation with Non–Linear Variational Data In Reticular Almost Disconnected
Structures and Applications to Visual Transduction, Annali di Matematica Pura e Applicata
182 (2003), 375–407.

[3] D. Andreucci, P. Bisegna and E. DiBenedetto, Homogenization and Concentration of Ca-
pacity in the Rod Outer Segment with Incisures, Applicable Analysis 85 (2006), 303–331.

[4] G. Caruso, H. Khanal, V. Alexiades, F. Rieke, H.E. Hamm and E. DiBenedetto, Mathe-
matical and computational modelling of spatio-temporal signalling in rod phototransduction,
System Biology 152 (2005), 119–137.

[5] G. Caruso, P. Bisegna, L. Shen, D. Andreucci, H.E. Hamm and E. DiBenedetto, Modeling
the Role of Incisures in Vertebrate Phototransduction, Biophysical Journal, to appear.

Population-scale modelling of cellular chemotaxis and aggregation

J.R. King

(joint work with J.A. Fozard)

1. Formulation

We seek here to examine the effects of aggregation on the movement of populations
of cells. The approach we adopt goes to the opposite extreme from most (e.g.
Keller-Segel-based) models for chemotactically-driven aggregation, which neglect
entirely the effects on their motility of cells binding to one another, by studying a
paradigm problem in which only single cells are motile. Thus the model we use is an
extension of the Becker-Döring aggregation equations in which single cells undergo
diffusion as well as attaching themselves to clusters of any size, and we examine in
particular the large-time behaviour of the solutions to two specific initial boundary
problems, which have relevance to aggregation in chemotaxis assays.

We consider a population of identical cells undergoing both random motion
and chemotaxis (directed motion under the influence of a chemical stimulus) and
sticking together following collisions. Clusters of more than one cell are considered
to be immobile, and so grow further only through additional single cells colliding
with them. We ignore the effects of cell division and the chemoattractant is here
taken to be introduced exogenously (i.e. the only mechanism driving aggregation
is cell-cell adhesion). The aggregation process varies in one dimension, with single
cells undergoing net advection and diffusion in that direction. In allowing the
problem to be inhomogeneous in this particular dimension, we view all quantities
as averages over the perpendicular cross section.

Combining the Becker-Döring equations [1] (without fragmentation) with the
usual transport terms (cf. the Keller-Segel model [2]), we obtain

∂c1
∂t

+
∂

∂x

(

χ
∂f

∂x
c1

)

=
∂

∂x

(

D
∂c1
∂x

)

− a1c
2
1 −

∞∑

j=1

ajc1cj ,(1)

∂cn
∂t

= an−1c1cn−1 − anc1cn, n ≥ 2,(2)
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where cn(x, t) is the concentration of clusters of size n. The parameters here are
the rate coefficients an, the random motility coefficient D and the chemotactic
coefficient χ, all of which are taken to be constant; f is the prescribed distribution
of a chemotactic signal, which (in the interests of treating the simplest possible
problem of the current class) we take to be at the linear steady state f(x) =
f0 +f1x. We examine the above equations with rate coefficients of power-law form

(3) an = αnp, with α > 0, 0 ≤ p ≤ 1,

as this allows us to encompass a variety of cases of interest; the choice p = 1/3 is
appropriate when the clusters are compact and spherical for large n.

The first problem we address is the Cauchy Problem on the whole real line, with
a localised initial distribution of cells, c1 = F (x). This is in principle of relevance
to “sandwich” assays for chemotaxis [3], in which a thin layer of cells is placed
between two layers of collagen gel, and differing concentrations of chemotactic
factors are introduced into the upper and lower layers. In the second situation
(the Cauchy-Dirichlet Problem) we instead impose the boundary condition

(4) c1 = C at x = 0

for some positive constant C, and examine the behaviour of the solution in the
semi-infinite domain x > 0. This is representative of the behaviour in an “under-
agarose” assay for chemotaxis [4], the boundary condition (4) corresponding to
a well containing a given concentration of cells. The problem can be written in
dimensionless form (containing only two parameters, U and p) as

(5)
∂c1
∂t

+U
∂c1
∂x

=
∂2c1
∂x2

−c21−c1
∞∑

j=1

ajcj ,
∂cn
∂t

= an−1c1cn−1−anc1cn, n ≥ 2,

where an = np, U = χf1/
√
DαC, and the variables are rescaled versions of the

original ones.

2. Cauchy problem

The large-time behaviour of the solution has a different form when chemotaxis is
present (U > 0) and in the purely diffusive case (U = 0). In the latter case the
large-time asymptotic behaviour comprises two regions. On the outer (diffusive)

length scale x = O(t
1
2 ) we find a similarity solution of the form

(6) cn ∼ t−1(ln t)−nfn(x/t
1
2 ),

where f1 =
√
πηe−η2/2/2a1 and, for n ≥ 2,

fn =
πn−1

2η2an
1 (n− 2)!

n−1∏

k=1

ak

∫ ∞

η

{

erf

(
η̂

2

)

− erf
(η

2

)}n−2

η̂3e−
η̂2

2 dη̂.(7)

This outer solution matches with an inner solution for x = O(1) of the form

(8) c1 ∼ C1(x)

t
3
2 ln t

, cn ∼ Cn(x).
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In the case with chemotaxis (U 6= 0) the outer solution is of the form

(9) cn ∼ t−
n+1

2 fn((x− Ut)/t
1
2 ),

where f1(η) is the even solution of

(10)
d2f1
dη2

+
η

2

df1
dη

+ f1 − a1f
2
1 = 0,

with the additional condition that f1 decays exponentially as η → ∞. The other
fn(η) are then given by

(11) fn(η) =
2n−1

Un−1(n− 2)!

n−1∏

k=1

ak

∫ ∞

η

{
∫ η̂

η

f1(η̃) dη̃

}n−2

f2
1 (η̂) dη̂.

