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Introduction by the Organisers

The workshop Applications of Asymptotic Analysis, organised by Rupert Klein
(Potsdam), Evariste Sanchez-Palencia (Paris), Jan Sokolowski (Nancy) and Bar-
bara Wagner (Berlin) was held June 18th–June 24th, 2006. This meeting was well
attended with 46 participants with a broad geographic representation. This work-
shop was a nice blend of young and senior researchers with various mathematical
backgrounds.

The objective of this workshop was to present the new developments of mul-
tiple scale asymptotics as they are developed for problems in various fields of
application. It brought together experts working in different areas of asymptotic
analysis and application fields and initiated exchange of new ideas and discussions
of parallel developments.

On the whole the atmosphere of this workshop was very cheerful and charac-
terized by the mutual interest into each others expertise and approach.

The themes of the workshop included:
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- Applications in shape optimization, where we discussed new tools like the
internal and external topological derivatives and topological variations and
their close relationship to basic research in asymptotic analysis of elliptic
problems under singular perturbations of boundaries.

- Also, new asymptotic problems that arise in thin shell theory were dis-
cussed.

- A major field of application of asymptotic analysis in this workshop turned
out to be numerical analysis. Examples within this workshop included
new procedures for problems that involve multiple time and spatial scales,
where adaptive tools alone are not robust. For boundary layer problems
anisotropic finite element methods and the method of asymptotic decom-
position of domains point to promising directions to tackle these complex
problems. Furthermore, application of asymptotic analysis to finite dif-
ference schemes, where the grid spacing is the small parameter, could be
shown to be very useful for studying consistency, stability and long-time
behavior.

- Naturally, new emerging singular perturbation methods were another fo-
cus of discussions. These included methods such as Gevrey asymptotics to
treat phenomena of boundary layer resonance and logarithmic switchback.
Other new developments that require asymptotics beyond all orders analy-
sis were demonstrated for problems that exhibit the Stokes phenomenon,
such as for the finger selection problem for Hele-Shaw flow with kinetic
undercooling.

Apart from these themes, various other lectures on applications of asymptotic
analysis were given, ranging from applications in biology, solid mechanics to fluid
mechanics, in particular thin liquid films.

Most of the lectures were given in the morning, with one hour overview lectures,
followed by shorter half-hour talks. In the afternoon ample time was left for
discussion sessions. Wherever possible the lectures and discussion sessions were
grouped according to specific topics, which concerned the interplay of asymptotics
and shape optimization (monday), numerical analysis and asymptotics (tuesday),
mathematical theory and asymptotic methods (wednesday, thursday) and some
new developments in homogenization theory (friday).
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Antoni Żochowski (joint with Piotr Fulmański, Antoine Laurain,
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Abstracts

Asymptotics of the spectrum for the Steklov problem in a domain

with a thin cavity

Serguei A. Nazarov

Let Γ be a simple closed contour on the plane R2 = {x = (x1, x2, x3) : x3 = 0}
in the space R

3. In its neighborhood U ⊂ R
3 we introduce the intrinsic coordinates

(n, s, x3) where s is the arc length and n the orientated distance to Γ. Let also ω
be a bounded two-dimensional domain while

Γε = {x ∈ U : s ∈ Γ, η = (ε−1n, ε−1x3) ∈ ω},
where ε > 0 is a small parameter, i.e., Γε implies a thin cavity. Finally, Ω is a
domain in R

3 which includes Γ and therefore Γε ⊂ Ω for a small ε.
The goal of the talk is to describe the asymptotics as ε → +0 of the eigenpairs

{λn(ε), un(ε, ·)} of the Steklov spectral problem

∆xu(ε, x) = 0, x ∈ Ω(ε) = Ω \ Γ(ε), ∂νu(ε, x) = λ(ε)u(ε, x), x ∈ ∂Ω(ε).

Here ∆x is the Laplace operator and ∂n the derivative along the outward normal.
A distinguishing feature of the problem is that all eigenvalues converge to +0 with
the same rate cε| ln ε|−1 and, to split them as ε → +0, it is necessary to construct
the two-term asymptotics. Namely, the second asymptotic term of an eigenvalue
λn(ε) and the main asymptotic term of the corresponding eigenfunction un(ε, ·) is
influenced by eigenvalues and eigenfunctions of a certain integral operator on the
contour Γ of the form

J(γ; s) =

∫

Γ

(
γ(τ) − γ(s)

)
G(τ, s) ds + j(s)γ(s)

(cf. [1, 2]) where G(τ, s) is the trace on Γ × Γ of the generalized Green function
of the Neumann problem in the domain Ω (without a cavity). This is a pseudo-
differential operator with the principal symbol −(2π)−1 ln |ξ|. It is symmetric
and if j(s) < 0, it is negative definite on the Hörmander function space Hln(Γ)

generated by the weight function µ(ξ) =
(
1+ln |ξ|+

∣∣ ln |ξ|
∣∣)1/2

. Thus, the operator
J has a countable set of normal real eigenvalues

β1 ≥ β2 ≥ · · · ≥ βn ≥ . . . → −∞.

The corresponding eigenfunctions γ0, γ1, · · · ∈ C∞(Γ) can be orthonormalized in
L2(Γ), i.e., (γn, γh)Γ = δn,h for n, h = 0, 1, . . . . There holds the asymptotic
formula βn = −(4π)−1 ln(n/2) + O(1) as n → ∞.

Correction asymptotic terms in the first series of eigenvalues depends only on
βn and the length mes1∂ω of the contour ∂ω. Other series are influenced by the
spectrum of the exterior two-dimensional Steklov spectral problem

∆ηw(η) = 0, η ∈ R
2 \ ω, ∂ν(η)w(η) = µw(η), η ∈ ∂ω,
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The spectrum of this problem consists of real nonnegative eigenvalues

0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µk ≤ · · · → +∞.

The corresponding eigenfunctions wk can be orthonormalized according to
(wk, wh)∂ω = δk,h, k, h = 0, 1, . . . . There holds the asymptotic decomposition

wk(η) = bk + w̃k(η), |∇j
ηw̃k(η)| ≤ ck,j |η|−1−j , η ∈ R

2 \W , j = 0, 1, . . . ,

where bk is a constant and W a neighborhood of ω. In particular, w0(η) = b0 =
(mes1 ∂ω)−1/2.

The asymptotic ansatz for the eigenvalues of the Steklov problem in Ω(ε) read

λkn(ε) = ε
[
µk + Mkn(zn)

]
+ O(ε1+δ), δ ∈ (0, 1),

where k = 1, 2, . . . , n = 1, 2, . . . and Mkn is an analytic function in zn =[
(2π)−1| ln ε| + βn

]−1
with Mk,n(0) = 0. The small asymptotic corrector Mkn(zn)

is to be found as a solution of a certain abstract non-linear equation which can be
derived in a similar way to [3]. It is possible to construct explicitly several terms
of decomposition in | ln ε|−1 of the first (k = 0) series of eigenvalues:

λ0n(ε) = ε meas 1(∂ω)

[
2π

| ln ε| +
4π2

| ln ε|2 (βn − T (ω))

]
+ O

(
ε

| ln ε|3
)

,

where T (ω) is a certain characteristic of the domain ω which vanishes for a circle.
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Numerical methods for shape optimization of variational inequalities

Antoni Żochowski

(joint work with Piotr Fulmański, Antoine Laurain, Jean-Francois Scheid, Jan
Soko lowski)

For cases when topology of the domain does not change during shape optimiza-
tion there exists a well known speed method. Otherwise two approaches are
used, material density optimization and homogenization method. Both
are related, because admitting fast material density oscillations requires applica-
tion of the homogenization theory. In our opinion the common drawback of these
methods follows from the fact that creation of the void in the domain introduces
a non smooth disturbance of the solution. More correct approach should depend
on creating a small hole and studying the asymptotic dependence of the solution
respect to the diminishing size of the void.
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Definition. We consider the an open set Ω ⊂ IRN and the ball Bρ(x), x ∈ Ω

such that Bρ(x) ⊂ Ω. Denote Ωρ = Ω \Bρ(x) and assume that the state equation
(system) satisfies Neumann–like homogeneous condition on ∂Bρ(x). Let J (Ω) be
the integral functional depending on the state. Then the topological derivative

is defined as the following limit if it exists:

T (x) = lim
ρ↓0

J (Ωρ) − J (Ω)

|Bρ(x)|
TD provides the information on the infinitesimal variation of the shape functional
J if a small hole is created at x ∈ Ω. For evaluation of T (x), x ∈ Ω it is sufficient
to solve the state equation as well as the appropriate adjoint state equation in the
unperturbed domain Ω. This make the approach numerically attractive.
Laplace case - 2D. Let Γρ = ∂Bρ(x) and for simplicity consider the the simple

equation in IR2:

−div∇u = f in Ω, u = g on Γ1, ∂uρ/∂n = h on Γ2.

For the solution uρ in Ωρ we add condition ∂uρ/∂n = 0 on Γρ. The shape func-
tionals we consider are:

J1(Ωρ) = Ju(ρ) =

∫

Ωρ

F (uρ) dΩ, J2(Ωρ) = Jg(ρ) =

∫

Ωρ

[∇uρ · ∇uρ]p dΩ.

Then we get the following result.

Theorem 1. [3] Assume that f ∈ C1(Ω) and the boundary data (g, h) satisfy
some regularity conditions. Then

T1(x) = −[ F (u(x)) + f(x)w(x) + 2∇u(x) · ∇w(x)]

T2(x) = −[‖∇u(x)‖2p + f(x)v(x) + 2∇u(x) · ∇v(x)]

The functions w, v are the appropriately defined adjoint state variables.

2D elasticity. Let us consider the elasticity equations in the plane domain Ω
and the same system in the domain Ωρ with the hole Bρ(x0). The boundary
of the hole is free and the solution is denoted uρ. The principal stresses are
denoted by σI(u), σII(u), trσ(u) = σI(u) + σII(u) and au = [σI(u) + σII(u)]x=x0

,
bu = [σI(u) − σII(u)]x=x0

. The shape functionals are, for isotropic matrix S,

Ju(ρ) =

∫

Ωρ

F (uρ) dΩ, Jσ(ρ) =

∫

Ωρ

σ(uρ)T Sσ(uρ) dΩ,

Let w and v be adjoint states for these functionals and α, β be angles between
principal stress directions for σ(u) and σ(w) as well as σ(u) and σ(v) respectively.

Theorem 2. [3] Assume that f ∈ C1(Ω; IR2) and satisfy some regularity condi-
tions. Then

Tu(x0) = − [ F (u) + fT w +
1

E
( auaw + 2bubw cos 2α ) ]x=x0

,

Tσ(x0) = − [s22(a2
u + 2b2

u) + fT v +
1

E
( auav + 2bubv cos 2β ) ]x=x0

.
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Multiple holes. Consider the Laplace problem in the domain with two balls of
radii ρ1 and ρ2 removed, denoted Ωρ1ρ2

, with domain functionals Iu(ρ1, ρ2) and
Ig(ρ1, ρ2).

Theorem 3. [4] Assume that ρ2 = ρ2
1 + ρ2

2 is small enough. Then

Iu(ρ1, ρ2) = Iu(0, 0) + T Iu(x1)|B(x1; ρ1)| + T Iu(x2)|B(x2; ρ2)| + o(ρ2),

Ig(ρ1, ρ2) = Ig(0, 0) + T Ig(x1)|B(x1; ρ1)| + T Ig(x2)|B(x2; ρ2)| + o(ρ2).

Shape and topology. Let us now change shape and topology simultaneously.
We assume that the smooth transformation of the domain, which changes part ΓV

of the boundary (speed method), is given by T (τ, x) = x+ τΘ(x) As previously,
we consider shape functionals of the form

Iu(η, τ) =

∫

Ωρτ

F (uρτ ) dx, Ig(η, τ) =

∫

Ωρτ

‖∇uρτ‖2p dx ,

where η = πρ2. The shape derivatives SIu(Ω; Θ) of Iu(η, τ) and SIg(Ω; Θ) for
Ig(η, τ), taken at η = 0, τ = 0 are well known. The final result gives representation
of the variations of shape functionals resulting from both boundary variations and
nucleation of small holes.

Theorem 4. [4] Under some assumptions concerning regularity of data the func-
tionals Iu(η, τ) and Ig(η, τ) have the representation (with η = πρ2):

Iu(η, τ) = Iu(0, 0) + ηT Iu(Ω; x0) + τSIu(Ω; Θ) + o(η) + o(τ),

Ig(η, τ) = Ig(0, 0) + ηT Iu(Ω; x0) + τSIg(Ω; Θ) + o(η) + o(τ).

Hence new necessary optimality condition, which are indeed stronger than those
given by speed method alone,

DJ(Ω∗; Θ, x0)(η, τ) = η · T J(Ω∗; x0) + τ · SJ(Ω; Θ) ≥ 0

for all η ≥ 0, x
0 ∈ Ω∗ and all admissible τ,Θ.

Contact problems and Poincare-Steklov operator. The main idea we use to
derive the topological derivatives for contact problems is the modification of the
energy functional by an appropriate correction term and subsequent minimization
of the resulting energy functional over the cone of admissible displacements. We
want to take into account the influence of the small hole B(ρ) on the solution of
the homogeneous Laplace equation in the annulus C(ρ, R). Assuming the value of
u on ΓR given, it will change the value of ∂u/∂n. In order to evaluate this change
we shall use the asymptotic expansions from our earlier works. We introduce the
Steklov-Poincaré operator Aρ for the annulus C(ρ, R) and obtain the expansion

Aρ = A0 + ρ2B + o(ρ2)

in the operator norm L(H−1/2(ΓR), H1/2(ΓR). To this end let vρ be the solution
of

∆vρ = 0 in C(ρ, R), vρ = u on ΓR,
∂vρ

∂n
= 0 on Γρ
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The by definition Aρ(u) = ∂vρ/∂n on ΓR. Similarly for the case of elasticity
A0(u) = σ(v).n with obvious analogy of BVP’s. Then the main result may be
summed up as:

Theorem 5. [5] We have the following expansions with respect to the small para-
meter ρ

〈Aρ(u), u〉 = 〈A0(u), u〉 + +ρ2〈B(u), u〉 + R(u, u)

〈Aρ(u),u〉 = 〈A0(u),u〉 + ρ2〈B(u),u〉 + R(u,u)

and R(u,u) as well as R(u, u) are of order o(ρ2) uniformly on bounded subsets of
H1/2(ΓR).

Explicit and easily computed forms of B(u) and u,u) are given in [5].
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The Multi-scale Modelling for Thin Structures

Gregory Panasenko

A great number of applied problems contain small parameters. Normally their
presence either in the equation or in the domain makes the numerical implementa-
tion more complicated, more time and memory consuming. This talk emphasizes
the importance of the asymptotic methods studying the behavior of the solution as
the small parameter tends to zero. Nevertheless the asymptotic methods are often
related to some cumbersome calculations, or they are not too comprehensible for
non-specialists. That is why some special numerical methods taking into account
the asymptotic behavior of the solution were developed. One of such ideas has
been implemented in the numerical schemes uniform with respect to the small pa-
rameter [3],[9],[24] or in some projection numerical methods with a special choice
of the projection space basis taking into account the regular part of an asymptotic
solution [10], [27], (the idea of projection procedure has been widely used in en-
gineering); in the case of multi-scale problems the ideas of the super-elements, of
the hierarchic modelling ( numerical homogenization) or the two-scale finite ele-
ment methods is developed (see [26], justified in [6], as well as [2], [8], [23], [28]);
another approach is to prescribe some special modified boundary conditions (the
so called artificial boundary conditions) in order to increase the accuracy of the
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approximate solution [12], [13]. This list of related ideas and methods could be
continued.

