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Introduction by the Organisers

The Workshop on Classical Algebraic Geometry was notable for a relaxed at-
mosphere (18 talks) and an abundance of young people. A wide variety of themes
related to classical topics were discussed with a very modern point of view. Al-
though it is tempting to summarize each of the talks, we limit ourselves to four
highlights:

• There has been a great deal of interest in the question: are there structural
characterizations of rational varieties in higher dimensions? Rationality it-
self is elusive: the notion of “rationally connected variety” (a variety where
any two points can be connected by a rational curve) seems much more
tractable. Brendan Hassett described work of his with Yuri Tschinkel
showing that these varieties exhibit an analogue of a famous arithmetic
property of quadrics: if a family of varieties has smooth rationally con-
nected fibers, then given a collection of share at least some properties of
quadrics in low dimensions. In many cases, a collection of “local sections”
can be connected by a global section.

• A central theme of algebraic geometry is that the set of algebraic varieties
of a particular kind often itself is naturallly an algebraic variety. It was
classically assumed that such families would be generically nice in some
sense. This has turned out not to be the case: to understand them, one
must accept non-reduced components. The first examples of this phenom-
enon were given by David Mumford in a very famous paper. A second
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highlight of our conference was a re-interpretation and generalization of
Mumford’s example by Shigeru Mukai.

• A number of combinatorial and computational applications in algebraic
geometry have recently come from what the statisticians have for a long
time called the “max-plus” algebra—in algebraic geometry it now goes un-
der the name “tropical”. Sean Keel showed off a new application of these
ideas, found jointly with Paul Hacking and Eugene Tevelev: the “tropical
fan” associated with certain toric varieties provides an extremely nice and
natural compactification of these varieties. Among the remarkable classi-
cal examples that Keel gave is that of the moduli space of smooth cubic
surfaces.

• Among the algebraic varieties of algebraic varieties, the moduli space of
curves of genus g and some of its variants is by far the most important,
with applications ranging from string theory in physics (Witten) to new
versions of resolution of singularities (de Jong). Constructions of Severi
and others from the early part of the 20th century showed that for low
genus (≤ 10) the moduli space is rational, and Severi believed that he
had proved rationality for all genera. The error in his argument was soon
found, and it has been an important problem to decide which moduli
spaces were actually rational.

The importance of this work comes as much from the technique involved
— studying the divisor class group of the moduli space, which really means
describing conditions on an algebraic curve that are locally given by just
one equation — as from the results. At our conference Farkas spoke on a
very far-reaching generalization of what was known systematically using
syzygies to describe conditions on curves that lead to new divisors.
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Abstracts

Rational connectedness over small fields

Yuri Tschinkel

(joint work with Fedor Bogomolov)

Let k be a field, k̄ its separable closure, X an algebraic variety over k and X(k)
its set of rational points. We are interested in rational, resp. algebraic, points on
X and in rational curves on X , defined over k or k̄. For k = k̄ of chacteristic zero
we have (at least) two notions of “connectivity” via rational curves:

(1) For all x1, x2 ∈ X(k) there exists a chain of rational curves C1∪ . . .∪Cr ⊂
X connecting x1 and x2;

(2) For all x1, x2 ∈ X(k) there exists a free rational curve C ⊂ X connecting
x1, x2.

For smooth projective X these two properties are equivalent. The situation is less
clear for quasi-projective X . For example, we don’t know whether (2) holds for
the smooth locus of a singular Del Pezzo surface, or its partial desingularization.

There are versions involving arbitrary (or general) finite sets of points, pre-
scribed local behavior at finitely many points, etc. (see [4]).

In arithmetic situations, when k 6= k̄, there are more logical possibilities: one
could ask for irreducible curves defined over the groundfield k, or for curves over
k connecting points over k̄. Of particular interest are small ground fields, such as
finite fields Fq or the rationals Q. A prototype result is the following theorem of
Kollár and Szabó:

Theorem 1 ([5]). Let X be a smooth projective separably rationally connected
variety over k = Fq. There is a function φ = φ(deg(X), dim(X), n) such that for
q > φ and for every set of n points x1, . . . , xn ∈ X(k) there exists a geometrically
irreducible rational curve C, defined over k with x1, . . . , xn ∈ C(k).

The theorem applies, e.g., to hypersurfaces X ⊂ PN of low degree d ≤ N . It
turns out that rational connectivity holds sometimes even for d = N + 1:

Theorem 2 ([1]). Let X = Ã/G be a Kummer surface over k = Fq (with q
suffiently large), and X◦ ⊂ X the complement to exceptional curves. Then for
every set x1, . . . , xn ∈ X◦(k̄) there exists a geometrically irreducible rational curve
C ⊂ X, defined over k, such that x1, . . . xn ∈ C(k̄).

This theorem applies, for example, to quartic Kummer surfaces. Choosing non-
supersingular A gives examples of nonuniruled K3 surfaces, which are “rationally
connected”. Using this we provide examples of nonuniruled surfaces of general
type over finite fields with the same property.

The proof of Theorem 2 relies on a fact of independent interest.
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Theorem 3 ([2]). Let C be a smooth projective curve of genus g > 2 over k = Fq

(with q sufficiently large) and J its Jacobian. Fix a point c0 ∈ C(k) and the
embedding C →֒ J , via c 7→ c− c0. Then

J(k̄) = ∪∞
m=1m · C(k̄).

In fact, one can let m run through arithmetic progressions.

These results over finite fields have surprizing applications over number fields.

Namely, let X = J̃/G be Kummer surface over a (sufficiently large) number field
K, with J the Jacobian of a curve of genus 2. Choose models for X, J over
the integers OK and a finite set of nonarchimedian places of (sufficiently) good
reduction S. Finally, for v ∈ S, choose x̄v ∈ X(kv) - points in the reduction
modulo v.

Theorem 4 ([3]). There exists a K-rational point x ∈ X(K) such that xv = x̄v

modulo v, for all v ∈ S.

Such a version of weak approximation, for first order jets, is unknown even for
cubic surfaces over number fields.
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Computing certain invariants of topological spaces of dimension three

Barbara Fantechi

(joint work with Kai Behrend)

This is a report on the paper [4]. Let X be a scheme (we will write scheme for
scheme or DM algebraic stack throughout) of finite type over the complex numbers.

An obstruction theory (as in [3] is a morphism α : E → τ≥−1LX in D≤0
coh(X) such

that h0α is an isomorphism and h−1α is surjective. This implies that at every
point x ∈ X , H0(E∨(x)) is isomorphic to TxX and H1(E∨(x)) is an obstruction
space T 2

xX for X at x. If the obstruction theory is 1-perfect, i.e. isomorphic to
a complex [E−1 → E0] of locally free sheaves, then X carries an induced virtual
fundamental class [X ]vir ∈ Ad(X) which has good properties and can be used
to define enumerative invariants when X is proper: here d = rk E0 − rk E−1 =
dimT 1

xX − dimT 2
xX is the expected dimension of X .
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In case where X is a moduli space of simple sheaves on a smooth projective
manifold V with fixed determinant, then it carries an obstruction theory with
T i

FX = Exti0(F, F ) (where the subscript zero means traceless: see e.g. [5] chapter
10). This is 1-perfect when V is a surface (this can be used for an algebraic
definition of Donaldson invariants) and also when V is a threefold with (−KV )
effective, since Ext30(F, F ) is dual to Hom0(F, F (−KV )) ⊂ Hom0(F, F ) = 0; in
this way R. Thomas defines holomorphic Casson invariants, also called Donalson-
Thomas invariants [9].

If the threefold V is Calabi-Yau, in the sense that KV is trivial, then the
obstruction theory described above is symmetric, i.e. there exixts an isomorphism
φ : E → E∨[1] such that φ∨[1] = φ. A symmetric obstruction theory necessarily
has expected dimension zero, and if X is prope one can consider its virtual degree,
i.e., the degree of the virtual fundamental class.

It is easy to see that any obstruction theory arising by X = Z(ω) where ω
is a closed one-form on a smooth variety is naturally symmetric. We prove a
partial converse to this, namely every symmetric obstruction theory can be locally
described as induced by X = Z(ω) where ω is an almost closed one-form on a
smooth variety, i.e. dω|X = 0.

Using this, K. Behrend proved in [1] that if X has a symmetric obstruction
theory, then there exists a constructible integer valued function on X whose in-
tegral is the virtual degree, if X is proper. Here by constructible function we
mean a finite linear combination of characteristic functions of closed subvarieties;
the integral is defined by

∫
1V = e(V ) the Euler characteristic, and extended by

linearity. Moreover the constructible function is local in the étale topology and
multiplicative in products; if X is smooth, its value is (1)dim X .

If the scheme X admits a torus action, we define naturally the notion of equi-
variant symmetric obstruction theory; we prove that if x ∈ X is a scheme-theoretic
isolated fixed point of the torus action, then the value of the constructible function
in x is (−1)dim TxX . As an application, we prove a conjecture of Maulik, Nekrasov,
Okounkov, Pandharipande [8] asserting that for every n

deg[Hilbn V ]vir = (−1)ne(Hilbn V ).

To complete the proof we need to know the parity of dimension of the tangent space
to the Hilbert scheme of points on affine three-space at points corresponding to
monomial ideals; this is already determined in [8].

A more general version of the conjecture, determining deg[Hilbn V ]vir for an
arbitrary smooth projective threefold V has been proven independently by Jun Li
in [7] and by M. Levine and R. Pandharipande in [6] using a different approach,
namely by proving that the virtual degree above is (in a suitable sense) cobordism
invariant and reducing to the case of V toric.

The method outlined here should prove useful for computing other Donaldson-
Thomas invariants, see e.g. [2]. Stronger results should be possible if one could
prove that every space with symmetric obstruction theory is locally the zero locus
of a closed one-form; it is possible that however this is not true, and one must
instead strengthen the assumption, but still in such a way that it still applies
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to Donaldson-Thomas moduli spaces. One possibility would be to rephrase the
symmetry as a condition on an appropriate dg-moduli scheme.
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Some new local properties of multiplier ideals

Robert Lazarsfeld

This report is a summary of – and adapted from – the paper [3].
Let X be a smooth complex algebraic variety of dimension d, and let b ⊆ OX

be an ideal sheaf. Given a rational or real number c > 0 one can construct the
multiplier ideal

J (bc) = J (X, bc) ⊆ OX

of b with weighting coefficient c. This is a new ideal on X that measures in a
somewhat subtle manner the singularities of functions f ∈ b. Multiplier ideals ap-
pear naturally in the Kawamata–Viehweg–Nadel vanishing theorem, and in recent
years thay have found many applications in local and global algebraic geometry.

There has been considerable interest — especially from the algebraic side of
the field — in trying to understand how general or special multiplier ideals may
be among all ideal sheaves. Multiplier ideals are always integrally closed, but up
to now they have not been known to satisfy any other local properties. In fact,
Favre–Jonsson [1] and Lipman–Watanabe [5] proved that in dimension d = 2,
every integrally closed ideal can locally be realized as a multiplier ideal.

The corresponding statement in dimensions ≥ 3 was open for several years un-
til Kungyong Lee [4] recently succeeded in proving that the ideal of a suitable
number of general lines through the origin in C3 couldn’t arise as a multiplier
ideal. However his argument didn’t pinpoint any general features of multiplier
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ideals that might be violated: rather the idea was to follow a potential resolu-
tion of singularities of the data with enough care that one could eventually get a
contradiction.