For x−Ut ≫ t
1
2 , all the concentrations are exponentially small, while for Ut−x≫

t
1
2 , c1 is again exponentially small, but cn ∼ Cn(x) for n ≥ 2, where the Cn(x)

depend on the initial data. Therefore the large-time behaviour of this solution
consists of an advecting peak of single cells which leaves behind itself a trail of
larger clusters, with (for some constants Kn)

(12) Cn(x) ∼ U
n+1

2 Kn/x
n+1

2 as x→ +∞, n ≥ 2.
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Figure 1. Numerical simulations for the Cauchy problem with-
out (left) and with (right) advection.

3. Cauchy-Dirichlet problem

In this case we impose the Dirichlet boundary condition c1 = 1 at x = 0. The
concentrations of large clusters of cells at and near x = 0 increase with time, which
causes the concentration of single cells to decrease rapidly away from x = 0. We
restrict consideration to rate coefficients of the form (3), with 0 ≤ p < 1. The
inner solution is the same in all cases, and is a similarity solution (in cluster-size,

as well as conventional, space) of the form (defining ξ = xt
1

2(1−p) and η = n/t
1

1−p )

(13) c1 ∼ f(ξ), cn ∼ 1

np
φ(ξ, η),

and we omit further details here (the outer structure depending on the sign of U).
The authors acknowledge the support of the EPSRC for this work.
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[1] D. Becker, W. Döring, Kinetische behandlung der keimbildung in übersättigten dämpfen,
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Singular limit of a reaction-diffusion system describing tissue
degradation by bacteria

Danielle Hilhorst

(joint work with John R. King, Matthias Röger)

A model for the penetration of healthy tissue by bacteria from a burn wound was
proposed by John King et al. The mathematical formulation of Problem Pk is
given by the parabolic equations

∂tuk = ∆uk − uk + wk − γkuk(1 − wk) in QT(1)

∂twk = d∆wk + kuk(1 − wk) in QT ,(2)

together with the boundary conditions

∇uk · ~en = 0 on ST(3)

∇wk · ~en = 0 if d > 0 on ST ,(4)

and the initial conditions

uk(0, .) = ū0 in IRn
+, wk(0, .) = w̄0 in IRn

+,(5)

where

QT := (0, T ) × IRn
+, ST := (0, T ) × (IRn−1 × {0}),

with IRn
+ := {x = (x1, ..., xn) ∈ IRn : xn > 0}, and ~en = (0, ..., 0, 1)T , where γ and

k are positive constants and where d ≥ 0. Here uk corresponds to the concentration
of degradative enzymes produced by the bacteria, and 1 − wk corresponds to the
volume fraction of healthy tissue. The key parameter k > 0 is typically very large
and governs the degradation ratio of the tissue.



Mathematical Biology 1439

We first prove the following result

Theorem 1 Let (uk, wk) be the solution of Problem (Pk) with initial data (ū0, w̄0).
There exist functions 0 ≤ u∞, w∞ ≤ 1 such that

uk → u∞, wk → w∞ in L1(QT )

as k tends to infinity.

In order to characterize completely the limit function pair (u∞, w∞), we define
the functions ϕ, h : IR → IR,

ϕ(r) := d(r + γ) + (1 − d)r+, h(r) :=
1

γ
r − (1 +

1

γ
)r+ + 1,(6)

where r+ := max(r, 0) denotes the positive part of r ∈ IR. We set z0 = ū0 − γ(1−
w̄0) and denote by z the unique weak solution of the problem P0

∂tz = ∆ϕ(z) + h(z) in QT ,(7)

∇ϕ(z) · ~en = 0 on ST ,(8)

z(0, .) = z0 in IRn
+.(9)

Theorem 2 The limit function pair (u∞, w∞) is given by u∞ = z+ and w∞ =
1 + (z − z+)/γ.

Our further results deal with travelling wave solutions in the fast degradation
rate limit. We consider travelling wave solutions of the one dimensional problem
on the whole real line, namely solutions of the system

0 = u′′ + cu′ − u+ w − γku(1 − w),(10)

0 = cw′ + ku(1 − w).(11)

More precisely, we study monotone travelling waves.

Definition Let K be the set of functions v ∈ C∞(IR), with

0 < v < 1, v′ < 0,(12)

v(x) → 1, as x→ −∞,(13)

v(x) → 0, as x→ +∞.(14)

We call (c, u, w) ∈ IR ×K ×K satisfying (10), (11) a monotone (decreasing) trav-
elling wave for (1), (2).

We prove the following results.
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Theorem 3 (Existence of travelling waves) For all γ, k there is a positive num-
ber cmin = cmin(γ, k), such that there exists a monotone travelling wave of (1), (2)
with speed c for all c ≥ cmin and such there is no monotone travelling wave with
speed c < cmin.

The value cmin thus gives the minimal speed of travelling waves for (1), (2).

