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Introduction by the Organisers

The workshop “Calculus of Variations” took place from July 9 to 15, 2006,
and was attended by almost fifty participants, mostly from European and North
American universities and research institutes. There were 24 lectures on recent
research topics, plus a review lecture on the Lieb-Thirring inequalities by Michael
Loss (Georgia Tech, Atlanta). As the workshop had no specific focus, talks covered
a wide range of topics, with the aim of featuring different research trends, bringing
new problems to the fore, and stimulating interaction between mathematicians
from different backgrounds.

Five lectures were focused on problems related to Continuum Mechanics and
Materials Science. Gero Friesecke (Munich and Warwick) presented some results
on a simplified model for molecules, where the aim is to give a rigorous explanation
of the screening effect (i.e., the fact that the interaction of electrically balanced
molecules due to electrostatic forces is short ranged); this problem is still open
and presumably quite challenging in case of ‘realistic’ models. László Székelyhidy
(ETH Zürich) presented new result about the structure of quasiconvex hulls for
sets of 2 × 2 matrices, perhaps the most interesting development on this topic in
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recent years. Sergio Conti (Duisburg) considered the asymptotic behaviour of an
energy functional that appears in the modeling of different physical problems, such
as blistering in elastic films, magnetic thin films, etc.; the main result presented in
his lecture adds one more piece to the work of many authors towards the proof of
a conjecture by Aviles and Giga on the variational limit of such functional. The
lecture by Felix Otto (Bonn) was focused on the rigorous analysis of pattern forma-
tion in micromagnetics: this type of pattern formation is particularly interesting
because of the complexity of the observed behaviours – not yet fully explained in
rigorous terms – and of the relative simplicity of the underlying continuum model.
Related to this topic was also the lecture of Hans Knüpfer (Bonn).

Four lectures dealt with regularity problems of different sorts. G. Rosario Min-
gione (Parma) reviewed some recent developments on the regularity of solutions of
nonlinear parabolic systems. Michael Struwe (ETH Zürich) presented a new ap-
proach to regularity for harmonic maps valued in a hypersurfaces, yielding new re-
sults when the domain dimension is larger than 2. The regularity of harmonic maps
valued in Riemannian manifolds was also considered by Ernst Kuwert (Freiburg);
these results stemmed from other results on the conformal structure of surfaces
with suitable bounds on the Willmore energy. Mariel Saez (MPI for Gravitationl
Physics, Potsdam) presented a Lipschitz regularity result for the pseudo-infinity
Laplacian.

A certain number of lectures were related to shape optimization and optimal
transport problems. Almut Burchard (Toronto) presented some partial results
about the shape of closed curves in the three-dimensional space that minimize the
first eigenvalue of the associated one-dimensional Schrödinger operator; it is con-
jectured that these curves are circles (among other things, the conjecture is related
to the optimal constant in a particular Lieb-Thirring inequality). Jochen Denzler
(Knoxville) and Giuseppe Buttazzo (Pisa) considered other optimization problems
related to the first eigenvalue of (variants of) the Laplace operator on a given do-
main. Alexander Plakhov (Aveiro) studied bodies of minimal resistance moving
through a rarefied particle gas. Francesco Maggi (Duisburg) and Aldo Pratelli
(Pavia) presented some recent quantitative versions with optimal exponents of the
classical isoperimetric inequality in the n-dimensional Euclidean space. Qinglan
Xia (UC Davis) proposed a model for the shape formation in tree leaves which
postulates a step-by-step optimized growth for the associated transport system
(the venation of the leaf), where “optimized” refers to a given transport cost. Nu-
merical simulations based on this simple model show that varying the two built-in
parameters generates a wide variety of leaf shapes. Vladimir Oliker (Emory Uni-
versity, Atlanta) described a variational approach to the Aleksandrov problem
about the existence of closed convex hypersurfaces with prescribed integral Gauss
curvature. A similar approach is also used to design reflecting surfaces with pre-
scribed irradiance properties; the functional underlying this variational principle
is related to Monge-Kantorovich optimal transport theory.

Yann Brenier (Nice) considered the problem of foliating the three-dimensional
Euclidean space and the four-dimensional Minkowski space by extremal surfaces
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(which in Minkowski space can be interpreted as classical relativistic strings).
One way of obtaining such foliations is finding minimizers or critical points of
suitable energy functionals, subject to certain nonlinear constraints; due to these
constraints, standard methods do not apply in this case, and the existence of such
minimizers is open. Pierre Cardaliaguet (Brest) studied a non-local geometric
evolution problem for sets in the n-dimensional Euclidean space, which can be
formally viewed as the gradient flow of a linear combination of volume and capacity.
Since this flow preserves inclusion, it allows for a notion of weak solutions in the
sense of viscosity; it is shown that such solutions agree with the limits of the the
minimizing movements obtained by time discretization.

Diogo Gomes (Instituto Superior Tecnico, Lisbon) reviewed some recent results
on the viscosity solution of Hamilton-Jacobi equations and the relations with the
associated Hamiltonian dynamics, and Aubrey-Mather theory. Olvier Druet (ENS
Lyon) presented new results on the bubbling phenomenon for the solutions (and
also the Palais-Smale sequences) of sequences of variational elliptic equations in
dimension two with critical nonlinearities. Robert Jerrard (Toronto) described a
version of the Γ-convergence method designed for saddle points instead of minima,
and used this abstract tool to obtain non-trivial solutions to the Ginzburg-Landau
system in dimension three. Reiner Schätzle (Tübingen) gave a proof of (a modified
version of) a conjecture by De Giorgi on the approximation of the Willmore func-
tional for hypersurfaces in dimension three; the conjecture is still open in higher
dimensions.

Keith Ball (University College London) presented the proof of a long-standing
conjecture (due to Lieb) on the entropy gap between the normalized sum of N
independent copies of a given random variable X and its limit as N → ∞, i.e.,
the Gaussian distribution. A key role in the proof is played by a new variational
characterization of Fisher information.

The lecture by Gerhard Huisken (MPI for Gravitationl Physics, Potsdam) was
focused on the problem of defining mass in general relativity; in particular, he
presented a new definition based on the isoperimetric inequality (more precisely,
on the asymptotic behaviour of the isoperimetric profile), and some results on the
properties of this mass. One of the advantages of this definition, compared to
others based on the notion of curvature, is the relatively simple calculus that is
required for handling it. Furthermore, it can be adapted so as to obtain a notion
of localized mass.





Calculus of Variations 1883

Workshop: Calculus of Variations

Table of Contents

Gero Friesecke
Minimum energy configurations of classical charges in the potential of an
array of atomic nuclei: Large N asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . 1885
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Abstracts

Minimum energy configurations of classical charges in the potential of
an array of atomic nuclei: Large N asymptotics

Gero Friesecke

This work (joint with my graduate student Stéphane Capet) is motivated by the
desire to understand mathematically basic “screening effects” in atoms, molecules
and solids. By “screening effects” physicists mean the remarkable cancellation
effects between the strong, long-range Coulomb forces among the constitutent
elementary particles (electrons and atomic nuclei) which cause atoms to behave
as if their mutual interaction was weak and short-range.

To shed mathematical light on screening, we introduce and analyze the following
variational problem in which electrons are modelled as classical point charges:
Minimize

(1) VN,Z(x1, .., xN ) :=

N
∑

i=1

v(xi) +
∑

1≤i<j≤N

1

|xi − xj |
,

where

(2) v(x) =
M
∑

α=1

−Zα

|x−Rα|
(Z = (Z1, .., ZM ), Zα > 0, N ∈ N, Rα ∈ R

3),

over the set

(3) AN := {(x1, .., xN ) ∈ R
3N
∣

∣

∣
|xi −Rα| ≥ d for all i, α} (d > 0).

This model is a natural classical analogue of the fundamental time-independent
electronic Schrödinger equation. It retains the notorious many-body Coulomb
interactions of electrons and atomic nuclei exactly, whereas the hard core assump-
tion (3) may be viewed as a crude “uncertainty principle” which prevents electrons
from falling into the nucleus, with the hard-core radius d playing the role of −h.
More precisely, the model (1), (2), (3) arises from the full quantum mechanical
Hamiltonian of the electrons in a molecule,

HN,Z = −1

2
∆ + VN,Z =

N
∑

i=1

(

−1

2
∆xi

+ v(xi)
)

+
∑

1≤i<j≤N

1

|xi − xj |
,

by retaining electron interaction exactly, but – crudely – replacing the one-body
operator − 1

2∆xi
+ v(xi) by the effective potential veff (xi) := v(xi) when |xi −

Rα| ≥ d for all i and all α, +∞ otherwise.
Our main result is the following. For simplicity we state it here only in the case

of atoms (M = 1), in which case the nucleus may be assumed to be placed at the
origin, d may be assumed to be equal to 1, and (2), (3) reduce to

v(x) = − Z

|x| (Z > 0), AN = {(x1, .., xN ) ∈ R
3N
∣

∣

∣
|xi| ≥ 1 for all i}.
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Theorem 1. (Equidistribution and escape to infinity)

For any sequence {(x
(N,Z)
1 , .., x

(N,Z)
N )} of approximate minimizers of VN,Z , in the

limit N → ∞, Z → ∞, N/Z → λ ∈ (0,∞), the associated measures

µ(N,Z) :=
1

Z

N
∑

i=1

δ
x
(N,Z)
i

satisfy

µ(N,Z) ⇀∗ min{λ, 1}H
2|S2

4π
=: µλ.

Moreover the ground state energy satisfies

inf VN,Z

Z2
−→ −min{λ, 1} +

1

2
(min{λ, 1})2.

Note that for negative ions (λ > 1) the limit measure has less mass than the
approximating measures,

∫

dµλ = 1 < λ = lim
N

Z
= lim

∫

dµ(N,Z).

Physically this means that only Z+o(Z) particles stay bound and N − (Z+o(Z))
particles move off to infinity. We note that in the more difficult case of quantum
mechanical atoms, an anologous result was proved (via a different approach) by
Lieb, Sigal, B.Simon, and Thirring.

In case of a molecule, in which we know of no previous results, neither classical
nor quantum-mechanical, one investigates the limit

(4) N → ∞, |Z| :=

M
∑

α=1

Zα → ∞,
Zα

|Z| → zα ∈ [0, 1],
N

|Z| → λ ∈ (0,∞);

one finds, e.g. in case of neutrality (λ = 1) and non-overlapping hard cores (|Rα −
Rβ | > 2d for all α 6= β), that the limit measure is

M
∑

α=1

zα

H2|S2
α

4πd2
,

where S2
α denotes the sphere of radius d centred at Rα. This is a screening result:

asymptotically the total amount of electronic charge around each nucleus is exactly
equal to the nuclear charge.

As one interesting consequence, one can read off that in the above asymptotic
limit the interatomic potential for the classical model, i.e. the ground state energy
minus the ground state energy of the individual atoms, is exactly zero when |Rα−
Rβ | > 2d for all α 6= β. In particular the interatomic potential is short range,
despite the fact that the interaction between the constituting charges is not.

To prove the theorem, one
– rewrites the classical problem as a variational problem for the associated mea-
sures
– passes to a Gamma-limit
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– minimizes explicitly the Gamma-limit
– infers the asserted convergence from standard arguments in Gamma-convergence.

More precisely, we define

I(N,Z)(µ) :=

−
∫

R3\Ω

M
∑

α=1

Zα

|Z|
1

|x−Rα|
dµ(x) +

1

2

∫ ∫

(R3\Ω)2\diag

1

|x− y|dµ(x) dµ(y)

if µ = 1
|Z|
∑N

i=1 δxi
for some distinct x1, .., xN ∈ R

3\B1, and set I(N,Z)(µ) := +∞
otherwise. Here diag denotes the diagonal {(x, x) |x ∈ R3\B1}. Then for µ as in
the first alternative, we have the identity

I(N,Z)(µ) =
1

|Z|2VN,Z(x1, ..., xN ).

We then show:

Theorem 2. In the limit (4), the sequence of functionals I(N,Z) Gamma-converges
(with respect to weak* convergence of Radon measures) to the following functional
on nonnegative Radon measures:

I(µ) :=























−
∫

R3\Ω
∑M

α=1
zα

|x−Rα|dµ(x) + 1
2

∫ ∫

(R3\Ω)2
1

|x−y|dµ(x) dµ(y)

if
∫

dµ ≤ λ,

+∞ otherwise.

References
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Tartar’s conjecture and localization of quasiconvex hulls

László Székelyhidi Jr.

(joint work with Daniel Faraco)

Let Ω ⊂ R2 be a bounded open set. Our interest lies in compactness properties of
sequences of approximate solutions to inclusions of the type

(1) Du(x) ∈ K for almost every x ∈ Ω

for functions u : Ω → R2, where K ⊂ R2×2 is a given compact set.
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It is well known that for such problems the main obstruction to compactness
is due to the possible presence of rapid oscillations in the sequence of gradients
Duj. Indeed, if A,B ∈ R2×2 are any two matrices such that rank(A − B) =
1, then one can construct a sequence of uniformly Lipschitz functions uj whose
gradients oscillate between A and B, and no subsequence of {Duj} converges
strongly in L1(Ω). If A and B are such that rank(A − B) = 1, we say that
A and B are rank-one connected and in general speak of rank-one connections.
Thus a necessary condition for compactness in (1) is that K contains no rank-one
connections. In [12] L. Tartar conjectured that in fact this condition should also be
sufficient, although subsequently (see for example [13]) he produced an example
of a set K consisting of four matrices where there are no rank-one connections
but compactness fails. Such examples are nowadays called T4 configurations. On
the other hand the conjecture was verified by V. Šverák in [10] for connected sets
K ⊂ R2×2.

One of our main results is that the additional condition that K contains no T4

configurations is indeed sufficient for compactness. We remark that there is a very
quick algorithm for testing for T4 configurations, see [11].

Theorem 1 (D. Faraco - L.Sz. ’06). Suppose K ⊂ R2×2 is a compact set without
rank-one connections and K contains no T4 configurations. Then for any uni-
formly Lipschitz sequence uj : Ω ⊂ R2 → R2 with dist (Duj ,K) → 0 in L1(Ω), the
sequence {Duj} is (pre)compact in L1(Ω).

