
Mathematisches Forschungsinstitut Oberwolfach

Report No. 32/2006

Algebraic K-Theory

Organised by
Daniel R. Grayson (Urbana)

Annette Huber-Klawitter (Leipzig)
Uwe Jannsen (Regensburg)

Marc Levine (Boston)

July 16th – July 22nd, 2006

Abstract. This is the report on the Oberwolfach workshop Algebraic K-
Theory, held in July 2006. The talks covered mainly topics from Algebraic
Geometry and Number Theory in connection with K-Theory. Special em-
phasis was placed on motivic cohomology and motivic homotopy of general
schemes.

Mathematics Subject Classification (2000): 19Dxx, 19Exx, 19Fxx.

Introduction by the Organisers

Vaguely speaking, K-theory is a way of examining features of systems of polyno-
mial equations by considering the possible ways to associate vector spaces to each
solution. While the objects of study come from algebraic geometry or number
theory the methods come from algebraic topology. In the last decade motivic co-
homology has matured to provide a useful tool for computing algebraic K-theory.

The conference covered a wide range of interconnected topics from classical Mil-
nor K-theory, cyclic homology, algebraic K-theory (in the narrow sense), Chow
groups, regulators, homotopy theory of schemes with a certain stress in motivic
cohomology and triangulated motives. Algebraic K-theory is the theme holding
these questions together. This was reflected both in the selection of the partic-
ipants as well as in the choice of talks. The 48 participants came mostly from
Europe and North America, but also from Japan and China. There was a good
mix of participants, from leading experts of the field to younger researchers and
even a couple of graduate students. There were 17 mostly 1-hour talks. Prior-
ity was given to young researchers, to allow them to present their results. The
schedule left enough time for interesting discussions between participants.
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Abstracts

Duality via Cycle complexes

Thomas Geisser

If f : X → S is separated and of finite type, then the generic duality statement is
the adjointness

R HomX(F , Rf !G) ∼= R HomS(Rf!F ,G)

for torsion sheaves F on X and G on S. In order to obtain useful statements,
one has to identify the complex Rf !G. We show that in many situations, Bloch’s
complex [1] of zero-cycles can by used to explicitly calculate Rf !G. Let S be the
spectrum of a field or a Dedekind ring, and for a scheme X essentially of finite type
over S¡ let DX be the complex of etale sheaves which in degree −i consists of the
free abelian group generated by cycles of relative dimension i over S on X ×S ∆i

which meet all faces properly, and alternating sum of intersection with faces as
differentials. Then for f : X → k separated and of finite type over a perfect field,
and for every torsion sheaf G on X , there is a quasi-isomorphism

R HomX(G, DX) ∼= R Homk(Rf!G, Z).

In particular, if G is constructible, and k is algebraically closed, we obtain a perfect
pairing

Ext1−i
X (G, DX) × Hi

c(Xet,G) → Q/Z,

and if k is finite we obtain a perfect pairing

Ext2−i
X (G, DX) × Hi

c(Xet,G) → Q/Z;

This generalizes results of Deninger [3, 4] for curves, Spieß [11] for surfaces, and
Milne-Moser [8, 10] for the p-part in characteristic p. We obtain a similar duality
theorem for schemes over a local field of characteristic 0.

Assuming the Beilinson-Lichtenbaum conjecture, we also get a duality theorem
over the spectrum B of the ring of integers of a number field. For f : X → B
proper and a torsion sheaf G on X , we define cohomology with compact support
Hi

c(Xet,G) as the cohomology of the complex RΓc(B, Rf!G), where RΓc(B,−) is
cohomology with compact support as defined in [7]. It differs from RΓ(Bet,F)
only at the prime 2 and only for those B having a real embedding. Then we have
a quasi-isomorphism

R HomX(G, DX) ∼= R HomAb(RΓc(Xet,G), Z)[−1],

which induce perfect pairings

Ext2−i
X (G, DX) × Hi

c(Xet,G) → Q/Z

of finite groups for constructible G. This generalizes results of Artin-Verdier [7]
for dimX = 1, and Spieß for dim X = 2.
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As an application, we generalize and re-prove Rojtman’s theorem [9, 12]. Let
X be a normal scheme, proper over an algebraically closed field k. Then there is
an isomorphism

tor(Pic0
red(X))t(k) ∼= torCH0(X)

between the torsion points of the dual abelian variety of Pic0
red(X), and the Chow

group of zero-cycles on X .
For the abelianized algebraic fundamental group we obtain, for a proper scheme

X over an algebraically closed field, a short exact sequence

0 → CH0(X, 1)∧ → πab
1 (X) → TCH0(X) → 0,

and the first group is finite if X is normal. Here G∧ is the profinie completion,
and TG the Tate module of an abelian group G. If k is finite, and if πab

1 (X)geom

is the kernel of πab
1 (X) → Gal(k), then for X normal and proper, we have a short

exact sequence

0 → CH0(X̄, 1)∧
Ĝ
→ πab

1 (X)geom → Pic0
red(X)(k) → 0.

The key ingredient in the proof of the main theorem is purity for DX over
an algebraically closed field, i.e. for i : Z → X a closed embedding over an
algebraically closed field, Ri!DX

∼= DZ . In order to prove this, we first show
that DX has etale hypercohomological descent (i.e. its cohomology and etale
hypercohomology agree), and then use purity for the cohomology of DX proved
by Bloch and Levine [2, 6]. Using purity, an induction and devissage argument is
used to reduce to showing the case of a constant sheaf on a smooth and proper
scheme, which is known by SGA 4 XVIII and Milne’s duality [8].

The contents of this talk will appear in the article [5].
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ℓ-adic realization of triangulated motives over a noetherian separated
scheme and a motivic equivalence

Florian Ivorra

In [9, chapter 5], V. Voevodsky set out a construction of mixed motives over the
spectrum of a perfect field. Using the general theory of relative cycles of [9, chapter
2], it is possible to extend this construction to a noetherian separated scheme S.
The triangulated category DM eff

gm(S) of effective geometrical mixed motives is then
the pseudo-abelian hull of the quotient

Kb(SmCorS)/Egm

by the thick subcategory Egm generated by homotopy invariance and Nisnevich
localization. As in the perfect field case, SmCorS denotes the additive tensor
category of smooth schemes of finite type over S with finite correspondences as
morphisms. According to the notation of [9, chapter 2], finite correspondences
from X to Y are given by the abelian group cS(X, Y ) = cequi(X ×S Y/X, 0). The
category DMgm(S) is then obtained from DM eff

gm(S) by inverting the Tate motive.

1. Localization of finite correspondences

Fix a S-scheme X . Denote by Xh
X,x the spectrum of the henselian local ring of X

at x and let

Xh :=
∐

x∈X

Xh
X,x ČX(Xh)n := Xh ×X · · · ×X Xh

︸ ︷︷ ︸

n + 1 copies of Xh

We have the augmented C̆ech complex of Nisnevich sheaves with transfers over S

ČXh/X : · · · → Ztr[ČX(Xh)n]
dn→ Ztr[ČX(Xh)n−1] → · · · → Ztr[X ].

The following result is inspired by [9, chapter 5, prop 3.1.3]:

Proposition. Let O be an henselian local S-scheme. The complex of abelian
groups ČXh/X(O) is canonically homotopic to zero 1.

Using the previous proposition one then proves given a finite correspondence α ∈
cS(X, Y ) the existence of a Nisnevich local decomposition 2

α ◦ [lhX,x] =
∑

y∈Y

[lhY,y] ◦ αx,y

where l
h
X,x : Xh

x → X is the natural map. These decompositions have good prop-
erties with respect to composition, tensor product and provide canonical transfers
on the Godement resolution of a Nisnevich sheaf with transfers.

1The homotopy is functorial for finite correspondences between henselian local S-schemes.
2The result is also true for the étale topology if one uses strictly henselian local S-schemes.
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2. ℓ-adic realization over a noetherian separated scheme

Fix a prime ℓ invertible on S. One has a symmetric quasi-monoidal ℓ-adic realiza-
tion functor for smooth scheme of finite type over S

Rℓ : Smop
S → D+(S, Zℓ)
X 7→ RπX∗π∗

XZS/ℓ∗

with values in T. Ekedahl’s category [1] .

Theorem ([5, thm 4.3]). This functor has a canonical extension to a triangulated
quasi-tensor functor

DMgm(S)op → D+(S, Zℓ).

A. Huber has constructed [3, 4] for a field k embeddable into C a mixed realization
functor

RMR : DMgm(k)op → DMR

where DMR is the triangulated category defined in [2]. The following result [6,
thm 1.1] gives the link with A. Huber’s approach:

Proposition. The ℓ-adic component of A. Huber’s mixed realization functor [3, 4]
is isomorphic to the realization functor obtained in [6, thm 4.3]: there exists a
canonical isomorphism of functor φ

DMgm(k)op
RMR //

@A

Rℓ

//

DMR

projection on the
ℓ-adic component

��

φ
+3

Db
c (Spec(k), Qℓ).

This proposition relies on a 〈〈 dévissage 〉〉 which reduces the proof to a com-
parison between transfers: one has to check that A. Huber’s transfers given by
Galois theory agree with local transfers. Using a naive description of Voevodsky’s
isomorphism [10], we prove:

Proposition. Let X be a smooth quasi-projective scheme over a perfect field k
and p, q be integers. The following triangle

CHp(X, q)

Voevodsky’s
isomorphism

//

ℓ-adic cycle
class map **T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

H2p−q(X, Z(p))

morphism induced by
the realization functor

��

H2p−q(X, Zℓ(p))

is commutative.
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3. A motivic equivalence

Let k be a perfect field. M. Levine’s category [8] of triangulated motives DM(k)
is built from generators and relations according to the following two main guiding
principles.

• The category DM(k) should admit a realization functor for a Bloch-Ogus
twisted duality cohomology theory.

• The motivic cohomology defined by DM(k) has to be isomorphic to higher
Chow groups.

In [8] M. Levine has proved that DM(k) and DMgm(k) are equivalent if one has
resolution of singularities over k 3. Using local transfers one may extend M. levine’s
method of proof to positive characteristic 4:

Theorem. [7] Let k be a perfect field. Assume either that

• char(k) = 0 and A = Z, or
• char(k) > 0 and A = Q.

There exists a triangulated tensor equivalence

DM(k, A)
Υ−→ DMgm(k, A).

In addition the equivalence Υ induces a triangulated tensor equivalence

DM(k)pr Υ−→ DMgm(k)pr

between the pseudo-abelian hulls of the integral triangulated tensor subcategories
generated by the motives of smooth projective schemes.
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On Nori’s fundamental group scheme

Hélène Esnault

(joint work with Phùng Hô Hai and Xiaotao Sun)

The talk is a report on a recent joint work with Phùng Hô Hai and Xiaotao Sun [4].
The aim is to give two structure theorems on Nori’s fundamental group scheme of
a proper connected variety defined over a perfect field and endowed with a rational
point.