In joint work with Lee, we have put these matters in a new light. Specifically, the
main result of [3] asserts that multiplier ideals satisfy some unexpected properties
of an algebraic nature. In the following, we work in the local ring (O,m) of X at
a point x ∈ X , and as above d = dimX .

Theorem 1. Let J = J (bc)x ⊆ O be (the germ at x of ) any multiplier ideal.
If p ≥ 1, then no minimal pth syzygy of J vanishes modulo md+1−p.

Let me explain the statement more precisely in the case p = 1. Fix minimal
generators f1, . . . , fb ∈ J , and let g1, . . . , gb ∈ m be functions giving a minimal
syzygy ∑

gifi = 0

among the fi. Then the claim is that

ordx(gi) ≤ d− 1

for at least one index i. When p ≥ 2 the meaning is similar. Note however that
there aren’t any restrictions on the order of vanishing of generators of a multiplier
ideal, since for instance all powers of m occur as multiplier ideals.

The theorem implies that if d ≥ 3, then many integrally closed ideals cannot
arise as multiplier ideals. For example consider 2 ≤ m ≤ d− 1 functions

f1, . . . , fm ∈ O

vanishing to order ≥ d at x. If the fi are chosen generally, then the complete inter-
section ideal I = (f1, . . . , fm) that they generate will be radical, hence integrally
closed. On the other hand, the Koszul syzygies among the fi violate the condition
in Theorem 1, and hence I is not a multiplier ideal. If d ≥ 3 a modification of this
construction yields m-primary integrally closed ideals having a syzygy vanishing
to high order.

Theorem 1 follows from a more technical statement involving the vanishing of
a map on Tor’s:

Theorem 2. The natural maps

Torp

(
md−pJ ,C

)
−→ Torp

(
J ,C

)

vanish for all 0 ≤ p ≤ d.

This in turn is proved by noting that an exact “Skoda complex” [2, Section 9.6.C]
sits inbetween the two Koszul complexes computing the groups in question.
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Invariants of singularities in positive characteristic

Mircea Mustaţǎ

(joint work with Manuel Blickle, Karen E. Smith)

We study invariants of singularities in positive characteristic that are analogues
of the jumping numbers of multiplier ideals in characteristic zero. For simplic-
ity, we deal here only with the case of principal ideals, though the reults below
generalize to arbitrary ideals.

Suppose that k is a perfect field of positive characteristic p, and let f be a
nonzero polynomial in R = k[x1, . . . , xn]. On R we have the Frobenius morphism
F : R → R, F (x) = xp that is flat and finite. If I is an ideal in R and if e is a
positive integer, then we put

I [pe] := (upe

| u ∈ I).

We now recall the definition of the F-thresholds of f from [3]. Suppose that J
is a fixed ideal in k[x1, . . . , xn] such that f ∈ rad(J). For every positive integer
e, let νJ

f (pe) be the largest r such that f r 6∈ J [pe] (if there is no such r, we put

νJ
f (pe) = 0). Since the Frobenius morphism is flat, it follows that

νJ
f (pe+1) ≥ p · νJ

f (pe),

and therefore we may define the F-threshold of f with respect to J by

cJ (f) := sup
e≥1

νJ
f (pe)

pe
= lim

e→∞

νJ
f (pe)

pe
.

It is easy to see that this is a finite number.

Example 1. Let f = x2 + y3. Note that in characteristic zero, the log canonical
threshold lc(f) of f is equal to 1

2+ 1
3 = 5

6 . Suppose now that we are in characteristic
p > 3 and let us compute cm(f), where m = (x, y). One can show that if p ≡ 1
(mod 3), then cm(f) = 5

6 , while if p ≡ 2 (mod 3), then cm(f) = 5
6 − 1

6p .

In fact, there are the following results of Hara, Takagi and Watanabe on the
connection between the log canonical threshold of a pair in characteristic zero and
the F-thresholds of its reductions mod p. Suppose that f ∈ Z[x1, . . . , xn] and for
every prime p we denote by fp the class of f in Z/pZ[x1, . . . , xn]. We denote by
m the maximal ideal (x1, . . . , xn) in Z/pZ[x1, . . . , xn].

Theorem 1. With the above notation, for all p≫ 0 we have

lc0(f) ≥ cm(fp),

where lc0(f) denotes the log canonical threshold of f in a neighborhood of 0.
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Theorem 2. Moreover, we have

lim
p→∞

cm(fp) = lc0(f).

Probably the most interesting question in this area is the following

Conjecture 1. There are infinitely many p such that lc0(f) = cm(fp).

Note that the log canonical threshold can be computed in characteristic zero
via resolution of singularities. We stress that in characteristic p this is not the
case, even in cases when we have such a resolution: in Example 1, we always have
a resolution, and this is independent of the characteristic.

The F-thresholds are positive characteristic analogues of the jumping numbers
of the multiplier ideals in characteristic zero (see [2] p. 168). In fact, they can be
realized as jumping numbers for some generalized test ideals introduced by Hara
and Yoshida in [1]. We give now a definition that is equivalent to the one in [1].

For every e ≥ 1 and r ≥ 0, let Ir,e(f) be the smallest ideal (with respect to
inclusion) such that

f r ∈ Ir,e(f)[p
e].

It is easy to see that if c ∈ R+, then for every e we have I⌈cpe⌉,e(f) ⊆ I⌈cpe+1⌉,e+1(f),
where we denote by ⌈α⌉ the smallest integer ≥ α. Since R is Noetherian, it follows
that there is an ideal denoted τ(f c) such that for e≫ 0 we have τ(f c) = I⌈cpe⌉,e(f).

It is clear from definition that if c1 < c2, then τ(f c2) ⊆ τ(f c1). One can also

show that for every c there is ǫ > 0 such that τ(f c) = τ(f c′) for every c′ ∈ [c, c+ǫ).

We call c a jumping number of f if τ(f c) 6= τ(f c′) for every c′ < c.
We show that the set of jumping numbers of f is equal to the set of F-thresholds

of f (when we let the ideal J vary). In characteristic zero, the jumping numbers
for the multiplier ideals are determined by a log resolution of f . This implies, for
example, that the numbers are rational and discrete. In characteristic p, as we
have seen, the F-thresholds are not determined by a resolution, even when such a
resolution exists.

Our main results are

Theorem 3. The set of F-thresholds of f is discrete, i.e. we have finitely many
such thresholds in every bounded interval.

Theorem 4. All F-thresholds of f are rational numbers.

We sketch the proofs of the above theorems. Note that the first result easily
implies the second. Indeed, if α is an F-threshold, then so is pα. Moreover, if
α > 1, then also α − 1 is an F-threshold. This implies that for every F-threshold
α, all fractional parts {peα} are F-thresholds (we make the convention that 0 is
an F-threshold). Theorem 5 implies that there only finitely many such numbers,
hence there are e1 6= e2 such that (pe1 − pe2)α is an integer.

In order to prove Theorem 5, it is enough to show that if deg(f) = d, then for
every c ∈ R+, τ(f c) is generated by polynomials of degree ≤ cd (this shows that
the set {τ(fα) | α ≤ c} is finite). This in turn can be deduced from the following
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description of the ideals Ir,e(f). Consider the basis {xu | u = (ui)i ∈ Nn, 0 ≤ ui ≤
pe − 1} of R over Rpe

. If we write f r in this basis

f r =
∑

u

ape

u x
u,

then Ir,e(f) = (au | u). In particular, Ir,e(f) is generated by polynomials of degree

≤ dr
pe .
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Approximation results for rationally connected varieties

Brendan Hassett

(joint work with Yuri Tschinkel)

We work over an algebraically closed field k of characteristic zero.
Let B be a smooth connected curve over k and π : X → B a rationally con-

nected fibration, i.e., a flat proper morphism whose generic fiber X is smooth and
rationally connected. We shall often assume that the total space X is nonsingular.
For each b ∈ B, we write Xb = π−1(b) and X sm

b for the smooth locus of Xb. A
rationally connected fibration Y → B with generic fiber X is called a model of X .

Our point of departure is the following pair of results: Each rationally connected
fibration X → B admits a section s : B → X . [2] Furthermore, given b1, . . . , br ∈
B so that each Xbi

is smooth and xi ∈ Xbi
, then there exists a section with

s(bi) = xi for each i. [6]
A smooth projective varietyX over k(B) satisfies geometric weak approximation

at b1, . . . , br ∈ B if either of the following two equivalent conditions holds:

• For any nonsingular model Y → B and points yi ∈ Y sm
bi

, there exists a
section t : B → Y with t(bi) = yi for each i.

• There exists one model X → B so that, for any N ≥ 0 and any collection
of formal sections

ŝi : B̂bi
→ X ×B B̂bi

, B̂bi
= Spec ÔB,bi

,

there is a section s : B → X so that

s ≡ ŝi (mod mN+1
B,bi

), i = 1, . . . , r.

X satisfies geometric weak approximation if these hold for any finite collection of
points in B.

In general, geometric weak approximation holds for:
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• rational varieties: X is rational over k(B).
• Del Pezzo surfaces of degree ≥ 4: This reduces to the case of quartic

Del Pezzo surfaces addressed in [1].
• hypersurfaces of very small degree: X ⊂ Pn a hypersurface of degree
d provided n ≥ φ(d) where φ(d) satisfies the recursion

φ(d) =

(
φ(d− 1) + d− 1

d− 1

)
, φ(1) = 1,

i.e., n ≥ 2 for d = 2, n ≥ 6 for d = 3, n ≥ 84 for d = 4, etc. [5]

The case of Del Pezzo surfaces of degree ≤ 3 remains open.
Assuming that X is rationally connected, geometric weak approximation holds

at b1, . . . , br ∈ B for:

• places of good reduction: By definition, bi ∈ B is of good reduction if
there exists a smooth local model near bi, i.e., a smooth proper morphism

Ŷ → B̂bi
with generic fiber equal to X . [3]

• places with strongly rationally connected smooth locus: X admits

a local model Ŷ → B̂bi
such that, for each y ∈ Y sm

bi
, there exists a rational

curve P1 → Y sm
bi

joining y and the generic point. [4]
• nice cubic surfaces: X is a cubic surface so that each bi of bad reduction

satisfies one of the following:
i. Xbi

is a cubic surface with at worst rational double points and X is
nonsingular along Xbi

, e.g., cubic surfaces over k(B) with square-free
discriminant; [4]

ii. Xbi
is a cubic surface with at worst ordinary double points, not iso-

morphic to the Cayley cubic surface

wxy + xyz + yzw + zwx = 0;

here X need not be smooth. [5]
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Termination of (many) 4-dimensional log flips

Yujiro Kawamata

(joint work with Valery Alexeev, Christopher Hacon)

This is a report on the paper [1]. Due to a recent result by Hacon and McKer-
nan [2] which used the extension theorem of log canonical forms and Shokurov’s
saturation method, the only remaining unknown part of the Minimal Model Pro-
gram is the termination conjecture of flips for klt pairs. The conjecture claims
that there does not exist an infinite sequence of flips

(X,B) = (X0, B0) 99K (X1, B1) 99K (X2, B2) 99K . . .

projective over a fixed variety S starting from a klt pair (X,B) where B is an
R-divisor. It was already proved to be true if dimX = 3, and if dimX = 4 and
(X,B) is terminal.