In problems with lack of compactness one is led to consider the relaxed problem,
and it is well known that for problem (1) this is characterized by the quasiconvex
hullKqc. A basic technique is to get a lower estimate from the rank-one convex hull
Krc and an upper estimate from the polyconvex hull Kpc, since Krc ⊂ Kqc ⊂ Kpc.
In estimating the rank-one convex hull a very useful fact is that the rank-one convex
hull is localizable. This means that if we know apriori that Krc is disconnected
(for example by an estimate on the polyconvex hull), then Krc can be calculated
by considering just subsets of K contained in each connected component of Krc,
see for example [3]. This result, known as the “structure theorem” for rank-one
convex hulls, is valid in any dimension, and the proofs rely heavily on the locality
of rank-one convexity. Our second main result is that in the space of 2×2 matrices
the structure theorem also holds for the quasiconvex hull.

Theorem 2 (D. Faraco - L.Sz. ’06). If K ⊂ R2×2 is a compact set and Kqc ⊂
⋃n

i=1 Ui for pairwise disjoint open sets Ui, then Kqc ∩ Ui = (K ∩ Ui)
qc.

There is a close relationship between Theorem 2 and Morrey’s conjecture regard-
ing quasiconvexity and rank-one convexity. We recall that a variational integral of
the form

∫

Ω
f(Du(x))dx is weak* lower-semicontinuous in the space W 1,∞(Ω,Rm)

if and only if f : Rm×n → R is quasiconvex. It is well known that every quasicon-
vex function is rank-one convex, and Ch.B. Morrey Jr. in [7] posed the problem
of whether rank-one convexity implies quasiconvexity. In the higher dimensional
case, where m ≥ 3, V. Šverák in [9] constructed an ingenious counterexample,
showing that quasiconvexity is not the same as rank-one convexity. However, the
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case n = m = 2 remains an outstanding open problem. Subsequently J. Kristensen
used Šverák’s counterexample in [5] to show that for m ≥ 3 quasiconvexity is not
a local condition. Also, the type of localization as in Theorem 2 is not possible.
Theorem 2 suggests that if there is a difference between rank-one convexity and
quasiconvexity in R2×2, it has to be of a much more subtle nature.

Our approach is based on the notion of incompatible sets. Following [1] we call
two disjoint compact sets K1,K2 ⊂ R2×2 homogeneously incompatible if whenever
uj : Ω ⊂ R2 → R2 is a sequence of uniformly Lipschitz mappings which are
affine on the boundary and such that dist (Duj ,K1 ∪K2) → 0 in L1, then either
dist (Duj ,K1) → 0 or dist (Duj ,K2) → 0. Our method to proving Theorems 1
and 2 is to find a decomposition of K into homogeneously incompatible sets. We
build on the ideas developed in [11] to arrive at a sufficiently large class of sets
which give rise to pairs of homogeneously incompatible sets. Such sets will be
given as the quasiconformal envelope EΓ of closed curves Γ ⊂ R2×2. The key point
is to realize that the set EΓ corresponds on the one hand to elliptic equations
and on the other hand to families of quasiconformal mappings. More precisely,
if u ∈ W 1,2(Ω,C) satisfies Du(z) ∈ EΓ for almost every z ∈ Ω, then u solves a
corresponding nonlinear Beltrami equation of the form

∂zu = H(z, ∂zu),

whereas when coupled with appropriate boundary conditions u gives rise to a
family of quasiconformal mappings parametrized by the curve Γ as

ut(z) = u(z) − Γ(t)z.

The former allows us to use the approach in [2] to construct certain nonlinear
operators which act as projectors onto the set EΓ, whereas the latter, an idea
which appeared in [4], leads to the required incompatibility result for solutions of
the inclusion Du(z) ∈ EΓ. Indeed, our proof of this incompatibility relies heavily
on adapting the methods in Section 7 of [4] - where Γ is a straight line in the
conformal plane - to our nonlinear setting.
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[9] Šverák, V. Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh
Sect. A 120, 1-2 (1992), 185–189.
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Calderón-Zygmund Theory for Parabolic Systems

Giuseppe Mingione

Calderón-Zygmund estimates are an ultra-classical tool in modern PDE theory.
They allow, an elliptic equation/system being given, to infer the precise Lq-type
regularity of solutions starting from that of the “data”. For instance, considering
the linear elliptic equation of the form

(1) div (a(x)Du) = f in Ω ⊂ R
n ,

where the coefficients a : Ω → R
n are assumed to be elliptic, and even VMO in

the sense of Sarason [8], then we have that f ∈ Lq(Ω) =⇒ Du ∈ Lq(Ω), for every
q > 1; here f is the given datum. For these type of statements see for instance
[5], Chapter 10. This kind of result has been first obtained in the simplest case
△u = f by mean of Singular Integrals Theory, and eventually, using other Har-
monic Analysis tools, such as nonlinear commutators, in order to treat the case of
VMO coefficients. Such approaches heavily rely on the linearity of the problem,
and, more dramatically, on the possibility of using explicit representation formulas
for solutions, by mean of singular integrals. Eventually, different approaches via
interpolation and regularity estimates have been offered by Campanato and Stam-
pacchia, but they again rely on the linearity of the problem. It is then clear that
such purely linear approaches cannot be used in the case of elliptic and parabolic
equations of the type

(2) div a(Du) = div f , ut − div a(Du) = div f .

The purpose of this note is to shortly report on recent developments concerning
these last, non-linear cases. The first, extremely important result for non-linear
equations was achieved by Tadeusz Iwaniec [6]. He considered the model case

(3) △pu = div (|Du|p−2Du) = div (|F |p−2F ) ,

involving the p-Laplacean operator △p, essentially proving that F ∈ Lq
loc =⇒

Du ∈ Lq
loc, for any q ≥ p. Extending the result to the full range q ≥ p − 1 still

remains an open problem. We can say that Iwaniec’s result opened the way to a
non-linear Calderón-Zygmund theory. Eventually, developing Iwaniec’s methods,
DiBenedetto & Manfredi [4] extended this result to the case of systems, while
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Kinnunen & Zhou [7] considered the case of a degenerate operator with VMO
coefficients a(x), of the type

(4) div (a(x)|Du|p−2Du) = div (|F |p−2F ) .

Again, in [1] we obtained the first result for non-uniformly elliptic operator, con-
sidering the so called p(x)-Laplacean system

(5) div(|Du|p(x)−2Du) = div(|F |p(x)−2F ) ,

arising in many physical models, as the one for electrorhelogical fluids elaborated
by Růžička. For problems of the type “left hand side”= div f , we have f ∈
L

qp/(p−1)
loc =⇒ Du ∈ Lq

loc, again for any q ≥ p. The techniques used in [6,
4, 7] avoid Singular Integrals by means of a suitable, combined use of refined
regularity estimates for solutions to homogeneous problems, that is, when f ≡ 0,
and Harmonic Analysis tools, such as Fefferman-Stein theorem on the so called
Sharp Maximal Function, a tool anyway avoided in [1].

Very unfortunately, these techniques completely break down in the case of para-
bolic problems of the type of the non-homogeneous, parabolic p-Laplacean system

(6) ut − div(|Du|p−2Du) = div(|F |p−2F ) .

The reason is the following: parabolic systems as (6) exhibit a different scaling
with respect to space and type. This reflects in the fact that there is no natural,
a priori determined family of cylinders on which one can find good estimates; on
the contrary, cylinders good for obtaining useful integral estimates are intrisically
defined by the solution itself. When p ≥ 2, they are of the type

(7) K := (x0, t0) +BR(0) × (−λ2−pR2, 0] .

where, roughly speaking

λ ≈
(

1

|QK |

∫

QK

|Du|p dx dt
)

1
p

.

Note that the critical fact here is that λ appears on both the sides of the previous
equivalence via the definition of K, and it is part of the proofs to show that such
intrinsic cylinders can be actually constructed: this is the core of DiBenedetto’s
approach to parabolic regularity [3]. As a consequence of this phenomenon, for
instance, one cannot use maximal function operators, that need to have an a priori
defined underlying family of balls/cylinders. Using maximal operators is only
possible in the non-degenerate case p = 2, therefore Calderón-Zygmund theory for
systems as in (6) remained untouched. Though one cannot use Harmonic Analysis
tools, one can use Harmonic Analysis ideas, and plugging them in, directly at a
PDE estimates level; the outcome is the following result, taken from [2]:

Theorem 1. Let u ∈ C0((0, T );L2(Ω,RN )) ∩ Lp(0, T ;W 1,p(Ω,RN )) be a weak
solution to (6), where

(8) p >
2n

n+ 2
.
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Then
F ∈ Lq

loc(C,R
nN ) =⇒ Du ∈ Lq

loc(C,R
nN ) ∀ q ≥ p .

Moreover there exists a constant c ≡ c(n,N, p, ν, L, q, ω(·)) > 1 such that if Q2RCC
then

(9)

(

1

|QR|

∫

QR

|Du|pq dz

)
1
q

≤

c

[

1

|Q2R|

∫

Q2R

|Du|p dz +

(

1

|Q2R|

∫

Q2R

|F |pq dz + 1

)
1
q

]d

,

where

(10) 1 ≤ d :=











p

2
if p ≥ 2

2p

p(n+ 2) − 2n
if p < 2 .

Here QR is a standard parabolic cylinder of the type (x0, t0)+BR(0)×(−R2, 0],
and BR is the standard Euclidean ball of radius R, centered at x0. The problem
is of course considered in the cylindrical domain C := Ω × (0, T ). Comments
are in order. The lower bound in (8) is unavoidable in order to obtain this type
of regularity, as shown by counterexamples; this is a peculiarity of the parabolic
situation. Inequality (9) fails to be homogeneous but when p = 2, because of the
presence of the exponent d, that is the “the scaling deficit” of the system (6) when
p ≥ 2. This is unavoidable too: multiplying a solution of (6) times a constant does
not yield a solution of a similar system, therefore a priori estimates for solutions
cannot be homogeneous on standard parabolic cylinders. When p < 2 the value
of d perfectly reflects the fact that the result is not valid below the bound in (8):
d approaches infinity when p approaches the lower bound in (8). Our techniques
are flexible enough to apply in much more general situations. For instance, in [2]
we obtain similar results in the case of systems with suitable VMO coefficients of
the type

ut − div(a(x, t)|Du|p−2Du) = div(|F |p−2F ) .

Moreover, we can treat general non-linear systems with the so called “Uhlenbeck
structure” i.e.: the non-linear dependence upon Du is via |Du|:

ut − div[g(|Du|)Du] = div(|F |p−2F ) ,

where g : R+ → R+, is in C1(R \ {0}), and

(11) if p ≥ 2 , g′(s) ≥ 0 ∀ s > 0

(12) νsp−2 ≤ g(s) ≤ Lsp−2 ∀ s > 0

(13)
|g′(s)|s
g(s)

≤
{

L if p ≥ 2

θ(< 1) if p < 2
∀ s > 0

(14) 〈g(|w2|)w2 − g(|w1|)w1, w2 − w1〉 ≥ ν(µ2 + |w1|2 + |w2|2)
p−2
2 |w2 − w1|2 ,
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for all w1, w2 ∈ R
nN . Finally, when dealing with equations, all those involving

possibly degenerate/singular operators of Leray-Lions type can be considered, i.e.

ut − div[a(z)A(Du)] = div(|F |p−2F ) ,

where the vector field A : RN → RN is C1(R \ {0}), and satisfies the following
growth and ellipticity assumptions:

(15) |A(w)| + |DA(w)|(µ2 + |w|2)
1
2 ≤ L(µ2 + |w|2)

p−1
2 ,

(16) DA(w)λ ⊗ λ ≥ ν(µ2 + |w|2)
p−2
2 |λ|2 ,

for every w, λ ∈ Rn, where, as usual, 0 < ν ≤ L, and µ ∈ [0, 1].
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A sharp-interface limit for the singularly perturbed Eikonal functional

Sergio Conti

(joint work with Camillo De Lellis)

We consider the functional

(1) Fε[u,Ω] =

∫

Ω

{

(1 − |∇u(x)|2)2

ε
+ ε|D2u(x)|2

}

dx .

Here ε is a positive number, Ω is a bounded open set of R2, u ∈ W 1,2(Ω; R), and
|D2u|2 =

∑

ij(D2
iju)2. These functionals have been proposed as models for differ-

ent physical problems (liquid crystals [2], blistering in thin films [13], convection
patterns [11], magnetism in thin films [9]). In most cases one seeks minimizers of
Fε among the u’s such that

(2) u|∂Ω = 0
∂u

∂ν

∣

∣

∣

∣

∂Ω

= −1 .
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In [2] (see also [3]) the following conjectures were made. Firstly, if
lim supε↓0 Fε(uε) < ∞, then uε converges, up to subsequences, to a Lipschitz
function u solving the eikonal equation |∇u| = 1. Secondly, if {uε} is a family of
minimizers, then the limits u must minimize

(3) F0[v,Ω] =
1

3

∫

Ω∩J∇v

|[∇v]|3 dH1 ,

among all v solving the eikonal equation. Here J∇v is the set where “∇v jumps”,
and [∇v] is the “jump”.

A technique to control the functional from below was devised by Jin and Kohn
[12], which introduced a class of “entropies” whose divergence is controlled, in an
appropriate sense, by Fε. Building upon this work, compactness with respect to
the strong W 1,3 topology was then proven independently in [1, 7] and [10]. A lower
bound was also obtained; which for the case that the limit is BV can be written
as a simple line integral [4]. Precisely:

Theorem 1 (From [1, 7]). Let Ω ⊂ R2 be a bounded Lipschitz domain, and let
εi → 0 and ui be such that Fεi

[ui,Ω] < C < ∞. Then there is a subsequence
converging strongly in W 1,3 to a function u0 with |∇u0| = 1. If additionally
∇u0 ∈ BV , then

lim inf
k→∞

Fεik
[uik

,Ω] ≥ 1

3

∫

J∇u0

|∇+u0 −∇−u0|3dH1 .