The method of the partial asymptotic domain decomposition (MAPDD), intro-
duced in [16]-[19], reduces the problem to a simplified form on some subdo-

main of regular asymptotic behavior of the solution (for example, by means
of the dimension reduction) keeping the initial formulation on a small part of
the domain where the asymptotic behavior is singular (for example, where
the boundary layers are located). Then these two models are coupled by some

special interface conditions respecting with great accuracy the asymptotic ex-
pansion of the solution. These interface conditions are obtained from some projec-
tion procedure in the variational formulation where the projection subspace keeps
the asymptotic behavior of the solution out of a boundary layer zone. It
differs this method from some earlier projection methods ”imposing” the regular
asymptotic behavior in the whole domain. This difference is especially important,
for example, in case of thin domains of complex structure (such as the finite rod
structures [11], [14], [18]).

One of the important applications of the MAPDD in the homogenization the-
ory is the partial homogenization, which homogenizes the micro-heterogeneous
medium at some distance from the boundary keeps the initial formulation near
the boundary and prescribes some special interface conditions.

In this talk we remind the method of the partial asymptotic domain decomposi-
tion (MAPDD). We start with some model examples; then the general description
is given and justified; the main theorem about the estimate of the difference be-
tween the exact solution and the solution to the partially decomposed problem
is proved. The main theorem is then applied to the modelling of thin structures.
The rod structures play an important part in the modelling of the mechanical
behavior of the thin structures or thin tube (pipe-wise) structures, in particular
of the human or animal blood circulatory system [21]. The dimension reduction
in such a modelling is a natural approach, although the full-dimensional models
have to be kept in the neighborhoods of the bifurcations or junctions. So the
MAPDD gives the asymptotically exact answer what should be the correct inter-
face conditions (some junction conditions appeared in engineering, for example,
[25]). Various implementations and applications of the MAPDD will be discussed:
micropolar flows in the blood circulatory system [7], flows in thin tube structures
with an elastic walls [20], extrusion processes [19], special numerical treatment of
boundary layers for heterogeneous rods.

The main goal of the talk is to describe the present state of art and new ideas
in the multi-scale modelling in order to establish the links between the specialists
in the asymptotic methods and eventually formulate a proposal, for example, in
the multi-scale modelling in biology and health (some experience in this field is
accumulated as a result of participation of the laboratory LaMUSE in two interna-
tional cooperation CNRS programms: CNRS-Russian Academy of Sciences PICS
no. 3198, CNRS- Academy of Rumania project no. 17033/2004 and in one post-
doctoral CNRS programm in the multi-scale modelling for biological structures).
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Mathematical models for fracture criteria

Maria Specovius-Neugebauer

(joint work with Sergej A. Nazarov)

The prediction of crack paths obviously is of high practical interest. However, even
in the quasistatic case where the process of crack growing is slow in comparison
with the wave speed a lot of different criteria are used in praxis. Often they lead
to different predictions of the crack path. From the viewpoint of mathematics only
the energy criterion of Griffith [3] leads to an axiomatic access: The crack chooses
the path in such a way that the total energy is minimal at any moment.

−
x

x

Ω
Λ+

1

2

Σ

n

n

n

Λ

In particular: The crack starts to propa-
gate only if energy is released. Thereby
the total energy T = E − A + S, where
E is the elastic energy, A the work of
external forces and S the surface energy
which is needed to produce the new crack
surface. In this lecture we consider a
plane elasticity problem with an initially
straight interior crack whose tips are de-
noted by Oν , ν = 1, 2, situated in a plane
of elastic symmetry:

(1)
Lu(x) := D(−∇)⊤AD(∇)u(x) = f(x), x ∈ Ω = Ω0 \ Λ,

Nu(x) := D(n)⊤AD(∇)u(x) = g(x), x ∈ ∂Ω,

with

D(∇x)⊤ =

(
∂1 0 2−1/2∂2

0 ∂2 2−1/2∂1

)
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and A is the symmetric, positive 3× 3-Matrix of elastic moduli. Let R denote the
space of rigid motions. It is well known that for f ∈ L2(Ω)2, g ∈ H1/2(∂Ω)2 fulfill-
ing the compatibility condition

∫
Ω fr dx +

∫
∂Ω gr do = 0 for all r ∈ R there exists

a weak solution ue uniquely defined up to rigid motions which is the minimizer of
the energy functional

U(u; f, g, Ω) :=
1

2
(D(∇)u, AD(∇)u)Ω − (f, u)Ω − (g, u)∂Ω = Ee(u) − A(u).

We present a mathematical approach which uses a generalized energy functional.
It includes a term which can be interpreted as energy concentrated in the tips of
the crack. In addition to the usual linear elasticity problem, the Euler equations
related to the minimizing problem contain conditions at the tips, which may be
nonlinear.
To this end we recall that ue is not contained in H2(Ω) but ue ∈ H2(Ω \ Oε)
for any small neighborhood Oε of the crack tips. To describe the behavior of the
solution near a tip we need the family of power law solutions solutions to the
model problem LU = 0 in R2 \ Λ0, where Λ0 = {(x1, 0) : x1 < 0}, together with
the homogeneous boundary conditions NU = 0 on Λ0,±. It is well known that for
each λ = k/2, k ∈ Z, k 6= 0 there correspond two linear independent solutions to
the homogeneous model problem of the form U1,2(r, φ; λ) = rλΦ1,2(φ) (r, φ polar
coordinates in R2, the index ν ∈ {1, 2} refers to the tip), while to λ = 0 there
correspond the four solutions ej , and T j(x) = T j0 log r + T j1(ϕ), j = 1, 2. We
choose special bases Xj, Y j , j = 1, 2, corresponding to λ = 1/2 and λ = −1/2,
respectively, and introduce the enlarged state space E consisting of all possible
displacement fields u ∈ H2

loc(Ω)2∩L2(Ω)2 with Nu = 0 on Λ± and the asymptotic
representation

(2) u(x) = ũ(x) +

2∑

ν,j=1

χ(xν)
{

cν
j Xj(xν) + bν

j Y j(xν)
}
, ũ ∈ H2(Ω),

the index ν = 1, 2 refers to the tips Oν , xν are local coordinates with center Oν

and χ is a cut-off function with χ(x) = 1 near zero. The space E is a Banach space
with respect to the norm ‖u; E‖ =

∑
ν,j |cν

j | + |bν
j | + ‖ũ; H2(Ω)‖. We collect the

coefficients cν
j , bν

j into column vectors bu, cu, then with a proper normalization of

the bases Xj, Y j any two fields u, v ∈ E fulfil the generalized Green’s formula

(Lu, v)Ω + (Nu, v)Σ − (u,Lv)Ω − (u,Nv)Σ = 〈cu, bv〉 − 〈bu, cv〉.
The subspace in E of solutions to the homogeneous problem (1) splits into the
rigid motions and an additional space of dimension 4, it is generated by the so
called weight functions belonging to bu = ej, where ej is the j-th unit vector in
R4. Thus imposing linear conditions on the coefficient vectors in the form

Sbu + Tcu = h ∈ R
4, S, T ∈ R

4×4

the resulting problem leads to a Fredholm operator with index zero between E and
L2(Ω)×H1/2(Σ)×R4. In addition, it is possible to consider nonlinear conditions
at the tips. The following theorem is a particular case of a more general result:
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Theorem. Let T : R
4 → R

4 a mapping with T(0) = 0, T = ∇E, and consider
the problem (1) together with the condition at the tips T(bu) − cu = 0. Let Z
denote the so-called polarization matrix composed of the stress intensity factors [1]
of the weight functions ζj, i.e. the vectors b(ζj). If the mapping N → EΩ(N) :=
E(N) − 1

2 〈ZN, N〉 strictly convex and coercive then the problem has a unique

solution u ∈ E⊥, u is the minimizer of the generalized energy functional

U(u) =
1

2
(Lu, u)Ω +

1

2
(N (u), u)Σ + E(bu) − 1

2
〈cu, bu〉 − (f, u)Ω − (g, u)Σ.

Kinking cracks can be modelled within this theory. Further it turns out that
the modelling of plastic zones appearing in the Dugdale-criterion, e.g., can be
described within this context. The Dugdale criterion itself [4] which is originally a
deformation criterion can be interpreted as an energy criterion within this frame.
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Multi-scale stochastic analysis of heterogeneous materials

Adnan Ibrahimegovic

(joint work with Adnan Ibrahimegovic)

The current increase in computational power allows us to completely rethink the
modeling of inelastic behavior of engineering materials and the corresponding test-
ing procedure [1-6]. In particular, the traditional phenomenological models are
more and more giving way to multi-scale modeling procedures, where one goes
down to much smaller scales in order to be able to properly interpret the partic-
ular mechanisms of inelastic behavior. One such model, which is built upon the
ideas inherited from structural mechanics, is presented in this lecture. The predic-
tive capabilities of this model are illustrated for a couple of challenging problems
of dynamic fracture and crack propagation. In the second part of this lecture we
address related topics pertinent to problems of material design and testing, as
well as the construction of probability bounds for computed results. Moreover, a
novel approach to structural optimization that pertains to tailoring the material to
best suit the given use is presented, where optimality conditions and equilibrium
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equations are placed to the same level. Several important points are addressed in
detail regarding the models proposed herein:

i) In this work we consider a strongly coupled multi-scale problem in the context
of inelastic structural mechanics. We assume that a finite ratio of scales exists such
that we can replace the more standard phenomenological and analytical homoge-
nization approaches by a lower level numerical description of the micro-structural
behavior. More specifically, we use continuum damage and plasticity based finite
element method (FEM) models to describe the matrix-inclusion type of micro-
structure (e.g., for a porous or hard inclusion composite). The micro-scale FEM
model is then coupled to the macro-scale FEM model through a localized Lagrange
multiplier approach. This multi-scale strategy is very well adapted to a parallel
computing algorithm using a component template library. The efficiency of the
implementation is shown on large scale numerical examples. A more elaborated
description of the parallelization procedure is also presented in our paper [1,2]. ii)
In our recent work [3] we propose a methodology for dealing with the problem
of designing a material microstructure the best suitable for a given goal. The
chosen model problem for the design is a two-phase material, with one phase re-
lated to plasticity and another to damage. The design problem is set in terms of
shape optimization of the interface between two phases. The solution procedure
proposed herein is compatible with the multi-scale interpretation of the inelastic
mechanisms characterizing the chosen two-phase material and it is thus capable of
providing the optimal form of the material microstructure. One can thus achieve
the optimal design of the nonlinear behavior of a given two-phase material with
respect to the goal specified by a cost function, by computing the optimal form of
the shape interface between the phases. The original approach based upon a si-
multaneous/sequential solution procedure for the coupled mechanics-optimization
problem is proposed. Several numerical examples show a very satisfying perfor-
mance of the proposed methodology. The latter can easily be adapted to other
choices of design variables. iii) Our goal in recent paper [4] is to present how to use
a part of Stochastic Finite Element Method in mechanical problems. We will focus
on the Karhunen-Loève Expansion coupled with Monte Carlo Simulations and its
application to describe the size effect encountered in structure involving quasi-
brittle materials such as geomaterials. iv) In recent work [5] we discus the finite
element model using the embedded discontinuity of strain and displacement field,
for dealing with a problem of localized failure in heterogeneous materials by using
the structured finite element mesh. On the chosen 1D model problem we develop
all the pertinent details of such finite element approximation. We demonstrate
the presented model capabilities for representing not only failure states typical of
a slender structure, with generalizing linear fracture mechanics crack induced fail-
ure in an elastic structure, but also the failure state of a massive structure, with
combined diffuse (process zone) and localized cracking. A robust operator split so-
lution procedure is developed for the present model taking into account the subtle
difference between the types of discontinuities, where the strain discontinuity it-
eration is handled within global loop for computing the nodal displacement, while
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the displacement discontinuity iteration is carried out within a local, element-wise
computation, carried out in parallel with the Gauss-point computations of the
plastic strains and hardening variables. The robust performance of the proposed
solution procedure is illustrated by a couple of numerical examples. Concluding
remarks are stated regarding the class of problems where ED-FEM or X-FEM
should be a favorite choice. v) In our recent work [6] we set to develop a model
reduction procedure based on statistical modes, which is applicable to nonlinear
system under dynamic loads. The system can be characterized by nonlinear inelas-
tic behavior, and contain initially a refined mesh representation which is needed
to represent inelastic behavior mechanisms. The reduced model should be capable
of achieving the main goal of providing the sufficiently accurate representation of
the chosen quantities.
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Variational systems of wave equations

John K. Hunter

(joint work with Giuseppe Al̀ı)

Wave equations. We consider systems of wave equations that are derived from
a variational principle in which the Lagrangian is a quadratic function of the
derivatives of the wave-field with coefficients depending on the wave-field. The
Euler-Lagrange equations consist of a system of second order hyperbolic PDEs
whose wave speeds depend on the wave-fields. The PDEs are scale-invariant and
nondispersive, but they are not in conservation form, since they include lower-order
terms that are quadratic functions of the first-order derivatives of the wave-fields.
This class of quasilinear hyperbolic PDEs contrasts with the conservation-form
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wave equations that arise in continuum mechanics, such as nonlinear elasticity,
where the wave speeds depend on the derivatives of the wave-fields.

The effects of nonlinearity in these variational wave equations are intriguing
and differ qualitatively from more familiar phenomena, such as shock waves, in
hyperbolic conservation laws. We study the properties of these PDEs by deriving
simplified canonical asymptotic equations. This class of equations also provides a
useful perspective on the Einstein equations in general relativity.

Director fields. A specific, and somewhat typical, example of such a system is
provided by orientation waves in a massive director field. A director field

n : R
3 × R → S

2

is a field of unit vectors. We suppose that the director field has inertia, and that
its motion is governed by the variational principle

δ

∫

R3

{
1

2
n2

t − W (n,∇n)

}
dxdt = 0, n · n = 1,

where W (n,∇n) is the Oseen-Frank potential energy density

W (n,∇n) =
1

2
α (div n)2 +

1

2
β (n · curln)2 +

1

2
γ |n× curl n|2 .

We assume that α, β, γ are distinct positive constants (the coefficients of splay,
twist, and bend, respectively).

Up to a null-Lagrangian, W (n,∇n) is the most general quadratic function of
∇n, with coefficients depending n, that is invariant under the transformations x 7→
Rx, n 7→ Rn for all orthogonal maps R. This symmetry involves a simultaneous
transformation of the independent and dependent variables. In this respect, these
equations are similar to the Einstein equations, whose gauge invariance involves a
simultaneous transformation of space-time variables and the metric, and different
from gauge field theories on prescribed space-times or wave maps (nonlinear sigma
models), which are invariant under independent transformations of the domain and
target spaces.

The director-field system has two types of waves, which we call ‘splay’ and ‘twist’
waves, respectively. For waves propagating in a direction k through a constant
unperturbed director field n0, the splay waves carry perturbations of the director
field n in a direction R(k,n0) that is in the plane of {k,n0}, while the twist waves
carry perturbations in a direction S(k,n0) normal to {k,n0}.

We denote the phase velocities of the splay and twist waves by a(k,n0) and
b(k,n0) respectively. Then the splay waves are genuinely nonlinear, in the sense
that ∇n0

a · R 6= 0 (provided that k is not parallel to n0, when there is a loss of
genuine nonlinearity and strict hyperbolicity), while the twist waves are linearly
degenerate, in the sense that ∇n0

b · S = 0. The definitions of ‘genuinely nonlin-
earity’ and ‘linearly degeneracy’ for variational wave equations are analogous, but
not equivalent, to the corresponding definitions of Lax for first-order systems of
hyperbolic conservation laws.
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The weakly nonlinear asymptotic expansion for splay waves has the form

nε(x, t) = n0 + εv

(
k · x− ωt

ε
, t

)
R + O(ε2)

as ε → 0+, where ω = a(k,n0). After a normalization of the coefficients, we find
that the scalar splay wave amplitude function v(θ, t) satisfies the Hunter-Saxton
(HS) equation [3] [

vt +

(
1

2
v2

)

θ

]

θ

− 1

2
v2

θ = 0.

Here, and below, we consider localized waves — for example ones in which vθ has
compact support in θ. (For oscillatory waves, it is necessary to consider additional
effects of mean-field interactions.)

