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Introduction by the Organisers

This workshop was the second meeting at Oberwolfach of this kind, following
after a highly successful previous meeting in 2002. Again, the meeting was very
well attended with over 38 participants from Germany, Europe, and the U.S.A.
Most attendees were senior researchers but there was also a handful of post-docs
and graduate students. The organizers feel that this mix greatly enhanced the
educational outreach and impact of the meeting, which is a significant target in
its own right.

The wide range of talks reported here reflected the interdisciplinary breadth of
the workshop, with research topics ranging from the physical and mathematical
intricacies of tropical convection on the one hand to the abstract geometric in-
terpretations of the governing PDEs of atmosphere–ocean fluid dynamics on the
other. This ambitious breadth of research lies at the heart of this interdisciplinary
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workshop and it provided a very stimulating environment for lively talks and dis-
cussions at Oberwolfach.

The common thread running through the mathematical challenge of atmosphere
and ocean dynamics is the inherent multiscale nature of these vast dynamical sys-
tems, in which spatial scales interact nonlinearly across scales from millimetre-size
rain drops to planetary large-scale waves spanning the globe. Concomitant with
the vast range of spatial scale is a range of temporal scales from a few seconds
for sound waves to many years for oceanic vortices. A persistent theme of the
workshop was how to tackle these multiscale problems theoretically and numeri-
cally. Progress was reported on the difficult problem of tropical convection, which
features very intricate micro-physics and is unresolvable in its details on present-
day supercomputers. Work describing the space–time organization of convection
over a broad range of scales is currently underway by a number of researchers and
the workshop gave an up-to-date snapshot of a number of models and approaches.
Similar approaches in boundary layer modelling were reported on as well.

Viewed over long time scales the faster processes in the atmosphere and oceans
begin to resemble stochastic noise and a number of theoretical talks aimed to model
the low-frequency variability of the global system based on simplified stochastic
representations for the fast processes. This links naturally to the problem of
integrating stiff PDEs due to widely different temporal and spatial scales, and a
number of talks presented progress in the numerical analysis of schemes that can
tackle these stiff systems.

From a physical point of view the distinction between fast and slow processes
often overlaps with the distinction between wavelike and vortical motions and
a number of talks addressed averaging methods and the nonlinear interactions
between fast waves and slow vortices. This overlapped with some theoretical
developments in the area of constrained PDEs, in which fast waves are filtered
ab initio in some manner. The resulting constrained PDE system has a smaller
phase space and typically can be viewed as a suitable projection of the original
PDE system on a slow manifold. This raises theoretical and numerical issues of
long-term accuracy and stability and several such aspects were discussed in the
workshop.
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Abstracts

Orogenic Organized Propagating Convective Systems: Dynamics,

Parameterization and Numerical Prediction

Mitch W. Moncrieff

Precipitating convection in the lee of major mountain chains (e.g., Rocky Moun-
tains, Andes, Ethiopian Highlands, Tibetan Plateau, European Alps) organizes
into long-lived coherent dynamical systems. These powerful transporters of mass,
energy and momentum propagate at ≈ 10m/s so their effects on the environment
can extend across the entire US continent. The sources of energy are primar-
ily latent heating, evaporation of falling precipitation, mean-flow kinetic energy,
and work done by the convectively-generated pressure gradient. Environmental
shear interacting with vorticity generated (baroclinically) by horizontal gradients
of heating organizes coherent circulations on scales 10 km - 1000 km; namely,
mesoscale atmospheric motion.

The key dimensionless quantities are: i) the ratio of the work done by the
pressure gradient to the kinetic energy of propagation expressing a hydraulic work-
energy principle, and ii) a convective Richardson number, the ratio of convective
available potential energy to the mean-flow kinetic energy [1, 2]. Steady-state two-
dimensional dynamical models are based on a nonlinear eigenvalue/free-boundary
problem defined by the elliptic integro-differential (vorticity) equation

∇2ψ = G(ψ) +

∫ z

z0

∂F

∂ψ
dz

where G is the environmental shear, F = F (z, ψ, c) is the buoyancy generated by
latent heat release/evaporative cooling, is the streamfunction, c is the propagation
speed (eigenvalue), and z is the vertical displacement of the streamfunction from
its inflow level. Along with appropriate boundary conditions, solutions to this
equation define a hierarchy of dynamical models. Lateral boundary conditions are
provided by the far-field solution of the above equation.

A key dynamical property is the characteristic backward tilt of convective sys-
tems relative to their direction of propagation. Tilting affects the vertical trans-
port of horizontal momentum. The flow acceleration and the heating has a first-
baroclinic (couplet) form. For example, an eastward-traveling system generates
lower-tropospheric eastward and upper-tropospheric westward accelerations. Fur-
thermore, the momentum transport by the tilted flow organization results in a
positive dynamical feedback: momentum transport generates the sheared environ-
ment in which propagating systems tend to develop [1, 4].

Global numerical models used for weather prediction and climate research have
great difficulty with representing organized propagating convective systems. The
dynamical processes of convective organization are missing from these parameter-
izations, which were not designed to represent the upscale fluxes of energy and
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momentum generated by organized convection [4]. Moreover, in modern higher-
resolution global numerical weather prediction models (apart from convective-
system resolving models) the grid-scale is not adequately separated from the
dynamical scale of convective organization. This has serious implications since
scale-separation is a keystone of contemporary parameterization methods.

The above issues associated with mesoscale convective organization are ad-
dressed by a hybrid parameterization called a predictor-corrector approach [4]. In
this approach organized mesoscale circulations are represented by a first-baroclinic
couplet based on a dynamical model (a special case of the above equation). The
first-baroclinic perturbation approximates the stratiform heating/mesoscale down-
draft couplet and the accompanying momentum transport [1, 2]. It is functionally
related to the convective parameterization needed to represent the cumulus con-
vection embedded in the organized circulation. Explicit circulations at 10-km
grid-spacing are the “predictor” but the circulations are under-resolved. Under-
resolution causes systematic warming of the lower troposphere since the mesoscale
downdrafts are too weak. This weakness is alleviated by the “corrector”, defined
as the cooling perturbation in the heating couplet.

The predictor-corrector hybrid parameterization was evaluated using a hierar-
chy of numerically simulated summertime convective systems over the continental
United States. In turn, the simulations were validated by comparison with radar
measurements of precipitation. Issues of horizontal resolution were quantified by
comparing control simulations (3-km and 1-km grid-pacing) to simulations at 10-
km grid-spacing (grid-resolution of next-generation global numerical weather pre-
diction models). The convective momentum transport was found to be particularly
vulnerable to the horizontal resolution.

Issues in need of further study include: i) the effects of convective momen-
tum transport in prediction models; ii) the dynamics of upslope flow driven by
solar-heated mountainous terrain and orogenic effects on convection; iii) the in-
teraction between orographically generated gravity-inertial waves and convective
organization; iv) the application of power laws for organized precipitating systems
to stochastic parameterization methods; and v) the design of generalized numerical
solvers for elliptic free-boundary problems.
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Multicloud models for tropical convection and convectively coupled

waves

Boualem Khouider

(joint work with Andrew J. Majda)

1. Introduction

Moist convection in the tropics is organized into a hierarchy of propagating cloud
clusters and superclusters ranging from hundreds to a few thousand kilometers to
planetary scale disturbances. Especially, the intra-seasonal oscillation, observed to
propagate in the eastern Pacific warm pool as an ’envelope’ of the clouds clusters
and/or superclusters [18, 20, 21].The most energetic clouds consist however of deep
penetrative, so called hot towers which are believed to be the heat engine for local
and large-scale tropical circulation, because of the latent heat gained because
precipitation which is abundant in those clouds. Idealized models with crude
vertical resolutions reduced to one to two vertical baroclinic modes are therefore
commonly used for both theoretical and numerical studies of this complex physical
phenomenon [3, 5, 6, 19, 16, 15]. It is observed however, that organized tropical
convection involves three cloud types shallow-non precipitating cumulus clouds
with cloud tops ranging from one to two kilometers, congestus clouds which are
mildly precipitating and with clouds around 5 to 6 km. The third and most
important cloud-type in terms of precipitation and latent heat release, are the
deep penetrative clouds with tops near the tropopause [7].The tropical atmosphere
has three layers which are stable to moist convection; one near the top of the
planetary boundary layer, the trade inversion layer–characterized by a big jump
in the temperature’s vertical profile, thus capping the trade cumulus clouds, one
near the middle troposphere, the 00 C layer beyond which ice froms, also called
the milting layer, associated with the cumulus congestus clouds, and the third
layer is near the tropopause, blocking the deep convective towers. Above the
milting layer, an other cloud-type forms perhaps because of the solidification of
liquid water to ice called stratiform anvil clouds because of their shape. The
stratiform clouds are also believed to play an important role in the dynamics of
organized tropical convection and the moist convective instability associated with
convectively coupled waves [17, 16, 15].

During decades, two schools of thought have dominated the arena of convective
parametrization theory, leading to two types of models. The so-called conver-
gence models are based on the Convective Instability of the Second Kind (CISK)
[22, 6, 13] where the amount of heating is basically set proportional to the low
level convergence of mass or water vapor, therefore assuming a constant source of
instability for convection. The second type of models on the other hand rely on the
quasi-equilibrium theory pioneered apparently by Arakawa and Shubert [1]. The
tropical atmosphere is assumed/believed to be always near a radiative-convective
equilibrium state. A small deviation from this equilibrium is quickly compensated
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by convection acting to restore the equilibrium [2, 4]. For this theory to be com-
plete, convective processes must be triggered and amplified by ’external’ sources
in order to sustain and maintain large scale tropical disturbances. One of such
mechanisms is the wind-induced surface heat exchange (WISHE) introduced and
used by Emanuel [3] and Emanuel et al. [2]. Idealized models relying on these two
theories are based on only one baroclinic mode for the free tropospheric dynam-
ics coupled to thermal or a dynamical boundary layer, with barotropic advection
sometimes added, thus accounting only for the direct heating mode, namely, asso-
ciated with the deep penetrative clouds, ignoring completely the trimodal nature
of tropical convection [7].

Convective model parametrizations with two heating modes were first intro-
duced by Mapes [17]; a deep convective mode as in one-baroclinic models plus a
stratiform mode associated with the stratiform anvil clouds. Majda and Shefter
[16] introduced a simplified version of the stratiform models which is further an-
alyzed in Majda et al. [15]. Although these stratiform models capture many key
observed features of convectively coupled waves, they have some short comings. In
addition to their simplication of the congestus clouds, the stratiform models also
rely on the WISHE mechanisms to amplify and sustain the convective disturbances
in non-linear simulations.

Using the two-baroclinic mode framework, Khouider and Majda, [9, 10, 11, 12]
have recently introduced and analyzed a new family of convective parametrization
using all the three cloud-types in their heating field. The multicloud models are
based on a crude vertical resolution of the primitive equations in the equatorial
beta plane assuming a three cloud-type convective parametrization providing the
heat sources. Congestus clouds heat the lower half of the troposphere and cool
the upper half while deep convective clouds heat the entire troposphere. Strat-
iform clouds on the other hand heat the upper troposphere and cool the lower
troposphere through evaporation of rain falling into dry air. The resulting phe-
nomenological model is then analyzed in [9, 10, 11, 12] both by linear stability
analysis and non-linear simulations. It is found that the multicloud model cap-
tures many key features of convectively coupled waves as observed in the tropics
which are confirmed by the non-linear simulations–without the use of WISHE or
CISK. Linear stability analysis [9] reveals scale selective instability of moist gravity
waves at the synoptic scale reminiscent of the convectively coupled Kelvin waves
or superclusters. Furthermore the nonlinear simulations in [10], the convectively
coupled waves are somehow organized into envelopes moving at slower speeds than
the waves themselves. Moreover, it is demonstrated in [9, 12] that the congestus
heating plays a mojor role in moistenning and preconditioning the atmosphere
for deep convection on the wave front essentially by driving the second baroclinic
moisture convergence. The bulk of the model equations are given below while the
linear and nonlinear results are found in [9, 10, 11, 12].
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Heating and moistening of lower troposphere

Cooling of lower troposphere

cumulus cloud with anvil top

Figure 1. The multicloud models are based on the dynamical
interactions of three cloud types coupled a sea surface layer.

2. The multicloud model parametrization

The multicloud cloud parametrizations assume three cloud types, deep, strat-
iform and congestus, that coexist and dynamical interact with each other and
through a thermal sea surface layer: Deep convective clouds spanning the whole
tropospheric height, congestus clouds within the lower half of the troposphere and
stratiform clouds within the upper half, as shown in Figure 1. The multicloud
models use a crude vertical resolution of the primitive equations in the equatorial
beta plane based on these three cloud-types providing the heat sources in the free
troposphere,

Hd(z) = Hd sin(z), 0 ≤ z ≤ π

Hs(z) =

{
0, 0 ≤ z ≤ π/2

−Hs sin(2z), π/2 ≤ z ≤ π

Hc(z) =

{
Hc sin(2z), 0 ≤ z ≤ π/2

0, π/2 ≤ z ≤ π
(1)

Ec(z) =

{
0, 0 ≤ z ≤ π/2

−δcHc sin(2z), π/2 ≤ z ≤ π

Es(z) =

{
−δsHs sin(2z), 0 ≤ z ≤ π/2

0, π/2 ≤ z ≤ π

Here Hc(z) and Ec(z) refer to congestus clouds respectively heating the lower half
of the troposphere and cooling the upper half while Hd(z) is the effect of deep con-
vective clouds heating the entire troposphere. Stratiform clouds on the other hand
heat the upper troposphere and cool the lower troposphere through evaporation of
rain falling into dry air. These latter effects are represented respectively by Hs(z)
and Es(z). Closed forms for the quantities Hd, Hs, Hc are provided below while δs
and δc are prescribed fractions of unity. A conceptual picture of the heating and
cooling profiles associated with the three cloud types is given in Figure 2. The
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Figure 2. Heating and cooling profiles

following basis functions, consistent with the heating profiles in (1):

V = Ū +
√

2 cos

(
πz

HT

)
v1 +

√
2 cos

(
2πz

HT

)
v2

w = −HT

π

√
2

[
sin(

zπ

HT
) div v1 +

1

2
sin(

2πz

HT
) div v2

]
(2)

Θ = z +
√

2 sin(
πz

HT
) θ1 + 2

√
2 sin(

2πz

HT
)θ2.

are used to project the primitive equations onto the first and second baroclinic
modes, leading to the 2 shallow water-like systems coupled through the surface
layer and the cloud-cloud interactions.

1st Baroclinic






d̄v1

dt
+ βyv⊥

1 −∇θ1 = −Cd(u0)v1 −
1

τR
v1

d̄θ1
dt

− divv1 = Hd + ξsHs + ξcHc + S1

2nd Baroclinic






d̄v2

dt
+ βyv⊥

2 −∇θ2 = −Cd(u0)v2 −
1

τR
v2

d̄θ2
dt

− 1

4
divv2 = (−Hs +Hc) + S2.

(3)

Moisture:
d̄q

dt
+ div

[
(v1 + α̃v2)q + Q̃(v1 + λ̃v2)

]
= −P +

D

HT

P =
2
√

2

π
(Hd + ξsHs + ξcHc)

Boundary layer:
∂θeb

∂t
=

1

hb
(E−D)

Here S1,2 represent the radiative cooling rates, D is the downdraft which connects
directly the boundary layer to upper troposphere, and P is precipitation with ξs, ξc
are the fractional contributions of stratiform and congestus clouds to surface pre-
cipitation depending on the parameters δs, δc in (1). For simplicity, the fraction
ξs, ξc are set to zero, in [9, 10, 11, 12], so that there is contribution from strati-
form and congestus clouds to surface precipitation. This is equivalent to setting
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δs = δc = 1 in (1) so that the cooling in the lower troposphere induced by the
evaporation of stratiform rain balances exactly the stratiform heating aloft and
the congestus heating in the lower troposphere is also balanced by the associated
cooling aloft.

As the reader would expect, the moisture equation plays an important role in
the convective dynamics. The fluid dynamics on the other hand have a strong
feedback on this quantity namely through both the first and second baroclinic
moisture convergence.

Details on the derivation and more discussion on these equations are found in
[9, 12]. Notice however, that the derivation was constrained to conserve moist
static energy, namely,

∂ < θe >z

∂t
=

1

HT
E +

2
√

2

π
S1 (= 0 at RCE)

where

< θe >z=
hb

HT
θeb +

1

HT

2
√

2

π
θ1 + q.