Notice that the compactness result does not give ∇u0 ∈ BV . Indeed, whereas
the functional (3) is lower semicontinuous on BV, it is not coercive in the same
space, as was shown in [1, 7] by constructing a sequence which is bounded in energy
but converges to a limit outside BV.

An upper bound matching this lower bound had already been obtained in [4]
for the case that the limit is a single straight interface, and in [7] for the case
that finitely many straight interfaces are present. The presence of the gradient
structure made it however difficult to conclude by density. We present here the
derivation of an upper bound under the assumption that the limit is in BV, which
was discussed in detail in [6]. An independent proof of the same result was obtained
by A. Poliakovsky [14, 15].

Theorem 2 (From [6]). Let Ω ⊂ R2 be a bounded C2 set and u0 ∈ W 1,∞(Ω,R)
with ∇u0 ∈ BV (Ω, S1), and εi → 0. Then there is a sequence ui ∈ C∞(Ω) such
that ui → u0 in W 1,p(Ω) for every p <∞ and

lim sup
i→∞

Fεi
[ui,Ω] ≤ 1

3

∫

J∇u0∩Ω

|∇+u0 −∇−u0|3dH1 .

If u0 obeys the boundary condition (2), then the sequence can be chosen so that
the same holds for each i.

The full determination of the Γ-limit, i.e., removing the assumption ∇u0 ∈ BV
in both Theorem 1 and Theorem 2, is open. Notice that if ∇u0 is not in BV
but is the limit of a sequence bounded in energy, one can still give a meaning to
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the expression on the right hand side (see [8]): a natural conjecture is that this
quantity coincides with the supremum among all lower bounds obtained with all
entropies and that the optimal sequence exists also in this case.

The proof of Theorem 2 is based on taking a mollification of u (after an appro-
priate continuation outside Ω) and improving it locally, a technique already used
in [5] to obtain Γ-convergence for a vectorial problem motivated by the theory of
elasticity. Precisely, we fix a family of mollifiers φε, and define

(4) ui = φεi
∗ u0 .

Since ∇u0 ∈ BV , the sequence ui is automatically bounded in energy, as can be
shown using the following local estimate.

Lemma 1 (From [6]). There exists a universal constant C such that the following
holds for every k ≥ 1. If u0 ∈W 1,∞(B2kε) with ∇u0 ∈ BV (B2kε, S

1), then

Fε[uε, Bkε] ≤ C‖D2u0‖(B2kε) .

This estimate is in the end used only on the “bad” set, where the structure of
u0 on a scale kε does not permit any better estimate. Since ∇u0 ∈ BV , the jump
measure ‖D2u0‖ does not concentrate on the bad set. On the part of the domain
where ∇u0 has a better behavior, sharper estimates can be obtained.

In order to show that the limiting energy concentrates on the jump one uses a
quadratic estimate:

Lemma 2 (From [6]). There exists a universal constant C such that the following
holds for all k ≥ 1. If u0 ∈ W 1,∞(B2kε) and ∇u0 ∈ BV (B2kε, S

1), then

(5) Fε[uε, Bkε] ≤ C
1

ε

[

‖D2u0‖(B2kε)
]2
.

This proves that only the jump part of D2u0 contributes to the limit.
Finally, on “good” points of the jump, i.e., on points of J∇u0 where the con-

vergence of the blow-ups at scale kε is already “good enough”, we replace ui by
the single-interface profile. The convergence of the blow-ups permits to show that
the energy of the boundary layer is a small fraction of the total energy, and to
conclude the proof.
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Foliations by 2-surfaces and Born-Infeld equations

Yann Brenier

(joint work with Yann Brenier)

We consider foliations of R1+3 by extremal surfaces, either for the euclidean
metric or the Minkowski metric. In PDE words, this amounts to look for two
fields E,B, valued in R3, depending on (t, x) ∈ R1+3, subject to the following
differential and algebraic constraints

∂tB + ∇× E = 0, ∇ ·B = 0, E · B = 0,

that are critical points of the functional
∫

√

B2 + ηE2 dxdt,

under appropriate boundary conditions, with η = 1 in the Euclidean case and
η = −1 in the Lorentzian case.

In the Euclidean case, it is natural to look for minimizers. Because of the differ-
ential constraints, the algebraic expression E ·B = 0 can be written in divergence
form and is weakly continuous in (E,B) with respect to the weak topology of L2.
Unfortunately, we expect minimizing sequences to converge only as vector valued
measures. So, it is unclear what is left from the algebraic constraint under such a
limiting process. A delicate interplay between concentration and oscillation effects
may play a crucial role. At this level, our point is just to attract the attention of
the Calculus of Variation community to what seems to us an interesting “super-
critical compensated compactness” problem. Let us just observe that the algebraic
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constraint cannot be entirely relaxed. Indeed, an easy calculation shows that the
convex hull of

∫

√

B2 + E2 dxdt,

with constraint E · B = 0, is
∫

√

B2 + E2 + 2|E · B| dxdt.

Also notice that various simplified versions of the problem can be addressed. If
the t dependence is given up, for instance, we may write (at least locally) E as a
gradient E = ∇φ, and we can renormalize the algebraic constraint as ∇·(ψB) = 0,
where

ψ =
φ

√

1 + φ2
.

Then the problem becomes “critical”, with the pairing of a vector valued mea-
sure (B) and a bounded Borel function (ψ). If, in addition, one space variable is
dropped, the problem becomes explicitely integrable (and somewhat similar to a
simple “disocclusion problem” in image processing).

Let us now move to the Lorentzian case, in which extremal surfaces can be phys-
ically interpreted as classical relativistic strings. We are, therefore, interested in
foliating the classical 4D Minkowski space by a continuum of strings. We first
observe (see [1]) that the problem can be related to the Born-Infeld functional:

∫

√

r2 +B2 − E2 − r−2(E ·B)2 dxdt,

for which r is a fixed parameter and one looks for critical points E,B subject to
the linear differential constraint:

∂tB + ∇× E = 0, ∇ ·B = 0.

This model was introduced in 1934 by Born and Infeld as a nonlinear cutoff theory
to substitute for Maxwell’s electromagnetism (which allows infinite electrostatic
field for point charged particles). Here r stands for an absolute bound for any
electrostatic field (just as the speed of light is an absolute bound for any velocity
in special relativity). Consistently, Maxwell’s linear theory is recovered in the
“low energy” limit r → ∞. In the opposite “high energy” limit, as r → 0, r
becomess a penalty parameter for the algebraic constraint E · B = 0. The high
energy asymptotic analysis of the Born-Infeld model has been recently handled
in collaboration with W.A. Yong in [4]. More generally, the study of the Born-
Infeld model leads to many side issues. In particular, because of concentration and
oscillation phenomena, the concept of extremal surface (i.e. relativistic strings)
can be relaxed (subrelativistic strings and/or sticky strings) in different ways, as
discussed in [2, 3].
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An isoperimetric concept for the Mass in General Relativity

Gerhard Huisken

The total mass of an isolated gravitating system in General Relativity, like a star
or a black hole, should be mathematically defined as a geometric invariant of 3-
dimensional asymptotically Euclidean Riemannian manifolds (M3, g) that occur in
the context of Einstein’s field equations as spacelike hypersurfaces of a Lorentzian
manifold modelling the isolated system. Traditionally such a geometric invari-
ant has been defined by Arnowitt, Deser and Misner as a geometrically invariant
limit of flux integrals over large 2-spheres in the asymptotically Euclidean region,
involving first derivatives of the metric tensor (ADM-mass):

mADM (M3, g) :=
1

16π
lim

R→∞

∫

M3

(∂igij − ∂jgii) d ν
j .

The simplest versihon of the famous positive mass theorem of Schoen and Yau
states that for asymptotically flat 3-manifolds of non-negative scalar curvature
R ≥ 0 the mass is non-negative with equality if and only if (M3, g) is isometric to
flat Euclidean 3-space.

The lecture expalins how the concept of mass can be reinterpreted from the point
of view of the isoperimetric inequality: Note that for any region Ω of Euclidean
3-space we have the isoperimetric inequality

|∂Ω|3/2 ≥ 6π1/2 Vol(Ω),

which is encoded in the isoperimetric profile φ0(s) = 1
6
√

π
s3/2 assigning to each area

s ≥ 0 the maximal volume that can be enclosed with that area. When studying
the most important nontrivial examples of asymptotically flat Euclidean Riemann-

ian 3-manifolds, the spatial Schwarzschild manifolds (M3,gm)=(R3\{0},gm=δ(1+m
2r)4) of

mass mADM = m > 0 we see that the corresponding isoperimetric profile φm

satisfies the expansion

φm(s) = φ0(s) +
1

2
ms+ lowerorder(s).
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With this observation we define for any mildly asymptotically Euclidean Riemann-
ian 3-manifolds the isoperimetric mass by

mISO(M3, g) := lim sup
|∂Ω|→∞

2

|∂Ω

(

Vol(Ω) − 1

6
√
π
|∂Ω|3/2

)

The talk justifies this definition by indicating the proof of a positive mass theorem
for this isoperimetric definition of mass and explaining its relation to the ADM −
mass and to the Hawking-mass of 2-spheres Σ2 = ∂Ω ⊂M3 given by

mHaw(Σ2) :=
|Σ2|1/2

(16π)3/2

(

16π −
∫

Σ2

H2 dµ

)

,

where H is the mean curvature of the 2-sphere. In non-technical terms one of the
results established is the following:

Theorem If (M3, g) is an asymptotically flat Riemannian 3-manifold of non-
negative scalar curvature with well-defined ADM-mass, then we have the inequality

supmHaw(Σ2) ≤ mISO(M3, g) ≤ mADM (M3, g),

where the supremum on the LHS is taken over all surfaces Σ2 that are outward
area-minimizing. In particular, mISO ≥ 0 with equality only if (M3, g) is isometric
to Euclidean space.

The idea behind the proofs is to use the evolution of outward area-minimising
2-surfaces in (M3, g) along both mean curvature flow and inverse mean curvature
flow in their level-set formulations and to exploit the properties of these flows
established by B. White [4] in the case of mean curvature flow and H.-Ilmanen in
the case of inverse mean curvature flow [3]. In particular, in view of the work of
White inverse mean curvature flow and the Geroch monotonicity can be used to
control the Hawking mass on the level-sets of solutions to mean curvature flow.
Notice that a relation between the mass and the isoperimetric inequality was first
observed by Christodoulou and Yau [2]. We also note the work of Bray and Neves
[1] concerning inverse mean curvature flow and the Yamabe problem and mention
that a relation between mean curvature type flows and isoperimetric inequalities
has also been observed in work of B. Andrews, P. Topping and F. Schulze.

We also remark that the method yields a version of the Penrose inequality
for the isoperimetric mass and can be used to give a consistent definition of an
isperimetric quasi-local mass that will be explored elsewhere.
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Conformal surfaces with bounds on their Willmore energy

Ernst Kuwert

(joint work with Reiner Schätzle)

For an immersed surface f : Σ → Rn the Willmore functional is defined as the
integral

W(f) =
1

4

∫

Σ

| ~H |2 dµg,

where ~H is the mean curvature vector, g = f∗geuc is the pull-back metric and
µg is the induced area measure on Σ. In this talk we present a bi-Lipschitz type
estimate for surfaces of genus p ≥ 1 whose Willmore energy is strictly less than a
certain critical value. As the Willmore functional is invariant under the Möbius
group of Rn, i.e. under dilations and inversions, such an estimate can possibly
hold only up to the action of the Möbius group, that is after application of a
suitable Möbius transformation. Let us denote by βn

p the infimum of the Willmore
functional among all closed, genus p immersions f : Σ → Rn.

Theorem 1. Let f : Σ → Rn, n = 3, 4, be an immersion of a closed, oriented
surface of genus p ≥ 1, satisfying the following conditions for some δ > 0:

W(f) ≤ 8π − δ,(1)

W(f) − 4π ≤
k
∑

i=1

(βn
pi
− 4π) − δ, whenever p =

k
∑

i=1

pi for 1 ≤ pi < p,(2)

W(f) ≤ β4
p +

8π

3
− δ, if n = 4.(3)

Then there is a Möbius transformation φ, such that the metric g induced by φ ◦ f
is uniformly equivalent to a conformal metric g0 of constant curvature:

g = e2ug0 where max
Σ

|u| ≤ C(p, δ) <∞.

Immersions with W(f) < 8π are actually embeddings, as was first observed
by Li and Yau [1]. It is also well-known that βn

p ≥ 4π and that round spheres
are the only closed surfaces with energy equal to 4π. Willmore conjectured that
W(f) ≥ 2π2 for any torus in R3, where equality is achieved for a specific torus of
revolution. A proof of this conjecture has been submitted by M. Schmidt [3].

The existence of a smooth, minimizing torus in Rn was settled by L. Simon in
[4]. As an important tool, we use his approximate graphical decomposition lemma
for surfaces whose curvature is small in L2 in a ball. The second main ingredient is
an estimate by S. Müller & V. Šverak for conformal parametrizations of complete
surfaces of the type of a plane [2]. In the case of tori, i.e. p = 1, we obtain as a
corollary that the conformal type is estimated depending only on the bounds (1)
and (3).
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Partial regularity for harmonic maps, revisited

Michael Struwe

(joint work with Tristan Rivière)

In [7], Tristan Rivière presented a new approach to the regularity result of Hélein [6]
for weakly harmonic maps in dimension m = 2, where he succeeded in writing the
harmonic map system in the form of a conservation law whose constituents satisfied
elliptic equations with a Jacobian structure to which Wente’s [10] regularity results
could be applied.

In [8] we observe that the regularity result already follows from the novel in-
terpretation given in [7] of the harmonic map system in the sense of gauge theory,
and we succeed in obtaining analogous partial regularity results for stationary
harmonic maps and related problems also in dimension m ≥ 3.