The weakly nonlinear asymptotic expansion for the linearly degenerate twist
waves has the form

nε(x, t) = n0 + ε1/2u

(
k · x − ωt

ε
, t

)
S + εv

(
k · x − ωt

ε
, t

)
R + O(ε3/2)

as ε → 0+, where ω = b(k,n0). We find that u(θ, t), v(θ, t) satisfy a cubically
nonlinear asymptotic system,

(ut + vuθ)θ = 0, vθθ = u2
θ.

The twist wave u nonlinearly generates a splay wave v, and the splay wave then
affects the propagation speed of the twist wave. Remarkably, the elimination of u
from this system leads to a HS-equation for v,

{[
vt +

(
1

2
v2

)

θ

]

θ

− 1

2
v2

θ

}

θ

= 0.

General relativity. The vacuum Einstein equations may be obtained from the
Einstein-Hilbert variational principle. After an integration by parts, the corre-
sponding Lagrangian is a quadratic function of derivatives ∂g of the metric g with
coefficients depending on g. The Einstein equations are not hyperbolic owing to
their gauge invariance, but they are hyperbolic after fixing a suitable gauge. Thus
the Einstein equations belong essentially to the class of variational wave equations
considered here.

Gravitational waves are linearly degenerate, in the sense used above, because
the wave-speed depends on the metric components in the direction of propagation
of the wave, but the waves carry perturbations in the transverse metric compo-
nents. As a consequence of this linear degeneracy, and the absence of other waves
modes, all weakly nonlinear effects in the asymptotic equations for gravitational
wave pulses vanish. Thus, the nonlinearity of the Einstein equations is extremely
degenerate in comparison with that of the director-field equations.

To capture the direct nonlinear self-interaction of gravitational wave pulses in
an asymptotic theory, it is necessary to consider large-amplitude gravitational
waves. Such a theory leads to (1 + 1)-dimensional system of nonlinear wave equa-
tions that are a generalization of an exact solution of the Einstein equations for
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colliding gravitational plane waves [1]. As a further generalization, one may in-
clude the effects of diffraction in this expansion [2] leading to a (1+2)-dimensional
system of nonlinear wave equations. This system should provide insight into the
effects of nonlinearity on gravitational waves, such as the formation of space-time
singularities.
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Beyond Standard Estimates for Singular Limits

Steve Schochet

In the widely-used theory of singular limits developed by Klainerman and Majda
[KM81] at the beginning of the 1980s, uniform estimates for symmetric hyperbolic
systems with large constant-coefficient antisymmetric terms are obtained via stan-
dard energy estimates. The requirements on the initial data were relaxed in the
1990s (e.g., [Sch94]), but the restrictions that allow the use of standard estimates
remained. In this talk I report on a variety of recent results concerning singular
limits for which standard estimates do not suffice.

1. Non-Isentropic Flow

Although the equations of isentropic flow have the form

(1) A0(εv)vt +
∑

j

Aj(v, ε)vxj
+ 1

ε

∑

j

Cjvxj
= 0

that [KM81] showed could be treated via standard estimates, the equations of
non-isentropic flow have instead the form

(2) A0(v, εv)vt +
∑

j

Aj(v, ε)vxj
+ 1

ε

∑

j

Cjvxj
= 0.

The dependence of A0 on v rather than just on εv means that standard estimates
no longer work: Specifically, multiplying (2) by A−1, taking a spatial derivative
∂xk

and multiplying back by A0 yields an equation that contains the large term
1
εA0

[[
(A0)−1

]
v
vxk

]
Cjvxj

that will not drop out of the energy estimate for ∂xk
v.

The following example from [MS01] shows that this breakdown of the method
presages the actual nonuniformity of the solution in general: The system

S−1(ut + uy) + 1
εux = 0, St + Sy = 0
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has the form (2) and can be solved explicitly. Assuming for simplicity that the
initial data for S depends only on y,

S(t, x, y) = S0(y − t), u(t, x, y) = u0
(
x − t

εS0(y − t), y − t
)
.

Hence

uy(t, x, y) = u0
y

(
x − t

εS0(y − t), y − t
)
− t

εS0
y(y − t)u0

x

(
x − t

εS0(y − t), y − t
)
,

which is not uniformly bounded.
Nevertheless, certain special features of the non-isentropic Euler equations allow

uniform estimates to be obtained via a special set of estimates:

Theorem 1. [MS01] The solution to the non-isentropic Euler equations exists and
is uniformly bounded in Hs for a time independent of ε provided that the initial
data is uniformly bounded in Hs.

Some information on asymptotics has also been obtained ([MS01, MS03]). The
results have been extended to the full non-barotropic Navier-Stokes equations by
Alazard [Ala06].

2. Initial Data in Uniform-Local Sobolev Spaces

A function u belongs to the uniform-local Sobolev space Hs
ul if

sup
x0

‖Ψ(x − x0)u(x)‖Hs < ∞, where Ψ(y) := e−
√

1+y2

.

The well-posedness of symmetric hyperbolic systems in uniform-local Sobolev
spaces was proven in [Kat75].

Are systems of the form (1) uniformly well-posed in Hs
ul? Once again, standard

estimates do not yield uniform bounds, because the weight function Ψ must be
included in the integrals. This difficulty arises even for constant-coefficient equa-
tions. In one spatial dimension, Courant-Lax theory yields uniform well-posedness.
The following counterexamples show that uniform well-posedness does not hold in
higher dimensions in general:

The wave equation utt − 1
ε2 ∆u = 0 can be written in terms of v := εut and

w := ∇u as a symmetric-hyperbolic system vt − 1
ε∇·w = 0, wt − 1

ε∇v = 0. Initial
data v(0,x) = cos(|x|), w(0,x) = 0 belong to Hs

ul for every s. In spatial dimension

d = 3, the solution is u(t, r) =
[

t
ε cos t

ε − sin t
ε

]
sin r

r + sin t
ε cos r. Hence both u

and w = x

r ur are of order O( t
ε ). The above initial data satisfy the conditions of

[Sch94] but not those of [KM81]. However, a similar example in dimension d = 5
also satisfies the latter conditions.

3. Non-constant Large Operators

Dutrifoy and Majda ([DM06]) have recently proven uniform well-posedness for
a system arising from the shallow water equations in which the large operator
includes a variable-coefficient undifferentiated term:

vt +
∑

j

Aj(v, ε)vxj
+ 1

ε

∑

j

Cjvxj
+ 1

εD(~x)v = 0.



Applications of Asymptotic Analysis 1683

The following simple example illustrates how such a result is possible and empha-
sizes the essential role of the large constant-coefficient terms.

Let B(x) be a function whose derivatives are all bounded and not identically
zero, such as sin x. The solution to the equation

vt − 1
ε [λvx + iB′(x)v] = 0, v(0, x) = v0(x)

is

v(t, x) =

{
v0(x − λt/ε)ei[B(x)−B(x−λt/ε)]/λ, if λ 6= 0

v0(x)eiB′(x)t/ε, if λ = 0.

When λ = 0, the kth derivative of the solution grows like
(

t
ε

)k
. However, for

λ 6= 0, the solution is uniformly bounded in every Hs!

4. A Model Problem for Multiple-Scale Non-isentropic Flow

The non-isentropic Euler equations with multiple spatial scales have been con-
sidered in [KBS01]. The following toy equation models some features of that
system:

(3) a(y, εu) [ut + c (uux + εuuy)] + 1
εux + uy = 0

When c = 0 and a = a(y), the exact solution to the initial-value problem is

u(t, x, y) = u0

(
x − y−A−1(A(y)−t)

ε , A−1(A(y) − t)
)

,

where A′ = a, which shows that uy is not uniformly bounded.
Nevertheless, the solution has the form

(4) u(t, x, y, ε) = v
(
t, x − µ(t,y)

ε , y, ε
)

,

where v does satisfy uniform estimates.
To obtain an analogous result for the full toy equation, substitute (4) into (3)

and equate the O(1
ε ) terms to zero, which yields

−a(y, 0)µt + 1 − µy = 0.

The profile v then satisfies

(5) a(y, εv) [vt + vvx + µyvvx + εvvy] + vy + µt
a(y,0)−a(y,εv)

ε vx = 0.

Since (5) contains no large terms, both v and vt satisfy uniform estimates, which
implies the convergence of v to a limit profile satisfying

a(y, 0) [vt + vvx + µyvvx] + vy − µtav(y, 0)vx = 0.
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Low Mach number flows and the zero electron mass limit

Thomas Alazard

The purpose of this work is to present some recent results in the study of low
Mach number flows [1, 2, 3, 6] in connection with the analysis of the zero electron
mass limit [4, 5]. The general setting is the analysis of a system depending on a
small scaling parameter ε, which is the ratio me/mi of the characteristic mass of
an electron an the characteristic mass of an ion. For a plasma made of electrons
(charge qe = −1) whose density is denoted by ρe and velocity ve, and ions (qi = +1,
density ρi, velocity vi), the governing equations are






∂tρα + div (ραvα) = 0, α = e, i,

mα∂t(ραvα) + mαdiv (ραvα ⊗ vα) + ∇Pα(ρα) = −qαρα∇φ, α = e, i,

−∆φ = ρi − ρe − C(x),

where C is a given C∞ function and, for α = e, i, Pα is a given non-decreasing
C∞ function.

We are interested in the limit ε → 0, which is related to the study of the
incompressible limit in compressible fluid mechanics. Indeed, at least in the special
case where ρi and C are constant functions, after the appropriate rescaling (see [5]),
we are led to the following quasi-linear system:






g1(εp)(∂tp + v · ∇p) + ε−1div v = 0,

g1(εp)(∂tv + v · ∇v) + ε−1∇P = ε−1∇φ,

∆φ = ε−1F (εp),
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where g1 and g2 are C∞ positive functions, and F is a smooth non-decreasing
function vanishing at the origin. Note that the system studied in the celebrated
work of Klainerman and Majda correspond to φ = 0 = F .

For these problems, a general strategy can be developed. The analysis is in two
steps. First, one study the uniform stability of the solutions: one has to prove
that the classical solutions exist and are uniformly bounded for a time interval
independent of ε. Next, one considers the behavior of the solutions when ε goes
to 0: one has to prove that the solutions are the sum of the classical solution of
the limit system plus a highly oscillating term that goes to 0 in a weak sense.

The analysis of the zero electron mass limit has been studied by Ali, Chen,
Jüngel and Peng [5]. By adapting the method of Klainerman and Majda, they
have proved a convergence result when the solutions do not depend on the fast time
scale (for well prepared initial data such that the time derivative are uniformly
bounded). In [4] we consider the same problem for general initial data such that
the solutions do depend on the fast time scale. In addition, we consider initial
data which allow for large variations of size O(1) of ρi.

The key points of the analysis can be observed on the following simplified system
where G is a source term and gi = gi(t, x, ℘) > 0 are given smooth functions. We
prove that the Cauchy problem for the system

(1)





g1(t, x, εp)(∂tp + v · ∇p) + ε−1div v = 0,

g2(t, x, εp)(∂tv + v · ∇v) + ε−1∇p = ε−1∇φ,

∆φ = ε−1F (εp) + G(t, x),

is uniformly well-posed on the Torus or the free space. The source term G(t, x)
allows to take into account large density variations. Furthermore, the fact that
g1 and g2 can depend on the variables (t, x) allows to consider the non-isentropic
regime where the density ρe depends on the temperature.

Once it is proved that the solutions exist and are uniformly bounded, one can
rigorously justify (by using a Theorem of Métivier and Schochet [6, 7]) the limit
ε → 0 for general initial data defined in the whole space.

Also, it is worth noticing that our analysis allows to justify the anelastic ap-
proximation.
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[5] G. Ali, L. Chen, A. Jüngel and Y.J. Peng, The zero-electron-mass limit in the hydrodynamic

model for plasmas, preprint 2005.
[6] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equa-

tions, Arch. Rational Mech. Anal. 158 (2001), 61–90.



1686 Oberwolfach Report 28/2006

[7] S. Schochet, The mathematical theory of low Mach number flows, M2AN Math. Model.
Numer. Anal. 39 (2005), 441–458.

Asymptotic analysis of finite difference methods

Michael Junk

(joint work with Martin Rheinländer)

If we consider a finite difference method simply as a set of equations containing a
small parameter (the grid spacing), it is evident that the tools of asymptotic analy-
sis can give us useful information about the method. The applicability of this ap-
proach for studying consistency, long time behavior and stability is demonstrated.
As example, we use a simple lattice Boltzmann scheme for the 1D advection equa-
tion with constant advection velocity. Applications of the method to lattice Boltz-
mann schemes for the Navier-Stokes equation can be found in [1, 2, 3, 5, 6, 7]. It
should be stressed that the results are not restricted to lattice Boltzmann methods
but can readily be applied to any other finite difference scheme (see [4] for various
examples and a short review of asymptotic methods in numerical analysis).

Lattice Boltzmann methods are based on discrete velocity particle models. Con-
cretely, we consider fictitious particles that can move with unit speed in one space
dimension either to the left or to the right. Hence the discrete velocities are given
by S := {−1, 1}. The particle distribution is described by a vector-valued function
referred to as the population function. The first component represents the density
of the particles traveling to the left, while the second component is associated with
the other species:

F(t, x) =
[
Fk(t, x)

]
k∈{1,2}

=
(

F1(t,x)

F2(t,x)

)
.

A compact notation is obtained with the help of the basis vectors

1 :=
(
1
1

)
∈ R

2
s :=

(
s1

s2

)
=

(
−1
1

)
∈ R

2

and the componentwise product between vectors, e.g.

1f = f, s
2 =

(
(−1)2

12

)
= 1, s

3 = s .

Finally, 〈·, ·〉 denotes the standard scalar product.

The algorithm we are going to investigate has the standard lattice Boltzmann form

(1) Fk(t + h, x + skh) = Fk(t, x) +
[
JF(t, x)

]
k
, k = 1, 2

where the discretization parameter h = 1/N , N ∈ N determines the space-time
grid. More precisely, t can take the values tn = nh with n ∈ N0 and x ranges in
xi = ih with i ∈ Z. The collision operator J on the right hand side of (1) models
the particle interaction. Here, we choose the simple BGK form

JF = ω(E − I)F
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with relaxation parameter ω and projection matrix

(2) E := 1
2

(
1 − a 1 − a
1 + a 1 + a

)

To keep things simple, we assume 1-periodic initial data which give rise to 1-
periodic population functions so that no boundary data have to be prescribed.

In order to understand the behavior of the lattice Boltzmann solution F(t, x), we
try to approximate it in the form of a regular h-expansion

(3) F(t, x) ≈ f
[α](t, x) := f

(0)(t, x) + hf
(1)(t, x) + . . . + hα

f
(α)(t, x)

with t = tn = nh and x = xj = jh, n ∈ N, j ∈ Z. We refer to f
[α] as prediction

function. The asymptotic order functions f
(β) with 0 ≤ β ≤ α are supposed to

be h-independent, smooth in t and x and 1-periodic in x. The order functions
are determined by inserting (3) into the update rule (1), performing a Taylor
expansion and equating orders. Specifically, we find with D = ∂t + s∂x

(4)

(I − E)f(0) = 0

(I − E)f(1) = − 1
ωDf

(0)

(I − E)f(2) = − 1
ωDf

(1) − 1
2ω D2

f
(0)

Since I − E is not invertible (the range of I − E is generated by the vector s

which is orthogonal to 1), we encounter solvability conditions. In fact, the right
hand sides of the equations (4) must be orthogonal to 1 which eventually can be
cast into conditions on the so called mass moments u(β) = 〈f(β), 1〉 of the order
functions. With the abbreviations

µ := ( 1
ω − 1

2 )(1 − a2), λ := 2a( 1
ω2 − 1

ω + 1
6 )(1 − a2).

they are

(5)

∂tu
(0) + a∂xu(0) = 0

∂tu
(1) + a∂xu(1) = µ∂2

xu(0)

∂tu
(2) + a∂xu(2) = µ∂2

xu(1) + λ∂3
xu(0)

and the precise form of the leading order coefficients is:

(6)

f
(0) = 1

2 (1 + as)u(0)

f
(1) = 1

2 (1 + as)u(1) − 1
2ω (1 − a2)s∂xu(0)

f
(2) = 1

2 (1 + as)u(2) − 1
2ω (1 − a2)s∂xu(1) − 1

2ω ( 1
ω − 1

2 )(1 − a2)as∂2
xu(0).