An other important feature of the present model parametrization resides in the
introduction of a moisture-switch function which permits to switch back and forth
from a congestus to a deep convective regime according to whether the atmosphere
is dry or moist.

A moisture based trigger depending on the middle tropospheric equivalent po-

tential temperature θem = q+ 2
√

2
π (θ1+α2θ2) is introduced, Λ∗ ≤ Λ = Λ(θem) ≤ 1.

The left and right limits are riched when the atmosphere is most and dry respec-
tively. Therefore, the convective closure is achieved as follows. The precipitation
and downdrafts are highly depending on the switch function and are given by

Hd =
1 − Λ

1 − Λ∗Qc, D = ΛD0

and the stratiform and congestus heating rates are given by

∂Hs

∂t
=

1

τs
(αsHd −Hs) ;

∂Hc

∂t
=

1

τc

(
αc

Λ − Λ∗

1 − Λ∗
D

HT
−Hc

)
.(4)

Moreover, a CAPE and Betts-Miller like combination scheme is used.

Qc =
1

τconv

[
a1θeb + a2(q − q̂) − a0(θ1 + γ2θ2)

]+

and the downdrafts are closed by

D0 =
m0

Q0
R,1

[
Q̄0

R,1 + µ(Hs −Hc)
]+

(θeb − θem)

while a Newtonian radiative cooling is used for

Sj = −Q0
R,j −

1

τD
θj , j = 1, 2
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Meridional momentum flux and superrotation in the multi-scale

IPESD MJO model

Joseph A. Biello

(joint work with Andrew J. Majda, Mitch W. Moncrieff)

We present the derivation of the meridional momentum flux arising from a
multi-scale horizontal velocity field in the IPESD multi-scale models of the equa-
torial troposphere [8, 3]. It is shown that, due to the balance dynamics on the
synoptic scales, the synoptic scale component of the meridional momentum flux
convergence must always vanish at the equator. Plausible MJO models are pre-
sented along with their planetary scale meridional momentum fluxes. These mod-
els are driven by synoptic scale heating fluctuations that have vertical and merid-
ional tilts. Irrespective of the sign of the synoptic scale meridional momentum flux
(direction of the tilts) in each of the four MJO examples, the zonal and vertical
mean meridional momentum flux convergence from the planetary scales always
drives westerly winds near the equator: this is the superrotation characteristic
of actual MJOs. Since there is an analytic expression of the upscale flux in the
IPESD model, we are able to analytically demonstrate that equatorial superrota-
tion occurs when the planetary flow due to the vertical upscale momentum flux
from synoptic scales reinforces the horizontally convergent flow due to planetary
scale mean heating.

We are interested in the zonal mean of the zonal momentum flux vector due to
the total flow from all scales in our multi-scale theory,

(1)
〈
~FU

〉
= − 1

CE

∫ CE

0

[
(uv) ĵ + (uw) k̂

]
dx.

The ansatz of the IPESD model is that the velocities can be separated into their
zonal planetary scale means plus synoptic scale fluctuations. In the model, the
zonal velocity has a mean which is comparable to its fluctuations whereas the
planetary scale means of the vertical and meridional velocities are small compared
to their synoptic scale fluctuations. It is the synoptic scale mean of the flux
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convergences which drive planetary scale motion. Using primes to denote the
fluctuations and overbars to denote means, we find

〈
~FU

〉
= − 1

C∗

∫ C∗

0

{[(
u′v′

)
+ ǫ

(
U V

)]
ĵ +

[(
u′w′

)
+ ǫ

(
U W

)]
k̂
}
dX.(2)

There are two contributions to each component of the flux; one from each of the
planetary and synoptic scales. Due to the IPESD scaling of the planetary mean
vertical and meridional flow, both vertical and meridional fluxes are dominated
(at least formally) by their synoptic scale fluctuations: the planetary mean con-
tribution is weaker by a factor of ǫ.

In the MJO models [1, 2, 3] the synoptic scale fluctuations themselves are
concentrated in a moving envelope of convective activity which only covers 10000
km longitudinally whereas the planetary scale response is global. Therefore it it
is not clear whether which component of the flux dominates the planetary scale
mean. In fact, we show in [3] that the relative contribution of these two components
depends on the details of the synoptic scale flow in a variety of examples, all of
which give a plausible structure for the MJO. Furthermore equatorial superrotation
arises in all four MJO models irrespective of the synoptic scale meridional tilt.

It is natural to inquire as to which property of the planetary scale flow causes
this superrotation. Using a Helmholtz-Hodge-Weyl decomposition in a purely first
baroclinic analytic example, we can express the horizontal velocity as

U = − Ψy + Φx

V =Ψx + Φy
(3)

where Ψ expresses purely rotational motion in the plane and Φ describes hori-
zontally divergent flow; this arises vertical component of the circulation through
incompressibility. The flow is convergent at the base of the troposphere if wz > 0

yielding a potential which is negatively curved, for example, Φ = Φ0 e
−(x2+y2)/2

with Φ0 > 0. Considering flows which are symmetric about the origin further

requires that Ψ be anti-symmetric; Ψ = −Ψ0 y e
−((x−x0)

2+y2)/2 with Ψ0 > 0 de-
scribes equatorially symmetric pair of cyclonic gyres, zonally shifted with respect
to the potential flow. It is a straightforward calculation to show that, for small
values of the shift in this simple example, the zonal mean meridional momentum
flux is

(4) 〈U V 〉 ∝ −yΨ0 Φ0 e
−y2/2

near y = 0, which is to say that only the correlation of rotation and convergence
contribute to this flux. Because of the assumed separability of the rotational and
convergent components of the flow, the other terms in the fluxes due to rota-
tional/rotational and convergent/convergent velocity correlations vanish. Though
this is not the most general flow possible, it does highlight an important fact:
equatorial superrotation is a result of the correlation of convergent and vortical
components of the flow in the horizontal plane. In particular, both cyclonic/ lower
troposphere convergent flow and anti-cyclonic/lower troposphere divergent flow
drive equatorial westerlies.
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The next question we pose is, what are the necessary features of the planetary
scale heating and upscale momentum flux which create equatorial superrotation?
Since equatorial superrotation occurs even in the canonical model of vertically
tilted superclusters and congestus heating (the first example), it is sufficient to
consider zonal momentum forcing due to vertical upscale flux and planetary scale
heating alone: the upscale temperature flux in the canonical model is extremely
small near the equator.

In order to get a closed form analytic expression for the upscale flux, we approx-
imate the IPESD long wave equations [1, 8] using undissipated, balanced dynamics
[3]. Focusing on the first baroclinic mode, the direct heating is symmetric about
the center of the envelope whereas the upscale momentum flux is antisymmetric
and a simple form for these functions is

(5) Sθ = S cos (x/2) e−y2/2, FU = −F sin (x) e−y2/2

where S, F > 0 in the canonical model. It is an elementary calculation to show
that the lowest order y-dependence of the zonal mean meridional momentum flux
is

(6) 〈U V 〉 ∝ −y S F e−y2

.

Therefore, when S F > 0, the meridional momentum flux is convergent at the
equator and drives a mean westerly wind. Clearly, equation (6) implies that if
either the upscale momentum flux from the synoptic scales or the planetary scale
mean heating vanish, then there is no meridional flux of zonal momentum near the
equator. However, in the canonical MJO model [1, 3] the zonal momentum flux
convergence at the base of the troposphere, FU , drives westerlies in the western
half of the envelope and easterlies in the eastern half of the envelope. The planetary
scale mean heating forces a horizontal convergence at the base of the troposphere,
also driving westerlies in the western half of the envelope and easterlies in the
eastern half. Therefore, the flow associated with the zonal momentum and mean
heating reinforce one another and this is the source of the superrotation.
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Statistical flow equations applied to atmospheric circulations

Joseph Egger

Modern analysis projects make global data sets available which cover more
than forty years at fairly high spatial and temporal resolution. This allows one to
step forward from case studies to a statistical analysis of flow evolutions. To fix
ideas we will deal only with flows affected by mountains. A parameter has to be
found which captures the interaction of the flow with a mountain massif. The flow
observations are then regressed against this parameter. To explain the resulting
fields, basic equations of dynamic meteorology are transformed in a statistical form
suited to this regression procedure. In particular, the vorticity and the potential
temperature turn out to be helpful where statistical trajectories are calculated.

At the moment, the only type of interaction parameters used are the compo-
nents of the mountain torque exerted by a selected mountain massif. This torque
represents essentially the difference of the surface pressure across the mountain.
There is essentially one torque per standard direction. Regressions against this
parameter are performed for the three-dimensional wind field, for the vorticity and
the divergence, for potential temperature, for humidity and precipitation as well
as for selected transports.

Applications for these techniques to Greenland are described in Egger and
Hoinka (2006: Dynamics of atmospheric regression patterns: regional mountain
torque events; J. Atmos. Sci.; in print) where it is shown that the dynamics of the
flow evolution are captured astonishingly well by the statistical vorticity equation
provided the ’turbulent fluxes’ are included as observed.
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Further work will addres the issue of topographic instability. Although many
corresponding theories have been published tests are lacking so far. The framework
described above is ideally suited for such tests.

It is also planned to apply these methods to the circulations near the Tibetan
Plateau where moisture effects are more important than near Greenland. Finally
work on perturbations in the Mediterranean is under way where again mountain
torques exerted by the Alps and other prominent features of the Mediterranean
topography will be used as parameters.

Reduced Models of Tropospheric Planetary Waves

Grant Branstator

One would think that there is the potential to represent the statistical behavior of
atmospheric planetary-scale disturbances on longer than synoptic timescales by a
highly reduced system. After all, a very large fraction of atmospheric low-frequency
variability can be represented by just a few structures. But data analysis shows
that the problem is not that simple; these large-scale, low-frequency disturbances
are profoundly affected by rectified effects of smaller scale synoptic disturbances
that have high-frequencies. It turns out, however, that in spite of this being a
multi-scale problem, there are two good reasons to believe that a highly reduced
representation of the system is in fact possible.

The first reason is that, in a statistical sense, the high-frequency disturbances
are strongly slaved to the low-frequency disturbances. This means that the sta-
tistics of high-frequency disturbances and the fluxes that result from them and
feedback onto the low-frequencies are potentially a well-defined function of the
low-frequency state. The second reason for optimism is that synoptic perturba-
tions react to low-frequency disturbances on very fast time-scales. This means that
if one is formulating a reduced model of the low-frequency planetary waves, it is
reasonable to assume that for a time-step of a couple of days the reaction of the
statistics of the synoptic disturbances is instantaneous. Moreover, data analysis of
tendencies in reduced spaces indicates that time-steps of this length are sufficiently
short to resolve the important dynamics of the system. Of special importance is
that time-steps of this length are sufficient to resolve nonlinearities that appear to
be crucial for creation of nonGaussian features in PDFs of the leading planetary
wave structures (Branstator and Berner, 2005).

As a means of determining the potential of highly reduced models to well-
approximate the statistical behavior of prominent tropospheric disturbances and
for learning about the factors that such models must include to be successful, we
have constructed a reduced model that should capture all of the dynamics that
are potentially representable in a reduce system. The procedure used to construct
this model requires a very long record of the behavior of the full system. For this
reason we have set as our goal the construction of a reduced model of the prominent
planetary wave disturbances in an atmospheric general circulation model (AGCM)
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that has been integrated for four million days of perpetual January. This AGCM
has over 18000 spatial degrees of freedom, so finding a low-dimensional counterpart
is not a trivial undertaking. As reported by Branstator and Berner (2005), Berner
(2005) and Berner and Branstator (2006), amplitudes of the leading patterns of the
midtropospheric state in this AGCM, as given by empirical orthogonal function
analysis of 500 hPa geopotential heights, have autocorrelations that decay to 1/e
for lags in the one to two week range. And in some planes defined by these EOFs,
the joint PDFs of these pattern amplitudes have distinctly nonGaussian, though
not multimodal, features consisting of radial ridges of enhanced probability. It is
these two characteristics that we are interested in capturing in a reduced model.
Specifically, for the purposes of this report, we focus on these characteristics for
amplitudes of EOFs 1 and 3 because in this plane the nonGaussianity is prominent
and because these patterns have counterparts in nature. EOF1 is similar to the
Northern Annular Mode (Thompson and Wallace, 1998) and EOF3 is a commonly
observed high latitude zonal wave two pattern.

Our reduced model is based on analogs. In this model, the state of the system
is defined by a low-dimensional vector representing the large-scale planetary waves
of the AGCM. To begin with we assume this low-dimensional state consists of only
the two directions we are interested in, namely EOFs 1 and 3. To form a dynami-
cal model we need to associate any low-dimensional state with a low-dimensional
tendency in order to advance the system forward in time. (In the case we have in-
vestigated we have used a discrete representation of time, so stated more carefully,
we need to associate any given low-dimensional state with a temporal increment.)
The function we use to map a given low-dimensional state into an increment is
based on finding a full-dimensional state from the AGCM trajectory whose projec-
tion onto the low-dimensional state is as close to the given low-dimensional state
as possible. We then apply the increment that actually occurred in the AGCM
to advance the reduced model in time. Since the AGCM trajectory is affected
by all of the degrees of freedom of that model, this procedure incorporates the
unresolved scales into the dynamics of the reduced model. Indeed, when we carry
out this procedure with a time step of 72 hours we find that both in terms of lag
correlations and PDFs the reduced model acts in a manner that is very similar to
the AGCM. Hence we conclude that it is possible to construct a reduced model
with dimension as small as two for the AGCM.

Though the analog marching procedure demonstrates that reduced models of
planetary wave patterns can be constructed, the model that results is not defined
in a compact form. Indeed, it takes 8 million parameters to describe this model.
Furthermore there is a certain ambiguity in the definition in that for any given
state there are actually very many potential increments that are suggested by
the AGCM trajectory, because there are many AGCM high-dimensional states
all with very similar projections onto the reduced space but with very different
low-dimensional temporal increments. Of course the increments for these various
analogs differ because the states need not be similar in the directions not resolved
in the low-dimensional system. However, experimentation with the analog model
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demonstrates that the statistics of its trajectory is independent of which of these
similar states is picked at any particular time step. So apparently what is impor-
tant are statistical attributes of increments of those states that have a specified
two-dimensional projection, not the increments of any one particular state.

As a step toward replacing the analog reduced model with a reduced model
that can be described using far fewer parameters we explore what are the im-
portant characteristics of temporal increments associated with full-dimensional
states that have similar low-dimensional projections. It turns out that such states
have a small, but non-negligible mean that is a function of the low-dimensional
state. We also find that dispersion of increments about this mean is well approx-
imated by Gaussian distributions and that these distributions are a function of
the low-dimensional state. Thus we can produce a reduced model that is nearly
as effective as the analog-based model by drawing temporal increments from these
Gaussian distributions and adding them to the low-dimensional state dependent
mean increment.

As a final step in the simplification process we test how important it is to take
into account the low-dimensional state dependence of the temporal increments.
We find that the state dependence of the mean increments is crucial while the
state dependence of the distributions, though making noticeable contributions to
the behavior of the reduced model, is of less importance. A third aspect of the sta-
tistics of increments that is very important is a strong anisotropy that is present
in their distributions. Reduced models formed in such a way as to ignore this
anisotropy do not produce one of the most distinct nonGaussian features in the
joint PDF. However, further analysis of the situation reveals that this anisotropy
can be traced to an oscillation in a plane that is orthogonal to the plane of the
reduced model. This oscillation was found by Selten and Branstator (2005) in this
same AGCM dataset and is similar to an oscillation found in nature (Bransta-
tor, 1987). Interestingly, rather than account for it via incorporating anisotropy
into the distributions from which temporal increments are drawn, it can also be
represented simply by adding a third dimension to the reduced model.

The implications of these calculations is that it is possible to represent key
aspects of the statistics of prominent planetary wave patterns in a highly re-
duce model with just a few parameters. These parameters represent the state
dependence of the statistics of tendencies in the reduced space in terms of a state-
dependent deterministic tendency and a Gaussian distribution of increments about
that tendency. In additional calculations we have found that it is adequate to rep-
resent the state-dependence of the deterministic component in terms of a small
basis set of sigmoid functions fit using neural net methodologies. It is likely that
the state dependence of parameters defining the state dependence of tendency
distributions can be approximated in a similar fashion.