For a proper connected reduced scheme X defined over a perfect field k endowed
with a rational point x ∈ X(k), Nori defined in [9] and [10] a fundamental group
scheme πN (X, x) over k. It is Tannaka dual to the k-linear abelian rigid tensor
category CN (X) of Nori finite bundles, that is bundles which are trivializable over
a principal bundle π : Y → X under a finite group scheme. The rational point x
endows CN(X) with a fiber functor V 7→ V |x with values in the category of finite
dimensional vector spaces over k. This makes CN(X) a Tannaka category, thus by
Tannaka duality ([1, Theorem 2.11]), the fiber functor establishes an equivalence
between CN(X) and the representation category Rep(πN (X, x)) of an affine group
scheme πN (X, x), that is a prosystem of affine algebraic k-group schemes, which
turn out to be finite group schemes. The purpose of the lecture is to study the
structure of this Tannaka group scheme.

To this aim, we define two full tensor subcategories C ét(X) and CF (X). The
objects of the first one are étale finite bundles, that is bundles for which the finite
group scheme is étale, while the objects of the second one are F -finite bundles, that
is bundles for which the group scheme is local. As sub-Tannaka categories they are
representation categories of Tannaka group schemes πét(X, x) and πF (X, x). Our
first main theorem (see [4, Theorem 4.1]) asserts that the natural homorphism of
k-group schemes

πN (X, x) → πét(X, x) × πF (X, x)(1)

is faithfully flat, so in particular surjective. To have a feeling for the meaning of the
statement, it is useful to compare πét(X, x) with the more familiar fundamental
group π1(X, x̄) defined by Grothendieck in ([5, Exposé 5]), where x̄ is a geometric
point above x. Grothendieck’s fundamental group is an abstract group, which is
a pro-system of finite abstract groups. One has

πét(X, x)(k̄) ∼= π1(X ×k k̄, x̄),(2)

thus the étale piece of Nori’s group scheme takes into account only the geometric
fundamental group and ignores somehow arithmetics. On the other hand, πF (X, x)
reflects the purely inseparable covers of X . That k is perfect guarantees that
inseparable covers come only from geometry, and not from the ground field.

However (1) is not injective. Raynaud’s work [11] on coverings of curves pro-
ducing a new ordinary part in the Jacobian yields an example.

0Partially supported by the DFG Leibniz Preis, the DFG Heisenberg program and the grant
NFSC 10025103
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The central theorem reported on in the lecture is the determination by its
objects and morphisms of a k-linear abelian rigid tensor category E , which is
equivalent to the representation category of Ker((1)). This is the most delicate part
of the construction. If S is a finite subcategory of CN (X) with étale finite Tannaka
group scheme π(X, S, x), then the total space XS of the π(X, S, x)-principal bundle
πS : XS → X which trivializes all the objects of S has the same property as X .
It is proper, reduced and connected. However, if S is finite but π(X, S, x) is not
étale, then Nori shows that XS is still proper connected, but it is not the case
that XS is still reduced. We give a concrete example which is due to P. Deligne.
However, in order to describe E , we need in some sense an extension of Nori’s
theory to those non-reduced covers. We define on each such XS a full subcategory
F(XS) of the category of coherent sheaves, the objects of which have the property
that their push down on X lies in CN (X). We show that indeed those coherent
sheaves have to be vector bundles, so in a sense, even if the scheme XS might be
bad, objects which push down to Nori’s bundles on X are still good. In particular,
CN(XS) = F(XS) if π(X, S, x) is finite étale, so the definition generalizes slightly
Nori’s theory. For given finite subcategories S and T of CN (X), with π(X, S, x)
étale and π(X, T, x) local, one defines a full subcategory E(XS∪T ) ⊂ F(XS∪T )
on the total space XS∪T of the principal bundle πS∪T : XS∪T → X consisting of
those bundles V , the push down of which on XS is F -finite. Now the objects of
E are pairs (XS∪T , V ) for V an object in E(XS∪T ). Morphisms are subtle as they
do take into account the whole inductive system of such T ′ ⊂ CF (X).

We now describe our method of proof. We proceed in three steps. To see
that πN (X, x) → πét(X, s) is surjective is very easy, thus we consider the kernel
L(X, x) and determine its representation category. The computation is based on
two results. The first one of geometric nature asserts that sections of an F -finite
bundle can be computed on any principal bundle XS → X with finite étale group
scheme. The second one is the key to the categorial work and comes from [3,
Theorem 5.8]. It gives a criterion for a k-linear abelian rigid category Q, endowed
with a tensor functor q : T → Q, to be the quotient category of the full embedding

of k-linear rigid tensor categories S ι−→ T , in the sense that if the three categories
are endowed with compatible fiber functors to the category of k-vector spaces,
then the Tannaka group schemes G(?) are inserted in the exact sequence

1 → G(Q)
q∗

−→ G(T )
ι∗−→ G(S) → 1.

The objects of Rep(L(X, x)) are pairs (XS , V ) where XS → X is a principal
bundle under an étale finite group scheme and V is a F -finite bundle on XS .
Morphisms are defined naturally via Proposition. The second step consists in
showing surjectivity L(X, x) → πF (X, x). To this aim, one needs a strengthening
of the geometric proposition which asserts that not only sections can be computed
on finite étale principal bundles, but also all subbundles of an F -finite bundle.
Finally the last step consists in showing that the category E constructed is indeed
the right quotient category, for which we use the already mentioned criterion [3,
Theorem 5.8].
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K-theory of singularities and a conjecture of Vorst

Christian Haesemeyer

(joint work with G. Cortiñas and C. Weibel)

It is a well-known fact that algebraic K-theory is homotopy invariant as a functor
on regular schemes; if X is a regular scheme then the natural map Kn(X) →
Kn(X×A1) is an isomorphism for all n ∈ Z. This is false in general for nonregular
schemes and rings.

To express this failure, Bass introduced the terminology that, for any contravari-
ant functor P defined on schemes, a scheme X is called P-regular if the pullback
maps P(X) → P(X×Ar) are isomorphisms for all r ≥ 0. If X = Spec(R), we also
say that R is P-regular. Thus regular schemes are Kn-regular for every n. In con-
trast, it was observed as long ago as [1] that a nonreduced affine scheme can never
be K1-regular. In particular, if A is an Artinian ring (that is, a 0-dimensional
Noetherian ring) then A is regular (that is, reduced) if and only if A is K1-regular.
In [6], Vorst conjectured that for an affine scheme X, of finite type over a field F
and of dimension d, regularity and Kd+1-regularity are equivalent; Vorst proved
this conjecture for d = 1 (by proving that K2-regularity implies normality).

In this talk, we sketch a proof of Vorst’s conjecture in all dimensions provided
the characteristic of the ground field F is zero. Details can be found in our paper
[3]. In fact we prove a stronger statement. We say that X is regular in codimension
< n if Sing(X) has codimension ≥ n in X .
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Let FK denote the presheaf of spectra such that FK(X) is the homotopy fiber
of the natural map K(X) → KH(X), where K(X) is the algebraic K-theory
spectrum of X and KH(X) is the homotopy K-theory of X defined in [7]. We
write FK(R) for FK(Spec(R)).

Theorem 1. Let R be a commutative ring which is essentially of finite type over
a field F of characteristic 0. Then:
(a) If FK(R) is n-connected, then R is regular in codimension < n.
(b) If R is Kn-regular, then R is regular in codimension < n.
(c) (Vorst’s conjecture) If R is K1+dim(R)-regular, then R is regular.

It was observed in [7] that if X is Kn-regular then Ki(X) → KHi(X) is an
isomorphism for i ≤ n, and a surjection for i = n + 1, so that FK(X) is n-
connected. Thus (a) implies (b) in this theorem, and (c) is a special case of (b).

The bounds in (a) and (b) are the best possible, because it follows from Vorst’s
results ([6, Thm. A], [5, Thm. 3.6]) that for an affine singular seminormal curve
X , FK(X) is 1-connected, but not 2-connected. The converse of (c) is trivial,
but those of (a) and (b) are false. Indeed, affine normal surfaces are regular in
codimension 1 but may not be K−1-regular, much less K2-regular; see [8, 5.8.1].

Finally the analogue of (c) –and thus also of (a) and (b)– for K-theory of
general nonaffine schemes is false. Indeed there are examples of nonreduced (and
in particular nonregular) projective curves which are Kn-regular for all n.

The proof of Theorem 1 employs results from our paper with M. Schlicht-
ing [2] that allow us to describe FK in terms of cyclic homology. In fact, FK

can be identified with the homotopy fiber FHN of the natural transformation
HN → H(−, HN), where HN is negative cyclic homology taken over Q and for
any presheaf of spectra E on Sch/F , H(−, E) denotes a hypercohomology spec-
trum of E in the cdh-topology. Using standard facts about cyclic and Hochschild
homology, a transitivity spectral sequence due to Kassel and Sletsjœ(see [4]) and
its cdh-fibrant version, one arrives at the following result.

Theorem 2. Let X be an essentially finite type scheme over F . If FK(X) is
(n + 1)-connected, then FHH(/F )(X) is n-connected. Moreover, if R = OX,x is
a local ring of X, which is the localization of an algebra of finite type over some
extension E of F (of transcendence degree the codimension of x) at a maximal
ideal, then FHH(/E)(R) is n-connected.

Here HH(/k) denotes Hochschild homology over k for a field k, and FHH(/k)

is defined as above. Finally, one proves:

Theorem 3. Suppose R is a local ring of dimension n that can be obtained as
localization of a finite type algebra over a field E of characteristic 0 at a maximal
ideal. Further assume that FHH(/E) is n-connected. Then Ωn+1

R/E = 0 and R is

regular.
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Operations on algebraic K-theory and regulators via the homotopy
theory of schemes

Joël Riou

This talk presents the results in my thesis [6]. The main result relies on the
following theorem of A1-homotopy theory (see [4] and [9]):

Theorem 1 (Morel-Voevodsky). Let S be a regular scheme. For any natural
number n and X ∈ Sm/S, there exists a canonical isomorphism:

HomH•(S)(S
n ∧ X+,Z × Gr) ≃ Kn(X) ,

where Sm/S denotes the category of S-schemes that are smooth, separated and of
finite type, H•(S) the pointed homotopy category of S and Gr the infinite Grass-
mannian.

Thanks to this theorem, we may consider thinking of operations on algebraic
K-theory as endomorphisms of Z × Gr in H(S). We let K0(−) be the presheaf
of sets on Sm/S given by Grothendieck groups of vector bundles on schemes in
Sm/S. The main result is the following simple theorem:

Theorem 2. Let S be a regular scheme. There are natural isomorphisms:

EndH(S)(Z × Gr)
∼→ EndSm/SoppSets(K0(−)) ≃ (K0(S)[[c1, c2, . . . ]])

Z
.

The proof involves theorem 1, the Milnor exact sequence, computations in
[SGA 6, VI 4.10] and Jouanolou’s trick.

Corollary 1. Over regular schemes, any natural transformation (of presheaves of
pointed sets) τ : K0(−) → K0(−) naturally extends to maps on higher algebraic
K-theory groups Kn(−) → Kn(−) for any natural number n.

There is a version of theorem 2 with several variables so that any algebraic
structure on K0(−) comes in a unique way from such a structure on Z × Gr in
the category H(S). Using [SGA 6, VI 3.2], we get:

Corollary 2. The object Z×Gr of H(S) is endowed with a structure of a special
λ-Ring.
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We thus get pairings Ki(X) × Kj(X) → Ki+j(X) for any regular scheme X
and i, j ≥ 0.