If the algorithm is initialized compatibly to (6), i.e.

F(0, x) = 1
2 (1 + as)v0(x) − h 1

2ω (1 − a2)s∂xv0(x) − h2 1
2ω ( 1

ω − 1
2 )(1 − a2)as∂2

xv0(x)

with a 1-periodic function v0, we deduce initial conditions for the mass moments
u(0)(0, x) = v0(x) and u(1)(0, x) = u(2)(0, x) = 0 which completely determine the
order functions in view of (5) and (6).
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Assuming that f
[2] correctly captures the h-behavior of F up to the expanded order,

i.e. F(t, x) − f
[2](t, x) = O(h3) we find for the mass moment at every grid point

(7) U(t, x) = u(0)(t, x) + hu(1)(t, x) + h2u(2)(t, x) + O(h3).

In particular, U coincides with the solution u(0) of the advection equation (see (5))
up to an error which is at least proportional to h. In this sense, our lattice Boltz-
mann algorithm is consistent to the advection equation. The order of consistency
can also be deduced from (7). If ω 6= 2 and a2 6= 1 and hence µ 6= 0, the equation
for u(1) generally involves a non-zero source term. Thus u(1) will be different from
zero and the coincidence of U and u(0) is of first order

U(t, x) − u(0)(t, x) = hu(1)(t, x) + O(h2).

We say that the algorithm is first order consistent to the advection equation in that
case. If, however, ω = 2 or a2 = 1, the source term in the u(1)-equation vanishes
and since u(1)(0, x) = 0, the solution u(1)(t, x) turns out to be zero everywhere. In
this case,

U(t, x) − u(0)(t, x) = h2u(2)(t, x) + O(h3)

where u(2) is non-zero for non-trivial u(0) and a2 6∈ {0, 1}. Hence, the lattice
Boltzmann method is second order accurate in the case ω = 2.

Summarizing these considerations, we can say that a regular expansion of the
algorithm essentially amounts to a consistency analysis. In contrast to this, in-
formation about the stability of the method can be obtained by investigating the
long-time behavior with the help of a multi-scale expansion.

Starting with an ansatz of the form F(t, x) ≈ f
[α](t, ht, x), where

(8) f
[α](t1, t2, x) := f

(0)(t1, t2, x) + hf
(1)(t1, t2, x) + . . . + hα

f
(α)(t1, t2, x),

we find the following equation for the leading order mass moment

∂t1u
(0)(t1, t2, x) + a∂xu(0)(t1, t2, x) = 0

∂t2u
(0)(t1, t2, x) − µ∂2

xu(0)(t1, t2, x) = 0

with the initial value u(0)(0, 0, x) = v0(x). We see that the numerical solution is
governed by the advection equation for short times but that the diffusion equation
dictates the behavior on the long time scale. In particular, an unwanted behavior
of the scheme can be expected for µ = ( 1

ω − 1
2 )(1−a2) < 0 since the analysis leads

to the ill-posed backward heat equation in that case. This reflects the findings
of a detailed stability analysis which reveals that the scheme runs stable only for
0 ≤ ω ≤ 2 and a2 ≤ 1. At the same time, it should be stressed that µ > 0 is
possible also in unstable situations (e.g. a = 2 and ω = 4) which shows that the
long-time asymptotics cannot capture all the instabilities.
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Stabilized Finite Element Methods with Anisotropic Mesh Refinement

for the Oseen Problem

Gert Lube

The starting point is the incompressible Navier-Stokes problem

∂tu− ν∆u + (u · ∇)u + ∇p = f(1)

∇ · u = 0(2)

for velocity u and pressure p in a domain Ω ⊂ Rd, d ≤ 3. In an outer loop, an A-
stable low-order method (possibly with control of the time step ∆t) is applied. In
an inner loop, we decouple and linearize the resulting system using a Newton-type
iteration per time step. This leads to problems of Oseen type:

Los(b; u, p) := −ν∆u + (b · ∇)u + cu + ∇p = f in Ω(3)

∇ · u = 0 in Ω(4)

with an artificial reaction term cu where c ∼ 1/∆t.
We consider stabilized conforming finite element (FE) schemes with equal-order

interpolation of velocity/pressure for problem (3)–(4) with emphasis on anisotropic
mesh refinement in boundary layers. The classical streamline upwind and pres-
sure stabilization (SUPG/PSPG) techniques for the incompressible Navier-Stokes
problem for equal-order interpolation [4], together with additional stabilization of
the divergence constraint (4), are well-understood on isotropic meshes [10]. Much
less is known about the analysis in case of equal-order interpolation on anisotropic
meshes. The Stokes problem has been considered in [3] for the Q1/Q1-case and
in [9] for the P1/P1-case. The extension to the Oseen problem seems to be new.
Experiments for the Navier-Stokes problem, e.g. in [6, 5], show the applicability
of anisotropic mesh refinement for low-order schemes.

A standard approach to stabilize the Galerkin scheme is a combination of pres-
sure stabilization (PSPG) with streamline-upwind stabilization (SUPG) together
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with a stabilization of the divergence constraint, i.e., weighted L2-residuals
∑

T∈Th

(Los(b− f ; u, p), δT ((b · ∇)v + ∇q))T +
∑

T∈Th

γT (∇ · u,∇ · v)T

of (3) and (4) are added to the Galerkin discretization.
First we derive an a-priori estimate of Cea-type on arbitrary meshes, e.g. on

anisotropic meshes. The result for the stabilized method with δT = δu
T = δp

T is
shown w.r.t. the norm

|[V ]|2rbs := ‖ν 1

2∇v‖2
L2(Ω) + ‖c 1

2 v‖2
L2(Ω) + Jrbs(V, V ),(5)

Jrbs(V, V ) :=
∑

T

δT ‖(b · ∇)v + ∇q‖2
L2(T ) +

∑

T

γT ‖∇ · v‖2
L2(T )(6)

with parameters δT , γT to be determined. This result is even valid for rather
general finite element pairs for velocity and pressure.

The quasi-optimal a-priori result provides no control of the L2-norm of the
pressure. Therefore we analyze the stabilized method w.r.t. the norm

(7) |||V |||rbs :=
(
|[V ]|2rbs + σ‖q‖2

L2(Ω)

) 1

2

with parameter σ to be determined. We give a discrete inf-sup condition and a
quasi-optimal error estimate w.r.t. ||| · |||rbs. For simplicity, we restrict ourselvces
to the case of equal-oder interpolation of velocity/pressure.

Of practical interest are hybrid meshes with anisotropic mesh refinement of
tensor product type (in the sense of [1, Chap. 3]) in the boundary layer and a
smooth transition to (in general unstructured) shape-regular (isotropic) meshes
away from the layer. We restrict ourselves to the case that the boundary layer is
located at the hyperplane xd = 0. The advantage of this class of meshes is not
only that the coordinate transformation is simplified in regions with anisotropic
elements but also that certain edges/faces of the elements are orthogonal/parallel
to coordinate axes.

The main result is an extension of the previous Cea-type estimate for the sta-
bilized scheme on hybrid meshes where norm |[·]|rbs is replaced with norm |||V |||rbs.
This result is exploited using anisotropic interpolation estimates derived in [1,
Chap. 3]. Then the right-hand side of the error estimate is optimized w.r.t. the
stabilization parameters δ and γT , thus resulting in a proposal for the design of
these parameters on isotropic and on anisotropic elements. Full proofs are given
in [2].

In the last part of the paper, we provide some numerical experiments for the full
Navier-Stokes problem. First, we simulate a ”plug flow” in the two-dimensional
case in the laminar regime. The results clearly demonstrate the ability of hy-
brid meshes to produce accurate solutions with much less unknowns than on
isotropic meshes. Secondly, we apply the approach to the turbulent flow in a
three-dimensional channel [7]. We apply the k− ǫ− v2 − f -model of Durbin in the

”user-friendly” ϕ − f -version [8] for the RANS version of problem (1)-(2). The
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results for relevant quantities in wall units are in reasonable agreement with the
DNS data and even better than results presented in [8].
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Point load on a shell

Juhani Pitkäranta

(joint work with Harri Hakula)

According to the classical two-dimensional models of linear shell theory, the
deformation of the midsurface of a thin shell under a given load is obtained by
minimizing a quadratic energy functional of the form

F(u) = Am(u,u) + d2Ab(u,u) − 2Q(u),

where d is the thickness of the shell and the three terms of the energy correspond
to the deformation energy due to stretching (Am), the deformation energy due to
bending (d2Ab) and the external load functional (Q). Further, u = (u, v, w) is a
vector field on the midsurface of the shell that defines the tangential displacements
(u, v) and normal deflection (w) of the midsurface in the loaded state.

We consider here the the problem of shell deformation under a normal point
load, i.e., the case of a load functional of the form

Q(u) = FδP ,

where P is a point at the midsurface. This case is of special interest, as the
solution is the fundamental solution (Green’s function) for normal loads. Localized
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loads (idealized as point loads in mathematical models) are rather common also
in engineering practice.

Although the point-load problem has been the subject of rather early studies
in classical shell theory, cf. [1] and the further references therein, the detailed
behavior of the solution, especially in the vicinity of point P , is still an open
problem of asymptotic analysis when the thickness d is small. We give here some
partial solutions to this problem. In our study, we assume a ’shallow’ version
of the classical shell model where geometrical simplifications are assumed. Such
simplifications are justified when studying local effects in shell deformations, see
[2].

Within the simplified shallow shell model, we study first the asymptotic limit
solution at zero shell thickness (d = 0). In model cases we can work out an
explicit limit solution in the sense of distributions. When focusing on the normal
deflection (w) of this limit solution we conclude: (1) In all shell geometries w
has a component of the form w = w0δP . (2) In the elliptic case the remaining
part of w is smooth near P . (3) In hyperbolic and parabolic shell geoemtries,
w contains additional line δ-distributions along the characteric lines through P .
When aligning the coordinates so that x is the coordinate along the characteristic
line (along which the curvature vanishes) and y is the normal coordinate, then
the line δ-sistributions take the form w = A(x)δ(k)(y), where A(x) is relatively
smooth (continuous at least) and the possible values of k are k = 2 (hyperbolic
and parabolic cases) and k = 4 (parabolic case).

We assume next that d takes a small positive value and focus again on the
transverse deflection w due to the point load at P . Based on the asymptotic
solution at d = 0 we make two conjectures: (1) When d > 0, the asymptotic term

w0δP in w is spread into a ’hot spot’ around P of width ∼
√

Rd, where R is the
curvature length scale of the shell. We may define R, e.g. as the minimal principal
radius of curvature of the midsurface at P . (2) In the hyperbolic and parabolic

cases the line δ-distributions are spread to ’ridges’ of width ∼ m
√

Rm−2d, where
m = 3 in the hyperbolic case and m = 4 in the parabolic case.

So far we can support the above conjectures only partially based on the earlier
results on line layers of shell deformatations, see [2] and also [3, 4]. Numerical
solutions in benchmark cases (based on high-order finite elements) also support
these conjectures, as we show. What remains to be done is to convert the men-
tioned qualitative conjectures to more precise theorems. This is an open problem
of asymptotic analysis — particularly challenging in hyperbolic and parabolic shell
geometries.
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On phase field models: Phase Transition between Ordered and

Disordered Lipid Monolayers

Hans Wilhelm Alt

(joint work with Wolfgang Alt)

We present a phase field model for a phase transition between a diffusive high
compressible substance with density ρ1 and a high viscous and limited compressible
substance with density ρ2. The dynamics is driven by a velocity field v. The model
is based on balance laws for mass and momentum and a free energy inequality,
where the total free energy has the form

(1) ftot =
ρ

2
|v|2 + f0(ρ, ϕ) +

ε2

2
|∇ϕ|2 .

Here the total mass ρ and the phase fraction ϕ are given by

(2) ρ := ρ1 + ρ2 , ϕk :=
ρk

ρ
for k = 1, 2 , ϕ := ϕ2 .

The model applies to lipid monolayers on the thin water film of lung alveoli (see
e.g. [2, 3]). We perform an asymptotic expansion for the interfacial layer.

1. Sharp interface model

We consider the local situation without boundary conditions and assume, that
the two substances occupy two time-space regions Ω1, Ω2 ⊂ R × R

n separated by
an interface Γ ⊂ R × Rn. The model is based on strictly convex internal free
energies

(3) ρ1 7→ f1(ρ1) (gas-like), ρ2 7→ f2(ρ2) (fluid-like).

Conservation of mass is given by

∂tρ1 + div (ρ1v + J1) = 0 in Ω1 (parabolic for ρ1),(4)

∂tρ2 + div (ρ2v) = 0 in Ω2 (hyperbolic for ρ2),(5)

τ1 := ρ1(v − vΓ) • ν + J1 • ν, τ2 := ρ2(v − vΓ) • ν on Γ,(6)

τ := τ2 = −τ1 on Γ.(7)

Here J1 = −d̃(ρ1)∇ρ1 = −d(ρ1)∇µ1 is the diffusive flux, where µk := f ′
1(ρk) for

k = 1, 2 are the chemical potentials. Moreover, vΓ is the velocity vector of Γ and
ν := νΩ1 = −νΩ2 the unit normal of Γ. Note, that ρ1 on Ω1 and ρ2 on Ω2 can
attain any values.

Conservation of momentum reads (in weak sense)

(8) ∂t(ρv) + div (ρv ⊗ v + v ⊗ (XΩ1
J1) + Π) = f (parabolic for v)
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in Ω := Ω1 ∪ Γ ∪ Ω2. Here ρ := ρk in Ωk for k = 1, 2, Π = pId − S with pressure

(9) p :=

{
ρ1f

′
1(ρ1) − f1(ρ1) in Ω1 ,

ρ2f
′
2(ρ2) − f2(ρ2) in Ω2 ,

and stress tensor S = a(ρ)(Dv)S.
The main question concerns a missing second interface condition. The aim is,

to derive a constitutive equation for τ from a phase field limit.

2. Phase field model

In the phase field model the densities ρ1 and ρ2 live in the entire domain Ω, and
ρ, ϕ are defined as in (2). The general balance laws for the mass of each phase
and the total momentum are

∂tρk + div (ρkv + Jk) = τk , k = 1, 2,(10)

τ1 + τ2 = 0 ,(11)

∂t(ρv) + div (ρv ⊗ v + v ⊗ J + Π) = f .(12)

Here Jk are the diffusive mass fluxes, J := J1 + J2, and Π is the pressure tensor.
We consider a free energy as in (1), or more general

ftot = fkin + f, fkin :=
1

2
ρ|v|2, f = f̂(ρ, ϕ,∇ϕ) .

We postulate a

Free energy inequality. With a free energy flux Ψtot

∂tftot + div Ψtot ≤ v • f

for all solutions (ρ1, ρ2, v). Thus the free energy production

g := ∂tftot + div Ψtot − v • f

is supposed to be non-positive for all processes under consideration. We split

Ψtot = ftotv + ΠTv +
1

2
|v|2J + Ψ

in well known kinetic terms and a vector Ψ.

Define the first variation µ of f with respect to ϕ, chemical potentials µ1 and
µ2, and a pressure p by

µ := δf
δϕ = f′ϕ − div f′∇ϕ

µ1 := f′ρ − ϕ2µ
ρ ,

µ2 := f′ρ + ϕ1µ
ρ ,

p := ρf′ρ − f .

Using methods from Rational Thermodynamics (see e.g. [1]) one obtains
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Theorem. Assume, that the free energy flux is given with

Ψ := −ϕ̇f′∇ϕ + µ1J1 + µ2J2

and let

Π = pId + ∇ϕ ⊗ f′∇ϕ − S .