Recall that the equation for a harmonic map u = (u1, . . . , un) ∈ H1(B; R
n)

from a ball Bm = B ⊂ Rm to a hypersurface N ⊂ Rn with normal ν may be
written in the form

(1) −∆ui = wi∇wj · ∇uj = (wi∇wj − wj∇wi) · ∇uj, 1 ≤ i ≤ n,

where w = ν ◦ u; and similarly in higher codimension. The key idea then is to
identify the anti-symmetry of the 1-form

(2) Ωij = (widwj − wjdwi), 1 ≤ i, j ≤ n,

as the essential structure of equation (1).
Interpreting Ω ∈ L2(B; so(n) ⊗ ∧1Rn) as a connection in the SO(n)-bundle

u∗TN and following Uhlenbeck’s approach the existence of Coulomb gauges [9],
one succeeds in finding P ∈ H1(B;SO(n)) and ξ ∈ H1(B) such that

(3) P−1dP + P−1ΩP = ∗dξ,

where ∗ is the Hodge dual. Applying the gauge transformation P−1 to ∇u and
observing the identity dP−1 = −P−1dPP−1, from (1) we obtain the equation

(4) −div(P−1∇u) = (P−1∇P + P−1ΩP ) · P−1∇u = ∗dξ · P−1du,
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where the right hand side already has the structure of a Jacobian – up to the
harmless (bounded) factor P−1. Also observe that ∇u may be recovered from the
term P−1∇u without any difficulty.

For general elliptic systems of the form

(5) −∆u = Ω · ∇u in B

we then obtain the following result.

Theorem 1. For every m ∈ N there exists ε(m) > 0 such that for every Ω ∈
L2(Bm, so(n) ⊗ ∧1Rm) and for every weak solution u ∈ H1(Bm,Rn) of equation
(5), satisfying the Morrey growth assumption

(6) sup
x∈B, r>0

(

1

rm−2

∫

Br(x)∩B

(|∇u|2 + |Ω|2) dx

)

< ε(m) ,

we have that u is locally Hölder continuous in B with exponent 0 < α = α(m) < 1.

The preceding result readily yields the partial regularity of stationary harmonic
maps. For a smooth, compact, oriented k-dimensional submanifold N ⊂ R

n and
a ball B ⊂ Rm let

(7) H1(B;N) = {u ∈ H1(B; R
n); u(x) ∈ N for almost every x ∈ B}.

Recall that a map u ∈ H1(B;N) is stationary if u is critical for the energy

E(u) =

∫

B

|∇u|2 dx

both with respect to variations of the map u and with respect to variations in the
domain. It follows that u is weakly harmonic; that is, u satisfies the equation

(8) −∆u = A(u)(∇u,∇u) =

n−k
∑

l=1

m
∑

α=1

νl〈dνl∂αu, ∂αu〉) =

n−k
∑

l=1

wl〈∇wl,∇u〉

in the sense of distributions, where A is the second fundamental form of N , defined
locally via an orthonormal frame field νl, 1 ≤ l ≤ n− k, for the normal bundle to
N , and where we denote as wl = νl ◦ u the corresponding unit normal vector field
along the map u, as in (1). Also denote as 〈·, ·〉 the Euclidean inner product.

Moreover, as a consequence of the stationarity condition with respect to varia-
tions in the domain we have the monotonicity estimate

(9) r2−m

∫

Br(x0)

|∇u|2 dx ≤ R2−m

∫

BR(x0)

|∇u|2 dx

for all balls BR(x0) ⊂ B and all r ≤ R.
Thus, Theorem 1 may be applied and we obtain the following generalization of

the partial regularity result of Evans [4] and Bethuel [1] for target manifolds of
class C2 (with second fundamental form of class C0). Note that their approach in
general requires the target manifold Nk to be of class C5; see [6], Theorem 4.3.1
and Remark 4.3.2.
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Theorem 2. Let Nk ⊂ R
n be a closed submanifold of class C2. Let m ≥ 3 and

suppose u ∈ H1(Bm;N) is a stationary harmonic map. There exists a constant
ε0 > 0 depending only on N with the following property. Whenever on some ball
BR(x0) ⊂ B there holds

(10) R2−m

∫

BR(x0)

|∇u|2 dx < ε0,

then u is Hölder continuous (and hence as smooth as permitted by the smoothness
of N) on BR/2(x0).

Proof. As in (1), equation (8) equivalently may be written in the form

(11) −∆ui = Ωij · ∇uj ,

where Ω ∈ L2(B; so(n)×∧1Rn) in view of our assumption on N , with components

(12) Ωij = Ωij
α dx

α =
n−k
∑

l=1

(wi
ldw

j
l − wj

l dw
i
l ), 1 ≤ i, j ≤ n,

in the above local representation of A. Note that (9) and (10) imply that ∇u and
Ω belong to the Morrey space L2,m−2(B) with

sup
x0∈B

r2−m

∫

Br(x0)∩B

|Ω|2 dx ≤ C sup
x0∈B

r2−m

∫

Br(x0)∩B

|∇u|2 dx ≤ Cε0.(13)

The result now is an immediate consequence of Theorem 1.

The proof of Theorem 1 only uses very classical tools in elliptic regularity theory,
as described for instance in the lecture notes of Giaquinta [5].

It seems that the key technical improvement over previous approaches to the
regularity problem consists in letting the gauge transformations act directly on
the gradient of the maps (rather than on an associated moving frame). This idea
therefore may be applicable in a variety of other contexts where properly gauged
moving frames have been used, including equations of fourth or higher order in
conformal geometry, or even hyperbolic equations such as the wave map system.
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[6] Hélein, Frédéric: Harmonic maps, conservation laws and moving frames, Cambridge Tracts
in Mathematics, 150, Cambridge University Press, Cambridge, 2002.



1904 Oberwolfach Report 31/2006

[7] Rivière, Tristan: Conservation laws for conformal invariant variational problems, preprint
2006.

[8] Rivière, Tristan; Struwe, Michael: Partial regularity for harmonic maps, and related prob-
lems, preprint 2006.

[9] Uhlenbeck, Karen K.: Connections with Lp bounds on curvature, Comm. Math. Phys. 83
(1982), 31–42.

[10] Wente, Henry C.: An existence theorem for surfaces of constant mean curvature, J. Math.
Anal. Appl. 26 1969 318–344.

Quantification of blow-up levels for some 2-d elliptic PDE’s with
critical exponential nonlinearity

Olivier Druet

Consider Ω a smooth bounded domain of R2 and let us consider a sequence of
solutions (uε) of the equation

∆uε = fε(x, uε) in Ω , uε = 0 on ∂Ω . (Eε)

where fε is a sequence of functions of critical growth. In order to simplify, let us
assume that

fε(x, t) = hε(x)eϕε(t)e4πt2

where hε → h0 in C2 (Ω) as ε→ 0 with h0 > 0 and ϕε → ϕ0 in C2
loc (R) as ε→ 0

with, moreover
ϕ′

ε(t)
t → 0 as t → +∞ uniformly in ε. We let Jε be the energy

associated to the equation (Eε), namely

Jε(u) =
1

2

∫

Ω

|∇u|2 dx−
∫

Ω

Fε(x, u) dx

where Fε is a primitive in t of fε. Note that positive critical points in H1
0 (Ω) of

Jε are solutions of equation (Eε). We then have the following result :

Theorem 1 (Druet, [1]) - If (uε) is a sequence of solutions of equation (Eε)
with Jε (uε) bounded, then there exists u0 solution of the limiting equation (maybe
the zero solution) and N ∈ N such that

Jε (uε) → J0(u0) +
N

2

as ε→ 0.

This result is the analog of the following well-known result due to Struwe :

Theorem 2 (Struwe, [3]) - Let Ω be a smmoth bounded domain in Rn, n ≥ 3,
and let (uε) be a sequence of solutions, bounded in H1

0 (Ω), of

∆uε + hεuε = u
n+2
n−2
ε in Ω , uε = 0 on ∂Ω .

Assume that hε → h0 in C2 (Ω). Then there exists a solution u0 of the limiting
equation (maybe the zero solution) and N ∈ N such that

Iε (uε) → I0(u0) +NImin
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as ε→ 0 where Imin is some universal dimensional constant and

Iε(u) =
1

2

∫

Ω

(

|∇u|2 + hεu
2
)

dx− n− 2

2n

∫

Ω

|u| 2n
n−2 dx .

Let me compare these two theorems. First, they are interesting because of the
lack of compactness hidden behind the nonlinearity. In theorem 2, it is due to

the lack of compactness of the embedding of H1
0 (Ω) in L

2n
n−2 (Ω). The analog in

Theorem 1 is the critical inequality due to Trudinger [4] and Moser [2] : there
exists C (Ω) such that

∫

M

exp
4π u2

‖∇u‖2
2 dx ≤ C (Ω)

for all u ∈ H1
0 (Ω). In this inequality, both 4π and the square power are opti-

mal. In both situations, we are thus able to quantify the level at which a lack of
compactness can appear for a sequence of solutions of the critical equation. The
fact behind these results is that the lack of compactness is standard and is due to
bubbles which have a standard form.

The main difference between these two results can be illustrated by the following
fact : in theorem 2, one could replace ”sequences of solutions” by ”sequences
of Palais-Smale sequences”. In other words, theorem 2 continues to hold if one
assumes that (uε) is a sequence of positive functions bounded in H1

0 (Ω) satisfying
that

∫

Ω

(∇uε,∇ϕε) dx+

∫

M

hεuεϕε dx−
∫

M

u
n+2
n−2
ε ϕε dx = o (‖∇ϕε‖2)

for all sequences (ϕε) in H1
0 (Ω). This is not anymore true for theorem 1 and one

can produce counter-examples. The standard proof of theorem 2 is by substract-
ing the weak limit u0 to uε, to detect a bubble through the Levy concentration
function, to substract this bubble and to go on with this process. Each time one
substracts a bubble, one looses Imin in the energy. Thus the process has to stop
and one can conclude. The crucial point here is that uε − u0 − bubbles is still
a Palais-Smale sequence for a nice functional. In the case of the nonlinearity in

e4πu2

of theorem 1, one can imagine the nightmare it becomes. Thus we have to
use a pointwise method to detect bubbles. The proof of theorem 1 is of course
much more technical and involved than the proof of theorem 2.
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On an isoperimetric conjecture for a Schrödinger operator depending
on a curve

Almut Burchard

Let γ be a smooth closed curve in R3, and let κ(s) be its curvature as a function
of the arclength parameter. The curve determines a one-dimensional Schrödinger
operator by

Hγ = − d2

ds2
+ k2 .

We consider the principal eigenvalue e0(γ) of Hγ with periodic boundary condi-
tions. It has been conjectured that e0(γ) is minimized among all curves of given
length by circles [1, 2]. In recent joint work with L. E. Thomas, we show that
circles minimize e0(γ) at least locally, subject to a length constraint [3].

The conjecture is related to the optimal constant in a particular Lieb-Thirring
inequality [1], and to the equation for the tension of an inextensible, elastic loop
moving in three-dimensional space [2]. Similar Schrödinger operators turn up in
connection with interfaces between in reaction-diffusion equations [4, 5], quantum
particles constrained to narrow channels [6], and Dirac operators on the sphere [7].

To describe our result more precisely, we fix the length of the curve to be 2π.
In the case of the unit circle, the curvature satisfies κ2 ≡ 1, the ground state
eigenfunction is constant, and the principal eigenvalue of Hγ is e0(γ) = 1. The
eigenvalue e0(γ) assumes the same value as for a circle for planar loops whose
tangent vector is the unit vector in the direction of

(

cos(s), β sin(s), 0
)

for s ∈
[0, 2π], where β 6= 0 is a constant. In recent joint work with Lawrence E. Thomas,
we show that small deformations about any of these loops cause e0 to strictly
increase, provided the loop is not simply deformed to a translation or rotation of
another loop in the same family. The conjecture itself remains open. The best
lower bound known is that e0(γ) ≥ .6085 for curves of length 2π [8].
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Geometry of optimal windows

Jochen Denzler

(joint work with Almut Burchard)

We describe some recent results, joint with Almut Burchard, about optimal win-
dows. Here, a window is defined to be a measurable subset D of the boundary of
a bounded Lipschitz domain Ω ⊂ R

n. We consider the Laplace operator in this
domain, with Dirichlet boundary conditions u = 0 on D and Neumann boundary
conditions ∂νu = 0 on N := ∂Ω \ D; these latter can be understood as natural
boundary conditions for the variational problem. The principal eigenvalue λ1 is
viewed as a function of D, subject to the constraint that the area (n − 1 dimen-
sional Hausdorff measure) of D is fixed. A minimizer for the principal eigenvalue
is called an optimal window, and it was shown in [2] that optimal windows exist.
The geometry of optimal windows is only known in the case where Ω is a ball.
In this case, the optimal window is unique up to symmetry operations and null
sets, as was shown in [2]. In the sequel, ‘eigenvalue’ always refers to the principal
eigenvalue λ1.

It may be noted that there is a fine and a coarse definition of the window eigen-
value problem, depending on whether the boundary conditions on D are required
to be satisfied up to sets of zero capacity or up to sets of zero measure, and these
definitions of the eigenvalue are not equivalent. For optimal windows however, the
two formulations ‘essentially’ coincide, due to the coarse area constraint.

The results given here are published with full proofs in [1].
Limited symmetry still allows to get information about optimal windows in

squares and rectangles. Firstly, if a segment D slides along one side of a rectangle,
the corresponding eigenvalue decreases as D moves from the center position to a
position adjacent to the corner. More generally, any window on one side of the
rectangle has eigenvalue larger than a connected window of the same area shifted
to be adjacent to a corner. These results rely on increasing rearrangements and
Dirichlet–Neumann bracketing.

A variation formula gives the change of the eigenvalue as the window changes
under the flow of a vector field. In 2D, according to results taken from [3], solutions
to elliptic problems near a simple interface of Dirichlet and Neumann boundary
(segment of D meeting segment of N) lie, locally near the interface point, in the
Sobolev space W 2,2 ⊕ S with a 1-dimensional singular space S. On the side of a
rectangle, the space S consists of c Im

√
z (c ∈ R), written in complex notation

(an assuming the interface point to be at z = 0). It turns out that the size of
the singular coefficient c determines the derivative of λ1 as D is extended near the
interface point.
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If the interface point between N and D is in the corner of a rectangle, the
singular coefficient vanishes. This is why a window segment adjacent to a corner
can still be improved upon by shifting the window a bit around the corner.