Next we consider the travelling wave problem in the infinite degradation rate
limit. We look for monotone travelling waves which connect one and zero, such
that

u∞(x), w∞(x) → 1 as x→ −∞,(15)

u∞(x), w∞(x) → 0 as x→ ∞,(16)

u∞, w∞ are decreasing.(17)

One can show that a travelling wave solution pair (u∞, w∞) must satisfy up to a
translation constant,

u∞(x) = 0 for x ≥ 0,(18)

u∞(x) > 0, w∞(x) = 1 for x < 0,(19)

together with the equations

0 = u′′∞ + cu′∞ − u∞ + 1 for x < 0,(20)

0 = γcw′
∞ + w∞ for x > 0,(21)

and the continuity and jump conditions

u∞(0−) = 0,(22)

γc(1 − w∞(0+)) = −u′∞(0−).(23)

For all c ≥ c∞, where

c∞ :=
1

√

γ(1 + γ)
,(24)

it turns out that there exists a unique solution (u∞, w∞) of (15)-(23).

Finally we prove that the travelling waves of (1), (2) are, for large values of k,
close to travelling waves of the limit free boundary problem.

Theorem 4 Let (c, uk, wk) be a sequence of monotone travelling waves of
(1),(2) with speed c ≥ c∞, such that uk(0) = 1/2. As k tends to infinity, (uk, wk)
converges to the travelling wave solution (u∞, w∞) of the limit free boundary prob-
lem with the same speed c.
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Remarks on three different (mathematical) aspects in chemotaxis

Dirk Horstmann

In 1970 E. F. Keller and L. A. Segel [7] proposed a simplified model for the
aggregation process of some cellular slime models. This model was given by the
following system of two strongly coupled parabolic, partial differential equations:

(1)

ut = ∇(k1(u, v)∇u− k2(u, v)∇v), x ∈ Ω, t > 0
vt = kc∆v − k3(v)v + uf(v), x ∈ Ω, t > 0

∂u/∂n = ∂v/∂n = 0, x ∈ ∂Ω, t > 0
u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω.







Here Ω is a bounded domain IRN (N ≥ 1), u(t, x) denotes the myxamoebae density
of the cellular slime molds and v(t, x) denote a chemoattractant concentration at
time t in point x.

This talk is divided in three parts, where each part gives a brief overview of one
special aspect in connection with the given chemotaxis model.

Part I: Blow-up and global existence

In their paper from 1970 E. F. Keller and L. A. Segel showed already that the

uniform steady state (u, v) becomes unstable, if k2(u,v)v
k1(u,v)u + uf ′(v)

k3(v)+vk′
3(v) > 1. In the

following years a discussion about the possible time asymptotic behavior of the
solution started and in 1981 Childress and Percus [2] formulated for the simplified
equations

ut = ∇(∇u − χu∇v), x ∈ Ω, t > 0
vt = kc∆v − γv + αu, x ∈ Ω, t > 0

}

where kc, γ, α and χ are positive constants strictly larger than zero, the follow-
ing conjecture: “In particular, for the special model we have investigated, collapse
cannot occur in a one-dimensional space; may or may not in two dimensions,
depending upon the cell population; and must, we surmise, in three or more di-
mensions under a perturbation of sufficiently high symmetry.”

The case N = 1 has been analyzed and shown to be true for example in [9].
N = 2 has been considered in [3, 4] and finally N ≥ 3 has been studied in [8].
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However, the question arises whether this behavior is only true for the present
system or whether one can show similar results for more general chemotaxis mod-
els. Therefore, Michael Winkler and myself studied in [6] chemotaxis systems
where the first equation of the Keller-Segel is replaced by the more general equa-
tion ut = ∇(∇u − f(u)∇v), where f(u) ∼ uβ . We showed that:
- for β < 2/N and N ≥ 1 the solution exists globally in time and is uniformly
bounded for all times,
- for β > 2/N and N ≥ 1 there exist initial data such that the solution becomes
unbounded in finite or in infinite time, i. e. lim sup

t→Tmax

||u(t, ·)||L∞(Ω) = ∞. The bor-

derline case β = 2/N has only been studied for N = 2. Thus our results can be
seen as some contribution to Childress and Percus conjecture in the case N ≥ 3.

Part II: Multispecies chemotaxis models

The next question that arises is the question of multispecies chemotaxis models.
In 1980 Wolfgang Alt presented in his Habilitation [1] some first models for this
type of chemotaxis systems. In this talk I want to recall some results by G.
Wolansky [10]. Wolansky analyzed the following generalization of the Keller-Segel
model:

νiu
i
t = ∆ui −

k∑

j=1

χi,j∇
(
ui∇vi

)
, i ∈ {1, ..., n}

σjv
j
t = ∆vj − γvj +

n∑

i=1

αi,ju
i + fj(x), j ∈ {1, ..., k}







together with the boundary conditions


∇ui −
k∑

j=1

χi,j∇
(
ui∇vi

)



 · n(x) = 0 for 1 ≤ i ≤ n and vj = 0 for 1 ≤ j ≤ k.

Using the n× k matrices αi,j and χi,j that describe the production and consump-

tion rates and the mobilities of the species, he defines λi1,i2 =
k∑

j=1

χi1,jαi2,j . The

system is said to be conflict free if λi1,i2 · λi2,i1 > 0 and describes chemotaxis in
the presence of a conflict of interest, if λi1,i2 · λi2,i1 < 0. It is shown, that there
exist a Lyapunov function for conflict free systems and that there is a threshold
value for the initial mass of the population densities, which decides about the time
asymptotic behavior of the solution. Wolansky’s results generalize the one species
situation.