Then the free energy production becomes, with τ := τ2,

g = −Dv • S +
µ

ρ
τ + ∇µ1 • J1 + ∇µ2 • J2 .

Therefore the free energy inequality is satisfied, if Dv • S ≥ 0 and

µ

ρ
τ +

∑

k=1,2

∇µk • Jk ≤ 0 .

It turns out, that the generic model of this type is of fourth order. Only the
case J1 = ϕ1J , J2 = ϕ2J leads to a second order model. With a free energy

f(ρ, ϕ,∇ϕ) = f0(ρ, ϕ) +
ε2

2
|∇ϕ|2

it is given by

J = −dε∇f0′ρ , dε = dε(ρ, ϕ) > 0 ,

S = −aDvS, a = a(ρ, ϕ) > 0 ,

τ = ∇ϕ • J − ρ · cεµ , cε = cε(ρ, ϕ) > 0 ,

µ = δf
δϕ = f0′ϕ − ε2∆ϕ

3. Asymptotic expansion

As an appropriate scaling let

cε(ρ, ϕ) =
1

ε
, dε(ρ, ϕ) =

d(ρ)
1
εϕ + (1 − ϕ)

.

Then an asymptotic expansion of the interfacial layer leads to the following

ODE system. On the real line R it is v = const and one has to solve

ϕ′′ + λϕ′ = f0′ϕ(ρ, ϕ)(13)

d(ρ)(f0′ρ(ρ, ϕ))′ = −λϕ(ρ − ρ0
2)(14)

with boundary conditions ϕ(−∞) = 0, ϕ(+∞) = 1, ρ(−∞) = ρ0
1, ρ(+∞) = ρ0

2.
Here λ := (vΓ − v) • ν is the relative speed of the interface.

The sign of λ can be expressed in terms of the free energy f . Moreover we
claim, that for given ρ0

1 and ρ0
2 there exists a unique value λ, for which a solution

exists. In the sharp interface limit ε → 0 this leads to a constitutive equation for
the production rate τ in (7).



1696 Oberwolfach Report 28/2006

References

[1] H. W. Alt, The entropy principle for fluid interfaces, SFB 611 Univ. Bonn, Preprint 2006.
[2] J. Ding, D.Y. Takamoto, A. von Nahmen, M.M. Lipp, K.Y.C. Lee, A.J. Waring, J.A. Za-

sadzinski. Effects of Lung Surfactant Proteins, SP-B and SP-C, and Palmitic Acid on
Monolayer Stability, Biophysical J. 80 (2001), 2262–2272.

[3] V. Knecht, M. Bonn, S.-J. Marrink, A.E. Mark. Simulation studies of pore and domain
formation in a phospholipid monolayer, J.Chem.Phys. 122 (2005).

Asymptotic behavior of the stop hysteresis operator

Jürgen Sprekels

(joint work with Pavel Krejč́ı)

Let Ω ⊂ Rn be an open bounded Lipschitzian domain. We consider the problem

wt − ε ∆w + ∂IK(w) ∋ γ(w, uε) in QT := Ω × (0, T ) ,(1)

∂w

∂ν
= 0 on ∂Ω × (0, T ) ,(2)

w(x, 0) = ϕ(x) for a.e. x ∈ Ω.(3)

The system (1)-(3) arises in the phase field modeling of phase transitions with a
nonconserved order parameter vector field w = (w1, . . . , wN ) : QT → RN that
attains its values in some closed and convex set K ⊂ RN containing 0 . For details
of the model, we refer the reader to the paper [1] and the references cited therein. In
this connection, uε : QT → Rℓ is some control variable, which typically represents
either the absolute temperature or the strain tensor, and γ : K × Rℓ → RN is a
given globally Lipschitz continuous mapping.

In the physical application, the diffusion parameter ε is often controversial or
cannot be identified in a straightforward way; moreover, if uε is the absolute
temperature or its inverse, then for ε > 0 there are difficulties in proving that uε

is positive and that the Second Principle of Thermodynamics is satisfied pointwise,
while these problems usually do not occur for ε = 0. It is thus natural to study
the stability of the model as ε ց 0. In the lecture, we have proved the following
asymptotic result (see [1, Theorem 2.2]):

Theorem 1. Suppose that ϕ ∈ H1(Ω) satisfies ϕ(x) ∈ K for almost every
x ∈ Ω, and suppose that uε ∈ L2(QT ; Rℓ) for all ε ≥ 0 and uε → u0 strongly
in L2(QT ; Rℓ) . Then problem (1)–(3) has for every ε > 0 a unique solution w =
wε ∈ L2(QT ; RN ) such that wε

t , ∆wε ∈ L2(QT ; RN ), and problem (1)+(3) has
for ε = 0 a unique solution w = w0 ∈ L2(QT ; RN) such that w0

t ∈ L2(QT ; RN).
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Moreover, it holds

lim
ε→0+

ε

∫ T

0

∫

Ω

‖∇wε‖2 dx dt = 0 ,(4)

lim
ε→0+

sup
s∈[0,T ]

∫

Ω

|wε − w0|2(x, s) dx = 0 ,(5)

where ‖ · ‖ denotes the norm in Rn N .

The idea of the proof of this result is to apply special properties of the so-called
stop operator SK associated with the convex set K, the main ingredient being
the following partial integration inequality (see [1, Lemma 4.2]):

Theorem 2. Suppose that ϕ ∈ H1(Ω) satisfies ϕ(x) ∈ K for almost every
x ∈ Ω, and let v, w ∈ L2(QT ; RN) be such that

(i) vt, ∆w ∈ L2(QT ; RN) ,

(ii) w = SK [ϕ, v] ,

(iii) ∂w/∂ν(x, t) = 0 for a.e. (x, t) ∈ QT .

Then it holds for every s ∈ [0, T ] that

(6) −
∫ s

0

∫

Ω

vt(x, t) · ∆w(x, t) dx dt ≥ 1

2

∫

Ω

[
‖∇w(x, s)‖2 − ‖∇ϕ(x)‖2

]
dx .

This talk reports results that have been obtained jointly with Pavel Krejč́ı
(WIAS Berlin).
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Γ-convergence for evolutionary problems

Alexander Mielke

Many evolutionary problems, such as partial differential equations, display several
temporal or spatial scales and it is desirable to find a suitable limit model that
describes the macroscopic dynamics correctly. We want to address some general
concepts that might be useful for deriving such effective models.
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1. Geometric evolution via functionals

Consider a manifold Q and an energy-storage functional (potential energy) E :
[0, T ]×Q → R∞ := R ∪ {+∞}. For the dynamics we distinguish the dissipative
situation and the Hamiltonian one.

In the first case we have Rayleigh’s dissipation potential R : TQ → R∞, where
R(q, ·) : TqQ → R∞ is assumed to be convex. The evolution law is then given in
terms of the balance of the dissipative forces ∂q̇R(q, q̇) and the potential restoring
forces −DE(q), namely

(1) 0 ∈ ∂q̇R(q, q̇) + DE(t, q) ⊂ T∗
qQ.

(I) The viscous case corresponds to R, which is given in terms of a Riemannian
metric g, i.e., R(q, v) = 1

2 〈g(q)v, v〉, and leads to so-called gradient flows

g(q)q̇ = −DE(t, q) ⇔ q̇ = −∇gE(t, q).

(II) Another interesting dissipative situation is the case of rate-independent sys-
tems where R(q, ·) is homogeneous of degree 1. Then, ∂vR(q, v) ⊂ TqQ denotes
the set-valued subdifferential of the convex function R(q, ·) and (1) is a differential
inclusion, which may be reformulated as an evolutionary variational inequality, cf.
[4]. In fact, for the rate-independent case there is a weaker energetic formulation
in terms of a global stability condition (S) and the energy balance (E). This for-
mulation uses the dissipation distance D : Q×Q → R∞, that is associated with R
via

D(q0, q1) = inf{
∫ 1

0 R(q̃(t), ˙̃q(t))dt | q̃ ∈ W1,1([0, 1];Q), q̃(0) = q0, q̃(1) = q1 }.
We call a curve q : [0, T ] → Q an energetic solution associated with the functionals
E and D, if for all t ∈ [0, T ] we have

(2)
(S) E(t, q(t)) ≤ E(t, q̃) + D(q(t), q̃) for all q̃ ∈ Q,

(E) E(t, q(t)) + DissD(q, [0, t]) = E(0, q(0)) +
∫ t

0 ∂sE(s, q(s))ds.

(III) Also classical Hamiltonian systems are driven by two functionals. In ad-
dition to the potential energy E : Q → R∞ we also have the kinetic energy
K : TQ → R∞, which is again given by a Riemannian metric g in the form
K(q, q̇) = 1

2 〈g(q)q̇, q̇〉. The evolution equations in TQ (the Lagrangian setting)
then read

(3) d
dt

(
DK(q, q̇)

)
+ DE(q) = 0 ∈ T∗

qQ.

Often the canonical Hamiltonian form is preferred. It is based on the conjugate
momentum p = g(q)q̇ and the Hamiltonian H(q, p) = 1

2 〈p,g(q)−1p〉 + E(q):

(4) q̇ = DpH(q, p) = g(q)−1p ∈ TqQ, ṗ = −DqH(q, p) = −DE(q) ∈ T∗
qQ.

2. Γ-convergence and the limit passage

We now consider sequences of pairs of functionals, namely (Ek,Rk) for general
dissipative systems, (Ek,Dk) for the energetic formulation of the rate-independent
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case, and (Ek,Kk) for Hamiltonian systems. Additionally we consider an associated
sequence of solutions qk : [0, T ] → Q.

To define a convergence we equip Q with a Hausdorff topology and write “
Q→”

for the corresponding convergence. The functional E : Q → R∞ = R ∪ {+∞} is
called Γ-limit of the sequence (Ek)k∈N, if the following two conditions hold:

(i) lower estimate: qk
Q→ q =⇒ E(q) ≤ lim infk→∞ Ek(qk),

(ii) upper estimate: ∀ q ∈ Q ∃ q̂k : q̂k
Q→ q and E(q) = limk→∞ Ek(q̂k).

Now assume that both functionals Γ-converge (independently) and that we have

solutions qk with a pointwise limit q : [0, T ] → Q, i.e., qk(t)
Q→ q(t). Then , it

is a natural question whether q is a solution of the problem defined by the limit
functionals. Of course, we cannot expect that the result holds true in sufficient
generality. The real task is to identify conditions in the sense of a “joint Γ-
convergence” for the two functionals that guarantee the desired result.

(0) In fact, Γ-convergence was introduced for static problems. It was developed
over the last decade to provide very elegant and strong tools for deriving such
macroscopic models, see [2, 1]. In particular, it satisfies the desired convergence

property in the following sense: If qk is a minimizer of Ek and if qk
Q→ q, then q is

a minimizer of the Γ-limit E .
(I) For gradient flows, abstract positive results are contained in [10, 9]. They

are based on specific assumptions on the gradients ∇Ek(qk). The following simple
example in R2 shows that the desired result may even fail in finite dimensions. We
let Q = R2 and

Ek(q) = 1
2q2

1 + kα

2 (q2−q1/k)2 and Rk(q̇) = 1
2 q̇2

1 + kβ

2 q̇2
2 ,

where α, β are positive constants. The Γ-limits E and R are easily obtained,
namely E(q) = q2

1/2 for q2 = 0 and ∞ otherwise and R(q̇) = q̇2
1/2 for q̇2 = 0 and

∞ otherwise. The solution with q(0) = (1, 0)⊤ of the limit problem is obviously
q(t) = (e−t, 0)⊤. The solution qk : [0,∞) → R2 for the functionals Ek and Rk with
qk(0) = (1, 0)⊤ can be written down explicitly in terms of the eigenvalues. The
limit k → ∞ shows that the correct limit solution is obtained only if min{α, β} < 2.

(II) For rate-independent systems, Γ-convergence is studied via the energetic
formulation (2) in [6, 7]. Since rate-independent systems are very close to static
problems (cf. (S), which is a purely static condition), the conditions can be formu-
lated totally in terms of the functionals without using differentials. Again a simple
example in R

2 can be constructed to show that the limit passage is not true in
general.

The main condition, which provides the positive result, is the existence of joint
recovery sequences :

∀ qk ∈ Sk(t) with qk
Q→ q ∀ q̂ ∃ q̂k with q̂k

Q→ Q̂:
lim sup

k→∞

(
Ek(t, q̂k)+Dk(qk, q̂k)−Ek(t, qk)

)
≤ E(t, q̂)+D(q, q̂)−E(t, q),

where Sk(t) = { q ∈ Q | Ek(t, q) < ∞, ∀ q̃ ∈ Q : Ek(t, q) ≤ Ek(t, q̃) + Dk(q, q̃) }
denotes the sets of stable states. Based on this condition several applications
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are given in [7]. In [8] an application of two-scale homogenization for linearized
elastoplasticity is derived.

(III) For Hamiltonian systems an abstract theory has not been developed.The
oscillatory behavior of the solutions leads to an ongoing exchange between kinetic
and potential energy, which is enforced by the underlying symplectic structure.
So far, it is unclear how these structures can be used along with Γ-convergence.
First preliminary results are given in [5, 3]. There the passage from a discrete
lattice system to a macroscopic elastodynamic wave equation is shown by different
tools. As a result we obtain that the separate Γ-convergence of Kk and Ek in
the Lagrangian setting (3) gives the correct limit equation. However, doing the
corresponding Γ-limit in the canonical Hamiltonian system (4) leads to a limit
equation, which, in general, does not characterize the limits of solutions.
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A hierarchy of theories for thin elastic bodies

Stefan Müller

(joint work with Gero Friesecke, Richard D. James, Maria Giovanna Mora and
Maximilian G. Schultz)

In this talk I give an overview on recent progress in understanding the relations
between three-dimensional nonlinear elasticity and theories for lower dimensional
objects such plates, beams and rods. This has been an outstanding question since
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α β γ δ
applied force energy in-plane out-of-plane limit model

α = 0 0 0 0 Membrane [6]
0 < α < 5/3 α 0 0 Constr. membrane [1, 2]

α = 2 α 0 0 Kirchhoff [4, 10, 11]
2 < α < 3 2α − 2 2(α − 2) α − 2 Lin. isometry constr. [5]

α = 3 2α − 2 2(α − 2) α − 2 von Kármán [5]
α > 3 2α − 2 α − 1 α − 2 Linearized vK

= Germain-Lagrange [5]

Table 1. Relation between the scaling exponents α of the applied
forces, β of the energy, γ of the in-plane deformation and δ of the
out-of-plane deformation. For α > 2 we assume that the limit
force is normal

the very beginning of the research in elasticity. In fact there is a large variety of
lower-dimensional theories. They are usually obtained by making certain (strong)
apriori assumptions on the form of the solutions of the full three-dimensional prob-
lem and hence their rigorous range of validity is typically unclear. As highlighted
already in the work of Fritz John, a key point is the geometric nonlinearity in
elasticity, i.e., the invariance of the elastic energy under rotations. In particular
thin elastic objects can undergo large rotations even under small loads and this
prevents any analysis based on a naive linearization.

The first rigorous results were only obtained by Le Dret and Raoult [6] in the
early 90’s using a variational approach which guarantees convergence of minimiz-
ers to a suitable limit problem. In joint work with G. Friesecke and R.D. James
we have derived a hierarchy of limit problems as the thickness h goes to zero.
The different limit theories depend on the scaling of the applied force f (h) ∼ hαf
which in turn determines the scaling of the energy energy per unit heigth Eh ∼ hβ .
For sufficiently small forces (i.e., sufficiently large α) the deformation will be close
a rigid motion (which we may assume to be the trivial map after suitable nor-
malization) and one can show that the (height-averaged) in-plane displacements

U (h) = (U
(h)
1 , U

(h)
2 ) := 1

h

∫ h/2

−h/2
(v

(h)
1 (x) − x1, v

(h)
2 (x) − x2) dx3 and out-of displace-

ment V (h) := 1
h

∫ h/2

−h/2 v
(h)
3 dx3 converge (at least weakly in the Sobolev space W 1,2)

after suitable rescaling, i.e., h−γU (h) → U , h−δV (h) → v, see [5] for details. The
results are summarized in Table 1.

