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Introduction by the Organisers

In a broad sense, the subject of Teichmüller theory is the study of moduli for
geometric structures on surfaces. The progenitor of the subject is usually consid-
ered to be G. F. B. Riemann, who in a famous paper on Abelian functions, studied
the moduli space of algebraic curves and stated that the space of deformations of
equivalence classes of conformal structures on a closed orientable surface of genus
g ≥ 2 is of complex dimension 3g− 3. This was explicated by O. Teichmüller who
laid the foundations of the theory in a series of famous papers (during a remarkably
brief period). Many prominent mathematicians including L. Ahlfors and L. Bers
continued developing the theory over several decades. In the 1970s, W. Thurston
introduced techniques of hyperbolic geometry in the study of Teichmüller space
and its asymptotic geometry. In the 1980s, new combinatorial treatments of Te-
ichmüller and moduli spaces evolved with a concurrent interplay of ideas from
string theory in high-energy physics.

Teichmüller theory is one of those precious subjects in mathematics which have
the advantage of bringing together, at an equally important level, fundamental
ideas coming from different fields. Among the fields associated to Teichmüller
theory, one can surely mention complex analysis, hyperbolic geometry, discrete
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group theory, algebraic geometry, low-dimensional topology, Lie groups, symplectic
geometry, dynamical systems, topological quantum field theory, string theory, and
many others. Teichmüller theory is growing at a fantastic rate, and the fact that
it involves all these areas is probably a consequence of the fact that Teichmüller
space itself carries a diversity of rich structures. As a matter of fact, this space
can be seen from at least three points of view: as a space of equivalence classes of
hyperbolic metrics, as a space of equivalence classes of conformal structures, and
as a space of equivalence classes of representations of the fundamental group of a
surface into a Lie group. Each of these points of view endows Teichmüller space
with various structures, including several interesting metrics, a natural complex
structure, a symplectic structure, a real analytic structure, an algebraic structure,
cellular structures, various boundary structures, a natural discrete action by the
mapping class group, interesting geodesic and horocyclic flows on the quotient
Riemann moduli space, a quantization theory of its Poisson structure, and the list
goes on and on.

The quantization of Teichmüller space was developed in the last few years by
L. Chekhov and V. Fock and independently in work by R. Kashaev. This theory
produces noncommutative families of deformations of the Poisson or symplectic
structure of Teichmüller space in the form of ∗-algebras, with an action of the
mapping class group of the surface as an outer automorphism group. In particular,
quantization of Teichmüller space leads to new invariants of hyperbolic three-
manifolds.

The conference brought together people in almost all of the active areas of
Teichmüller theory. The fact that Teichmüller theory is a living and rich subject
connecting several areas of mathematics was reflected in the richness of the talks
that were presented, and in the variety of the new perspectives that were discussed
at the problem session, on which we report separately.

We note that many other attendees were ready to give interesting talks than
time permitted. As a general rule, younger researchers were given the opportinity
to present their own work. In this short report, we have divided the talks that
were delivered in five groups:

1) Metric theory. U. Hametsädt reported on her recent work on the behaviour
in moduli space of images of certain closed geodesics for the Teichmüller metric,
namely, for every compact set K, one can find such images which do not intersect
K. G. Schmithüsen reported on Teichmüller disks, which are embeddings of the
Poincaré disks which are isometric with respect to the Teichmüller metric. G.
Théret gave a talk on Thurston’s asymmetric metric on Teichmüller space and
presented results on the convergence of certain geodesics to points on Thurston’s
boundary.

2) Mapping class groups and the associated simplicial complexes. V. Markovich
gave a review of several realization problems for the mapping class group and he
reported on his result stating that for any closed surface S of genus ≥ 6, the
natural projection from the space of homeomorphisms to the mapping class group
has no section. This result answered a famous open problem. D. Kotschick gave
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a survey of his work on quasi-homomorphisms with applications to the mapping
class group. J. McCarthy gave a talk in which he described the automorphism
group of a recently introduced simplicial complex, the complex of domains of a
surface (joint work with A. Papadopoulos). E. Irmak described recent results on
superinjective simplicial maps of the curve complex, on the automorphism group
of the complex of nonseparating curves, and on the Hatcher-Thurston complex of
cut systems of curves (some of this work is joint with J. McCarthy and with M.
Korkmaz). N. Wahl described a stability theorem for the homology of the mapping
class group of non-orientable surfaces which is analogous to Harer’s theorem for
orientable surfaces. K. Fujiwara spoke on the geometry of the curve graph showing
that the asymptotic dimension of this graph is finite, and that for surfaces of genus
≥ 2 with one bundary component, the dimension is at least two. A description
of symplectic structures on Lefschetz fibrations using algebraic properties of the
mapping class group was given by M. Korkmaz. At a more algebraic level, N.
Kawazumi described recent work on characterictic classes in the mapping class
group, in which he constructs higher analogues of the period matrix in order
to obtain “canonical” differential forms that represent all the Morita-Mumford
classes and their higher relations. R. Cohen gave a talk on joint work with I.
Madsen on a generalized Mumford conjecture on the stable cohomology of the
mapping class group and a general version of homology stability for that group in
the setting of spaces of Riemann surfaces with appropriate boundary conditions
in a simply connected target manifold. G. Mondello reported on his work relating
the tautological classes to cycles of Witten and Kontsevich, which are constructed
combinatorially (using fatgraphs).

3) Quantum theory. R. Kashaev described a new and elegant quantization of a
homology bundle over Teichmüller space related to his earlier work. L. Chekhov
reported (on his joint work with Penner) quantizing Thurston’s projective lami-
nation space for the once-punctured torus. V. Fock discussed an example from
cluster algebras giving an explicit relationship between Teichmüller geometry and
representation theory which is related to his recent work with A. Goncharov on
higher Teichmüller spaces. Y. Gerber described a new construction of a collection
of surface mapping classes with computable quantum invariants leading to new
invariants for fibered knots. F. Bonsante gave a report on his recent work with
R. Benedetti on constant curvature Lorentzian structures on manifolds that are
topologically the product of a hyperbolic surface with the real line.

4) Dynamics. M. Möller reported on joint work with I. Bouw on billiards in
relation to Veech surfaces, projective affine groups and Teichmüller curves in the
moduli space of curves characterizing these curves by properties of the variation of
Hodge structures. The talk by U. Hamenstädt, mentioned in 1) above, involved the
Teichmüller geodesic flow on quotient of the space of quadratic differentials by the
action of the mapping class group. M. Mirzakhani studied the ergodic properties
of natural flows on moduli space in relation to the asymptotic behaviour of simple
closed geodesics on hyperbolic surfaces.
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4) Complex geometry. Y. Imayoshi gave a talk on joint work with T. Nogi on
the complex analytic structure of moduli space together with its Deligne-Mumford
compactification. Continuing ideas that originate in work of Kodaira, he described
a cut-and-paste construction which produces holomorphic families of closed Rie-
mann surfaces of genus two over a four-punctured torus, to which they associate
two holomorphic sections.

5) Higher Teichmüller theory A. Wienhard gave a talk on her recent work with
M. Burger and A. Iozzi on representations of the fundamental group of the surface
into simisimple Lie groups of Hermitian type. G. McShane described geometric
identities for surfaces that are related to Hitchin’s a component of the represen-
tation variety of the fundamental group of a compact surface into SL(n,R). D.
Dumas and S. Kojima spoke on complex projective structures on surfaces, the
space P(S) of which (equivalence calsses) can be considered as a higher-analog
of Teichmüller space. P(S) is a fibre bundle over Teichmüller space, and like
Teichmüller space itself, can be studied from different points of view: complex
analysis (via the Schwarzian derivative) and hyperbolic geometry(via Thurston’s
grafting map). Some of the most interesting questions in the theory of projective
structures relate the two points of view, and the talk by Dumas focused on this
relation. Kojima described a geometric parametrization of the moduli space of
projective surfaces by cross ratios. He develops (together with S. Mizushima and
S. P. Tan) a theory of circle packings in projective geometry which can be traced
back to works by Andreev and by Thurston.
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Abstracts

Simplicial representations of surface mapping class groups

John D. McCarthy

(joint work with Athanase Papadopoulos)

Let S = Sg,b be a connected compact orientable surface of genus g with b
boundary components. Let ∂S denote the boundary of S. The mapping class
group of S, Γ(= Γg,b = Γ(S)), is the group of isotopy classes of orientation-
preserving self-homeomorphisms of S. The extended mapping class group of S,
Γ∗, is the group of isotopy classes of self-homeomorphisms of S. Note that Γ is a
normal subgroup of index 2 in Γ∗.

The study of these groups, Γ and Γ∗. has used their action on various abstract
simplicial complexes, each of which encodes combinatorial information about the
relationship which certain subspaces of S bear to one another. For instance, the
curve complex, C(S), which was introduced by W. Harvey [1], captures the com-
binatorial complexity of the set of isotopy classes of essential unoriented simple
closed curves on S.

In recent joint work with Athanase Papadopoulos, we have begun the study
of a new complex on which Γ∗ acts [5]. This complex is naturally associated to
the Thurston theory of surface diffeomorphisms for compact connected orientable
surfaces with boundary. The various pieces of the Thurston decomposition of a
surface diffeomorphism, thick domains and annular or thin domains, fit into this
flag complex, which we call the complex of domains.

More precisely, a domain on S is a nonempty connected compact embedded
surface in S which is not equal to S and each of whose boundary components is
either contained in ∂S or is essential on S. The vertex set D0(S) of D(S) is the
set of isotopy classes of domains on S. An n-simplex of D(S) is a set of n + 1
distinct vertices of D(S) which can be represented by disjoint domains of S.

The main result discussed in this talk is our computation of the group of au-
tomorphisms of D(S). Unlike the celebrated complex of curves introduced by
Harvey [1], for which, for all but a finite number of exceptional surfaces, by the
works of Ivanov [2], Korkmaz [3], and Luo [4], all automorphisms are geometric
(i.e. induced by homeomorphisms), the complex of domains has nongeometric
automorphisms, provided S has at least two boundary components. These non-
geometric automorphisms of D(S) are associated to natural biperipheral edges of
D(S).

More precisely, a biperipheral edge of D(S) is an edge of D(S) whose vertices
are represented by a biperipheral pair of pants X on S, (i.e. a domain X on S
which is homeomorphic to a sphere with three holes having exactly two of its
boundary components in ∂S) and a regular neighborhood Y of the remaining
boundary component of X on S, the unique essential boundary component of X
on S. The corresponding nongeometric automorphism of D(S), which we call a
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simple exchange of D(S) exchanges the two vertices of D(S) corresponding to X
and Y and fixes every other vertex of D(S).

We prove for most surfaces that every automorphism of D(S) preserves the
set E of all biperipheral edges of D(S) and, hence, induces an automorphism of
the subcomplex of D(S) which is obtained from D(S) by removing each vertex of
D(S) corresponding to a biperipheral pair of pants on S, which subcomplex D2(S)
we call the truncated complex of domains on S. In this way, we obtain a natural
homomorphism ρ : Aut(D(S)) → Aut(D2(S)).

Studying this homomorphism, ρ : Aut(D(S)) → Aut(D2(S)), we prove that it is
surjective and that its kernel, which we call the group of exchange automorphisms
EAut(D(S)) of D(S), consists of involutions ϕF : D(S) → D(S), defined for each
subcollection F of E , which interchange the two vertices of each edge of D(S) in
F , and fix every vertex of D(S) which is not a vertex of an edge of D(S) in F . In
this way, we see that EAut(D(S)) is naturally isomorphic to the Boolean algebra
B(E) of all subsets F of E and, thereby, exhibit Aut(D(S)) as an extension of
Aut(D2(S)) by the Boolean algebra B(E).

Studying Aut(D2(S)), we prove that the natural representation η : Γ∗(S) →
Aut(D2(S)), arising by induction from the natural action of Γ∗(S) on D(S), is an
isomorphism, completing our computation of Aut(D(S)), expressed as follows in
our main result.

Theorem 1. Suppose that S is not a sphere with at most four holes, a torus
with at most two holes, or a closed surface of genus two. Then we have a natural
commutative diagram of exact sequences:

1 −→ B(E) −→ B(E) ⋊ Γ∗(S) −→ Γ∗(S) −→ 1
≃
y ≃

y ≃
y

1 −→ BE −→ Aut(D(S)) −→ Aut(D2(S)) −→ 1
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Global properties of Teichmüller geodesics

Ursula Hamenstädt

Let S be an oriented surface of genus g ≥ 0 with m ≥ 0 punctures where
3g − 3 + m ≥ 2. The Teichmüller space T (S) of S is a complex manifold which
is biholomorphic to a bounded domain in C3g−3+m. The mapping class group
M(S) is the group of all biholomorphic automorphisms of T (S). It acts properly
discontinuously on T (S), with the moduli space Mod(S) = T (S)/M(S) as its quo-
tient orbifold. The Teichmüller space admits a natural complete M(S)-invariant
Finsler metric, the so-called Teichmüller metric. Even though this metric is not
nonpositively curved in any reasonable sense, it shares many properties with a
Riemannian manifold of non-positive curvature. For example, any two points in
T (S) can be connected by a unique Teichmüller geodesic, and closed geodesics in
moduli space are in one-to-one correspondence with the conjugacy classes of the
so-called pseudo-Anosov elements of the mapping class group.

However, unlike in the case of a negatively curved manifold of finite volume,
closed geodesics in moduli space may escape into the end of moduli space. We
discuss the following result [1].

Theorem: If 3g−3+m ≥ 4 then for every compact subset K of Mod(S) there
is a closed Teichmüller geodesic which does not intersect K.

The proof uses train tracks and the Perron Frobenius theorem.
The unit cotangent bundle Q1(S) of Teichmüller space equipped with the Te-

ichmüller metric can naturally be identified with the bundle of all holomorphic
quadratic differentials of area one. The Teichmüller geodesic flow commutes with
the action of M(S) and projects to a flow Φt on the quotient Q1(S)/M(S) pre-
serving a probability measure in the Lebesgue measure class. We briefly discuss
some dynamical properties of the Teichmüller geodesic flow related to invariant
measures and return probabilities into compact sets [2].
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Surface groups and Hermitian symmetric spaces

Anna Wienhard

(joint work with Marc Burger, Alessandra Iozzi)

Let Σ be a connected compact oriented surface of negative Euler characteristic
and G a connected semisimple Lie group with finite center. We single out special
“components”1 of the representation variety

Hom(π1(Σ), G)/G

which might be considered as generalizations of Teichmüller space.
We restrict to the case when the Lie group G is of Hermitian type, that is when

the symmetric space X associated to G carries a G-invariant complex structure J .
This complex structure gives rise to a continuous function, the Toledo invariant

T : Hom(π1(Σ), G)/G→ R,

which in the case when Σ has empty boundary is a characteristic number.
The motivation for considering the Toledo invariant to single out special “com-

ponents” of the representation variety comes from the case when G = PSL(2,R)
and Σ has no boundary. In this case the Toledo invariant is the Euler number of
a representation ρ : π1(Σ) → PSL(2,R). The Euler number satisfies the Milnor-
Wood inequality

|T (ρ)| ≤ |χ(Σ)|.
Goldman [3] proved that the Euler number separates connected components of the
representation variety and that moreover the Teichmüller components consisting of
faithful representations with discrete image are characterized by having maximal
Euler number |T (ρ)| = |χ(Σ)|.

Note that the G-invariant complex structure J gives rise to a G-invariant dif-
ferential two form ω ∈ Ω2(X )G defined by ω(X,Y ) := h(X, JY ), where h is the
unique G-invariant metric of minimal holomorphic sectional curvature −1 on X .
For surface with empty boundary one way to define the Toledo invariant of a rep-
resentation ρ : π1(Σ) → G is to consider a smooth section f : Σ → Eρ of the flat

bundle Eρ = X ×ρ Σ̃ associated to ρ. Then f lifts to a ρ-equivariant smooth map

f̃ : Σ̃ → X and the Toledo invariant is

T (ρ) :=
1

2π

∫

Σ

f̃∗ω.

Before we turn to the definition of the Toledo invariant for arbitrary compact
connected oriented surfaces, let us summarize some properties of the Toledo in-
variant, defined in the general case by Equation (1) below.

1When Σ has nonempty boundary, the representation variety is connected, so that there are
no nontrivial connected components. We speak nevertheless of “components” since the subset
we will single out is a union of connected components of a natural semialgebraic subset of the
representation variety
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Proposition 1. (1) The Toledo invariant is a continuous function

T : Hom(π1(Σ), G)/G→ R.

(2) The Toledo invariant satisfies a generalized Milnor-Wood type inequality

|T (ρ)| ≤ rX |χ(Σ)|,
where rX is the rank of X .

(3) The Toledo invariant is explicitly computable when the representation ρ is
given on the generators of a standard presentation of π1(Σ).

(4) When Σ has empty boundary, then T (ρ) ∈ 1
2Z.

In view of statement (2) of Proposition 1 we say that a representation ρ :
π1(Σ) → G is maximal if T (ρ) = rX |χ(Σ)| and we denote by

Hommax(π1(Σ), G)/G ⊂ Hom(π1(Σ), G)/G

the set of maximal representations which gives our special “components” alluded
to above.

We obtain the following result about the geometric properties of maximal rep-
resentations, which was announced for surfaces with empty boundary in [1] and is
proven for arbitrary surfaces in [2].

Theorem 2. Let G be a connected semisimple Lie group with finite center of
Hermitian type and let X be the associated symmetric space. Let ρ : π1(Σ) → G
be a maximal representation. Then

(1) ρ is faithful with discrete image.

(2) The Zariski closure H := ρ(π1(Σ))
Z

is reductive
(3) The real Lie group H = H(R)◦ is reductive with compact center and its

associated symmetric space Y is Hermitian.
(4) H stabilizes a maximal tube type subdomain T ⊂ X .

To define now the Toledo invariant in the case when Σ has nonempty bound-
ary we recast the above construction on the level of cohomology. The Kähler
form ω ∈ Ω2(X )G gives - via the van Est isomorphism - rise to a continuous co-
homology class κ ∈ H2

c(G,R), which is represented by the homogeneous cocycle
cω : G × G × G → R, (g0, g1, g2) 7→

∫
∆(g0x,g1x,g2x)

ω, where x ∈ X is a base-

point and ∆(g0x, g1x, g2x) a smooth triangle with vertices in g0x, g1x, g2x and
geodesic sides. A homomorphism ρ : π1(Σ) → G gives rise to a natural pullback
map ρ∗ : H2

c(G,R) → H2(π1(Σ),R). Since Σ is an Eilenberg-MacLane space we
have that H2(π1(Σ),R) ∼= H2(Σ,R), and the Toledo invariant is the evaluation of
ρ∗(κ) ∈ H2(Σ,R) on the fundamental class [Σ] ∈ H2(Σ,R).

When Σ has nonempty boundary H2(Σ,R) = 0, there is no fundamental class
[Σ], and the above definition breaks down. But the cocycle cω is bounded and
thus gives rise to a bounded continuous cohomology class κb ∈ H2

cb(G,R). Taking
the pullback map ρ∗ : H2

cb(G,R) → H2
b(π1(Σ),R) we obtain a class

ρ∗κb ∈ H2
b(π1(Σ),R) ∼= H2

b(Σ,R).
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The bounded cohomology H2
b(Σ,R) of a surface with boundary does not vanish,

but is indeed infinite dimensional. More importantly, since the fundamental groups
of the boundary components of Σ are Abelian, we have an isomorphism

H2
b(Σ,R) ∼= H2

b(Σ, ∂Σ,R).

Thus, we obtain a class ρ∗κb ∈ H2
b(Σ, ∂Σ,R) which - forgetting that ρ∗κb is

bounded - can be evaluated on the relative fundamental class [Σ, ∂Σ] to give the
Toledo invariant

T (ρ) :=
〈
ρ∗κb, [Σ, ∂Σ]

〉
.(1)

Having now the definition of the Toledo invariant for an arbitrary compact con-
nected oriented surface we mention two further properties which hold in addition
to the properties stated in Proposition 1.