Part III: Traveling waves in chemotaxis

Finally the question that arises is whether Keller-Segel type chemotaxis models
can describe traveling wave like behavior of the mobile species that can be observed
in several experiments. In addition to the classical results concerning that question
we will present and discuss the following more general result by A. Stevens and
myself [5]:
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Theorem 1. Consider for n ≥ 2 the system

(2)

ut = ∇(∇u− χu
v∇v)

vt = kc∆v + f1θ
n∑

j=1

aj(jkc − 1)ujv1−jχ −
n∑

j=1

f2
1a

2
jkcu

2jv1−2jχ

−2f2
1kc

2n−1∑

j=3




∑

k 6=l
k+l=j

akal



 ujv1−jχ,







where f1, kc, θ are positive and the aj (j ∈ {1, ..., n}) are nonnegative constants.
Then there exists a traveling wave solution for system (2), which can be explicitly
calculated.
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A mathematical model for stroma controlled chemotaxis of
hematopoietic stem cells

Maria Neuss-Radu

(joint work with Anita Kettemann)

Hematopoietic stem cells (HSCs) are characterized by a rapid migratory activity.
This property is very important for many medical applications; e.g. in the ther-
apy of leukemia. This therapy consists in HSCs transplantation by intravenous
injection of HSCs obtained from mobilized peripheral blood of the donor. After
transplantation the HSCs have to find their way into their natural environment,
the stem cell niche in the bone marrow consisting of so called stroma cells. This
process is called homing. The aim of the physicians is to shorten the duration
of the homing process as much as possible since during this time the patient is
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highly endangered and the treatment is very expensive. To achieve this goal one
must understand the underlying mechanism of the homing process of the HSCs
and build up mathematical models able to quantify this process.

In [1] it was shown that HSCs migrate in vitro and in vivo towards a gradient
of the chemotactic factor SDF-1 (stromal cell-drived factor-1) produced by the
stroma cells. In a joint research project with W. Jäger (Applied Analysis) and
A. Ho, R. Saffrich (Stem Cells Research) at the University of Heidelberg, we
investigate the dynamics of HSCs quantitatively. In the experimental assay from
[3], depicted in Fig. 1, the directed migration of HSCs toward stroma cells against
a gradient of 5◦ inclination of the culture plate was observed.

Figure 1. HSCs (white arrows) were initially seeded on the
lower half of the Terasaki well (A). They migrated within 2 hours
toward the stroma cells (black arrows) and established stable cell-
cell contact with these supportive stroma cells (B,C). See [3].

Related to the experiment in [3] we came up with the following mathematical
model describing the chemotactic behavior of HSCs. We consider a Lipschitz
domain Ω with boundary ∂Ω = Γ1 ∪ Γ2. The boundary portion Γ1 represents the
part of the boundary where stroma cells are cultivated.

The unknowns of the model are the following,
– s(t, x) concentration of the free stem cells in the do-
main Ω,
– a(t, x) concentration of the chemoattractant (SDF-1),
– sb(t, x) concentration of the stem cells bounded to the
stroma cells on the boundary ∂Ω.

The evolution of the concentrations s(t, x), a(t, x) is described by the following
chemotaxis system

st = ∇ · (ε∇s− s∇χ(a)), x ∈ Ω, t > 0
at = Da∆a− γas, x ∈ Ω, t > 0.
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together with the boundary conditions

−(ε∂νs− sχ′(a)∂νa) =

{
c1s− c2sb on Γ1,

0 on Γ2,

Da∂νa =

{
β(t, sb)c(x) on Γ1,

0 on Γ2.

The evolution of the concentration sb is described by the ODE

∂tsb = c1s− c2sb on Γ1.

Also we impose the initial conditions s(0) = s0, a(0) = a0, sb(0) = sb0 .
The boundary condition for the stem cells describes the absorption and desorp-

tion of the stem cells at the part of the boundary coated with stroma cells. The
boundary condition for the chemoattractant models the production of the latter
by the stroma cells with a rate β depending on the concentration sb.

Remark 1. Our choice of boundary conditions (imposed by the underlying applica-
tion) makes the problem challenging from mathematical point of view. The methods
used in the analysis of chemotaxis systems subjected to homogeneous Dirichlet or
Neumann boundary conditions cannot be adapted to our situation.

Theorem 1 (Existence and uniqueness of a local solution). We assume that the
data of our model satisfy the following conditions. The concentration of stroma
cells c belongs to H

1
2 (∂Ω), with 0 ≤ c(x) ≤ c̄ for x ∈ Γ1 and c ≡ 0 for x ∈ Γ2.

The production rate for the chemoattractant β ∈ C1(R × R,R) satisfies

0 ≤ β(t, sb) ≤M,

∣
∣
∣
∣

∂β

∂sb
(t, sb)

∣
∣
∣
∣
≤Ms,

∣
∣
∣
∣

∂β

∂t
(t, sb)

∣
∣
∣
∣
≤Mt,

and the sensitivity function χ belongs to the space

S =
{
χ ∈ C2(R)

∣
∣ 0 ≤ χ(a), 0 ≤ χ′(a) ≤ Cχ, |χ′′(a)| ≤ C′

χ, a ∈ R
}
.

Assume also that the initial conditions are such that s0 ∈ L∞
+ (Ω), a0 ∈ L∞

+ (Ω) ∩
H2(Ω), and sb0 ∈ {sb ∈ L∞

+ (∂Ω) | sb(x) = 0 for x ∈ Γ2} ∩H
1
2 (Γ1).