The exponent β = 5/3 is conjectured to be relevant for the crumpling of elastic
sheets and its special role was first proposed in the physics literature [7, 12, 2]. Ta-
ble 1 applies for natural (traction-free) boundary conditions. For clamped bound-
ary conditions one obtains different scaling exponents, corresponding to a much
stiffer response (for 0 < α < 3), see [3].

More recently we started to study the convergence of (possibly non-minimizing)
stationary points of the elastic energy functional. To fix the notation let us look
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at the variational setting in a bit more detail. Consider a cylindrical domain
Ωh = S×(−h/2, h/2), where S is a bounded subset of R2 with Lipschitz boundary.
To a deformation v : Ωh → R3 we associate the elastic energy (per unit height)

(1) Eh =
1

h

∫

Ωh

W (∇v) dz.

We assume that the stored-energy density function W satisfies the following con-
ditions:

W (RF ) = W (F ) ∀R ∈ SO(3) (frame indifference),(2)

W = 0 on SO(3),(3)

W (F ) ≥ c dist2(F, SO(3)), c > 0,(4)

W is C2 in a neighbourhood of SO(3).(5)

Here SO(3) denotes the group of proper rotations. The frame indifference implies

that there exists a function W̃ defined on symmetric matrices such that W (∇v) =

W̃ ((∇v)T∇v), i.e. the elastic energy depends only on the pull-back metric of v.
To discuss the limiting behaviour as h → 0 it is convenient to rescale to a

fixed domain Ω = S × (−1/2, 1/2) by the change of variables x = (z1, z2, hz3) and
y(x) = v(z). With the notation

(6) ∇hy = (∂1y, ∂2y,
1

h
∂3y) = (∇′y,

1

h
∂3y)

we have

(7) Eh(v) = Ih(y) =

∫

Ω

W (∇hy) dx.

We have for h → 0, in the sense of Gamma-convergence,

(8)
1

h2
Ih Γ−→ IKi.

This implies, roughly speaking, that minimizers of Ih (subject to suitable boundary
conditions or body forces) converge to minimizers of IKi, provided Ih evaluated
on the minimizers is bounded by Ch2.

For the limit problem IKi the natural class of admissible functions is given by
W 2,2 isometric immersions from S to R

3, i.e.,

(9) A :=
{
y ∈ W 2,2(Ω, R3) : ∂3y = 0, (∇′y)T∇′y = Id

}
.

The limiting energy functional is

(10) IKi(ȳ) =

{
1
24

∫
S Q2(A) dx1dx2, if y ∈ A,

+∞, else.

Here A is the second fundamental form and Q2 is a quadratic form which can be
computed from the linearization ∂2W/∂2F (Id) of the 3d energy at the identity. If

W = 1
2dist2(F, SO(3)) then simply Q2(A) = |A|2.
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We consider convergence of equilibria for the same energy scaling. Instead of
studying the reduction from 3d to 2d we focus on the simpler limit from 2d to 1d.
Thus we start from a thin strip

(11) Ωh = (0, L) × (−h/2, h/2)

and after the rescaling (z1, z2) = (x1, hx2), ∇h = (∂1,
1
h∂2) we consider the func-

tional

(12) Jh(y) =

∫

Ω

W (∇hy) − h2g(x1) · y dx.

The corresponding Gamma-limit is given by

(13) J2(ȳ) =

∫ L

0

1

24
Eκ2 − g · ȳ dx1,

where

(14) ȳ : (0, L) → R
2, ȳ′ =

(
cos θ

sin θ

)
, κ = θ′,

and where J2 takes the value +∞ if ȳ is not of the above form (here we took the
liberty to identify maps on Ω which are independent of y2 with maps on (0, L)).
It is convenient to fix one endpoint by requiring ȳ(0) = 0. Integrating the linear
term by parts we easily see that the Euler-Lagrange equation corresponding to the
limit functional is given by

(15) − 1

12
Eθ

′′

+ g̃ ·
(− sin θ

cos θ

)
= 0, g̃(x1) =

∫ x1

L

g(ξ) dξ.

Theorem 6 ([9]). Assume that (2 – 5) hold, that the energy W is differentiable
and the derivative DW is globally Lipschitz. Let y(h) be a sequence of stationary
points of Jh (subject to the boundary condition y(h)(0, x2) = (0, x2) at x1 = 0 and
to natural boundary conditions on the remaining boundaries). Assume that

(16)

∫

Ω

W (∇hy(h)) ≤ Ch2.

Then

y(h) → ȳ in W 1,2(Ω; R
2),(17)

∂2ȳ = 0, ∂1ȳ =

(
cos θ

sin θ

)
(18)

and θ solves (15)

Extensions of this result to the 3d to 1d reduction (joint work with M.G. Mora)
and to the 3d to 2d reduction in the von Kármán scaling (joint work with R.
Pakzad) are in preparation. Mielke [8] used a centre manifold approach to compare
solutions in a thin strip to a 1d problem. His approach gives a comparison already
for finite h, but it requires that the nonlinear strain (∇hy)T∇hy is close to the
identity in L∞ (and applied forces g cannot be easily included).
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The proof uses in particular the quantitative rigidity estimate in [4] and a
compensated compactness argument.
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Boundary Layer Resonance, Canards, and Blowup

Robert E. O’Malley

Ackerberg and O’Malley (1970) considered a class of linear singularly perturbed
boundary value problems for which the classical asymptotic matching technique
fails to provide the asymptotic solution. The Hermite equation ǫy′′−xy′+βy = 0,
which is exactly solvable in terms of parabolic cylinder functions, is a typical ex-
ample for x on the interval [−1, 1]. The limiting solution within (−1, 1) can be
nontrivial only when β = 0, 1, 2, . . .. This phenomena of boundary layer reso-
nance provoked much study, especially concerning the necessity and sufficiency of
the Matkowsky condition that there be a smooth asymptotic power series solution
about the turning point x = 0. Resonance relates to the existence of canards or
delayed bifurcation for the corresponding Riccati differential equation (cf. Diener
and Diener (1995) and Benoit (1991)). New methods, including Gevrey asymp-
totics and blowup, holds considerable promise for understanding this phenomena
and others, including logarithmic switchback, that remain troublesome for matched
expansions (cf. De Maesschalck (2006)).
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Asymptotics beyond all orders for partial differential equations

John R. King

Asymptotics beyond all orders (i.e. the subclass of exponential–asymptotic prob-
lems that requires the investigation of exponentially–small terms ‘hidden’ beyond
a divergent algebraic series) play an important role in a wide range of applications,
such as in governing width selection of Saffman–Taylor fingers in a Hele–Shaw cell
(it being terms that are exponentially small in the regularising parameter that se-
lect from the continuum of fingers that the unregularised problem possesses) and
in quantifying front pinning in, say, discrete bistable reaction–diffusion equations,
the force needed to overcome the pinning (and thus generate front propagation)
being exponentially small in the lattice spacing (so that subtleties arise in taking
the continuum limit)1. While such behaviour is now relatively well understood
in steady–state/travelling–wave contexts (for which references in the papers cited
below provide an entry point into the literature), a number of additional com-
plications arise in the consideration of fully–time–dependent problems, for which
important open questions remain even in the case of linear PDEs; some of these are
spelt out in [BKT], to which we refer for the working out of the technical details of
a particular problem – our intention here is instead to highlight in general terms
some of the issues that arise. Before doing so, however, we note as an aside some
of the striking implications of beyond–all–orders asymptotics for multiple–scales
problems, for which the details of a specific case are similarly analysed in [AKT].
Thus while traditional two–scale approaches treat the fast and slow scales (x and
X = εx, say, with 0 < ε ≪ 1) as distinct independent variables, it turns out in the
Stokes–line (SL) calculation of exponentially–small terms that the fact that they
are simply scaled versions of the same quantity becomes crucial; one manifestation
of this is in the calculation of the phase of (say) a fast–oscillating homoclinic or
heteroclinic connection for an autonomous nonlinear ODE; fixing the x origin by
specifying a suitable point on the envelope (this slow variation being determined
by secularity conditions at algebraic orders) gives no information about the phase
of the oscillations because the multiple–scales formulation is separately invariant
under translations of x and of X , these being inherited from a single translation

1Such studies evidently also have implications for the analysis of numerical methods.
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invariant of the original ODE. The phase can, however, be selected (in a fash-
ion akin to that of Saffman–Taylor fingers) from the continuum having arbitrary
phase by the calculation of exponentially–small terms, whereby x and X cannot
be treated as independent and invariance under a single translation is recovered.

To place the considerations that follow in context, the concept of a Stokes line
needs introduction and this is best done through a linear ODE, Airy’s equation
d2y/dx2 = xy providing an instructive such example. One of its solutions, y =
Ai(x), has asymptotic behaviour on the real line (as x → +∞ and x → −∞)

Ai(x) ∼ 1

2(πx
1

2 )
1

2

e−
2

3
x

3

2 , Ai(x) ∼ 1

2(π(−x)
1

2 )
1

2

sin

(
2

3
(−x)

3

2 +
π

4

)
.

The issue then arises as to how the second exponential in the latter arises as one
circles the complex x plane with |x| ≫ 1 starting from the positive real axis. It

emerges that exp(2x
3

2 /3) is turned on by exp(−2x
3

2 /3) across an SL, i.e. a curve
on which (for large |x| in this context) the former is maximally subdominant to
the latter, namely arg x = ±2πi/3. The general recipe for the SL on which an
exponential exp (−φm/ε) can turn on exp (−φl/ε) (where ε is now playing the role
of small parameter, rather than 1/|x|) is

(1) m → l Im φl = Im φm, Re φl > Re φm.

There are three key practical issues that arise in undertaking a Stokes–phenomenon
calculation, as follows. (I) What exponentials (i.e. what functions φk(x, t) in the
case of a 1+1-dimensional PDE) may be present? (II) In which regions of the
complex x plane is the curve defined by (1) active, in the sense that exp(−φm/ε)
turns on a (non–zero) multiple of exp(−φl/ε) as it is crossed? (III) If the SL m → l
is active, then what multiple of exp(−φl/ε) is switched on?

The answer to (I) typically follows from a JWKB analysis of the PDE that
takes careful account of ‘diffracted’ ray fields for the associated Hamilton–Jacobi
equation that arise from singularities in the initial data. For PDEs a considerable
number of distinct φk’s can typically arise and this leads to a difficulty with (II)
associated with the higher–order Stokes phenomenon, this being shared by higher–
order ODEs (at least three distinct φk being required) and on which we elaborate
below. For ODEs, the values of the Stokes multipliers that determine the multiples
arising in (III) are simply constants and there are well–established procedures
for calculating these; PDEs exhibit the qualitatively new phenomenon that the
multipliers are typically functions (of one variable less than the dimension of the
PDE, so for 1+1-dimensional PDEs they are functions of one variable). This
makes their calculation significantly more difficult for PDEs, typically involving
the identification and solution of what amount to canonical diffraction problems. A
final remark to distinguish between ODEs and time–dependent PDEs is to observe
that in the latter case the asymptotic structure can change rather abruptly as the
SLs evolve, in particular when associated turning points cross the real axis.

By default, a SL is expected to be active; an m → l SL can, however, be inactive
for the following reasons. (A) The series associated with exp(−φm/ε) is convergent
(typically in practice truncating after a finite number of terms) and hence can
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never switch anything on via the Stokes phenomenon (which relies intrinsically
on the divergence of the relevant series). (B) No φm contribution is present in
the asymptotic series in the region of the complex x plane in which the part of
m → l under consideration lies. (C) Nowhere does the φm series have in its tail a
contribution able to turn on exp(−φl/ε); an instructive simple example of how this
can arise is when the φm expansion forms part of the complementary function of
a linear ODE and φl the particular integral – the former then has no knowledge of
the latter and cannot switch it on. (D) In part of the complex x plane the divergent
φm series contains in its tail a contribution associated with φl, but this has been
turned off in the region of interest by a different such contribution (associated with
φk, say) via the higher–order Stokes phenomenon.

We note that in (A) and (C) the line m → l is inactive throughout the complex
x plane, while in (B) and (D) it can be active in some parts while being inactive
in others.

It remains to give more details of the higher–order Stokes phenomenon. Con-

sidering expansions of the form exp(−φ/ε)
∞∑

n=0
εnΦn, it can be shown that the tail

for φ = φm has

(2) Φ(m)
n ∼ ± 1

2i

∑

k 6=m

Γ(n + δk − δm)

(φk − φm)n+δk−δm
A

(k)
0 as n → ∞

for some constant δk, δm and functions A
(k)
0 ; (2) can be viewed as a JWKB ansatz

involving exp (−n log(φk − φm)) in the limit n → ∞ (rather than ε → 0). Some
of the contributions in (2) can thus switch off others (so the latter are not in fact
present) via the higher–order Stokes phenomenon, i.e. by the Stokes phenomenon
associated with the limit n → ∞, so (cf. (1)) the higher–order Stokes lines (HOSLs)
are given by

(3) S(m, k, l)
Im (log(φl − φm)) = Im (log(φk − φm)) ,
Re (log(φl − φm)) > Re (log(φk − φm)) ,

this being the HOSL on which the k contribution to the tail of m can turn off the
l contribution. Like a SL, a HOSL can naturally be either active or inactive, its
inactivation being possible via (in particular) a second–level higher–order Stokes
phenomenon2; it is an important observation (associated with the resurgence prop-
erties of asymptotic expansions) that the second–level HOSLs are again given by
(3). Third and higher levels of HOSL activity are naturally also possible, (3) again
providing the pertinent recipe.

In summary, then, a procedure for constructing a self–consistent picture of the
active SLs, and hence of which contributions φk are present in each region of the

2This results from the A
(k)
0 in (2) each themselves being the first term in a further expansion

that has a tail of the same form as (2) (in particular involving the same functions φl, in effect
because of the (near tautology) that if all the φl’s have been correctly identified then any series
that arises can contain only those terms that can switch on or off these φl).
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complex x plane, can be formulated as follows3. (a) Identify all of the possible φk’s
and compute the associated SLs and HOSLs from (1), (3); (b) determine the Stokes

multipliers (corresponding to the A
(k)
0 in (2)), for example by solving suitable

canonical problems; (c) identify suitable starting points in the complex x plane (for
example by obtaining the far field from a small–time analysis or by solving locally
to a turning point) and track across the full plane by appropriate bookkeeping of
SL activity (typically requiring accounting also for HOSL behaviour at one or more
levels). Following various paths to the same destinations can provide important
self–consistency checks on such analyses.

Given the constraints of space here we have not even mentioned a number of
important aspects of beyond–all–orders problems (for example, the widespread
applicability of factorial/power ansätze such as (2), the role of optimal truncation
of divergent asymptotic series and the significance of crossing points and of second–
generation Stokes switching). We conclude by mentioning that while nonlinear
problems are naturally significantly more challenging than related linear ones with
regard to beyond–all–orders phenomena, the leading–order problems satisfied by
exponentially subdominant terms are of course linear, allowing the superposition
of distinct effects (including stochastic ones, say) in investigating the associated
exponential sensitivity of such models.
Acknowledgement The funding of the EPSRC is gratefully acknowledged, as are
helpful conversations with Jon Chapman, Chris Howls and Adri Olde Daalhuis and
participants at the MFO Workshop.
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Nucleation Transients

John C. Neu

(joint work with Yossi Farjoun)

Nucleation refers to the self assemly of identical, initially separated particles
(monomers) into clusters. A classical example is precipitation of crystals from
a solution. Our analysis starts by modifying the classical nucleation kinetics due
to Becker-Döring (1935), which assumes that the concentration of monomers about
clusters is uniform. Specifically we allow the local monomer volume fraction ρ(x, t)
to be nonuniform, as naturally arises when the diffusivity of monomers is finite.