In a square (unit square with no loss of generality), the techniques mentioned
can be used to improve any window that is confined to two sides. The optimum
among such windows is always an L shaped segment around a corner. Numeri-
cal evidence suggests that the optimal window in a square should be a segment
centered either at a corner or in the middle of a side, depending on the length. Ap-
proximately in line with heuristics that optimal windows ‘prefer’ corners (low dif-
fusive accessibility), the corner-centered segment is better than the side-centered,
when the length of D is below 1.02 or between 2.04 and 3.15 sidelengths. In the
other cases, the side-centered segment is better than the corner-centered one.

An interesting phenomenon of spontaneous symmetry breaking occurs however:
Optimal windows in a square never have the full Z2×Z2 symmetry of a rectangle,
nor even the 180◦ rotational symmetry. This can be shown purely analytically for
windows up to one sidelength. In the general case, the result is subject to minor
numerical ingredients, namely the calculation of eigenvalues for only a 1-parameter
family of windows (all other reductions are still analytic in nature).

We finally give an example of a star-shaped domain in R2 in which an optimal
window cannot be connected. This example is also interesting in view of the
conjecture that optimal windows in convex domains should be connected.
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Optimal regularity for the pseudo-infinity Laplacian

Mariel Saez

(joint work with J.D. Rossi)

The main goal is to study the optimal regularity of viscosity solutions to the
pseudo-infinity Laplacian. We find that the solutions are Lipschitz but not neces-
sarily C1. For the sake of completeness, we also prove existence and uniqueness
for this operator.

The pseudo-infinity Laplacian is the second order nonlinear operator given by

(1) ∆̃∞u =
∑

i∈I(∇u)

uxixi
|uxi

|2,
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where the sum is taken over the indices in I(∇u) = {i : |uxi
| = maxj |uxj

|}. This
operator appears naturally as a limit of the following p−Laplace type problems:

(2) ∆̃pu =
N
∑

i=1

(|uxi
|p−2uxi

)xi
= 0.

In the context of viscosity solutions we show

Theorem 1. Let u : Ω → R be a viscosity solution to

(3) ∆̃∞u = 0,

where Ω ⊂ RN . Then u is locally Lipschitz.
Moreover, this result is optimal for N ≥ 2, since

(4) u(x, y) = x+
1

2
|y|,

is viscosity solution to (3) that has no further regularity than Lipschitz.

This result contrast with the one showed by Savin in [11]. In this paper he
showed that a solution to the standard infinity Laplacian in two space dimensions
is C1.

As mentioned before, we also include an existence and uniqueness result. Name-
ly,

Theorem 2. Given a bounded smooth domain Ω ⊂ RN , for any Lipschitz bound-
ary data g(x), there exists a unique viscosity solution to

∆̃∞u = 0 in Ω,

u = g on ∂Ω.

The existence result is proved using arguments from [4]. The strategy is to take
limits (along subsequences) of variational solutions to (2) with right hand side
equal to 0 as p→ ∞. Uniqueness follows by adapting results in [3].

On the other hand, the main ingredient of the proof of Theorem 1 is that
solutions to (3) verify a comparison with l1-cones property. This property is
analogous to the one satisfied by solutions to the usual infinity Laplacian with
l2-cones, see [2] and [5].
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Pattern formation in micromagnetics

Felix Otto

(joint work with Ruben Cantero-Alvarez and Jutta Steiner)

From the point of view of mathematics, micromagnetics is an ideal playground for
a pattern forming system in materials science: There are abundant experiments on
a wealth of visually attractive phenomena and there is a well–accepted continuum
model.

In this talk, I will focus on a specific experimental pattern for thin film ferro-
magnetic elements, the concertina pattern. Experiments indicate that this pattern
arises out of a bifurcation at the onset of switching under an external magnetic
field. Starting point for our analysis is the micromagnetic model which has three
length scales (the width ℓ and the thickness t of the sample and a material length
scale d) and thus many parameter regimes. For the concertina pattern, we iden-
tify the appropriate paramater regime and rigorously derive a reduced model via
Γ–convergence. The Γ–limit combines a limit in parameter space with a blow-up
in function space (which zooms in on the bifurcation point). It thus identifies the
dominant nonlinear term and just has a single non-dimensional parameter (the ap-

propriately renormalized external field ĥext). We numerically simulate the reduced
model and compare it to experimental data and find good agreement.

We further argue that the Γ-limit interpolates between the subcritical bifurca-

tion at the critical value of ĥext and heuristic domain theory, which replaces the
smooth transition layers (Néel walls) by sharp discontinuities of a given line en-
ergy. We show that the Γ-limit displays the same scaling as domain theory in the

limit ĥext ↑ ∞. The lower bounds rely on an appropriate nonlinear interpolation
inequality.
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A variational approach to entropy and information

Keith Ball

One of the most natural ways to track convergence in the central limit theorem is
by means of the gap between the entropy of the normalised sums

1√
n

n
∑

1

Xi

of independent copies of a random variable, and that of the Gaussian limit.
If X is a real random variable with density f : R → [0,∞), the entropy is

Ent(X) = −
∫

R

f log f.

Among random variables with a given variance, the Gaussian has the largest en-
tropy. According to the Shannon-Stam inequality if X and Y are IID, then the
normalised sum (X + Y )/

√
2 has entropy at least as large as that of X and Y .

It has long been believed and was formally conjectured by Lieb in 1978 that the
entropy of the normalised sums should increase with n: that there should be an
analogue of the second law of thermodynamics for the central limit process.

My aim is to describe a variational approach to entropy and information devel-
oped by my collaborators S. Artstein, F. Barthe, A. Naor and I in [2] and [1]. The
approach yields a proof of Lieb’s conjecture and the first quantitative measures of
entropy growth along the central limit process for a large class of random variables.

The method relies upon the connection between entropy and Fisher information
provided by the Ornstein-Uhlenbeck semigroup. An analysis of a local version of
the transportation proof of the Brunn-Minkowski inequality leads to a variational
characterisation of the Fisher information. This enables us to estimate the infor-
mation of normalised sums of independent random variables with a density f in
terms of the spectral properties of the f -Laplacian:

L : s 7→ −(fs′)′/f.

The calculus of variations and spectral theory needed for the results above is
elementary. My hope is that participants at this meeting will be motivated to
study the variational problem more deeply.
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A gradient flow for Bernoulli free boundary problem

Pierre Cardaliaguet

In two joint works with O. Ley (U. Tours) [3] and [4] we investigate the geometric
evolution equation

(1) Vt,x = −1 + λh̄(x,Ω(t)) for all t ≥ 0, x ∈ ∂Ω(t) .

In the above equation, t→ Ω(t) is an (unknown) evolving familly of bounded open
subsets of RN , Vt,x is the normal velocity of the set Ω(t) at time t and at the point
x, λ is some positive parameter and h̄ = h̄(x,Ω) is a non local term of Hele-Shaw
type given, for any set Ω with smooth boundary, by

h̄(x,Ω) = |∇u(x)|2 ,
where u : Ω → R is the capacity potential of Ω with respect to S, i.e., the solution
of the following p.d.e.

−∆u = 0 in Ω\S, u = 1 on ∂S, u = 0 on ∂Ω .

The set S is a fixed source and we always assume above that S ⊂⊂ Ω(t).
This geometric equation appears formally as a gradient flow for the energy

Eλ(Ω) = V ol(Ω) + λcapS(Ω)

where

capS(Ω) = inf

{

∫

Ω\S

|∇u|2 ; u ∈ H1(Ω\S), u = 0 on ∂Ω, u = 1 on ∂S

}

The problem of minimizing Eλ is known as Bernoulli free boundary problem. It
is not difficult to check that minimizers of Eλ are stationary solution of (1). It is
thus natural to investigate large time behavior of solutions of (1) to find critical
values of Eλ.

The idea of using discrete gradient flows of the form (1) for minimizing func-
tionals defined on sets has been successifully used by several authors for numerical
reasons: see for instance [1]. Our aim is to understand better the underlying
continuous flow. We have chosen for this (1) as a toy model.

The first remark about the velocity driving our geometric flow is that its
preserves—at least formally—the inclusion. Indeed, if two bounded open subsets
Ω1 and Ω2 of RN satisfy S ⊂⊂ Ω1 ⊂ Ω2 and if x ∈ ∂Ω1 ∩ ∂Ω2, then

−1 + λh̄(x,Ω1) ≤ −1 + λh̄(x,Ω2)

It is known that such a property should entail an inclusion preserving property
for the flow. Using this we define in [3] a geometric notion of “viscosity” solution
for (1), i.e., a notion of (non smooth) solution where the equation is tested point-
wisely by smooth evolving sets. We prove that these generalized solutions preserve
the inclusion. This property naturally entails existence, generic uniqueness and
stability of the flow.

The next step towards the interpretation of (1) as a gradient flow for the energy
Eλ amounts to show that this energy is non increasing along the generalized flow.
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This is what we investigate in [4]. This question is not obvious since the pointwise
definition of viscosity solution seems very far from an energy estimate. To overcome
this difficulty, we built minimizing movements for Eλ in the flavour of what is done
in [2] for the perimeter, and we prove that such minimizing movements coincide
with the solutions of (1).
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Variational Methods in Hamiltonian Systems

Diogo Aguiar Gomes

In recent years it has become increasingly clear that viscosity solutions of Hamil-
ton-Jacobi equations provide an appropriate setting for the study of Hamiltonian
dynamics and, conversely, the understanding of this dynamic gives rise to new
estimates and properties of viscosity solutions. The objective of this report is to
describe recent research and to present some contributions of the author to this
area.

In this report, we assume that we are given a Hamiltonian H : R
n × R

n ,
H = H(p, x), which is smooth, for each p ∈ Rn, the mapping x 7→ H(p, x), is Zn-

periodic, and there exist constants Γ, γ > 0 such that γ|ξ|2 ≤
∑n

i,j=1
∂2H

∂pi∂pj
ξiξj ≤

Γ|ξ|2, for each p, x, ξ ∈ R
n. The associated Lagrangian L : R

n × R
n, L = L(x, v),

is the Legendre transform of H .
In the context of homogenization of Hamilton-Jacobi equations, Lions, Papan-

icolaou and Varadhan [LPV88], proved the following result:

Theorem 3 (Lions, Papanicolao, Varadhan). For each P ∈ Rn there exists a
unique number H(P ) and a function u(x, P ), Z

n periodic in x, which is a viscosity
solution to

(1) H(P +Dxu, x) = H(P ).

The constant H(P ) can be characterized through a variational formula

(2) H(P ) = inf
ϕ∈C1(Tn)

sup
x
H(P +Dxϕ, x),

originally proven in [CIPP98], which has interpretation in terms of a dual problem.
The theorem does not assert uniqueness of the viscosity solution u. However, as

it was shown in [Gom03b], under certain hypothesis it is possible to prove unique-
ness and continuity of the viscosity solution u with respect to parameters. These



1914 Oberwolfach Report 31/2006

hypothesis can be formulated in terms of ergodic properties of certain measures,
the Mather measures. These are measures supported on Tn × Rn which are in-
variant under the Hamiltonian dynamics and minimize the average action. The
connection between classical mechanics, viscosity solutions and Mather measures
is well known, and was explored by several authors. see, for instance, [Eva04] and
the references therein.

1. Generalized Aubry-Mather problem

In stochastic optimal control it is important to understand the asymptotic be-
havior of controlled diffusions x(t) that satisfy certain stochastic differential equa-
tions such as dx = vdt+σdWt, in which Wt is a Brownian motion, and v, the con-
trol, is a progressively measurable process, with respect to Wt, chosen to minimize

a functional of the form E
∫ T

0 L(x,v)ds. The stochastic Mather problem [Gom02]

consists in minimizing
∫

Tn×Rn Ldµ over all probability measures in Tn ×Rn which
satisfy

(3)

∫

Tn×Rn

[

vDxφ+
σ2

2
∆φ

]

dµ = 0,

for all φ ∈ C2(Tn). In the next theorem we give a characterization of these
minimizing measures:

Theorem 4. There exists a unique probability measure µ∗, the stochastic Mather
measure, which minimizes

∫

Tn Ldµ under the constraint (3). We have
∫

Tn×Rn

[L(x, v) + P · v] dµ∗ = −H(P ),

where H(P ) is the unique number for which

(4) −σ
2

2
∆u+H(P +Dxu, x) = H(P )

has a periodic viscosity solution.

The stochastic Mather measures can be used to study properties of viscosity
solutions of the second-order Hamilton-Jacobi equation (4):

Theorem 5. Suppose u solves (4) . Then for any y ∈ Rn

∫

|Dxu(x+ y) −Dxu(x)|2 dµ∗ ≤ C|y|2,

for some constant that does not depend on σ.

2. Stability of Viscosity Solutions

In order to understand the support of Mather measures, it is important to study
the dependence on ǫ of solutions of

(5) Hǫ(P +Dxu
ǫ, x) = Hǫ(P ).

We describe briefly in this section some results in this direction from [Gom03a].
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Theorem 6. Let M > 0 and P0 ∈ R
n such that ω0 = DPH0(P0) is Diophantine.

It is possible to construct functions ũǫ
N , H̃N

ǫ through finite expansions:

ũǫ
N =ǫv1(x, P0) + ǫ(P − P0)DP v1(x, P0) + ǫ2v2(x, P0)+

+
1

2
ǫ(P − P0)2D2

PP v1(x, P0) + ǫ2(P − P0)P v2(x, P0)+

+ ǫ3v3(x, P0) + · · · ,
and

H̃N
ǫ (P ) =H0(P0) + ǫH1(P0) + (P − P0)DPH0(P0)

+ ǫ2H2(P0) + · · ·
such that

Hǫ(P +Dxũ
ǫ
N , x) = H̃N

ǫ (P ) +O(ǫN + |P − P0|N ),

in a neighborhood of P0 and ǫ = 0, for some constant N(M). Furthermore, for

each ǫ sufficiently small, there exists P ǫ such that DP H̃
N
ǫ (Pǫ) = ω0. Then, for any

viscosity solution uǫ of Hǫ(Pǫ +Dxu
ǫ, x) = Hǫ(Pǫ), we have

esssup
x

|Dxu
ǫ −Dxũ

ǫ
N |2 ≤ CǫM ,

as ǫ→ 0.