Then there exists T > 0 and a unique weak solution (s, a, sb) of our system with
the following properties: s, a and sb are positive and satisfy

s ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)) ∩ L∞(0, T ;L∞(Ω)),

st ∈ L2(0, T ; (H1(Ω))∗),

a ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩ L∞(0, T ;L∞(Ω)),

at ∈ L2(0, T ;L2(Ω)),

sb ∈ C([0, T ];L2(∂Ω)),

(sb)t ∈ L2(0, T ;L2(∂Ω)).
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Steps of the proof: The most important steps in the proof are the following.
First we cut off s in the nonlinear terms. Then we prove existence of the cut off
system by Schaefer’s fixed point theorem. Subsequently we show uniqueness and
positivity of the solutions to the cut off system. Finally we prove boundedness
for the concentration s of the cut off system in L∞(0, T ;L∞(Ω)) by a constant
independent of the cut off constant. The details of the proof can be found in [2].

Let us now briefly describe the numerical results we obtained using the software
Gascoigne, see www.gascoigne.de. We simulate our problem on a rectangle Ω =
(0, 1.5) × (0, 1) and a grid with 129 × 65 nodes. The time step is ∆t = 0.1. We
choose our data as follows. The stroma cells are concentrated on the boundary
x1 = 1.5 where we assume three groups of stroma cells described by c(1.5, x2) =
0.01(1+ 0.2 sin(5πx2)). Further we consider χ(a) = χ∗a, Da = 2, γ = 0.1, c1 = 0.3
and c2 = 0.5. For β(t, sb) we choose

β(t, sb) = V (t)

(

1 − s2b
0.005 + s2b

)

with V (t) =

{
4t2(3 − 4t) for t ≤ 0.5
1 for t > 0.5.

As initial concentrations we use a0(x1, x2) = 0, sb0(x1, x2) = 0 and the initial
function s0 depicted in the left figure below. In the right figure below we see the
distribution of the concentration s at the time step t = 400.
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Travelling wave analysis for Chemotaxis with Growth

Hartmut R. Schwetlick

In this article we propose a chemotaxis–growth–system for the modelling of
stimulated tissue growth. Such phenomena frequently arise in wound healing and
angiogenesis and used to be modeled by reaction-diffusion alone. The model fo-
cuses on the role of the epidermal growth factor in increasing mitotic activity but
also serving as a chemo-attractant for the migrating cells. We show that travelling
wave solutions exist, having a uniquely determined minimal wave speed depending
on the diffusivity and the sensitivity of the chemotactic population. In particular,
the speed is enhanced for stronger chemotactic sensitivity proposing a mechanism
to increase healing rates compared to the model with purely diffusion driven mi-
gration.

In the recent modelling of wound healing or angiogenesis one describes the outer
epidermal layers or highly proliferating tips of new blood vessels, see [4]. Charac-
teristic solutions like travelling waves can provide the linkage of the microscopic
but still phenomenological model to the macroscopically observables like the speed
of how fast the wound closes or the blood vessel enlarges in length. Previous mod-
els use a reaction-diffusion system modelling the epidermal cell layer and the EGF
growth factor concentration. However, working with parameters suggested by ex-
periments one calculates travelling wave speeds which are to slow compared to the
experiment, cf. [1].

In this work we take additionally into account that the proliferating species
acts chemosensitively. Furthermore, in contrast to the chemotactic models in
[2] and [3], we do distinguish between proliferating and matured cells. This is
because the latter type contributes much less to the dynamic movement in the
system than the first. The proposed chemotactic model provides a new alternative
for the enhancement of the wave speed, thus provides a better matching with
experimentally observed speeds of wound closure. We analyse the model under the
assumption that diffusion of the EGF density is small compared to its degradation
by the cell population, an evidence supported by the biological data, cf. the ratio
µ = 25/13786 given in [1, Fig. 1] for a biologically realistic parameter set.

In the following, cf. Figure 1, we denote the densities u for mobile, proliferating
cells, v for the epidermal growth factor concentration, and w for adult, immobile
cells.

Figure 1. Typical shape of the profiles.
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Then the chemotaxis–growth–model reads

ut = ∇ · (d∇u − χu∇H(v))+εf(v)u,

vt = µ∆v −g(v)u,(1)

wt = γ(v, u).

The function f(v) describes the combined effect of proliferation enhanced by
the presence of the growth factor v and maturation into the adult density w. We
assume that if the growth is not stimulated then the rate of maturation exceeds
the basic growth rate leading to the decay of the proliferating part u of the cell
population. For the functional f(v) this means that there exists v0 such that f is
negative for v < v0 and positive for v > v0. We call such a situation monostable
since the homogeneous states (u = 0, v = const.) are only stable if v < v0 and
waves are expected to invade regions where the chemical v exceeds the threshold
v0. In contrast, the bistable situation describes an additional saturation effect,
such that two homogeneous states (u = 0, vi = const.), i = 1, 2 can satisfy v1 < v2
with f(vi) < 0 enclosing an interval of unstable states v, i.e., f(v) > 0. In this
case the results reveal that above unstable strip a certain range of stable states
can be invaded depending on the taxis strength.

In the limit µ = 0 we prove the existence of travelling waves by reducing the
system with the help of a new invariant of motion along the wave coordinate. Since
the reduced two-dimensional problem can be analysed exhaustively we can give a
complete characterization of possible travelling waves and their speed properties.

First, let us state the result in the monostable case.

Theorem 2. Let H(v) be fixed. For any upstream concentration v+ > γ there
exist planar fronts (c, u, v) for all

c ≥ c∗ = c∗(d, χ, ε, v+),

with u(±∞) = 0, v(∞) = v+, and v(−∞) = v− = v−(v+).

Furthermore, we have bounds for the minimal speed of the waves.

Theorem 3. There are constants c0,1(v̄+) > 0 such that the minimal speed c∗ of
the front satisfies

c0
√

εmax{d, χ} ≤ c∗ ≤ c1
√

εmax{d, χ}
and c∗(·, χ) → c0

√
γd as χ→ 0, which is the speed in the purely diffusive model.