Though in our work we have formulated and analyzed the system in terms of
temporal increments found from analogs, it is obvious our results can be inter-
preted and described in the more commonly used language of stochastic models.
In this framework what we have done is construct a low-dimensional Langevin
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model in which the drift term for a given low-dimensional state is found as the
average of temporal increments from the full system for all states whose projec-
tions match the given low-dimensional state. And the noise term in the Langevin
model comes from a Gaussian fit to the distribution of temporal increments asso-
ciated with those same states. From this standpoint, the results we have described
lead to a Langevin counterpart to Siegert et al.’s (1998) procedure for fitting a
Fokker-Planck equation to the data from a system.
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On the nature of zonal jet EOFs

Adam H. Monahan

(joint work with John C. Fyfe)

Analytic results are obtained for the mean and covariance structure of an idealised
jet in zonal-mean zonal wind u(φ, t) which fluctuates in strength (U(t)), position
(λ(t)), and width (σ(t)):

(1) u(φ, t) = U(t) exp

(
− (φ− φ0 − λ(t))2

2σ2(t)

)
.

Through a systematic perturbation analysis, the leading spatial pattern (EOF)
and time series (PC) of an Empirical Orthogonal Function analysis (also known as
Principal Component Analysis or Proper Orthogonal Decomposition) are obtained.
These EOFs are built up of linear combinations of basic patterns corresponding
to monopole, dipole, and tripole structures:

(2) fn(φ) =
1√

σ02nΓ(n+ 1/2)
Hn

(
φ− φ0√

2σ0

)
exp

(
− (φ− φ0)

2

2σ2
0

)

(n = 0, 1, 2, where σ0 is the mean of σ(t)). The analytic results demonstrate that
in general the individual EOF modes cannot be interpreted in terms of individual
physical processes. In particular, while the dipole EOF (similar to the leading
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EOF of the midlatitude zonal mean zonal wind, known as the zonal index) de-
scribes fluctuations in jet position to leading order, its time series also contains
contributions from fluctuations in strength and width. No simple interpretations
of the other EOFs in terms of strength, position, or width fluctuations are possible.

Results are extended to the EOF structure of geopotential Φ(φ, t) through the
imposition of geostrophic balance and mass conservation

(3) Φ(φ, t) = −
∫ φ

φ1

f(φ′)u(φ′, t)dφ′ +

∫ φ2

φ1

µ(φ)

∫ φ

φ1

f(φ′)u(φ′, t)dφ′dφ

where f(φ) is the Coriolis parameter and µ(φ) is a geometrical weighting function.
When sphericity of the domain is accounted for in f(φ) and µ(φ), the leading EOF
of Φ(φ, t) is in excellent agreement with that of observations; the associated time
series is correlated with both jet position and width, and with the first and third
PC time series of u(φ, t). The annular mode is therefore not associated with a
single jet degree of freedom, and is not simply the manifestation in geopotential
of variability associated with the zonal index. On a flat domain, analytic results
are available; these demonstrate that the EOFs of geopotential are much more
sensitive to the analysis domain than are the EOFs of zonal-mean zonal wind.

References

[1] E. Gerber and G. Vallis, A stochastic model for the spatial structure of annu-
lar patterns of variability and the North Atlantic Oscillation, J. Climate 18

(2005), 2102-2118.
[2] A. Monahan and J. Fyfe, On the nature of zonal jet EOFs, J. Climate in

press (2006).
[3] A. Monahan and J. Fyfe, On annular modes and zonal jets, in preparation.
[4] M. Wittman, A. Charlton, and L. Polvani, On the meridional structure of

annular modes, J. Climate 18 (2005), 2199-2122.
[5] G. Vallis, E. Gerber, P. Kushner, and B. Cash, A mechanism and simple

dynamical model of the North Atlantic Oscillation and annular modes, J.
Atmos. Sci., 61, 264-280.

Stable Time Filtering of Strongly Unstable Spatially Extended

Systems

Marcus J. Grote

(joint work with Andrew J. Majda)

Many contemporary problems in science ranging from protein folding in molecu-
lar dynamics to scale up of small scale effects in nanotechnology to making accurate
predictions of the coupled atmosphere-ocean system involve partial observations
of extremely complicated systems with many degrees of freedom. Novel math-
ematical issues arise in the attempt to quantify the behavior of such complex
multi-scale systems [1, 2]. For example, in the coupled atmosphere-ocean system,
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the current practical models for prediction of both weather and climate involve
general circulation models where the physical equations for these extremely com-
plex flows are discretized in space and time and the effects of unresolved processes
are parametrized according to various recipes; the result of this process involves
a model for the prediction of weather and climate from partial observations of
an extremely unstable, chaotic dynamical system with several billion degrees of
freedom. The nature of the physical instabilities which strongly affect the predic-
itive properties of this system range from A) comparatively low dimensional large
scale instabilities involving synoptic scale weather activity to B) inherently statis-
tical instabilities on shorter spatio-temporal scales such as those involving moist
convection which crucially affects the water vapor in the atmosphere and rainfall.

Bayesian hierarchical modeling [3] and reduced order filtering strategies [4, 5,
6, 7, 8, 9, 10, 11] have been developed with some success in these extremely
complex systems including the role of observations in tracking the instabilities of
type A). The basis for such dynamic prediction strategies for the complex spatially
extended systems is the classical Kalman filtering algorithm [12, 13, 14, 15]. New
issues arise in the practical application of these filtering strategies to complex
spatially extended systems and this is the focus for the present contribution.

One new mathematical issue that emerges is the following one: ensemble filter-
ing requires multiple realizations of an extremely expensive dynamical system with
many degrees of freedom; with these practical limitations, it is extremely interest-
ing to see whether it is possible to utilize large time steps which violate the classi-
cal CFL-stability condition for an explicit difference scheme [16] and, nevertheless,
obtain stable and statistically accurate filtering. Such counter-intuitive behavior
has emerged in recent practical applications [7, 3, 8] without documentation or
mathematical understanding of this potentially pratically important phenomenon.

Our present work [17] is devoted to elucidating this phenomenon as well as
the emerging reduced order filtering strategies for tracking physical instabilities of
types A) and B) mentioned earlier. First, some elementary mathematical theorems
are developed to supply a context and justification for the possibility for various
types of stable filtering strategies for strongly unstable systems. Then, these math-
ematical results are utilized as guidelines for a detailed investigation of the key
issue raised at the beginning of this paragraph for a prototype model involving an
unstable finite difference approximation for a convection-diffusion equation.
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Nonlinear dynamics in the semi-transparent equatorial waveguide.

Part 1. Resonant excitation of Rossby and Yanai waves and their

interactions

Vladimir Zeitlin

(joint work with G.M. Reznik)

With the help of multi time- and space- scale asymptotic expansions applied to the
weakly nonlinear perturbations in the framework of the two- layer rotating shallow
water model in the equatorial tangent plane we study the interactions between the
baroclinic Rossby and/or Yanai waves trapped in the equatorial waveguide (e.g.
[1]) and the barotropic Rossby waves freely propagating across the equator. We
demonstrate that, depending on its parameters, a barotropic wave can resonantly
excite a single, or a pair of baroclinic waves with frequencies lower than its proper
one. This process, hence, is of the parametric resonance type. We show that
nonlinear saturation of the amplitudes of the baroclinic waves at the level much
greater than the amplitude of the barotropic wave takes place. The envelopes of
the baroclinic waves obey the modulation equations of the Ginzburg - Landau
type. Formation of characteristic ”domain wall” and ”dark soliton” patterns in
the en! velopes of the baroclinic waves is displayed [2]. The growing trapped waves
also generate a barotropic response modifying the primary barotropic wave.

The physical picture arising from our results is as follows. In the linear ap-
proximation the equatorial wave-guide is transparent for the barotropic Rossby
waves. Due to nonlinear effects, the barotropic wave resonantly excites, for in-
stance from the pre-existing noise, a pair of the baroclinic wave-guide modes with
exponentially growing amplitudes. This process may be alternatively seen as a
destabilisation of a given barotropic wave by baroclinic equatorial perturbations.
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The process is generic as the unstable in this sense barotropic waves are dense in
the phase-space. A given barotropic wave generally excites a pair of the baroclinic
waves, although the cases of excitation of a single baroclinic mode, or of two pairs
of baroclinic modes are possible. The case of a single mode corresponds to pure
parametric resonance, when the excited mode has time and spade periods twice
the periods of the initial barotropic wave.

The nonlinear stage of this instability is as follows. The interacting baroclinic
waves give rise to an exponentially growing secondary barotropic mode. This mode
has the form of reflected and transmitted wave structures spreading with time out
of the equator. Its interaction with the baroclinic modes arrests the growth of
these latter. The amplitudes of the excited baroclinic waves are thus gradually
saturated. The saturation, however, is not stationary in the general case, as sat-
urated amplitudes continue to oscillate slowly with frequencies depending on the
constant amplitude moduli. The saturation is stationary only in the pure paramet-
ric resonance case. A general tendency observed by calculating typical increments
and saturation levels is that two waves saturate at considerably different values,
the saturation level of longer wave being higher.

When the effects of spatial modulation are taken into account, a Ginzburg -
Landau type equation arises in the parametric resonance case with solutions ex-
hibiting characteristic domain-wall like phase defects and ”dark soliton” structures.
In the general case of a pair of waves a hyperbolic system of coupled nonlinear
equations arises, with the behaviour predicted by the non-modulated equations in
the domain of influence of initial conditions modified by possible shock formation.

We believe that the behaviour we displayed is generic for semi-transparent wave-
guides, although the only example treated in literature we are aware of is the beach
edge waves. These waves trapped near the shore may be resonantly excited by
the waves coming on-shore from the open ocean [3], [4]. Although the scales, the
physics of the system, and the dispersion properties of the waves are very different
from the equatorial waves, the resulting modulation equations are close. However
they were not, as to our knowledge, exhaustively studied.
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A coarse graining approach to quantifying mixing in stratified flows

Esteban G. Tabak

(joint work with Paul A. Milewski, Fabio A. Tal)

Quantifying mixing among fluid layers with different properties is crucial for mod-
eling climate dynamics. Yet obtaining such quantification is a difficult task: one
is typically interested in fluid masses that extend over at least hundreds of kilome-
ters horizontally and a few kilometers in the vertical, while the physical processes
involved in mixing take place at scales smaller than a milimeter. In order to bridge
this gap, one needs to find a way to parameterize the full cascade of “turbulent”
fluid motion occupying many decades of unresolved scales.

In this talk, an alternative way of modeling mixing is described, remminiscent
of statistical physics. In this approach, one defines an “entropy” associated with
the degree of mixing of a flow, and attempts to maximize this entropy, subject to
the constraints provided by the large-scale equations of motion (see Figure 1).
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Figure 1. Buoyancy profile resulting from the mixing of two initially
distinct layers, subject to an injection of turbulent energy at their inter-
face. The two profiles displayed correspond to the theoretical prediction
based on maximal mixing, and the actual numerical results following
the dynamics of a turbulent diffusive model.

We have applied this scheme to diapycnal mixing in two scenarios: the localized
mixing driven by stirring at the horizontal interface between two semi–infinite fluid
layers of different density [2], and the entrainment of ambient fluid into mixed
layers through breaking waves [1].
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Stability, Breaking Waves, and Mixing in Stratified Flows

Paul A Milewski

(joint work with Ruben R. Rosales, Esteban G. Tabak, Cristina Turner)

The shallow water or hydraulic limit for wave propagation and breaking in one
layer is well understood. The problem is well posed, and arbitrary initial data
form shocks. There, integral formulations of conservation of mass and momentum
completely define the jump, and the energy equation gives, a posteriori, the rate at
which large scale energy is lost and ”internal” energy (mostly in the form of small
scale turbulence) is generated. For the case of two-layer shallow water, bounded
above and below by horizontal walls, the equations for the lower layer height and
velocity are given by

ht + (hu)x = 0

ut +
1 − 3h

1 − h
uux +

(
(1 − h) − 1

(1 − h)2
u2

)
hx = 0.

Even though the system has been derived before, the evolution of smooth solutions
was not completely understood since there is the possibility for the system to be
elliptic, leading to ill-posedness. The condition for hyperbolicity, in dimensional
variables is

g
(∆ρ/ρ)/(h1 + h2)

(u1/h2)2
= Ri > 1

The ellipticity in the system, is present for strong shear and is a remnant of the
Kelvin-Helmholtz instability . We first show that these flows are nonlinearly stable
for Richardson number greater than unity. That is, solutions from smooth initial
data with Ri > 1 everywhere never cross the sonic surface into the elliptic domain,
at least until breaking. (Reasonable jump conditions will also preclude instabilities
after breaking.) An illustration of the dynamics is in Figure 1.
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Figure 1. Computation of h, u,Ri−1 for the two–layer flow until
breaking. The figure on the left depicts the wave regime and the
figure on the right shows that when Ri = 1 at one point, the
solution is reminiscent of Kelvin-Helholtz rolls there.
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The proof of the stability is based on writing the system in terms of Riemann
Invariants and showing that, since the characteristic speeds are smooth functions
of the Riemann invariants on the sonic curve, the elliptic region is unattainable.
Preliminary results indicate that for more layers, the dynamics can cross the sonic
surface and waves can dynamically give rise to Kelvin-Helmholtz instabilities.

Next, we consider shocks at the interface of miscible fluids in a simpler one-and-
a-half layer system shown in Figure 2. We assume all mixing occurs at shocks,
through the turbulent entrainment of upper fluid into the lower layer. Even in its
simplicity, this scenario is realistic for many flows of geophysical significance [1],
such as dense overflows over sills.
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Figure 2. Two–layer flow with entraining internal hydraulic jump

The problem is governed by the following system of equations of consrvation of
mass, momentum and energy for the height h, velocity u, buoyancy b and internal
turbulent energy e of the layer:

(bh)t + (bhu)x = 0

(hu)t +

(
hu2 +

bh2

2

)

x

= 0

(
hu2

2
+
bh2

2
+ he

)

t

+

(
hu3

2
+ bh2u+ heu

)

x

= 0.

To close this problem we require an additional equation. Focussing on the shock
one can imagine that the energy dissipated can flow into small scale turbulence
or into mixing the fluid (which takes work to raise heavy fluid). The partition
between these sinks of macroscopic energy is unknown.

We propose a closure which maximizes the amount of entrainment and mixing
(subject to the constraint that energy is dissipated, and that the Lax condition
is satisfied). This condition is given in terms of the shock speed and not as an
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additional conservation law. For the system above, for a shock in the right-going
characteristic the shock speed is:

c = u+ −
√
b+h+.

In related work presented by E. Tabak, this closure is justified in terms of
entropy production.
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Shallow layers of non-precipitating cumulus convection

Bjorn Stevens

(joint work with Brian Medeiros)

The representation of clouds has long been recognized as a weak link in attempts
to model the climate system and how it might change with changing atmospheric
composition. More than 30 years ago Arakawa [1] wrote that

the modelling of time dependent clouds is perhaps the weakest
aspect of the existing general circulation models and may be the
most difficult task in constructing any reliable climate model.

Subsequent reports by governmental and intergovernmental panels [5, 3] echoed,
and even amplified, his view. To this day the representation of clouds contribute
the most uncertainty to our representation of short term (a hundred years or less)
climate change.

More recent work [2] suggests that among the varied cloud regimes, shallow
cumulus layers (as are often found in regions of large-scale subsidence) contribute
most strongly to the different predictions of climate change by general circulation
models. Calculations by our group show that differences among models are well
reproduced even in much simplified planetary geometries, such as for planets with
specified zonally and hemispherically symmetric sea-surface temperatures, no land
surface, or sea-ice; suggesting that such differences are robust to modest changes
in atmospheric circulation [4]. The inference being that differences in the repre-
sentation of how clouds change in a changing climate embody the tendencies of
different representations (sub-grid models) of clouds to behave differently for a
given change in the large-scale thermodynamic environment in which the clouds
are embedded.

Although clouds are complex expressions of their physical environment, which
intricately couple a wide variety of physical processes (radiation, myriad micro-
physical processes, waves, surface heating and moistening, mixing) and thus take
expression in a wide variety of regimes, the shallow cloud regimes that appear
to contribute most to uncertainty in calculations of climate change are perhaps
the simplest, and most amenable to idealizations [6]. We report on recent work
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Figure 1. (a) Time series of PBL top, h, and lifting condensation
level η. A gray dotted line (which is effectively overlain by other
lines) shows the fit to hθ for t < 8.4 hrs and t > 13 hrs respectively.
The early time fit is proportional to t1/2 and the late time fit is
proportional to t. (b) Time series of cloud fraction, defined as the
percent of columns with condensate.

devoted to developing such idealizations for layers of shallow cumulus convection,
and the key physical interactions thought to govern their behavior. Most of our
results are taken from work recently submitted for publication [6], the idea being
that such simple models can help constrain existing parameterizations of clouds,
thereby reducing uncertainty in climate prediction.