The difficulty of the termination conjecture is to give a correct definition of
the difficulty. In the case of the 3-dimensional terminal vatrieties, the proof of
the termination by Shokurov based on the first definition of the difficulty was
surpringly simple. But if one applies the same definition to the log terminal case,
then the difficulty becomes infinity. The correct definition of the difficulty should
satisfy the following requirements: (1) it is well-defined, (2) it decreses after a flip,
and (3) it satisfies DCC.

Let (X,B) be a klt pair of dimension 4. Assume that the termination conjecture
is true in the case where (X,B) is terminal. Then there exists a Q-factorial
terminalization (X ′, B′) → (X,B). The termination for the klt case is more
difficult than the terminal case because the coefficients of B′ decreases even if
those of B are fixed. Especially, the case where the coefficients go to 0 in the limit
is the most difficult open case.

We define the difficulty of the klt pair (X,B) as that of the terminalization
(X ′, B′). So assume that the pair (X,B) is terminal. Roughly speaking, the
difficulty d(X,B) counts the number of DVR’s whose discrepancies are less than
1. Let Bi be an irreducible component of B with coefficient bi. Repeated blowings
up along a codimension 2 subvariety on Bi yield echos of the subvariety whose
discrepancies are k(1 − bi) for positive integers k. Since there are infinitely many
such varieties, the naive difficulty is infinity. In order to compensate the echos, we
add a renormalization term to the defining formula of the difficulty which comes
from the Picard number of the boundary divisor. We also use a weighted counting
method in order to obtain a simpler formula.

The same proof for the termination works for both the terminal pair and the
klt pair. Therefore, we run the proof twice to obtain the result as in the case of
latex program.

The main theorem is the following:
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Theorem 1. Let (X,B) be a 4-dimensional klt pair. Assume that the boundary
B is decomposed into two effective R-divisors B = B′ + B′′ such that the strict
transforms of B′ are ample for all flips in the sequence. Then the sequence termi-
nates.

Corollary 1. Let B =
∑
biBi. Assume that there exist ci ∈ R such that c0KX +∑

ciBi is big over the base S. Then there exists some finite sequence of MMP
for the pair (X,B) which produces the final result, i.e., a Mori fiber space or a
minimal model.

By using [2], we obtain:

Corollary 2. There exists a flip for any small contraction in dimension 5.
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SL2(R)-invariant loci in the one-form bundle over Mg

Martin Möller

A special case of a theorem by Ratner ([7]) states the following: Let Γ ⊂ SO(1, n)
be a lattice. The quotient SO(1, n)/Γ =: FM is the frame bundle over the homoge-
nous manifoldM := Hn/Γ. Consider a subgroup isomorphic to SL2(R) ⊂ SO(1, n).
Then for each point in x ∈ FM the closure of the orbit SL2(R) · x is again the
orbit of a subgroup in SO(1, n).

The total space ΩMg of the one-form bundle over the moduli spaceMg of curves
of genus g has a natural action by SL2(R) as follows: One integrates locally on the
Riemann surface the one-form. On the image in C ∼= R2 one can apply matrices
in SL2(R). The composition map defines a new complex structure on the surface
when identifying R2 by C. Although ΩMg is not a homogeneous manifold the
SL2(R)-action behaves similarly. McMullen has shown ([3] and subsequent work)
that in genus g = 2 all orbit closures are indeed algebraic manifolds. They are
now completely classified.

In higher genera this problem can be decomposed into two steps: First one
wants show that orbit closures are complex, hopefully even algebraic manifolds.
Second one wants to characterize and classify such manifolds. The latter is a purely
algbro-geometric problem for the following reason. There is a natural stratification
of ΩMg according to the number and multiplicities of zeros of the one-form. The
strata posses a structure of a linear manifold. In fact choosing locally a basis of
relative periods and integrating them against the one-form defines a local diffeo-
morphism between the strata and CN . The next proposition, well-known to the
experts, provides the translation between group action and algebraic geometry.
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Proposition 1. A closed analytic subspace in CN is GL2(R)-invariant if and only
if it is linear and can be defined by R-linear equations.

For the lowest dimensional orbit closures there is the following solution to the
characterization problem. Orbits that are already closed project to Teichmüller
curves C in Mg. These are algebraic curves that are geodesic for the Teichmüller
metric. See e.g. [2] for more background on Teichmüller curves and relation to
billiards. Given C → Mg consider the pullback f : X → C1 of the universal

family over the moduli space of curves M
[n]
g with some level-n-structure to the

corresponding unramified cover C1 → C.

Theorem 1. ([4]) A family f : X → C1 of curves arises as above from a Te-
ichmüller curve if and only if the local system V = R1f∗C contains a rank two
subsystem L whose Kodaira-Spencer mapping

L(1,0) → L(0,1) ⊗ Ω1
C1

(log(C1 \ C1))

is an isomorphism.

This characterization of Teichmüller curves can be used to construct Teichmüller
curves and also billiard tables with special dynamical properties. See [5] or [1] for
more details on this joint work with I.Bouw. Nevertheless the classification of
Teichmüller curves is still wide open for g ≥ 3.

Towards the classification of higher dimensional linear manifolds in g ≥ 3 we
have the following partial result:

Theorem 2. ([6]) A linear manifold in a stratum of ΩM3 is either a whole stra-
tum, the intersection of a stratum with the hyperelliptic locus or it parameterizes
curves whose Jacobian has non-trivial endomorphisms.

A completion of the picture in g = 3 seems to depend, among other things, on
deciding if the preimages in M3 of Hilbert modular threefolds always intersect the
hyperelliptic locus.
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Singularities of divisors of low degrees on abelian varieties

Olivier Debarre

(joint work with Christopher Hacon)

We work over the complex numbers.
Let D be an effective Q-divisor on a smooth projective variety A, let µ : A′ → A

be a log resolution of the pair (A,D), and write

µ∗(KA +D) = KA′ +
∑

aiDi

where the Di are distinct prime divisors on A′. The pair (A,D) is

• log canonical if ai ≤ 1 for all i;
• (Kawamata) log terminal if ai < 1 for all i;
• (D prime) canonical if ai ≤ 0 for all i such that Di is µ-exceptional.

These properties have consequences for the singularities of D: for any positive
integers m and k,

• if (A, 1
mD) is log canonical, codimA(Singmk D) ≥ k;

• if (A, 1
mD) is log terminal, codimA(Singmk D) > k;

• (D prime) if (A,D) is canonical, D is normal with rational singularities
and codimA(Singk D) > k for k ≥ 2.

Let now A be an abelian variety of dimension g. The degree of an ample divisor
D on A is defined by

deg(D) =
1

g!
Dg = h0(A,D).

An ample divisor of degree 1 is called a theta divisor.
Kollár was the first to use vanishing theorems to prove results on the singular-

ities of divisors in abelian varieties. Here is a sample result.

Theorem 1 (Kollár for m = 1; Ein–Lazarsfeld). Let (A,Θ) be a complex prin-
cipally polarized abelian variety and let D ≡ mΘ, where m is a positive integer.
The pair (A, 1

mD) is log canonical.

The proof is very simple: to any effective Q-divisor on A one can associate
a multiplier ideal and log canonicity is equivalent to I (A, t

mD) = OA for all
rationals t ∈ (0, 1). Let Z be the subscheme of A defined by one of these ideals.
The Nadel vanishing theorem yields

Hi(A,OA(Θa) ⊗ IZ) = 0 for all i > 0 and all a ∈ A.

If Z is nonempty, we have Z 6⊂ Θa for a general, hence H0(A,OA(Θa)⊗IZ) = 0.
It follows that

χ(A,OA(Θa) ⊗ IZ) = H0(A,OA(Θa) ⊗ IZ) = 0

for a ∈ A general hence for all a because the Euler characteristic is a numerical
invariant. We conclude that

Hi(A,OA(Θa) ⊗ IZ) = 0 for all i and all a ∈ A.



1632 Oberwolfach Report 27/2006

By the Fourier–Mukai theory, this implies OA(Θ) ⊗ IZ = 0, which is absurd.

Ein and Lazarsfeld also prove that if Θ is irreducible, (A,Θ) is canonical. In
particular, Θ is normal and has rational singularities. This was known before
only for Jacobians of curves, in which case the result holds in any characteristic
(Kempf). It is unknown whether this is still true for any principally polarized
abelian variety in positive characteristic.

As explained above, this implies

codimA(Singk Θ) > k

for k ≥ 2. For Jacobians, and more generally for generalized Prym varieties (hence
for any indecomposable principally polarized abelian variety of dimension ≤ 5),
one actually has

codimA(Singk Θ) ≥ 2k − 1

for k ≥ 2 by work of Casalaina–Martin. Is it true that this holds in any dimension?

We prove the following extension of the above theorem to ample divisors whose
degree is small with respect to the dimension.

Theorem 2. Let (A,L) be a simple polarized abelian variety of degree d and
dimension g > (d+ 1)2/4 and let D ≡ mL.

• if m = 1, the divisor D is prime and the pair (A,D) is canonical;
• if m ≥ 2, the pair (A, 1

mD) is log terminal unless D = mE.

If A is not simple, |L| may very well contain reducible elements. There are also
examples, in any dimension g ≥ 2, and for any d ≥ 3 and m ≥ d − 1, of pairs
(A, 1

mD) that are not log canonical.

The proof goes as follows (when m ≥ 2, we will only prove log canonicity; log
terminality is harder). The point is to show that

• if m = 1, the adjoint ideal (which I won’t define here) J (A,D) is trivial;
• if m ≥ 2 and t ∈ Q ∩ (0, 1), the multiplier ideal I (A, tD) is trivial.

In each case, let Z be the subscheme of D defined by the ideal and set

h = h0(A,La ⊗ IZ) ∈ [0, d]

for a general in A.
If h = d, all sections of L contain all translates of Z, which must be empty.
Assume h = 0. In the case m ≥ 2, we conclude as in the Ein–Lazarsfeld proof

OA(Θ)⊗IZ = 0, which is absurd. In the case m = 1, work of Ein and Lazarsfeld
implies that D is fibered by nonzero abelian varieties, which is also absurd.

So we assume 0 < h < d (and Z nonempty). Set

J = {(s, a) ∈ PH0(A,L) ×A | s|Z+a ≡ 0}.

The fiber of a point a of A for the second projection q : J → A is PH0(A,L ⊗
IZ+a) ≃ Ph−1) and a unique irreducible component I of J dominates A. It has
dimension g + h− 1.
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Let p : I → PH0(A,L) be the first projection. Nonempty fibers Fs = q
(
p−1(s)

)

have dimension ≥ g + h − d. For a general in A, the subvariety p(q−1(a)) =
PH0(A,L⊗IZ+a) of PH0(A,L) is a linear subspace of dimension h− 1. It must
vary with a, because a nonzero s does not vanish on all translates of Z. It follows
that the linear span of p(I) has dimension at least h. For s1, . . . , sh+1 general
elements in p(I), one has, since A is simple,

dim(Fs1
∩ · · · ∩ Fsh+1

) ≥ g − (h+ 1)(d− h) ≥ g − (d+ 1)2/4.

For a ∈ Fs1
∩ · · · ∩ Fsh+1

, the sections s1, . . . , sh+1 all vanish on Z + a, hence

h0(A,La⊗IZ) ≥ h+1. Since the Euler characteristic χ(A,La⊗IZ) is independent
of a, this proves that

V>0 = {a ∈ A | Hi(A,La ⊗ IZ) 6= 0 for some i > 0}

has dimension ≥ g − (d+ 1)2/4 > 0.