Hence, the minimal speed gets enhanced with sufficiently strong taxis. Note,
that for fixed χ > 0 the wave speed stays bounded away from zero in the vanishing
viscosity limit d → 0. An interesting effect is that for small growth ε ≪ 1 the
model still supports waves of finite speed either if taxis χ or diffusion d is large,
i.e., of order ε−1.

We emphasise that the minimal speed for large taxis can not be obtained by a
linear analysis of rest states but is actually a truly nonlinear phenomenon of the
model. Schwetlick We shortly comment on the mechanism how waves propagate.
Note that u grows ahead of the front since v+ > γ. But the presence of u implies
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annihilating v, hence, the gradient in v moves. Thus, taxis and diffusion moves
the peak of u. Finally, looking downstream, we see proliferating cells mature into
adult cells.

Secondly, we state the result in the bistable case.

Theorem 4. Assume that f is negative for v 6∈ [v0, v1]. Then there exist

(i) monostable fronts (c, u, v) connecting v̄+ ∈ (v0, v1] with v̄− = v̄−(v̄+) < v0;
(ii) unique bistable fronts connecting any v̄+ ∈ (v1, vχ) with v̄− = v̄−(v̄+) < v0,

where vχ strictly increases in χ from vd > v1 up to v∞ <∞.

Thus, more upstream states v̄+ > v1 can be invaded by travelling waves if
chemotaxis is turned on and strong enough.

Remark 5. Our analysis reveals that strong taxis χ enhances the speed for mod-
erately diffusing cells, i.e., taxis χ takes the role of diffusivity. In the bistable
model the mechanism can be used to explore the functional properties of the chemo-
sensitivity model since the threshold concentration vχ can be easily observed in ex-
periments by analysing the macroscopic wave behaviour, i.e., checking propagation
or decay.

Now let us consider the equation for the chemical with small diffusion. In the
monostable case we show that waves continue to exist for small positive diffusivity
µ. The proof is based on geometric arguments. The abstract singular perturbation
results [5] on persistence of heteroclinic orbits do not guarantee a-priorily the
explicit qualitative behaviour of the travelling wave solution. We use instead a
direct geometric approach to prove that orbits connect admissible equilibria while
staying positive throughout. Recall that in the monostable case this condition is
decisive in excluding waves having speeds lower then the minimal speed.

Theorem 6. Assume that the growth rate f is of monostable type. Choose v̄+ > v0
and c > c∗(v̄+). Then there exists a small µ0 such that for all 0 < µ < µ0 there
are travelling wave solutions (u, v), u positive and v monotone, such that

u(±∞) = 0,

v(−∞) = v̄−(v̄+), |v(∞) − v̄+| = O(µ).
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Dynamics of semelparous populations

Odo Diekmann

(joint work with Stephan van Gils)

A species is called ”semelparous” if individuals that reproduce are bound to die
(like, e.g., Pacific Salmon). If the number of years between being born and going
to reproduce is fixed at, say, k years, the population decomposes into year classes
according to the year of birth modulo k. The point is that such year classes
are reproductively isolated, so once extinct they stay extinct. In particular, a
population can consist of just a single year class, like in the case of the famous
cicada’s in North-America with either k = 13 or k = 17.

Year classes do, in general, interact with each other via an environmental feed-
back mechanism : their survival probability and reproductive output depends on
the environmental conditions (like food availability) and these, in turn, are affected
by the presence or absence of other individuals.

Motivated by the single year class dynamics of cicada’s, we derive and analyse
replicator equations with cyclic symmetry. We then address the question : when
do year classes co-exist, when does one year class outcompete all others and what
other types of dynamics are possible. The main result is a classification of the
repertoire of dynamical behaviour that can occur for k up to 4. Vertical bifurca-
tions play a prominent role.
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Stability and bifurcation analysis of models of physiologically
structured populations

Mats Gyllenberg

(joint work with Odo Diekmann, Philipp Getto)

Traditionally, models of physiologically structured populations are written as hy-
perbolic PDEs

∂

∂t
n(t, ξ) + ∇ · g(ξ, I(t))n(t, ξ) = −µ(ξ, I(t)), ξ ∈ Ω,(1)

b(t, ξ) := u · g(ξ, I(t))n(t, ξ) =

∫

Ω

β(ξ, η, I(t))n(t, η)dη, ξ ∈ ∂Ωb.(2)

Here Ω is the individual state space and Ωb ⊂ Ω is the set of all birth states. g is
the individual growth rate, µ is the death rate, β the fecundity and u is the inward
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normal of Ωb. Note that the vital rates depend on the environmental condition
(or input) I(t), which often is of the form

(3) I(t) =

∫

Ω

γ(ξ)n(t, ξ)dξ.

Note that all interactions between individuals, and hence all nonlinearity is through
the environment I(t).

The nonlocal boundary condition (2) describes the birth rate of the population
and depends on the environmental condition. As a consequence, the problem (1)
– (3) is quasi-linear and hence notoriously difficult. It can be shown [3] that (1) –
(3) can be written as a delay equation

x(t) = F (xt), t > 0 (DE)

for the unknown

(4) x(t) =

(
b(t, ·)
I(t)

)

.

We shall assume that there is only a finite number of states-at-birth and that
the environmental condition is finite dimensional. Then x is a function with values
in RN . We shall also assume a maximum life span h. Then the delay equation
(DE) has to be supplemented by an initial condition

x0(θ) = ϕ(θ), θ ∈ [−h, 0], (IC)

with ϕ being a given function on [−h, 0].
We next rewrite the system (DE) & (IC) as an abstract integral equation

u(t) = T0(t)ϕ+ j−1

(∫ t

0

T⊙∗
0 (t− s)G(u(s))ds

)

, (AIE).