The idealization we consider is developed in the spirit of the model problem
for the dry convective boundary layer [7], wherein one considers how the hori-
zontally averaged thermal structure (as measured by the potential temperature
θ(z, t)) evolves in space (z denotes the vertical) and t time for an initial condition
of uniform stratification (dθ/dz = Γ initially constant) and under the action of a
uniform and fixed surface heat flux, which we denote by Q. This problem admits
three non-dimensional numbers, a Prandtl number a Reynolds/Rayleigh like num-
ber, and the ratio of the gravity wave timescale in the free layer to the overturning
timescale of the developing thermal boundary layer. Assuming similarity in latter
two, it follows straightforwardly that for a given Prandtl number this problem
admits only one length scale, h which grows as

(1) h ∝ (2Qt/Γ)1/2.

Tests with large-eddy simulation suggest that (1) provides a good description of
this layer.

A simple representation of the cumulus-topped boundary layer can be devel-
oped from a generalization of this problem, for which we allow moisture, which
contributes to the buoyancy and permits saturation. The initial moisture profile,
q(z, 0) = q0exp(−z/z0) is chosen to maintain a decreasing equivalent potential
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temperature profile through the lower troposphere, while the temperature profile
is adjusted to maintain a uniform lapse rate in buoyancy (equivalently virtual
potential temperature, θv). The surface flux, Q is calculated by specifying the
temperature of a saturated lower boundary to be that required to maintain a con-
stant surface buoyancy flux. The addition of moisture to the problem introduces
several new parameters, including the moisture parameters z0 and q0 and a scale

height
RvcpΘ2

v,0

Lg where Rv is the gas-constant for water vapor, cp is the isobaric

specific enthalpy for air, L is the enthalpy of vaporization, Θv,0 is a base state
virtual potential temperature and g is gravity. The ensuing development of the
layer is shown in Fig. 1. At early times, before the development of a cloud the
layer grows like the dry convective boundary layer, with h ∝ t1/2 while at late
time (after clouds develop) a new growth regime emerges in which the layer depth
grows proportionally to time.

The proliferation of parameters makes it difficult to argue on dimensional grounds
for the growth law of the late-time regime. Instead we appeal to the energetics.
By a consideration of the buoyancy budget of the inversion layer (that layer which
separates the developing thermal boundary layer and from the unperturbed part
of the initial profile) subject to the following constraints on the flow:

• the liquid water content is stationary,
• the sub-cloud and cloud layer buoyancy changes at the same rate,
• and, the sub-cloud layer evolves as a dry convective boundary layer,

it can be shown that

(2)
dh

dt
∝



 Q(1 − 1.3h
η )

Θv,0 + Γh−
(
θ̂v + Γc(h− η)

)



 ,

where η is the height of the sub-cloud layer, Γc is a fixed cloud layer lapse rate, Θv,0

is the basic state virtual temperature and θ̂v is the average virtual temperature in
the sub-cloud layer. This equation does a reasonably good job of predicting the
growth rates seen in the LES, as is illustrated in Fig. 2.

The interpretation is that the effective flux of buoyancy into the inversion layer
is given by the numerator of (2) and is proportional to h for h ≫ η, while the
stratification that must be overcome by this flux is given by the denominator
which grows as (Γ−Γc)h, hence the growth rate dh/dt is approximately constant,
i.e., h grows linearly in time. In contrast, for the convective boundary layer, the
effective buoyancy flux (numerator) is fixed in time while the inversion grows with
the depth of the layer, hence h ∝ t1/2. If one breaks down the effective flux of
buoyancy into the inversion it can be shown to consist of two terms: one being
proportional to the liquid water flux, the other being proportional to the rate of
conversion of potential to kinetic energy. The former, which grows with the depth
of the cloud layer, dominates. Physically one can think of this in terms of the
evaporation rate of liquid water into the inversion layer, which gradually imbues
that layer with the properties of the cloud layer. This describes a fundamentally
different growth mechanism than that available to the dry convective boundary
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Figure 2. Predicted versus actual growth rate for range of sim-
ulations. Three simulations solved using different numerical for-
mulations (grids) are shown by the open squares. Simulations in
which dh/dt is calculated using the actual cloud lapse from each
simulation rather than a fixed constant are shown by gray points.

layer. As a consequence of these arguments one would expect precipitation to
limit the flux of liquid water into the inversion, and hence limit, or even quench
the growth of the cloud layer.

In summary we find that: (i) low clouds contribute significantly to climate
sensitivity of global circulation models; (ii) simple abstractions appear relevant
and amenable to analysis; (iii) the cumulus layer grows by injection and more
readily than its dry analog; (iv) this has important implications for studies of how
the aerosol affects precipitation development and hence the statistics of clouds and
eventually climate.
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A 1-D Elastic-Plastic Sea-Ice Model Solved with an Implicit

Eulerian-Lagrangian Method

David M. Holland

A physical model for an elastic-plastic rheology is developed and implemented in a
numerical sea-ice model. The rheology describes sea ice as behaving as an elastic
material for relatively small deformations and as a plastic material for larger ones.
The model equations are solved using an Eulerian-Lagrangian method in which
the displacement of granular aggregates from an original Eulerian grid is computed
in a Lagrangian sense and the resulting mass distribution is mapped back onto the
Eulerian grid. The equations are integrated in time using Krylov solvers in a fully-
implicit framework. The model distinguishes itself from previous sea-ice models
in a combination of attributes: the absence of a viscous dependence within the
rheology, the employment of an Eulerian-Lagrangian grid, and in the use of an
fully-implicit time-stepping scheme allowing for a large time step. Model results
and efficiency are presented from a one-dimensional simulation; plans for extension
of the physics and numerics to two-dimensions are outlined.

A particular formulation of the physics and numerics of an elastic-plastic sea-
ice rheology has been adapted. The physics describes the sea-ice deformation as
being elastic for relatively small deformations, a feature that fits with observations
from AIDJEX. For large deformations the sea-ice is modeled to behave in a plastic
manner, meaning that the stress reaches finite limit and remains constant. The
yielding stress is formulated both for compressive failure and tensile failure, the
latter is generally neglected in large-scale sea-ice models used in climate studies,
but yet may be of relevance in such simulations. The numerics is based on an
algorithm in which a combined Eulerian-Lagrangian scheme allows granular ag-
gregates to be advected in a Lagrangian sense and subsequently be remapped to
an underlying, fixed Eulerian grid. The particular connection of the numerics to
the physics is that the physics describes an elastic behavior and hence the tracking
of particle displacement thorough time, and the numerics is tailored to solve for
particle displacement. Further, the numerics use an implicit in time scheme thus
allowing relatively large time steps than an explicit scheme would permit.

It is the distinguishing physical and numerical attributes, combined with the
one-dimensional simulation results, that is offered as proof-of-concept that a fully-
developed two-dimensional sea-ice model, including realistic geometry and forcing,
and thermodynamics, would be a viable future investigation. The Coriolis force
and shear stresses would be implemented, with the latter be treated as Columbic,
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hence taken as proportion of the compressive normal stress as presented here.
These physical and numerical properties of such a model make it an intriguing
candidate for use in a large-scale climate model.

Multiple Scale Asymptotics of Cloud Topped Boundary Layer

Antony Z. Owinoh

(joint work with Bjorn Stevens, Rupert Klein)

The presence of clouds has a large impact on the boundary layer structure. In
cloudy boundary layer the surface and radiative fluxes may produce local sources
of heat and cooling within the interior of the boundary layer and can greatly
influence its turbulence structure and dynamics.

In this talk we present preliminary results of an asymptotic analysis of the the
cloud topped boundary layer (CTBL) and in particular, stratocumulus clouds.
The idealised structure is showed in Fig 1. It consists of layer below the cloud
where the liquid water potential temperature θl and the total water mixing ratio
qt are constant with height to leading order. These quantities are assumed to
vary linearly with height in the cloud layer. An infinitesmally thin inversion layer
caps the cloud layer with jumps in the thermodynamic variables θl and qt . The
structure above this layer is given by different scaling formulation and is a subject
of future studies.

We use the unified approach to meteorological modelling based on multiple
scale asymptotics techniques as developed in [1] or [2]. The key steps of this
technique involve (a) non dimensionalization of the 3D compressible flow equations
on the rotating earth (b) identifying scales valid uniformily such as (c) choice of
a particular distinguised limit and (d) construction of solutions to the governing
equations based on multiple scale expansions in terms of ε. The main equations
for which the asymptotics are performed are

(1) ̺t + ∇q · (̺vq) + (̺w)z = 0

(2) (̺vq)t + ∇q · (̺vq ◦ vq) + (̺vqw)z + ε(Ω̂ × ̺v)
q
+ ε−4∇qp = 0

(3) (̺w)t + ∇q · (̺vqw) + (̺ww)z + ε(Ω̂× ̺v)
⊥

+ ε−4pz = −ε−4̺

(4) θlt + vq.∇qθl + wθlz = R

(5) qtt + vq.∇qqt + wqtz = Sq

where the symbols have the usual meaning and have been scaled with reference
values as indicated in [1]. We close these equations with equation of state

̺θl = (1 + qt)p
[1−Γε(1+R∗∗qt)(1+c∗∗p qt)

−1](1 +R∗∗qv)
[−1+Γε(1+R∗∗qt)(1+c∗∗p qt)

−1]

(R∗∗qv)[−ΓεR∗∗qt(1+c∗∗p qt)
−1] exp(−L∗∗

v Γ
̺ql
p

(1 +R∗∗qv)(1 + qt)
−1)(6)
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Figure 1. Idealized Boundary Layer Structure

The symbols (.)∗∗ in (6) are order one variables. Though the equation of state looks
complicated, we use the liquid water potential temperature, instead of the usual
potential temperature, to circumvent the paramterization of the microphysical
processes. The total moisture content qt = qv + ql, where qv is water vapour
mixing ratio and ql is the liquid water mixing ratio, is a conserved quantity in
absence of precipitation.

We would like to resolve a shallow layer of fluid of depth of 1 km (i.e εhsc) where
hsc is the pressure height scale and horizontal length scales of approximately 1km

(i.e εhsc) embedded in a 100 km (i.e ε−
3

2 hsc). Thus the co-ordinate system is

ξq = ε−1xq, Xq = ε
3

2 xq and η = ε−1z. We consider the time scales associated
with the horizontal advection of the gravity wave i.e. T = εt and faster time scale
associated with 1 km scale τ = ε−1t. Note that the gravity wave speed is given by

cg =
√
g∆θ

θ0
H ∼

√
gε3hsc ∼ ε−

1

2uref . We expand any dependent flow variables as

(7) U =
∑

i=0

δiU (i)(τ,Xq, η), where δ = ε
1

2 .

The leading order equations of mass and momentum reveal that the fast time
- short space averaging leads to

(8)
∂

∂η

〈
(̺w)(i)

〉
= 0 i = 0, 1, 2, 3, 4 and

∂

∂η

〈
(̺vqw)(i)

〉
= 0 i = 0, 1, 2, 3.

It has been shown in [4] how (8) represents the turbulent fluxes terms.
The non trival averaged equations are

(9) ∇X · v(0)
q

+ w(5)
η = 0

(10) vq

(0)
T + (Ω̂ × v(0))

q
+ ∇Xp

(7) = − ∂

∂η

〈
(̺vqw)(5)

〉

(11) p(6)
η + ̺(4) = 0



Mathematical Theory and Modelling in Atmosphere-Ocean Science 2343

(12) p(7)
η + ̺(5) = 0

with densities given by

(13) ̺(4) =
η2

2
+ Γη − θl

(4) + qt
(4) − Lv

∗∗Γql
(4) −R∗∗qv

(4).

(14) ̺(5) = −θl
(5) + qt

(5) − Lv
∗∗Γql

(5) −R∗∗qv
(5)

The liquid water potential temperature equations are

(15) θl
(4)
T = R(6) − ∂

∂η

〈
(̺θlw)(8)

〉

(16) θl
(5)
T + v0

q
∇Xθl

(4) + w(5)θl
(4)
η = R(7)

and total mositure content

(17) qt
(4)
T = S(6)

q − ∂

∂η

〈
(̺qtw)(8)

〉

(18) qt
(5)
T + v0

q
.∇Xqt

(4) + w(5)qt
(4)
η = S(7)

q

Here we have omitted 〈.〉 and all variables unless otherwise indicated represents
averaged quantities.

We note that the time evolution of the averaged horizontal component of veloc-
ity (10) is determined by the coriolis term, turbulent fluxes and pressure gradient
which is computed from pressures determined by moist processes given by (11)–
(14). The pressure p(7) may also be altered by the large scale motion.

Further, (15) and (17) simply relate to the time variation of the leading order
liquid water potential temperatue and total water mixing ratio to the radiative
flux and convective fluxes in the layer.

The above equations can be vertically averaged further, to obtained depth av-

eraged equations, as follows. We define vertically averaged quantity φ
H

over depth
H(Xq, T ) of φ as

(19) φ
H

=
1

H

∫ H

0

φdη

and boundary condition

(20) w = 0 on z = 0

Free surface kinematic boundary conditions on η = H(Xq, T )

(21)
∂H

∂T
= (v + ve − vm).n

where ve is the entrainment velocity, vm is the mass flux velocity and n is the
normal to the surface η = H(Xq, T )

(22)
∂H

∂T
+ ∇X · (Hv

(0)
q

H

) = we(Xq, H, T ) − wm(Xq, H, T )
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We assume that

(23) θl = 1 + δ4θl
(4)(Xq, T ) + δ5θl

(5)(Xq, T ) + δ6θl
(6)(Xq, η, T ) + O

(
δ7

)

(24) qt = 1 + δ4qt
(4)(Xq, T ) + δ5qt

(5)(Xq, T ) + δ6qt
(6)(Xq, η, T ) + O

(
δ8

)
,

then averaged momentum and thermodynamics equations are

∂

∂T
(Hv

(0)
q

H

) + ∇X

(
H2

2
(θl

(5) − qt
(5) + Lv

∗∗Γql
(5) +R∗∗qv

(5))

)

+ (Ω̂ ×Hv(0)
H

)
q
= v

(0)
q

(Xq, H, T )
∂H

∂T
+

〈
(̺vqw)(5)

〉

s
(25)

(26)
∂

∂T
(Hθl

(5)) +Hv
(0)
q

H

∇Xθl
(4) = HR(6)

H

+ θl
(5) ∂H

∂T

(27)
∂

∂T
(Hqt

(5)) +Hv
(0)
q

H

∇Xqt
(4) = HSq

(6)
H

+ qt
(5) ∂H

∂T

These depth averaged equations derived represent the time variation of the bound-
ary layer structure in terms of the large scale dynamics, convective, radiative and
turbulent fluxes. They are similiar to those derived in [3].

Finally, suppose we asssume that in the layer that the profile of ql is given by

(28) q
(5)
l =

{
αη for zB ≤ η ≤ H
0 for 0 ≤ η < zB

where zB = zB(Xq, T ) is the cloud base and varies in time and horizontal space.
Then the averaged horizontal momentum equation becomes

∂

∂T
(Hv

(0)
q

H

) + (Ω̂ ×Hv(0)
H

)
q
+ ∇X

(
H2

2
[θl

(5) − (R∗∗ − 1)q(5)v

)

+ (R∗∗ − 1)zBH∇Xq
(5)
v +

α

2
(1 − Lv

∗∗Γ)H∇X(H2 − z2
B)

= v
(0)
q

(Xq, H, T )
∂H

∂T
+

〈
(̺vqw)(5)

〉

s
(29)

An equation is needed to predict the height of the subcloud layer zB.
We conclude by noting that the equations derived in this talk formalize the time

variation of the cloud topped boundary layer structure as described by various
authors e.g. [5].
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Modeling and parameterization of regional scale land-atmosphere

exchanges

Elie Bou-Zeid

(joint work with Marc B. Parlange, Charles Meneveau)

Large eddy simulation (LES) dynamically captures the effect of changes in land
cover on atmospheric flow and hence is a very useful tool for the modeling of the
non-linear land atmosphere interaction over heterogeneous terrain. However, to
be faithful to the physics of atmospheric boundary layer (ABL) flow over heteroge-
neous and complex terrain, the LES needs a fully local subgrid-scale (SGS) model
that does not require any directions of statistical homogeneity for averaging. We
have implemented such an SGS model, the Lagrangian dynamic scale-dependent
model, in LES and validated the code against classic results for flow over homoge-
neous terrain and against field experimental results (Bradley’s 1968 experiment)
for flow over an abrupt change in surface roughness.