Proposition 3. (1) The Toledo invariant is additive. Let Σ = Σ1#Σ2 be
an (admissible) decomposition of Σ into subsurfaces, ρ : π1(Σ) → G a
representation and ρi : π1(Σi) → G, i = 1, 2 the induced representations,
then

T (ρ) = T (ρ1) + T (ρ2).

(2) There exists a conjugacy invariant rotation number function Rotκ : G →
R/Z such that

T (ρ) ≡ −
n∑

i=1

Rotκ(ρ(ci)) mod
1

2
Z,

where ci ∈ π1(Σ) are elements freely homotopic to the boundary circles of
Σ.

Note that property (1) of Proposition 3 suggests that the space of maximal
representations can be equipped with Fenchel-Nielsen type coordinates, whereas
property (2) implies that the Toledo invariant is constant on connected components
of the space of representation with fixed holonomy around the boundary loops.

We conclude with a remark concerning the relation of our special components
of maximal representations with higher Teichmüller spaces defined by Hitchin and
Fock-Goncharov in the context of split real semisimple Lie groups. The only group
which is at the same time real split and of Hermitian type is G = Sp(2n,R). For
this group the Hitchin-Fock-Goncharov higher Teichmüller spaces are properly
contained in the space of maximal representations.
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A parametrization of the Teichmüller space of surfaces with boundary

Rinat Kashaev

Let Σ be a connected compact oriented surface of finite type with non-empty
boundary and negative Euler characteristic χ(Σ) = −κ. We consider the Te-
ichmüller space T (Σ) of all isotopy classes of hyperbolic metrics on Σ with totally
geodesic boundary. The restricted Teichmüller space Tλ(Σ) is a subspace of T (Σ)
with fixed total boundary length λ. In this talk a certain parametrization of the
space Rλ(Σ) = Tλ(Σ) × H1(Σ; R) in terms of ideal triangulations is constructed
which permits to construct a mapping class group invariant symplectic structure.
The parametrization is similar to those of Penner [1] and Luo [2].

An ideal triangulation τ of Σ is an isotopy class of cell decompositions of Σ
with the following properties. All 0-cells (called vertices) are on the boundary ∂Σ.
The 1-cells are of two types called respectively long and short edges. The long
edges do not intersect the boundary, while each short edge is a segment of the
boundary. Each 2-cell is a hexagon bounded in alternating order by three long
and three short edges. Below, each ideal triangulation will be identified with a
chosen representative cell complex. We denote by F (τ) the set of 2-cells and by
L(τ), the set of oriented long edges. The projection ϕτ : L(τ) → F (τ) associates
to each oriented long edge the 2-cell which has this edge as its long side with the
induced orientation. The link lkτb of a boundary component b ∈ π0(∂Σ) in τ is
the set of the boundary long edges of the union of all 2-cells intersecting b.

Given an ideal triangulation τ of Σ. We define an open polytope Hλ(τ) as the
set of functions f : L(τ) → R satisfying the conditions

∑
a∈ϕ−1

τ (h) f(a) = λ
2κ , ∀h ∈

F (τ) and
∑

a∈lkτ b f(a) > 0, ∀b ∈ π0(∂Σ). Note that the mapping class group acts

in Hλ(τ) through the action on the set of ideal triangulations.
For any oriented long edge a we denote by â and ǎ the other two long sides

and by a′ the short edge opposite to a in the 2-cell ϕτ (a), the cyclic order (a, â, ǎ)
being induced from the orientation of this 2-cell. In the corresponding to τ dual
cell decomposition of Σ we denote by τ∗ the set of oriented 1-cells dual to the
oriented long edges of τ . The correspondence between their orientations is chosen
so that each oriented dual pair (a, a∗) ∈ L(τ)×τ∗ induces the orientation of Σ. For
any m ∈ T (Σ) and any m-geodesic path a in Σ we denote by |a|m the m-length
of a.

Given (m,α) ∈ Rλ(Σ). For τ we choose the cell complex where all 2-cells are
right-angled m-geodesic hexagons. We choose also a unique cocycle αm

τ : τ∗ → R,
representing the class α, such that

2
∑

a∈ϕ−1
τ (h)

αm
τ (a∗) =

λ

2κ
−

∑

a∈ϕ−1
τ (h)

|a′|m, ∀h ∈ F (τ)
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We define a mapping φλ,τ : Rλ(Σ) → Hλ(τ) by the formula

(m,α) 7→ f, f(a) = αm
τ (ǎ∗) + αm

τ (â∗)

+ |a′|m + log cosh(|â|m/2) − log cosh(|ǎ|m/2)

Theorem 1. For any λ > 0 and any ideal triangulation τ the mapping φλ,τ is a
homeomorphism commuting with the action of the mapping class group.

Let p : F (τ) → L(τ) be a section of the projection ϕτ . Define a two form in

Hλ(τ) by the formula: ωτ =
∑

h∈F (τ) dp(h) ∧ dp̂(h) where the long edges are

identified with coordinate functions in the space Hλ(τ).

Theorem 2. The form ωτ does not depend on p and for any mapping class f one
has f(ωτ ) = ωf(τ).
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Teichmüller spaces and simple Lie groups

Vladimir Fock

(joint work with Aleksandr Goncharov)

Given a triangulation of a Riemann surface with punctures one can parametrize
Teichmüller spaces of open surfaces by shear coordinates one per each edge of the
triangulation and taking values in positive real numbers. In these coordinates the
Weil-Petersson Poisson bracket between any two coordinates xi and xj is propor-
tional to their product with integer coefficient ǫij determined by the combinatorics
of the triangulation. Moreover the coordinate change corresponding to the change
of the triangulation is given by rational expressions (called mutations) determined
by the same coefficients ǫij .

The construction is purely algebraic and admits an obvious generalization by
replacement of the set of positive numbers by elements of arbitrary semifield. If
we take coordinates in a multiplicative group F× of the field F of a field it gives a
parameterization of representation spaces of the fundamental group of the surface
into the group PSL(2,F). If we take the coordinates in a tropical semifield the
construction gives a parameterization of the spaces of maesured geodesic lamina-
tions.

It turns out that very similar construction gives coordinates for simple Lie
groups. The role analogous to the one of the triangulation is played by a decom-
position of the longest element of the square of the corresponding Weyl group
into a product of the standard generators. For every such triangulation one as-
sociates a coordinate system on a Zarisky open subset of the group. There exists
a Poisson structure on a simple Lie group given by the standard r-matrix. This
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Poisson bracket computed between two coordinates xi and xj is also proportional
to their product with integral coefficients ǫij . Changing the decomposition of the
longest Weyl group element amounts to a birational coordinate change given ex-
actly by the mutation formulae. Moreover the group product can be expressed as
a composition of mutations and projections along coordinate axis thus showing its
compatibility with the Poisson structure.

This construction allows to apply techniques developed for Teichmüller spaces
to semisimple Lie groups. For example one can use a quantization procedure
using quantum dilogarithms [3]. One can also look for the groups analogues of
the mapping class groups for Teichmüller spaces. In some examples these groups
are computed and turn out to be related to braid groups. One can also look for
an analogue of the basis of functions on Teichmüller spaces given by traces of
monodromies around closed loops. Conjecturally this coincides with the Lusztig’s
dual canonical basis.

The construction admits several generalizations. For example one can associate
Poisson manifolds not only to the longest elements of the Weyl group but also to
any element of the corresponding Weyl group. Given two elements of the braid
group there exists a canonical Poisson maps from manifolds corresponding these
elements to the manifold corresponding to the product.

Another generalization describes in analogous terms the coordinates on dual
Poisson-Lie groups and more generally on the space of Stokes data for irregular
singularity of a holomorphic connection. In the latter case the corresponding
mapping class group can be shown to contain the corresponding braid group. And
finally, although it was our starting point for all the construction, it gives analogous
description for the moduli spaces ofG local systems on Riemann surfaces for simple
groups G [2].
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Quantum Thurston theory

Leonid Chekhov

(joint work with R. C. Penner)

A fatgraph or ribbon graph is a graph Γ together with a cyclic ordering on the
half-edges incident on each vertex, and we canonically associate to Γ a surface
F (Γ) with boundary obtained by “fattening each edge of the graph into a band”
in the natural way; we shall tacitly require all vertices to have valence three.
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Recall [1] that the lambda length of a pair of horocycles for punctured surfaces is√
2 eδ, where δ is the signed hyperbolic distance between the horocycles. Lambda

lengths give a global real-analytic parametrization of the decorated Teichmüller

space as the trivial bundle T̃ s
g = T s

g ×Rs
>0 over Teichmüller space, where the fiber

over a point is the space of all s-tuples of horocycles in the surface, one horocycle
about each puncture (parameterized by hyperbolic length). Another coordinate
system is provided by shear coordinates Zα which proved to be useful for quantizing
the theory and for providing the explicit parameterization of the Fuchsian group.

Given an open Riemann surface F of finite topological type, a neighborhood
of an ideal boundary component is either an annulus or a punctured disk; in
the former case, the ideal boundary component will be called a “true” boundary
component and in the latter will be called a “puncture.” We assume the latter a
degeneration of the former.

Theorem 1. Fix any spine Γ ⊆ F , where Γ is a cubic fatgraph. Then there is a
real-analytic homeomorphsim RE(Γ) → TH(F ). The hyperbolic length lγ of a true
boundary component γ is given by lγ = |∑Zi|, where the sum is over the set of
all edges traversed by γ counted with multiplicity. Furthermore,

∑
Zi = 0 if and

only if the corresponding ideal boundary component is a puncture, so T s
g ⊆ TH(F )

is determined by s independent linear constraints.

The theorem is due to Thurston with a systematic study by Fock [2, 3]. We
describe explicitly the homeomorphism in the theorem letting α = 1, . . . , E = E(Γ)
to index the edges of Γ and (Zα) to denote a point of RE . We associate the Möbius
transformation

(1) XZα
=

(
0 −eZα/2

e−Zα/2 0

)
.

to the edge α. We also introduce the “right” and “left” turn matrices

(2) R =

(
1 1
−1 0

)
, L = R2 =

(
0 1
−1 −1

)
,

Consider a closed oriented edge-path P in Γ with no “turning back”. Choosing
an initial base point on P , we may imagine the corresponding curve serially tra-
versing the oriented edges of Γ with coordinates Z1, . . . , Zn turning left or right
from Zi to Zi+1, for i = 1, . . . , n (with the indices mod n so that Zn+1 = Z1).
Assign to P the corresponding composition

(3) PZ1...Zn
= LXZn

LXZn−1RXZn−2 . . . RXZ2LXZ1 ,

where the matrices L or R are inserted depending on which turn—left or right—
the path takes at the corresponding stage.

Fixing any base point, the assignment P 7→ PZ1,...,Pn
∈ PSL2(R) gives rise to

a representation ρ ∈ TH(F ), and this defines the required map RE(Γ) → TH(F ).
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Proposition 2. There is a one-to-one correspondence between the set of con-
jugacy classes of elements of π1(F ) and free homotopy classes of closed oriented
geodesics in F . For any spine of F , each free homotopy class is uniquely rep-
resented by a cyclically defined closed edge-path P with no turning back, and the
length of γ is determined by

(4) Gγ ≡ 2 cosh(lγ/2) = trPZ1...Zn
≥ 2.

We call Gγ the geodesic function.

Theorem 3. [2] In the coordinates (Zα) on any fixed spine, the Weil–Petersson
bracket BWP is given by

(5) BWP =
∑

v

3∑

i=1

∂

∂Zvi

∧ ∂

∂Zvi+1

,

where the sum is taken over all vertices v and vi, i = 1, 2, 3 mod 3, are the labels
of the cyclically ordered half-edges incident on this vertex.

This Weil–Petersson bracket is mapping class group invariant.

Proposition 4. The center of the Poisson algebra (5) is generated by elements of
the form

∑
Zα, where the sum is over all edges of Γ in a boundary component of

F (Γ) and the sum is taken with multiplicity.

Here we construct a quantization T ~(F ) of the Teichmüller space TH(F ) that
is equivariant with respect to the action of the mapping class group D = MC(F ).

Fix a cubic fatgraph Γ as spine of F , and let T ~ = T ~(Γ) be the algebra
generated by Z~

α, one generator for each unoriented edge α of Γ, with relations

(6) [Z~

α, Z
~

β ] = 2πi~{Zα, Zβ}

(cf. (5)) and the ∗-structure

(7) (Z~

α)∗ = Z~

α,

where Zα and {·, ·} denotes the respective coordinate functions and the Poisson
bracket on the classical Teichmüller space. Because of (5), the righthand side of
(6) is a constant taking only five values 0, ±2πi~, and ±4πi~ depending upon the
coincidences of endpoints of edges labelled α and β and sums

∑
Z~

α over all edges
of a boundary component remain Casimir elements of the quantum algebra.

We now quantize the Thurston theory following [4]. We assign a signed quantity,
the (Thurston’s foliation-)shear coordinate of the edge indexed by α to to be

ζα =
1

2
(µ(A) − µ(B) + µ(C) − µ(D)),

where A,B,C,D label the four nearest edges (some of which may coincide) ad-
jacent to the αth edge (ordered in a natural way) and µ are the corresponding
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(nonnegative) transverse measures. These new quantities are subject to the only
restriction (the face conditions) that

(8)
∑

α∈I

ζα = 0

for the sum over edges α ∈ I surrounding any given boundary component.

Definition 5. The proper length p.l.(γ) of a closed curve γ in the classical or
quantum case is constructed from the quantum ordered operator Pγ associated to
a closed oriented edge-path

as

(9) p.l.(γ) = lim
n→∞

1

n
tr log 2Tn(Pγ/2),

where Tn are Chebyshev’s polynomials. The p.l.(γ) is half the hyperbolic length
of γ in the Poincaré metric in the classical case.

Definition 6. A graph length function with respect to the spine Γ is any linear
function

(10) g.l.~aΓ(Ĉ~n) = g.l.~aΓ(Ĉ~m) =
∑

i

aimi.

In particular, when all ai are unity, the graph length is just the combinatorial
length of Ĉ~m.

Definition 7. A sequence ~nβ{nβ
i }, for β ≥ 1, of integer-valued ni, for i =

1, . . . , LB(τ), on τ is an approximating sequence for the projectivized measured

foliation P~ζ

if the face conditions (8) hold on ~nβ and if limβ→∞ nβ
i /n

β
j = ζi/ζj for all i, j

with ζj 6= 0.

Theorem 8. Fix a spine Γ of F 1
1 with corresponding freeway τ . Fix any projec-

tivized vector P~ζ of foliation-shear coordinates on τ and any graph length function

g.l.. For any approximating sequence ~nβ to P~ζ, the limit

(11) lim
β→∞

p.l.(Ĉ~nβ )

g.l.(Ĉ~nβ )

exists both in the classical case as a real number and in the quantum case as a
weak operatorial limit.
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A higher analogue of the period matrix of a compact Riemann surface

Nariya Kawazumi

Let Tg be the Teichmüller space of genus g ≥ 2, and Hg the Siegel upper
half space of genus g. Rauch’s variational formula [11] tells us the dual of the
differential of the period matrix map Jac : Tg → Hg at a marked Riemann surface

[C,α] is given by the multiplication map Sym2(H0(C;K)) → H0(C; 2K). Here
α is a marking, i.e., an isotopy class of an orientation preserving diffeomorphism
of a fixed closed C∞ surface Σg of genus g onto the Riemann surface C, and
K = KC = T ∗C is the canonical bundle of C. Let H and H∗ denote the first
real homology and cohomology groups of the surface C, respectively. The map
H∗ = H1(C; R) → Ω1(C) assigning each cohomology class the harmonic 1-form
representing it can be regarded as a H-valued 1-form ω(1) ∈ Ω1(C) ⊗ H . For

a 1-form ϕ ∈ Ω1(C) ⊗ C we denote by ϕ′ and ϕ′′ its (1, 0)- and (0, 1)-parts,
respectively. For example, ω(1)

′ is holomorphic, and ω(1)
′′ anti-holomorphic. Then

Rauch’s formula can be written by

(d Jac)∗ = ω(1)
′ω(1)

′ ∈ T ∗
[C,α]Tg ⊗H⊗2.

The Morita-Mumford classes [10] [8] play an essential role in the topology of the
moduli space of compact Riemann surfaces. The odd ones are represented by the
pull-backs of Sp2g(R)-invariant differential forms on Hg, but the even ones are not
represented by such forms. To obtain “canonical” differential forms representing
all the Morita-Mumford classes and their higher relations, we construct a higher
analogue of the period matrix, the harmonic Magnus expansion θ : Tg,1 → Θ2g.
Here Tg,1 is the Teichmüller space of triples (C,P0, v) of genus g. Here C is a
compact Riemann surface of genus g, P0 ∈ C, and v a non-zero tangent vector
of C at P0. For any triple (C,P0, v) one can define the fundamental group of
the complement C \ {P0} with the tangential basepoint v denoted by π1(C,P0, v),
which is a free group of rank 2g. The space Θn is the set of all the Magnus
expansions of the free group Fn of rank n ≥ 2 in a wider sense stated as follows.

We denote by H := H1(Fn; R) the first real homology group of the group Fn,
by H∗ := H1(Fn; R) the first real cohomology group of Fn, and by [γ] ∈ H
the homology class induced by γ ∈ Fn. The completed tensor algebra generated

by H , T̂ = T̂ (H) :=
∏∞

m=0H
⊗m, has a decreasing filtration of two-sided ideals

T̂p :=
∏

m≥pH
⊗m, p ≥ 1. The subset 1 + T̂1 is a subgroup of the multiplicative

group of the algebra T̂ . We call a map θ : Fn → 1 + T̂1 a Magnus expasion of the

free group Fn in a wider sense [5], if θ : Fn → 1 + T̂1 is a group homomorphism,

and if θ(γ) ≡ 1 + [γ] (mod T̂2) for any γ ∈ Fn. We denote by Θn the set of
all the Magnus expansions, which one can endow with a natural strucure of a
(projective limit of) real analytic manifold(s). A certain (project limit of) Lie

group(s) IA(T̂ ) acts on Θn in a free and transitive way. This induces a series of 1-
forms ηp ∈ Ω1(Θn)⊗H∗⊗H⊗(p+1), p ≥ 1, the Maurer-Cartan forms of the action

of IA(T̂ ), which are invariant under a natural action of the automorphism group of
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the group Fn, Aut(Fn). The 1-forms ηp’s represent the twisted Morita-Mumford
classes on the group Aut(Fn) [4] [5] [6].

Let (C,P0, v) be a triple of genus g. We denote by δP0 : C∞(C) → R, f 7→
f(P0), the delta 2-current on C at P0. Then there exists a T̂1-valued 1-current

ω ∈ Ω1(C) ⊗ T̂1, satisfying the following 3 conditions

(1) dω = ω ∧ ω − I · δP0 , where I ∈ H⊗2 is the intersection form.
(2) The first term of ω equals to ω(1) ∈ Ω1(C) ⊗H .

(3)
∫

C(ω − ω(1)) ∧ ∗ϕ = 0 for any closed 1-form ϕ and each p ≥ 2.

Here ∗ is the Hodge ∗-operator on Ω1(C), which is conformal invariant of the
Riemann surface C. Using Chen’s iterated integrals [1], we can define a Magnus
expansion

θ = θ(C,P0,v) : π1(C,P0, v) → 1 + T̂1(H1(C; R)), [ℓ] 7→ 1 +

∞∑

m=1

∫

ℓ

m︷ ︸︸ ︷
ωω · · ·ω .

Let a point p0 ∈ Σg and a non-zero tangent vector v0 ∈ Tp0Σg \ {0} be fixed.
Moreover we fix an isomorphism π1(Σg, p0, v0) ∼= F2g. A marking α of a triple
(C,P0, v) is an orientation-preserving diffeomorphism of Σg onto C satisfying the
conditions α(p0) = P0 and (dα)p0 (v0) = v. For any marked triple [C,P0, v, α] we
define a Magnus expansion of the free group F2g by

F2g
∼= π1(Σg, p0, v0)

α∗→π1(C,P0, v)
θ(C,P0 ,v)

−→ 1 + T̂1(H1(C; R))
α∗

−1

→ 1 + T̂1.