When m = 1, it follows from the Green–Lazarsfeld theory that every irreducible
component of the set

Vi = {a ∈ A | Hi(A,La ⊗ IZ) 6= 0}

is a translated abelian subvariety of A of codimension ≥ i; since A is simple, it is
finite for i > 0. When m ≥ 2, we have V>0 = ∅ by Nadel vanishing. In each case,
we get a contradiction.
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A generalization of Mumford’s example

Shigeru Mukai

(joint work with H. Nasu)

Let Hilbsc V be the Hilbert scheme parametrizing smooth curves in a smooth
projective variety V . In [3], Mumford showed that Hilbsc

P3 has a generically
non-reduced component. More precisely the following is proved:

Example 1. Let S be a smooth cubic surface in P3, E a (−1)-P1 in S and C ⊂ S
a smooth member of the linear system |4h+ 2E| ≃ P37 on S. (C is of degree 14
and genus 24.) Such space curves C are parametrized by W 56 ⊂ Hilbsc

P3, an
open subset of a P37-bundle over |3H | ≃ P19. Here H is a plane in P3 and h is
its restriction to S. Then W 56 is an irreducible component of (Hilbsc

P3)red and
Hilbsc

P3 is nowhere reduced along W 56.

It is well known that every infinitesimal (embedded) deformation of C ⊂ V is
unobstructed if H1(NC/V ) = 0. Conversely we find a sufficient condition for a first
order infinitesimal deformation of a curve C in a 3-fold V to be obstructed, ab-
stracting an essence from the arguments in [1] and [4]. As application we construct
generically non-reduced components of the Hilbert schemes of uniruled 3-folds V
including Examples 1 and 2 as special cases:

Example 2 ([2]). Let V3 be a smooth cubic 3-fold in P4, S its general hyperplane
section, E a (−1)-P1 in S and C ⊂ S a smooth member of |2h+2E| ≃ P12. (C is of
degree 8 and genus 5.) Such curves C in V3 are parametrized by W 16 ⊂ Hilbsc V ,
an open subset of P12-bundle over the dual projective space P4,∨. Then W 16 is
an irreducible component of (Hilbsc V3)red and Hilbsc V3 is nowhere reduced along
W 16.

The curves C of genus 24 in Example 1 are not (moduli-theoretically) general
but the curves C of genus 5 in Example 2 are general. Hence, with the help of
Sylvester’s pentahedral theorem ([5]), Example 2 gives a counterexample to the
following problem:

Problem 1. Is every component of the Hom scheme Hom(X,V ′) generically
smooth for a smooth curve X with general modulus and for a general member
V ′ in the Kuranishi family of V ?

Let Hom8(X5, V3) be the Hom scheme of morphisms of degree 8 from a curve
X5 of genus 5 with general modulus to a smooth cubic 3-fold V3 ⊂ P4.

Theorem 1 ([2]). If V3 is also moduli-theoretically general, then Hom8(X5, V3)
has a generically non-reduced component of expected dimension (= 4).

The following seems still open:

Problem 2. Let G/P be a projective homogeneous space, e.g., a Grassmann
variety and X a curve with general modulus. Is every component of Hom(X,G/P )
generically smooth?
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The answer is affirmative for the projective space Pn by virtue of Gieseker’s
theorem (= Petri’s conjecture).
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A Step in Castelnuovo theory via Gröbner bases

Ivan Petrakiev

I report on a recent result in Castelnuovo theory concerning the extrinsic prop-
erties of projective curves of high genus ([9]).

Let C be a reduced, irreducible and nondegenerate curve of degree d and arith-
metic genus g in Pn. A celebrated theorem of Castelnuovo (1889) gives an explicit
upper bound π0(d, n) on g in terms of d and n. Moreover, curves that attain
the maximal genus, the so called Castelnuovo curves, have rather special extrinsic
properties and are well understood. In particular, as long as d ≥ 2n + 1, such
curves always lie on surfaces of minimal degree n− 1.

Castelnuovo’s theorem has been reconsidered and extended further by sev-
eral classical geometers, including G. Halphén ([6]), G. Fano ([5]) and, later, by
Eisenbud-Harris ([3]). The main philosophy of the modern Castelnuovo theory is
that curves of sufficiently high genus should lie on surfaces of some small degree.

Extending Castelnuovo’s bound, Eisenbud-Harris ([3]) defined a decreasing
string of numbers

πα(d, n) ≈
d2

2(n− 1 + α)
+O(d),

where α = 0, 1, . . . , n− 1, and made a conjecture:

Conjecture 1. If C is a curve of genus g > πα(d, n) and d ≥ 2n+ 2α− 1, then
C must lie on a surface of degree at most n+ α− 2.

In [3], a proof is given for the case α = 1, although a similar result has been
already known to Fano. The Eisenbud-Harris conjecture is also known to be true
any α, as long as d >> 0 (the explicit bound on d is exponential in n).

In [9] we settle the next case α = 2 (n ≥ 8) of the Eisenbud-Harris conjecture.
The only previous work in this direction known to us is the paper of C. Ciliberto
([2]) , where some partial results were obtained by different methods.

Recall the main circle of ideas involved in Castelnuovo theory. Let Γ = C∩Pn−1

be a general hyperplane section of C. We will say, that Γ is in symmetric position,
which generalizes the notion of uniform position, first introduced by Harris in [7].
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As Castelnuovo observed, if C is to have high genus, then Γ must have a “small”
Hilbert function hΓ(l) and, in particular, Γ must fail to impose many conditions
on quadrics in Pn−1. Assume d ≥ 2n + 1. Then, according to the well-known
Castelnuovo’s lemma, hΓ(2) takes its minimal value 2n− 1 precisely when Γ is a
set of points lying on a rational normal curve in Pn−1. This allowed Castelnuovo
to determine his bound π0(d, n) on the genus of C and describe the curves that
achieve it.

By generalizing Castelnuovo’s lemma, one is naturally lead to conjecture the
following (see also [4] for a generalization).

Conjecture 2. If Γ ⊂ Pn−1 is a set of d ≥ 2n + 2m − 1 points in symmetric
position, with hΓ(2) ≥ 2n+m − 2 (where 1 ≤ m ≤ n− 3), then Γ must lie on a
curve of degree at most n+m− 2.

This conjecture also appears in [8] in a different context.
In [9] we establish the first previously unknown cases m = 3 (n ≥ 5) and

m = 4 (n ≥ 7) of Conjecture 2. This in turn implies the corresponding result on
Conjecture 1.

The starting point in our work is the fact, that under the assumptions of Con-
jecture 2, Γ lies on an m-fold rational normal scroll (this was already observed by
Fano and rediscovered by Eisenbud-Harris and Reid). We use this, together with
the symmetry of Γ, to write the beginning of a Gröbner basis for the homogeneous
ideal of Γ in degree 2, in a suitable coordinate system and monomial order. It
turns out, that there are only few quadrics missing in our Gröbner basis, precisely(
m−1

2

)
. We make a conjecture about the “missing”

(
m−1

2

)
quadrics and support it

with some evidence, that comes from an elementary geometric observation. In the
cases m = 3, 4, we are actually able to complete the whole Gröbner basis of Γ in
degree 2.
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Preconceptions and misconceptions on relative stable maps in the
normal crossings case

Dan Abramovich

(joint work with Barbara Fantechi)

I report on joint work in progress with Barbara Fantechi; a closely related work
in symplectic geometry is being developed by Joshua Davis of Duke University.

The theory of relative stable maps was first introduced by Ziv Ran in his paper
on the degree of the Severi variety under a different name; the subject was devel-
oped within Gromov-Witten theory by a number of people, including A.M. Li–Y.
Ruan, E. Ionel–T. Parker, and J. Li. Working in algebraic geometry, we must
follow the work of Jun Li. Related work appeared through the years, including
Harris–Mumford, Alexander-Hirschowitz, Gathmann, Caporaso–Harris, Vakil.

Stable maps were introduced by Kotsevich as a tool in Gromov–Witten theory,
which from the point of view of this workshop, serves as a tool in enumerative
geometry. The main goal is to count the number of curves of given genus g and
homology class β on a variety X meeting given cycles γ1, . . . γn.

Tools in Gromov–Witten theory include the famous WDVV equation, but much
more powerful are the methods of localization and degeneration. I concentrate on
the degeneration method.

Previous work concentrated on the case of a family of varieties parametrized
by a curve, with smooth total space and special fiber consisting of two smooth
components meeting transversally along a divisor Σ. The issue is that, although
a space of stable map fibered over the base exists, the formalism of virtual fun-
damental classes fails in genus > 0 in case there are components mapping to the
singular locus Σ of the fiber. The solution involves expanding the fiber by sticking
a chain of P1 bundles over Σ between the two original components of the fiber.

One then defines degenerate stable maps to the fibers, and similarly relative
stable maps to each component, and one proves a gluing formula for degenerate
stable maps in terms of relative stable maps to each of the components.

The problem we set out to solve is:

(1) define relative stable maps to (Y,D), where D is a normal crossings divisor
on a smooth variety Y ,

(2) define degenerate stable maps to a variety obtained by gluing such relative
(Yi, Di) appropriately along the divisors, in such a way that Gromov–
Witten invariants are defined and are deformation invariant, and

(3) prove a gluing formula comparing the two.

The aim of the talk was to describe a good number of places where one finds
welcome and unwelcome surprises in the project. Due to ill planning, most of the
talk ended up in explaining the earlier work.
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A welcome surprise mentioned in the talk is the following: much grief was
brought on previous writers in analyzing the so called “predeformability condi-
tion”, a closed condition on relative and degenerate stable maps which is un-
pleasant to work out. Techniques of stacks and twisted stable maps of Olsson
and Abramovich–Vistoli enable one to transform this into an open condition on a
modified space, thus avoiding much of the grief.

An unwelcome surprise mentioned in the talk is in describing the gluing for-
mula: whereas in the previously studied case the Gromov–Witten numbers of a
two-component variety was described in terms of its decomposition to exactly two
components, in our case, where the degenerate variety has at least three intersect-
ing components, our formalism requires summing over further decompositions,
where each component of the original variety is further “expanded”.
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The log canonical and stable pair compactifications of moduli of del
Pezzo surfaces

Sean Keel

(joint work with Paul Hacking, Eugene Tevelev)

Let Y n be the moduli space of isomorphism classes of smooth marked del Pezzo
surfaces of degree 9−n, where a marking of S means an expression of S a blowup
of P2 in n-marked points (and two marked surfaces are iso if the expressions differ
by an element of PGL3). Let B ⊂ S be the union of its (−1)-curves. Let Y n

× ⊂ Y n

be the open subset corresponding to surfaces such that B has normal crossings.
There are two natural Mori theoretic compactifications of Y n, each of which turns
out to be very nice:

Theorem 1. Yn is log minimal. For n ≤ 7, its log canonical compactification
Y

n

lc exists and is smooth and projective, and the boundary Y
n

lc \ Y
n is a union of

smooth divisors with simple normal crossings.

Theorem 2. Y n
× embeds in the Kollár–Shepherd-Barron–Alexeev moduli stack of

stable surfaces. Now suppose that n ≤ 6.
This embedding extends to the embedding of Y n. Let Y n ⊂ Y

n

ss be the closure.

Y
n

ss is a smooth and projective scheme. The boundary Y
n

ss\Y
n is a union of smooth

divisors with simple normal crossings. Let π : (S ,B) → Y
n

ss be the restriction of
the universal family. Its fibres (S,B) have at worst stable toric singularities.