Subsequently, we performed LES of ABL flow over random distributions of
surface roughness and looked at the effect of roughness heights and heterogeneity
distribution on land-atmosphere interaction. The “effective surface roughness”
and “blending height” were computed to quantify momentum transfer at the earth
surface. An “integral length scale” was defined to characterize the spatial scale of
surface heterogeneity, based on the structure function (variogram) of the surface
roughness.

As one can expect, for surfaces with low variation of the roughness heights,
land atmophere interaction is rather insensitive to the spatial distribution of the
roughness and the effective surface roughness changes little with the scale of hetero-
geneity. On the other hand, for surfaces with significant variation of the roughness
height, momentum transfer at the earth surface is significantly enhanced as the
heterogeneity scale is decreased. Furthermore, we show that the effective surface
roughness for random patches can be well estimated using a parameterization we
previously developed and tested for regular patches.

Derivation and discretization of the semi-geostrophic equations

Yann Brenier

This is a short review of the mathematical analysis of the SG equations. We start
from the Euler equations for an incompressible fluid moving in a bounded domain
D in R3, subject to constant rotation in the horizontal plane (x1, x2) and gravity in
the x3 direction. It is convenient to use particle trajectories t→ X(t, a) ∈ D, where
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a is the particle label, typically the position at t = 0 (so that X(0, a) = a ∈ A).
With these coordinates, using Boussinesq’s approximation, we can write the Euler
equations:

(1) ∂ttX(t, a) + (∇p)(t,X(t, a)) + J · ∂tX = θ(a)e3 ,

where J is the rotation generator Jx = (−x2, x1, 0), p(t, x) is the pressure at time
t and point x ∈ D, and θ depends only on the label a. The incompressibility of the
fluid means that, at each t, a ∈ D → X(t, a) ∈ D belongs to the set S(D) of all
volume preserving maps of D. Differentiating (1) with respect to t and eliminating
∂tt by using (1) again, leads to:

(2) ∂tttX + ∂t{(∇p)(t,X)} + J · (−(∇p)(t,X) − J∂tX) = 0,

where gravity terms have disappeared. Introducing

(3) Φ(t, x) = p(t, x) +
x2

1 + x2
2

2
,

we can write (2) as:

(4) ∂tttX + ∂t{(∇Φ)(t,X)} + J · (−(∇Φ)(t,X) +X) = 0.

Introducing, for each t, the map

(5) M(t, a) = (∇Φ)(t,X(t, a)),

we get

(6) ∂tttX + ∂tM = J · (M −X)

where X is valued in S(D) and M is of form (5). Next, assuming Φ(t, x) to
have positive second derivatives in x, following the ’Cullen-Purser’ energy principle
(which, roughly speaking, means strong rotation and stable vertical stratification),
we deduce from the polar factorization theorem for maps [3] that, for each t, X(t, ·)
is determined as the unique closest point π(M) to M(t, ·) on S(D) in L2 distance,
which means:

(7)

∫

D

||X(t, a) −M(t, a)||2da ≤
∫

D

||Y (a) −M(t, a)||2da, ∀Y ∈ S(D).

Therefore, under the Cullen-Purser principle, we finally get for M :

(8) ∂ttt(π(M)) + ∂tM = J · (M − π(M)).

Now, the semi-geostrophic equations are simply obtained, after a suitable rescaling,
by dropping the third order derivative in time:

(9) ∂tM = J · (M − π(M)).

A variant (the ‘Vlasov-Monge-Ampère’ equation)

(10) ∂ttM +M − π(M) = 0

has been recently studied in [6]. A natural discretization of (9) is obtained by
splitting the domain D in a large number N of cells Di of equal volume and center
of mass Ai for i = 1, · · ·, N . Then the map M(t, ·) is repaced by the position
of N points (‘semi-geostrophic vortices’) Mi(t) in R3 and the set of all volume



Mathematical Theory and Modelling in Atmosphere-Ocean Science 2347

preserving maps S(D) is replaced by the discrete set of all permutations σ of the
centers Ai. So, (9) becomes:

(11)
d

dt
Mi = J · (Mi −Aσi

), i = 1, · · ·, N

where σ is a time-dependent permutation updated so that

(12)

N∑

i=1

||Aσi
−Mi(t)||

stays minimal at any time. Notice that each SG vortices follows a piecewise circular
trajectory.

Results and References. The SG equations go back to Hoskins (see references
in [9]) and, earlier, to Eliassen (1948). Global existence of weak solutions was
proven in [2] using Eulerian coordinates and by [7] using Lagrangian coordinates.
See also [10]. The hamiltonian nature of the SG equations has been investigated
in [11]. The discrete approximation (11) was considered in [4] and [1]. See also
[5]. Its convergence to the continuous SG equations (in Eulerian coordinates) has
been recently proven in [8], which contains further interesting references.
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Reconstruction of effective stochastic dynamics from data

Daan Crommelin

(joint work with Eric Vanden-Eijnden)

Construction of stochastic models that describe the effective dynamics of observ-
ables of interest is an useful instrument in various fields of application, such as
physics, climate science, and finance. We present a new technique for the con-
struction of such effective models from timeseries. The approach centers on the
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minimization of an object function that measures the difference between the eigen-
spectrum of the generator of the stochastic process (for example, the Fokker-Planck
operator) and a reference eigenspectrum obtained from the data.

Denoting the reference spectrum by {ψk(x), φk(x), λk}, the generator by L and
its adjoint by L∗, the object function to be minimized is

E =
∑

k

(
αk‖L∗ψk − λkψk‖2 + βk‖Lφk − λkφk‖2 + γk|〈ψk, Lφk〉 − λk

∣∣2
)
,

where αk, βk, γk are nonnegative weights. In [1], L is the generator matrix of a
continuous-time Markov chain (in which case the state-space variable x takes on
discrete values). The case of a diffusion process, where the generator is the elliptic
operator

L = b(x) · ∇ + 1
2a(x) : ∇∇ ,

is treated in [2]. For both types of generators, the object function E is convex,
and quadratic in the quantities over which to minimize (matrix elements Lij in the
Markov chain case, drift and diffusion functions b(x) and a(x) in the diffusion case).
Moreover, the appropriate constraints (Lij 6= 0 if i 6= j; a(x) positive semi-definite
for all x) define a convex domain. Therefore, minimization of E is a quadratic
programming problem, with well-established numerical solution methods, and a
unique minimum.

The reference eigenvectors ψk(x), φk(x) and eigenvalues λk are obtained from
data by binning the timeseries and computing the associated transition probabil-
ity matrix P . The eigenvectors of P can be used as reference eigenvectors (or as
spatial discretizations of the reference eigenfunctions, in case of a diffusion). The
reference eigenvalues are λk = (∆t)−1 log Λk, with Λk the eigenvalues of P and ∆t
the sampling interval of the timeseries. Minimization of E results in a generator L
with an eigenspectrum that resembles the reference spectrum as closely as possible.
The invariant distribution of the stochastic process is part of the eigenspectrum.

As an example, consider a 1-dimensional diffusion process with periodic bound-
ary conditions and a domain [−π, π]. The drift and diffusion are given by b(x) =
1 + cosx and a(x) = 1 + 1

2 sinx, respectively. From a timeseries of 106 data-
points, generated by numerical integration of the 1-dimensional stochastic differ-
ential equation associated with this diffusion process, we reconstructed b(x) and
a(x). The results of the reconstruction are shown in figure 1. More details, as well
as other examples, can be found in [2].

For the reconstruction of drifts and diffusions, the approach allows for both
non-parametric and parametric estimation. It is not necessary to assume specific
functional forms for b(x) and a(x), and thus non-parametric estimation is possible.
For parametric estimation, one assumes expansions b(x) =

∑
n bnfn(x) and a(x) =∑

m amgm(x) with known functions fn(x) and gm(x). Minimization of the object
function E must now be carried out under variation of the expansion coefficients
bn and am. The quadratic structure of E is preserved. By limiting the number of
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Figure 1. Reconstructed drift b(x) = 1 + cos(x) and diffusion
a(x) = 1 + 1

2 sin(x) from data.

terms in the expansions, the dimensionality of the minimization problem can be
reduced significantly.
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Regimes of thermocline scaling: the interaction of wind-stress and

surface buoyancy

Paola Cessi

The role of the relative geometry of wind-stress and buoyancy forcings in enhancing
or suppressing the generation of oceanic baroclinic eddies is studied. The depen-
dence of the eddy-component of buoyancy transport on the external parameters
such as diapycnal mixing, dissipation rate and forcing is examined through direct
numerical simulations of the primitive equations in simplified, zonally-reentrant
domains. Qualitatively different regimes are found depending on the relative phase
of the wind-stress and surface buoyancy distribution. In some regimes a substan-
tial eddy-field is generated, which fundamentally contributes to the poleward heat
transport. In other regimes the eddies are very weak, and the bulk of the transport
is effected by the steady, mean circulation. These differences are rationalized in
terms of the energetics of the eddies.

The most efficient arrangement for eddy generation has eastward wind-stress
in conjunction with negative poleward buoyancy gradient. This correspond to the
situation found in the mid-latitudes, where the surface Ekman flow carries buoy-
ancy towards the high buoyancy region, i.e. upgradient of the surface buoyancy.
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In this case, strong eddy-fluxes are generated in order to counteract the upgradient
buoyancy transport by the Ekman cell. This arrangment of wind-stress provides
a large source of available potential energy on which the eddies can grow, so the
mechanical energy balance for the eddies is consistent with a substantial eddy
buoyancy flux. The competition between upgradient buoyancy transport by the
Ekman circulation and downgradient buoyancy transport by the eddies results in
a thermocline whose depth is independent of the diapycnal diffusivity.

When the same buoyancy gradient is paired with westward wind-stress, the
mean flow produces a sink, rather than a source, of available potential energy and
eddies are suppressed. With this arrangement, typical of low latitudes and the
sub-polar regions, the Ekman overturning cell carries buoyancy down gradient of
the surface distribution. Thus, the net buoyancy transport is almost entirely due
to the Ekman flow, and the thermocline is a thin, diffusive boundary layer.
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Figure 1. The left panel shows the zonally averaged eddy buoy-
ancy fluxes, v′b′ as a function of depth and latitude, diagnosed
from a direct numerical simulation. Motion is driven by prescribed
surface forcings shown in the top left panel: the surface buoyancy
bs(y) is shown as a solid line and the surface wind-stress leads
to the Ekman pumping, wE , shown as a dashed line. The right

panel shows the corresponding −
√
ψ′2 b̄y (diagnosed for the same

simulation), illustrating that the RMS barotropic streamfunction
is an excellent measure of the eddy diffusivity for buoyancy.

A quantitative theory for the eddy fluxes of buoyancy on the f−plane is devel-
oped and compared with the simulations, based on the following assumptions:

1) The interior of the thermocline has constant Ertel potential vorticity on
isopycnals. This implies that the zonally-averaged, quasi-geostrophic po-
tential vorticity eddy fluxes, v′q′ ≈ (v′b′/b̄z)z , is zero (b is the buoyancy, q
is the potential vorticity and v is the velocity; ¯ denotes the zonal average,
and ′ denotes the departure from zonal average).
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2) The zonally averaged eddy-fluxes of buoyancy, v′b′, can be approximated

by a down-gradient diffusion closure, v′b′ ≈ −κeb̄y, with κe =

√
ψ′2 (ψ′ is

the barotropic eddy streamfunction, linearly proportional to the vertically
averaged pressure fluctuations).

3) The barotropic eddy streamfunction variance, ψ′2, is proportional to the
eddy available potential energy, EAPE, times a mixing length square, ℓ2.
The EAPE can be calculated explicitly in terms of the imposed forcing
and the mean buoyancy. Various closures are examined for the mixing
length and compared with the numerical simulations.

The theory shows that, regardless of the choice for ℓ, it is essential to include
information about the EAPE in the eddy-flux closure, in order to capture the
different eddy regimes.

Figure 1 compares the directly computed eddy buoyancy fluxes, v′b′, (left

panel), with the parametrised fluxes, estimated using −
√
ψ′2 b̄y, for one typical

computation.

A Similarity Theory for Transcritical Flow over Orography

J. Gavin Esler

(joint work with O. J. Rump, E. R. Johnson)

Non-dispersive and weakly dispersive single layer flows over axisymmetric obstacles
of nondimensional heightM , measured relative to the layer depth, are investigated.
The case of transcritical flow, for which the Froude number F of the oncoming
flow is close to unity is considered. For transcritical flow, a similarity theory is
developed for small obstacle height, and for non-dispersive flow the problem is
shown to be isomorphic to that of transonic flow of a compressible gas over a thin
aerofoil. The nondimensional drag exerted by the obstacle on the flow takes the
form D(Γ)M5/3, where Γ = (F − 1)M−2/3 is a transcritical similarity parameter,
and D is a function which depends on the shape of the ‘equivalent aerofoil’ specific
to the obstacle. The theory is verified numerically by comparing results from a
shock-capturing shallow water model with corresponding solutions of the transonic
small disturbance equation, and is generally found to be accurate for M . 0.4 and
|Γ| . 1. In weakly dispersive flow the equivalent aerofoil becomes the boundary
condition for the Kadomtsev-Petviashvili equation and (multiple) solitary waves
replace hydraulic jumps in the resulting flow patterns. For Γ & 1.5 the transcritical
similarity theory is found to be inaccurate and for small M flow patterns are well
described by a supercritical theory, in which the flow is determined by the linear
solution near the obstacle. In this regime drag is shown to be cdM

2/F
√
F 2 − 1.

The transition between the two regimes is discussed.
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Marine ice sheet dynamics

Christian Schoof

Ice sheets affect the dynamics of atmospheres and oceans in numerous ways, for
instance through their effect on albedo, freshwater supply and sea level changes.
Ice sheets behave as highly viscous thin films, and are typically modelled using a
diffusion equation known in glaciology as the ‘shallow ice’ model.

Provided the margins of an ice sheet rest on land, this model is analogous to
generic models for the flow of non-Newtonian thin viscous films in the absence of
surface tension, and can be cast in the framework of parabolic obstacle problems
[1]. Although certain challenges remain in the mathematical analysis of the stan-
dard shallow ice model, notably when the bed of the ice sheet is not flat and the
obstacle problem leads to a non-monotone variational inequality, a great deal of
theoretical progress is possible.

A much harder situation to model is the case of a marine ice sheet, whose edges
do not rest on land but parts of which are afloat (as is, for instance, the case
in Antarctica). In that case, ice thickness in the part of the ice sheet that does
rest on land — the grounded part — still satisfies a nonlinear diffusion equation.
However, the boundary of the grounded part of the ice sheet is a free boundary
(also known as the grounding line), and the correct choice of boundary conditons
that apply is not obvious. One condition derives from the fact that the ice at
the free boundary attains a known thickness given by the fact that it is just thin
enough to float. This renders the problem somewhat similar to a Stefan problem,
in which temperature on the surface of a melting or solidifying object must attain
a given value, the melting point. A second boundary condition, analogous to the
Stefan condition, is also required.

We demostrate using matched asymptotic expansions [2] that in one dimension
this second boundary condition is a prescription for ice flux in terms of ice thickness
(or equivalently, depth of the ice sheet bed below sea level, as the ice is at flotation).
An important outstanding problem is then to understand how bed geometry affects
the stability of steady solutions to the marine ice sheet problem. Näıvely, stability
can be expected to depend on the slope of the bed at the location of the grounding
line, as this controls the change in ice flux caused by perturbations in the position
of the free boundary. This simplistic argument, which is supported by numerical
solutions, suggests that stable steady solutions must have their grounding line
where the bed is angled sufficiently steeply downwards. Current work aims at
providing a mathematical proof of this conjecture.
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Reduced Systematic Model Equations For The Planetary And

Synoptic Scales In The Atmosphere

Stamen I. Dolaptchiev

(joint work with Rupert Klein)

Observations show the existence of large number of low-frequency atmospheric
regimes (periods longer then 10 days) with planetary spatial scales (scales larger
then 3000 km), which have an important contribution to the variability of the at-
mosphere (e.g. the thermally and orographically induced quasi-stationary plane-
tary Rossby waves; teleconnection patterns; mean meridional circulations (Hadley,
Ferrel and the polar cells); zonally mean flows (subtropical and polar jets)). On
the other hand the local wind fields and precipitation patterns are influenced by
synoptic disturbances (periods of 3 to 6 days and spatial scales of 1000 km). Both
types of regimes - on the planetary and on the synoptic scales, are essential for
the weather variations and also for the climate, since they are responsible for the
heat, momentum and water vapor transport in the atmosphere.