Proposition 1. For a regular scheme X, these pairings coincide with those defined
by

• Quillen [5] if i = 0 or j = 0;
• Loday [3] if i > 0 and j > 0 (and X affine);
• Waldhausen [10] for all i and j.

In particular, the pairings defined by Loday and Waldhausen coincide for affine
regular schemes (which was already known for all affine schemes, see [11]).

One can also construct a natural map

(RZ GL)
Z → EndH(S)(Z × Gr)

that enables one to prove that the operations on higher algebraic K-theory con-
structed here coincide with the ones defined by Soulé in [8].

We can also consider additive operations. Using the splitting principle, we get:

Proposition 2. Let S be a regular scheme. There is a canonical isomorphism

EndSm/SoppAb(K0(−)) ≃ K0(S)[[U ]]

which maps the Adams operation Ψn to (1 + U)n.

Definition 1. Let A be an abelian group. We let AΩ be the following projective
system of abelian groups indexed by N:

· · · → A[[U ]]
Ω

P1→ A[[U ]]
Ω

P1→ A[[U ]]

where ΩP1 is the operator f 7−→ (1 + U) df
dU .

In [9], Voevodsky defined an object BGL representing algebraic K-theory in
the stable homotopy category SH(S) of a regular scheme S. Due to the “stably
phantom” maps phenomenon, it is not clear that this object is well-defined up to
unique isomorphisms.

Theorem 3. Let S be a regular scheme and n ∈ Z. There exists a short exact
sequence:

0 → lim 1 Kn+1(S)Ω → HomSH(S)(BGL,BGL[−n]) → lim Kn(S)Ω → 0 .

The group lim 1 Kn+1(S) is identified to the set of stably phantom maps BGL →
BGL[−n] in SH(S).

One can prove that if A is finite or divisible, then lim 1 AΩ = 0. In particular, if
S = Spec Z, there are no stably phantom endomorphisms of BGL in SH(SpecZ),
so that BGL ∈ SH(SpecZ) is well-defined up to unique isomorphisms and we can
construct a canonical BGL for any regular scheme S by base change.

With Q-coefficients one can explicitly compute EndSH(SpecZ)(BGLQ): it is

canonically isomorphic to the ring QZ of functions Z → Q. We can use this to
get the following theorem:
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Theorem 4. Let S be a regular scheme. There is a canonical decomposition in
SH(S):

BGLQ ≃
⊕

i∈Z

H
(i)
B .

One can use the same arguments to study maps from Z × Gr to a general
object in H(S). In particular, if k is a perfect field, Voevodsky defined motivic
Eilenberg-MacLane spaces K(Z(n), 2n). The set of maps Z × Gr → K(Z(n), 2n)
in H(k) is isomorphic to the set of natural transformations K0(−) → CHn(−) in
the category Sm/koppSets. There is also a stable version of this which enables
one to define a Chern caracter BGL → HQ in SH(k) where HQ is the motivic
Eilenberg-MacLane spectrum with Q-coefficients.

We finally make the computation HomSH(S)(BGL,HZ[1]) ≃ Ẑ/Z: all these
morphisms are stably phantoms, which proves the existence of non-zero stably
phantom maps in the stable homotopy theory of schemes.
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http://www.institut.math.jussieu.fr/theses/2006/riou/.

[7] Jean-Pierre Serre, Groupe de Grothendieck des schémas en groupes réductifs déployés, Pub-
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Algebraic cycles on products of elliptic curves over p-adic fields

Andreas Rosenschon

(joint work with V. Srinivas)

Let X be a smooth projective variety over a field k, and let CHp(X) be the Chow
group of algebraic cycles of codimension p modulo rational equivalence. Equiva-
lently, we may identify CHp(X) with the motivic cohomology group Hp

M (X, Z(p))
defined by Voevodsky.

If k has characteristic 0, let X̄ = X ×k k̄ for a separable closure k̄ of k. Taking
the kernel of the cycle maps into ℓ-adic cohomology, we obtain

CHp
hom(X) = ker{CHp(X) →

∏

p

H2p
et (X̄, Zℓ(p))}.

If Griffp(X) is the Griffiths group of homologically trivial cycles modulo cycles
which are algebraically equivalent to zero, we have a surjective map

CHp
hom(X) → Griffp(X),

whose kernel is generated by the images of correspondences coming from Picard
varieties of smooth projective curves over k. In particular, if k is separably closed,
this kernel is divisible. For examples of smooth projective complex varieties such
that the Griffiths group in codimension 2 is not finitely generated, see [4], [13], [3]
and [17], for instance.

We study the structure of these groups over p-adic fields. To place our results,
we recall the following examples, which are due to Schoen [11, 6, 7]:

I. Let E be an elliptic curve defined over a subfield of C with j-invariant
j(E) /∈ Q̄. If k = Q(j(E)) and ℓ = 5, 7, 11, 13, 17, #CH2

hom(E3
k)/ℓ = ∞.

II. Let E ⊂ P2
Q be the Fermat curve defined by x3

0 + x3
1 + x3

2 = 0. Let k = Q. If

ℓ ≡ 1 mod 3, then #CH2
hom(E3

k)/ℓ = ∞.

III. Let E/k be as in I or II. If F is an elliptic curve with j(F ) /∈ k, let

K = k(j(F )). Then the ℓ-torsion subgroup CH3(E3 ×k FK)[ℓ] is infinite.

The examples in I and II exhibit that CH2
hom(X), and thus Griff2(X), is large

and far from being divisible; in particular II shows that this already occurs over
Q (in general the Chow groups of a smooth projective variety over a number field
are expected to be finitely generated abelian groups). The examples in III show
the ℓ-torsion subgroup of the Chow group in codimension 3 is not finite, contrary
to the codimension 2 case [1].

Our main theorem shows that all of the above phenomena also occur over p-adic
fields, i.e. finite extensions of Qp.

Theorem 1. Let p be an odd prime. There exists a p-adic field Kp and an elliptic
curve E/Kp with the property that the natural map

CH2
hom(E3

Kp
)/ℓ → CH2

hom(E3
K̄p

)/ℓ
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has infinite image, for each ℓ ∈ {5, 7, 11, 13, 17} (where possibly p = ℓ).

Corollary 2. If E/Kp is as above, #Griff2(E3
Kp

) = ∞.

Corollary 3. For E/Kp as above, there exist elliptic curves F over Kp such that

the ℓ-torsion subgroup CH3((E3 × F )Kp
)[ℓ] is infinite.

To our knowledge these are the first examples of smooth projective varieties over
a p-adic field with these properties. In fact, we do not know of any conjectures
about the general structure of Chow groups for varieties over p-adic fields; our
results show that these groups are large, and one cannot hope to have finiteness
results as expected in the number field case.

We point out the contrast with the case of zero cycles. If k is a p-adic field,
and X is a product of smooth projective curves with split semi-ordinary reduction,
Raskind and Spiess [12] have shown that the Chow group CH0(X)/ℓ is finite for
all primes ℓ. A recent theorem of S. Saito and K. Sato [15] shows that this holds
for an arbitrary smooth projective variety and almost every prime.

To give an overview of the proof of our main theorem, we recall the two essential
steps in Schoen’s proof of I:

- Schoen considers a particular elliptic curve E/K, where K = Q(t), and applies
a criterion for non-divisibility of cycles due to Bloch-Esnault [8] to a modified
Ceresa cycle Ξ to obtain a non-trivial element in CH2

hom(E3
K̄

)/ℓ. To apply this
criterion, one has to verify that the image of a certain cycle under the ℓ-adic
Abel-Jacobi map modulo ℓ is non-trivial. This is difficult, and the restriction on ℓ
results from the fact that only for these primes has this computation been carried
out.

- There is a fine moduli scheme representing the functor ‘elliptic curves with a
point of order 4’, which is such that the generic fiber of the universal elliptic curve
is isomorphic to an elliptic curve E/K, that is a quadratic twist of E. For suitable
primes qi one obtains endomorphisms of EK̄ such that for ℓ 6= qi the induced map
Γqi on CH2

hom(E3
K̄

)/ℓ is an automorphism. Schoen identifies Ξ with a non-trivial

element of CH2
hom(EK̄)/ℓ, and adapts an argument due to Nori [13] to show there

is an infinite set of primes qi such that the set of cycles {Γqi(Ξ)} ⊂ CH2
hom(EK̄)/ℓ

is linearly independent.

Given an odd prime p, we use the cuspidal geometry of modular curves to show
that there is a p-adic field Kp such that the variety E3, the modified Ceresa cycle
Ξ, and an infinite set of modular correspondences are defined over this field. It
follows that infinitely many of the cycles considered by Schoen are the base change
of cycles defined over Kp.
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[17] Voisin, Claire, Une approche infinitésimale du théorème de H. Clemens sur les cycles d’une

quintique générale de P 4, J. Algebraic Geom. 1 (1992), no. 1, 157–174

Weak Bloch-Beilinson conjecture for zero-cycles over p-adic fields

Kanetomo Sato

(joint work with Shuji Saito)

Let V be a smooth projective variety over a field k. Let CH0(V ) be the Chow
group of the zero-cycles on V modulo rational equivalence with A0(V ) ⊂ CH0(V ),
the subgroup of cycle classes of degree 0. There is a natural map called Albanese
mapping

φV : A0(V ) → AlbV (k)

where AlbV is the Albanese variety of V . By Abel’s theorem φV is injective if
dim(V ) = 1. It is Mumford [Mu] who first discovered that the situation is rather
chaotic in the case of higher dimension. One of the most fascinating and challeng-
ing conjectures in arithmetic geometry is a conjecture of Bloch and Beilinson ([Be])
that Ker(φV ) is torsion in case k is a number field. Here is a folklore conjecture,
which can be viewed as an analogue of the Bloch and Beilinson conjecture, over a
p-adic field

Conjecture 1. Let V be a smooth projective variety over a p-adic field k. Then
Ker(φV ) is the direct sum of a finite group and a divisible group.
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There are some known cases in which this conjecture is true ([BKL], [Sal], [CTR],
[RS]). By a result of Mattuck [Ma], AlbV (k) is isomorphic to the direct sum of a

finite group and Zp
⊕N for an integer N ≥ 1. So the above conjecture implies the

following:

Conjecture 2. Let V be as in Conjecture 1. Then A0(V ) is the direct sum of a
finite group and a group which is divisible by any positive integer prime to p.

The main result of the talk is the following affirmative result on this conjecture.

Theorem 3. Conjecture 1 is true, if V has a model which is QSP over the integer
ring Ok of k.

Here we say that a scheme X is QSP over Ok, if X is regular projective flat over
Spec(Ok) and if Xs,red, the reduced part of its special fiber, is a simple normal
crossing divisor on X . Some finiteness results in this direction were known in case
dim(V ) = 2 ([SaSu]) and some special varieties of higher dimension ([PS], [KoSz],
[CT2]). We note a direct consequence of Theorem 3.

Corollary 4. Let the assumption be as in Theorem 3, and assume further that V
is rationally connected in the sense of Kollár, Miyaoka and Mori. Then A0(V ) is
the direct sum of a finite group and a p-primary torsion group.