The functorial morphism Y n+1 → Y n extends to the morphism Y
n+1

lc → Y
n

lc

and we have commutative diagrams

S Y
6

lc

π

y
y

Y
5

ss Y
5

lc

S −−−−→ Y
7

lc

π

y
y

Y
6

ss −−−−→ Y
6

lc,

where the horisontal arrows in the second diagram are log crepant.

It turns out that Y
6

lc is isomorphic to the Naruki space of cubic surfaces and

Y
7

lc is isomorphic to Sekiguchi’s space of degree 2 del Pezzo surfaces. Sekiguchi
gave a root system interpretation of Naruki’s construction, and then a unified way

of constructing M0,n, Y
6
, Y

7
from Dn, E6, E7, using certain cross ratio maps

associated to sub D4 root systems (he attributes this construction of M0,n to
Terada). We observe that Sekiguchi’s D4 cross ratios have the following geometric
expression: Given a Del Pezzo surface S and an arrangement L,L1, L2, L3, L4

consisting of 4 pairwise disjoint (−1)-curves Li each incident to a (−1)-curve L,
intersecting gives 4 points

(1) {L1 ∩ L, L2 ∩ L, L3 ∩ L, L4 ∩ L} ⊂ L
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This induces a regular map Y n → M0,4 ⊂ P1. Sekiguchi observes that taking all
possible arrangments gives an immersion (for some large integer N):

(2) Y n ⊂ (P1)N .

Theorem 3 (Naruki). For n = 6, the closure Y
6

is smooth and the boundary

Y
6
\ Y 6 has smooth components and simple normal crossings.

We will show that in fact Y
6

= Y
6

lc. Sekiguchi conjectured that Theorem 3 also
holds for n = 7. We prove that this is indeed the case:

Theorem 4 (Sekiguchi’s conjecture). For n = 7, the closure in (2) is equal to

Y
7

lc, in particular smooth, with simple normal crossing boundary.

The above condition that the Li be pairwise disjoint is rather unnatural – we
can (on Y n

× ) define such a map for any four (−1) curves all incident to a fifth curve

L Doing so yields Y
n

ss:

Theorem 5. For n ≤ 6, the product of all cross ratio maps gives a closed embed-
ding Y

n

ss ⊂ (P1)m, where m is the number of arrangements of four (−1)-curves
incident to a fifth curve.

We obtain Y
n

lc, and Y
n

ss together with its universal family (and thus its functo-
rial meaning) canonically from the interior Y n by applying elementary ideas from
Mori theory and tropical algebraic geometry. The same construction applied to
M0,n yields M0,n. Next we explain the procedure:

We begin with a brief review of tropical algebraic geometry: Let k be an al-
gebraically closed field. For any variety Y defined over k, MY := O∗(Y )/k∗ is
a lattice. Let TY (the intrinsic torus of Y ) be the corresponding algebraic torus,
TY := Hom(MY ,Gm). There is a canonical evaluation map Y → TY (unique up
to translation by an element of TY ). One checks that Y is very affine (i.e. is a
closed subvariety of some algebraic torus) iff Y → TY is a closed embedding.

Let K be the field of Puiseux series over k. Let deg : K∗ → Q be the non-
archimedean valuation. Let Y (K) (resp. TY (K)) be the set of K-points of Y
(resp. TY ). The valuation gives rise to the map

deg : TY (K) → UY ⊗ Q.

The Tropical Variety trop(Y ) of Y is defined as the image of the composition

Y (K) → TY (K)
deg
→ UY ⊗ Q.

We make use of the following definition, due to Tevelev:

Definition 1. Let F be a fan in UY ⊗ Q, TY ⊂ X(F ) the corresponding toric
variety and Y (F ) ⊂ X(F ) the closure of Y ⊂ X(F ). We call F (and Y (F ))
tropical if Y (F ) is complete, and the structure map Y (F ) × TY → X(F ) is flat
and surjective.

Tevelev proves the following:
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Theorem 6. Tropical fans exist, and if F is tropical then |F | = trop(Y ). Any
refinement of a tropical fan is tropical.

It is natural to wonder if every fan structure on trop(Y ) is tropical, and more
importantly, if there is a canonical choice –so the closure in the corresponding toric
variety gives a canonical way of compactifying Y . We observe that under some
natural conditions, this is indeed the case:

Tevelev proved that if the structure map for one tropical compactification is
smooth, then this is true for any tropical compactification (thus this is a property
of Y ). In this instance we say that Y is Schön. Note in this case any tropical
compactification (together with its boundary) has toric singularities.

Definition 2. We say that a Schön very affine variety Y is Hübsch if it is log
minimal (i.e. some log pluricanonical map is an immersion) and the log canonical
compactification is tropical. We call the corresponding fan structure on trop(Y )
the log canonical fan.

We prove the following:

Theorem 7. If Y is Hübsch, then any fan supported on trop(Y ) is tropical, and
is a refinement of the log canonical fan.

Thus in the Hübsch case the log canonical fan – and thus the log canonical
compactification – can be recovered from the set trop(Y ).

There turn out to be many nice examples:

Theorem 8. Complements of connected hyperplane arrangments, Yn (n ≤ 7),
and M0,n are all Hübsch. The corresponding tropical (= log canonical) compact-
ifications are Kapranov’s visible contour compactification, the compactification of
Theorem 1, and the Grothendieck-Knutsen compactification M0,n ⊂M0,n.

Next we describe the tropical fans for Yn and M0,n. Building on ideas of
Sekeguchi these turn out to be canonically associated with the root systems En

and Dn. For that reason we also denote Y (En) = Yn, Y (Dn) = M0,n.
Here we set E4 = A4 and E5 = D5. This notation is consistent because M0,5 =

Y5. Combinatorics of the fibers of various universal families is encoded in two
towers of embeddings of root systems

(3)

E4

∩
D3 ⊂ D4 ⊂ D5/E5 ⊂ D6 ⊂ . . .

∩
E6

∩
E7

∩
E8
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Theorem 9. Let ∆ be Dn or En and let Y = Y (∆). Let W be the Weyl group.
Let Z∆+ be the lattice with basis vectors [α] for positive roots α. Let

U(∆)∨ =
{∑

nα[α]
∣∣∣
∑

nαα
2 = 0

}
⊂ Z∆+ .

Then U(∆)∨ is an irreducible W -module of rank equal to the number of roots in
∆+ with three-legged support. We have an isomorhism of W -modules

O∗(Y )/k∗ = U(∆)∨.

Let ψ : Z∆+ → U(∆) be the dual map. For any root subsystem Θ ∈ ∆, let
ψ(Θ) := ψ(

∑
[α]), the sum over α ∈ Θ ∩ ∆+. Let F (∆) ⊂ U(∆) ⊗ Q be the fan

defined as follows. Its rays are spanned by ψ(Θ) for all subsystems of type:

• D2, . . ., Dn for ∆ = D2n+1;
• D2, . . ., Dn−1, Dn ×Dn for ∆ = D2n;
• A1, A2 ×A2 ×A2 for ∆ = E6;
• A1, A2, A3 ×A3, A7 for ∆ = E7.

Rays that correspond to subsystems Θ1, . . . ,Θk span a cone if and only if any two
subsystems are either orthogonal or nested with one exception: in the case of E7,
we exclude cones that correspond to seven-tuples of orthogonal A1’s.

Theorem 10. F (∆) is the log canonical fan of Y (∆), and is strictly simplicial,
i.e. the corresponding toric variety X(F (∆)) is smooth. (n ≤ 7 for En).

Tevelev proved that a dominant map of very affine varieties Y ′ → Y induces a
surjective map of intrinsic tori TY ′ → TY and a surjective map of tropical varieties
trop(Y ′) → trop(Y ). Let TY ′/Y be the kernel of TY ′ → TY .

Theorem 11. Let Fn := F (En). Let n ≤ 6. The natural morphism Y n+1 →
Y n induces a surjective map of fans Fn+1 → Fn. This induces a commutative
diagram:

Y
n+1

lc −−−−→ X(Fn+1)y π

y

Y
n

lc −−−−→ X(Fn)

π has reduced fibres. There are canonical minimal refinements F ′
n of Fn, F̃n+1

of Fn+1 inducing a commutative diagram with flat π′:

Ỹ n+1 −−−−→ Zn −−−−→ X(F̃n+1) −−−−→ X(Fn+1)y
y π′

y π

y

Y
n

ss Y
n

ss −−−−→ X(F ′
n) −−−−→ X(Fn)

Here Y
n

ss is the closure of Y n in X(F ′
n), Ỹ n+1 is the closure of Y n+1 in X(F̃n+1),

and the diagram in the middle is Cartesian. Y
n

ss is isomorphic to the closure of
Y n
× in the Kollar-Shepherd-Barron–Alexeev space of stable surfaces. Consider the

multiplication map
Ψ : Ỹ n+1 × TY n+1/Y n → Zn.
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For n ≤ 5, π = π′ is flat, Y
n

ss = Y
n

lc, ¡Ỹ n+1 = Y
n+1

lc , Ψ is smooth, and

Ỹ n+1 → Y
n

ss is the universal family S → Y
n

ss.
Let n = 6. Then Ψ is smooth outside of Eckhart points, i.e. smooth points of

the fibre where three boundary divisors meet transversally. Blowing up the union
of Eckhart points (which is a smooth subvariety contained in the smooth locus of

Ỹn+1) yields the universal family of stable cubic surfaces S → Y
6

ss.

Let us stress one point of the construction which strikes us as remarkable:
We begin with the canonical universal family p : Y n+1 → Y n (whose fibre over
a surface is the complement in the surface to the union of its −1 curves) and
obtain from it the functorial compactification, together with its universal family
(and thus the functor itself) by a canonical, combinatorial procedure, uniquely
determined by p and the map (of sets!) trop(Y n+1) → trop(Y n). We note that
the family of stable pairs we obtain is highly non-trivial. For example, in the
simplest possible degeneration, corresponding to a generic point of a boundary

divisor of Y
5

ss = M0,5, the limit surface has 6 (smooth) components.

A natural smooth compactification of the space of elliptic curves in
projective space via blowing up the space of stable maps

Ravi Vakil

(joint work with Aleksey Zinger)

The moduli space of stable maps M g,k(X, β) to a complex projective manifold X
(where g is the genus, k is the number of marked points, and β ∈ H2(X,Z) is the
image homology class) is the central tool and object of study in Gromov-Witten
theory. The open subset corresponding to maps from smooth curves is denoted
Mg,k(X, β).

The protean example is M 0,k(Pn, d). This space is wonderful in essentially all
ways: it is irreducible, smooth, and contains M0,k(Pn, d) as a dense open subset.
The boundary

∆ := M 0,k(Pn, d) \ M0,k(Pn, d)

is normal crossings. The divisor theory is fully understood, and combinatorially
tractable [4]. In some sense, this should be seen as the natural generalization of
the space of complete conics compactifying the space of smooth conics.

It is natural to wonder if such a beautiful structure exists in higher genus.
In arbitrary genus, however, there is no reasonable hope: Mg(P

n, d) is badly
behaved. (We emphasize that even the interior of the moduli space of stable maps
is badly-behaved.) More precisely, Mg(P

n, d) (as g, n, and d vary) is arbitrarily
singular in a well-defined sense — it can have essentially any singularity, and
can have components of various dimension meeting in various ways with various
nonreduced structures [6]. In short, there is no reasonable hope of describing
a desingularization, as this would in essence involve describing a resolution of
singularities.
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In genus one, however, the situation remains remarkably beautiful. Although
M 1,k(Pn, d) in general has many components, it is straightforward to show that

M1,k(Pn, d) is irreducible and smooth. Let M
0

1,k(Pn, d) be the closure of this open
subset (the “main component” of the moduli space).