We use an unified multiple scales asymptotic approach in order to derive reduced
model equations describing the relevant atmospheric phenomena on the planetary
and synoptic scales. The method was presented in [1, 2]. This technique allows
one in a systematic way to capture the important interactions between the two
scales. Considering processes on the planetary scales we have to take into account
effects due to the sphericity of the earth, large variations of the Coriolis parameter
and of the background stratification and the presence of a background zonal flow
(resulting from the equator-to-pol temperature gradient).

In the simple case, when we focus on the planetary scales only and the back-
ground zonal flow is neglected, we obtain the classical planetary geostrophic (PG)
equations: for the ocean see [3, 4] and for the atmosphere see [5, 6]. In the next
order asymptotic expansion an evolution equation for the relative vorticity has
been derived. It is a subject of current investigation if this equation can provide
a boundary condition for the PG equations.

When in the asymptotic scaling the synoptic processes are also resolved but the
background zonal flow is still neglected, then we obtain a set of two equations.
They are the analogon for the atmosphere of Pedlosky’s equations for the ocean
[7]. One equation describes the dynamics on the planetary scale of the background
stratification ∂Θ(2)/∂r, where r is a vertical coordinate and Θ(2) is the first non-
trivial term in the potential temperature expansion. This equation is identical to
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the potential vorticity (PV) equation in the PG case and there is no influence from
the synoptic scales on Θ(2). The other equation describes the synoptic-scale dy-
namics. It is a modified quasigeostrophic (QG) potential vorticity equation, where
the synoptic scale PV consists of planetary vorticity, relative vorticity due to the
horizontal variations on the synoptic scale of the deviations from the background
pressure, denoted by π(3), and a stretching term due to the vertical variations of
this deviations. In comparison with the classical QG theory there are two addi-
tional terms resulting from interactions with the planetary scales. This terms are
representing the advection of synoptic scale PV by the planetary scale velocity
field (velocities due to the planetary scale variations of π(2)) and the advection by
the synoptic velocity field (velocities due to the synoptic scale variations of π(3))
of PV due to the planetary scale gradient of Θ(2).

The most interesting case is when we consider both scales and include a geo-
strophically balanced background zonal flow (denoted by u(−1)), resulting from a
prescribed meridional temperature gradient of Θ(1)(φ, r). To make the discussion
as simple as possible we presented in the talk the results for the planetary scales
only and for a Boussinesq fluid. It is interesting to note that the next order
velocity field u(0) (due to π(2) variations) is not in geostrophic balance, since
metric terms appear in the momentum equation. The PV equation for π(2) has
additional terms compared with the classical PG equation: horizontal and vertical
advection of relative vorticity, divergency term, twisting term and advection by
the ageostrophic components of planetary vorticity and of stretching vorticity due
to vertical variations of Θ(1). When the averaged effects from the synoptic scales
on the planetary scales are taken into account, spatial averages over the synoptic
eddy fluxes appear as a source term in the PV equation. Thus the inclusion of a
background zonal flow allows additional interactions between the two scales.
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Semi-implicit semi-Lagrangian time-stepping methods and regularized

fluid equations in numerical weather prediction

Sebastian Reich

(joint work with Mark Dubal, Andrew Staniforth, Nigel Wood (UK Met Office))

The fundamental components of a numerical weather prediction (NWP) code are
provided by (i) data assimilation, (ii) dynamic core, and (iii) parameterization of
unresolved phenomena such as precipitation. The talk is primarily concerned with
numerical aspects of the dynamic core, which is defined by the inviscid Euler equa-
tions of stratified and rotating ideal fluid dynamics. I first summarize two popular
approaches to deal numerically with the large variety of length and time scales of
atmospheric circulation. These are (i) filtered equations such as the anelastic or the
hydrostatic approximation on the one hand and (ii) semi-implicit methods on the
other hand. Our focus is on approach (ii) and the semi-implicit semi-Lagrangian
(SISL) time-stepping method. The SISL method is, for example, used by the UK
Met Office to overcome the severe step-size restrictions due to unresolved waves as
well as strong advection in their non-hydrostatic Unified Model. The idea of the
Unified Model is to only use unapproximated Euler equations for the dynamic core
and to have the spatial and temporal approximations select the desired spatial and
temporal resolution. The practical implementation of the Unified Model method-
ology poses challenging questions to the practitioners and theoreticians alike. Our
own current work focuses on an interpretation of the semi-implicit method as a
regularization of the unapproximated Euler equations and the implementation of
such a regularization within an explicit time-stepping method [2, 3, 4, 5, 6, 7, 8].
Some preliminary results for a vertical slice Euler model are presented at the end
of my talk. It is also worth noting that a regularized set of equations has been
used in [1] for the implementation of a particle-mesh method.

The ultimate goal of this work is to implement the regularized time-staggered
semi-Lagrangian method for the three-dimensional Euler equations.
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Data Assimilation and the 2- and 3-body Problems

Ian Roulstone

(joint work with L.R. Watkinson, A.S. Lawless, N.K. Nichols)

The estimation of the initial conditions for numerical weather prediction involves
the assimilation of new observations into the previous forecast, over a given time
window, subject to the constraint that the final state is consistent with the equa-
tions of motion and thermodynamics. Current operational numerical weather
prediction methods have generally moved towards variational techniques (called
4DVAR, because they assimilate information distributed in space and time). Such
methods involve a cost function, J , which is a measure of the distance between
the observations,and the previous forecast, and the model state. This is then min-
imised in order to find a solution that lies close to both - this solution is called the
analysis.

We are therefore concerned with the following problem: Given a cost

(1) J =

∫ t1

t0

F (t,x, ẋ)dt,

we wish to minimise J subject to the constraint that the dependent variables, x,
evolve according to the equations of motion

(2) ẋ = f(x),

where · ≡ d
dt , and f is some (generally nonlinear) function (or functions). The

value of J depends on the path between the two end points. In 4DVAR, F (t,x, ẋ)
is a function that measures the difference between the observations, the previous
forecast, and the model state.

We can rewrite this problem by defining the Lagrangian, L, which takes into
account the additional information provided by the constraint:

(3) L =

∫ t1

t0

(F (t,x, ẋ) + λ(t)(ẋ − f(x))) dt,
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where λ(t) is a vector of Lagrange multipliers. We define G(x,λ, ẋ, λ̇) ≡
F (t,x, ẋ) + λ(t)(ẋ − f(x)), and the following equations are necessary conditions
to ensure δL = 0:

(4) Gx − d

dt
Gẋ = 0, Gλ − d

dt
Gλ̇ = 0.

These are the Euler-Lagrange equations: the first set are the adjoint equations and
the second set are the equations of motion. Satisfying (4) is, in general, highly
non-trivial: the problem is nonlinear and the coupling between (moist) thermody-
namics and dynamics can also be non-smooth. Most 4DVAR algorithms are based
on the assumption that the assimilation can be linearised, so that increments are
added to the previous forecast to arrive at a new analysis.

Operational data assimilation systems should also minimise the amount of in-
formation projected onto the fast inertia-gravity waves and optimise the amount
of data projected onto the slow Rossby waves. In 4DVAR, this can be achieved
by adding additional constraints to the cost function to impose balance. Coping
with strongly nonlinear processes, with multiple timescales, will be a big challenge
for the development of data assimilation systems for convective-scale forecasting.
Sparsity of data also presents major challenges. Typically there are far fewer ob-
servations than degrees of freedom in the model, and it is necessary to use qualita-
tively useful information, such as the background state (the previous forecast), and
balance conditions (such as geostrophy), applied via additional quadratic penalty
terms in the cost function, to help fill the ‘data gaps’. These are known as weak
constraints and are so-called due to the fact that they do not have to be exactly
satisfied by the solution.

With these issues in mind, in [1] and [2] we have applied 4DVAR to the 2-
and 3-body problems of celestial mechanics. The 2-body problem satifies Kepler’s
laws, and these laws provide qualitatively useful information that can be used in
the data assimilation. The 3-body problem is a system that can exhibit instability
and chaos, and can be set up so that it possesses two distinct timescales.

In the Kepler problem we have two bodies in orbit around each other, obeying
Newton’s law of gravitation. We choose the origin to lie at the centre of mass,
so that we have one body with reduced mass, µ ≡ (m1m2)/(m1 + m2), orbiting
the other body of mass M = m1 + m2. Motion is restricted to a plane. In
terms of positions, q, and momenta, p, the equations of motion can be written (in
Hamiltonian form):

dq

dt
= p

dp

dt
= − q

(q21 + q22)
3

2

.

This system conserves energy, E, and angular momentum, L:

E = 1
2 (p2

1 + p2
2) −

1

(q21 + q22)
1

2

, L = q1p2 − q2p1.
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A Störmer-Verlet scheme is used to integrate these equations:

P n+ 1

2 = P n − h

2

Qn

(Qn2

1 +Qn2

2 )
3

2

(5)

Qn+1 = Qn + hP n+ 1

2(6)

P n+1 = P n+ 1

2 − h

2

Qn+1

(Qn+12

1 +Qn+12

2 )
3

2

,(7)

where h is the timestep. A linear model is then constructed by linearizing the
discrete equations (which results in the so-called tangent linear equations).

Define x ≡ (q1, q2, p1, p2) and λ ≡ (λ1, λ2, λ3, λ4), then the Euler-Lagrange
equations (4) can be written in the Hamiltonian form

(8) λ̇ =
∂H

∂x
; ẋ = −∂H

∂λ

where

H(λ,x) = F (x) − p1λ1 − p2λ2 +
(λ3q1 + λ4q2)

(q21 + q22)
3

2

Among our results, we show that imposing weak penalties that constrain the
energy and angular momenta of the analysis to be close to that of the previous fore-
cast improves the subsequent forecast considerably. We introduce a background
penalty: this constraint measures the distance between the model state at the ini-
tial time and the background field (previous forecast) at the same time. The con-
straint has the form JB = α1(xb(t0)−x(t0))

T (xb(t0)−x(t0)), where xb = (qb,pb)
T

is the background state, with qb ≡ q(t0) etc. The second constraint makes use
of the energy conservation property of the system. Here we measure the distance
between the energy of the model state at the initial time and the energy of the

background at the same time. It has the form JE = α2 (E(xb(t0)) − E(x(t0)))
2
.

We also investigate imposing a weak constraint such that the angular momentum
of the analysis is close to the angular momentum of the background. This reflects
the angular momentum conservation property of the two body problem. This has

the form JL = α3 (L(xb(t0)) − L(x(t0)))
2
. In all three cases the αs are the weights.

We show that in all cases the weak constraints improve the forecast. However
the behaviour of the solutions is different. If only the background penalty is
imposed, we see that the error in the forecast is reduced but it is still increasing
with time. When we include the energy constraint as well, there is a further
reduction in the error in the forecast; however, in this case, for large values of α2,
the error actually stops increasing. This behaviour is repeated when we impose
the angular momentum constraint.

We can explain the difference in the effectiveness of the constraints by consid-
ering the inherent characteristics of the 2-body problem. We observe that the
error of the unconstrained case is increasing. This behaviour can be caused by
comparing two solutions that are out of phase with each other, implying that the
orbital periods of the two solutions are different. From Kepler’s third law we know
that a change in the orbital period means a change in the semi-major axis of the
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orbit. Thus we are comparing two solutions, the analysis and the truth, with
different semi-major axes. However, the energy of a given orbit is dependent on
the semi-major axis. Thus two solutions with different semi-major axes will have
different orbital energies. Consequently, using the energy constraint helps to keep
one of the qualitative features of the problem consistent from one forecast to the
next. Similar results are obtained for the more complicated scenarios explored in
the 3-body problem.
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Unstructured adaptive grid refinement in atmospheric and ocean

modeling

Lars Mentrup

(joint work with Jörn Behrens)

Resolving large as well as small scales and studying their interaction is one key
challenge of atmospheric and oceanic simulation. Adaptivity of meshes is a funda-
mental means to find a deeper insight into these multiscales phenomena. At the
same time computer resources are efficiently used at regions of interest, preventing
the computational overkill of uniform refinement.

We first introduced amatos [1], which is a software package for adative grid gen-
eration. It supports planar and spherical geometries based on triangular elements.
amatos relieves the researcher of the task of grid management. By using the grid
generator, one basically decouples the numerical computation from grid generat-
ing and adaptation processes. Many features as FEM/SEM-support, interpola-
tion at given points and support for semi-Lagrangian time-stepping are included
in amatos. One of the latest developments is the implementation of space-filling
curve ordering of indices offering advantages in a) parallelization through ease of
domain decomposition, b) cache access optimization and c) very good precondi-
tioning properties when it comes to iterative matrix solvers. More information on
amatos and space-filling curves ordering can be found in [1, 3]. amatos is open
source and can be downloaded on www.amatos.info.

Secondly, we presented the classic semi-Lagrangian approach for advection sim-
ulation. We showed that the discretization of the divergence-free formulation in
differential form

dρ

dt
=
∂ρ

∂t
+ a(x, t)

∂ρ

∂x
= 0

where ρ is a scalar representing density and a(x, t) ∈ R
d, d = 2, 3 is a given

windfield, is not mass conservative by construction. The challenge to develop
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mass conservative semi-Lagrangian schemes motivated our new approach. The
starting point for this task is the discretization of the integral form

∫

V (x,t)

ρ(x, t) dx =

∫

V (x−α(x),t−∆t)

ρ(x, t− ∆t) dx

where α(x) is the upstream trajectory prescribed by the windfield a(x, t). Note
that for divergence-free a(x, t) differential and integral form are equivalent. Defin-
ing the control volumes V (x, t) can be done in different ways. We presented
two different schemes implementing this new approach, namely the mass packet
semi-Lagrangian method (MPSLM) [5, 8] and the cell-integrated semi-Lagrangian
method (CISLM) [4]. While the MPSLM is discretizing the control volumes by
sub-grid cells, so-called mass packets, the CISLM is using dual cells. Both schemes
compute the upstream control volume V (x − α(x), t − ∆t) and either collect the
mass packets having a non-zero cut set with the control volume (MPSLM) or
computing the exact intersection of V (x − α(x), t − ∆t) and cells of the previous
time-step grid (CISLM). Results showing mass conservation of both methods were
presented.

The third part of our talk adressed an important task in grid refinement: Con-
trolling the grid refining and coarsening process. Most grid refinement strategies
at present use heuristic, physically motivated methods as refinement criterion, e.g.
the gradient of a quantity of interest. In contrast, the a posteriori error estima-
tion is a mathematically more rigorous approach based on the computed solution.
A posteriori error estimation gains increasing popularity, guaranteeing reliability
and efficiency of the computed error estimate. We introduced the basics of the
Zienkiewicz-Zhu a posteriori error estimator. This averaging technique was proven
to be reliable and efficient [6]. First tests showed encouraging results.

Finally, we presented applications based on amatos. First, results of the adap-
tive shallow water model on the sphere (including the poles) by Heinze, called
PLASMA-FEMmE [7] were shown. For test case 5 of the Williamson test suite,
the resolution at regions of interest is doubled while the computational time does
not increase. PLASMA-FEMmE demonstrates very good conservation properties
for the quantities of total mass (0.998), total energy (0.997) and potential enstro-
phy (0.994) after 15 days (1440 time-steps) of simulation time. Secondly, results
of an adaptive tsunami model in development by Behrens using amatos were pre-
sented. Preliminary results modeling a tsunami event in a channel with decreasing
water height over ground were shown. Both applications emphasized the mature
status of the grid generator amatos.

A synopsis of techniques for adaptive atmospheric modeling can be found in [2].
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adaptiven dreidimensionalen Gitter, Diploma thesis, Technische Universität
München, 2003.