In [CT2], Colliot-Thélène proved a stronger result than this corollary assuming
that V is a compactification of a connected linear group over k but not assuming
the existence of a model V . The essential result in our case is the following:

Theorem 5. Let X be a QSP scheme over Ok, and let d be the relative dimension
dim(X/Ok). Then the cycle map obtained by the absolute purity of Thomason-
Gabber

ρX : CHd(X)/n → H2d
ét (X, µ⊗d

n )

is bijective for any positive integer n which is prime to p.
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arithmétiques de Bordeaux, 1993). J. Théor. Nombres Bordeaux 7, 51–73 (1995)
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Triangulated mixed motives and the 6 functors formalism

Frédéric Déglise

The aim of the talk was to present the construction of a candidate for the triangu-
lated category of motives over a scheme S together with functoriality and monoidal
structural analogous to what we have for the category of l-adic complexes.

This construction was obtained in a joint work with Denis-Charles Cisinski and
is still under writing at the time of this report. Thus I will sum up here the rough
steps of the construction we have in mind.

——————
Schemes are always supposed to be noetherian, separated and quasi-projective

over Z. Smooth means formally smooth of finite type - instead of locally of finite
type. We denote by Sh(S) the category of sheaves of abelian groups on the category
of smooth S-schemes for the Nisnevich topology.

The construction of the category DM(S) for a scheme S decomposes into four
steps :

(1) First, based on a reformulation of the theory of [1, chap. 2], we define
a good notion of correspondances between smooth S-schemes to obtain
a category Smcor

S of smooth S-schemes with morphisms these good S-
correspondances. We define a symmetric monoidal structure on Smcor

S .
For a morphism of schemes f : T → S, we also define a base change
functor f∗ : Smcor

S → Smcor
T together with a ”forget the base” functor

f♯ : Smcor
T → Smcor

S when f is smooth. Taking the graph of a morphism
yields a functor γ : SmS → Smcor

S . (see [3] for more details in the case
when S is regular).

(2) We then consider sheaves with tranfers, that is additivite contravariant
functors F : Smcor

S → Ab such that F ◦ γ is a Nisnevich sheaf. For any
smooth S-scheme X , the functor cS(., X) is q sheaf with tranfers which
we denote by Ztr

S (X). The theory of sheaves with transfers then goes
on almost as in the regular case treated in [3] : The category of sheaves
with transfers Shtr(S) is an abelian category with generators the sheaves
Ztr

S (X). It has a symmetric monoidal closed structure. For a morphism
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f : T → S of schemes, we have a base change functor f∗ : Smcor
S → Smcor

T .
It has a right adjoint f∗ and a right adjoint f♯ when f is smooth.

(3) We next consider the category C(Shtr(S)) of complexes of sheaves with
tranfers and its derived category D(Shtr(S)). Let T be the smallest local-
izing subcategory of D(Shtr(S)) closed under arbitrary direct sums and
containing the complexes Ztr

S (A1
X) → Ztr

S (X) for any smooth S-schemes.
We define the category DM eff (S) of effective triangulated motivic com-
plexes over S as the Verdier quotient D(Shtr(S))/T. An important tech-
nical point is that there is a canonical Quillen model category structure
on C(Shtr

S ) such that the canonical extensions of the functors f∗, f♯ (resp.
f∗) to complexes admits left (resp. right) derived functors. Moreover, this
model structure is a monoidal model structure, which means there is a left
derived tensor product and a right derived internal Hom on DM eff (S).

(4) The canonical immersion S → P1
S induces a split monomorphism Ztr

S →
Ztr

S (P1
S). We put Ztr

S (1) = Ztr
S (P1

S)/Ztr
S ({∞})[−2] and call it the Tate ob-

ject. We want to invert the Tate object for the monoidal structure. For
that purpose, we use the theory of spectra from algebraic topology. A Tate
spectrum is a sequence (En, σn)n∈N such that En is a complex of sheaves
with tranfers and σn : En(1) = En ⊗ Ztr

S (1) → En+1 a morphism of com-
plexes. A Morphism of spectra is a sequence of morphisms of complexes
compatibles with the structural map in the obvious way. For a smooth
S-scheme X , a couple of integer (n, m) and a Tate spectrum as above, we
put

Hn,m(X ; E) = lim−→
r>>0

HomDMeff (S)(Z
tr
S (X)(r), Em+r [n]).

Say (quickly) a map of spectra E → F is a stable equivalence if the induced
morphism Hn,m(X ; E) → Hn,m(X ; F ) is an isomorphism for any X, n, m
as above. Then we can finally define abstractly the category DM(S) as the
localisation of the category of Tate spectra with respect to stable equiv-
alence. Again, we construct a suitable Quillen model category structure
on spectra so that DM(S) is the associated homotopy category and the
obvious extension of the functors f∗, f♯, f∗ to spectra can be derived. The
same apply to the monidal structure - though there is need for an extra
construction to obtain the symmetry structure. This final step can be
carried out from what preeceed with the help of [4].

The central result in this work is the following theorem :

Theorem (Cisinski, Déglise). Let i : Z → S be a closed immersion with comple-
mentary open immersiom j : S − Z → S.

Then, for any Tate spectrum E, the canonical adjunction morphisms

Lj♯j
∗E → E → i∗Li∗E

induce a canonical distinguished triangle in DM(S).
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With all these definitions in hands and the preceding theorem, one checks that
DM satisfies all the properties of a homotopy functor required in [2]. In particular,
we obtain the other adjoint pair of functors (f!, f

!) and deduce all the properties
of the six functors formalism.

References

[1] Vladimir Voevodsky, Andrei Suslin, Eric M. Friedlander. Cycles, Transfers, and Motivic
Homology Theories. Annals of Mathematics Studies, 143 (2000). Princeton University
Press.

[2] Joseph Ayoub. Les six opérations de Grothendieck et le formalisme des cycles évanescents
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On RO(S1)-Graded TR

Teena Gerhardt

In general, algebraic K-theory is very difficult to compute. However, for every ring
A, we have a cyclotomic trace map

trc : Kq(A) → TCq(A)

to topological cyclic homology. Results of McCarthy, for example, tell us that we
can often understand algebraic K-theory by understanding TC and the cyclotomic
trace map [8].

As an approach to understanding TC, Hesselholt and Madsen defined TR
(see [5], [6] for details). For a ring A and a fixed prime p, we can define

TRn
q (A; p) = πq(T (A)Cpn−1 )

where T (A) denotes the S1-equivariant topological Hochschild spectrum of A and

T (A)Cpn−1 denotes the Cpn−1 fixed point spectrum of this spectrum. These TR
groups come equipped with several operators. Inclusion of fixed points induces
the Frobenius map

F : TRn
q (A; p) → TRn−1

q (A; p).

This map has an associated transfer, the Verschiebung

V : TRn−1
q (A; p) → TRn

q (A; p).

There is also a derivation d : TRn
q (A; p) → TRn

q+1(A; p) induced from the circle
action on T (A). Lastly, we have a restriction map

R : TRn
q (A; p) → TRn−1

q (A; p).

These maps satisfy the relations FV = p, V F = V (1), and FdV = d.
We can define TCn(A; p) as the homotopy equalizer of the maps

R, F : TRn(A; p) → TRn−1(A; p).
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Then TC(A; p) is the homotopy limit of the spectra TCn(A; p). Thus understand-
ing the TR groups of a ring helps us to understand its topological cyclic homology,
and hence its algebraic K-theory.

One observation that we could make about TR-theory is that the operators on
TR and relations between them give TR a rather rigid algebraic structure. So, one
could ask if it is possible to define an abstract algebraic structure embodying the
structure of TR-theory. Indeed it is, and this is the structure of a Witt complex
over A [4].

Via standard category theoretic arguments, one can show that the category of
Witt complexes over A has an initial object, which we write as W·Ω∗

A. This is the
de Rham-Witt complex of A. Hesselholt and Madsen have given a construction
of the de Rham-Witt complex for Z(p)-algebras [4], [6] which extends the Bloch-
Deligne-Illusie construction for Fp- algebras [1], [7]. Since W·Ω∗

A is initial, we have
a map

W·Ω
∗
A → TR·

∗(A; p).

This can help us understand TR in terms of the de Rham-Witt complex of A.
Instead of defining TR as an integer graded theory, we could instead define

a theory graded by the real representation ring of the circle, RO(S1). Let α ∈
RO(S1). We can write α = [β]− [γ], a formal difference of isomorphism classes of
orthogonal S1 representations. Then the RO(S1)-graded TR groups are defined
as

TRn
α(A; p) = [Sβ ∧ T/Cpn−1

+
, T (A) ∧ Sγ ]S1 .

These RO(S1)-graded TR groups arise in computations. For instance, Hessel-
holt and Madsen [2] used the RO(S1)-graded TR groups of an Fp algebra A in
their computation of the algebraic K-theory of a truncated polynomial algebra
A[x]/(xe).

We would like to ask if we can define an algebraic object embodying the struc-
ture of the RO(S1)-graded TR the way we were able to for the integer graded
case. In other words, can we define what it means to be an RO(S1)-graded Witt
complex? Further, we would like to identify the initial object in this category,
which we would call the RO(S1)-graded de Rham-Witt complex.

We first consider the operators and relations that we have in this RO(S1)-
graded version of TR. Again, inclusion of fixed points will induce the Frobenius
map

F : TRn
α(A; p) → TRn−1

α (A; p).

As in the integer graded case, this map has an associated transfer, the Verschiebung

V : TRn−1
α (A; p) → TRn

α(A; p).

There is also a derivation

d : TRn
q+α(A; p) → TRn

q+1+α(A; p)

Note that we have changed our notation slightly and written our representation
as q + α where q ∈ Z and α ∈ RO(S1) has no trivial summands. These maps
again satisfy the relations FV = p, V F = V (1), and FdV = d. However, our
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restriction map is different from the integer graded case. Let ρp : S1 → S1/Cp

be the isomorphism given by the pth root. Then we define a prime operation as
follows: for α ∈ RO(S1), α′ = ρ∗p(α

Cp). Then our restriction map is a map

R : TRn
q+α(A; p) → TRn−1

q+α′(A; p).

We would like to have a fully computed example of TRn
α(A; p) for some A.

The first computation to be done is that of TRn
α(Fp; p). We state the result for

TRn
q+α(Fp; p) below, where q is an even integer and α is of the form α = λ or

α = −λ for λ ∈ RO(S1) an actual representation. We use the notation α(k) to
denote the prime operation applied k times to α. The notation |α| denotes the
dimension of the representation α.

Proposition 0.1. Let α = λ or α = −λ, q ∈ Z, even. Then TRn
q+α

∼= Z/pl0Z

where l0 is defined as follows. Let

ln−1 =

{
0 if − |α(n−1)| > q
1 else

Letting k range from n − 1 to 0,

lk =

{

lk+1 if − |α(k)| > q

min{lk+1 + 1 + min( q+|α(k)|
2 , n − 1 − k), n − k} else

This extends the result of Hesselholt and Madsen [5] for representations of the
form α = q − λ.
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D-Crystals

Clark Barwick

Definition 1 (Grothendieck, [4, §16.8]). Suppose k a field of characteristic 0,
X/k a smooth scheme.1 Then the diagonal embedding X //X × X is given by an
ideal I ⊳ OX×X , and the sheaf of differential operators of order n ∈ N is typically
defined as the OX -dual of the quotient OX×X/In+1:

DX/k,n := MorOX
(OX×X/In+1, OX).