We will describe a natural desingularization of this main component

M̃1,k(Pn, d) → M
0

1,k(Pn, d).

(Details appear in [7]. In particular, it is proved there that this construction
actually gives a desingularization.) This desingularization has several desirable
properties.

• It leaves the interior M1,k(Pn, d) unchanged.

• The boundary M̃1,k(Pn, d) \ M1,k(Pn, d) is simple normal crossings, with
an explicitly described normal bundle.

• The points of the boundary have explicit geometric interpretations.
• The desingularization can be interpreted as blowing up “the most singular

locus”, then “the next most singular locus”, and so on, but with an unusual
twist.

• The divisor theory is explicitly describable, and the intersection theory is
tractable. (For example, one can compute the top intersection of divisors
using [9].)

• The compactification is natural in the following senses.
(i) The desingularization is equivariant: it behaves well with respect to

the symmetries of Pn. Hence we can apply Atiyah-Bott localization
to this space — not just in theory, but in practice.

(ii) It behaves well with respect to the inclusion Pm →֒ Pn.
(iii) It behaves well with respect to the marked points (forgetful maps,

ψ-classes, etc.).

(iv) Consider the universal map π : C → Pn over M g,k(Pn, d), where

ρ : C → M g,k(Pn, d) is the structure morphism. An important sheaf
in Gromov-Witten theory is ρ∗π

∗OPn(a). When g > 0, this is not
a vector bundle, which causes difficulty in theory and computation.

However, in genus 1, “resolving M
0

1,k(Pn, d) also resolves this sheaf”:
when the sheaf is pulled back to the desingularization, it “becomes”
a vector bundle. More precisely, it contains a natural vector bundle,
and is isomorphic to it on the interior. This vector bundle is explicitly
describable.

We find it interesting that such a natural naive approach as we will describe
actually works, and yields a desingularization with these nice properties. For
example, if n > 2, this desingularization can be interpreted as a natural compact-
ification of the Hilbert scheme of smooth degree d curves in projective space, and
thus could be seen as the genus 1 version of the complete conics.

This construction also has a number of applications:

• enumerative geometry of genus 1 curves via localization.
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• Gromov-Witten invariants in terms of enumerative invariants [8].
• the Lefschetz hyperplane property: effective computation of Gromov-Wit-

ten invariants of complete intersections [3] (see also [2] for the special case
of the quintic threefold).

• algebraic version of “reduced” Gromov-Witten invariants in symplectic
geometry [8].

• an approach to hopefully prove physicists’ predictions [1] about genus 1
Gromov-Witten invariants (work of Zinger, in progress).

We finally describe the construction explicitly. (In the lecture, the geography

of M 1,k(Pn, d) was sketched as motivation.) It is straightforward to show that

M 1,k(Pn, d) is nonsingular on the locus where there is no contracted genus 1
(possibly nodal) curve (for example, the proof of [5, Prop. 4.21] applies). We say
a stable map is in the m-tail locus if there is an arithmetic genus 1 contracted
curve, with precisely m points of the contracted curve that are either marked,
or meet the rest of the curve. The algorithm is then as follows: blow up the

one-tail component (which actually does nothing to M
0

1,k(Pn, d)), then the proper
transform of all two-tail components, then the proper transform of all three-tail
components, etc.
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Attempt to construct the general simply connected Godeaux surface

Miles Reid

A surface S with pg = 0, K2 = 1 is a Godeaux surface. Its bicanonical pencil
|2KS| consists of curves of genus 4. I assume that |2K| has 4 distinct base points
Pi, and every C ∈ |2K| is 2-connected. This already implies that there is no
torsion in PicS (and I conjecture moreover that the surface is simply connected).
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The divisor classA = KS|C has 3A = KC by the adjunction formula,H0(C,A) =
0 and 2A = P1 + · · · + P4. The graded ring R(C,A) has Hilbert series

1 + t2 + 4t3 + 5t4 + 7t5 + 9t6 + 11t7 + 13t8 + · · ·

=
1 − 2t+ 2t2 + 2t3 − 2t4 + t5

(1 − t)2

=
1 + 3t3 + 4t4 + 3t5 + t8

(1 − t2)(1 − t3)
etc.

Thus for all the generators one must embed C →֒ P(2, 34, 44, 53) (codimension 10),
where it needs at least 46 defining equations. The following procedure gives a much
more efficient presentation:

Write ei : OC →֒ OC(Pi) for the trivial inclusion and

x = e1e2e3e4 : OC →֒ OC(2A)

for the basis section of H0(2A) vanishing at P1 + · · · + P4. Next, for each i write
fi ∈ H0(KC − Pj − Pk − Pl) for a basis element; then yi = fiejekel ∈ KC forms a
basis of H0(KC) with yi(Pj) = δij (so mapping the Pi to the coordinate points of
P3).

The point of the construction is that these ei, fi also give rise to sections of
4A, 5A and 6A with many “tautological” monomial relations between them; for
“general” C, these embed C into a toric variety w(P1)4, where it only needs 4
equations tied by a single syzygy.

More specifically, these generators are

zij = fifjekel = yiyj/x ∈ H0(4A)

tl = fifjfkel = yiyjyk/x
2 ∈ H0(5A)

u = f1f2f3f3 = y1y2y3y4/x
3 ∈ H0(6A)

Then the 16 generators x, yi, zijtl, u are the vertexes of a 4-cube, and the relations
holding between them are the 2 × 2 minors of this array, corresponding to the
55 equations defining the Segre embedding of (P1)4 ⊂ P15 (in straight projective
space).

The remaining equations defining C ⊂ w(P1)4 are in degrees 4, 4, 5, 6, tied by
one syzygy in degree 8. The parameter space for these equations is a concretely
given rational variety.

The above analysis of R(C,A) for a single curve C extends to the relative case:

write S̃ → S for the blowup of the 4 base points Pi; of the bicanonical pencil |2KS |;

then S̃ → P1 is a fibre space of curves marked with a relative 1/3-canonical divisor.
It is easy to write the relative algebra over P1 in each degree as explicit sums of
line bundles. This gives a strategy to write out the general S. Essentially the
same equations were written out (starting out from different principles) by Frank
Schreyer, and his probabilistic calculations (although not rigorous) make clear that
the moduli space is 8-dimensional and irreducible.
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Koszul divisors on moduli spaces of curves

Gavril Farkas

The aim of this work is to describe a general method of constructing special effec-
tive divisors on moduli spaces using the syzygies of the parametrized objects. We
present a unified framework for doing divisor class calculations on M g and try to
show that Koszul divisors are the most intrinsic and, from the point of view of
birational geometry, most useful divisors on a moduli space.

The idea of using geometric divisors to study the birational geometry of M g goes

back to Harris and Mumford (cf. [HM]) who proved that M g is of general type for

large g by studying the Hurwitz divisor M
1

2k−1,k := {[C] ∈ M2k−1 : ∃C
k:1
→ P1}.

In [FP] and [F1], for each genus g = 6i + 10, we constructed a divisor defined

on a Hurwitz scheme over M g and showed that its pushforward to M g always

violates the Slope Conjecture on effective divisors on M g (see [HMo] and [FP] for
background on the Harris-Morrison Conjecture).

We fix integers i ≥ 0 and s ≥ 1 and set r := 2s + si + i, g := rs + s and
d := rs+ r. We denote by Gr

d the stack parametrizing pairs [C,L] with [C] ∈ Mg

and L ∈W r
d (C) and denote by σ : Gr

d → Mg the natural projection. We denote by
Ki,j(C,L) the (i, j)-th Koszul cohomology group of the pair (C,L) and we define
a stratification of Gr

d with strata Ug,i := {(C,L) ∈ Gr
d : Ki,2(C,L) 6= 0} and set

Zg,i := σ∗(Ug,i).

Theorem 1. If σ : G̃r
d → M g is the compactification of Gr

d given by limit linear
series, then there exists a natural morphism between torsion free sheaves of the

same rank φ : A → B over G̃r
d such that Z g,i is the image of the degeneracy

locus of φ. The class of the pushforward to M g of the virtual degeneracy locus of
φ is given by

σ∗(c1(B − A )) ≡ aλ− b0 δ0 − b1 δ1 − · · · − b[g/2] δ[g/2],

where a, b0, . . . , b[g/2] are explicitly given coefficients such that b1 = 12b0 − a and

s
(
σ∗(c1(B − A ))

)
=

a

b0
= 6

f(s, i)

(i+ 2) sg(s, i)
, with

f(s, i) =
(i4+24i2+8i3+32i+16)s7+(i4+4i3−16i−16)s6−(i4+7i3+13i2−12)s5−(i4+2i3+
i2+14i+24)s4+(2i3+2i2−6i−4)s3+(i3+17i2+50i+41)s2+(7i2+18i+9)s+2i+2

and
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g(s, i) = (i3 + 6i2 + 12i+ 8)s6 + (i3 + 2i2 − 4i− 8)s5 − (i3 + 7i2 + 11i+ 2)s4 −
− (i3 − 5i)s3 + (4i2 + 5i+ 1)s2 + (i2 + 7i+ 11)s+ 4i+ 2.

Furthermore, we have that 6 < a
b0
< 6 + 12

g+1 whenever s ≥ 2. If the morphism φ

is generically non-degenerate, then Z g,i is a divisor on M g which gives a coun-
terexample to the Slope Conjecture for g = s(2s+ si+ i+ 1).

Despite its complicated appearance, the slope computed in Theorem 1 encodes
a surprising amount of information about M g, in particular, for suitable choices
of s and i it specializes to the divisor class calculations carried out in [HM], [Kh],
[FP] and [F1] which were originally obtained using a variety of ad hoc techniques.

Via Green’s Conjecture for syzygies of canonical curves (cf. [V]), Theorem 1
provides a new way of calculating the class of the compactification of the Brill-
Noether divisor first computed by Harris and Mumford (cf. [HM]):

Corollary 1. The slope of the Harris-Mumford divisor M
1

2i+3,i+2 on M 2i+3 con-

sisting of curves which cover P1 with degree ≤ i+ 2 is given by the formula

s(M
1

2i+3,i+2) =
6(i+ 3)

i+ 2
= 6 +

12

g + 1
.

For s = 2 and g = 6i+10 (that is, in the case h1(L) = 2 when Gr
d is isomorphic

to a Hurwitz stack parametrizing covers of P1), we recover the main result from
[F1]:

Corollary 2. The slope of the divisor Z 6i+10,i on M 6i+10 consisting of curves

possessing a pencil g1
3i+6 such that if L = KC(−g1

3i+6) ∈ W 3i+4
9i+12(C) denotes the

residual linear system, then C
|L|
→֒ P3i+4 fails to satisfy the Green-Lazarsfeld prop-

erty (Ni), is given by the formula:

s(Z 6i+10,i) =
3(4i+ 7)(6i2 + 19i+ 12)

(12i2 + 31i+ 18)(i+ 2)
.