The Emergence of Large Scale Coherent Structure under Small Scale

Random Bombardments

Andrew Majda and Xiaoming Wang

We provide mathematical justification of the emergence of large scale coherent
structure in a two dimensional fluid system under small scale random bombard-
ments with small data assumptions. The analysis shows that the large scale struc-
ture emerging out of the small scale random forcing is not the one predicted by
equilibrium statistical mechanics. But the error is very small which explains earlier
successful prediction of the large scale structure based on equilibrium statistical
mechanics.
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Inertia-gravity waves emitted spontaneously from quasi-balanced flow:

properties and consequences

Paul David Williams

(joint work with Thomas W. N. Haine, Peter L. Read [1])

Inertia-gravity waves are observed ubiquitously throughout the stratified parts
of the atmosphere and ocean. Orthodox mechanisms for inertia-gravity wave gen-
eration include dynamical instability, such as Kelvin-Helmholtz shear instability.
Another possible mechanism is the interaction between the flow and a physical
obstruction, which is the mechanism by which mountains generate atmospheric
gravity waves. Direct forcing of the ocean by the atmosphere is an important
source of oceanic gravity waves.

Despite the above insights, our understanding of the sources of inertia-gravity
waves remains rudimentary. For instance, a further potential source is sponta-
neous emission from quasi-balanced flow [2]. This is a generalization of the clas-
sical geostrophic adjustment process [3], in which an unbalanced flow tends to es-
tablish geostrophic balance by shedding excess energy as transient inertia-gravity
waves. It has been shown that even first-order balanced flows undergo a generalized
adjustment process that is accompanied by the spontaneous emission of inertia-
gravity waves [4]. It is proving extraordinarily difficult to determine whether or
not this mechanism is a significant source of inertia-gravity waves in real geophys-
ical flows, however [5]. This hinders the development of parameterisations of the
waves in general circulation models.

The spontaneous emission of inertia-gravity waves is intimately related to the
concept of the slow manifold [6, 7]. The slow manifold is a putative, invariant
sub-manifold of phase space, upon which the fluid remains completely devoid of
inertia-gravity waves. The strict existence of the slow manifold, and hence the
possibility of a flow evolving without ever spontaneously emitting inertia-gravity
waves, has long been debated. The formal non-existence of the slow manifold is
now generally accepted, however.

Even accepting the inevitability of spontaneous inertia-gravity wave emission,
the possibility remains that the emitted waves will be sufficiently weak that they
merely perturb the slow manifold into a quasi-stochastic fuzzy manifold [8] that
retains many of its useful properties. The amplitude of spontaneously-emitted
inertia-gravity waves, and its dependence on the bulk flow properties (especially
the Rossby number), is therefore of great interest.

In this report, I summarize the properties of observed inertia-gravity waves
emitted spontaneously from quasi-balanced flow, and the consequences for loss
of balance from the atmospheric and oceanic mesoscale. In a laboratory study
using a rotating two-layer annulus [9], it is found that all evolving quasi-balanced
flows emit inertia-gravity waves spontaneously. It has been shown [10] that the
appearance of the waves is well-predicted by the radiation term derived by [4],
following [11].
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Two important issues arise from this study. First, the quasi-balanced flow leaks
roughly 1% of its energy each rotation period into inertia-gravity waves at the peak
of their generation. Extrapolation of this result suggests that the spontaneous
emission mechanism might make a significant contribution to the energy budgets
of the ocean and atmosphere. For example, it is crudely estimated that O(1TW)
is being lost from balanced mesoscale ocean eddies into the internal wave field,
suggesting that this mechanism might be a significant player in maintaining the
deep ocean stratification.

Second, the inertia-gravity wave amplitude shows a broadly linear variation
with Rossby number in the range 0.05–0.14, at constant Froude number. This is
in disagreement with asymptotic and non-asymptotic theories, which predict alge-
braic and exponential variation, respectively [12, 13]. This suggests that the fuzzy
manifold is not exponentially thin in Rossby number, as previously thought. This
has potentially important implications for the fundamental dynamical concepts of
balance and potential vorticity inversion.

An asymptotic renormalization theory appears to yield the observed linear
Rossby number scaling. The theory is based on that of [14] in the small Rossby
number (Ro) limit. The first-order renormalized equation contains only resonant
triplet interactions and thus cannot generate inertia-gravity waves from quasi-
balanced potential vorticity modes. In fact, if the initial inertia-gravity wave en-
ergy is zero, the equation reduces to quasi-geostrophic dynamics. The renormalized
solution also contains a first-order slaved term consisting only of inertia-gravity
waves, however. This term is zero initially, but increases in a few fast wave periods
to be O(Ro). The inertia-gravity waves are slaved to the quasi-balanced flow and
are not freely propagating. In this sense a slow manifold still exists because the
entire flow can still be deduced from potential vorticity inversion.
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The primary nonlinear dynamics of modal and nonmodal

perturbations of monochromatic inertia-gravity waves

Ulrich Achatz

The importance of gravity waves for the dynamics of the middle atmosphere via
their momentum and energy deposition has been known for a long time. Since
the major part of the corresponding wave spectrum is at scales which cannot be
resolved within state-of-the-art general circulation models these can only incorpo-
rate gravity-wave effects via parameterizations. With this regard there are still
considerable uncertainties since many details of (mostly tropospheric and strato-
spheric) gravity-wave radiation, propagation through the middle atmosphere, and
breaking, predominantly in the mesosphere-lower-thermosphere (MLT), are not
sufficiently understood yet [6]. With regard to the breaking process itself, a sys-
tematic approach, starting with a linear analysis, and using the thereby identified
instability patterns for distinctly perturbing a wave, had not been done yet. This
might, however, be useful for the derivation of paradigms of wave breaking which
could be used in improved parameterization schemes. As a first step in such a
procedure, the linear stability of monochromatic gravity waves has been reinvesti-
gated by [1] and [4, 5]. A fundamental result is that even in the absence of classic
normal-mode (NM) instabilities vigorous transient growth of singular vectors (SV)
is still possible. Especially for inertia-gravity waves (IGWs) this puts traditionally
used instability thresholds, such as those of static instability (negative vertical
buoyancy gradient) or dynamic instability (sufficiently strong vertical shear), at
question.
Based on these results the breaking of an inertia-gravity wave, initiated by its
leading NMs or SVs, and the resulting small-scale eddies have been investigated
by means of direct numerical simulations of a Boussinesq fluid characterizing the
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upper mesosphere. The focus was on the primary nonlinear dynamics, neglecting
the effect of secondary instabilities. It was found that the structures with the
strongest impact on the IGW and also the largest turbulence amplitudes are the
NM (for a statically unstable IGW) or short-term SV (statically and dynamically
stable IGW) propagating horizontally transversely with respect to the IGW, possi-
bly in agreement with observations of airglow ripples in conjunction with statically
unstable IGWs. In both cases these leading structures reduce the IGW amplitude
well below the static and dynamic instability thresholds (Fig. 1). The resulting
turbulent dissipation rates are within the range of available estimates from rocket
soundings, even for IGWs at amplitudes low enough precluding NM instabilities.
SVs thus can help explaining turbulence occurring under conditions not amenable
for the classic interpretation via static and dynamic instability. Due to an impor-
tant role of the statically enhanced roll mechanism in the energy exchange between
IGW and eddies the turbulent velocity fields are often conspicuously anisotropic.
The spatial turbulence distribution is determined to a large degree by the ellipti-
cally polarized horizontal velocity field of the IGW. Further details can be found in
[2]. This work illustrates the necessity to reconsider the parameterization of IGW
breaking in a broader context which also takes nonmodal instabilities into account.
Moreover, a complementary paper [3] shows, in agreement with [7, 8], that the ne-
glect of the horizontal gradients in high-frequency gravity waves causes serious
errors in the estimate of the instability thresholds for these waves. Thus, present
parameterization schemes cannot be seen as much more than a very coarse tool
helping us to get some momentum deposition in the mesosphere, without much
quantitative realism.

Figure 1. For a (right) statically and dynamically stable IGW
(initial amplitude with respect to the overturning threshold a0 =
0.87, no unstable NM) or a statically unstable IGW (left, a0 =
1.2), the time dependence of the IGW amplitude a, normalized
by a0, from integrations after a perturbation by the leading SVs
or NMs at azimuth angles α = 0, 90◦.
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A Resonant Instability of Finite-Amplitude Mountain Waves

David J Muraki

(joint work with Youngsuk Lee, David Alexander & Craig Epifanio)

When density-stratified air is forced by winds over elevated terrain, the vertical
displacement of the flow results in a downstream pattern of dispersing waves. The
effects of these gravity waves can often be visualized through clouds which do
not drift with the winds, but remain stationary with respect to the topography.
Such vertical disturbances to the flow are important in the understanding of the
microscale variations in cloud and precipitation patterns for alpine communities
(and ski resorts). Intense wave activity is also an aviation hazard when encountered
as in-flight turbulence.

Linear theories for stratified flow over topography were first established dur-
ing the 1940’s with the pioneering works of Lyra [1], Queney [2] and Scorer [3].
The first significant theory to address nonlinearity occurred soon thereafter, when
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Figure 1. The left panel shows the vertical motion field (shading)
for steady, hydrostatic flow over three mountains, along with the cor-
responding streamlines (solid). The right panel shows the disturbance
streamfunction for the most unstable mode (growth rate ≈ 0.08 & fre-
quency ≈ 0.32).

Long [4] noted that the steady theory for stratified flow over two-dimensional to-
pography could be exactly expressed as a single equation for the streamfunction.1

Furthermore, conditions of uniform upstream wind and constant density stratifi-
cation (under a Boussinesq assumption) represent a remarkable special case where
the theory reduces to the linear Helmholtz equation.

A counterpoint to this theory of stable, steady waves over topography is the
well-established fact that periodic plane gravity waves are subject to a nonlinear
instability. Floquet theory [7, 8, 9] has shown that a sinusoidal gravity wave,
even of infinitesimal amplitude, is parametrically unstable through resonant wave
interactions (see also the review by Staquet & Sommeria [10])). The possibility
that this resonance mechanism has implications for topographic flow was noted in
the original hydrostatic simulations of Klemp & Lilly [11], where the theoretical
steady solutions were not achieved for flow past periodic topography.

The steady mountain waves are known to be unstable for topographic heights
for which there are overturning streamlines/isentropes [12]. However, recent two-
dimensional simulations for non-periodic topography clearly show that an oscilla-
tory instability of steady flow over two (or more) isolated peaks can occur well-
below the overturning threshold (Epifanio & Muraki, in preparation). For hydro-
static steady mountain waves, a linear stability analysis produces unstable modes
that well-reproduce the simulations, and identifies the instability mechanism as a
triad resonance.
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Spherical Hamiltonian Isentropic 2-Layer Model for Atmospheric

Dynamics

Onno Bokhove

(joint work with Marcel Oliver)

Introduction Recently, it has been shown that the numerical Hamiltonian parti-
cle mesh method of Frank, Gottwald and Reich [4] arises from a parcel Eulerian-
Lagrangian (EL) formulation [2,3]. A parcel Eulerian-Lagrangian Hamiltonian
formulation consists of a non-autonomous Hamiltonian description of a particu-
lar fluid parcel with as single parcel Hamiltonian function the sum of its kinetic
energy (the velocity magnitude squared) and an Eulerian potential evaluated at
the parcel’s position. However, the fluid is a continuum collection of such particu-
lar fluid parcels. The Eulerian potential depends on an Eulerian (pseudo)density
and, furthermore, this (pseudo)density is related to all fluid parcel by an integral
relation which thus establishes the continuum nature of the fluid. Bokhove and
Oliver [2,3] show that several geophysical fluid systems have a parcel EL Hamil-
tonian formulations, which are readily related to corresponding Eulerian Hamil-
tonian formulations. The advantages of the new parcel formulation are that it
provides new insights into Hamiltonian systems and sometimes simplifies the use
of mathematical techniques. Bokhove [1] first used these EL formulations to study
balanced models with asymptotic theory and to revisit classic parcel instabilities.
As an example, a two-layer model with an isentropic tropospheric and an isen-
tropic stratospheric layer will be derived here on the sphere within the parcel EL
framework. Subsequently, it can be shown that the Eulerian Hamiltonian formu-
lation of the two-layer equations readily follows from the parcel EL formulation.
Further questions under investigation are whether numerical Hamiltonian particle
mesh methods remain worthwhile in the presence of weak forcing and dissipation.

Parcel Eulerian-Lagrangian Hamiltonian formulation Consider an isen-
tropic two-layer atmosphere on the sphere. In the troposphere the potential tem-
perature (or entropy) is taken constant, θ = θ2, and, similarly, in the stratosphere
the potential temperature is constant θ = θ1 with θ1 > θ2. The variables in these
layers and at their interfaces are sketched in Fig. 1. The pressure at the bottom
topography at r = r2(λ, φ) is p2(λ, φ, t) with r the radial coordinate, λ and φ the
latitude-longitude coordinates, and t the time. The pressure at the tropopause,
the interface between troposphere and stratosphere at r = r1(λ, φ), is p1(λ, φ, t).
The pressure at the top r = r0(λ, φ, t) of the stratosphere is p0 ≈ 0. In these
layers the horizontal velocity depends on the latitude-longitude coordinates and
time. When the horizontal length and velocity scales along the sphere are much
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Figure 1. Sketch of an atmosphere consisting of an isentropic
tropospheric and isentropic stratospheric layer.

larger than the vertical ones this is a leading order approximation. Furthermore,
hydrostatic balance holds to leading order in the radial or vertical direction.

We use subscripts α = 1, 2 for the variables in and associated with the tro-
pospheric and stratospheric layers. These are dropped when no confusion arises.
Consider a fluid parcel in one of the layers, on a rotating Earth. It has coordi-
nates X1 = λ and X2 = φ. The corresponding velocities follow from the spherical
geometry as U = R cosφ λ̇ and V = R φ̇ with λ̇ = dλ/dt and φ̇ = dφ/dt, using
r ≈ R. Related to these velocities are the following covariant (bold lower indices)
and contravariant (bold upper indices) vectors

(1) U1 = U1R2 cos2 φ = U R cosφ and U2 = U2R2 = V R.

The kinetic energy on a sphere rotating with a speed Ω is

(2) Ekin =
1

2

(
R2 cos2 φ (λ̇ + Ω)2 + (R φ̇)2

)
=

1

2
(Ũ2 + Ṽ 2)

for each layer. The effective potential for each layer α is

(3) V = M(λ, φ) +
1

2
Ω2R2 cos2 φ

with Eulerian Montgomery potential M = M(X1, X2) and a centrifugal force
contribution. The Euler-Lagrange equations for one fluid parcel then follow from

the variational principle 0 = δ
∫ t1

t0
Ekin − V dt. The associated canonical Hamil-

ton’s equations subsequently emerge via a Legendre transformation. Instead, we
prefer the following non-canonical formulation. The non-canonical Hamiltonian
equations for each layer parcel in this spherical shell geometry then become

dX1

dt
=

U1

R2 cos2 X2
=

∂H

∂U1

and
dX2

dt
=
U2

R2
=

∂H

∂U2

(4)

dU1

dt
= 2 ΩR2 cosX2 sinX2

∂H

∂U1

− ∂H

∂X1
(5)

dU2

dt
= −2 ΩR2 cosX2 sinX2

∂H

∂U2

− ∂H

∂X2
(6)
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with in each layer the Hamiltonian

H =
1

2
(U1 U

1 + U2 U
2) +M(X1, X2, t) =

1

2
(U2 + V 2) +M(λ, φ, t).(7)

Montgomery potentials The next step is to derive the Montgomery potentials
Mα for α = 1, 2. In the troposphere the potential temperature is constant θ = θ2
and the ideal gas law p = ρRT is used with temperature T = θ ηκ, density ρ and
gas constant R. We can therefore rewrite the following expression

(8) (∇p)/ρ+ ∇(g r) = ∇(θΠ + g r) = ∇M,

where Π = cp θ η
κ is the Exner function, η = p/pr with reference pressure pr, and

κ = R/cp the ratio of R over the specific heat cp at constant pressure. We have
assumed that hydrostatic balance holds in the radial direction, which thus obtains
the form ∂M/∂r = 0 after using (8) in the respective layers. After integration of
this hydrostatic balance relation from the Earth’s surface at r = r2 to r < r1 one
obtains

(9) M = cp θ2 η
κ + g r = M2 = cp θ η

κ
2 + g r2.

Integration of hydrostatic balance from r > r1 to r = r0 in the stratosphere gives
likewise

(10) M = cp θ1 η
κ + g (r − R0) = g (r0 −R0)

with p0 ≈ 0 and a constant reference height R0. Using continuity of pressure
p1 = p2 at interface r1, one finds

(11) M1 = cp θ1 η
κ
1 + cp θ2 (ηκ

2 − ηκ
1 ) + g (r2 −R0).