Consequently the Magnus expansions θ(C,P0,v) for all the triples (C,P0, v) define
a canonical real analytic map θ : Tg,1 → Θ2g, which we call the harmonic Magnus
expansion on the universal family of Riemann surfaces. The pullbacks of the
Maurer-Cartan forms ηp’s give the canonical differential forms representing the
Morita-Mumford classes and their higher relations [9] [7].

Theorem 1 ([6]). For any [C,P0, v, α] ∈ Tg,1 we have

(θ∗η)[C,P0,v,α] = 2ℜ(N(ω′ω′) − 2ω(1)
′ω(1)

′) ∈ T ∗
[C,P0,v,α]Tg,1 ⊗ T̂3.

Here N : T̂1 → T̂1 is defined by N |H⊗m :=
∑m−1

k=0

(
1 2 · · · m− 1 m
2 3 · · · m 1

)
, and

the meromorphic quadratic differential N(ω′ω′) is regarded as a (1, 0)-cotangent
vector at [C,P0, v, α] ∈ Tg,1 in a natural way.

The third homogeneous term of N(ω′ω′) equals to the first variation of the
(pointed) harmonic volumes of compact Riemann surfaces introduced by Harris
[3], which is closely related to an Arakelov-geometirc approach to the Teichmüller
space by Hain and Reed [2]. The second term coincides with 2ω(1)

′ω(1)
′, which is

exactly the first variation of the period matrices given by Rauch’s formula [11].
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Mapping class groups of non-orientable surfaces

Nathalie Wahl

Let S = Sn,r be a non-orientable surface of genus n with r boundary components,

i.e. S is the connected sum of n copies of RP2 with r discs removed. The mapping
class group of S is

Mn,r := π0Diff(Sn,r rel ∂),

the group of path components of the space of diffeomorphisms of S which fix its
boundary pointwise.

When r ≥ 1, there are stabilization maps α : Mn,r → Mn+1,r, obtained by

gluing a punctured Moebius band (or a twice punctured RP2) to the surface and
extending the diffeomorphisms by the identity on the added part, and β : Mn,r →
Mn,r+1, obtained similarly by gluing a pair of pants. Gluing a disc on the added
pair of pants defines a right inverse δ : Mn,r → Mn,r−1 to β. This means in
particular that the map induced by β in homology is always injective. Our main
theorem is the following.

Theorem 1 (Stability Theorem). For any r ≥ 1,
(1) αi : Hi(Mn,r; Z) → Hi(Mn+1,r; Z) is surjective when n ≥ 4i − 1 and an

isomorphism when n ≥ 4i+ 2.
(2) βi : Hi(Mn,r; Z) → Hi(Mn,r+1; Z) is an isomorphism when n ≥ 4i+ 2.
(3) δi : Hi(Mn,1; Z) → Hi(Mn,0; Z) is an isomorphism when n ≥ 4i+ 4.

An analogous theorem was proved by Harer [1] (improved by Ivanov [2]) in the
case of orientable surfaces.
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Let M∞ = colimn→∞(Mn,1 → Mn+1,1 → . . . ) be the stable non-orientable
mapping class group. Using the work of Madsen and Weiss [3], we obtain the
following consequence of Theorem 1:

Theorem 2 (Stable Homology). H∗(M∞; Z) ∼= H∗(Ω
∞
0 G−2; Z).

Here Ω∞
0 G−2 denotes the 0th component of the infinite loop space of the Thom

spectrum G−2 defined by the orthogonal bundle to the tautological bundle over
the grassmannians of 2-planes in Rn+2—letting n vary. Let Q denote the functor
Ω∞Σ∞ = colimn→∞ ΩnΣn and Q0 its 0th component. Looking away from 2 or
rationally, the right hand side in Theorem 2 simplifies further:

Corollary 3. H∗(M∞; Z[ 12 ]) ∼= H∗(Q0(BO(2)+); Z[12 ])

Corollary 4. H∗(M∞; Q) ∼= Q[ζ1, ζ2, . . . ] with |ζi| = 4i.

This latter corrolary is the non-orientable analogue of the Mumford conjecture.

The homological stability theorem (Theorem 1) is proved using complexes of
arcs in non-orientable surfaces.

Let S be a surface, orientable or not, and let
−→
∆ be a set of oriented points in

∂S, that is each point comes with the choice of an orientation of the component

of ∂S it lies in. We say that an arc in (S,
−→
∆) is 1-sided if its boundary points are

in
−→
∆ and its normal bundle identifies the orientations of its endpoints. Note that

a 1-sided arcs from a point to itself is a 1-sided curves in the usual meaning of

the word. If S is orientable, the choice of an orientation for S decomposes
−→
∆ as−→

∆ = ∆+⊔∆−, where ∆+ is the set of “positive” points and ∆− the set of negative
ones. The 1-sided arcs in this case are exactly the arcs with one boundary point
in ∆+ and the other in ∆−. This complex, in the oriented case, was studied by
Harer in [1]. He shows that it is highly connected. We generalize his result in
two ways: first to the complex of arcs between two sets of points ∆0 and ∆1 in

a non-orientable surface, and then to the complex of 1-sided arcs in (S,
−→
∆) for a

set of oriented points
−→
∆. Our proof is different from Harer’s and uses techniques

from [4]. (We also fill in a gap in Harer’s argument.)
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The space of smooth surfaces in a manifold

Ralph L. Cohen

(joint work with Ib Madsen)

The goal of this work is to study the topology of the space of surfaces mapping to
a background manifold X , with boundary condition γ, Sg,n(X ; γ). This space is
defined as follows.

Let X be a simply connected space with basepoint x0 ∈ X . Let γ :
∐

n S
1 → X

be n smooth loops in X . Define the space

Sg,n(X, γ) = {(Sg,n, φ, f) : where Sg,n ⊂ R∞ is a smooth oriented surface

of genus g and n boundary components,

φ :
∐

n

S1 ∼=−→ ∂S is a parameterization of the boundary,

and f : Sg,n → X is a smooth map with ∂f = γ :
∐

n

S1 → X . }

The parameterization φ is an orientation preserving diffeomorphism. ∂f is the

composition
∐

n S
1 φ−→ ∂S

f|∂S−−−→ X .

We think of these spaces as moduli spaces of Riemann surfaces mapping to
X , or for short, the moduli space of surfaces in X . Indeed the embedding of the
surface in Euclidean space defines an inner product on the tangent space of the
surface, which together with the orientation defines an almost complex structure,
and hence a complex structure on the surface. In fact when X is a point, this
space is homotopy equivalent to the moduli spae, Mg,n of Riemann surfaces of
genus g, and n-parameterized boundary components.

We have three main results about these moduli spaces. The first describes the
“stable topology” of Sg,n(X, γ), the second is a stability result showing the range
of dimensions in which the homology of Sg,n(X ; γ) is in the stable range, and the
third is a stability result about the homology of mapping class groups with certain
families of twisted coefficients.

We first observe that the spaces Sg,n(X ; γ) have homotopy types that do not
depend on the boundary map γ. This is because the space Sg,n(X) fibers over the
space of n-tuples of loops, (LX)n. Since X is simply connected, these loop spaces
are connected, and hence the fibers have homotopy types which are independent
of the choice of point γ ∈ (LX)n.

Because of this fact, we are free to work with convenient choices of boundary
conditions. We will assume our boundary map γ :

∐
n S

1 → X , viewed as n-loops
numbered γ0, · · · , γn−1, has the property that γ0 : S1 → x0 ∈ X is constant at
the basepoint.
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To state our result about the stable topology of Sg,n(X ; γ), consider the fixed
surface of genus one, T ⊂ R3 having two boundary components. Given (S, φ, f) ∈
Sg,n(X, γ), we “glue in” the surface T along the boundary component labeled by
γ0, to get a surface T#S of genus g + 1. The boundary parameterization φ now
defines a boundary parameterization of T#S, and the map f : S → X extends to
T#S by letting it be constant at the basepoint on T . This construction defines a
map

T# : Sg,n(X ; γ) → Sg+1,n(X ; γ).

We now define S∞,n(X ; γ) to be the limit of the map T#,

S∞,n(X ; γ) = lim {Sg,n(X ; γ)
T#−−→ Sg+1,n(X ; γ)

T#−−→ · · · }
We refer to the topology of S∞,n(X ; γ) as the “stable topology” of the moduli

spaces, Sg,n(X ; γ). It can viewed as the moduli space of maps of infinite genus
surfaces to X , which, in an appropriate sense, are constant outside a finite genus
subsurface.

Our first theorem describes the stable topology of these moduli spaces.

Theorem 1. Let X be a simply connected, based space. The stable cohomology
H∗(S∞,n(X ; γ); Z) is completely known (see [1] for a description). The rational
cohomology has a particularly nice description. Let K be the graded vector space
over Q generated by one basis element, κi, of dimension 2i for each i ≥ −1.
Consider the tensor product of graded vector spaces, K ⊗ H∗(X ; Q). Let (K ⊗
H∗(X ; Q))+ denote that part of this vector space that lives in nonnegative grading.
Let A((K⊗H∗(X ; Q))+) be the free graded algebra over Q generated by this vector
space. We then have an isomorphism of algebras,

H∗(S∞,n(X ; γ) Q) ∼= A((K ⊗H∗(X ; Q))+)/(κ0 − 1).

In other words, the only relation in this free algebra is the class κ0 is set equal to
1.

Notice that H∗(S∞,n(point); Q) is the stable rational cohomology of moduli
space. This algebra was conjectured by Mumford, and proven by Madsen and
Weiss in [5], to be the polynomial algebra on the Miller-Morita-Mumford κ-classes.
The classes κi ∈ K ⊂ H∗(S∞,n(X ; γ) Q) for i ≥ 1 are the image of the Miller-
Morita-Mumford classes under the map

H∗(S∞,n(point); Q) → H∗(S∞,n(X ; γ) Q).

This theorem can be viewed as a parameterized version of the Madsen-Weiss the-
orem.

Notice that in the statement of Theorem 1, the right hand side does not depend
on n, the number of boundary components. This is strengthened by the following
theorem, which identifies the stable range of the homology of the individual surface
spaces.
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Theorem 2. For X simply connected as above, the homology groups,

Hq(Sg,n(X ; γ); Z)

are independent of the genus g, the number of boundary components n, and the
boundary condition γ, so long as 2q + 4 ≤ g.

Our last result, which is actually a key ingredient in proving both Theorem
1 and Theorem 2 is purely a statement about the homology of mapping class
groups. Our inspiration for this theorem was the work of Ivanov [4] which gave
the first stability results for the homology of mapping class groups with certain
kinds of twisted coefficients. The following is a generalization of his results.

Let C be the category whose objects are oriented surfaces, which, if they have
boundaries come equipped with boundary parameterizations. The morphisms are
isotopy classes of embeddings e : S1 →֒ S2, which on the boundary, maps each
component of ∂S1 either diffeomorphically to a boundary component of ∂S2 (pre-
serving the parameterizations), or to the interior of ∂S2. This way there exist
morphisms that change both the genus and the number of boundary components.

Let Γg,n = π0(Diff
+(Fg,n, ∂Fg,n)) be the mapping class group. Notice these

are morphisms in the surface category C.

A coefficient system is a functor V : C → Abelian groups. Notice that for any
surface S, V(S) is a representation of the mapping class group, Γ(S).

For a fixed surface of genus Fg,n, let Vg,n = V(Fg,n). Following Ivanov [4] we
define the notion of the degree of a coefficient system. Degree 0 coefficient systems
have the property that all the Vg,n’s are isomorphic, and have trivial Γg,n-actions.

A nice example of a coefficent system of degree one is Vg,n = H1(Fg,n; Z). We
also prove that the coefficient system V q

g,n = Hq(Map(Fg,n, ∂Fg,n;X,x0)) is a
degree q-coefficient system. Our last main result is a generalization of stability
theorems of Harer [2] and Ivanov [4], [3].

Theorem 3. If V is a coefficient system of degree d, then the homology group

Hq(Γg,n;Vg,n)

is independent of g, and n, so long as 2q + d < g.
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Counting simple closed geodesics on hyperbolic surface

Maryam Mirzakhani

Let X be a complete hyperbolic Riemann surface of genus g with n punctures.
In this talk, we address the problem of estimating sX(L), the number of primitive
simple closed geodesics of hyperbolic length less than L on X . To explore this
problem, we follow two approaches: the first using symplectic geometry of moduli
spaces of curves, and the second using ergodic theory of the Teichmüller horocycle
flow.

For X ∈ Mg, let cX(L) be the number of primitive closed geodesics on X of
length ≤ L. By work of Delsart, Huber, Selberg and Margulis, we have

cX(L) ∼ eL/L

as L → ∞. However, very few closed geodesics are simple [1] and it is hard to
discern them in π1(Sg).

For simplicity, we assume that X is compact. Given X ∈ Tg, let H(X) = {v ∈
T 1(X) | gtv is a simple complete geodesic}. It is easy to check that H(X) is a
geodesic flow invariant closed subset of T 1(X). By a result of Birman and Series
[1] H(X) has Hausdorff dimension 1. We are interested in understanding the
ergodic theory of the geodesic flow on H(X). Let µγ be the probability measure
supported on a simple closed geodesic γ on X . Using ideas in [2] we show

Theorem 1. Let N(L) be the number of simple closed geodesic of length ≤ L on
X. Then there exists a measure µ on T 1(X) such that as L→ ∞,

∑
ℓ(γi)≤L µγi

N(L)
→ µ.

Moreover, the support of measure µ is exactly H(X).

The measure µ is very different from the measure of maximal entropy on X. In
fact, all the ergodic components of µ have zero entropy.

Let MLg be the space of measured laminations on Sg [5]. There is a one-to-one
correspondence between the integral measured laminations, MLg(Z), and unions
of disjoint essential simple closed curves on Sg, up to isotopy. There is a natural
volume form on MLg preserved by the action of the mapping class group Modg.
For any X ∈ Tg and λ ∈ MLg, let ℓλ(X) denote the hyperbolic length of λ on X .
Counting problems. To understand the growth of sX(L), it proves fruitful to
fix a simple closed curve γ ∈ MLg(Z) and consider more generally the counting
function sX(L, γ) = #{α ∈ Modg ·γ | ℓα(X) ≤ L}. There are only finitely many
isotopy classes of simple closed curves on Sg up to the action of the mapping
class group. Therefore, summing sX(L, γ) over representatives of these orbits
gives sX(L), and the asymptotics of the sX(L, γ)’s determines the asymptotics of
sX(L). In [2] we show :
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Theorem 2. For any γ ∈ MLg(Z), we have

lim
L→∞

sX(L, γ)

L6g−6
= nγ(X),

where nγ(X) is a smooth proper function of X ∈ Mg.

In the case of M1,1, this result was previously obtained by McShane and Rivin
[8]. The upper and lower estimates for SX(L) when X ∈ Mg were obtained by
M. Rees in [7] and I. Rivin in [6].
Idea of the proof. The crux of matter is to understand the density of Modg ·γ
in MLg(Z). This is similar to the problem of the density of relatively prime pairs
(p, q) in Z2. Our approach is to use the moduli space Mg,n to understand the
average of these densities. We show that the average defined by

S(L, γ) =

∫

Mg

sX(L, γ) dX

is well-behaved; in fact it is a polynomial in L. Here the integral on Mg is taken
with respect to the Weil-Petersson volume form. This polynomial behaviour allows
us to use the ergodicity of the action of the mapping class group on MLg [9] to
prove that these densities exist. Then Theorem 2 follows by a simple lattice-
counting argument.
Frequencies of different types of simple closed curves. We now discuss
more precisely how nγ(X), the constant in the growth rate of sX(L, γ), depends
on X and on the simple closed curve γ.

Let BX be the unit ball in the space of measured geodeic laminations with
respect to the length function at X :

BX = {λ |ℓλ(X) ≤ 1} ⊂ MLg.

We show that BX is convex with respect to the piecewise linear structure of MLg.
Let B(X) = Vol(BX) with respect to the Thurston volume form on MLg. We
show that bg =

∫
Mg

B(X) dX is a finite number in π6g−6 ·Q which can be calculated

in terms of the leading coefficients of the volume polynomials.
We show that the contributions of X and γ to nγ(X) separate as follows:

Theorem 3. For any γ ∈ MLg(Z), there exists a rational number cγ such that
we have:

nγ(X) =
cγ ·B(X)

bg
.

It follows that the relative frequencies of different types of simple closed curves
on X are universal rational numbers.

Corollary 4. For X ∈ Mg and γ1, γ2 ∈ MLg(Z), we have

lim
L→∞

sX(L, γ1)

sX(L, γ2)
=
cγ1

cγ2

∈ Q.

The limit is a positive rational number independent of X.
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Remark. The exact same result holds when the surface X has variable negative
curvature.
Let Vg,n(L) denote the Weil-Petersson volume of the moduli space of hyperbolic
surfaces of genus g with n geodesic boundary components of length L1, . . . , Ln [3].
We can calculate cγ recursively using our recursive formula for Vg,n(L). In fact,
we can write the number cγ in terms of the intersection numbers of tautological
line bundles over the moduli space of Riemann surfaces of type Sg − γ [4].
Remark. Note that the result is in fact a topological statement about MLg.
Therefore one can replace the hyperbolic length function by any continuous func-
tion, F : MLg × Tg → R such that F (t · λ,X) = tF (λ,X); e.g. F (λ,X) =√

Extλ(X).
The growth of the number of simple closed geodesics, sX(L), can be also inves-
tigated via the dynamics of the Teichmüller horocycle flow on moduli space of
holomorphic quadratic differentials. Let QTg be the bundle of quadratic differen-
tials over the Teichmüller space. Then the space MLg parametrizes the space of
horospheres of QTg.
Train tracks and equidistribution results in moduli space of quadratic
differentials. Let τ be a train track on a surface Sg. If we assign positive integer
weights to the edges of the graph τ satisfying the switch conditions, then the re-
sulting weighted train track determines an isotopy class of a simple closed curve
on Sg [10]. We would like to know the probability of getting a connected curve.
We answer this question using equidistribution of the level sets of the extremal
lengths of closed curves in the moduli space of quadratic differentials. We show
that any train track τ defines an open chart in a stratum of the moduli space of
quadratic differentials. The special case of this question for a generic train track
can be answered by Corollary 4.
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Geometric identities, cross ratios and the Hitchin component

Greg McShane

(joint work with François Labourie)

In [7] McShane established a remarkable identity for lengths of simple closed
geodesics on punctured hyperbolic surfaces and, using the same method, M. Mirza-
khani [8] extended this identity to hyperbolic surfaces with geodesic boundary.
Although it is possible to state and prove identities for surfaces with multiple
boundary components, to simplify the exposition, we only consider Σ a complete
hyperbolic surface with a single totally geodesic boundary component ∂Σ. If C is
a closed curve then we denote by ℓ(C) the infimum of the set of lengths of curves
freely homotopic to C with respect to the hyperbolic metric; this extends to a
finite set of curves {Ci}i by ℓ({Ci}i) =

∑
i ℓ(Ci). With this notation Mirzakhani’s

version of McShane’s identity is

ℓ(∂Σ) =
∑

P∈P

log

(
e

ℓ(∂P )
2 + eℓ(∂Σ)

e
ℓ(∂P)

2 + 1

)
,(1)

where P is the setof embedded pants (with marked boundary) up to homotopy
such that first the boundary component of the pair of pants is ∂Σ.

The purpose of the talk is twofold. Firstly, we show that the identity above
has a natural formulation in terms of (generalized) cross ratios. Then, using
this formulation, we study identities arising from the cross ratios constructed for
representations in SL(n,R) by Labourie [6]. We give a brief overview of the main
ideas below, see [1] for details.

Cross ratio and periods: Let Σ be a closed surface. and ∂∞π1(Σ) be the
boundary at infinity of the fundamental group π1(Σ) of Σ A cross ratio on ∂∞π1(Σ)
is a π1(Σ)-invariant Hölder function on

∂∞π1(Σ)4∗ = {(x, y, z, t) ∈ ∂∞π1(Σ)4 x 6= t, and y 6= z},
satisfying certain rules, the most significant being the multiplicative cocycle iden-
tities namely

b(x, y, z, t) = b(x, y, z, w)b(x,w, z, t),

b(x, y, z, t) = b(x, y, w, t)b(w, y, z, t).