Here T0 is the translation semigroup on X := L1
(
[−h, 0];RN

)
:

(T0(t)ϕ)(θ) :=

{

ϕ(t+ θ) for t+ θ ∈ [−h, 0],

0 for t+ θ > 0,
t ≥ 0, θ ∈ [−h, 0],(5)

T⊙∗
0 is the sun-dual semigroup of T0 acting on X⊙∗, which is represented by

NBV
(
−h, 0];RN

)
, j is the canonical embedding of X into X⊙∗ and G is a non-

linear mapping from X into X⊙∗ defined by

G(ϕ) =
N∑

i=1

Fi(ϕ)Hi,(6)

where Fi denotes the ith component of F for i = 1, ..., N and Hi is defined by

(7) Hi(θ) :=

{

−ei for θ ∈ (−h, 0),

0 for θ = 0.

Here and in the sequel {e1, e2, . . . , eN} is the standard basis of RN . Notice that
G has finite dimensional range spanned by {H1, H2, . . . , HN} in X⊙∗.
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In [3] it was shown that the abstract integral equation (AIE) is equivalent to
the problem (DE) & (IC):

Theorem 7. Let ϕ ∈ X = L1
(
[−h, 0];RN

)
be given.

(a) Suppose that x ∈ L1
loc

(
[−h,∞);RN

)
satisfies (DE) & (IC). Then the function

u : [0,∞) → X defined by u(t) := xt is continuous and satisfies (AIE).
(b) Suppose that for ϕ ∈ X there is a continuous map u : [0,∞) → X that satisfies
(AIE), then the function x defined as

x(t) :=

{

ϕ(t) for t ∈ [−h, 0),

u(t)(0) for t ≥ 0
(8)

is an element of L1
loc

(
[−h,∞);RN

)
and satisfies (DE) & (IC).

The advantage of the (AIE) formulation is that there is a rich theory for such
equations including the principle of linearized (in)stability; Hopf bifurcation; sta-
ble, unstable and centre manifolds. In addition, the finite dimensional range of
G makes it possible to derive for each steady state of the nonlinear semigroup
generated by (AIE) a characteristic equation of the form

(9) det (E −M(λ)) = 0,

where M is an N ×N -matrix valued function of the complex variable λ and E is
the identity matrix. The principle of linearized stability can now be formulated as
follows: If all the roots of the characteristic equation (9) lie in the left half-plane
Reλ < 0, then the steady state is exponentially stable, but if there is one root
λ with Reλ > 0, then the steady state is unstable. It should be noted that the
instability part of the principle of linearized stability has never before been proved
for general physiologically structured population models.
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Derivation of Hyperbolic Models for Chemosensitive Movement

Francis Filbet

(joint work with Philippe Laurençot, Benôıt Perthame)

A Chapman-Enskog expansion is used to derive hyperbolic models for chemosen-
sitive movements as a hydrodynamic limit of a velocity-jump process. On the one
hand, it connects parabolic and hyperbolic chemotaxis models since the former
arise as diffusion limits of a similar velocity-jump process. On the other hand, this
approach provides a unified framework which includes previous models obtained
by ad hoc methods or methods of moments. Numerical simulations are also per-
formed and are motivated by recent experiments with human endothelial cells on
matrigel. Their movements lead to the formation of networks that are interpreted
as the beginning of a vasculature. These structures cannot be explained by par-
abolic models but are recovered by numerical experiments on hyperbolic models.
Our kinetic model suggests that some kind of local interactions might be enough
to explain them.

In the simple situation where we only consider cells and a chemical substance
(the chemo-attractant), a model for the space and time evolution of the density
n = n(t, x) of cells and the chemical concentration S = S(t, x) at time t and
position x ∈ Ω ⊂ R

d has been introduced by Patlak [7] and Keller & Segel [6].
However, this approach is not always sufficiently precise to describe the evolution
of bacteria movements. Indeed, experiments show that bacteria like Escherichia
Coli move along straight lines, suddenly stop to choose a new direction and then
continue moving in a new direction. This phenomenon, called run and tumble, can
be modeled by a stochastic process called the velocity-jump process, and has been
introduced by Alt [1] and further developed in [5, 9]. A kinetic transport model
to describe this velocity jump process reads

(1)
∂f

∂t
+ v · ∇xf = T (S, f),

where f(t, x, v) denotes the density of cells, depending on time t, position x and
velocity v and T is an operator, which models the change of direction of cells. In
fact, parabolic chemotaxis equations such as the Patlak-Keller-Segel (PKS) model
have been obtained as the diffusion limit of the transport equation (1). In this
work, we show that hyperbolic chemotaxis models may also be derived as a fluid
limit of the transport equation (1), but with a different scaling, the hydrodynamic
scaling t → ε t, x → ε x. The approach used relies on a Chapman-Enskog (or
Hilbert) expansion and allows us to recover the previously mentioned models.

We give general assumptions on the kinetic transport model (turning operator)
and use a formal Chapman-Enskog expansion to derive different hyperbolic sys-
tems which depend on the structure of the turning operator T . We first study
linear operators with respect to f and point out some of their features. We
then use this approach to derive nonlinear hyperbolic models already proposed
by Gamba et al. [8] to describe the first stages of blood vessels formation. This
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approach provides a unified framework which includes previous models obtained
by ad hoc methods or methods of moments. Finally, we perform some numerical
computations of nonlinear hyperbolic models of chemotaxis, using a second order
Lax-Friedrich scheme. On the one hand, we compare the transient behaviour of
the parabolic model (PKS system) and hyperbolic models. Numerical simulations
are also performed and are motivated by recent experiments with human endothe-
lial cells on matrigel. Their movements lead to the formation of networks that are
interpreted as the beginning of a vasculature.