3. Numerical methods and converse KAM

The computation of the effective Hamiltonian, H, is extremely importan both
for the study of Hamiltonian systems and in the homogenization theory for Hamil-
ton-Jacobi equations, [LS03], and references therein. In [GO04] we have used the
the minimax formula (2) to compute numerically H. In [GO05], in preparation,
we have developed a series of necessary conditions for the existence of invariant
tori which can be checked numerically and are based upon our computations of
H :

Theorem 7. Let (x, p) ∈ Tn × Rn and (x,p) denote its trajectory through the
Hamiltonian flow. Let

SP (t) =

∫ t

0

L(x, ẋ) + P · ẋ +H(P )ds.

If (x, p) belongs to the Mather set, there exist constants such that

inf
P∈Rn

sup
t≥0

sup
k∈Zn

|SP (t)|
|x(t) − x(0) + k| ≤ C.
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A unified variational approach to some problems in convexity theory
and optics

Vladimir Oliker

In his book on convex polyhedra [1], section 7.2.4, A.D. Aleksandrov raised a
general question of finding variational formulations and solutions to problems of
existence and uniqueness of convex hypersurfaces (in particular, of convex poly-
hedra) in Euclidean space with prescribed geometric data. Particular cases of
such data are integral Gauss-Kronecker curvature, surface area functional, areas
of projections, etc. An example of such problem and its variational solution is the
celebrated Minkowski problem.

It turns out that indeed there is a variational principle that can be applied in
an almost canonical way to many such problems to prove existence and unique-
ness. In particular, the Aleksandrov problem of existence of compact and complete
noncompact convex hypersurfaces with prescribed integral Gauss-Kronecker cur-
vature can be solved by applying this principle [5]. In addition, several classes of
interesting and practically important problems of design of reflecting and refract-
ing surface(s) transforming the radiation of a source into an output front with
prescribed in advance irradiance properties can also be stated and often solved
in the same framework [3], [4], [2]. The construction of the required functional
is motivated by the Monge-Kantorovich optimal mass transport theory. The cost
functions naturally arising in these problems vary and include in particular the
quadratic as well as some of the less familiar logarithmic and concave costs.

In this talk I present such a variational approach to the Aleksandrov problem of
existence of a closed convex hypersurface with prescribed integral Gauss curvature
[6] and to the problem of designing a reflector with prescibed near-field scattering
data[7].
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Problems of optimal resistance and Monge-Kantorovich mass
transport

Alexander Plakhov

A body moves in a homogeneous medium consisting of point particles. The
medium is very rare, so that mutual interaction of particles can be neglected.
Interaction of particles with the body is absolutely elastic: each particle performs
several (maybe zero) collisions and moves freely afterwards. It is required to find
a body, from a given class of bodies, such that resistance of the medium to the
body’s motion is minimal.

This is general setting of the minimal resistance problem. In order to specify
it, one needs to determine the class of bodies, the kind of motion (for example,
translational motion or a combination of translational and rotational motion), the
state of medium (the particles may stay at rest as well as perform thermal motion).
The problem can be stated not only in R3, but also in spaces of other dimensions;
besides, the problems of maximal resistance can be considered as well.

A particular case, where the class consists of convex axially symmetric bodies of
fixed length and width and the body performs translational motion in a medium
of motionless particles, is called Newton’s minimal resistance (or aerodynamic)
problem [1]. Since the beginning of 90th, there were obtained interesting results
concerning the problem in various classes of non-symmetric and/or non-convex
bodies, under the so-called single impact assumption, that is, each particle may
collide with the body at most once [2]-[8]. It was also shown that typically, in
classes of non-convex bodies where multiple collisions are admitted, infimum of
resistance equals zero, that is, there exist almost perfectly streamlined bodies [9,
10]. This result is essentially three-dimensional: for the two-dimensional analogue
of the problem, infimum is positive [10].
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The problems involving rotational motion of bodies and/or thermal motion of
particles seem to be more relevant to real life. Some of them are relatively easy, as
applied to classes of convex bodies; see, e.g., [11] for the case of slowly uniformly
rotating bodies of fixed volume and [12], for the case of of translational motion
of convex axially symmetric bodies in media of positive temperature. Here we
shall discuss these problems in classes of non-convex bodies. The discussion is
based on the study of billiards in unbounded regions. We restrict our study to the
two-dimensional case.

Our approach is as follows. Each body (compact connected subset of R
2 with

piecewise smooth boundary) is limited by a curve consisting of a convex part and
a number of ”cavities”. Each particle, interacting with the body, either reflects
only once from the convex part of curve, or, otherwise, gets into a cavity, performs
there a series of reflections, and eventually gets out of the cavity and leaves the
body forever. Define the angles of ”getting in” and ”getting out” by ϕ and ϕ+;
to any cavity one assigns a measure describing the joint distribution of ϕ and
ϕ+. Resistance of the body depends on the measures generated by the cavities,
therefore characterization of these measures is a key question for a wide range of
problems of minimal and maximal resistance.

This characterization is the main result of the present work; it is based on a
detailed analysis of billiard dynamics in cavities; as a result, we determine the
closure of the set of measures generated by cavities in weak topology. We then
apply this result to the problems of minimal and maximal mean resistance for
classes of bodies containing or being contained in a given convex bounded set K
with nonempty interior. The bodies are subject to slow uniform motion. By mean
resistance, we mean the time averaged value of resistance. The problems reduce
to some special Monge-Kantorovich problems of mass transfer; solving them, one
concludes that infimum and supremum of mean resistance are equal to 0.9878...
and to 1.5, respectively, where resistance of K is taken to be 1.

Note that in [11], the value 0.9878... was proved to be a lower bound of mean
resistance, but without having the characterization of measures result, it was im-
possible to prove that this value is the upper lower bound.
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On the formation of tree leaves

Qinglan Xia

Tree leaves have diverse and elaborate shapes and venation patterns. Why tree
leaves grow in such an amazing way? What kinds of mathematics are behind the
beauty of tree leaves? In this talk, I will describe a geometric variational model
for it.

To understand the formation of a tree leaf, it is necessary to understand the
main tasks of the tree leaf. A tree leaf will transport resources like water and so-
lutes from its root to its tissues via xylem, absorb solar energy at its cells through
photosynthesis, and then transport the chemical products (carbohydrates) synthe-
sized in the leaf back to its root by phloem. Thus, a leaf tends to increase the
surface area as large as possible to maximize metabolic capacity, because metabo-
lism produces the energy and materials required to sustain and reproduce life. On
the other hand, more importantly, the leaf tends to maximize internal efficiency by
developing an efficient transporting system. The meaning of “efficient transport
system” may vary as the type of the tree leaf varies. Here, we will demonstrate
that tree leaves have different shapes and venation patterns mainly because they
have adopted different efficient transport systems.

The efficient transport system of a tree leaf built here is a modified version of the
optimal transport path, which was introduced by the author in [2][3][4] to study
the phenomenon of ramifying structures in mass transportation. In the case of tree
leaves, the cost functional on transport systems is controlled by two meaningful
parameters. The first parameter describes the economy of scale which comes with
transporting large quantities together, while the second parameter discourages the
direction of outgoing veins at each node from differing much from the direction of
the incoming vein. In general, the values of the parameters usually depend on the
species of the tree leaf.

With a given cost function on transport systems, the formation of a leaf is
mainly governed by a selection principle. As we know, the growing of a tree leaf
is a dynamic process of generating new cells. It originates from a bud with a
given initial growing direction. At every stage, the leaf will develop an optimal
transport system to transport water between the root and the existing cells with
respect to the given transport cost function. Also, as the environment changes, the
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leaf may generate some new cells (i.e. expanding the area) nearby its boundary.
The selection of those new cells is not random. Under the same environmental
conditions, each potential new cell outside the existing leaf produces about the
same amount of revenue such as the absorbed solar energy. However, the expense
corresponding to each potential new cell varies with respect to the position of the
cell. Here, the expense is mainly the transport cost of water and nutrients between
the cell and the root. A selection principle says that a new cell is generated only
if the expense is less than the revenue it produces. This simple rule determines
the selection of new cells during the generation process. When the environmental
conditions change, the corresponding revenue that a cell can produce also changes.
When the corresponding revenue of each cell increased to a certain degree, it
becomes benefit to produce some new cells, and thus the leaf will grow. Due to
limited resources, the revenue that a cell can possibly produce is bounded above.
This fact forces the leaf to stop growing after some time. As a result, the final
shape and venation pattern of a leaf are mainly determined by the cost function
defined on the collection of all possible transport systems, as well as the actual
environment.

Based on this model, we also provide some computer visualization of tree leaves,
which resemble many known leaves including the maple and mulberry leaf. Under
the same initial condition, efficient transport systems modeled by different param-
eters will provide tree leaves with different shapes and different venation patterns.
It demonstrates that optimal transportation (i.e. internal efficiency) plays a key
role in the formation of tree leaves.

In the end, we discuss a limiting process for our model by letting the size of the
grid approach zero. The limiting leaf will correspond to a Radon measure with
connected compact support, and its transport system becomes a vector measure
whose divergence is the difference of the leaf (viewed as a measure) and the Dirac
measure located at the root in the sense of distribution.
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A quantitative version of the isoperimetric inequality

Francesco Maggi & Aldo Pratelli

(joint work with Nicola Fusco)

The isoperimetric inequality states that, given a Borel set E of Rn, n ≥ 2, with
finite Lebesgue measure |E|, its (distributional) perimeter P (E) is greater or equal
than the perimeter of a ball having the same volume as E. That is, if ωn is the
measure of the unit ball B of Rn, we have

(1) P (E) ≥ nω1/n
n |E|(n−1)/n ,

with equality if and only if E = x+ rEB for some x ∈ Rn and rE := (|E|/ωn)1/n.
In a quantitative version of inequality (1) the isoperimetric deficit D(E),

D(E) :=
P (E)

nω
1/n
n |E|(n−1)/n

− 1 , |E| > 0 ,

controls the distance of E from the set of balls {x+ rEB : x ∈ Rn}. If we restrict
our attention to the class of convex sets E it is natural to work with the Hausdorff
distance, and the corresponding quantitative inequalities have been studied in
depth, among others, by Bernstein [1], Bonnesen [2] (when n = 2) and Fuglede [4]
(for n ≥ 2). In the general case, instead, it is natural to adopt the Vitali distance
d(E,F ) := |E∆F |, defined as the Lebesgue measure of the symmetric difference
between E and F , and introduce the notion of asymmetry of E as

A(E) := inf

{

d(E, x+ rEB)

|E| : x ∈ R
n

}

.

In this setting, a quantitative isoperimetric inequality was shown by Hall, Hayman
and Weitsman [8] and Hall [7]. They prove that

(2) A(E) ≤ C(n)D(E)1/4 , i.e. P (E) ≥ nω1/n
n |E|(n−1)/n

{

1 +

(

A(E)

C(n)

)4
}

,

(here and in the following, C(n) is a constant depending only on the dimension n
and possibly changing its value from line to line). A stronger result, in terms of
decay rate of A with respect to D, is in fact contained in Hall’s paper [7], where
it is shown that

(3) A(E) ≤ C(n)D(E)1/2 , whenever E is axially symmetric.

The decay rate here is sharp, as one can check considering the ellipses E(r) :=
{x ∈ Rn : (rx1)2 +

∑n
i=2 x

2
i = 1} in the limit r → 1. Hall conjectures the validity

of (3) on arbitrary sets, i.e. that

(4) A(E) ≤ C(n)D(E)1/2 , for every Borel set E.

In [5] we prove (4), in the way explained below.
Without loss of generality it is assumed that |E| = ωn. Furthermore, as A(E) ≤

2, up to taking C(n) ≥ 2/
√

δ(n), one can assume that D(E) ≤ δ(n) for some fixed
δ(n). One can prove that A(E) → 0 when D(E) → 0, and this implies that E is
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somehow close to a ball, in a soft qualitative way, provided we choose δ(n) small
enough. We try to replace E with a “more symmetric” set E′, in such a way
that the validity of (4) on E can be deduced from the validity of (4) on E′. This
amounts in proving that

A(E) ≤ C(n)A(E′) , D(E′) ≤ C(n)D(E) .(5)

If the set E′ is obtained from E by a symmetrization procedure, one usually gets
the second inequality for free (possibly with constant 1, if the given symmetrization
decreases the perimeter and leaves the Lebesgue measure unchanged); however, on
symmetrizing, we expect to lower the asymmetry too, so that the two inequalities
are somehow in competition.

This kind of approach is adopted in [8]. They prove that, given E, a direction
ν can be found so that E∗, the Schwarz symmetrization of E with respect to ν,
satisfies

(6) A(E) ≤ C(n)A(E∗)1/2 .

Recall that E∗ is the set which intersection E∗
t with {x · ν = t} is a (n − 1)-

dimensional ball centered at tν and Hn−1-measure equal to Hn−1(Et), where Et :=
E ∩{x ·ν = t}. The set E∗ is axially symmetric and satisfies P (E∗) ≤ P (E) (thus
D(E∗) ≤ D(E)). The existence of ν such that (6) holds is clearly a non trivial
fact, as one can easily produce a set E such that A(E) > 0 but E∗ = B with
respect to a given ν.

By applying (3) to E∗ one finds A(E∗) ≤ C(n)D(E∗)1/2 ≤ C(n)D(E)1/2, so
deriving (2) from (6). However, being the exponent 1/2 in (6) optimal, Hall’s
conjecture cannot be proved this way.