In the case i = 0 we have complete results in the sense that (1) we show that

Z g,0 is an actual divisor on M g and (2) we can compute the entire class [Z g,0]
rather than the λ, δ0 and δ1 coefficients

Theorem 2. For an integer s ≥ 2 we set r := 2s, d := 2s(s+1) and g := s(2s+1).
Then the degeneracy locus

Zg,0 := {[C] ∈ Mg : ∃L ∈ W r
d (C) such that C

|L|
→֒ Pr is not projectively normal}

is a divisor on M g of slope

s(Z g,0) =
3(16s7 − 16s6 + 12s5 − 24s4 − 4s3 + 41s2 + 9s+ 2)

s(8s6 − 8s5 − 2s4 + s2 + 11s+ 2)

contradicting the Slope Conjecture.
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Examples of Rigid Varieties and the Action of the Absolute Galois
Group

Ingrid Bauer

(joint work with F. Catanese, F. Grunewald)

The key slogan of the following is: the absolute Galois group acts on the set of
components of moduli spaces, e.g., let Mx,y be the moduli space of isomorphism
classes of minimal complex surfaces S of general type withK2

S = x. It is wellknown
that Mx,y is defined over the integers and therefore the absolute Galois group
Gal(Q̄/Q) acts on the set of irreducible (or connected) components of Mx,y. In
particular, Gal(Q̄/Q) acts on the 0-dimensional components of Mx,y, the rigid
surfaces.

Example 1. Assume, you have a class M of complex algebraic varieties such that
the following condition is satisfied: if X , X ′ have the same characteristic numbers
and π1(X) ∼= π1(X

′), then X and X ′ or X and X̄ ′ are deformation equivalent.
Then Gal(Q̄/Q) acts (factoring throughGal(Q̄/Q)/ << σ >>, where σ denotes

complex conjugation) on the set of fundamental groups {π1(X)|[X ] ∈ M}.

A class of varieties satisfying the above condition are the so-calles varieties
isogenous to a higher product, introduced and studied in [4].

Definition 1. A complex algebraic variety X of dimension n is called isogenous to
a higher product if and only if there is a finite étale cover C1×· · ·×Cn → X , where
C1, . . . , Cn are compact Riemann surfaces of respective genera gi := g(Ci) ≥ 2.

In fact, X is isogenous to a higher product if and only if there is a finite étale
Galois cover of X isomorphic to a product of curves of genera at least two, ie.,
X ∼= (C1 × · · · ×Cn)/G, where G is a finite group acting freely on C1 × · · · × Cn.

For simplicity we will assume in the following X = S to be a surface.
We have the following

Theorem 1. (Catanese, [4]). Let S = (C1 × C2)/G be a surface isogenous to
a product. Then any surface X with the same topological Euler number and the
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same fundamental group as S is diffeomorphic to S. The corresponding subset of

the moduli space M
top
S = M

diff
S , corresponding to surfaces homeomorhphic, resp.,

diffeomorphic to S, is either irreducible and connected or it contains two connected
components which are exchanged by complex conjugation.

In particular, if X is orientedly diffeomorphic to S, then X is deformation
equivalent to S or to S̄.

Remark 1. (1) The class of varieties isogenous to a higher product provide a
wide class of examples where one can test or disprove several conjectures
and questions (cf. e.g., [5], [1], [2]).

(2) Notice, that given a surface S = (C1 × C2)/G isogenous to a product,
we obtain always three more, exchanging C1 with its conjugate curve C̄1,
or C2 with C̄2, but only if we conjugate both C1 and C2, we obtain an
orientedly diffeomorphic surface. However, these four surfaces could be all
biholomorphic to each other.

Definition 2. A surface S isogenous to a higher product is called a Beauville
surface if and only if S is rigid.

The absolute Galois group Gal(Q̄/Q) acts on the points in the moduli space
corresponding to Beauville surfaces and we have the following quite natural, but
rather ambiguous questions.

Question 1. Let S be a Beauville surface. Then S is defined over a number field.

(1) What is a field of definition of S?
(2) What is the Gal(Q̄/Q) - orbit of the point [S] in the moduli space?

Beauville surfaces were extensively studied in [2] and the action of the complex
conjugation σ ∈ Gal(Q̄/Q) on Beauville surfaces is completely understood. The
key fact is, that the datum of a Beauville surface can be described group theo-
retically, since it is equivalent to the datum of two triangle curves (i.e., a curve
C together with a finite group G acting on C, s.th. C → C/G ∼= P1 has ex-
actly three branch points) with isomorphic groups with some additional condition
assuring that the diagonal action on the product of the two curves is free.

Among others, we prove in [2]:

Theorem 2. There are Beauville surfaces S not biholomorphic to S̄ (i.e., σ acts
non trivially on S) with group

(1) the symmetric group Sn for n ≥ 7,
(2) the alternating group An for n ≥ 16 and n ≡ 0 mod 4, n ≡ 1 mod 3,

n 6≡ 3, 4 mod 7.

The following theorem gives examples of surfaces which are not real, but bi-
holomorphic to their complex conjugates, or in other words, they give real points
in their moduli space which do not correspond to real surfaces.

Theorem 3. Let p > 5 be a prime with p ≡ 1 mod 4, p 6≡ 2, 4 mod 5, p 6≡ 5 mod
13 and p 6≡ 4 mod 11. Set n := 3p+ 1. Then there is a Beauville surface S with
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group An which is biholomorphic to the complex conjugate surface S̄, but is not
real.

To understand the action of the absolute Galois group on arbitrary Beauville
surfaces seems impossible, but if we restrict ourselves to the case where one of
the triangle curves is given by the Galois closure of a polynomial with exactly two
critical values, the situation becomes much easier.

Let P ∈ C[z] be a polynomial with critical values {0, 1}. Then it follows that
P has coefficients in Q, and in fact then in some number field K.

In order not to have infinitely many polynomials with the same branch set, we
consider normalized polynomials P (z) := zn + an−2z

n−2 + . . . a0 with only critical
values {0, 1}. Once we choose the types of the respective cycle decompositions
(m1, . . . ,mr) and (n1, . . . , ns) of the respective monodromies over 0 and 1, we
can write our polynomial P in two ways, namely P (z) =

∏r
i=1(z − βi)

mi , and
P (z) − 1 =

∏s
k=1(z − γk)nk .

We have the equations F1 =
∑
miβi = 0 and F2 =

∑
nkγk = 0 (P is nor-

malized). Moreover, m1 + . . .mr = n1 + . . . ns = n = degP and therefore, since∑
j(mj − 1) +

∑
i(ni − 1) = n− 1, we get r + s = n+ 1.

Since we have
∏r

i=1(z− βi)
mi = 1 +

∏s
k=1(z− γk)nk , comparing coefficients we

obtain further n−1 polynomial equations with integer coefficients in the variables
βi, γk which we denote by F3 = 0, . . . , Fn+1 = 0. Let

V(n; (m1, . . . ,mn), (n1, . . . , ns))

be the algebraic set in affine (n + 1)-space corresponding to the equations F1 =
0, . . . , Fn+1 = 0. Mapping a point of this algebraic set to the vector (a0, . . . , an−1)
of coefficients of the corresponding polynomial P we obtain an algebraic set W(n;
(m1, . . . ,mn), (n1, . . . , ns)) (by elimination of variables) in affine (n − 1) space.
Both these algebraic sets are defined over Q and by Riemann’s existence theorem
follows that they are either empty or have dimension 0.

Example 2. We calculate that W(7; (2, 2, 1, 1, 1); (3, 2, 2)) is irreducible over Q,
which implies that Gal(Q̄/Q) acts transitively on W. Looking at the possible
monodromies, we see that there are two (non complex conjugate) non equiva-
lent polynomials. The two permutations of types (2, 2) and (3, 2, 2) generate A7

and the Galois closure of the two polynomial maps give two triangle curves (not
diffeomorphic) triangle curves C1, C2.

We remark that A7 has generators a1, a2 of order 5 such that their product has
order five, yielding a triangle curve C. Obviously, A7 acts freely on C1 ×C as well
as on C2 ×C and we obtain two Galois conjugate Beauville surfaces S1, S2, which
are not diffeomorphic and therefore have different fundamental groups by theorem
1.

This phenomenon was already observed by Serre, cf. [6]. The fact that we only
obtain two surfaces, which are Galois conjugate, but not homeomorphic, comes
from the low degree of our polynomial. Raising the degree, we will probably get
arbitrary many Galois conjugate, not homeomorphic, surfaces.
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Remark 2. The (topological) fundamental groups of S1 and S2 are not isomor-

phic, whereas their profinite completions πalg
1 (Si) (i.e., the algebraic fundamental

groups) are isomorphic.
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Families of canonically polarized varieties over surfaces

Stefan Kebekus

(joint work with Sándor Kovács)

Abstract

The Shafarevich hyperbolicity conjecture asserts that a family of curves over
a quasi-projective 1-dimensional base is isotrivial unless the logarithmic Kodaira
dimension of the base is positive. More generally it has been conjectured by
Viehweg that the base of a smooth family of canonically polarized varieties is of
log general type if the family is of maximal variation. Here, we relate the variation
of a family to the logarithmic Kodaira dimension of the base and give an affirmative
answer to Viehweg’s conjecture for families parametrized by surfaces.

1. Introduction

Let B◦ be a smooth quasi-projective complex curve and q > 1 a positive inte-
ger. Shafarevich conjectured [9] that the set of non-isotrivial families of smooth
projective curves of genus q over B◦ is finite. Shafarevich further conjectured that
if the logarithmic Kodaira dimension satisfies κ(B◦) ≤ 0, then no such families
exist —the definition of the logarithmic Kodaira dimension is recalled below. This
conjecture, which later played an important role in Faltings’ proof of the Mordell
conjecture, was confirmed by Parshin [8] for B◦ projective and by Arakelov [1]
in general. We refer the reader to the survey articles [10] and [7] for a historical
overview and references to related results.

It is a natural and important question whether similar statements hold for
families of higher dimensional varieties over higher dimensional bases. Families
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over a curve have been studied by several authors in recent years and they are
now fairly well understood—the strongest results known were obtained in [11, 12],
and [6]. For higher dimensional bases, however, a complete picture is still missing
and subvarieties of the corresponding moduli stacks are not well understood. As
a first step toward a better understanding, Viehweg proposed the following:

Conjecture 1 ([10, 6.3]). Let f◦ : X◦ → S◦ be a smooth family of canonically
polarized varieties. If f◦ is of maximal variation, then S◦ is of log general type.

We briefly recall the relevant definitions, as they will also be important in
the statement of our main result. The first is the variation, which measures the
birational non-isotriviality of a family.

Definition 1. Let f : X → S be a projective family over an irreducible base S
defined over an algebraically closed field k and let k(S) denote the algebraic closure
of the function field of S. The variation of f , denoted by Var f , is defined as the
smallest integer ν for which there exists a subfield K of k(S), finitely generated

of transcendence degree ν over k and a K-variety F such that X ×S Spec k(S) is

birationally equivalent to F ×Spec K Spec k(S).

In the setup of Definition 1, if the fibers are canonically polarized complex
varieties, moduli schemes are known to exist, and the variation is the same as
either the dimension of the image of S in moduli, or the rank of the Kodaira-
Spencer map at the general point of S.

Definition 2. Let S◦ be a smooth quasi-projective variety and S a smooth pro-
jective compactification of S◦ such that D := S\S◦ is a divisor with simple normal
crossings. The logarithmic Kodaira dimension of S◦, denoted by κ(S◦), is defined
to be the Kodaira-Iitaka dimension, κ(S,D), of the line bundle OS(KS + D) ∈
Pic(S). The variety S◦ is called of log general type if κ(S◦) = dimS◦, i.e., the
divisor KS +D is big.