In summary, chemosensitive movement models are the starting point to per-
form computer simulations of biological processes, which can be compared with
experiments [8]. Based on these mathematical derivations at the kinetic scale and
numerical simulations, this paper gives a hint that network formations for human
endothelial cells on matrigel, could be also due to local interactions and not only to
long range interactions. More precisely, hyperbolic models seem to represent well
the phenomena and can be derived from a local interaction kernel at the kinetic
level.
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Mathematical Modeling of Cell Movement in Fibre Networks

Thomas Hillen

In a review article on cell movement, Friedl and Bröcker [1] report that the move-
ment of amoeboid cells on a surface differs significantly from their movement in
a tissue matrix. On flat surfaces, cells appear round-shaped with broad protru-
sions in the direction of movement. In three dimensional tissues, however, cells
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experience movement constraints given from the surrounding tissue. Some tu-
mor cells, for example, appear elongated and spindle shaped. They send out thin
pseudopods for directional guidance from the surrounding matrix. Moreover, the
cells use proteases to alter the tissue and to cut through obstacles. This form of
motion is termed mesenchymal motion [1, 2].

The main results of this work [3] are the derivation of kinetic models for mes-
enchymal cell movement in network tissues, their drift-diffusion scaling limits, and
a discussion of the corresponding one-dimensional versions. It turns out that the
macroscopic drift velocity is given by the mean tissue direction and the diffusion
tensor equals the variance-covariance matrix of the directional distribution of the
tissue. Both are statistically well known and experimentally measurable quantities.

The whole analysis is divided into undirected and directed tissue. In undirected
tissues the fibres are symmetrical along their axis and both fibre directions are
identical. Collagen fibres are undirected and they form the basis for many human
(and animal) tissues. It is of utmost importance to understand the movement
behavior of cells in tissues and to attempt to model the cell-tissue interactions.

For directed tissues the fibres are unsymmetrical and the two ends can be dis-
tinguished (positive/negative, forward/backward, north/south). Directed compo-
nents do not play a major role for cell movement in tissues, however, directed
fibres occur inside cells (such as microtubules or actin fibres) or as a combination
of cells (such as the fibre tracks in the white matter of the brain). Branching
collagen fibre networks can also be considered directional if the branching points
are of significance for the movement of cells.

As mentioned already, the undirected case is more important for the application
in mind. From the mathematical point of view, the directed case is also of interest
and in this work we consider both cases. It is beneficial to have a general theory,
since in the future directed fibres might be identified in the extracellular matrix
(ECM) that play an important role for cell movement.

Initial numerical simulations (with K. Painter, Edinburgh and M. Preusse and
C. Rohde, Bielefeld) show network forming structures for models of mesenchymal
motion. Relations to vasculature formation, angiogenesis and tumour fingering
are questions of ongoing research.
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Cytoskeletal dynamics: (de)polymerization and crosslinking

Christian Schmeiser

(joint work with Dietmar Ölz)

The crawling movement of cells is based on the dynamics of the cell skeleton and,
in particular, on the actin filament network. The observed cell morphologies and
movement patterns are the result of complex interactions of the cell skeleton with a
number of proteins responsible for controlling polymerization, depolymerization,
cosslinking, and bundling of filaments, as well as the contact to the substrate.
Another important mechanism is relative movement of filaments caused by myosin
motors leading to contraction similar to muscle cells. Finally, the mechanical
properties of the cell membrane and its interaction with the cytoskeleton have to
be taken into account.

The present status of a modelling effort is presented, where eventually all these
effects should enter into continuum models for the mechanical properties and the
dynamics of the cell body derived by homogenization of descriptions on the indi-
vidual filament level. At the present state, the model includes elastic properties of
the filaments, a simple account of (de)polymerization, the creation and breaking
of cross links, and a simple model for the mechanics of the cell membrane.

The lamellipodium is modelled as a two-dimensional structure with the actin
network consisting of two families of locally parallel filaments. This assumption
idealizes experimental evidence that locally two distinguished directions of fila-
ments dominate. Each filament is modelled as a flexible, nonextensible beam.
At crossings, filaments can be connected by crosslinking proteins, which provide
an elastic resistance against deformation. (De-) attachment of crosslinks to the
cytoskeleton network is accounted for.

Lamellipodia with the topology of a circular ring are considered, where the main
part of the cell including the nucleus lies inside the inner boundary. Polymerization
at the outer boundary and depolymerization at the inner boundary take place at a
constant given rate at the present state of the model. The membrane is modelled
as a rubber band stretched around the outer boundary.

All these ingredients are fed into an energy functional, which is time dependent
by the (de)polymerization and by the (de)attachment of crosslinks. In this energy
functional, a homogenization limit is carried out, where the number of filaments
tends to infinity, and the spacing between locally parallel filaments tends to zero.
This leads to a continuum description of the two filament families. The dynamics
is assumed as quasistationary, where the energy functional is minimized at all
times.

The figure shows a typical numerical solution under the assumption of rota-
tional symmetry of the lamellipodium and with graded filament length, where all
filaments are attached to the membrane and have a stochastic length distribution.
By the rotational symmetry assumption, only the position of one filament (em-
phasized in the figure) needs to be computed. All the other positions are obtained
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