The key notion of our approach is that of n-symmetric set. We say that a set
E is n-symmetric if it is invariant by reflection with respect to the n coordinate
hyperplanes. The crucial consequence of this definition is that the minimization
problem defining A(E) can be somehow trivialized. Indeed, if E is n-symmetric
then a simple symmetry argument shows that

(7) A(E) = inf
x∈Rn

d(E, x+B)

ωn
≤ d(E,B)

ωn
≤ 3A(E) .

This property allows to prove (4) by induction on the class of n-symmetric sets.
Indeed if E is n-symmetric and E∗ is its Schwarz symmetrization with respect to,
say, the x1-axis, then

ωnA(E) ≤ d(E,B) ≤ d(E,E∗) + d(E∗, B) .

Since E is n-symmetric, E∗ is n-symmetric too. Therefore by applying (7) and
(3) to E∗ we find

d(E∗, B) ≤ 3ωnA(E∗) ≤ C(n)D(E∗)1/2 ≤ C(n)D(E)1/2 .

On the other hand, Et = E ∩ {x1 = t} is a (n − 1)-symmetric set in {x1 = t},
while E∗

t is an (n− 1)-dimensional ball centered at the center of symmetry of Et,
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and with the same Hn−1-measure. Thus, again by (7),

d(E,E∗) =

∫

R

Hn−1(Et∆E
∗
t )dt ≤ 3

∫

R

Hn−1(Et)ARn−1(Et)dt ,

where ARn−1 denotes the asymmetry in {x1 = t}. If DRn−1 is the corresponding
notion of isoperimetric deficit, by induction one finds

(8)

∫

R

Hn−1(Et)ARn−1(Et)dt ≤ C(n)

∫

R

Hn−1(Et)
√

DRn−1(Et)dt .

In turn this last quantity is controlled by D(E)1/2. This can be heuristically
justified by recalling that, if we define v(t) = Hn−1(Et), p(t) = Hn−2(∂Et) and

q(t) = Hn−2(∂E∗
t ) = (n− 1)ω

1/(n−1)
n−1 v(t)(n−2)/(n−1) ,

then, by the Coarea Formula,

P (E) ≥
∫

R

√

v′(t)2 + p(t)2dt , P (E∗) =

∫

R

√

v′(t)2 + q(t)2dt .

As P (E∗) ≥ P (B) by the isoperimetric inequality, we have

P (B)D(E) = P (E) − P (B) ≥ P (E) − P (E∗)

≥
∫

R

√

(v′)2 + q2(1 +DRn−1(Et))2 −
√

(v′)2 + q2 dt

'

∫

R

q(t)2DRn−1(Et)dt ,

(9)

so that, loosely speaking, one passes from the last term in (9) to the one in (8) by
Hölder inequality. To make these arguments completely rigorous a crucial role is
played by the aforementioned assumption D(E) ≤ δ(n), but this is too technical
to be further discussed in here.

Summarizing, n-symmetric sets have some special properties that allow to de-
duce from (3) that

(10) A(E) ≤ C(n)D(E)1/2 if E is n-symmetric.

In turn we can deduce (4) from (10) once we show that, given a set E, then a
n-symmetric set E′ can be found so that (5) holds true. We now pass to discuss
this last step. We start by considering a simpler task, i.e. we just ask E′ to be
symmetric with respect to one hyperplane, say {x1 = 0}. Up to translating E in
the x1-direction we achieve |E ∩ {x1 > 0}| = |E ∩ {x1 < 0}|. If we denote by
E+

1 the set obtained by reflecting E ∩ {x1 > 0} w.r.t. {x1 = 0}, and similarly
define E−

1 , then E±
1 are both symmetric with respect to {x1 = 0}, have the same

measure as E and satisfy P (E+
1 ) + P (E−

1 ) ≤ 2P (E). Therefore D(E±
1 ) ≤ 2D(E),

and the second inequality in (5) is certainly achieved. On the other hand it could
be as well that A(E) > 0 but A(E±

1 ) = 0, if for example

(11) E =
[

B ∩ {x1 > 0}
]

∪
[

(B + e2) ∩ {x1 < 0}
]

.

Note that this set E exhibit the bad behavior with respect to symmetrization by
reflection only in the x1-direction. Luckily enough, this is a general fact, and one
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can prove that given two coordinate directions, say x1 and x2, and considered
the four sets E±

1 , E
±
2 , then there exists at least one set E′ among them such that

A(E) ≤ C(n)A(E′). Being certainly D(E′) ≤ 2D(E), we have found E′ satisfying
(5), and having an hyperplane of symmetry.

This procedure can be applied (n − 1)-times so to find (up to a possible final
rotation) a set E′ symmetric with respect to the first (n−1) coordinate hyperplanes
and such that (5) holds. At this stage we are forced to symmetrize E′ with respect
to the xn-direction, and clearly the above selection argument cannot be repeated
further without possibly stepping into a loop. However, it comes out that one
among (E′)+n and (E′)−n (defined in the obvious way after translating E′ so that
|E′ ∩ {xn > 0}| = |E′ ∩ {xn > 0}|) shall satisfy (5). This is basically due to
the fact that being E′ already symmetric with respect to x1, . . . , xn−1, it is then
impossible to meet in the xn-direction the situation exemplified by (11).

Apart from being useful in proving inequality (4), these kind of arguments,
and especially the notion of n-symmetry, can be effectively used in the study of
quantitative versions of the Sobolev inequalities

S(n, p)

(
∫

Rn

|f |np/(n−p)

)(n−p)/np

≤
(
∫

Rn

|∇f |p
)1/p

,

for 1 ≤ p < n. The cases p = 1 and 1 < p < n are of course quite different, and
are considered, respectively, in [6] and [3].
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Γ-convergence and saddle points

Robert L. Jerrard

(joint work with Peter Sternberg)

We consider a family {Eε
X}ε∈(0,1] of C1 functionals on a Banach space X , such

that Eε
X Γ-converges as ε → 0 to a limiting functional EY on a Banach space

Y . We define a notion of saddle point for EY (which is typically only lower
semicontinuous) and we prove a general result giving some conditions sufficient
to guarantee that if EY has a saddle point y∗ with corresponding critical value
c∗ = EY (y∗), then Eε

X has a critical point for every sufficiently small ε, and the
associated critical values converge to c∗ as ε → 0. We then apply this general
theorem to construct new solutions of Ginzburg-Landau and related equations.

All the new results discussed in this note are proved in [3].
We use the notation Y0 := {y ∈ Y : EY (y) <∞}.
We adopt the following definition of Γ-convergence: we say that Eε

X Γ-converges
to EY as ε → 0 if there exists a continuous map PY X : X → Y and, for every
ε ∈ (0.1], a map Qε

XY : Y0 → X (not necessarily continuous) such that
lower bound: If y0 ∈ Y0 and {xε} ⊂ X are such that ‖PY X(xε) − y0‖Y → 0

as ε→ 0, then

(1) lim inf Eε
X(xε) ≥ EY (y0).

upper bound: For every y ∈ Y0,

(2) Eε
X(Qε

XY (y)) → EY (y) and ‖PY XQ
ε
XY (y) − y‖Y → 0 as ε→ 0.

(For fixed y ∈ Y0, the sequence {Qε
XY (y)}ε∈(0,1] ⊂ X is what is sometimes called a

recovery sequence for y. ) We always require the following compactness condition:

(3) If Eε
X(xε) ≤ K for 0 < ε ≤ 1 then {PY X(xε)}ε∈(0,1] is precompact in Y .

Next, we say that EY has a saddle point at y∗ ∈ Y0 if there exists a nonnegative
integer ℓ, a number δ0 > 0, and a continuous map PZY : Y → Rℓ such that

(4) EY (y∗) < EY (y) for y ∈ {y ∈ Y : 0 < ‖y − y∗‖Y ≤ δ0, PZY (y) = 0}

and in addition, if we write z∗ := PZY (y∗), then there exists a neighborhood
Z ⊂ Rℓ of z∗ and a continuous map QY Z : Z → Y0 such that

(5)















PZY ◦QY Z(z) = z for all z ∈ Z,
‖QY Z(z) − y∗‖Y ≤ δ0 for all z ∈ Z
QY Z(z∗) = y∗,
and for every r > 0, sup{z∈Z,|z−z∗|≥r}EY (QY Z(z)) < EY (y∗).

Note that when ℓ = 0, the above assumptions imply that EY has a local min-
imum at y∗. This easier situation is addressed by classical work of Kohn and
Sternberg [4]. The following theorem, our main abstract result, can be seen as
generalizing the Kohn-Sternberg theorem about local minimizers and Γ-limits.
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Theorem 1. Suppose that X,Y are Banach spaces and that {Eε
X}ε∈(0,1] is a

family of C1 functionals X → R that Γ-converge to a limiting functional EY :
Y0 → R via maps PY X : X → Y and Qε

XY : Y0 → X. Assume also that (3) holds
and that Eε

Xsatisfies the Palais-Smale condition for every ε ∈ (0, 1].
Let y∗ ∈ Y be a saddle point in the above sense. Assume also (using notation

from the definition of a saddle point) that

(6) Qε
XZ = Qε

XY ◦QY Z : Z → X is continuous for all ε,

(7) PZY is uniformly continuous in {y ∈ Y : ‖y − y∗‖Y ≤ 2δ0},

(8) ‖PY X ◦Qε
XZ(z) −QY Z(z)‖Y → 0 uniformly in Z as ε→ 0,

(9) Eε
X(Qε

XZ(z)) → EY (QY Z(y)) uniformly in Z as ε→ 0.

Then there exists ε0 > 0 such that for every 0 < ε ≤ ε0, there exists a critical
point xε of Eε

X such that limε→0 E
ε
X(xε) = EY (y∗).

On this level of generality, it need not be true that the critical points of Eε
X

converge in any sense to the limiting point y∗ as ε → 0. This can be shown by
elementary examples in which X = Y = R2, PY X(x) = x, and Eε

X → EY in C0,α

for every α ∈ [0, 1), as ε→ 0.
To apply the above result, we next fix a bounded, open set Ω ⊂ Rn+1, n ≥ 1

with smooth boundary, and we consider the functional

EY (T ) =

{

M(T ) if T ∈ Y0

+∞ if not

where1 Y0 = {rectifiable, integer 1-currents T : T = ∂S for some S} on the Ba-
nach space

Y := {∂S : S is a 2-current with finite mass in Ω}
of 1-dimensional boundaries in Ω, endowed with norm

‖T ‖Y = inf{M(S) : S is a 2-current, ∂S = T }.
The functional EY arises as the Γ-limit of sequences of suitably scaled Ginzburg-

Landau functionals when n = 2; and of appropriate generalized Ginzburg-Landau
functionals for arbitrary n ≥ 3. The Γ-limit of the Allen-Cahn functional when
n = 1 can also be expressed in terms of EY . Thus, the existence of suitable
saddle points of EY can be used with Theorem 1 to produce solutions of the
Euler-Lagrange equations of all of these functionals.

It is easy to find critical points of the arclength functional in topologies stronger
than the Y -topology. The next theorem asserts that these are still critical points
in the weaker sense required for the above result about Γ-limits.

1An element T of Y0 can be identified with a sum of Lipschitz curves γi with no boundary in
Ω (and satisfying certain topological conditions if ∂Ω is not connected), and M(T ) = EY (T ) is
then the sum of the arclengths.
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Theorem 2. Assume that (x0, y0) is a critical point of the function d : ∂Ω×∂Ω →
R given by d(x, y) = |x − y|, and that the Hessian of d is nonsingular at (x0, y0).
Assume also that the line segment joining x0 to y0 is contained in Ω and that x0

and y0 belong to the same component of ∂Ω. Let T∗ be the current corresponding
to this segment (oriented from x0 to y0 say).

Then T∗ is a saddle point of EY : Y → R in the sense of Theorem 1.

To prove the theorem we must build maps PZY and QY Z satisfying (4), (5).
The hard part of the proof is the construction of PZY and verification of (4).

Finally, by combining the above and Γ-limit results of [1] for example, we prove
the existence of solutions of certain nonlinear PDEs, such as

Theorem 3. Suppose that n ≥ 2 and let T ∗ be a saddle point of EY , as found
in Theorem 2. Then there exists ε0 > 0 such that, for every ε ∈ (0, ε0) there is a
solution uε ∈W 1,n(Ω; Rn) of the equation

(10) −∇ · (|∇uε|n−2∇uε) +
1

ε2
(|uε|2 − 1)uε = 0 in Ω

with natural boundary conditions ν · ∇uε = 0 on ∂Ω; and such that

lim
ε→0

Eε(uε) = M(T∗), Eε(u) =
1

c(n)| ln ε|

∫

Ω

|∇u|n
n

+
(|u|2 − 1)2

4ε2
dx.

Essentially the same result can be proved when n = 2 for the Ginzburg-Landau
system with magnetic field, and for the Allen-Cahn equation when n = 1. For
the solutions found in Theorem 3, the energy presumably concentrates around the
support of T∗ as ε→ 0, but this cannot be proved from Theorem 1 alone.

For the Allen-Cahn equation, results along the lines of Theorem 3 (but consid-
erably stronger) have been proved using techniques based on Liapuonv-Schmidt
reduction, see [6], [5]. These techniques rely on good control over the spectrum
of a suitable linearized operator and are harder to apply for the Ginzburg-Landau
equation and various generalizations mentioned above. Other results related to
Theorem 3 describe energy concentration around codimension 2 minimal surfaces
for sequences of solutions of the Ginzburg-Landau equation ((10) with n = 2); see
[2] for results valid in arbitrary dimensions.
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2–d Stability of the Néel wall

Hans Knüpfer

(joint work with Antonio DeSimone, Felix Otto)

The non–dimensionalized magnetization m : Ω → S2 of a soft ferromagnet Ω ⊂ R3

is characterized by the minimization of the Landau–Lifshitz energy functional [4]:

(1) E3d(m) = d2

∫

Ω

|∇m|2 dx+

∫

R3

|∇u|2 dx.

The first term, the exchange energy, favors alignment of neighboring spins; the
second, the stray field energy, describes the energy of the magnetic stray field
∇u : R3 → R3. It is determined by

∆u = ∇ ·m,
where m is extended by m = 0 outside Ω. Therefore the stray field is generated
by both divergence of m inside the magnetic sample (“volume charges”) and a
non–zero normal component of m on the surface of the magnetic sample (“surface
charges”). The material constant d is called exchange length.