The resulting filtered sheaf is a sheaf of noncommutative rings, which will simply
be denoted DX/k, and the category of right DX/k-modules that are quasicoherent

as OX -modules will be denoted Modr(DX/k).2

Theorem 2 (Kashiwara, [6, Theorem 2.3.1]). Suppose Z //X a closed immersion
of smooth schemes; then the category of right DZ/k-modules is naturally equivalent
to the category of right DX/k-modules set-theoretically supported on Z.

Theorem 3 (Hodges, [5]). Suppose k algebraically closed of characteristic 0, and
suppose X smooth over k. Then the functor − ⊗OX DX/k induces an equivalence
of K-theory spectra

K(X) //K(DX/k) .

About the Proof. For affines, this follows from the K ′-equivalence of a filtered ring
and its 0-th filtered piece [7, Theorem 7]. The general case follows from using
Kashiwara’s Theorem to devise a localization sequence for K(D−/k), which can
be compared to the localization sequence for K. �

Example 4 (Bernstein-Gelfand-Gelfand, [2]). If X is singular, then DX/k is an
unpleasant ring, and neither Kashiwara’s nor Hodges’ Theorem holds for right
DX/k-modules. To illustrate, suppose that C is the affine cone over the Fermat

curve x3 + y3 + z3 = 0 (over C, let us say); then X is normal, and has an isolated
Gorenstein singularity at the origin.

Nevertheless, the ring D(C) of differential operators is neither left nor right
nœtherian: if e denotes the Euler operator x∂x +y∂y +z∂z, and if D(j)(C) (respec-

tively, D
(j)
n (C)) is the R-module of homogenous differential operators of degree j

(resp., and of order n), then the two-sided ideals

Jk :=
∑

j>1

D(j) +
∑

n≥0

enD
(1)
k

form an ascending chain that does not stabilize.

1For simplicity I will use the term “scheme” for a separated nœtherian scheme of finite type.
2I will stick to right D-modules here.
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5. The standard method for rectifying this is defining deviancy down by forcing
Kashiwara’s Theorem; namely, for a singular scheme Z, one embeds Z (at least
locally) into a smooth scheme X and defines the category of right DZ/k-modules
to be the full subcategory of right DX/k-modules set-theoretically supported along
Z. One must then show that the resulting category is invariant up to a canonical
equivalence of categories.

Definition 6 (Grothendieck, [3, 4.1]). The infinitesimal site (Xinf/k) of X/k is
the category of diagrams X Soo //T in which the morphism S //T is a closed

nilimmersion of k-schemes, and the morphism S //X is étale.3 There is a natural

forgetful functor (S, T ) � //T to the category of k-schemes; pull back the étale
topology along this functor.

7. There is a stack in categories on the infinitesimal site of X :

Mod!
X/k,qc : (Xinf/k)op // Cat

(S, T ) � // Modqc(OT )

(f, g) � // H0g!.

Definition 8 (Beilinson-Drinfeld, [1, Definition 7.10.3]). A D-crystal on X is a

cartesian section of the stack Mod!
X/k,qc. More precisely, a D-crystal M assigns

to every object (S, T ) a quasicoherent OT -module M(S,T ) and to every morphism

(f, g) : (S, T ) //(S′, T ′) an isomorphism

M(S,T )
//H0g!M(S′,T ′) .

The category of such will be denoted Cris!(X/k).

Example 9. Suppose X a smooth k-scheme. Then for any object (S, T ) ∈ (Xinf/k),
let pT : T //Speck denote the structure morphism of T , and set

tωX/k(T ) := Hnp!
TOSpeck.

It follows from the smoothness property of X that there exists a morphism q :
T //X of k-schemes, so that Hnp!

TOSpeck
∼= H0q!ωX/k, where ωX/k is the dualiz-

ing sheaf of top-degree differential forms.4 Thus tωX/k is a D-crystal.

Proposition 10 (Beilinson-Drinfeld, [1, Proposition 7.10.12]). If X is a smooth

k-scheme, then the category Cris!(X/k) is equivalent to the category Modr(DX/k).

About the Proof. The question is local, so assume X affine. If pr1, pr2 are the
projections from the formal completion of the diagonal, Cris!(X/k) is equivalent
to the category of quasicoherent OX -modules M equipped with isomorphisms
pr!

1M
∼= pr!

2M satisfying the obvious cocycle condition. There is a natural iso-
morphism

M ⊗OX DXpr2,⋆pr!
1M,

3I can replace “étale” more generally with “quasi-finite” or less generally with “Zariski open
immersion;” the resulting theory of D-crystals is the same in each instance.

4Observe however that ωX/k(T ) is only a truncation of the dualizing complex ωT/k .



1968 Oberwolfach Report 32/2006

and adjunction then converts the isomorphism pr!
1M

∼= pr!
2M into the structure

of a right DX-module; the cocycle condition guarantees associativity. �

Theorem 11 (Beilinson-Drinfeld, [1, Lemma 7.10.11]). Kashiwara’s Theorem
holds for D-crystals; i.e., for any closed immersion Z //X of schemes (not nec-
essarily smooth), the category of D-crystals on Z is naturally equivalent to the
category of D-crystals on X set-theoretically supported on Z.

12. The appropriate functorialities of D-crystals do not exist in general. It is more
natural not to truncate g!, and to consider instead the following (∞, 1)-stack:

HMod!
X/k,qc : (Xinf/k)op // (∞, 1)Cat

(S, T )
� // Cplx(Modqc(OT ))

(f, g) � // g!.

Definition 13. A homotopy D-crystal on X is a homotopy cartesian section of
the stack HMod!

X/k,qc. The category of such will be denoted HCris!(X/k).

Example 14. The assignment (S, T )
� //ωT/k is a homotopy D-crystal on X .

Proposition 15. If X is a smooth k-scheme, then the category HCris!(X/k) is
equivalent to the category Cplx(Modr(DX/k)).

Theorem 16. Kashiwara’s Theorem holds for homotopy D-crystals; i.e., if Z //X
is any closed immersion of schemes (not necessarily smooth), there is a natural
equivalence between the (∞, 1)-category of homotopy D-crystals on Z and the full
subcategory of the (∞, 1)-category of homotopy D-crystals on X set-theoretically
supported on X.

Conjecture 17. For any scheme X, the K-theory of the (∞, 1)-category of D-
crystals on X is naturally equivalent to K ′(X).

Strategy. Again the analogue of Kashiwara’s theorem permits a quick reduction to
the affine case. In this case it seems possible to work directly with the definition of
K-theory of (∞, 1)-categories, but since the definition is necessarily complicated,
I have not yet managed to check all the details unless X is Cohen-Macaulay. �
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Reflection theorems and the p-Sylow subgroup of K2nOF for a number
field F

Hourong Qin

Let F be a number field, OF the ring of integers in F . For any prime p and
i ≥ 1, it is interesting to know p-rankK2i(OF ), more generally, the structure of
K2i(OF ){p}, the p-Sylow subgroup of K2iOF . However, even for i = 1, we have
no answer in general. On the other hand, some relations between the p-Sylow
subgroup of K2OF for a number field F and some p-Sylow subgroup of the ideal
class group of F (ζpn) have been established, see Tate[8], Keune[4], Browkin[1] and
among others.

In the study of the ideal class group of a number field, some so called reflec-
tion theorems are useful. A classical result, in this direction, is due to Scholz. A
generalization of this result exists, see for example Theorem 10.11 in Washing-
ton[9]. However, Scholz Theorem can not be viewed as a particular case of this
generalization.

We set up a reflection theorem, which contains Scholz Theorem as a special
case.

Theorem 1. (A) Let d > 1 be a square-free integer, and let p 6= d be a regular
odd prime. For any positive integer n, let r be the p-rank of ideal class group of
Q(

√
d, ζpn + ζ−1

pn ) and s be the p-rank of ideal class group of Q(
√

d(ζpn − ζ−1
pn )).

Then

r ≤ s ≤ r +
1

2
pn−1(p − 1).

(B) Let d < −1 be a square-free integer, and let p 6= −d be a regular odd
prime. For any positive integer n, let s be the p-rank of ideal class group of
Q(

√
d, ζpn + ζ−1

pn ) and r be the p-rank of ideal class group of Q(
√

d(ζpn − ζ−1
pn )).

Then

r ≤ s ≤ r +
1

2
pn−1(p − 1).

Note that for p ≡ 3 (mod 4), replacing d by −pd, we see that (A) and (B) in

the theorem are in fact the same, and if p ≡ 3 (mod 4), then Q(
√

d(ζpn − ζ−1
pn )) =

Q(
√−pd, ζpn + ζ−1

pn ). So, if we let p = 3, n = 1, then we get

Corollary (Scholz Theorem). Let d > 1 be a square-free integer, and let r, s

be the 3-rank of ideal class groups of Q(
√

d) and Q(
√
−3d), respectively. Then

r ≤ s ≤ r + 1.

The following statements were first conjectured by H.Gangl.
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Conjecture. Let d be a negative square-free integer and F = Q(
√

d). Then
(i) if d 6≡ 6 (mod 9), then 3|♯(K2OF ) implies 3|♯Cl(OF );
(ii) if d ≡ 6 (mod 9), then 9|♯(K2OF ) implies 3|♯Cl(OF ).

(i) was proved by Browkin[1].
As an application of Theorem 1, we have the following theorem, which implies

both (i) and (ii).

Theorem 2. (A) Let d be a negative square-free integer and F = Q(
√

d).
Then
(i) if p 6= 3 is a regular prime or p = 3, d 6≡ 6 (mod 9), then p|♯K2OF implies
p|♯Cl(O

Q(
√

d, ζp+ζ−1
p ));

(ii) if d ≡ 6 (mod 9), then 9|♯K2OF implies 3|♯Cl(OF ).

(B) Let d be a positive square-free integer, F = Q(
√

d), and p ≡ 1 (mod 4) a
regular prime. Then p|♯K2OF implies p|♯Cl(O

Q(
√

d(ζp−ζ−1
p ))).

We now turn to the higher K-groups of the ring of integers in a number field
F . For a finite set of primes of F , we use OS for S-integers in F . Rognes and
Weibel[6] gives the results on Kn(OS){2}. Let n = 2i ≥ 2. Based on [6] and the
Voevosky and Rost Theorem, one has

Theorem[10]. If p is an odd prime, then Kn(OS){p} ∼= H2(OS [ 1p ], Zp(i + 1)).

Let F be an abelian extension of Q with degree d. Let F∞/F be the cyclotomic
Zp-extension and µq ⊂ F with q = p if p > 2 and 4 if p = 2. Let q

0
be the largest

power of p such that µq0 ⊂ F . Let F0 = F and Fn be the unique intermediate
field for F∞/F such that [Fn : F ] = pn. Let M/F∞ be the maximal abelian
p-extension unramified outside p. Let Γ = Gal(F∞/F ) and Γn = Γ/Γpn

. From
Iwasawa, the Galois group Gal(M/F∞) is a noetherian Γ-module with no non-
trivial finite Γ-submodule. Let Gal(M/F∞)• be the twist Λ-module of the usual

Λ-module Gal(M/F∞). Iwasawa showed that H = Λd/2

Gal(M/F∞)•/t(Gal(M/F∞)•) is

a finite group, here t(Y ) denotes the torsion Λ-submodule of any Λ-module Y.
We denote by H(i) the Tate twist of the usual Λ-module H . Let f(T ) be the
characteristic polynomial of the Γ-module Gal(M/F∞)•.