3It should be remarked that careful account needs to be taken of branch cuts, across which
different φk can swap Riemann sheets, in implementing such a procedure.
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Conventional wisdom says that “small” clusters see uniform monomer concentra-
tion, while large ones are surrounded by ‘diffusion layers’ with nonuniform con-
centration. Our new model identifies a critical particle number h∗ that separates
‘large’ from ‘small’

(1) h∗ =
D3ρ3

s

ω3ν2
.

Here, D is the diffusivity of monomers, ρs is the monomer concentration in the
saturated solution, ω is the time constant for a particle to disassociate from a
cluster into the solution, and ν is the monomer volume. Clusters with h ≪ h∗

particles see asymptotically uniform monomer concentrations, while clusters with
h ≫ h∗ particles are surrounded by strong diffusion layers. Hence, clusters of size
h ≪ h∗ are described by conventional Becker-Döring theory. In particular, the
creations of clusters occurs at the rate prdicted by Zeldovich (1942) from classical
Becker-Döring:

(2) Nucleation rate = Ω exp− σ3

2η2
.

Here, Ω, σ are positive constants made of material parameters, and η is the over-
saturation,

(3) η ≡ ρ − ρs

ρs
,

which measures the excess of the monomer volume fractions ρ above the saturation
value ρs. The newly created clusters grow (aquire more particles) at a rate propor-
tional to h2/3 (surface area) as long as h ≪ h∗. When h equals h∗ in magnitude,
the rate drops below h2/3, eventually settling to h1/3 when h ≫ h∗:

(4) ḣ ∼ dηh1/3 for h ≫ h∗ .

Here, d is a nondimensionalized diffusion, d ≡ Dρs/ν2/3.
The physics of cluster creation and growth as described above is summarized

in a signaling problem for the density r(h, t) of clusters in the space of cluster size
h: r(h, t) satisfies an advection PDE,

(5) ∂tr + ∂h

(
dηh1/3r

)
= 0

for h ≫ h∗, consistent with the ‘diffusion limited’ growth rate (4). The creation
rate (2) is expressed by an effective boundary condition on r along h = 0,

(6) dηh1/3r → Ω exp

(
− σ3

2η2

)
.

In these equations, the oversaturation η is a function of time consistent with the
conservation of particles. The conservation is expressed by

(7) η(t) = η∗ − Λ

∫ ∞

0

hr(h, t) dh .

Here, η∗ is the initial concentration before clusters are created, Λ is a positive
constant, and the integral represents the number of particles trapped in clusters.
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In the limit of small initial oversaturation ε ≡ η∗ ≪ 1, we can derive distin-
guished limit scalings of h, t, r and the change δη = η(t)− ε of oversaturation. In
particular, the characteristic cluster size and characteristic time are exponentially
large in ε,

(8) [h] ∝ exp

(
3

5

σ3

2ε2

)
, [t] ∝ exp

(
2

5

σ3

2ε2

)
.

Physically, g ≡ σ3/2ε2 is the activation energy barrier to nucleation of clusters, so
(8) says that is takes time exp (2/5g) to make clusters of size exp (3/5g).

Applying the distinguished limit scalings to the signaling problem (5–7) and
taking the limit ε → 0, we find simple reduced equations, which in turn reduce to
simple integral equations for the change δη of oversaturation as afunction of time.
From a simple numerical solution for δη(t), we reconstrauct r(h, t). r(h, t) takes
the form of a ‘pulse’ with a discontinuous jump from zero at the largest cluster
size.

The account of the ‘nucleation era’ described here is not the end of the story.
The analysis can be continued in time, all the way to the ‘coarsening process’,
analysed by Lifshitz and Slyosov (LS) (1961). Our analysis selects the discontin-
uous LS similarity solution in a characteristic time yet longer than [t] in (8). But
this too is not the end and we refer you to B. Niethammer’s report, which indicates
a variety of mechanisms which we believe will select the infinitely smooth solutions
on some time scale even longer than the ‘coarsening time’ of our analysis.

References
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Propagation in Periodic Dielectric Media

G. A. Kriegsmann

(joint work with I. D. Abrahams)

We have employed a homogenization procedure to describe the propagation of
electromagnetic waves in a dielectric structure which is periodic in the x-y plane
and translationally invariant in the direction of propagation, z. The fundamental
cell is rectangular and is composed of an arbitrarily shaped pore filled with a
dielectric and the host by another. The indices of refraction of the pore and host
are N2

1 and N2
2 , respectively. The pore shape is allowed to depend upon z. The



Applications of Asymptotic Analysis 1711

dimensions of the cell and pore are small compared to a reference wavelength which
is commensurate with the variation of the pore shape in the z direction.

Our analysis yields the structure of the electromagnetic fields at the micro level
and gives the effective medium equation at the macro level

(1)
d2A

dz2
+ k2

{
< N2 > +

1

l

[
N2

]2

C

∮
P

∂

∂n
xds

}
A = 0

where

(2) < N2 >=
A1

l
N2

1 +
A2

l
N2

2 ,

[
N2

]
C

is the jump in the indices of refraction across C, the pore boundary.

The bracketed term in (1) is the effective index of refraction for our periodic
structure. It contains a simple arithmetic average of the dielectric constants and a
correction term which involves a line integral around the pore. The function P in
this integral is harmonic in the cell and along with its first partial derivative are
periodic. The function P is smooth across the curve C but its normal derivative
there satisfies

(3)

[
∂

∂n
P

]

C

=
∂

∂n
x.

The presence of the normal derivative of x in (1) and (3) assumes that the electro-
magnetic wave is polarized, in the absence of the pore, with the electric in the x
direction. If the polarization is such that the electric field was in the y direction,
then the normal derivatives of x would be replaced by normal derivatives of y.

At the microscopic level all the electric field components are proportional to A
and depend upon the harmonic function P . The same is true for the magnetic

fields except they are proportional to
dA

dz
.

The implementation of our theory requires finding the harmonic function P . If
the pore shape remains fixed in z, then the computational burden in approximating
P is minimal. However, if the pore shape changes in z- as would happen in
certain microwave assisted chemical vapor infiltration processes- then P needs to
be computed at many values of z in order to numerically integrate (1a). This
in principle will create a serious computational burden. We are in the process of
developing variational approximations to alleviate this cost.
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Regularizations of mean-field theories for Ostwald ripening

Barbara Niethammer

(joint work with J. Velázquez)

Ostwald ripening denotes the late stage coarsening of second phase particles in a
first order phase transition. The particles interact by diffusional mass exchange to
reduce their total surface area. One expects that the system, after some transient
initial stage, evolves in a universal statistically self-similar manner.

The classical theory by Lifshitz, Slyozov and Wagner (LSW) [3] is based on the
assumption that in the dilute regime particles interact with each other only via a
spatially constant mean-field u∞, which is determined by the constraint that the
volume fraction of particles is conserved. This approach yields a nonlocal evolution
law for the particle radius distribution, which has a one-parameter family of self-
similar solutions, all with compact support. LSW predict in their classical theory
that one particular of those profiles, the one with the largest support, characterizes
the large-time behavior of all solutions.

However, the long-time behavior of the LSW-equation is not at all universal
but depends very sensitively on the data [1, 7]. Roughly speaking, the dynamics
are determined by the details of the initial distribution of largest particles. In
addition, all self-similar solutions and the corresponding coarsening rates show
significant discrepancies with experimental data.

Several different mechanisms which have been neglected in the LSW theory have
been considered to overcome these shortcomings in the LSW model. In [5, 6], it is
argued that within Becker-Döring type models for nucleation certain initial data
for the coarsening regime are selected which then implies universal self-similar
coarsening.

While the selection problem might be solved by taking nucleation into account,
this effect cannot overcome the disagreement with experiment. Higher order ef-
fects, due to the finiteness of the volume fraction of particles, have been extensively
considered in the applied literature (see [8] for an overview). There are at least
two possible effects which have to be considered.

First, there are fluctuations in the particle densities due to screening. Screening,
analogous to electrostatic screening, implies that the interaction range of a particle
is not infinite, as assumed in the mean-field theory, but finite. A simple scaling
argument implies that the expected correction in the equation for the particle
number density is of order φ1/2 if φ ≪ 1 is the volume fraction of the particles.
A theory which proposes a closed equation for the one- and two-particle number
densities has been developed in [4] and rederived in mathematically more rigorous
way in [2]. However, the theory is based on the assumption that correlations
are uniformly small in size space, which is not satisfied for the larges particles in
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the system. For the largest particles, a boundary layer appears, which has been
analyzed in [9]. It is shown that the corresponding correction to the mean-field
model is a second-order diffusive type term which is only relevant for the largest
particles. It provides a selection criterion for a unique self-similar solution which
is a perturbation of the LSW self-similar solution with an exponential tail. The
corresponding correction to the mean radius is of order φ1/4.

A second higher order effect which induces corrections to the mean-field model
are encounters between particles, which has already been investigated in [3], but a
careful analysis of the order of size of the corresponding corrective terms has not
been made. On a first glance, the effect of particle collisions is smaller than the
corrections due to screening since the fraction of particles involved in collisions is
proportional to φ. However, it turns out that the relative size of the corrective
terms are not the same for all particles, but that they are larger for the largest
particles in the system. Since those largest particles determine the coarsening
dynamics for large times, this effect is crucial. An ad-hoc model has been sug-
gested in [3], which is the LSW model plus a coagulation type integral term. A
rough analysis suggests that also within this model a unique self-similar solution
is selected and the correction to the mean radius is of order 1

(lnφ)2 which is much

larger than the corrections due to fluctuations. However, since the right hand side
in the encounter model is quadratic in the size distribution, one can expect that
the effect is the most relevant only for very large time. The precise time scales
over which what effect is most relevant, have still to be identified.
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Long-time asymptotic behavior for coarsening of dewetting fluid films

Thomas P. Witelski

(joint work with Karl Glasner)

The study of instabilities of thin liquid films on solid surfaces is of great impor-
tance in understanding coating flows used in many real-world applications. These
instabilities lead to rupture, the formation of dry spots, and further morphologi-
cal changes that promote non-uniformity of coatings; these behaviors in unstable
thin films are generally called dewetting. To account for these effects, classical
lubrication models of fluid flow must incorporate terms describing the influence of
material properties of the solid and fluid via a disjoining pressure function, Π(h).
The resulting nonlinear evolution PDE for the film height h(x, t)

∂h

∂t
=

∂

∂x

(
h3 ∂

∂x

[
Π(h) − ∂2h

∂x2

])

can accurately reproduce the complex physical pattern formation observed in ex-
periments. Following initial transients, the film breaks up into large arrays of
near-equilibrium droplets. Energetic considerations favor coarsening, that is, the
successive re-arrangement and re-grouping of smaller drops into fewer larger drops.
The long-time evolution of this PDE problem can be reduced to the solution
of a system of coupled ODEs for the masses and positions of the N droplets,
k = 1, 2, · · · , N ,

dPk

dt
= CP (Pk)(Jk,k+1 − Jk−1,k),

dXk

dt
= −CX(Pk)(Jk,k+1 + Jk−1,k),

where the droplet pressure Pk is inversely related to the droplet mass. The fluxes
Jm,n are well-defined functions of the pressures and positions, {Xm, Pm, Xn, Pn},
of neighboring droplets, and is derived from a model for the slowly varying thin
film between the droplets. Parameter regimes where droplet coarsening by each
of two mechanisms (collision and collapse) are identified, and power laws for the
evolution for the number of droplets in the system, N(t), are explained. This is
joint work with Karl Glasner, University of Arizona [1, 2]. Further rigorous results
on this system have been studied in [3].
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Asymptotics of Dewetting Films in the Presence of Slippage

Andreas Münch

(joint work with P.L. Evans, J.R. King, B. Wagner, T.P. Witelski)

Lubrication models have shown to be extremely useful approximations to the full
Navier-Stokes equations for investigating the dynamics of thin liquid films, includ-
ing the motion and instabilities of their contact lines [1]. For film thicknesses in
the range of a few micrometers and larger, the choice of the boundary condition
at the solid substrate enters only weakly.

For the dynamics of complex fluids, such as thin polymer films dewetting from
hydrophobic substrates, within the the nanofluidic realm, slippage may play the
dominant role [2]. In order to describe their behaviour, we have derived and studied
a set of lubrication models for the thin film flow of incompressible fluids on solid
substrates [3]. The models are obtained as asymptotic limits of the Navier-Stokes
equations with the Navier-slip boundary condition

(1) u(z = 0) = b∂zu(z = 0),

for different orders of magnitude for the slip-length parameter b. The slip-length
parameter b can be related to an off-set length such that the fluid velocity at the
solid surface is given by the slip-length times the normal derivative of the velocity.

Here u denotes the velocity component parallel to the substrate, z is the coordi-
nate axis pointing normal to the substrate, with the liquid/solid interface located
at z = 0. For flows of Newtonian fluids on smooth rigid surfaces, the classic no-slip
boundary condition, u(z = 0) = 0, corresponds to zero slip length. Positive slip
lengths have been used to model many different physical systems including effects
such as surface roughness and non-Newtonian fluid properties, see e.g. the recent
review [4]. We furthermore include an intermolecular potential to represent the
chemical and molecular-scale physical properties at the solid.

The family of closed-form lubrication models include the distinguished limits

(2) ∂th = −∂x [m(h)∂x (∂xxh − φ′(h))] , with m(h) =
(
h3 + bh2

)
,

and strong slip regimes,

(3a) Re∗ (∂tu + u∂xu) =
4

h
∂x(h∂xu) + ∂x (∂xxh − φ′(h)) − u

βh
,

(3b) ∂th = − ∂x (hu) .

We note that in the latter case, u does not depend on z. The parameters in
(3) are the (scaled) Reynolds number Re∗ and the slip parameter β, a scaled form
of b. For other choices of slip scalings, these models reduce to other models that
have been used in different parts of fluid dynamics. In particular we note here the
no-slip and intermediate slip model, which have the same scalar form as (2) but
with mobility m(h) = h3 or m(h) = h2, respectively. In contrast, for very large
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values of β, eqns. (3) remains a system of PDEs that describe the motion of a free
film (elongational flow).

Matched asymptotics over several time and spatial scales are used to describe
the dynamic profiles for dewetting films. The motion of the dewetting front shows
transitions from being nearly linear in time for no-slip to t2/3 as the slip is in-
creased. For much larger slip lengths the front motion appears to become linear
again. Correspondingly, the dewetting profiles undergo a transition from oscil-
latory to monotone decay into the uniform film layer for large slip. Increasing
the slip further, to very large values, is associated with an increasing degree of
asymmetry in the structure of the dewetting ridge profile.

We could show that for the strong slip regime the morphology of the cross
section of the dewetting rim changes from a damped oscillating structure behind
the rim and towards the undisturbed film, to a monotone decaying structure, as
the slip length is increased. Stability analysis yields the critical slip length for
this transition. This property of the strong slip lubrication model captures the
recently experimentally observed morphological transition of the ridge when the
liquid/solid friction was altered [5].

For even larger slip lengths, the exponential decay rate decreases and the ridge
profiles show a pronounced asymmetry [3, 6], a property that has previously been
ascribed to the viscoelastic nature of the polymer.

In higher dimensions we could derive, via matched asymptotics, sharp interface
models for the no-slip (mh) = h3) and intermediate slip regimes (mh) = h2).
Stability analysis yield that the intermediate slip regime shows the characteristic
finger instability along the contact-line [8, 7], that has been observed experimen-
tally.
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On the asymptotic behavior of solutions of semilinear parabolic

equations of second order

Yu.V. Egorov

(joint work with V.A. Kondratiev)

Let Ω be a bounded domain in Rn with Lipschitzean boundary ∂Ω, L be an elliptic
operator of the form:

Lu ≡
n∑

i,j=1

∂

∂xi
aij(x)

∂u

∂xj
,

where aij(x) be bounded measurable functions in Ω, x = (x1, . . . xn) and∑n
i,j=1 aijξi ξj ≥ m|ξ|2, |ξ|2 =

∑n
i=1 ξ2

i , ξ ∈ R
n, x ∈ Ω, m = const > 0.