The competition of these two terms in the energy leads to the development of
bulk regions with almost constant magnetization (“magnetic domains”), separated
by narrow transition layers (“domain walls”). In the macroscopic view these walls
are discontinuity lines of m, microscopically they have a rich inner structure.

We are interested in thin films: Two important wall types in thin films are the
Néel wall and the cross–tie wall.

x 1

x2

x3

Figure 1. Néel wall

The Néel wall (see Fig. 1, Fig. 2, left hand side) is the dominating wall type
in very thin films (thickness t ≪ d) [6]. It is characterized by in–plane and 1–d
rotation of the magnetization:

m3 = 0 and m = m(x1).(2)

The cross–tie wall appears in somewhat thicker films (see Figure 2, right hand side).
It is a complicated composite wall where a 180◦–Néel wall is replaced by a pattern
of Néel wall segments with transition angle of 90◦ or less [1]. There is a central Néel
wall segment along the x1–axis, where perpendicular Néel wall segments branch
off periodically (lines in Figure 2), the so called cross–ties. Topologically this
structure enforces the existence of point singularities of the magnetization in the
macroscopic view, the so called Bloch lines. There are circular Bloch lines (white
circle) and cross Bloch lines (black circles).
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x 2

x
1

Figure 2. Néel wall and cross–tie wall

The reason for this microstructure formation is well understood: The angle
dependency for the Néel wall energy is very pronounced. For small transition
angles θ ≪ 1 one can compute

ENéel(θ) ∼ θ4.

This explains why the energy of the cross–tie wall may be smaller than for a
single 180◦–Néel wall, although the total wall length in Figure 2 is larger. The
conjecture why cross–tie walls are not observed in thin films is the following: The
Bloch lines, which are part of the cross–tie wall structure, require relatively an
increasingly high energy in the limit of thin films. We prove this conjecture by
showing that the Néel wall is energetically optimal, if Bloch lines are suppressed.
This amounts to prove stability of the Néel wall while keeping the first condition
in (2) and removing the second one.

We confine our setting: Due to the exchange part of (1), it seems to be safe to
assume that the magnetization be constant in the thickness direction x3, i.e. m =
m(x1, x2). We furthermore enforce a macroscopic 180◦–transition in x1–direction
by Dirichlet boundary conditions. In x2–direction we assume ℓ–periodicity of m
in order to assign an energy density. This leads to the following 2–d setting for
m : R2 → R2:

|m|2 = 1,(3)

m =

(

0

±1

)

for ± x1 ≥ 1,(4)

m(x1, x2 + ℓ) = m(x1, x2) for x = (x1, x2) ∈ R
2.(5)

We do not use the full setting as in (1), but rather a thin film approximation
of the energy by assuming that all magnetic charges lie on the (x3 = 0)–plane:

∆uapprox = ∇ ·m H2⌊{x3=0}.

This leads to the following thin film energy (see [2], [3])

ℓ Eε(m) = ε

∫

R×[0,ℓ)

|∇m|2 dx+
1

2

∫

R×[0,ℓ)

|∇−1/2∇ ·m|2 dx,

where ε = d2/t. We will use the notation: A ≈ B for ε≪ 1 ⇔ limε→0A/B = 1.

Our main result [2] is:
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Theorem 1. For ε≪ 1, any ℓ and any smooth m we have

min
m satisfies (3),(4),(5)

Eε(m) ≈ min
m satisfies (3),(4),(5),m=m(x1)

Eε(m) ≈ π

2 ln 1
ε

.

It shows that asymptotically, the minimal energy is assumed by a 1–d transition
layer. More precisely, variations of the optimal 1–d transition layer in x2–direction
cannot decrease the leading order coefficient of the energy.

The main part consists of proving the lower bound, i.e.

Proposition 1. For ε≪ 1, any ℓ and smooth m with (3), (4) & (5) we have

Eε(m) '
π

2 ln 1
ε

.

The proof of Proposition 1 relies on a dynamical systems argument which is
based on the flow of the rotated magnetization m⊥. Note that on both boundaries,
x1 = ±1, the rotated flow is directed inward. By the Poincaré–Bendixon theorem
[7, Theorem 4.5] this implies the existence of a closed periodic orbit onto which m
is normal. We identify this curve as a (not necessarily unique) “center line” of the
wall and define an appropriate test function φ, which resembles the characteristic
function of the left part of the wall. Then by the divergence theorem, φ can be
controlled by the energy. A duality argument yields a lower bound for the energy.

In the way of the proof we need to derive the exact failure of a critically failing

Sobolev inequality, which corresponds to BV (R2) ∩ L∞(R2) 6⊆ H
1
2 (R2). With

exact constant there holds:

Lemma 3. For ε≪ w and any φ which is ℓ–periodic in x2 we have
∫

R× 2π
ℓ

Z

min {1

ε
, |k|, w|k|2} |Fφ|2 dk /

2

π
(ln

w

ε
) sup

R×[0,ℓ)

|φ|
∫

R×[0,ℓ)

|∇φ| dx.

Finally, we would like to point out a result about compactness of energy mini-
mizing sequences for the Néel wall [5], which is based on a localized version of the
above dynamical systems argument.
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A mini review of Lieb-Thirring inequalities

Michael Loss

Consider the operator

(1) −∆ − V (x)

on Rn, n ≥ 1, where V is a nonnegative function vanishing at infinity. Denote by

(2) −E1(V ) < −E2(V ) ≤ −E3(V ) · · ·
its negative eigenvalues. A Lieb-Thirring inequality is an estimate of the type

(3)
∑

Ej(V )γ ≤ L(n, γ)

∫

V (x)γ+n/2dx .

Here, γ is a non-negative number and in the case where γ = 0 the left side denotes
the number of non-positive eigenvalues. The constant L(n, γ) denotes the sharp
constant in the inequality.

In [9] , with n = 3 and γ = 1, this inequality was proved for the first time,
yielding a spectacularly simple proof of Stability of Matter. The cases n = 1, γ >
1/2 and n ≥ 2, γ > 0 were settled in [10] . In all cases explicit upper bounds on
the sharp constants were given. The case n = 1, γ = 1/2 was proved in [12] . The
most difficult cases are n ≥ 3, γ = 0 and these were settled in [3, 8, 11]. In all
other cases the inequality cannot hold for a finite constant L(n, γ).

The semi-classical constant Lsc(n, γ) is defined by the relation

(4) (2π)−n

∫

[p2 − V (x)]γ−dpdx = Lsc(n, γ)

∫

V (x)γ+n/2dx

where [f(x)]− = −min(0, f(x)) is the negative part of the function f(x). By
Weyl’s law it is known that

(5) lim
µ→∞

µ−γ−n/2
∑

Ej(µV )γ = Lsc(n, γ)

∫

V (x)γ+n/2dx ,

and hence L(n, γ) ≥ Lsc(n, γ).
It was shown in [1] that

(6) L(n, γ) = Lsc(n, γ) ⇒ L(n, γ′) = Lsc(n, γ
′) all γ′ ≥ γ .

Further, in [10] it was proved that L(1, 3/2) = Lsc(1, 3/2) and hence L(1, γ) =
Lsc(1, γ) for all γ ≥ 3/2.

This result was extended to arbitrary dimensions by Laptev and Weidl ([7]).
Consider the Schrödinger operators with a matrix valued potential,

(7) − d2

dx2
⊗ IM − V (x) .

Here x→ V (x) takes values in the positive semidefinite hermiteanM×M matrices.
Again, denote the negative eigenvalues by −E1(V ) le− E2(V ) ≤ · · · .

It was shown in [7] that

(8)
∑

Ej(V )γ ≤ Lsc(1, γ)

∫

Tr[V (x)γ+1/2]dx ,
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for all γ ≥ 3/2. It follows from trace identities in the case γ = 3/2, together with
the fact that (6) carries over to matrix valued potentials as well (see [7]). For a
direct proof of (8) in the case γ = 3/2 using commutation metods, see [2].

Writing the Schrödinger operator in Rn as

(9) − ∂2

∂x2
1

− ∆′ − V (x1, x
′) ≥ − ∂2

∂x2
1

− [−∆′ − V (x1, x
′)]−

Laptev and Weidl ‘peal off’ the variables using the result for matrix valued poten-
tials in an inductive fashion to arrive at their main result

(10)
∑

Ej(V )γ ≤ Lsc(n, γ)

∫

V (x)γ+n/2dx ,

for all γ ≥ 3/2.
The only other instance where the sharp constant is known is the case n = 1, γ =

1/2. In the scalar case it was shown in [5] that L(1, 1/2) = 1/2 which is uniquely
optimized by the δ-function potential. Note that the semiclassical constant is 1/4
in this case. In [6] this result is extended to matrix valued potentials.

Otherwise, nothing is known about the sharp constants. In the scalar case,
n = 1 and 1/2 ≤ γ ≤ 3/2 Lieb and Thirring [10] conjectured that the potential
that optimizes the Lieb-Thirring inequality should carry only one bound state,
i.e., only one negative egenvalue. Assuming this, one can easily work out the
optimizing potential to be (γ2 − 1/4) cosh(x)−2. For details, see [10] .

Further, it is conjectured in [10] that L(n, 1) = Lsc(n, 1), n ≥ 3. Besides being
an interesting result in itself, it would imply that Thomas-Fermi theory, a statis-
tical theory of quantum mechanics, is an exact lower bound to the Schrödinger
functional (see [9] ). All these conjectures are open. For improved constants,
however, see [6].

One might suspect that the semiclassical constant is sharp for all γ provided
that the dimension n is large enough. This is proved to be incorrect in [4] where
it is shown that L(n, γ) >  Lsc(n, γ) for all γ < 1.
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l’Inst. H. Poincarè 53, 139–147 (1990).

[5] D. Hundertmark , E.H. Lieb and L.E. Thomas, A sharp bound for an eigenvalue moment

of the one-dimensional Schrod̈inger operator, Adv. Theor. Math. Phys. 2, 719-731, (1998).
[6] D. Hundertmark, A. Laptev and T. Weidl, New bounds on the Lieb-Thirring constants,

Invent. Math. 140 693-704, (2000).
[7] A. Laptev and T. Weidl, Sharp Lieb-Thirring inequalities in high dimensions, Acta Math.

184 87-111, (2000).



Calculus of Variations 1933

[8] E.H. Lieb, The number of bound states of one body Schrödinger operators and the Weyl
problem, Proc. A.M.S. Symp. Pure Math. 36, 241-252, (1980); See also Bounds on the
eigenvalues of the Laplace and Schrödinger operators, Bull. Amer. math. Soc. 82, 751-753,
(1976).

[9] E. H. Lieb and and W. E. Thirring, Bound for the kinetic energy of fermions which proves the
stability of matter, Phys. Rev. Lett. 35(1975), 687-689; Erratum, Phys. Rev. Lett. 36(1975),
1116.

[10] E. H. Lieb and and W. E. Thirring, Inequalities for the moments of the eigenvalues of the
Schrödinger Hamiltonian and their relation to Sobolev inequalities. Studies in Math. Phys.,
Essays in Honor of Valentine Bargmann, Princeton, 269-303, (1976).

[11] G.V. Rozenblum, Distribution of the discrete spectrum of singular differential operators,
Izv. Vyss. Ucebn. Zaved. Matematika 164, 75-86, (1976); English transl. Soviet Math. (Iz.
VUZ) 20, 63-71, (1976).

[12] T. Weidl, On the Lieb-Thirring constant Lγ,1 for γ ≥ 1/2, Commun. Math. Phys. 178,
135-146, (1996).

On a modified conjecture of De Giorgi

Reiner Schätzle

(joint work with Matthias Röger)

We prove a conjecture of De Giorgi from 1991 in a modified form in three dimen-
sions that the sum of the area and the Willmore functional is the Γ−limit of a
diffuse Landau-Ginzburg approximation.
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Reinforcement Problems For Elastic Structures

Giuseppe Buttazzo

Reinforcing an elastic structure under a given load is a problem which arises in
several applications. The literature on the topic is very wide, from the mathemat-
ical point of view as well as from the one of engineering. Here we limit ourselves
to consider the simple case of an elastic membrane occupying a domain Ω and
subjected to a given exterior load f ∈ L2(Ω). The shape u of the membrane in
the equilibrium configuration is then characterized as the solution of the partial
differential equation

−∆u = f in Ω

together with the corresponding boundary conditions of Neumann or Dirichlet
type on ∂Ω (or on a part of it).

The reinforcement of the membrane is usually performed at its boundary, by the
addition of suitable stiffeners, whose total amount is prescribed. We are interested
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in finding the reinforcement of the membrane, in terms of the distribution of
stiffeners, which minimizas the total compliance functional.

Mathematically, the reinforcement is described by a nonnegative coefficient a(x)
which acts on the Neumann part Γ of the boundary ∂Ω and modifies the boundary
conditions into the new ones:

∂u

∂ν
+ a(x)u = 0 on Γ.

The rigorous deduction of the boundary condition above from an elliptic prob-
lem with a thin boundary layer where a high ellipticity coefficient is imposed was
obtained by Brezis, Caffarelli and Friedman (1980) and by Acerbi and Buttazzo
(1986).

The problem of finding an optimal reinforcement for the membrane then consists
in the determination of a coefficient a(x) which minimizes the so called elastic
compliance, in order to provide a membrane as stiff as possible. More precisely,
for every coefficient a ∈ L1(∂Ω) we consider the corresponding energy

E(a) = inf
{

∫

Ω

|Du|2 dx+

∫

∂Ω

a(x)u2 dHN−1 − 2

∫

Ω

f(x)u dx : u ∈ H1(Ω)
}

and the compliance C(a) = −E(a). Then the optimal reinforcement problem can
be written as

min
{

C(a) : a ∈ L1(∂Ω),

∫

∂Ω

a dHN−1 ≤ m
}

.

We show that the optimization problem above admits a solution aopt and we
study some properties of this optimal solution. Some numerical examples are also
presented.
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