Theorem 3 (Ji and Qin).

♯K2i(OFn){p} = ♯H(i)Γn ·
n

Π
j=0

|f(κ(γ
0
)−iζpj − 1)|−1

vj
,

where γ
0

is a fixed generator of Γ and κ : Γ −→ 1 + q
0
Zp is the isomorphism such

that

γ(ζ) = ζκ(γ), for all γ ∈ Γ and ζ ∈ W = ∪n≥0µpn ,

and | · |vj is the standard valuation on the fields Qp(ζpj ) such that |ζpj −1|vj = 1/p
for all j ≥ 1, and | · |v0 = | · |p on Qp such that |p|p = 1/p.
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Rigidity for A1-representable theories

Jens Hornbostel

(joint work with Serge Yagunov)

This is joint work with Serge Yagunov. The details may be found in [HY].

We establish rigidity results for graded cohomology type functors E on smooth
varieties over an infinite base field k. This work generalizes the results of [PY] and
[Ya] where the special case of orientable theories E resp. stably A1-representable
theories on smooth varieties over algebraically closed fields have been studied.

Consider some category of schemes S over a base scheme B together with a
cohomology theory E∗ : Sop → Ab. Then we say that E∗ satisfies rigidity if for

every scheme X
χ→ B, any two sections σ0, σ1 : B → X of the structure morphism

χ induce the same homomorphism σ∗
0 = σ∗

1 : E(X) → E(B). In classical topology,
the rigidity property is an obvious consequence of homotopy invariance of coho-
mology theories. However, in algebraic geometry A1-invariance does not always
imply rigidity. It only holds under certain restrictions on S and the cohomology
theory E∗. In particular, rigidity fails for K1 with integral coefficients. Rigid-
ity results for finite coefficients have been established for algebraic K-theory by
Suslin, Gabber and others (see [Su, Ga, GT]).

Over algebraically closed fields, Panin and Yagunov [PY] establish a set of ax-
ioms for transfer maps and show they are satisfied for any orientable theory over
algebraically closed fields (e.g., motivic cohomology, algebraic K-theory or alge-
braic cobordism). Then they deduce a rigidity theorem for orientable theories with
finite coefficients. In [Ya], Yagunov shows that these results carry over to all theo-
ries that are representable in Voevodsky’s stable A1-homotopy category. Examples
include hermitian K-theory, Balmer Witt groups assuming char(k) 6= 2 [Ho], and
stable cohomotopy groups. Stable A1-representability allows Yagunov to construct
algebraic “Becker-Gottlieb transfers” with respect to a class of morphisms Ctriv,
which is rather small but still large enough to conclude.
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Assuming certain additional hypotheses that can be checked in many cases of
interest (see Corollary 0.3 below), we generalize these results from algebraically
closed fields to arbitrary infinite ones. (The case E = K recovers Gabber’s rigidity
theorem for algebraic K-theory.)

Theorem 0.1. Let k be a field, and let R be a henselian local ring over k with an
infinite field of fractions Frac(R) = F . Assume that E = E∗∗ is a contravariant
bigraded functor on the category Sm/k of smooth schemes over k that is repre-
sentable in the stable A1-homotopy category and that ℓE = 0 for ℓ ∈ Z invertible
in R. Let f : M → Spec R be a smooth affine morphism of (pure) relative dimen-
sion d, and s0, s1 : Spec R → M two sections of f such that s0(p) = s1(p), where p
is the closed point of Spec R. Assume moreover that E is normalized with respect

to the field F . Then the two maps E(M)
s∗

i→ E(Spec R) are equal (i = 0, 1).

Corollary 0.2. Let E and k be as in Theorem 0.1, V be a smooth variety over
k, P ∈ V (k) be a k-rational point of V , and R = Oh

V,P . Then

E(Spec R)
∼=→ E(Spec k)

is an isomorphism.

As the classical proofs for K-theory and the proofs of Panin and Yagunov, the
proof of the Theorem relies on the existence of transfer maps fulfilling certain
properties and on homotopy invariance (i.e. E(X) ∼= E(X × A1) if X smooth)
whereas for the Corollary one needs moreover that E commutes with colimits.
Nevertheless, some parts of the proof are more considerably more complicated, for
example when dealing with divisors having points corresponding to non-separable
field extensions. Corollary 0.2 implies the following.

Corollary 0.3. Let X ∈ Sm/k, V be a smooth variety over k, P ∈ V (k), and F =
Frac(Oh

V,P ). Let also (as in Theorem 0.1) E be a representable cohomology theory

such that ℓE = 0 for some ℓ ∈ Z invertible in F . If the map E(P2
XL

) → E(P1
XL

)
is an epimorphism for any finite separable field extension L/F (e.g. E = MGL,
Hmot, or K), then the map

E(X ×Speck SpecOh
V,P ) → E(X)

is an isomorphism. If E is represented by a commutative motivic ring spectrum,
then it is sufficient to check the epimorphism condition for X = Spec k.

There is work in progress combining the above techniques with my joint work
with B. Calmes [CH] on transfers for Witt groups. This will hopefully imply the
above rigidity theorems unconditionally for Witt groups in all degrees.
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On the p-adic Beilinson conjecture for number fields

Rob de Jeu

(joint work with Amnon Besser, Paul Buckingham and Xavier-François Roblot)

1. The p-adic Beilinson conjecture

For a totally real number field k we consider a p-adic analogue of Borel’s theorem
[6]. Let d = [k : Q], Ok the ring of algebraic integers of k, σ1, . . . , σd the embed-

dings of k into R, {a1, . . . , ad} a Z-basis of Ok, so that D
1/2,∞
k = det(σi(aj)) is a

square root in R of the discriminant of k. If n ≥ 2 is even then K2n−1(k) is torsion,
but if n ≥ 2 is odd then K2n−1(k) is a finitely generated group of rank d. For such
n, let {α1, . . . , αd} be a Z-basis of K2n−1(k)/torsion ∼= K2n−1(Ok)/torsion.

For any n ≥ 2 Borel defined a regulator map reg∞ : K2n−1(C) → R, and for
every embedding σ : k → C we get a composition regσ

∞ : K2n−1(k) → K2n−1(C) →
R. With Rn,∞(k) = det(regσi∞(αj)) for n ≥ 2 odd, a special case of Borel’s theorem
is:

Theorem 1. For n ≥ 2 odd, ζk(n)D
1/2,∞
k = q(n, k)Rn,∞(k) with q(n, k) in Q∗.

Now let p be a prime, F ⊂ Qp the topological closure of the Galois closure

of k embedded in Qp in any way, and OF the valuation ring of F . We define

D
1/2,p
k = det(σp

i (aj)), a square root in F of the discriminant of k. By [2], for any
finite extension F ′ of Qp there is a syntomic regulator

regp : K2n−1(OF ′) → H1
syn(Spec(OF ′)/OF ′ , n) ∼= F ′ ,

hence for every embedding τ : k → F we get a composition

regτ
p : K2n−1(k) ∼= K2n−1(Ok) → K2n−1(OF ) → F .

If τ1, . . . , τd are the embeddings of k into F then we let Rn,p(k) = det(regτi
p (αj))

in F be the p-adic regulator.
The interpolation formula for p-adic L-functions [1, 8, 9, 11] suggests to replace

ζk(n) in Theorem 1 with Lp(n, ω1−n
p , k)/Eulp(n, k), where ωp is the Teichmüller
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character for p and Eulp(s, k) is the reciprocal of the Euler factor for p in ζk(s).
We therefore make the following conjecture (cf. [14]), which is independent of any
choices.

Conjecture 2. For k a totally real number field, n ≥ 2 odd, and any prime p, the
following holds:

(1) in F we have

Lp(n, ω1−n
p , k)D

1/2,p
k = qp(n, k)Eulp(n, k)Rn,p(k)

for some qp(n, k) in Q∗;
(2) in fact, qp(n, k) = q(n, k);
(3) Lp(n, ω1−n

p , k) and Rn,p(k) are non-zero.

2. A motivic version of the conjecture

If E is a number field, k/Q any (finite) Galois extension with Galois group G then
we let ME = E ⊗Q k and K2n−1(k)E = E ⊗Z K2n−1(k), which we view as left
E[G]-modules. Then Conjecture 2 can be extended to a conjecture for certain
idempotents in E[G] and certain n ≥ 2.

For an idempotent π in E[G] let ME
π = πME and K2n−1(M

E
π ) = πK2n−1(k)E .

Using fixed embeddings φ∞ : k → C and φp : k → Qp we obtain E-bilinear
pairings

(·, ·)∞ : E[G]π × ME
π → E ⊗Q C

and

(·, ·)p : E[G]π × ME
π → E ⊗Q F ,

where F ⊂ Qp is the topological closure of φp(k). Combining φ∞ and φp with the
maps reg∞ and regp we also get E-bilinear pairings when n ≥ 2,

[·, ·, ]∞ : E[G]π × K2n−1(M
E
π ) → E ⊗Q R

and

[·, ·, ]p : E[G]π × K2n−1(M
E
π ) → E ⊗Q F .

Then dimE(ME
π ) = dimE(E[G]π) and dimE(πK2n−1(k)E) ≤ dimE(E[G]π),

but for n ≥ 2 equality in the latter holds in precisely two cases. They are, if k′ is
the fixed field of the kernel of the representation ρ of G on E[G]π:

(i) k′ is totally real and n is odd;
(ii) k′ is a CM field and n is even, and the (unique) complex conjugation in

Gal(k′/Q) acts as multiplication by −1 on E[G]π.

In those cases we fix ordered E-bases of E[G]π, ME
π and K2n−1(M

E
π ), and for

∗ = p or ∞ we let D(ME
π )1/2,∗ be the determinant of (·, ·)∗, Rn,∗(ME

π ) that of
[·, ·]∗, all computed with respect to the chosen bases.

In either case one can define, using the embeddings of E into C (resp. Qp), an
E⊗QC-valued L-function L(s, ρ⊗id, Q) (resp. an E⊗QQp-valued p-adic L-function
Lp(s, ρ⊗ω1−n

p , Q)) corresponding to ρ, as well as Eulp(s, ρ⊗ id, Q), the reciprocal

of an Euler factor for p in L(s, ρ⊗ id, Q). Lp(s, ρ⊗ω1−n
p , Q) is not identically zero.
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We can then formulate the following refinement and generalization of Conjec-
ture 2 (cf. [14]), which is again independent of any choices made.

Conjecture 3. For n ≥ 2 and p prime, in (i) and (ii) above the following holds:

(1) in E ⊗Q C we have

L(n, ρ ⊗ id, Q)D(ME
π )1/2,∞ = e(n, ME

π )Rn,∞(ME
π )

for some e(n, ME
π ) in (E ⊗Q Q)∗;

(2) in E ⊗Q Qp we have

Lp(n, ρ ⊗ ω1−n
p , Q)D(ME

π )1/2,p = ep(n, ME
π )Eulp(n, ρ ⊗ id, Q)Rn,p(M

E
π )

for some ep(n, ME
π ) in (E ⊗Q Q)∗;

(3) in fact, ep(n, ME
π ) = e(n, ME

π );
(4) Lp(n, ρ ⊗ ω1−n

p , Q) and Rn,p(M
E
π ) are non-zero.