To every non trivial element γ of the group ∂∞π1(Σ) we associate a positive
number, ℓb(γ), called the period of γ

ℓb(γ) = log b(γ−, γy, γ+, y),

where γ+ and γ− are respectively the attractive and repulsive fixed points of
γ in ∂∞π1(Σ) and where y is any point of ∂∞π1(Σ) such that γ(y) 6= y. The
archetype of a cross ratio comes from hyperbolic geometry – a complete hyperbolic
metric on Σ gives rise to an identification of ∂∞π1(Σ) with the real projective line.
The classical cross ratio on the projective line then gives rise to a cross ratio on
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∂∞π1(Σ) and the period of γ is just the hyperbolic length of the closed geodesic
freely homotopic to γ.

Pant gap function and the generalised formula: A pair of pants P with
marked boundary in Σ corresponds to a triple (α, β, γ) of elements of π1(Σ), unique
up to conjugation, such that αγβ = 1. We define the pant gap function Gb at P
to be the positive number

Gb(P ) = log(b(α+, γ−, α−, β+),

where b a cross ratio on ∂∞π1(Σ).
The general form of the McShane identity is:

Theorem 1. Let Σ be closed surface. Let b be a cross ratio on ∂∞π1(Σ). Let α
be a non trivial element of π1(Σ). Let P be the set of homotopy classes of pair of
pants with marked boundary in Σ whose first boundary component is α, then

ℓb(α) =
∑

P∈P

Gb(P ).

Cross ratios and hyperbolic geometry: For SL(2,R) (hyperbolic geome-
try) the pant gap function can be computed in terms of the length of the boundary
components of pants using trigonometry [8]. We show in [1] how to determine Gb

using just Thurston’s shear coordinates and elementary manipulations involving
the classical cross ratio.

Cross ratios and SL(n,R): In [5], Labourie gives an interpretation of the
Hitchin representations, a connected component of the space of representations
of the π1(Σ) in SL(n,R), as the space of cross ratios on ∂∞π1(Σ) satisfying an
extra functional identity the form of which depends on n. As an example consider
SL(2,R) where the associated cross ratio, i.e. the classical cross ratio on the
projective line, satisfies the following (well known) functional identity

b(t, y, z, x) = 1 − b(x, y, z, t).(2)

Conversely, if we have a cross ratio b on a set A satisfying (2), it is well known
that A can be identified with a subset of the projective line such that the cross
ratio b is just the restriction of classical cross ratio. If the cross ratio is invariant
by π1(Σ) then one obtains a representation of π1(Σ) into PSL(2,R) and, with a
little more work, a bijection between the Teichmüller space of Σ and the set of
cross ratios on ∂∞π1(Σ) satisfying (2). In [5] this correspondence is extended to
SL(n,R) – up to conjugation every Hitchin representation of π1(Σ) in SL(n,R)
determines and is uniquely determined by a cross ratios on ∂∞π1(Σ).

Unfortunately, for n ≥ 3 the pant gap function Gb is no longer determined by
just the monodromies of three boundary components of the pants –it also depends
on “internal parameters” which come from triple ratios [2].

Hitchin representations for open surfaces. We say an element in SL(n,R)
is purely loxodromic if it is real, split, with simple eigenvalues. Let Σ be a compact
surface possibly with boundary. A representation of π1(Σ) in SL(n,R) is Fuchsian
iff it factorises as a discrete faithful representation without parabolics in SL(2,R)
composed with the irreducible representation of SL(2,R) in SL(n,R).
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A representation of π1(Σ) in SL(n,R) is Hitchin iff the boundary components
have purely loxodromic images by the representation, and if it can be deformed
to a Fuchsian representation so that the images of the boundary components stay
purely loxodromic. It is shown in [4], [6] and [5], that Hitchin representations are
discrete and faithful, that every non trivial element is purely loxodromic and that
the mapping class group acts properly on the moduli space of Hitchin representa-
tions. We prove [1] a “doubling” theorem which implies that we can always find
a closed surface S containing Σ such that every Hitchin representation of π1(Σ) is
the restriction of a Hitchin representation of π1(S). The restriction of a Hitchin
representation to a subsurface is Hitchin and it follows that they are positive in
the sense of Fock and Goncharov [2].

Pant gap functions in FGT coordinates: In [2] Fock and Goncharov in-
troduced a far reaching generalisations of Thurston’s shear coordinates, which we
call FGT coordinates, on the (augmented) moduli space of positive representations.
We compute the gap functions for Hitchin representations using FGT coordinates
for the moduli of pants; since the augmented moduli space is a “covering” of the
space of Hitchin representations, we obtain (n!)3 different answers. It turns out
that, for a suitable choice of FGT coordinates, the pant gap function has a nice
expression. However, using the explicit description of the holonomies [3] in the
case of n = 3, we see the pant gap function has in general a very complicated
expression for some choices of coordinates.

Applications and conclusion: Using the identities, M. Mirzakhani gives
a recursive formula for the volume of moduli space of hyperbolic structures, i.e
the quotient of Teichmüller space by the mapping class group. The formulae we
obtain, combined with the use of FGT coordinates should enable one to compute
analogous integrals associated to the quotient of the Hitchin representations by
the mapping class group. However the volume is not the quite the right quantity
to compute since for n ≥ 3, one can show it is infinite.
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On Thurston’s asymmetric metric on Teichmüller space

Guillaume Théret

An asymmetric metric on a space X is a function L : X ×X → R+ satisfying the
standard axioms of a metric except the symmetry axiom, namely,

• ∀x, y ∈ X, L(x, y) = 0 ⇐⇒ x = y,
• ∀x, y, z ∈ X, L(x, z) ≤ L(x, y) + L(y, z),
• ∃x, y ∈ X | L(x, y) 6= L(y, x).

W.P. Thurston introduced an example of such a kind of metric on Teichmüller
space and initiated a deep study of it (see [5]). We first recall his definition.
Let Σ denote an oriented surface of genus g with n punctures, having a negative
Euler-Poincaré characteristic. The Teichmüller space T (Σ) of Σ is the set of iso-
topy classes of complete hyperbolic metrics on Σ with finite area.
The Teichmüller space T (Σ) is endowed with its classical topology, given for
instance by its embedding in the space RS

+ provided by the length functional

l : T (Σ) → RS
+, defined by g 7→ lg(·) : α 7→ lg(α), ∀α ∈ S; Here, S denote the

set of homotopy classes of essential simple closed curves in Σ and the space RS
+ is

endowed with the weak topology.
Thurston’s asymmetric metric L is defined by

∀g, h ∈ T (Σ), L(g, h) = log inf
φ∼idΣ

L(φ),

where L(φ) denotes the Lipschitz constant of the homeomorphism φ homotopic to
the identity. Thurston showed that L is an asymmetric metric on T (Σ). Moreover,
he considered the following quantity

∀g, h ∈ T (Σ), K(g, h) = log sup
α∈S

lh(α)

lg(α)
,

and proved the following

Theorem 1 ([5]). K = L.

In this talk, we shall first compare the classical topology of T (Σ) with the two
topologies induced by L. It turns out that these topologies coincide. We next
focus on some geodesics for L, called “stretch lines”, and exhibit some features of
their convergence towards Thurston’s boundary of Teichmüller space.

1. Topology induced by L on T (Σ)

An asymmetric metric L defines two natural topologies, namely, one generated
by “left balls” xB(R) = {y |L(x, y) < R} and one generated by “right balls”
Bx(R) = {y |L(y, x) < R}. Concerning Thurston’s asymmetric metric L on T (Σ),
these topologies turn out to coincide with the classical one.

Theorem 2 ([2]). The topologies induced by L on T (Σ) coincide with the classical
topology. More precisely, if (gn) is a sequence of T (Σ) and g ∈ T (Σ) is an arbitrary
point, one has
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• lim
n→∞

L(gn, g) = 0 ⇐⇒ lim
n→∞

L(g, gn) = 0 ⇐⇒ lim
n→∞

gn = g,

• lim
n→∞

L(gn, g) = ∞ ⇐⇒ lim
n→∞

L(g, gn) = ∞ ⇐⇒ lim
n→∞

gn = ∞.

2. Stretch Lines and Thurston’s boundary of T (Σ)

2.1. Before describing stretch lines, we make some definitions. Recall that a
geodesic lamination µ is a union of disjoint simple geodesics such that this union
is a closed subset of Σ. The geodesics of µ are called the leaves of µ. A geodesic
lamination µ is said to be complete if every component of Σ \ µ is the interior
of an ideal triangle. Note that to define a geodesic lamination, one had to fix an
underlying hyperbolic structure on Σ. However, it turns out that this notion can
be defined in a metric independent way.
A transverse measure (of full support) on a geodesic lamination µ is a positive
Radon measure defined on each compact arc a transverse to the leaves of µ with
support equal to a∩µ; Moreover, the masses assigned to two transverse arcs a and
b are required to be equal if b is obtained from a by an isotopy leaving the leaves of
µ invariant. A geodesic lamination µ equipped with a transverse measure is called
a measured geodesic lamination and µ will be the support of the measured geodesic
lamination. Let ML0(Σ) denote the space of measured geodesic laminations of
compact support and let PL0(Σ) be the associated projective space, which consists
in identifying two measured geodesic laminations with the same support and with
proportional transverse measures.
The stump of a geodesic lamination µ is the support of the maximal (in the sense
of inclusion) compact measured sublamination of µ.

2.2. Let us now talk about stretch lines.
Let us fix a complete geodesic lamination µ on Σ. The lamination µ is roughly
thought of a kind of decomposition of Σ into ideal triangles, and to each hyper-
bolic metric there is a way to encode how these various ideal triangles are glued
together. This encodement is given by a partial measured foliation called the horo-
cyclic foliation, which is transverse to µ. Its transverse measure is defined by the
requirement that the mass of an arc contained in µ is the length of that arc with
respect to the underlying metric on Σ. When one varies the hyperbolic metric in
its isotopy class, one obtains a well-defined element Fg(µ) of MF0(Σ), the space
of equivalence classes of measured foliations. In other words, one gets a map

ϕµ : T (Σ) → MF0(Σ) g 7→ Fg(µ),

about which Thurston proved the following

Theorem 3 ([5]). The map ϕµ defined above is a homeomorphism onto its image.

The stretch line directed by µ and passing through g ∈ T (Σ) is the oriented
curve t → gµ

t , t ∈ R, of T (Σ) defined by gµ
t = ϕ−1

µ (etFg(µ)), where etFg(µ)

means that the transverse measure of Fg(µ) has been multiplied by the factor et.
(The orientation of the stretch line is given by the classical orientation of R.) The
structure gµ

t is said to be obtained by “stretching the structure g along µ”: Indeed,
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by definition of the transverse measure of the horocyclic foliation, after a stretch
along µ, the arc-length on µ has been multiplied by a factor et, which explains,
when t > 0, the terminology.
Thurston proved that a stretch line directed by a complete geodesic lamination µ
with non-empty stump is a geodesic for L.

2.3. A natural question is to understand the asymptotic behavior of such a stretch
line; In particular, one wants to know if a stretch line converges or not to a point
of Thurston’s boundary of Teichmüller space.
Recall that Thurston’s boundary of Teichmüller space is the space PL0(Σ) of
projective classes of measured geodesic laminations with compact support. The
elements of PL0(Σ) will be denoted between brackets [·].
There are two natural geodesic laminations associated to the stretch line directed
by µ and passing through g: the complete geodesic lamination µ and the (support
of) the geodesic lamination λg(µ) that corresponds to the equivalence class Fg(µ) of
the horocyclic foliation. (Recall that there is a natural one-to-one correspondance
between MF0(Σ) and ML0(Σ).) Along the stretch line, µ is dilated whereas
λg(µ) is contracted (see [3]). Concerning the problem of convergence to Thurston’s
boundary, one can state the following

Theorem 4. Let t 7→ gµ
t be a stretch line directed by µ and passing through

g ∈ T (Σ). Then,

• ([1]) lim
t→+∞

gµ
t = [λg(µ)].

• ([4]) If µ has a non-empty stump γ which is uniquely ergodic,
then lim

t→−∞
gµ

t = [γ].

(A geodesic lamination is said to be uniquely ergodic if it supports a transverse
measure which is unique up to positive scalar multiples.)
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Non-realization of the Mapping class group by homeomorphisms

Vladimir Markovic

Let M be a closed surface of genus g, with g ≥ 2. The mapping class group
MC(M) is the group of homotopy classes of orientation preserving homeomor-
phisms of M (homeomorphisms are assumed to be orientation preserving). By
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Homeo(M) we denote the group of homeomorphisms of M . If f̃ ∈ Homeo(M) is

a homeomorphism, then [f̃ ] = f ∈ MC(M) denotes the corresponding homotopy
class. The group MC(M) can be seen as the quotient of the group Homeo(M)
by the subgroup of homeomorphisms of M that are isotopic to the identity (recall
that two homeomorphisms from Homeo(M) are isotopic if an only if they are
homotopic to each other). There is the associated projection

Pr : Homeo(M) →MC(M).

The main result is the following theorem.

Theorem: Let M be a closed surface of genus g > 5. Then, there is no homo-
morphism E : MC(M) → Homeo(M), such that the composite homomorphism
Pr ◦ E is the identity.

Let G < MC(M) be a finite group. The question of whether the corresponding
homomorphism E : G→ Homeo(M) exists, was known as the Nielsen realization
problem. Kerckhoff [4] solved this famous problem by showing the existence of
E in this case. There are other subgroups of MC(M) for which the correspond-
ing homomorphism exists (one example are Abelian subgroups of MC(M)). But
generally, there is no criteria which would help decide whether a given subgroup
of MC(M) can be realized by homeomorphisms. We believe that the methods
developed in this paper may help obtain further results in this direction.

The version of our main theorem was proved by Morita [7], [8], where the space
of homeomorphisms of M is replaced by diffeomorphisms of M , and where the
genus of M is at least 5. The projection Pr : Homeo(M) →MC(M) induces the
map between the corresponding cohomology groups. In the diffeomorphic case,
it was shown that not all respective cohomology groups of the groups Diff(M)
and MC(M) are the same. This shows that there can not exist a homomorphism
like E. However, it follows from the work of Mather and Thurston [9], [6], [7],[8],
that there is no cohomological obstructions to the existence of E in the general
homeomorphisms case. It has been conjectured [5] (also see [7], [8]), that such E
does not exists in the general case.

The mapping class group of the torus can be represented by homeomorphisms
(that is, the corresponding homomorphism E exists). In fact, it can be represented
as the group of affine transformations SL2(Z).

Let α ⊂M be a simple closed curve. By tα ∈MC(M) we denote the standard
twist about α. By [α] we denote the corresponding homotopy class of curves on
M . Clearly, if α1 ∈ [α] then tα1 = tα. Now, let α and β be two simple closed
curves such that neither of them separates M (this means that M \ α and M \ β
are connected sets). Assume that the intersection number between the homotopy
classes of α and β is one. Then we have the following standard relation in the
mapping class groups (see the Ivanov’s book [10] for background on the Mapping
class groups and more), called the Artin’s relation

tα ◦ tβ ◦ tα = tβ ◦ tα ◦ tβ . (1.1)
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Set f = tβ ◦ tα. Then f conjugates tβ to tα in MC(M). We have

E(tα) ◦ E(tβ) ◦ E(tα) = E(tβ) ◦ E(tα) ◦ E(tβ). (1.2)

Another useful type of relation in MC(M) is the following. Let f̃ , g̃ : M →M
be two homeomorphisms that have disjoint supports (a closed set is said to be

support of f̃ , if f̃ is the identity outside that set). In particular, f̃ ◦ g̃ = g̃ ◦ f̃ , so

f̃ and g̃ commute. We have

E([f̃ ]) ◦ E([g̃]) = E([g̃]) ◦ E([f̃ ]).

The following is an old theorem (going back to Hurwitz).

Proposition: Let a homeomorphism f̃ : M →M be periodic, that is, f̃k = id, for
some k ≥ 1. Then, there exists a complex structure on M , and a homeomorphisms

g̃ : M → M , such that g̃−1 ◦ f̃ ◦ g̃ is a conformal automorphism with respect to

this complex structure. Moreover, if a periodic homeomorphism f̃ is homotopic to
a conformal automorphism e : M →M (with respect to some complex structure),
then we can chose g̃ to be homotopic to the identity homeomorphism of M , and

g̃−1 ◦ f̃ ◦ g̃ = e.

Let e ∈MC(M) be a periodic element. Assume that for some complex structure
on M there exists a conformal automorphism ẽ of M such that [ẽ] = e. Then E(e)
is conjugated to a conformal automorphism, by a homeomorphism g̃ : M → M
which is homotopic to the identity. We can conjugate the whole homomorphism
E by g̃, to obtain a new homomorphism E′ = g̃−1 ◦E ◦ g̃, for which we have that
E′(e) is a conformal automorphism ofM (whenM is endowed with the appropriate
complex structure).

The above relations are important ingredients of the proof of our main. How-
ever, one needs to do a bit of analysis before using the Artin’s relations. This
analysis is intended for proving that every twist E(tα) is semi-conjugate to the
identity mapping outside some closed annulus that is homotopic to α (in fact, this
annulus is compactly contained in a bigger open annulus homotopic to the same
curve). One important step in establishing this is based on the analysis of Anosov
like elements of MC(M). These are elements of MC(M) that are Anosov (or in
general, pseudo-Anosov) on some subsurface of M . The methods we deploy have
similarity with the theory of global shadowing by Anosov (and in general pseudo-
Anosov) homeomorphisms (see the papers by Franks [2], and Handel [3], where
some of the these classical results were proved, and for further references). How-
ever, there are important differences. The main difference is that in our analysis we
are focused on analyzing homeomorphisms that commute with these Anosov-like
maps. In any case, the methods we give can be used to give perhaps more direct
proof of the theorem which states that a homeomorphism that is homotopic to
an Anosov map of the torus (or the punctured torus), is in fact semi-conjugate to
that map. It can be generalized to pseudo-Anosov maps as well (in this case the
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corresponding statement is somewhat different, because a homeomorphism that
is homotopic to a pseudo-Anosov map is not necessarily semi-conjugated to that
map).

There are various realizations problems of similar flavor. One of these problems
asks whether one can geometrically realize the group quasisymmetric maps of the
unit circle by quasiconformal homeomorphisms of the unit disc. Dennis Sullivan
has named this question the ”Dream problem”. Such a realization has been proved
impossible in my joint work with David Epstein [1].
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Holomorphic sections for certain holomorphic families of Riemann
surfaces of genus two

Yoichi Imayoshi

(joint work with Toshihiro Nogi)

We shall find all the holomorphic sections for certain holomorphic families of closed
Riemann surfaces of genus two (cf.[2]).

1. Construction of a certain holomorphic family (M,π,R) of genus

two and the main result

The idea to construct these families is originated from Kodaira [3], and the
following construction is due to Riera [4].

Take a point τ in the upper half-plane H in the complex plane C. Let Γ1,τ be the
discrete subgroup of Aut(C) generated by two translations z 7→ z+1 and z 7→ z+τ .

Denote by T̂ a torus defiend by the quotient space C/Γ1,τ = {[z] | z ∈ C}. We set

p0 = [0] ∈ T̂ and T = T̂ \ {p0}.
For a point p ∈ T we take two replicas of the torus T̂ cut along a simple arc from

p0 to p, and call them sheet I and sheet II. The cut on each sheet has two edges,
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labeled + edge and − edge. To construct a Riemann surface Xp, we attach the +
edge on sheet I and the − edge on sheet II, and then attach the + edge on sheet II
and the − edge on sheet I. Then we obtain a closed Riemann surface Xp of genus

two and the two-sheeted covering Xp → T̂ which is branched over p0 and p with
branch order 2. It should be noted that the above procedure depends, of course,
not only on the choice of the point p but also on the choice of the “cut” from p0

to p, and essentially there are four different cuts.
To specify the “cut” we construct a four-sheeted unbranched covering

(1) ρ : R → T

of T such that R is a torus with four punctures as follows: Let Γ2,2τ be the discrete
subgroup of Aut(C) generated by two translations z 7→ z + 2 and z 7→ z + 2τ .