Consider solutions to the equation :

∂u

∂t
= Lu − f(x, u) (1)

in Π0 = Ω × (0,∞), satisfying the nonlinear boundary condition

∂u

∂ν
+ g(x, u) = 0, x ∈ Γ0 = ∂Ω × (0,∞), (2)

where ∂u
∂ν ≡ ∑n

i,j=1 aij
∂u
∂xi

cos(~n, xj), ~n is the unit outer normal vector to ∂Ω. The

functions f(x, u), g(x, u) are supposed to be continuous and differentiable with
respect to u.

The asymptotics of the solutions of problem (1)-(2) as t → ∞ were studied
by P. Baras, L. Veron [1], Yu.V. Egorov, V.A. Kondratiev, O.A.Oleinik [2], V.A.
Kondratiev, L. Veron [3], I.V. Filimonova [4], Yu.V. Egorov, V.A. Kondratiev
[5],[6], K.T. Boni [7].

Suppose that

|f(x, u)| ≤ c

∫

Ω

|f(x, u)|dx, |g(x, u)| ≤ c

∫

∂Ω

|g(x, u)|ds for all u ∈ R
1; (3)

|fu(x, u)| ≤ c

∫

Ω

|fu(x, u)|dx, |gu(x, u)| ≤ c

∫

∂Ω

|gu(x, u)ds for all u ∈ R
1; (4)

f(x, ku)

k
≥ f(x, u) for all k ≥ 1,

g(x, ku)

k
≥ g(x, u) for any k ≥ 1, u > 0; (5)

f(x, ku)

k
≤ f(x, u) for k ≥ 1,

g(x, ku)

k
≤ g(x, u) for k ≥ 1, u < 0. (6)

Theorem 1. If conditions (3) − (6) are satisfied then any solution of equation
(1), satisfying (2) on Γa,∞, tends to zero as t → ∞ uniformly in Ω. Suppose that

lim infv→+0
vh′(v)

h(v)
> 1.

Then

u(t, x) = α0(t)(1 + o(1)),
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where α0 is the solution to the problem

α′
0(t) = −h(α0(t)), α0(0) = 1.

Other results relate to the case when

lim infv→+0
vh′(v)

h(v)
= 1.

Some examples are given.
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Asymptotic model of size effects in fracture

Dominique Leguillon

This work relies on an Irwin-like criterion able to predict brittle crack nucleation
at corners, v-notches and other situations such as interfaces breaking a free surface
(delamination initiation). It is based simultaneously on an energy and a maximum
stress criteria. The reason of this dual formulation can be found for instance in
Parvizi et al. [7] experiments as analysed in a previous paper of the author [1]. It is
shown that, if the singular exponent of the stress elastic field at the concentration
point is not 1/2 (a pure crack), the crack nucleation is a brutal process (unstable) at
least on a short initiation length ℓ. This distance being used as a small parameter
in matched asymptotics, it leads to the following expansion of the energy release
rate G and then to the Irwin-like criterion:

(1) G = kAℓ2λ−1 + ... ; k ≥ kc =

(
Gc

A

)1−λ

σ2λ−1
c

where A is a scaling coefficient, k is the generalised intensity factor of the singu-
larity with characteristic exponent λ. Here, Gc and σc are two failure parameters:
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toughness and strength of the material (the use of two parameters is a usual fea-
ture in Cohesive Zone Models). The above criterion matches with the Griffith one
for a crack (λ = 1/2) and with the stress one for a straight edge without stress
concentration (λ = 1).
The matched asymptotic procedures allow analysing neighbouring problems deal-
ing with blunt cracks (the existence of a notch tip radius (figure 1), a soft layer
ahead of the crack tip in a bi- or laminated material (figure 2), a small cavity
(figure 3)).

Figure 1. A blunted notch.

Figure 2. A compliant interlayer between stiff substrates.

Figure 3. A small cavity in a plate in tension.

The main difference is that there are now two competing small parameters. In
the examples cited above, in addition to ℓ, it is respectively the notch tip radius, the
interlayer thickness or the cavity diameter, they are all noted d. A new expression
of the energy release rate comes out:

(2) G = kA(µ)d2λ−1 + ...

where µ = ℓ/d is the ratio of the two small parameters. The scaling coefficient A
is a function of µ and the criterion is no longer explicit since the stress field cannot
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Figure 4. Comparison between experiments and prediction for
a drilled plate in tension.

be asymptotically expanded directly in power terms. Nevertheless it is possible to
give an expression that requires simply the numerical knowledge of the stress field
ahead of the primary crack. A FE computation can be carried out once for all on a
simplified geometry so-called ”inner domain”. The role of the characteristic length
d of the microstructure at the origin of the size effect is clear in the expression (2).
Applications are proposed on the influence of the notch tip radius on the apparent
toughness [2, 9]; the step-over mechanism in bedded sediments [8]; the role of an
adhesive layer between two steel plates [3]; the crack path in ceramic laminates
[4].
To illustrate our purpose let us consider a small circular hole in a plate submitted
to a remote tension (figure 3). The two small parameters are the crack increment
length and the diameter of the hole. It is known that the stress concentration
factor of such a structure is 3 prior to any crack onset. Following a maximum stress
criterion, it means that failure would occur for σ∞ = σc/3 whatever the diameter
of the cavity (σ∞ is the remote tension and σc the strength of the material). On
the contrary experiments show that if the cavity becomes smaller and smaller, the
applied load leading to failure increases from σc/3 to σc. The above approach,
taking into account an initiation length, is able to render (not as well as expected
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but this study is in progress) this effect as shown in figure 4 (the solid line is the
theoretical prediction and the triangles correspond to experiments on PMMA [5]).
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Homogenization of degenerate elliptic equations

Svetlana E. Pastukhova

1. Consider in IRd equation

(1) −divρA∇u + ρu = f, f ∈ C∞
0 (IRd),

where ρ = ρ(x) ≥ 0, ρ, ρ−1 ∈ L1
loc(IR

d); A is a measurable symmetric matrice,

such that λξ2 ≤ Aξξ ≤ λ−1ξ2 ∀ξ ∈ IRd, λ > 0. Introduce Sobolev weighted
space

W = W (IRd, ρ dx) = {u ∈ W 1,1
loc (IRd) :

∫

IRd

(u2 + |∇u|2)ρ dx < ∞}.

The function u ∈ W is a weak solution, if

(2)

∫

IRd

(A∇u∇ϕ + uϕ)ρ dx =

∫

IRd

fϕ dx

for each ϕ ∈ C∞
0 (IRd).

If ρ is locally non-degenerate, i.e. ρ, ρ−1 ∈ L∞
loc(IR

d), then smooth functions
are dense in W and the equation (1) is uniquely solvable. Otherwise we define

the subspace H = H(IRd, ρ dx) as a closure of C∞
0 (IRd) in W . Consider the

intermediate space V , such that H ⊆ V ⊆ W . By definition, function u ∈ V is a
V -solution (or variational solution) if integral identity (2) holds for test functions
ϕ ∈ V . Variational solutions do not exhaust the whole set of weak solutions.
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2. Consider approximation ρh, such that

(3) ρh, (ρh)−1 ∈ L∞
loc(IR

d), ρh → ρ, (ρh)−1 → ρ−1 in L1
loc(IR

d).

For example, direct and inverse smoothings

(4) ρh = (ρ)h and ρh = ((ρ−1)h)−1

are subordinate to condition (3). Here (f)h denotes the classical smoothing by
means of convolution with delta -type bounded non-negative finite even kernel, for
instanse Steklov smoothing (see below).
Lemma 1. Let ρh be an arbitrary approximation of the type (3), uh the solution
of the problem

uh ∈ W (IRd, ρhdx) = H(IRd, ρhdx), −divρhA∇uh + ρhuh = f.

Then uh ⇀ u, ∇uh ⇀ ∇u in L2(IRd, ρhdx), where u is a weak solution to the
problem (1) called attainable or approximation solution.

It can be easily shown that there exist non-attainable weak solutions which
are not variational at the same time. The question arises: maybe, all variational
solutions are attainable? The answer in general is not known. Nevertheless, the
following fact is true.
Lemma 2. H- and W-solution of the equation (1) are attained respectively by
means of direct and inverse smoothing of the weight ρ, see (4).
3. Pass to homogenization problems. Suppose, that ρ(y) and A(y) are 1-periodic,
Y = [0, 1)d is a periodicity cell; ρ, ρ−1 ∈ L1(Y ). Consider the equation

(5) −divρεAε∇uε + ρεuε = f, f ∈ C∞
0 (IRd),

where ρε = ρ(ε−1x), Aε = A(ε−1x). Our aim is to investigate for ε → 0 the
asymptotic behavior of different type solutions to equation (5) including Hε- and

Wε-solutions. Here Wε = W (IRd, ρεdx) and Hε = H(IRd, ρεdx).
Introduce Sobolev weighted space of periodic functions

Wper = {u ∈ W 1,1
per(Y ) : 〈u〉 = 0, 〈ρ|∇u|2〉 < ∞},

and its subspace Hper that is the closure of C∞
per(Y ) in Wper. For generic weight

Hper 6= Wper.
Remind the main homogenization attributes.

(i) Problem on the cell of periodicity

w ∈ Wper, divρ(y)A(y)(ξ + ∇w(y)) = 0, ξ ∈ IRd.

(ii) Homogenized matrice Â, defined through the solution to cell problem by equal-
ity

Âξ = 〈ρA(ξ + ∇w)〉.
(iii) Homogenized equation

(6) u ∈ H1(IRd), −divÂ∇u + u = f.

All these objects are uniquely defined if Hper = Wper and hence the cell problem
is uniquely solvable. Otherwise, there can exist various solutions of cell problem
(Wper-solution, Hper-solution and other approximation solutions) to which various



Applications of Asymptotic Analysis 1723

homogenized matrices correspond. Thus we have various homogenized equations,
depending on the choice of the solution to the cell problem. All homogenized
matrices satisfy the relation: Â1 ≤ Â ≤ Â2, where Â1 and Â2 correspond to Wper-
and Hper-solutions respectively.

Theorem 1. If uε is the approximation solution of the equation (5), then

uε ⇀ u in L2(IRd, ρεdx), where u is the solution to (6) with appropriate matrice

Â. In particular, if uε is Wε-solution (or Hε-solution) the equation (6) has the

matrice Â1 (or Â2).
4. Under additional conditions on weight ρ we prove some estimates.
Theorem 2. Suppose, that

(7) ρ ∈ Lr(Y ), ρ−1 ∈ Ls(Y ), where 2d−1 = r−1 + s−1,

then the following estimate holds

(8)

∫

IRd

|uε − (u)ε|2ρε dx ≤ Cε2

∫

IRd

ρ−1
ε f2 dx.

Here uε is the approximation solution of the problem (5), u is the solution of
appropriate homogenized problem (6), (u)ε =

∫
Y

u(· + εt)dt is Steklov smoothing

of u, constant C depends only on dimension d, ellipticity constant λ and norms
‖ρ‖Lr , ‖ρ−1‖Ls.

The proof of the theorem 2 is based on the technique from [ZP1],[ZP2], which in-
volves different properties of Steklov smoothing. Some of them are valid if weighted
Poincare inequality holds in unit cube in IRd. To this end condition (7) is de-
manded. More restricted assumption on weight allows to obtain similar estimate
with usual zeroth approximation.
Theorem 3. If ρ ∈ L∞(Y ), ρ−1 ∈ Ls(Y ), where 2s > d, it is possible to replace
in (8) Steklov smoothing (u)ε with the function u itself.

If instead of zeroth approximation (u or (u)ε) we take classical ”first approx-
imation” or smoothed first approximation, then we obtain Wε-estimate for its
difference with the exact solution. The right-hand side of this estimate will be as
in (8).
[ZP1] V.V. Zhikov, S.E. Pastukhova. Operator Estimates for Some Problems in
Homogenization Theory. Russian Journal of Mah. Physics, Vol. 12, N4, p. 515-
524, 2005.
[ZP2] V.V. Zhikov, S.E. Pastukhova. Estimates of Homogenization for a Parabolic
Equation with Periodic Coefficients. Russian Journal of Mah. Physics, Vol. 13,
N2, p. 251-265, 2006.
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Stable finite elements for the Stokes problem on anisotropic meshes

Thomas Apel

Problems with a small parameter lead often to solutions with boundary or interior
layers. These are lower-dimensional features where the solution varies heavily
only in the direction(s) perpendicular to a lower dimensional manifold. Examples
include the Navier-Stokes problem and shell models.

Lower dimensional features in the solution occur not only due to small para-
meters but also due to edges of three-simensional domains. These so called edge
singularities are typical for elliptic problems and lead to unbounded derivatives
in directions perpendicularly to the edge in comparison to moderate values of the
derivatives in edge direction.

Effective numerical methods take the anisotropic features of the solution into
account which leads to the use of anisotropic meshes. They are characterized by el-
ements with a large or even asymptotically unbounded aspect ratio. The standard
finite element theory excludes such elements since a refined analysis is necessary.
Together with several coauthors we developed in the 1990ies the interpolation the-
ory for such elements and applied it to the convergence analysis of scalar elliptic
problems with edge singularities and boundary layers, see, e.g., [1, 2, 3, 4] and also
the summary in [5].

In solving the Stokes or Navier-Stokes problem, the question arises which pairs
of elements are stable uniformly in the aspect ratio. In [6], we succeeded for
the lowest order non-conforming element, named after Crouzeix and Raviart, to
prove stability without any assumption on the mesh. Moreover, we proved optimal
bounds for the discretization on appropriately graded anisotropic meshes for the
Stokes problem in a prismatic domain, exploiting only the low regularity of such
a solution.

The stability on general meshes is not proved for any other element pair. Con-
trary, for many pairs we have found pathological families of meshes where the
stability constant tends to zero. The challenge is merely to characterize (suffi-
ciently large) classes of meshes such that stability can be proven. One strategy is
to consider two-level families of meshes. This is to split the domain into shape reg-
ular macro-elements and then to apply local refinement strategies in the macroele-
ments. To our knowledge, this strategy was first devised in [7], where a family of
two-dimensional finite elements in the context of the p-version of the finite element
method was investigated. For related work we refer to [8].

In [9], we used this strategy to prove stability of some low order discretizations,
as known from papers of Fortin and Bernardi/Raugel. This work is restricted to
the two-dimensional case; the three-dimensional case is open.

The same strategy works for two families of rectangular elements of arbitrary
order that we investigated in [10]. The extension of this work to more irregular
meshes and to the three-dimensional case is not straightforward and open.

Finally we refer to [11] for computational studies of further elements with some
negative but also some positive results for which a theoretical investigation is still
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open. The most prominent example is the family of Taylor-Hood elements which
works on some families of meshes but withstand the theoretical investigation up
to now.
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Asymptotics of the eigenelements of a ”dumb-bell with a thin handle”

Rustem Gadyl’shin

We consider the Neumann boundary-value problem of finding the small-parameter
asymptotics of the eigenelements for the Laplace operator in a singularly perturbed
domain consisting of two bounded domains joined by a thin ”handle”. The small
parameter is the diameter of the cross-section of the handle. We show that as the
small parameter tends to zero the eigenvalues of this perturbed problem converge
either to the eigenvalues corresponding to the domains joined or to the eigenvalues
of the Dirichlet problem for the Sturm-Liouville operator on the segment to which
the thin handel contracts.

The main results of the work are the complete power small-parameter asymptot-
ics of the eigenvalues and the corresponding eigenfunctions and explicit formulae
for the first terms of the asymptotics. We consider critical cases generated by the
choice of the place where the thin ”handle” is joined to the domains, as well as by
the multiplicity of the eigenvalues corresponding to the domains joined.

The complete formulations of the statements and its proofs of all results are
given in [1] and [2].
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