Remark 4. Part (1) is a special case of a conjecture by Gros (see [13, p. 210]).

For parts (1)-(3) we can prove the following result, building on [10], [12] and [4].

Proposition 5. Let N ≥ 2 and k = Q(µN ). Assume that E contains a root of
unity of order equal to the exponent of G and let π be the idempotent corresponding
to an irreducible character χ of G. Then parts (1), (2) and (3) of Conjecture 3
hold for ME = πE[G] and n ≥ 2 whenever it applies, i.e., when χ maps complex
conjugation to (−1)n−1.

For p = 2 or 3 it follows from irrationality results for some values of certain
p-adic L-functions [7, 5] that the last part of the conjecture also holds in a few
cases of Proposition 5, but in general one can only verify this numerically.

We also verified Conjecture 3 numerically for certain k/Q, either totally real
or CM, with G ∼= S3, D8 or S3 × Z/3Z, and π corresponding to an irreducible
non-abelian representation ρ of G. Full details will appear in [3].
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The Gersten conjecture for Milnor K-theory

Moritz Kerz

Define the Milnor K-ring of a semi-local commutative ring A as the graded ring

KM
∗ (A) = T∗(A

×)/({a ⊗ (1 − a)|a, 1 − a ∈ A×})
where T∗ denotes the tensor algebra of an abelian group. Let Z(n) be Beilinson’s
motivic complex in the Zariski topology. One of Beilinson’s conjectures on motivic
cohomology states:

Theorem 1. For an essentially smooth semi-local ring A over an infinite field
and n > 0 there exists an isomorphism

η : KM
n (A)

∼−→ Hn(Spec(A), Z(n)) .

If A is a field this theorem was proved by Nesterenko/Suslin [5] and Totaro [8].
The surjectivity of the canonical map η : KM

n (A) → Hn(Spec(A), Z(n)) under the
conditions of Theorem 1 was shown by Gabber [2] and Elbaz-Vincent/Müller-Stach
[1]. Furthermore it was known that η is injective modulo torsion.

By what has been proved in the literature it remains to show the exactness of
the Gersten complex for X = Spec(A):

0 −→ KM
n (A) −→ KM

n (F ) −→ ⊕x∈X(0)KM
n (k(x)) −→ ⊕x∈X(1)KM

n−1(k(x)) −→ · · ·
The exactness of this complex – except at the first place – was established in

[2],[1],[7],[4].
Our main result is:

Theorem 2. Let A be a regular connected semi-local ring containing an infinite
field. Let F = Q(A) be the fraction field of A. Then the natural homomorphism

KM
n (A) −→ KM

n (F )

is (universally) injective.



Algebraic K-Theory 1977

The proof of Theorem 2 is contained in [3]. It is somewhat analogous to Ojan-
guren’s result about the Witt ring [6].

We use two new results from Milnor K-theory of local rings which are of interest
in themselves:

The étale excision exact sequence for motivic cohomology motivates the follow-
ing result which was suggested to hold by Gabber [2]. Let A ⊂ A′ be a local
extension of factorial semi-local rings with infinite residue fields and let f ∈ A be
such that A/(f) = A′/(f).

Lemma 3. The diagram

KM
n (A) −−−−→ KM

n (Af )


y



y

KM
n (A′) −−−−→ KM

n (A′
f )

is co-Cartesian.

The second new result is a generalization of the well known short exact sequence

0 −→ KM
n (F ) −→ KM

n (F (t)) −→ ⊕πKM
n−1(F [t]/(π)) −→ 0

to local rings.
Let A be a semi-local ring with infinite residue fields. We define in some ap-

propriate way Milnor K-groups (denoted Kt
∗(A, p)) of the ring A[t]Sp where Sp is

the multiplicative set consisting of all monic polynomials coprime to some fixed
monic polynomial p ∈ A[t].

Then we have:

Lemma 4. There exists a split short exact sequence

0 −→ KM
n (A) −→ Kt

n(A, p) −→ ⊕πKM
n−1(A[t]/(π)) −→ 0

where the direct sum is over all irreducible monic polynomials π ∈ A[t] which are
coprime to p.

Here irreducible monic means that the polynomials cannot be factored into
non-trivial monic polynomials in A[t].

Remark 5. Using Lemma 4 one can construct norms for finite étale extensions
of semi-local rings with infinite residue fields. If the rings contain an infinite field
these norms are in fact independent of the generators chosen (compare [3]).
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Transfers for Witt groups and Grothendieck duality

Baptiste Calmès

(joint work with Jens Hornbostel)

This talk is mainly about the definition of transfers (or push-forwards) for Witt
groups. They should satisfy the usual requirements: compatibility to composi-
tion, to base change, and a projection formula should hold, as it is the case for
other theories of cohomological flavor (K-theory, Chow groups ...). We define such
transfers [1] and prove those properties in a general abstract setting that could be
summarized as follows:

Let us consider a collection of symmetric monoidal triangulated categories, each
equipped with an internal Hom adjoint to the tensor product, and some exact
monoidal functors f∗ between them with reasonable composition properties (2-
functors). If these f∗ have right adjoints f∗ (as usual functors), which themselves
have right adjoints f ! and some canonical morphisms (such as the projection for-
mula morphism f∗A⊗B → f∗(A⊗ f∗(B))) are isomorphisms, then we can define
natural transfers between Witt groups associated to some dualities Hom(−, f !L)
and Hom(−, L) where L is a dualizing object. They satisfy a projection formula,
are compatible with base change and composition.

We apply these results in algebraic geometry, to Witt groups of the bounded
derived category of coherent sheaves over a regular scheme, using results from
the theory of duality (Grothendieck, Deligne, Hartshorne, Verdier, see [2] and [4]),
which produces a right adjoint f ! to the derived functor Rf∗ for a proper morphism
f . Thus, when f : X → Y is a proper map between regular Noetherian schemes
of finite Krull dimension and L is a line bundle over Y , we obtain a transfer map

W ∗(X, f !L) → W ∗(Y, L)

satisfying the above mentioned requirements.
When X and Y are smooth over a regular Noetherian base scheme R of finite

Krull dimension, f !L has a concrete description and this transfer can be reinter-
preted as

W i+dim X(X, ωX ⊗ f∗L) → W i+dim Y (Y, ωY ⊗ L)
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where ω is the canonical sheaf. This shows that the line bundles are essential in
this framework, and that we cannot restrict to the case where all line bundles are
the structural sheaf.

We then obtain two applications. Firstly, this can be used to define a category
of Witt-correspondences in the spirit of [3] but in which the objects are pairs
(X, L), where X is a smooth projective scheme over R and L is a (maybe shifted)
line bundle over X . As in the cases of Chow groups or K-theory, this category is
the natural one to express interesting decompositions.

Secondly, this provides a dévissage theorem. Let f : Z → X be a closed
immersion between regular Noetherian schemes of finite Krull dimension, and L
a line bundle on X . The transfer mentioned above factorizes through the Witt
group of X with support in Z, and it is an isomorphism onto this group:

W ∗(Z, f !L) ≃ W ∗
Z(X, L)
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Modules over Motivic Cohomology

Paul Arne Østvær

(joint work with Oliver Röndigs)

In joint work with Oliver Röndigs we introduce a category of motives for noetherian
and separated base schemes of finite Krull dimension. Its construction is based on
highly structured models for the motivic stable homotopy category [1], [2]. For
fields of characteristic zero we obtain an equivalence with Voevodsky’s big category
of motives.

Denote by Sm the smooth Nisnevich site of a noetherian and separated scheme
S of finite Krull dimension. The category Mtr of motivic spaces with transfers
consists of contravariant additive functors from Cor – the Suslin-Voevodsky cat-
egory of finite correspondences of S – to simplicial abelian groups. There exists
an evident forgetful functor from Mtr to motivic spaces M induced by the graph
Sm → Cor. Its left adjoint functor Ztr adding transfers associates to any scheme
U ∈ Sm the representable motivic space with transfers U tr. Letting ⊗tr denote
the tensor product in Mtr we note that the transfer functor is determined by
Ztr(U ×∆n)+ = U tr⊗tr Z[∆n]. In [5], we construct the (projective) motivic model
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structure on Mtr such that the forgetful functor to motivic spaces detects and
preserves fibrations and weak equivalences. This model structure represents the
starting point of homotopy theory of motivic spaces with transfers, analogously
to the (injective) motivic model structure on M introduced by Morel-Voevodsky
[3]. Implicitly in the above we have employed the Nisnevich topology; in par-
ticular, whether a map between motivic spaces with transfers is a motivic weak
equivalences can be tested on Hensel local schemes.

Let S1
s denote the simplicial circle. The category MSS of motivic symmetric

spectra is defined by taking the suspension functor with respect to the cofibrant
motivic space T = S1

s ∧ G, where G is a cofibrant replacement of (A1 r {0}, 1).
Similarly, by applying Ztr to T we obtain the category MSStr of motivic symmetric
spectra with transfers. Let Gtr

m denote Ztr(A1 r {0}, 1), and ChSStr
+,Gtr

m[1] denote
the symmetric spectra of connective chain complexes of presheaves with transfers
with respect to the normalized chain complex of T , i.e. the shifted copy of Gtr

m in
degree one. The symmetric spectrum category ChSStr

+,P1 is defined by suspending

with respect to Ztr(P1, 1).
By [5], there exists a zig-zag of symmetric monoidal Quillen equivalences be-

tween MSStr and MSStr
P1 , and likewise for ChSStr

+,P1 and ChSStr
+,Gtr

m[1]. Now

since Ztr(P1, 1) is cofibrant and discrete, the Dold-Kan equivalence yields a lax
symmetric monoidal Quillen equivalence between MSStr

P1 and ChSStr
+,P1 [5]. The

stable homotopy theoretic forerunner of this result was proved in [7].

Let MZ denote the motivic Eilenberg-MacLane symmetric spectrum. On ac-
count of the monoid axiom – see [6] – for motivic symmetric spectra [2], the module
category of MZ acquires a model structure: A map between MZ-modules is a weak
equivalence if the underlying map of motivic symmetric spectra is a stable weak
equivalence. In [5] we compare MZ − mod with MSStr.

Theorem. The model categories MZ − mod and MSStr are Quillen equivalent
when the base scheme is a field of characteristic zero.

Combining this with the Quillen equivalence between ChSStr
+,Gtr

m[1] and

ChSStr
Gtr

m[1] – which holds for arbitrary base schemes as above – we get an equiv-

alence between the homotopy category Ho(MZ −mod) and Voevodsky’s big cat-
egory of motives consisting of Gtr

m[1]-spectra of non-connected chain complexes of
sheaves with transfers having homotopy invariant cohomology sheaves [9].

The proof of the theorem makes use of assembly maps of motivic functors [1]
and dualizability of the generators of the motivic stable homotopy category. We
refer to the note [4] for an outline of the proof and to [5] for complete proofs.

In conclusion, having established the connection between modules over MZ

and Voevodsky’s theory of motives, we mention some additional properties of
MZ −mod. First, localization for an open embedding and its closed complement
holds in view of localization for motivic symmetric spectra. Second, there exists
a six functor formalism on the level of MZ-modules. These properties are closely
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related to the joint work of Cisinski and Deglise communicated at the meeting.
Moreover, by making use of localization, it appears that the equivalence in the
above theorem extends to arbitrary base schemes over fields of characteristic zero.
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[4] O. Röndigs and P. A. Østvær, Motives and modules over motivic cohomology, C. R.