Denote by R̂ a torus defiend by the quotient space C/Γ2,2τ = {[z] | z ∈ C}. Let

ρ̂ : R̂ → T̂ be the canonical projection given by ρ̂([z]) = [z]. We set R = ρ̂−1(T )
and ρ = ρ̂|R. The good thing is that a point t = [z] ∈ R determines a point
p = ρ([z]) ∈ T and a “cut” α = ρ̂(β) from p to p0 = [0], where β is a simple arc
on R from [0] to t. Denote by St the closed Riemann surface of genus two which

is a two-sheeted branched covering surface of T̂ constructed by a “cut” α = ρ̂(β).

Note that the two-sheeted branched covering Πt : St → T̂ is uniquely determined
by the choice of t ∈ R and does not depend on β.

We set

M =
⊔

t∈R

{t} × St,

π : M → R, π(t, q) = t.

Then (M,π,R) is a holomorphic family of closed Riemann surfaces of genus two
over a fourth punctured torus R.

Our main result is as follows:

Theorem 1. The holomorphic family (M,π,R) of closed Riemann surfaces of
genus two has exactly two holomorphic sections s1, s2, which are given by s1(t) =
(t, p0) and s2(t) = (t, ρ(t)) for every t ∈ R.

2. A defining equation for (M,π,R)

Now we will give a defining equation for (M,π,R). For any point t = [ t̃ ] ∈ R,

Abel’s theorem shows there exists a unique meromorphic function ft on T̂ which
has two simple zeros [0] and ρ(t), a pole qt = ρ(t)/2 of order two, and satisfies
(dft/dz)([0]) = 1. The function ft is represented explicitly by theta functions.

The holomorophic map ft : T̂ → Ĉ has four branch points qt (pole), a(t), b(t),
and c(t), where

a(t) = ft([(t̃+ 1)/2]),

b(t) = ft([(t̃+ τ)/2]),

c(t) = ft([(t̃+ 1 + τ)/2]).
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Let gt be the meromorphic function on T̂ of degree 3 which has simple zeros
[(t̃+1)/2], [(t̃+τ)/2], [(t̃+1+τ)/2], and a pole [t̃] of order 3, and satisfies gt([0]) = i.
The function gt is also represented explicitly by theta functions.

Setting x = ft, y = gt, we have a functional relation

y2 =
1

a(t)b(t)c(t)
(x− a(t)) (x − b(t)) (x− c(t))

on T̂ .
Now we have the following theorem:

Theorem 2. In the above situation, let

Pt(x) =
(x2 − a(t))(x2 − b(t))(x2 − c(t))

a(t)b(t)c(t)
,

MHE = {(t, x, y) ∈ R× Ĉ× Ĉ | y2 = Pt(x)},
πHE : MHE → R, πHE(t, x, y) = t.

Then the triplet (MHE , πHE , R) is a holomorphic family of closed Riemann sur-
faces of genus two, and it is isomorphic to (M,π,R). Moreover, (MHE , πHE , R)
has exactly two holomorphic sections sHE,1, sHE,2, which are given by sHE,1(t) =
(t, 0, i) and sHE,2(t) = (t, 0,−i) for every t ∈ R.

3. A sketch of proof for the main result

In order to prove Theorem 1, we need the following two theorems (cf. Imayoshi
[1], Theorem 4 and Theorem 5):

Theorem 3. The holomorphic family (M,π,R) has a canonical completion

(M̂, π̂, R̂), where M̂ is a compact two dimensional normal complex analytic space

and π̂ : M̂ → R̂ is holomorphic. Moreover every holomorphic section s : R → M
has a holomorphic extension ŝ : R̂ → M̂.

Theorem 4. The holomorphic map Π: M =
⊔

t∈R{t} × St → T̂ defined by

Π(t, q) = Πt(q) has a holomorphic extension Π̂ : M̂ → T̂ .

Now we can prove Theorem 1 as follows: Let s : R → M be an arbitrary
holomorphic section of (M,π,R). Theorem 3 and 4 imply that the holomorphic

map ϕ = Π ◦ s : R → T̂ has a holomorphic extention ϕ̂ = Π̂ ◦ ŝ : R̂ → T̂ . Let
ϕ̃ : C → C is a lift of ϕ̂ : R̂ → T̂ . Then ϕ̃(z) = Az + B, z ∈ C for some constants
A,B ∈ C. Since ϕ = Π ◦ s, we can show that we may assume that A = 0, B = 0,
or A = 1, B = 0. In the case A = 0, B = 0, we have the section s1(t) = (t, p0),
and in the case A = 1, B = 0, we have the section s2(t) = (t, ρ[t]).

4. Moduli map J of (M,π,R) into M2

LetM2 be the moduli space of all biholomorphic equivalence classes [S] of closed
Riemann surfaces S of genus two. Then we have the following assertion:
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Theorem 5. For the holomorphic family (M,π,R) of closed Riemann surfaces
of genus two, the holomorphic map J : R → M2, J(t) = [St], is not injective. In
particular, J(t) = J(−t) for all t ∈ R.

Note that it is possible to obtain a condition for t, t′ ∈ R with J(t) = J(t′).

Let M̂2 be the Deligne-Mumford compctification of M2, that is, M̂2 is the set of
all closed Riemann surfaces of genus two with or without nodes, which is a three
dimensional compact normal complex analytic space. Then the holomorphic map
J : R → M2 has a holomorphic extension Ĵ : R̂ → M̂2 (see Imayoshi [1], Lemma

1). It is also possible to get a condition for t, t′ ∈ R̂ \R with Ĵ(t) = Ĵ(t′).
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Quasi-homomorphisms on mapping class groups

D. Kotschick

Let G be a group. A quasi-homomorphism on G is a map f : G −→ R for which
there is a constant D(f) such that

|f(xy) − f(x) − f(y)| ≤ D(f)

holds for all x, y ∈ G. Obviously homomorphisms and bounded maps are quasi-
homomorphisms. Every quasi-homomorphism f can be homogenized by defining

ϕ(x) = lim
n→∞

f(xn)

n
.

Then ϕ is again a quasi-homomorphism, it is homogeneous in the sense that
ϕ(xn) = nϕ(x), and it is constant on conjugacy classes. Non-trivial homoge-
neous quasi-homomorphisms are never bounded, and they vanish on elements of
finite order.

When one has a non-trivial homogeneous quasi-homomorphism ϕ on G, then
one can estimate the S-length of any element g ∈ G provided that ϕ(g) 6= 0 and ϕ
is bounded on the subset S ⊂ G. In the case when S = C is the set of commutators,
the S-length is the commutator length. It is a theorem of Bavard [1] that for the
stable commutator length the estimates obtained from quasi-homomorphisms are
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sharp, that is they give a precise calculation of the stable commutator length. This
is not so for other instances of S-length.

The existence of homogeneous quasi-homomorphisms is also related to (the
failure of) a weak version of bounded generation. These applications of quasi-
homomorphisms are detailed in [5].

For SL(2,Z), the mapping class group of the torus, many homogeneous quasi-
homomorphisms are known from the work of many authors. Polterovich and Rud-
nick proved that elements of infinite order in SL(2,Z) that are not conjugate to
their inverses can be separated by quasi-homomorphisms.

For the mapping class groups of surfaces of higher genera, the existence of quasi-
homomorphisms was first proved by Endo and myself in 2000, and published in [3].
In fact, we proved that the stable commutator length does not vanish identically,
confirming a conjecture of Morita. The existence of quasi-homomorphisms follows
from this by the result of Bavard mentioned above. The argument from [3] was
elaborated on by Braungardt and myself, and also by Korkmaz. The final version
of it appeared in [5] in the form of the following:

Theorem 1. Let Γh be the mapping class group of a closed oriented surface Σh

of genus h ≥ 2. If g ∈ Γh is the product of k right-handed Dehn twists along ho-
motopically essential disjoint curves a1, . . . , ak ⊂ Σh, then the stable commutator
length of g is bounded below by

||g|| ≥ k

6(3h− 1)
.

By the discussion above, this has immediate applications to various other length
problems in Γh, see [5]. The proof of Theorem 1 proceeds by considering the sym-
plectic geometry and Seiberg–Witten theory of certain four-manifolds constructed
as Lefschetz fibrations associated with expressions of powers of Dehn twists as
products of commutators.

Using geometric group theory instead, specifically the weak properness of the
action of mapping class groups on the curve complex proved by Mazur and Minsky,
Bestvina and Fujiwara proved the following result in 2001:

Theorem 2 ([2]). Let G be any non-virtually Abelian subgroup of a mapping class
group. Then the space of homogeneous quasi-homomorphisms on G is infinite-
dimensional.

This shows in particular that Γh is not weakly boundedly generated, see [5]. It
remains an interesting problem to extract explicit bounds on the stable commu-
tator length from the argument of [2].

Although there are abundant supplies of quasi-homomorphisms on mapping
class groups, there are some things one can not do. For example, the analog of
the separation theorem of Polterovich and Rudnick mentioned above fails, because
mapping class groups contain elements of infinite order that are not conjugate to
their inverses, but that nevertheless have zero stable commutator length. There-
fore, all homogeneous quasi-homomorphisms vanish on them. The first examples
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exhibiting this phenomenon were found by Endo and myself in 2003, and will be
published in [4].

Theorem 3 ([4]). For every closed oriented surface of genus at least 2 there exist
primitive elements g of infinite order in its mapping class group of orientation-
preserving diffeomorphisms such that gk is not conjugate to g−k for all k 6= 0, but
all powers of g are products of some fixed number of torsion elements, and are also
products of a fixed number of commutators.

Another thing one can not do, is to find homogeneous quasi-homomorphisms
on the stable mapping class groups. Let Γ1

h be the group of isotopy classes of
diffeomorphisms with compact support in the interior of a compact surface of genus
h with one boundary component. Attaching a two-holed torus along the boundary
defines the stabilization homomorphism Γ1

h → Γ1
h+1. The stable mapping class

group Γ∞ is defined as the union

Γ∞ =
⋃

h

Γ1
h .

In contrast with Theorem 1 we have:

Theorem 4. The stable commutator length for Γ∞ vanishes identically.

As a non-trivial homogeneous quasi-homomorphism forces all elements on which
it does not vanish to have positive stable commutator length, this theorem shows
that there are no non-trivial homogeneous quasi-homomorphisms on Γ∞. Con-
sequently the bounded cohomology of mapping class groups does not stabilize.
This contrasts sharply with what happens with the usual cohomology according
to Harer, Ivanov and others. Theorem 4 fits in nicely with the form of the estimates
for the stable commutator length obtained in Theorem 1.

The proof of Theorem 4 applies to many other groups defined as unions of
smaller groups that admit different embeddings into each other satisfying certain
technical assumptions. Another instance of a group to which the proof of Theo-
rem 4 applies is the stable automorphism group of a free group.
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Wick rotations in 3D-gravity

Francesco Bonsante

(joint work with R. Benedetti)

Let Σ denote a closed orientable surface of genus g ≥ 2. Solutions of Einstein
equation on Σ×R are Lorentzian metrics of constant curvature (whose sign depends
on the sign of the cosmological constant). Among all the solutions a class of
particular interest is formed by globally hyperbolic metrics. Roughly speaking, a
Lorentzian metric on Σ×R is said globally hyperbolic if, up to some diffeomorphism
isotopic to the identity, can be written in the form

(1) −dt2 + gt

where t denotes the coordinate on R and gt is a Riemannian metric on Σ × {t}.
For k ∈ {0, 1,−1} let Mk(Σ) denote the set of maximal globally hyperbolic

Lorentzian metrics on Σ × R up to diffeomorphisms isotopic to the identity. In
his seminal work [6] G. Mess showed that Mk(Σ) is homeomorphic to R12g−12

independently of k. More precisely Mess constructed an identification

(2) mk : T (Σ) ×ML(Σ) → Mk(Σ)

where T (Σ) is the Teichmüller space of Σ and ML(Σ) is the set of measured
geodesic laminations on Σ.

In fact, the case k = 1 was carried over by Scannell some years later [7]. In that
case the parameterization was given in terms of complex projective structures
on Σ. On the other hand, Thurston pointed out a way to associate to a pair
(F, λ) ∈ T (Σ)×ML(Σ) a complex projective surface, Grλ(F ), called the grafting
of F along λ. If λ is a weighted simple geodesic, Grλ(F ) is obtained by cutting F
along λ and gluing a projective annulus of height equal to the weight of λ. The
map

Gr : T (Σ) ×ML(Σ) → P(Σ)

turns to be an identification (for a proof see e.g. [5]). As a by-product of this
theory, a canonical metric, said Thurston metric, is defined on each projective
structure.

Eventually the map m1 in (2) is intended as the composition of Scannell map
and Thurston parameterization.

As a corollary of Mess parameterization, implicit identifications

M0(Σ) → Mk(Σ) M0(Σ) → P(Σ)

arise. In [3] an explicit description of such identifications is given.
The main ingredient to get such a description is the cosmological time. Given

a time-oriented Lorentzian manifold M , its cosmological time is a R>0 ∪ {+∞}-
valued function that returns at p the sup of the lengths of timelike curves with
future end-point at p. In general this function could be very degenerated (for
instance if M is geodetically complete it takes only the value +∞). On the other
hand if M ∈ Mk(Σ) with k ≥ 0, then its cosmological time, say τ , is C1,1 and its
image is the whole interval (0,+∞) (this result is somehow implicit in Mess and
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Scannell original works and was explicitly pointed out in [4] for the flat case). If
k = −1 then the cosmological time is only a C0,1-function. Its image is an interval
(0, a) with π/2 < a ≤ π, and τ is C1,1 on the subset τ−1(0, π/2) that will be called
the past part of M .

Riemannian structures on the level sets of the cosmological time can be explictly
related to Mess-Scannell parameters of M . More precisely, if (F, λ) are the Mess-
Scannell parameters of M , then the metric on the level surface τ−1(a)(a < π/2 if
k = −1) is obtained by rescaling Gru(a)λF (regarded as a metric space equipped
with the Thurston metric) by some factor v(a), where u and v are explicit functions
depending only on k. As a corollary, the path of conformal structures {τ−1(a) ∈
Tg} coincides (up to some re-parameterization) with the grafting path joining the
point in Thurston boundary corresponding to λ to F if k ≤ 0 and to grλF if k = 1.

Eventually, the cosmological time allows a homogenous description of space-
times in Mk(Σ) in terms of Mess-Scannell parameters. In particular the family
of Riemannian surfaces corresponding to level sets of the cosmological time is
somehow independent of the curvature up to some scaling factors.

Such a remark could be made more precise by introducing an operation on
Lorentzian metrics called rescaling. In general a rescaling depends on a timelike
vector field X , and two positive functions α, β. The field X provides a decomposi-
tion of TM in a vertical part (parallel to X) and a horizontal part (orthogonal to
X). The rescaling onM alongX with rescaling functions α and β is the Lorenztian
metric obtained by rescaling the squared norm of vertical vectors by the factor α
and the squared norm of horizontal vectors by a factor β.

Let (F, λ) be a fixed element of Tg×MLg, and let Mk be the element of Mk(Σ)
associated to (F, λ) via Mess-Scannell parameterization.

In [3] an explicit rescaling on M0 is pointed out such that the rescaled spacetime
is the past part of M−1. Such rescaling is directed along the gradient of the
cosmological time τ , and the rescaling functions are explicit functions of τ (namely,
β = (1 + τ2)−1, α = β2).

In a similar way it is possible to construct a rescaling relating M0 to M1. In
such a case the rescaling is defined only on the set {τ < 1}, it is directed along
the gradient of τ with rescaling functions β = (1 − τ2) and α = β2.

Finally, in order to describe explicitly the identification M0(Σ) → P(Σ), we
need to introduce an operation, the Wick rotation, that transforms Lorentzian
metrics into Riemannian metrics. This operation depends on a timelike vector
field X and two positive functions α and β. It works like the rescaling except that
the squared norm of vertical vectors is rescaled by the factor −α.

In [3] it is shown that the Wick rotation on the set {τ > 1} of M0, directed
along the gradient of the cosmological time with rescaling functions β = (τ2 − 1)

and α = β2 is a hyperbolic metric. The developing map D : ˜{τ > 1} → H3 extends

to a map D : ˜{τ ≥ 1} → H3 ∪S2 sending ˜{τ = 1} to S2. Moreover, the restriction

of D on the level surface ˜{τ = 1} is the developing map for Grλ(F ).
The transformations described above extend even if Σ is not closed.
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In fact, in order to get a reasonable treatment when Σ is not closed, the defini-
tion of the class of interest of Lorentzian structures has to be made more precise.

In particular we require that a Lorentzian metric could be written (up to
diffeomorphisms) in the form −dt2 + gt with gt complete Riemannian structure
on Σ × {t} [1]. Moreover a more careful definition of global hyperbolicity is
needed (e.g., see [2]).

In [3] it is shown that Wick rotations and rescalings pointed out in the closed
case, work in the general case iff the cosmological time is a regular function. On
the other hand, if the fundamental group of Σ is not Abelian, then it is proved
that the cosmological time on a globally hyperbolic structure on Σ × R is regular
(in fact the same statement as in the closed case holds).

Eventually, for every surface Σ with non-Abelian fundamental group, Wick
rotations introduced above lead to an identification

(3) P(Σ) → Mk(Σ)

and thus to a parameterization of Mk(Σ) in terms of projective structures on Σ.
In [5] a generalization of Thurston parameterization for Möbius structure in

every dimension is pointed out. As a by-product, projective structures on a surface
with non-Abelian fundamental group are encoded by triples (F, F ′, λ), where F is
a complete hyperbolic structure on Σ, F ′ is a convex subset of F with geodesic
boundary and λ is a measured geodesic lamination on F ′, with the property that
the total mass of an arc reaching the boundary is infinite.

By combining this theory with (3), elements of Mk(Σ) turn to be encoded by
hyperbolic structures on Σ equipped with these more general measured geodesic
laminations. In [3] this encoding has been investigated.
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Classification of tree-like diffeomorphisms up to conjugacy

Yvonne Gerber

We are interested in surface diffeomorphisms, that can be constructed out of a
rooted planar tree.

Figure 1. Rooted planar tree [0,1,1,2,2,4] and the associated sur-
face with curves

One valence-one vertex is called the root (marked by ⊗), the other valence-one
vertices are called crown vertices.

A rooted planar tree gives us a surface with one boundary component and a
set of essential simple closed curves, called A-curves and B-curves (see figure 1).
The A-curves correspond to the edges of the tree and the B-curves to the vertices
except the root vertex. The diffeomorphism T , we want to study is

T = TA ◦ TB,

where TA is a product of positive Dehn twists along all A-curves, and TB is a
product of positive Dehn twists along all B-curves.

Theorem 1. Tree-like diffeomorphisms, that arise from non-congruent planar
trees with more than tree crown vertices, are not conjugate.

To prove the theorem, we need an important property of T : T is strongly
inversive. This means, that there exists an involution C, C2 = Id, such that
CTC = T−1.

In fact, up to conjugacy of the pair (T , C), there are only two such involutions
C and TC. Each of these involutions fixes pointwise an arc on the surface. C and
TC can be distinguished using their fixed arc γ and γ′ respectively. γ and T (γ)
has always one intersection point whereas γ′ and T (γ′) always has more than one
intersection point.

From the pair (T , C) we reconstruct the rooted planar tree. In fact, to do this,
we use only T and the fixed arc γ of C.

This class of diffeomorphisms arises as monodromies of fibered knots. Out of
a rooted planar tree, there can be constructed a knot, called slalomknot, and the
above diffeomorphisms are their monodromies. Two slalomknots that come from
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the same abstract tree, but from different planar embeddings are mutant [1]. The
tree in figure 1 has two non-congruent planar embeddings. Mutant knots are hard
to distinguish. For small examples the quantum invariant can be calculated and
separates. Knotscape too, helps us to separate small examples. The two knots
for the two embeddings of figure 1 are 15n30444 and 15n30419 in the table of
knotscape. Sometimes there is also a symmetry argument that can be applied.
For the whole class of slalomknots it was not known if the knots are all different.
The above theorem tells us, that the monodromies of two slalomknots, that come
from non-congruent embeddings of the same abstract tree, are not conjugate, so
we get the following theorem.