It is a standard fact in logarithmic geometry that a compactification S with
the described properties exists, and that the logarithmic Kodaira dimension κ(S◦)
does not depend on the choice of the compactification S.

2. Statement of the main result

Our main result describes families of canonically polarized varieties over quasi-
projective surfaces. We relate the variation of the family to the logarithmic Ko-
daira dimension of the base and give an affirmative answer to Viehweg’s Conjec-
ture 1 for families over surfaces.

Theorem 1 ([3, Thm. 1.4]). Let S◦ be a smooth quasi-projective complex surface
and f◦ : X◦ → S◦ a smooth non-isotrivial family of canonically polarized complex
varieties. Then the following holds.

(1) If κ(S◦) = −∞, then Var(f◦) ≤ 1.
(2) If κ(S◦) ≥ 0, then Var(f◦) ≤ κ(S◦).
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In particular, Viehweg’s Conjecture holds for families over surfaces. �

Examples show that Theorem 1 is sharp. In [3, Sect. 8], a slightly weaker
statement is shown for families of minimal varieties. In view of Theorem 1, the
following generalization of Viehweg’s conjecture was proposed.

Conjecture 2 ([3, Conj. 1.6]). Let f◦ : X◦ → S◦ be a smooth family of canonically
polarized varieties. Then either κ(S◦) = −∞ and Var(f◦) < dimS◦, or Var(f◦) ≤
κ(S◦).

3. Brief outline of the proof

The proof of Theorem 1 relies on the following main ingredients.

(1) Viehweg-Zuo’s existence results for pluri-log-forms on the base of the fam-
ily, [12].

(2) Methods developed by Keel-McKernan in their solution [5] to the Miyanishi-
Conjecture for surfaces. In particular, we employ a criterion to guarantee
that in certain situations, the open part of a uniruled log-surface is cov-
ered by rational curves that meet the boundary set-theoretically in a small
number of points.

(3) Miyaoka’s theory of deformations along a foliation and his characterization
of uniruledness.

In a nutshell, the line of argumentation in [3] goes as follows. We use the results
of Viehweg-Zuo to prove instability of the tangent bundle on a logarithmic minimal
model of the base. This implies the existence of a foliation on the base which, by
Miyaoka’s result, has rational curves as leaves. In relevant cases, Keel-McKernan’s
result applies to give the existence of C∗’s in the open part of the base which —by
the classical Shafarevich hyperbolicity result— are known to not exist.

4. Families over higher dimensional bases

Theorem 1 discusses families over surfaces. In order to discuss families over
higher dimensional bases, we feel that a better understanding of foliations on the
base is required. As a first step in this direction, Luis Solá, Matei Toma and the
author have shown the following result, which can perhaps be seen as an effective
version of the classical Miyaoka criterion.

Theorem 2 ([4], see also [2, thm. 0.1]). Let X be a normal complex projective
variety, C ⊂ X a complete curve which is entirely contained in the smooth locus
Xreg, and F ⊂ TX a (possibly singular) foliation which is regular along C. Assume
that the restriction F |C is an ample vector bundle on C. If x ∈ C is a general
point, then the leaf through x is algebraic and rationally connected. �
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Moduli of K3 Surfaces

Klaus Hulek

(joint work with V. Gritsenko, G.K. Sankaran)

This talk was a report on recent work about the Kodaira dimension of moduli
spaces of K3 surfaces.

1. The main result

The main result is the following

Theorem 1. The moduli space F2d of polarized K3 surfaces of degree 2d is of
general type for d > 61 and for d = 46, 50, 54, 58, 60.

Moreover if d > 39, but different from 41, 44, 45, 47 then the Kodaira dimension
of F2d is non-negative.

Mukai [4], [5], [6] has proved that the spaces F2d are unirational for d ≤
10, 17, 19. In the other direction Kondo [2] has proved that F2p2 is of general
type for primes p≫ 0. His result is not effective. Finally, Gritsenko [1] has shown
that the covers F2d(n) given by a level-n structure are of general type for n ≥ 3.
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2. The general set-up

Let L be a lattice of signature (2, n). This defines a period domain

ΩL = {[w] ∈ P(L ⊗ C); (w,w)L = 0, (w, w̄)L > 0} = DL ∪ D ′
L

with two connected components DL and D ′
L. We denote by O(L) the group of

orthogonal transformations of the lattice L and by O+(L) the subgroup which fixes
the connected components. If L∨ = Hom(L,Z) is the dual lattice then the group

AL = L∨/L carries a canonical quadratic form. Let Õ(L) = ker(O(L) → O(AL))

and Õ
+
(L) = Õ(L) ∩ O+(L). In this situation we have the general

Theorem 2. Assume that n ≥ 9 and consider an arithmetic subgroup Γ ⊂ O+(L).
Let FL(Γ) = Γ\DL. Then there exists a toroidal compactification FL(Γ) of FL(Γ)
which has only canonical singularities. Moreover, all branch divisors of the quo-
tient map DL → FL(Γ) come from reflections in Γ and there are no branch divisors
in the boundary of FL(Γ).

The special case of K3 surfaces arises as follows. Let d > 0 and consider a
vector

h ∈ LK3 = 3U ⊕ 2E8(−1), h2 = 2d

where U is the hyperbolic plane and E8(−1) is the unique negative definite, even
unimodular lattice of rank 8. Then

h⊥LK3
= 2U ⊕ 2E8(−1) ⊕ 〈−2d〉 =: L2d

and

F2d = Õ
+
(L2d)\DL2d

is the moduli space of polarised K3 surfaces of degree 2d.
In order to prove that quotients of symmetric domains by arithmetic groups are

of general type one can use modular forms. More precisely, let Fnk be a modular
form of weight nk and with character detk with respect to an arithmetic group
Γ. Then for a suitable n-form dZ on DL the form FnkdZ

k is a Γ-invariant k-
fold pluricanonical form on DL and hence descends to a pluricanonical on FL(Γ),
at least away from the fixed point set of Γ. There are several onbstructions to
extending such a form to a toroidal compactification FL(Γ). The first type are
cuspidal obstructions: dZk picks up poles of order k along the boundary and
this requires Fnk to vanish of order k along the boundary. The second type of
obstructions are called elliptic obstructions: these come from the possible existence
of non-canonical singularities on FL(Γ). Due to Theorem 2 these do not occur
in dimension n ≥ 9. The last type of obstructions come from quasi-reflections
in Γ. These quasi-reflections do not lead to singularities in FL(Γ), however, the
form FnkdZ

k still picks up poles of along the corresponding branch divisors and
hence Fnk has to vanish along these divisors to suitable order. Again, in view of
Theorem 2, the only elements in Γ which can occur for n ≥ 9 are reflections and
we refer to the corresponding obstructions as reflective obstructions.

One can then prove the following result
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Proposition 1. Let Γ ⊂ O+(L) be an arithmetic subgroup and n ≥ 9. Assume
that there exists a character χ of Γ and a cusp form Fa ∈ Sk(Γ, χ) of weight a < n
which vanishes along the branch divisor of the quotient map DL → FL(Γ). Then
FL(Γ) is of general type.

This result has a number of applications, of which we mention only one here.
For this we consider the space

S F2d = S̃O
+
(L2d)\DL2d

which can be interpreted as the moduli space of polarised K3 surfaces S of degree
2d with a spin structure, i.e. an orientation of H2(S,Z). Then one can show

Theorem 3. The spaces S F2d are of general type for d ≥ 3.

This is a straightforward application of Proposition 1. The branch divisor of
DL2d

→ S F2d is given by reflection along vectors l with l2 = −2d. Additive
lifting of Jacobi forms produces weight 17 forms vanishing along these divisors.
For d = 2 the space S F4, which is a double cover of the space of quartic surfaces,
has non-negative Kodaira dimension, whereas the space S F2 = F2 is rational.

3. The Borcherds Form

The map DL2d
→ F2d is branched along divisors obtained by reflections along

(−2) and (−2d)-vectors. In order to obtain a suitable low weight cusp form we
make use of Borcherds’ modular form. Let

L2,26 = 2U ⊕ 3E8(−1).

Borcherds has constructed a modular form Φ12 on the domain DL2,26
which has

an infinite product expansion. Its divisor is the set of all hyperplanes given by
(−2)-vectors. Given any vector l ∈ E8(−1) with l2 = −2d we can define an
embedding of L2d into L2,26 and hence also of the corresponding homogeneous
domains. Restricting Φ12 to such an embedded domain will normally give the
zero-function. However we can proceed as follows: let Rl = {r ∈ E8(−1) | r2 =
−2, r · l = 0}, and Nl = #Rl. Then

(1) Fl =
Φ12(Z)∏

{±r}∈Rl
(Z, r)

∣∣∣∣∣
DL2d

∈M
12+

Nl
2

(Õ
+

(L2d), det)

is a non-zero form of weight 12 + Nl/2 on DL2d
with character det. This form

was also used by Kondo, as well as Borcherds, Katzarkov, Pantev and Shepherd-
Barron in connection with K3 surfaces. It vanishes on all (−2)-divisors in DL2d

and if Nl > 0 one can also show that it is cusp form. Finally, if the weight of Fl

is less than 68, i.e., if Nl < 112, then Fl can be shown to vanish along all (−2d)-
divisors in DL2d

. Using this result we see that it suffices to find vectors l ∈ E8(−1)
with l2 = −2d and 0 < Nl < 14. Indeed, this can be done for the values given
in Theorem 1. The proof of this involves a subtle study of the geometry of the
root lattice of E8 and divides into a general part and a special part. The first part
follows from
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Proposition 2. There exists a vector l ∈ E8 with l2 = 2d and 0 < Nl < 14 if

(2) 4NE7
(2d) > 28NE6

(2d) + 63ND6
(2d)

or

(3) 5NE7
(2d) > 28NE6

(2d) + 63ND6
(2d) + 378ND5

(2d)

where NL(2d) denotes the number of representaions of the integer 2d in the lattice
L.

Using explicit estimates of the function NL(2d) involved gives the required
vectors for d > 143. The remaining values of d can be produced by exhibiting
explicit vectors.
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S-10044 Stockholm

Prof. Dr. Barbara Fantechi

S.I.S.S.A.
Via Beirut 2 - 4
I-34014 Trieste

Prof. Dr. Gavril Farkas

Department of Mathematics
University of Texas at Austin
1 University Station C1200
Austin, TX 78712-1082
USA

Prof. Dr. Samuel Grushevsky

Department of Mathematics
Princeton University
Fine Hall
Washington Road
Princeton, NJ 08544-1000
USA

Prof. Dr. Joseph Harris

Dept. of Mathematics
Harvard University
Science Center
One Oxford Street
Cambridge MA 02138-2901
USA

Prof. Dr. Brendan Hassett

Dept. of Mathematics
Rice University
P.O. Box 1892
Houston, TX 77005-1892
USA

Andreas Höring

Laboratoire de Mathematiques
Universite de Grenoble I
Institut Fourier
B.P. 74
F-38402 Saint-Martin-d’Heres Cedex

Prof. Dr. Klaus Hulek

Institut für Mathematik (C)
Universität Hannover
Welfengarten 1
30167 Hannover

Prof. Dr. Dagan Karp

Department of Mathematics
University of California
Berkeley, CA 94720-3840
USA

Prof. Dr. Yujiro Kawamata

Department of Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Meguro-ku
Tokyo 153-8914
JAPAN

Prof. Dr. Stefan Kebekus

Mathematisches Institut
Universität zu Köln
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