Acad. Sci. Paris, Ser. I 342 (2006), 571-574.
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Algebraic Cycles and Additive Chow Groups

Spencer Bloch

“Mighty oaks from little acorns grow.”

Introduction

Additive algebraic K-theory means roughly “replace the algebraic group GL by
the lie algebra gl where ever you see it”, [L]. Given the central role of algebraic
cycles in motivic cohomology, one may ask for an algebraic cycle interpretation of
additive K-theory. More than a simple restatement of the theory, such a geometric
reformulation suggests new problems. What are motivic sheaves over k[t]/(t2)?
What is the tangent space to the space of motives?

One should, I believe, have the following picture in mind. An algebraic circle
is represented by the pair A1, {0, t} for any t 6= 0. It is natural, geometrically, to
think of the limiting situation t → 0 as represented by

(1) A1, 2(0)

As a simple example, for k a field

(2) H1
M (k, Z(1)) = Pic(A1

k, {0, t}) = Gm(k) = k×,

It is natural to write for the corresponding additive group

(3) TH1
M (k, Z(1)) := Pic(A1

k, 2(0)) = Ga(k) = k.
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A word of warning. The notation THM suggests tangent space, but this is
perhaps not the precise analogy. A better picture would be a sort of non-semi-
stable degeneration, with a group like Gm which is constant in the parameter t
degenerating to an additive group for t = 0.

Hyperbolic versus Euclidean

Another analogy is the picture of the hyperbolic metric on a disk of expand-
ing radius. As the radius tends to ∞, the metric tends to the euclidean metric.
The link with motivic cohomology is summarized by the following 4-term exact
sequence

(4)

0 −→H1
M (C, Z(2)) −→ B2(C)

δ−→ C× ⊗ C× −→K2(C) −→ 0


yreg



yvol

R
=−→ R

Here B2(C) has generators [x]2, x ∈ C − {0, 1}, and vol[x]2 is the hyperbolic
volume of the tetrahedron in hyperbolic 3-space with vertices at infinity at the
points 0, 1,∞, x ∈ P1(C). One defines δ[x]2 = x⊗(1−x), and the symbol [x]2 ∈ B2

satisfies the classical 5-term relation.
The additive analogue of 4 was worked out in [BE] using a K-theoretic defini-

tion of the additive motivic group TH1
M(k, Z(2)) involving the relative K-group

K2(OA1,0, (t
2)):

(5)

0 −→ TH1
M (k, Z(2)) −→ TB2(k)

Tδ−−→ k ⊗ k× a⊗b7→adb/b−−−−−−−→ Ω1
k −→ 0



yρ



yρ

k
=−→ k

By definition, TB2(k) is a k×-module (not a k-vector space!) with generators 〈x〉2
which satisfy the 4-term information-theory equation first identified in this context
by Kontsevich

(6) 〈x〉2 − 〈y〉2 + x ⋆ 〈y/x〉2 + (1 − x) ⋆ 〈(1 − y)/(1 − x)〉2 = 0

The regulator map ρ in (5) is defined by ρ〈x〉2 = x(1 − x). One might hope that
ρ〈x〉2 represents some Euclidean polyhedron with Euclidean volume x(1−x). The
action of k× on the target of ρ is by the cube of the standard character, suggesting
an interpretation in terms of volume in R3.

Cycles

We consider algebraic cycles on A1×(P1)n, where A1 has parameter t and the P1

have parameters ti, 1 ≤ i ≤ n. We have divisors σi : ti = 1 and δi = (ti)0 − (ti)∞.
Fix m ≥ 2. A closed subvariety Z ⊂ A1 × (P1)n will be said to be congruent to 1
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mod tm if scheme-theoretically

(7) Z · {tm = 0} ⊂
n⋃

i=1

Z · σi

We consider algebraic cycles z =
∑

nνZν such that all faces Zν ·δI (I multi-index)
have codim. ≥ #(I) in Zν and are congruent to 1 mod m. Write

(8) TmCHp(k, q) = TmH2p−q
M (k, Z(p))

for the resulting higher Chow groups, generated by cycles of codim. p on A1 ×
(P1)q−1. The case of 0-cycles has been worked out by K. Rülling.

Theorem 1 (K. Rülling, [R]). TmHn
M (k, Z(n)) ∼= Wm−1Ω

n−1, the de Rham-Witt
groups built from the “big” Witt ring on k.

Remark 2. Rülling uses a slightly different version of the congruence condition (7).
I have checked casually that his results hold under (7), but this should perhaps be
verified more carefully.

A cycle-theoretic version of (5) involves cycles of dimension 1. This has been
considered by J. Park [P]. His main result is the construction of a non-trivial
regulator map

(9) ρm,n : TmCHn−1(k, n) → Ωn−3
k .

(Of particular interest is the case n = 3, ρm,3 : TmCH2(k, 3) → k.)

An abstract regulator construction

In trying to generalize Park’s regulator construction to cycles of dim. r > 1,
one is led to consider meromorphic differential forms

(10)
ti0 − 1

tm+1
dti1/ti1 ∧ . . . ∧ dtir /tir

on A1
t × (P1

ti
)n. The most subtle aspect of his work, the careful control of signs

necessary to verify that the regulator he constructs is trivial on boundaries of two-
dimensional cycles on A1 × (P1)n+1, will not be attempted here; but let me sketch
the construction of a generalized regulator on cycles.

Let X be a smooth, projective variety, and let D0, . . . , Dr be effective Cartier
divisors on X . Let Z ⊂ X be a closed subvariety of dimension r. We assume all
intersections Z ·DI are either empty or have the correct dimension. In particular,
Z ∩ ⋂r

0 Di = ∅.
For z ∈ Z a closed point, we have surjections

(11) Hr
z (Z, Ωr

Z/k) ։ Hr(Z, Ωr
Z/k)

deg
։ k

(The group on the left is local cohomology. We do not assume Z smooth.)
Let ω be a meromorphic Kähler r-form on X which is regular on X − ⋃r

0 Di.

(For example, if X = A1
t × (P1

ti
)n one might take ω =

ti0−1

tm+1 dti1/ti1 ∧ . . .∧ dtir/tir

with D0 : t = 0 and Dj = (tij )0 + (tij )∞, 1 ≤ j ≤ r.
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Chose i 6= j ∈ [0, r] and define X(ij) = (Di + Dj) ∩
⋂

h 6=i,j Dh (resp. Z(ij) =

X(ij) ∩ Z). The r open sets X − (Di + Dj), X − Dh, h 6= i, j cover X − X(ij),
and we may view ω as a Cech r−1 cocycle representing a class ω(ij) ∈ Hr−1(X −
X(ij), Ωr

X/k) (resp. by restriction ωZ(ij) ∈ Hr−1(Z − Z(ij), Ωr
Z/k).)

Z(ij) is a finite set of points which we can write as a disjoint union Z(ij) =
Zj(i)∐Zi(j), where Zj(i) ⊂ Z−Z∩Dj. Write degj(i) ∈ k for the image of ωZ(ij)
under the composition

(12) Hr−1(Z − Z(ij), ωr)
∂−→ Hr

Z(ij)(Z, ωr)
proj−−−→ Hr

Zj(i)
(Z, ωr)

(11)−−→ k

Clearly, degj(i) = − degi(j).
Now take ν ∈ [0, r] with ν, i, j all distinct. Note the sets Zj(ν) and Zj(i)

coincide. (They are the intersection of Z with all the Dh, h 6= j.) Furthermore,
the open coverings

X − (Di + Dj), X − Dh, h 6= i, j(13)

X − (Dν + Dj), X − Dh, h 6= ν, j

agree upto reordering as open coverings of X −X(ij)−Dj = X −X(νj)−Dj . It
follows that

(14) degi(j) = − degj(i)
(∗)
= ± degj(ν) = ∓ degν(j).

But now, for a fourth index µ, the identity (*) above gives

(15) degi(j) = ± degν(j) = ± degν(µ)

We conclude that, upto a sign which depends on i, j and the ordering of the divisors
Dh, the quantity

(16) degj(i) ∈ k

is independent of the choice of i, j.

Example 3. When Z is a curve (r = 1) the poles of ω|Z are supported on Z ∩
(D0 + D1). Our construction then amounts to taking residues along those poles
lying on Z ∩ D0.
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Weil-étale cohomology of mixed motives

Stephen Lichtenbaum

Let M be a motive over Q, with L-function LM (s). We would like to describe
the special value L∗

M (0) up to a rational number in terms of Weil-étale Euler
characteristics and relate this to the conjectures of Deligne-Beilinson-Scholl (DBS)
which give an alternative description of L∗

M (0). (In later work, we hope to extend
this to a comparison of the Weil-étale conjecture with the more refined conjectures
of Bloch-Kato-Fontaine -Perrin-Riou).

The Weil-étale story is highly conjectural, since we cannot define the cohomol-
ogy groups except for M = Z, but we can make compelling guesses.

In the DBS world we associate with M finite-dimensional Q-vector spaces
H0

f (M), H1
f (M), H1

c (M), H2
c (M), HB(M)+ and tM and a map αM : HB(M)+R →

(tM )R.
Note that Hi

c(M) = HomQ(H2−i
f (M∗(1), Q), where M∗ is the dual motive to

M .
In the DBS world the folowing exact sequence of finite-dimesional real vectoer

spaces is conjectured to exist:

0 → H0
f (M)R → Kerα → H1

c (M)R → H1
f (M)R → Cokerα → H2

c (M)R → 0 .

The ”determinant” of this sequence with respect to the rational structures on its
component real vector spaces should be equal to L∗

M (0), up to a rational number.
(note that Kerα and Cokerα do not have natural rational structures, but their
difference does, thanks to the exact sequence:

0 → Kerα → HB(M)+R → (tM )R → Cokerα → 0 .

We conjecture that there exist finite-dimensional vector spaces

H1
Wc(M), H2

Wc(M), H1
Wc(Ma), H2

Wc(Ma)

and isomorphisms β : H1
Wc(M)R → H2

Wc(M)R and γ : H1
Wc(Ma) → H2

W c(Ma)
given by cup-product with a fixed element θ in H1

W (R) such that L∗
M (0) is equal to

det(β)/det(γ) up to a rational number. Here HWc denotes Weil-étale cohomology
with compact support. These groups are vey closely related to cohomology groups
of the ”critical” motive E functorially attached to M by Scholl.

This conjecture is analogous to conjectures on zeta-functions of varieties over
finite fields made by the author and Thomas Geisser.

These vector spaces should be related by the exact sequences (defined over Q):

0 → H0
f (M) → HB(M)+ → H1

Wc(M) → H1
f (M) → 0

0 → H1
c (M) → H2

Wc(M) → H2
Wc(Ma) → H2

c (M) → 0

and an isomorphism H1
Wc(Ma) → tM .
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These relations and the cup-product isomorphisms imply the DBS eact sequence
and the equivalence of the two formulas for L∗

M (0).
Explicit descriptions of these groups and maps can be given when M ia a 1-

motive and when M is a cohomology motive coming from a projective non-singular
variety.

Reporter: Moritz Kerz
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