Theorem 2. Two slalomknots that come from non-congruent planar trees are
different.
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Witten cycles on the moduli space of Riemann surfaces

Gabriele Mondello

Consider a compact oriented surface S of genus g with a P -marking, that is an
injection P = {p1, . . . , pn} →֒ S, and assume that χ(S \ P ) = 2 − 2g − n < 0.
Given a complex structure on S and positive weights a1, . . . , an, one can construct
a metric fatgraph, that is a metric graph G together with an isotopy class of em-
beddings G →֒ S \ P which induce a homotopy equivalence. There are (at least)
two recipes to do this: the former uses existence and uniqueness results for mero-
morphic quadratic differentials with closed trajectories (see [18] and [5]), and it
explicitly appears first in [4] and [9]; the latter exploits the complete hyperbolic
metric with finite volume of S \ P and it appears first in [16] (but see also [2]
for a different rephrasing). Both constructions commute with the action of the
mapping class group Γ(S, P ) and give a homeomorphism Φ between the moduli
space Mg,P ×RP

+ of weighted P -marked Riemann surfaces of genus g and the space

Mcomb
g,P of metric fatgraphs whose “fattening” is a P -marked oriented surface of

genus g. This space of fatgraphs Mcomb
g,P comes naturally equipped with a cellular

structure: each homeomorphism type of fatgraph G corresponds to a cell and the
lengths of the edges of G are natural coordinates on the cell.
Thus we have two different presentation of Mg,P : the first one from analytic/al-
gebraic geometry; the second one via Φ as a space of graphs. Consequently, we
will have two different families of characteristic classes.
From the complex-analytic point of view, we can define the tautological classes
([14], [11], [13]) on Mg,P as restriction of the classes ψi and κr from the Deligne-

Mumford compactification Mg,P to Mg,P . The classes ψi and κr are defined as
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follows: ψi = c1(Li) ∈ H2(Mg,P ; Q) and κr = (πq)∗(ψ
r+1
q ) ∈ H2r(Mg,P ; Q),

where Li is the holomorphic line bundle on Mg,P with stalk Li

∣∣∣
[S]

∼= Ω1,0
S,pi

and

πq : Mg,P∪{q} → Mg,P is the map that forgets the q-marking, which can be iden-

tified to the universal family π : Cg,P → Mg,P .
From the combinatorial point of view, given a sequence m∗ = (m0,m1, . . . ) of non-
negative integers, we can define the Witten cycles Wm∗ ([9], [17]) as (the closure)
of the union of all the cells of Mcomb

g,P corresponding to graphs with mi vertices
of valence 2i + 3. For instance, maximal cells correspond to fatgraphs whose
vertices are all trivalent, but the locus (which we denote by W2r+3 for brevity)
corresponding to graphs with a vertex of valence ≥ 2r + 3 defines a cycle (with
locally finite support) of real codimension 2r in Mcomb

g,P and so a cohomology class

in H2r(Mcomb
g,P ; Q) ∼= H2r(Mg,P ; Q), using Poincaré duality. Similarly, Poincaré

duals to Witten cycles define classes in H2∗(Mg,P ; Q).

The map Φ can be extended to include the case in which some weights are zero:
namely, if ai = 0 then the boundary component corresponding to pi is collapsed to
a vertex of the fatgraph. In this way we can define other generalized Witten cycles,
in which we ask that the vertex with a certain marking has a certain valence. For
instance, we call Wq

2r+3 ⊂ Mcomb
g,P∪{q} the locus of fatgraphs with a vertex decorated

by q of valence ≥ 2r+3, which defines a class inH2r+2(Cg,P ; Q). In general, Witten
cycles can be extended to a certain combinatorial compactification of the space of
fatgraphs, but this compactification is usually badly singular at the boundary, so
Poincaré duality does not work well. Here we only discuss what happens in the
smooth locus. People might be interested in Witten cycles for a few reasons:

(1) the Wm∗ ’s is the simplest family of cycles on Mg,P arising from A∞ alge-
bras (see the construction in [10])

(2) integration over Wm∗ is governed by matrix models and so related to
integrable hierarchies (see [19], [9] and [3])

(3) the cycles Wm∗ can naturally arise in enumeration of branched coverings
of Riemann surfaces (see for instance [15])

(4) integration over Wm∗ governs the asymptotic for L→ +∞ of the number
of simple closed geodesics on S with length ≤ L that follow a specific
pattern (see Mirzakhani’s report in the same volume).

Theorem 1 ([6], [12]). For every r ≥ 1,
we have Wq

2r+3 = 2r+1(2r + 1)!!ψr+1
q in H2r+2(Cg,P ; Q).

As a consequence, W2r+3 = 2r+1(2r + 1)!!κr in H2r(Mg,P ; Q).

The case of W5 had already been proven in [17] (using an explicit expression for
the Weil-Petersson Kähler form ωWP , which is proportional to κ1, see [20]) and
[1] (using the relation between matrix models and intersection theory on Witten
cycles, see (2) above).

For the general case we have the following.
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Theorem 2 ([7],[8], [12]). Generalized Witten cycles and tautological classes gen-
erate the same subring of H∗(Mg,P ; Q).
There are explicit (though complicated) formulae to express Witten classes as poly-
nomials in the tautological classes and vice versa.

The second assertion of Theorem 1 intuitively follows from the first one remem-
bering that (πq)∗(ψ

r+1
q ) = κr (by definition) and noticing that πq can be identified

to the map that “forgets” q, and thus pushes Wq
2r+3 down to W2r+3.

To prove the first assertion of Theorem 1, we construct a deformation retraction
Hq of Mcomb

g,P∪{q} that shrinks the boundary component q to a vertex: we need to

show that (Hq)∗(ψ
r+1
q ) =

(r + 1)!

(2r + 2)!
Wq

2r+3, that is the integral of ψr+1
q along the

fibers of Hq is (r+1)!/(2r+2)! over Wq
2r+3 and 0 elsewhere. For dimensional rea-

sons, as we discard terms in the boundary, we only have to integrate over maximal
cells corresponding to fatgraphs in which the polygon surrounding the point q is
made of exactly 2r+3 edges that do not identify to each other. Using Kontsevich’s
explicit representative for ψq on Mcomb

g,P∪{q} ([9]), it turns out that the restriction

of ψr+1
q to a fiber of Hq is exactly (r + 1)! VolEuc. As the fiber of Hq is isometric

to a standard simplex of dimension 2r+ 2, whose volume is 1/(2r+ 2)!, we obtain
our result.

To prove Theorem 2 one needs to shrink more boundary components, namely
one for each nontrivalent vertex. A combinatorial analysis is needed to take care of
all the possible mutual configurations of the polygons surrounding the boundary
components that are shrunk.
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1994.

[11] Edward Y. Miller, The homology of the mapping class group, J. Differential Geom. 24

(1986), no. 1, 1–14.

[12] Gabriele Mondello, Combinatorial classes on Mg,n are tautological, Int. Math. Res. Not.
2004, no. 44, 2329–2390.

[13] Shigeyuki Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987), no. 3,
551–577.

[14] David Mumford, Towards an enumerative geometry of the moduli space of curves, Arith-
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[17] Robert C. Penner, The Poincaré dual of the Weil-Petersson Kähler two-form, Comm. Anal.
Geom. 1 (1993), no. 1, 43–69.

[18] Kurt Strebel, Quadratic differentials, Springer-Verlag, Berlin, 1984.
[19] Edward Witten, Two-dimensional gravity and intersection theory on moduli space, Sur-

veys in differential geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991,
pp. 243–310.

[20] Scot Wolpert, On the homology of the moduli space of stable curves, Ann. of Math. (2) 118

(1983), no. 3, 491–523.

Sections of the elliptic fibration

Mustafa Korkmaz

(joint work with Burak Ozbagci)

A Lefschetz fibration on a closed oriented smooth four manifold X is a smooth
map f : X → S2 having only finitely many critical points Q = {q1, q2, . . . , qn} such
that the restriction of f to Q is one-to-one and that for each i = 1, 2, . . . , n there
are complex coordinates (z1, z2) about qi compatible with the orientation ofX and
there is a complex coordinate z about f(qi) compatible with the orientation of S2 so
that the restriction of f to a neighborhood of qi is of the form f(z1, z2) = z2

1 + z2
2 .

It follows that regular fibers are diffeomorphic to a closed orientable surface of
genus g. One can assume that they are connected as well. It also follows that the
monodromy about each critical value f(qi) is a right Dehn twist about a simple
closed curve, which is called a vanishing cycle.

After fixing a regular value p0 and choosing simple loops α1, α2, . . . , αn as a
generating set for the fundamental group of S2\f(Q) each encircling a critical value
such that α1α2 · · ·αn = 1 in π1(S

2\f(Q)), one gets the monodromy representation

φ : π1(S
2\f(Q)) → Modg,

defined by φ(αi) = tai
, where tai

is the right Dehn twist about the vanishing cycle
around αi and Modg is the mapping class group of the surface Σg = f−1(p0). It
follows that ta1ta2 · · · tan

= 1 in Modg. It turns out that this relation completely
determines the four manifold X .
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A result of Gompf [2] asserts that if the fiber genus is at least two, then the man-
ifold X is symplectic. Conversely, Donalson [1] proved that every closed symplectic

four manifold Y admits a Lefschetz pencil structure. Thus, Y#kCP2 admits a
Lefschetz fibration over S2 for some k.

Let Modg,1 denote the mapping class group of Σg relative to a marked point.
There is an epimorphism Modg,1 → Modg whose kernel is isomorphic to the fun-
damental group of Σg. If a relation ta1ta2 · · · tan

= 1 in Modg can be lifted to a
relation tb1tb2 · · · tbn

= 1 in Modg,1, this means that the corresponding Lefschetz
fibration has a section. Moreover, by the short exact sequence

1 → Z → Mod1
g → Modg,1 → 1

one can write tb1tb2 · · · tbn
= tkδ , where Mod1

g is the mapping class group of Σg

minus an open disc and δ is a curve parallel to the boundary component. Then
the self intersection number of the corresponding section of the Lefschetz fibration
is −k.

On the other hand, it is well known that two degree d curves P and Q in CP2

intersect at d2 points. Any other point in CP2 lies on a unique curve sP + tQ, for
some [s : t] ∈ CP1. This gives a map from CP2 minus d2 points to CP1 = S2, which
cannot be extended to CP2. Blowing up CP2 at these d2 points gives a Lefschetz

fibration CP2#d2CP2 → S2. The genus of regular fibers of this Lefschetz fibration

is g = d−1)(d−2)
2 .

Let us now consider the case d = 3. In this case, the manifold CP2#9CP2 is
diffeomorphic to the elliptic surface E(1), regular fibers are diffeomorphic to the

2-torus T , and the monodromy of the Lefschetz fibration is (tatb)
6

= 1, where a
and b are two simple closed curves on T intersecting each other transversely at one
point.

Since the Lefschetz fibration CP2#9CP2 → S2 has nine disjoint sections (the

exceptional spheres) of each having self intersection −1, the relation (tatb)
6

= 1
can be lifted to a relation in the mapping class group of the torus with nine
boundary components. More precisely, there are twelve nonseparating simple
closed curves a1, a2, . . . , a12 on the torus with nine boundary components such
that ta1ta2 · · · ta12 = tδ1tδ2 · · · tδ9 , where δi is a simple closed curve parallel to the
ith boundary component. We determine these twelve curves. It also follows that
this relation cannot be lifted to the mapping class group of the torus with ten
boundary components for homological reasons. Liftings to the torus with three
boundary components were already known. In the case of four boundary compo-
nents, the relation is new and has particularly simple form.

Starting with the relation (tatb)
6 = tδ1 in the mapping class group of a torus

with one boundary component, the proof of our result is based on a repeated
application of the well-known lantern relation.
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The asymptotic dimension of a curve graph is finite

Koji Fujiwara

(joint work with Gregory Bell, Kevin Whyte)

1. Asymptotic dimension

We review the notion of asymptotic dimension from [Gr93]. Let X be a metric
space, and X = ∪iOi a covering. For D ≥ 0, we say that the D-multiplicity
of the covering is at most n if for any x ∈ X , the closed D-ball centered at x
intersects at most n elements of {Oi}i. The usual notion of multiplicity is exactly
the 0-multiplicity.

The asymptotic dimension of the metric space X is at most n if for any D ≥ 0,
there exists a coveringX = ∪iOi such that the diameter ofOi is uniformly bounded
(i.e. there exists C such that for all i, diamOi ≤ C), and the D-multiplicity of the
covering is at most n+ 1. We say that the asymptotic dimension of X , asdimX ,
is n if the asymptotic dimension of X is at most n, but it is not at most n− 1. If
such n does not exist, then we define the asymptotic dimension of X to be infinite.

It is an easy but important fact that if two metric spaces are quasi-isometric,
then they have the same asymptotic dimension, [Gr93].

Let G be a finitely generated group, and S a finite, symmetric (i.e. S = S−1)
generating set. Let Γ be the Cayley graph of G with respect to S. The asymptotic
dimension of G is defined as the asymptotic dimension of Γ. This definition does
not depend on the choice of a finite, symmetric generating set S, because Cayley
graphs of G are quasi-isometric to each other, and the asymptotic dimension is a
quasi-isometry invariant of metric spaces.

Theorem 1 ([FW]). Let G be a finitely presented group. The asymptotic dimen-
sion of G is one if and only if G contains a free group of rank r with 1 ≤ r < ∞
as a subgroup of finite index.

2. Curve graphs

Let S = Sg,p be a compact, orientable surface such that g is the genus and p is
the number of the connected components of the boundary of S. The curve complex
of S was defined by Harvey [Ha]. The 1-skeleton of the curve complex is called the
curve graph of S, C(S), so that C(S) is a graph whose vertices are isotopy classes
of essential, nonperipheral, simple closed curves in S, and two distinct vertices are
joined by an edge if the corresponding curves can be realized by disjoint curves.
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We remark that the curve complex of S is quasi-isometric to the curve graph of
S, so that they have same asymptotic dimension. In certain sporadic cases C(S)
as defined above is 0-dimensional, i.e. when g = 0, p ≤ 4 and when g = 1, p ≤ 1.
Unless otherwise mentioned, we assume that 3g−4+p > 0 in this note. Masur and
Minsky [MaMi] showed a remarkable result that C(S) is δ-hyperbolic. A geodesic
space X is called δ-hyperbolic (for some constant δ ≥ 0) if for any geodesic triangle
in X , each side is contained in the δ-neighborhood of union of the other two sides
([Gr87]).

Theorem 2 ([BeF]). The asymptotic dimension of C(S) is finite.

No upper bound of C(S) has been known. If 3g − 4 + p > 0, C(S) contains an
infinite quasi-geodesic (cf.[MaMi]), therefore 1 ≤ asdimC(S).

Theorem 3 ([FW]). Suppose g ≥ 2. Then the asymptotic dimension of C(Sg,1)
is at least two.

Among exceptional cases we excluded, if g = 1 and p = 0 or 1, we modify the
definition of C(S) so that we join two vertices if they are represented by simple
closed curves which intersect in one point. Then C(S) is a connected graph, which
turns out to be the Farey graph. It is not hard to see that the Farey graph is quasi-
isometric to a simplicial tree, so that its asymptotic dimension is one (cf.[BeF]).

References

[BeF] G.Bell, K.Fujiwara. The asymptotic dimension of a curve graph is finite, preprint, 2005
September. Arxiv, math.GT/0509216.

[FW] K.Fujiwara, K.Whyte, Geodesic spaces of asymptotic dimension one, in preparation.
[Gr87] M. Gromov. Hyperbolic groups. In Essays in group theory, 75–263. Springer, New York,

1987.
[Gr93] M. Gromov, Asymptotic invariants of infinite groups, Geometric Group Theory, London

Math. Soc. Lecture Note Ser. (G. Niblo and M. Roller, eds.), no. 182, 1993.
[Ha] W. J. Harvey. Boundary structure of the modular group. In Riemann surfaces and related

topics: Proceedings of the 1978 Stony Brook Conference, 245–251, 1981. Princeton Univ.
Press.

[MaMi] H.Masur, Y.Minsky. Geometry of the complex of curves. I. Hyperbolicity. Invent. Math.
138 (1999), no. 1, 103–149.

Analysis and Geometry of CP1 Structures on Surfaces

David Dumas

(joint work with Michael Wolf)

Let S be a compact smooth surface of genus g > 1. A complex projective
structure (or CP1 structure) on S is a maximal atlas of charts with values in CP1

and Möbius transition functions. The space P(S) of marked CP1 structures on S
can be studied through complex analysis or hyperbolic geometry. Our goal is to
discuss the two perspectives separately and then compare them.
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For background on CP1 structures, we refer the reader to [GKM] [Gol] [KT]
[McM] [SW] [Tan]. The results described in this talk are presented in [D1] [D2]
[DW].

From a complex-analytic perspective, the forgetful map π : P(S) → T(S) gives
P(S) the structure of a bundle over the Teichmüller space T(S) of complex struc-
tures. Using the Schwarzian derivative, the fiber P (X) = π−1(X) can be identified
with the vector space Q(X) of holomorphic quadratic differentials on X , and the
total space P(S) with the tangent bundle of Teichmüller space

P(S) ≃ T ∗
T(S).

This is the analytic parameterization of P(S): a CP1 structure is determined by
its underlying complex structure X and its Schwarzian derivative φ ∈ Q(X).

There is another way of looking at the space of CP1 structures using hyperbolic
geometry. Thurston showed that there is a natural projective grafting map

Gr : ML(S) × T(S) → P(S)

which is a homeomorphism [KT]. Here ML(S) is the space of measured geodesic
laminations, a PL-manifold homeomorphic to Rdim T(S). The map Gr associates
to (λ, Y ) ∈ ML(S)×T(S) a projective surface GrλY , the grafting of Y by λ, which
is obtained from Y by “thickening” the lamination λ to a Euclidean subsurface.
For example, when λ = tα is a simple closed geodesic α with weight t ∈ R+, the
surface GrtαY is obtained from Y by removing α and replacing it with a Euclidean
cylinder α× [0, t].

Thus grafting gives a geometric parameterization of P(S): a CP1 structures
is determined by a measured geodesic lamination λ ∈ ML(S) and a hyperbolic
structure Y ∈ T(S).

The main motivation for the results in this talk is the following

Question. How are the complex-analytic and hyperbolic-geometric parameteriza-
tions of P(S) related? That is, how do X and φ determined Y and λ?

One way to approach this question is to take a fiber in the complex-analytic
parameterization and look at its grafting coordinates. To that end, define

MX = Gr−1(P (X)) = {(λ, Y ) ∈ ML(S) × T(S) | π(GrλY ) = X}.
This is the set of pairs (λ, Y ) that determine (via grafting) CP1 structures with
underlying complex structure X ∈ T(S).

It turns out that MX ⊂ ML(S)×T(S) looks like a graph over each of the factors
ML(S) and T(S), at least on a large scale. Let pML : ML(S) × T(S) → ML(S)
and pT : ML(S) × T(S) → T(S) denote the natural projections. Then we have:

Theorem 1. For each X ∈ T(S), the restrictions pML : MX → ML(S) and
pT : MX → T(S) are proper maps of degree 1.

This result follows from the work of Tanigawa on grafting [Tan] combined with
an asymptotic relationship between the two projections. To explain the latter more

precisely, let ML(S) denote the projective compactification of ML(S) and T(S)
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the Thurston compactification of Teichmüller space. Each of these has boundary
PML(S). Given X ∈ T(S), there is a natural involution iX : PML(S) → PML(S),
the antipodal involution relative to X , that exchanges laminations corresponding
to the vertical and horizontal foliations of holomorphic quadratic differentials on
X (see [D1, §4] for details).

Theorem 2 ([D1]). For each X ∈ T(S), the boundary of MX in ML(S) × T(S)
is the the graph Γ(iX) ⊂ PML(S) × PML(S).

In other words, a pair ([λ], [µ]) ∈ PML(S) × PML(S) is a limit point of MX if
and only if there is a holomorphic quadratic differential on X whose vertical and
horizontal foliations are equivalent to representatives λ and µ of the projective
classes, respectively.

While the previous theorem involves only the underlying complex structure X ,
there is also a relationship between the Schwarzian derivative of a CP1 structure
on X and its grafting coordinates:

Theorem 3 ([D2]). Let GrλY ∈ P (X) be a CP1 structure with Schwarzian deriv-
ative φ ∈ Q(X). Let ψ ∈ Q(X) be the unique holomorphic quadratic differential
whose horizontal foliation is equivalent to λ. Then

‖2φ− ψ‖L1(X) ≤ C(X).

In other words, the measured foliation of X coming from the Schwarzian (suit-
ably normalized) is approximately equal to the one coming from the grafting lami-
nation. Note that the existence of a quadratic differential with any given trajectory
structure (i.e. ψ in Theorem 3) is a theorem of Hubbard and Masur [HM].

While the preceding results concerned the large-scale structure of MX , we can
also say something about its local structure. Let us introduce the conformal graft-
ing map gr = π ◦ Gr : ML(S) × T(S) → T(S). Thus we have MX = gr−1(X).

Theorem 4 (Scannell-Wolf [SW]). For each λ ∈ ML(S), the conformal λ-grafting
map grλ : T(S) → T(S) is a diffeomorphism.

Corollary 5. The projection pML : MX → ML(S) is a homeomorphism.

Proof. Its inverse is the map λ 7→ Grλ

(
(grλ)−1(X)

)
. �

It would be natural to hope for a similar result about the Y -grafting map
λ 7→ grλY . However, the lack of a differentiable structure on ML(S) complicates
matters. In joint work with Wolf, we show:

Theorem 6 (D.-Wolf [DW]). For each Y ∈ T(S), the conformal Y -grafting map
gr·Y : ML(S) → T(S) is a tangentiable diffeomorphism (and in particular, it is a
homeomorphism).

Here a tangentiable map is one with one-sided derivatives everywhere, and in
which the convergence is uniform over the set of tangent rays at a point. Bonahon
showed that grafting is a tangentiable map (see [Bon]), making Theorem 6 the
natural complement to the Scannell-Wolf result. As before there is a corollary
about MX :
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Corollary 7. The projection pT : MX → T(S) is a homeomorphism.

Combining the results above, we have that for each X ∈ T(S) the manifold
MX ⊂ ML(S) × T(S) is properly embedded as a graph over each factor, and its

boundary in ML(S)×T(S) is determined (explicitly) by the complex structure of
X . This can be seen as evidence of an overall compatibility between the complex-
analytic and hyperbolic-geometric coordinate systems for P(S).

Finally, we remark that the results described here focus on the case of a fixed
underlying complex structure X . It would be interesting to study the relation be-
tween the grafting and complex-analytic perspectives when the complex structure
is varied, and in particular the limiting behavior as X → ∞.
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Circle Packings on Projective Riemann Surfaces

Sadayoshi Kojima

(joint work with Shigeru Mizushima and Ser Peow Tan)

A projective structure on a surface is, by definition, a geometric structure modeled

on the pair of the Riemann sphere Ĉ and the projective linear group PGL(2,C)

acting on Ĉ by projective transformations. Hence it is in particular a complex
structure, but finer than the complex structure up to conformal equivalence. We
thus would like to call a surface with a projective structure a projective Riemann
surface for short.
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A circle is a fundamental object in dimension 1, since a projective transforam-
tion sends a circle on Ĉ to a circle on Ĉ. This is despite the fact that PGL(2,C)
does not preserve any metric on the Riemann sphere. Thus, circles on a projective
Riemann surface are not metric circles in the usual sense, but, they are homo-

topically trivial simple closed curves which develop circles in Ĉ via the developing
map.

Suppose we are given a closed orientable surface Σg of genus g ≥ 2 without any
auxiliary structure, and a graph τ on Σg which lifts to an honest triangulation of

the universal cover Σ̃g. We are interested in the moduli space of all pairs (S, P )
consisting of a projective Riemann surface S with a reference homeomorphism
h : Σg → S and a circle packing P on S whose nerve is isotopic to h(τ).

In [4], we have shown that this moduli space can be identified with, what we call,
the cross ratio parameter space Cτ . Cτ contains a unique example of a hyperbolic
surface admitting a packing associated with τ , observed in [3, 1, 11], and hence Cτ

is certainly non-empty. Also it is shown to be a semi-algebraic set, however the
geometry and topology of Cτ is not quite clear in general. Thus we would like to
relate Cτ with the other spaces for better understanding.

Let Pg be the space of all projective Riemann surfaces homeomorphic to Σg

up to marked projective equivalence. In other words, it is the space of all marked
projective structures on Σg. To each pair (S, P ) ∈ Cτ , assign its first component
and we obtain the forgetting map,

f : Cτ → Pg.

Also assigning the underlying complex structure to each projective Riemann sur-
face, we obtain the uniformization map

u : Pg → Tg,

of Pg to the Teichmüller space Tg, the space of all complex structures on Σg up to
marked conformal equivalence. By taking the Schwarzian derivative of the devel-
oping map, a projective structure can be identified with a holomorphic quadratic
differential over the underlying Riemann surface, so the uniformization map is a
complex affine space bundle of rank 3g − 3 over Tg.

Motivated by an earlier work of the second author in [8], we would like to
conjecture that the composition

u ◦ f : Cτ → Tg

is a homeomorphism. In the talk, we have reported the following theorem which
combines the results in [4, 5, 6]

Theorem : Let τ be a graph on Σg (g ≥ 2) with one vertex which lifts to an

honest triangulation of Σ̃g and Cτ the cross ratio parameter space associated with
τ . Then, Cτ is homeomorphic to a real euclidean space of dimension 6g − 6 and
the composition u ◦ f : Cτ → Tg is proper.

What is missing for the proof of the conjecture even in this special case is
the local injectivity of u ◦ f . This sort of question for the grafting map based on
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Tanigawa’s properness theorem in [10] was settled by Scannell and Wolf in [9]. See
also Faltings [2] and McMullen [7] for earlier proofs of special cases. Dumas has
reported some related results obtained with Wolf in the workshop too. However, it
is not clear if the proofs in the above cited results can be extended to our setting.
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Teichmüller curves and Veech groups of special translation surfaces

Gabriela Schmithüsen

1. Teichmüller curves and Veech groups

1.1. Teichmüller curves. Teichmüller curves are one-dimensional subvarieties of
the moduli space Mg that fit naturally to the complex structure as well as to the
Teichmüller metric on Teichmüller space Tg. They are defined as follows.

Definition 1. Let ι : H →֒ Tg be an embedding of the upper half plane H that
is holomorphic as well as isometric with respect to the Poincaré metric on H and
the Teichmüller metric on Tg.

a) Its image ∆ = ι(H) ⊆ Tg is called a Teichmüller disk.
b) If the image of ∆ in Mg under the natural projection Tg → Mg is an

algebraic curve, then this curve is called Teichmüller curve.

There are two questions that immediately occur:

(1) How can one decide whether a Teichmüller disk descends to an algebraic
curve in the moduli space?
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(2) What type of algebraic curves does one get as Teichmüller curves?

A possible way to answer these two questions is provided by a certain subgroup of
the mapping class group called the Veech group (see below).

1.2. Teichmüller disks. Let X be a Riemann surface and let q be a holomorphic
quadratic differential on X . The pair (X, q) defines a Teichmüller disk in the
following way: The differential q naturally determines a flat structure on X , i.e.
an atlas such that all transition maps are of the form z 7→ ±z+c (with c ∈ C some
constant). SL2(R)-variation of the flat structure defines a map to Teichmüller
space in the following way:

SL2(R) → Tg, A 7→ [(XA, id)],

where XA is obtained from X by composing each chart of the flat atlas with the
affine map z 7→ A · z. This map from SL2(R) to Tg factors through SO2(R)
and thus defines an embedding ι : H →֒ Tg that is in fact holomorphic and
isometric.

1.3. Veech groups. In order to describe the image of a Teichmüller disk ∆ under
the natural projection proj : Tg → Mg, one shall study Stab(∆), the subgroup of
the mapping class group consisting of all elements that map ∆ to itself. The
restriction of the projection proj to ∆ factors as follows:

proj|∆ : Tg ⊇ ∆ → ∆/Stab(∆) → proj(∆) ⊆Mg

Now, proj(∆) is an algebraic curve C iff this is true for the quotient ∆/Stab(∆).
In this case the map ∆/Stab(∆) → C = proj(∆) is a morphism of degree one.
Hence, ∆/Stab(∆) is the normalization of C.
Identifying ∆ with H, the stabilizing group Stab(∆) acts as subgroup of Aut(H) =
PSL2(R). For a Teichmüller disk defined by a pair (X, q) as above this subgroup
is (almost) equal to the projective Veech group, which is defined as follows.

Definition 2. Let Aff+(X, q) be the group of diffeomorphisms that are affine with
respect to the flat structure defined by q, i.e. locally of the form

z 7→ Az + c with A ∈ SL2(R), c ∈ C.
Note that up to the sign, the matrix A does not depend on the charts.
The (projective) Veech group Γ(X, q) is the image of Aff+(X, q) in PSL2(R).

One has the following fact (see e.g. [6], [1, Thm.1]):
(X, q) defines a Teichmüller curve C ⇐⇒ H/Γ(X, q) is an algebraic curve

⇐⇒ Γ(X, q) is a lattice in PSL2(R).
In this case, the normalization of C is antiholomorphic to H/Γ(X, q).

2. Particular examples: Origamis

2.1. Definition. One way to obtain closed surfaces X together with a flat struc-
ture µ is provided by the following construction. Take finitely many copies of the
Euclidean unit square in the plane and glue their edges by translations respecting
the following rules: Each left edge shall be glued to a right one, each upper edge
to a lower one and the resulting surface shall be connected.
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The surface X carries a natural flat structure µI defined by the Euclidean unit
squares. Actually it is even a translation structure; therefore in Definition 2 the
matrices are well defined in SL2(R) and we may consider the Veech group as sub-
group of SL2(R). The translation surfaces obtained in this way are called origamis
(motivated by the idea that they are defined by a few combinatorial data, see [3])
or square tiled surfaces.
The squares naturally define a covering p from X to C/ΛI , where ΛI is the unit
lattice Z⊕ Zi.

It is ramified over at most one point. One may consider the map p as covering
between the topological surface underlying X and the torus; one may then, for
all lattices ΛA (A ∈ SL2(R)) identify the torus with C/ΛA and lift this trans-
lation structure via p. In this way one obtains precisely the SL2(R)-variation
described above that leads to a Teichmüller disk. It is determined by p regarded
as topological covering. This motivates the following definition.

Definition 3. Let X be a closed topological surface and E a torus. An origami
is a covering O = (p : X → E) that is ramified over at most one point.

We study the Veech groups Γ(O) = Γ(X,µI) and the Teichmüller curves defined
in this way. The Veech group of C/ΛI itself is SL2(Z), and it is well known that
the Veech group of an origami is a finite index subgroup of SL2(Z). However, so
far there is no general result which ones occur.

2.2. Some results on Veech groups of origamis. In our work (see [4], [5]) we
develop the following access to origamis: Removing the ramification point ∞ on
E and all its preimages on X , one obtains an unramified covering

p : X⋆ → E⋆ with E⋆ = E − {∞}, X⋆ = X − p−1(∞).

This induces an inclusion U = π1(X
⋆) →֒ π1(E

⋆) = F2, where F2 is the free group
on two generators. This description of origamis allows the following characterisa-
tion of their Veech groups.

Theorem 4. Let O = (p : X → E) be an origami and U ⊆ F2 as above. Define
Stab(U) = {γ ∈ Aut+(F2)| γ(U) = U} and let β : Aut+(F2) → Out+(F2) =
SL2(Z) be the natural projection. Then Γ(O) = β(Stab(U)) ⊆ SL2(Z).

Using this characterisation it was possible to decide for a large class of congru-
ence subgroups of SL2(Z) that they are Veech groups.

Theorem 5. Let B := {b1, . . . , bk} be a partition of (Z/nZ)2 and define
Stab(B) = {A ∈ SL2(Z)|A · bi = bi for all i}. Then Stab(B) is a Veech group.

From this one can deduce the following result for n = p prime.

Theorem 6. Let p be prime. Then each congruence group Γ of level p is a Veech
group except (possibly): p ∈ {2, 3, 5, 7, 11} and the index [SL2(Z) : Γ] = p .
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This statement can be generalized to arbitrary n (see [5]). One might ask,
whether all Veech groups are congruence groups. But this is not at all the case,
see the following theorem.1

Theorem 7. For each genus g ≥ 2 there is an origami in Mg whose Veech group
is a non congruence group.

2.3. The Teichmüller curve of an extraordinary origami (joint work with
F. Herrlich). In [2] we studied the Teichmüller curve of the following origami W
of genus 3:

−j j

1 i −1 −i
k −k
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/ //

\ \\
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The origami W

W has several nice properties. One of them is that its Veech
group is SL2(Z). We proved the following result for its Teich-
müller curve in M3.

Theorem 8. The Teichmüller curve to W is intersected
by infinitely many other Teichmüller curves all coming from
origamis.
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Billiards

Martin Möller

(joint work with Irene Bouw)

We are interested in billiard tables, i.e. in planar rational-angled polygons that
are dynamically optimal in the following sense. For each direction trajectories
starting in that direction have one the following properties independently of the
starting point: Either the trajectory is closed (or connects two corners) or else the
trajectories are uniformly distributed.

Unfolding such a billiard by reflections along its sides yields a Riemann surface
X0 together with a holomorphic one-form ω. Veech has exhibited in [6] the first
series of dynamically optimal billiard tables besides the rectangular table and its

1An other large class of examples all in genus 2 was given by Hubert and Lelièvre
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coverings. Attached to the pair (X0, ω) there is a Fuchsian subgroup Γ of PSL2(R),
called the projective affine group. Veech shows that the property ’dynamically
optimal’ is implied by (and in fact not far from equivalent to, see [3] and [5]) the
projective affine group Γ being a lattice in PSL2(R). The pair (X0, ω) is then
called a Veech surface.

Dynamically optimal billiard tables and Veech surfaces are rare. Veech orig-
inal series was derived from billiards in a (π/n, π/2, (n − 2)π/2n)-triangle and
the projective affine group is the triangle group ∆(2, n,∞) for n odd. Ward
studied (π/n, π/2n, (2n− 3)π/2n)-triangles and found the projective affine group
∆(3, n,∞). An infinite series of Veech surfaces with genus g(X0) = 2 generated
by L-shaped billiard tables was discovered by McMullen (and by Calta indepen-
dently). He also showed that the projective affine groups of these L-shaped tables
are almost never triangle groups. A variant of this construction also yields series
of Veech surfaces for g(X0) ≤ 5 whose projective affine group is again almost never
a triangle group. Up to coverings and the natural action of SL2(R) on the set of
Veech surfaces these were the only known Veech surfaces besides a small number
of sporadic examples. Moreover many other triangles, e.g. all acute triangles but
the above, were shown not to yield Veech surfaces.

We show in [1] that the impression ’triangular tables yield triangle groups’ that
one might get from looking at the first known examples is unjustified. In fact,
the following series of tables T (5, n,∞) is also dynamically optimal. They may
be scaled such that |I4| = 1 and they are determined by α = β = π/n, γ = π/2n
and Re(I3) = cos(π/n)+cos(π/5). The corresponding projective affine groups are

a

b

g d

I1

I
2

I
3

I
4

Figure 1. Billiard table T (5, n,∞), for n = 9

the triangle groups ∆(5, n,∞). More generally, all triangle groups ∆(m,n,∞) of
hyperbolic signature arise as projective affine groups of Veech surfaces. Remark
that projective affine groups are never cocompact ([6]).

Our construction is in fact not geometric but algebraic. The SL2(R)-orbits of
Veech surfaces are curves in the moduli space of curves, called Teichmüller curves.
These curves have been characterized in [4] by properties of the variation of Hodge
structures (VHS) of an associated fibred surface. In [1] we rephrase this criterion
as follows:

A stable model of a fibred surface f : X → C comes from a Teichmüller curves if
and only if the VHS contains a subsystem L of rank two with Fuchsian monodromy
group such that the set of singular fibres coincides with the set of points where
the monodromy of L is infinite. We remark aside that more careful analysis of the
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Kodaira-Spencer map of this fibred surface allows us to calculate certain invariants
of the geodesic flow on the Teichmüller curves, called Lyapunov exponents.

There is a well-known family of cyclic 4-point coverings of P1 whose VHS con-
tains a subsystem of rank two with monodromy group equal to ∆(m,n,∞). In
fact, the corresponding differential equation is a hypergeometric differential equa-
tion. Unless m = n = ∞ this family of curves does not come from a Teichmüller
curve since it has singular fibres at places of C where the monodromy of L is
finite. But a subgroup isomorphic to (Z/2)2 ⊂ Aut(P1 \ {0, 1, t,∞}) lifts to the
cyclic covering. The corresponding quotient family still has a suitable local sub-
system and fewer singular fibres. It thus satisfies the above criterion for being a
Teichmüller curve.
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Mapping Class Groups and Curve Complexes

Elmas Irmak

Let R be a compact, connected, orientable surface of genus g with p boundary
components. The mapping class group, ModR, of R is the group of isotopy classes
of orientation preserving homeomorphisms of R. The extended mapping class
group, Mod∗R, of R is the group of isotopy classes of all (including orientation
reversing) homeomorphisms of R. The combinatorial structure of several curve
complexes on surfaces are studied to get information about the algebraic struc-
ture of the mapping class groups. One of these complexes, introduced by Harvey
[H], is defined as follows: Let A denote the set of isotopy classes of nontrivial
simple closed curves on R. The complex of curves, C(R) is an abstract simplicial
complex, with vertex set A such that a set of n vertices {α1, α2, ..., αn} forms an
n− 1-simplex if and only if α1, α2, ..., αn have pairwise disjoint representatives.

Definition: A simplicial map λ : C(R) → C(R) is called superinjective if the fol-
lowing condition holds: if α and β are two vertices in C(R) such that the geometric
intersection number of α and β, i(α, β), is not equal to zero, then i(λ(α), λ(β)) is
not equal to zero.
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Superinjective simplicial maps were first defined and used by the author to find
a complete description of injective homomorphisms from finite index subgroups of
Mod∗R to Mod∗R in 2002, [Ir1]. In our talk, we will give a survey of the author’s
main results in [Ir1], [Ir2], [Ir3], and also her work on the automorphisms of some
curve complexes given in [Ir3] and [IrK]. The main results that will be discussed
are as follows:

Theorem 1. Suppose g ≥ 2. A simplicial map λ : C(R) → C(R) is superinjective
if and only if λ is induced by a homeomorphism of R.

Theorem 2. Let K be a finite index subgroup of Mod∗R and f be an injective
homomorphism f : K →Mod∗R. If g ≥ 2 and R is not a closed surface of genus 2,
then f has the form k → hkh−1 for some h ∈Mod∗R and f has a unique extension
to an automorphism of Mod∗R. If R is a closed surface of genus 2, then f has the

form k → hkh−1im(k) for some h ∈Mod∗R where m is a homomorphism K → Z2

and i is the hyperelliptic involution on R.

Let B be the set of isotopy classes of nonseparating simple closed curves on R.
The complex of nonseparating curves, N (R), is the subcomplex of C(R) with the
vertex set B such that a set of n vertices forms an n − 1 dimensional simplex if
and only if they have pairwise disjoint representatives.

Theorem 3. Suppose that g ≥ 2 and R has at most g − 1 boundary components.
Then a simplicial map λ : N (R) → N (R) is superinjective if and only if λ is
induced by a homeomorphism of R.

Theorem 4. Suppose that g ≥ 2. If R is not a closed surface of genus 2, then
Aut(N (R)) ∼= Mod∗R. If R is a closed surface of genus 2, then Aut(N (R)) ∼=
Mod∗R/C(Mod∗R).

The author’s work on superinjective simplicial maps was motivated by the
work of Ivanov [Iv1] and Ivanov-McCarthy [IvMc]. In [Iv1], Ivanov proved that
Aut(C(R)) ∼= Mod∗R, and as an application he proved that every isomorphism
between finite index subgroups of Mod∗R is induced by a homeomorphism of R,
i.e. it is of the form k → hkh−1 for some h ∈ Mod∗R for most surfaces. Ivanov-
McCarthy gave a complete description of injective homomorphisms between map-
ping class groups of surfaces ModR and ModR′ , when the maxima of ranks of
abelian subgroups of ModR and ModR′ differ by at most one in [IvMc]. In par-
ticular, they showed that an injective homomorphism of ModR to itself is of the
form k → hkh−1 for some h ∈Mod∗R for most surfaces.

The author’s results generalize Ivanov’s results since an automorphism of C(R)
is a superinjective map of C(R), and they also generalize Ivanov-McCarthy’s re-
sults that we mentioned. We note that an exceptional case appears for injective
homomorphisms from finite index subgroups when R is a closed surface of genus
two. In this case, our result is similar to McCarthy’s explicit description of auto-
morphisms of Mod∗R for a closed surface of genus two given in [Mc].
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Ivanov’s above mentioned theorems were extended to most of the surfaces of
genus zero and one by Korkmaz in [K], and independently by Luo in [Luo]. Luo
gave a proof by using a multiplicative structure on the set of isotopy classes of
nonseparating simple closed curves on R. Our results, Theorem 1 and Theorem 2,
were extended to surfaces of genus zero by Bell-Margalit in [BMa], and to surfaces
of genus 1 by Berhstock-Margalit in [BeMa].

After our work in superinjective simplicial maps of complex of curves, these
maps of separating curve complex were studied by Brendle-Margalit to prove in-
jections from finite index subgroup of K to the Torelli group, where K is the
subgroup of Mod∗R generated by Dehn twists about separating curves, are induced
by homeomorphisms [BrMa]. Recently, Shackleton proved that local embeddings
between two curve complexes whose complexities do not increase from domain to
codomain are induced by surface homeomorphisms. From this he deduces a strong
local co-Hopfian result for mapping class groups [Sh].

In our talk, we will also give an outline of the proof of our joint work with Ko-
rkmaz, about the automorphism group of the Hatcher-Thurston complex HT (R)
given below. This complex was constructed by Hatcher and Thurston in order to
find a presentation for the mapping class group [HT]. It was also used by Harer
[Ha] in his computation of the second homology group of mapping class group.
We note that a similar result was given by Margalit about the complex of pants
decompositions P(R): Aut(P(R)) ∼= Mod∗R for most closed surfaces [Ma].

Theorem 5. Suppose g > 0. Then Aut(HT (R)) ∼= Mod∗R/C(Mod∗R).

We use Schaller’s result in the proof of this theorem. Schaller considered the
graph G(R): the vertex set of G(R) is the set of isotopy classes of nonseparating
simple closed curves on R. Two vertices are connected by an edge if and only if
their geometric intersection number is one. His main result in [Sc] is the following
theorem; we state as much as we use (he defines the graph G(R) for surfaces of
genus zero and one as well): If g ≥ 2 and R is not a closed surface of genus two,
then Aut(G(R)) ∼= Mod∗R.
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Piecewise flat Metrics on Surfaces and the Moduli Space

Marc Troyanov

The role of piecewise flat surfaces in Teichmuller theory has been studied by a
number of authors the last 20 years. See in particular B. H. Bowditch [1], D.B.A.
Epstein and R.C. Penner [2], F. Fillastre [3], W. Thurston [4], and W.A. [7]. In this
presentation, we will show how the theory of deformations of geometric structures
(development and holonomy) applied to the case of piecewise flat surfaces leads to
some interesting geometric structures on the moduli space of a punctured surface.
The details and proofs are given in the paper [6].

We define a punctured surface Σg,n to be an oriented, closed connected sur-
face Σ of genus g together with a distinguished set of n pairwise distinct points
p1, p2, ..., pn ∈ Σg,n, and we denote by Σ′

g,n := Σg,n \ {p1, p2, ..., pn} the same sur-
face with the points p′j removed. The fundamental group πg,n = π1(Σ

′
g,n) is a free

group on 2g + n− 1 generators.
A flat metrics with conical singularities on Σg,n of is a flat metricm on Σ′

g,n such
that in the neighbourhood of a pj , we can introduce polar coordinates (r, ϕ), where
r ≥ 0 is the distance to p and ϕ ∈ R/(θjZ) is the angular variable (defined modulo
θj). The number θj is the total angle at the singular point pk and βj = θj/(2π)−1
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is called the order of the singularity. These metrics have been classified by the
author in 1986 [5]:

Theorem 1. Let Σg,n be a punctured surface with punctures p1, p2, . . . , pn. Fix n
real numbers β1, β2, . . . , βn ∈ (−1,∞) satisfying the Gauss-Bonnet condition:

χ(Σ) +
∑

i

βi = 0 ,

For each conformal structure µ on Σg,n, there exists a metric m such that

i) m is a flat metric on Σ having a conical singularity of order βj at pj (j =
1, . . . , n);

ii) m belongs to the conformal class µ.

This metric is unique up to a dilation (homothety).

Associated to any flat metrics with conical singularities on Σg,n, we have a
developing map and a holonomy representation. These invariant are defined as
follow: Consider the punctured surface Σg,n with a fixed flat metric m with conical
singularity of order βj at pj (j = 1, . . . , n). We conformally have Σ′

g,n ≃ U/Γ
where U is the unit disk and Γ ⊂ Aut(U) is a Fuchsian group isomorphic to the
fundamental group πg,n. Thus, the unit disk U inherits a (incomplete) conformal
flat metric m̃. If f0 is a germ of an isometry near a point z̃0, to the euclidean plane
(identified with C), then we obtain a map f : U → C by analytic continuation from
f0. This map is called the developing map, it is a local isometry for the metric m̃
on U and the canonical metric on C. The corresponding holonomy is the unique
homomorphism ϕm : Γ → SE(2) such that

f(γu) = ϕm(γ)f(u),

here, SE(2) is special Euclidean group, i.e. the group of orientation preserving
isometries of the Euclidean plane.

Thus, to each flat metric m with conical singularities and germ of isometry f0,
we have associated an element

ϕm ∈ Hom(πg,n, SE(2)).

Changing the developing map (i.e. the germ f0) does not affect the conjugacy
class of ϕm. Hence to each flat metric, the element

[ϕm] ∈ R(πg,n, SE(2)) = Hom(πg,n, SE(2))/ SE(2)

is well defined.

Remarks. A) If h is a diffeomorphism of Σ preserving the punctures and
the orientation, and m′ = h∗m, then ϕm′ is conjugate to ϕm.

B) If m′′ = λm is a dilation of m, then ϕm′′ = λϕm. Thus

[ϕm] ∈ SR(πg,n, SE(2)) = R(πg,n, SE(2))/R+

is a well defined invariant of the similarity class of the metric m invariant under
any isotopy of Σ preserving the punctures.
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C) If m has a conical singularity of order βj at the puncture pj , then ϕm(cj) is
a rotation of angle θj = 2π(βj + 1).

Let us denote by Ξ = SRβ(πg,n, SE(2)) the set of equivalent classes of represen-
tations ϕ : πg,n → SE(2) such that ϕm(cj) is a rotation of angle θj = 2π(βj + 1)
for j = 1, 2, .., n. We have associated to each flat metric m on Σ with a conical
singularity of order βj at the puncture pj a well defined element [ϕm] ∈ Ξ.

This element is invariant under any dilation of the metric m and any isotopy.
Combining this construction with the previous theorem about the existence of flat
singular metrics in each conformal class, we obtain a well defined map :

hol : Tg,n → Ξ = SRβ(πg,n, SE(2)).

Theorem 2. Ξ has a natural structure of real algebraic variety. If βj 6∈ Z , then
we have

Ξ ≃ T2g × CP2g+n−3

Theorem 3. The map hol : Tg,n → Ξ is a local homeomorphism.

Any automorphism of πg,n acts on Hom(πg,n, SE(2)) by twisting the represen-
tation. This leads to a natural action of the pure mapping class group PModg,n

on Ξ = SRβ(πg,n, SE(2)), i.e. we have constructed a natural homomorphism

Φ : PModg,n → G = Aut(Ξ) = Aut(T2g) × PGL2g+n−2 C

Theorem 4. The map hol : Tg,n → Ξ is Φ-equivariant.

The previous results taken together give the following

Theorem 5. Given a punctured surface Σg,n such that 2g+n−2 > 0 and βj > −1
satisfying the Gauss-Bonnet condition and such that no βi is an integer, there is
a well defined group homomorphism

Φ : PModg,n → G = Aut(T2g) × PGL2g+n−2(C),

and a Φ-equivariant local homeomorphism

hol : Tg,n → Ξ = T2g × CP2g+n−3.

In other words, the theorem says that

Mg,n = Tg,n/PModg,n

is a good orbifold with a (G,Ξ)-structure.

In the special case of the punctured sphere, a stronger form of this theorem has
been obtained by Deligne and Mostow [8] using some techniques from algebraic
geometry and by Thurston [4] using an approach closer to ours.
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Problem Session at Oberwolfach June 1, 2006

S. Morita, A. Papadopoulos, R. C. Penner

This note summarizes a problem session held at Mathematisches Forschungsinstitut Oberwol-

fach on June 1, 2006, as part of the program on Teichmüller theory. This problem session was

chaired by Bill Goldman.

1. Splittings of Jacobians; posed by Cliff Earle

Consider one-dimensional loci in the Teichmüller space of the closed surface of
genus two. When are they Teichmüller disks? (In this case if they have large
stabilizers, then they are Veech surfaces.) When is the Jacobian J(R) of such a
Riemann suface R isomorphic to a product E×E′ of two Jacobians of genus one?
Here are examples: Take a matrix

U =

(
na nb
nb d

)
,

where a, b, d, n ∈ Z>0 with determinant n(ad − nb2) = 1 and there is no X ∈
SL(2,Z) with XUXt diagonal, and define

H+(U) = {τU : τ ∈ C with Im τ > 0}.
Then:
a) If R is a Riemann surface of genus two whose Jacobian J(R) splits as a product
E × E′, then R has a canonical homology basis so that the period matrix lies in
some H+(U).
b) Conversely, any element τU ∈ H+(U) either corresponds to such a Riemann
surface or does not arise from a Riemann surface, i.e., if τU is a period matrix for
a Riemann surface R, then J(R) splits as Eτ × Enτ .
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c) The collection of τ so that τU ∈ H+(U) is a period matrix forms a dense open
set whose complement is infinite and discrete. If Re τ = 0, then τU is actually a
period matrix. Is the imaginary axis the image of a Teichmüller geodesic?
d) The stabilizer of H+(U) in Sp(2,Z) contains the group

Γ0(U) =

{(
pI qU

rU−1 sI

)
:

(
p q
r s

)
∈ Γ0(n)

}
,

and a sufficently large stabilizer gives a surface of finite type.
e) If a = d = 2 and b = 1, then this indeed gives a Teichmüller disk. In the next
cases a = 2, b = 1, d ≥ 2, are these again Teichmüller disks?

2. Infinite genus surfaces; posed by John Hubbard:

If R is a Riemann surface of finite type and S is a maximal multicurve, then
Fenchel-Nielsen coordinates determine a mapping

τ 7→ (log ℓτ (s), (tτ (s)) = (log of τ − geodesic length of s, twist along s)

from the Teichmüller space of R to RS ×RS , where s ∈ S. For a Riemann surface
of infinite type and some fixed maximal multicurve, there is again a mapping

τ 7→ (log [ℓτ (s)/ℓτ0(s)], tτ (s)),

for any fixed structure τ0. By equicontinuity of quasiconformal mappings, the first
coordinates lie in ℓ∞, but in which function space should these generalized twist
parameters be understood? Notice that this depends upon the length spectrum
insofar as “you can twist a lot along a short curve, but only a little along a long
one”.

Vladimir Marković comments that this is akin to Bill Thurston’s question about
the image of earthquake rays, where having bounded transverse measure implies
that the image is quasi-symmetric.

Leonid Chekhov comments that the Teichmüller space of an infinite genus sur-
face admits a canonical quantization as follows: Take the braid on m strands
corresponding to one half twist, and regard it as a fatgraph with 2(m − 2) triva-
lent vertices in the natural way (with m−2 vertices on each of the top and bottom).
There are then observables Gij that correspond to traversing only bands i and j,
for distinct i, j = 1, . . . ,m, and their Poisson algebra gives examples of so-called
soq(m) algebras. In the continuum limit as the genus g = [(m − 1)/2] tends to
infinity, there is a natural limiting Poisson algebra plus its quantization, which are
presumably related to Hubbard’s question.

3. Homology of compactification; posed by Ralph Cohen

The stable rational homology of Riemann’s moduli space is generated by the tau-
tological classes by Madsen and Weiss. What are generators for the stable rational
homology of the Deligne-Mumford compactification of moduli space?

Gabriele Mondello asks more directly if the stable classes extend to the bound-
ary for integral coefficients. Nariya Kawazumi mentions that the second rational
cohomology of the compactified moduli space was determined by Wolpert and
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depends on the genus. John Hubbard points out that there are many obvious
complex varieties in Riemann’s moduli space (e.g., those with at least one Weier-
strauss point of weight at least two), and he asks for their expressions in terms of
tautological or other classes.

4. Canonical forms; posed by Nariya Kawazumi

There are many “canonical” differential forms representing the first Miller-Morita-
Mumford class e1 on Riemann’s moduli space Mg for the closed surface of genus
g just as in Buddhism, there are many gods. Since H0(Mg;O) = C for g ≥ 3,
we may represent the difference of two such canonical forms as ∂∂̄f , for some
potential function f , and we should undertake a serious study of thes e canonical
functions f . For instance, Faltings’ δ function δg arose by comparing two metrics
on the Hodge bundle, and the Hain-Reed function βg was defined by comparing a
third metric on some multiple of the Hodge bundle.

5. Teichmüller ζ-functions; posed by Ursula Hamenstädt

Let d denote the Teichmüller distance and MC denote the mapping class group
of some surface of finite type, and consider the ζ-type function

∑
γ∈MC e−sd(x,γx).

Find the critical exponent s, i.e., find the smallest s for which this series converges.
Does the series converge at the critical exponent? If the series does indeed con-
verge, is the associated measure equivalent to Lebesgue measure? One might also
reasonably ask these same questions for subgroups of MC.

6. Baby Teichmüller space; posed by Volodya Fock

Consider the collection of all functions f : Z/nZ → RP1 so that f(i) 6= f(i +
1) for any i (taking indices modulo n) and whose image contains at least three
points. Conjugacy classes of such functions modulo SL(2,R) comprise the “baby
Teichmüller space”. What is the cohomology of this space? For instance, how
many components does it have?

7. Forgotten punctures; posed by Maryam Mirzakhani

Let Mg,n denote Riemann’s moduli space of the surface of genus g with n punc-
tures, so the Weil-Peterssen volume of Mg,n for fixed g grows as V (g, n) ∼ n!cn.
Let πn : Mg,n → Mg,0 denote the forgetting the punctures morphism, and sup-
pose that U ⊆ Mg,0. Thus in the limit, the WP volume Vn(U) is the ratio of
the WP volume of π−1

n (U) by V (g, n), and we ask for the limiting value of Vn(U)
as n → ∞. In words, what is the asymptotic distribution in Mg,0 of forgetting
the punctures in Mg,n? This is closely related to the distribution of punctured
arithmetic surfaces.
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8. Families of surfaces; posed by Yoichi Imayoshi

Suppose that R is a Riemann surface of finite type and π : M → R is a holomor-
phic family of surfaces of type (g, n) over R. If two such families have the same
monodromy up to conjugacy, then they are isomorphic. Characterize those mon-
odromies π1(R) → MCg,n arising from such families. Richard Wentworth points
out that only finitely many be realized with fixed topology and complex structure.

9. Minimal vs. holomorphic; posed by Richard Wentworth

When does a holomorphic family as in the previous problem give rise to a holo-
morphic mapping from the universal cover of M to the Teichmüller space of R?
This question is equivalent to distinguishing between minimal and holomorphic
surfaces in Riemann’s moduli space of R.

10. Are a.e. maps pseudo-Anosov; posed by John Hubbard

Choose a set of generators for the mapping class group. As n→ ∞, are a.e. words
of length n pseudo-Anosov? It seems this problem or one that is closely related
has recently been solved by Igor Rivin.

11. Infinite quotients; posed by Koji Fujiwara

Suppose that g ∈ MC(R) is a pseudo-Anosov mapping class on the Riemann
surface R. If you add to a presentation of MC(R) the relation that gn = 1,
for some n, then is the corresponding quotient an infinite group for n sufficiently
large? Norbert A’Campo points out that if g is contained in the Torelli group (or,
more generally, in the kernel of known representation of MC(R) onto an infinite
group G), then the quotient is infinite for any n because it factors through the
infinite group Sp(2g, Z) (or G above). However, it seems that his argument does
not apply to arbitrary pseudo-Anosov mapping.

Does MC(R) have a quotient that is infinite and pure torsion? viz. Baumslag
groups. By Gromov’s work, the answer is yes for a non-elementary word hyperbolic
group for any g with a sufficiently large n.

12. Commutator lengths; posed by Mustafa Korkmaz

Given a group G and some g ∈ [G,G] in the commutator, let c(g) denote the
minimum n so that g can be written as a product of n commutators. Since the
stable commutator length of a right Dehn twist ta along a simple closed curve
a is positive for a closed surface R as was discussed by Dieter Kotschick at this
conference, it follows that c(tna ) ≥ Kn, for some constant K depending only on
the genus. Now consider a collection of curves a1, . . . am, and ask: For R closed,
is there a constant K so that c(ta1 · · · tam

) ≥ Kn ?
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13. Rigid curves; posed by Gabriele Mondello

Consider the Deligne-Mumford compactification M̄0,n in the planar case of n
times punctured stable surfaces of genus zero. Are there any rigid rational curves
C that are not contained in the boundary of M̄0,n? There are Veech curves
for instance, but we ask for other examples of such classes of curves which are
described explicitly.

14. Arc complexes; posed by Bob Penner

Suppose the surface R has genus g with s punctures and r ≥ 1 boundary compo-
nents with at least one distinguished point chosen on each boundary component.
Let Arc(R) denote the purest possible mapping class group orbits of projectively
weighted arc families in R, where the endpoints of each arc lie among the distin-
guished boundary points. What is the topological type of Arc(R)? In particular,
the only non-spherical manifolds arise in the following cases: one distinguished
point on each boundary component and either a planar surfaces with r + s = 4
and r = 2, 3, 4 or the surface of genus one with r = 2, s = 0; what are these
four special manifolds of respective dimensions 5,7,9,7? It is natural to ask corre-
sponding questions about analogous arc complexes for non-orientable surfaces, cf.
Nathalie Wahl’s lecture at this conference.

15. Even tautological classes; posed by Shigeyuki Morita

It is known that the odd tautological classes vanish (rationally) on the Torelli
group because they come from the Siegel modular group. Prove (or disprove) that
the even tautological classes are non-zero on the Torelli group in an appropriate
stable range.

16. Thurston’s asymmetric metric; posed by Athanase Papadopoulos

and Guillaume Théret

Let K denote Thurston’s asymmetric metric on Teichmüller space as discussed in
Guillaume Théret’s talk at this conference. Thurston proved that stretch lines are
geodesic for K, and we already understand the limiting behaviour of a stretch line
in Teichmüller space. Here are three questions concerning this metric: (1) Study
of the behaviour of stretch lines in moduli space. (2) Work out an asymptotic
formula linking K(g, h) and K(h, g). Along a stretch line, we suspect a formula
reminiscent of the collar formula sinh(aK(g, h)) sinh(bK(h, g)) ≃ c with constants
a, b, c depending only on the topology of the surface and on a “complexity” of the
complete lamination directing the stretch line. (3) The mapping class group is a
subgroup of the group of K-isometries. Is the group of K-isometries equal to the
mapping class group?

Reporters: Shigeyushi Morita, Athanase Papadopoulos and Robert C. Penner
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