In addition, pseudo-densities σ1 = p1/g and σ2 = (p2−p1)/g are defined such that
Mα = Mα(σ1, σ2, z2).

To derive the Eulerian Hamiltonian formulation on the sphere from the parcel
Hamiltonian formulation (4)–(7), relations between functional and function varia-
tional and time derivatives are required as in [2,3]. The mass of a layer column is
dM = da db = σR2 cosx2 dx1 dx2. By definition

σα(x1, x2, t) =

∫∫
σα(x̃1, x̃2, t) δ

(
x1 − x̃1

)
δ
(
x2 − x̃2

)
dx̃1 dx̃2(12)

=

∫∫
δ
(
x1 − χ1

α

)
δ
(
x2 − χ2

α

)
√
µ

da db(13)

with parcel coordinates x̃1 = χ1
α(a, b, t), x̃2 = χ2

α(a, b, t) and parcel labels (a, b)T ,
and

√
µ = R2 cosφα. For a particular label (A,B)T : (X1(t), X2(t))T = χ(A,B, t).

These integral relations reveal the continuum nature of the parcel EL Hamiltonian
formulation, (4)-(7) and (12), since the Mα’s depend on these pseudo-densities.

Conclusion The parcel EL Hamiltonian formulation has been constructed for an
isentropic two-layer model of atmospheric dynamics on a sphere. From this EL
formulation one can derive the corresponding Eulerian Hamiltonian formulation
in a relatively easy way. Details of similar derivations can be found in Bokhove
and Oliver [2,3].
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On the motion and structure of 3D - mesoscale vortices

Eileen Mikusky

(joint work with Antony Owinoh, Rupert Klein)

The purpose of the talk is to illustrate how perturbation methods can be employed
to derive a system of reduced model equations describing the motion and structure
of mature hurricane-like vortices with typical wind speeds of ∼ 30 m s−1 and
radial scales of ∼ 300 km. Regarding the mechanisms controlling the motion and
structure of hurricane-like vortices, the role of scale interactions associated with
diabatic processes on vortex-scales and a vertically sheared background flow on
synoptic scales (∼ 1000 km) is of particular interest. The two major questions
the authors try to answer are 1.) Are there mesoscale processes that may help a
vortex to sustain its coherence in the presence of a vertically sheared background
flow? 2.) Are hurricane-like vortices primarily steered by its environmental flow
or are there additional effects related to diabatic effects that cause a deflection of
the synoptic-scale vortex motion from its environmental steering flow?

Our interest on these issues is motivated by recent studies that identify meso-
scale processes to play a key role in determining the hurricane-like vortex structure
by creating asymmetries in the near core region. For instance, numerical simula-
tions for mature tropical cyclones carried out by [1] have shown that after 48 h
and in the presence of a 5 m/s environmental shear throughout the troposphere,
the vortex remained in its vertically upright position while a strongly asymmetric,
quasi-steady vertical motion pattern was observed with maximum upward motion
downshear left of the center. In this relatively strong environmental shear this is a
somewhat surprising result, since one would expect that the vortex becomes tilted
once a vertical background shear has been imposed and eventually shears away
due to the differential advection. Thus, the question is raised what mechanisms
cause such asymmetries and in which manner are they responsible for maintaining
the vortex coherence in vertical shear flows.
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The derivation of reduced model equations is carried out using an unified ap-
proach to meteorological modelling based on multiple-scale asymptotic methods
[2], [3]. To this class of asymptotic methods belong both multiple-scale expan-
sions and matched asymptotics which are useful mathematical tools to study the
interactions of processes acting on different length and time scales. In analogy to
the work of [4] who studied the motion and core structure of geostrophic vortices
in the framework of a shallow water model, we employ the method of matched
asymptotics for our studies. In a first step single scale inner and outer expansions
have been used to construct reduced model equations in leading orders describing
the vortex structure on mesoscales and synoptic scales, respectively. Then, based
on these equations analytical solutions for the velocity fields have been derived.
Eventually, a matching of these velocity fields made it possible to derive equa-
tions for the synoptic scale vortex motion that account for net-effects of mesoscale
processes in the vortex-scale region.

Considering adiabatic vortices (diabatic effects are excluded) embedded in a
background flow with weak vertical shear, leading order solutions for the vortex
motion have been derived that describe how the vortex is steered by its vertically
constant background flow in leading order. From next higher order equations,
corrections for the vortex motion have been obtained that describe how the differ-
ential advection induces a vortex tilt. Interestingly, the direction of the vortex tilt
is fixed as long as the background flow is strong. For weak background flows, how-
ever, the vortex tilt makes a precession motion. The latter vortex behaviour is in
agreement with observations made by [5]. Studying the impact of the background
flow induced vortex tilt on the mesoscale vortex structure, a relation between the
vortex tilt and wavenumber-one asymmetries in the vertical velocity and potential
temperature patterns has been found. This is also known as the adiabatic lifting
mechanism which has been first observed by [6].

Considering diabatic vortices (diabatic effects are included) things change dra-
matically. It turns out that in leading order the vortex is not only steered by its
background flow, but a modification is caused by the net effect of mesoscale pro-
cesses on vortex-scales which are strongly related to diabatic effects. Regarding
the vortex tilt two different observations can be made. In the absence of net-
heating effects due to small-scale convection, the vortex tilt is reduced at least by
one order. However, if a net-heating due to small-scale convection is turned on
we get a nonzero tilt in leading order. Although no detailed studies on that issue
have been done so far it is believed, however, that the tilt of diabatic vortices must
not be seen as a result of small-scale convective processes. From the experience
of the behaviour of dry adiabatic vortices it is rather expected that small-scale
convective heating can be seen as a result of a vortex tilt induced by the vertical
shear of an environmental flow. This argumentation is motivated by observations
of lightnings in hurricane-like vortices. In particular, a statistical analysis made
by [7] has shown that there are prefered regions of lightnings depending on the
direction in which the vertical shear vector points.
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Finally, it is worth to point out that regarding the axissymmetric vortex struc-
ture, the asymptotic analysis of the governing equations of diabatic vortices yields
a system of equations that can be seen as an extended version of Eliassen’s bal-
anced vortex model [8] which in terms of the vortex tilt also accounts for the
influence of an environmental flow on the secondary circulation.
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Compressible atmospheric modeling at all scales

Oswald Knoth

A time discretization method for the dry compressible atmospheric equations in
conservation form is introduced and the solution of the linear equations involved is
outlined. To formulate the prognostic equations in variables that have conservation
properties, we define flux quantities

(1) V = ρv = (U,V,W), Θ = ρθ

and we write the prognostic compressible equations in the form:

∂ρ

∂t
+ ∇(ρv) = 0

∂ρv

∂t
+ ∇(ρv ◦ v) = ∇τ −∇p− ρg − 2Ω × (ρv)

∂ρθ

∂t
+ ∇(ρvθ) = ∇(ρνθ∇θ) +Qθ.
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Pressure is obtained from the diagnostic equation of state

(2) p = ρRθ(p/p0)
κ.

After spatial discretization an ordinary differential equation

y′ = F (y)

is obtained which we integrate in time by a special Rosenbrock-method, Lanser et
al. [1].

wn+1 = wn +
5

4
k1 +

3

4
k2

Sk1 = τF (wn)

Sk2 = τF (wn +
2

3
k1) −

4

3
k1

S = I − γτJ, J = F ′(wn)

with γ = 1
2 + 1

6

√
3.

The above described Rosenbrock method allows a simplified solution of the
linear systems without loosing the order. When J = JA +JB the matrix S can be
replaced by S = (I − γτJA)(I − γτJB).A further simplification can be reached by
omitting some parts of the Jacobian or replacement of the derivatives by the same
derivatives of a simplified operator F̃ (wn). For instance higher order interpolation
formula are replaced by the first order upwind method. This further simplification
of the matrix however reduces the method to second order. The structure of the
Jacobian

J =





∂F ρ

∂ρ
∂F ρ

∂V
0

∂FV

∂ρ
∂FV

∂V

∂FV

∂Θ

0 ∂FΘ

∂V

∂FΘ

∂Θ



 .

A zero block 0 indicates that this block is not included in the Jacobian or is
absent. The derivative with respect to ρ is only taken for the Buoyancy term
in the vertical momentum equation. Note that this type of approximation is the
standard approach in the derivation of the Boussinesq approximation starting form
the compressible Euler equations. The matrix J can decomposed as

J = JT + JP =





∂F ρ

∂ρ 0 0
∂FV

∂ρ
∂FV

∂V
0

0 0 ∂FΘ

∂Θ



 +




0

∂F ρ

∂V
0

0 0 ∂FV

∂Θ

0 ∂FΘ

∂V
0





or

J = JT + JP =




∂F ρ

∂ρ 0 0

0 ∂FV

∂V
0

0 0 ∂FΘ

∂Θ



 +




0

∂F ρ

∂V
0

∂FV

∂ρ 0 ∂FV

∂Θ

0 ∂FΘ

∂V
0



 .

The first part of the splitting JT is called the transport/source part and contains
the advection, diffusion and source terms like Coriolis, curvature, Buoyancy, latent
heat, and so on. The second matrix is called the pressure part and involves the
pressure gradient and the derivative of the divergence with respect to momentum
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of the density and potential temperature equation. The difference between the
two splitting approaches ist the insertion of the derivative of the gravity term in
the transport or pressure matrix. The first splitting damps sound waves and can
be reduced to a Poisson-like equation, whereas the second splitting damps sound
and gravity waves but the dimension of the system is doubled. Both systems are
solved by preconditioned CG–like methods. The transport/source system

(I − γτJAD − γτJS)∆w = R

is preconditioned from the right with the matrix

Pr = (I − γτJAD)−1

and from the left with the matrix

Pl = (I − γτJS)−1.

where the matrix JAD is the derivative of the advection and diffusion operator
where the unknowns are are coupled between grid cells. The matrix JS assem-
bles the source terms. Here the coupling is between the unknowns of different
components in each grid cell. The matrix

Pl(I − γτJAD − γτJS)Pr

can be written using the Eisenstat trick in the form

(I − γτPlJAD)Pr = (I + Pl((I − γτJAD) + I))Pr .

Therefore we have to store only the LU-decomposition of the matrix (I − γτJS).
The matrix (I − γτJAD) is inverted by a fixed number of Gauss-Seidel iterations.
In the parallel case we use one cell overlap.

The second matrix of the splitting approach looks in case of the first splitting

(I − γτJP ) =

(
VF γτGRADDΘ

γτDIVDV VC

)

where VF , VF , DV, and DΘ are diagonal matrices. The matrices GRAD and DIV
are related by the requirement

GRAD = −DIVT

Elimination of the momentum part gives a Helmholtz equation for the increment of
the potential temperature. This equation is solved by a CG-method with multigrid
as a preconditioner. For the second splitting the resulting matrix is twice in
dimension and no more symmetric.

To illustrate the integration method a simulation for the 2-D density current
is presented. This simulation follows the benchmark case analyzed by Straka et
al. [2]. A density current is generated within a neutrally stable atmosphere by
cold bubble that descends to the surface and spreads out laterally due to the
negative buoyancy of the cold air. The parameters are taken from Straka et al..
The resolution is ∆x = ∆z = 100 m and the time step is chosen automatically and
varies between 4 and 10 seconds. The evolving density current is displayed in Fig.
1 and agree well with the reference results by Straka et al.
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Figure 1. Potential temperature field for Straka et al. [2] 2-D
density current benchmark case for 300 s, 600 s, and 900s.
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Time-splitting techniques in nonhydrostatic compressible modeling

Almut Gassmann

Numerical weather forecasting models on high resolutions demand for very effi-
cient time integration methods for the full compressible nonhydrostatic equations.
One possibility is the split-explicit time integration method, in which processes of
different time scales are integrated each with appropriate time steps. In the field
of weather prediction models the method of Klemp and Wilhelmson (1978) is most
widespead to be found. In this approach, slow advective processes are separated
from fast ones connected with the propagation of sound waves and gravity waves.
Advective tendencies are computed once in a large time step and hold constant
during the short time step integration. An essential issue in research (e. g. Ska-
marock and Klemp, 1992) was the question of numerical stability of such schemes.
With our recent work (Gassmann, 2005; Gassmann and Herzog, 2006) we could
give a guideline for delegating the particular terms in the equations to either the
slow or the fast processes and show the linear numerical stability of such a split-
explicit two-time-level scheme. The method was then implemented into the LM
(Lokal-Modell: Doms and Schättler, 1999) of DWD (German Weather Service),
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and currently it is in a test phase for operational use at MeteoSwiss. One great
practical advantage of the new scheme over the older ones is that a radiative upper
boundary condition for gravity waves (Klemp and Durran, 1983; Bougeault, 1983;
Herzog, 1995) could be implemented directly without difficulties.

The the first part of the talk was devoted to the investigation of the sound-
advection system and its split-explicit numerical treatment with three different
two-time-level schemes: first, the Euler scheme in which the slow advective ten-
dencies appear as a function of the current large time step, second, the method
proposed by Wicker and Skamorock (1998) in which a Runge-Kutta advection
method is merged with the split-explicit technique, and thirdly, a newly proposed
method that computes fast steps until the midpoint of the large time step in order
to provide those values for the computation of slow advective tendencies. The
actual advection scheme can be chosen more freely, the only constraint is that
the advective tendency is a function of this midpoint estimate. In case of the
Euler scheme it could be shown that the numerical splitting error term leads to
instability. This error term is present also in case of the other two variants, but
it does not lead to significant instabilities. The newly proposed scheme has the
smallest error. This scheme also treats waves propagating in opposite directions
very similar, which is not observed with the other schemes.

The second part of the talk addressed the problem of splitting the nonhydro-
static equations into a slow and a fast equation part. We have to pick the terms
responsible for the propagation of sound and gravity waves for the fast equation
part. The remaining terms contributing to the slow part are then the momentum
advection terms and the horizontal advection terms for the thermodynamic vari-
ables (temperature and pressure). The vertical advection terms for these variables
constitute the Brunt-Väisälä-frequency and thus belong to the gravity wave part.
Once the mode separation is done, stable numerical schemes are needed for each,
the slow and the fast model parts alone. In a NWP-model (Numerical Weather
Prediction model) implicit methods are needed at least in the vertical. In the
horizontal direction, a forward-backward method (Mesinger, 1977) is applied for
the fast part.

For stabilizing split-explicit schemes, divergence damping is usually applied
(e. g. Skamarock and Klemp, 1992). But the actual model implementations often
only add this damping term to the horizontal momentum equation, but not – as
required – to the vertical momentum equation, too. It is now shown, how this
shortcut deteriorates the phase properties of the gravity modes severely. Conse-
quently, one should use complete divergence damping or the off-centering of the
implicit weights. This last option reveals the best results when performing a sta-
bility analysis of the complete splitting scheme.

The last part of the talk gave some examples of the presented new splitting
method in the LM. It could be demonstrated how a false splitting into slow and
fast terms destoys the forecast in comparison to a well performed splitting. One
great advantage of the new splitting technique is the applicability of the radiative
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upper boundary condition for gravity waves (Klemp and Durran, 1983; Bougeault,
1983).

With all these investigations the splitting approach for nonhydrostatic modeling
is now based on a thorough linear analysis, which was not the case before.
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Waves in rotating fluids: geometric effects

Leo R.M. Maas

Geophysical fluid dynamics is characterized by the importance of earth rotation
(interpreted as a stratification in angular momentum), density stratification and
irregularity of the fluid’s domain. It is interesting to observe that both types of
stratification give rise to wave phenomena in the interior of the ocean or atmo-
sphere that are quite different from those encountered strictly at the surface (see
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[7]). In particular, these waves are prone to a strong focusing principle. Irrespec-
tive of forcing location, the location of so-called wave attractors is determined by
forcing frequency, stratification rate, rotation rate and geometry. These attractors
are the locations where inviscid theory predicts the waves being focused to and
occur “almost always”. The result of focusing of wave energy is that the waves
mix fluid around these attractors (particularly at the boundary reflections where
the focusing takes place). Interestingly, the attractors themselves have a strong,
fractal dependence on the lumped parameter containing the previously mentioned
information on the wave and the environment. Thus, while the waves are described
in a strictly linear manner, their structure exhibits many features from nonlinear
dynamics, owing to the fact that the geometry of the underlying characteristics
(that form the backbone of the analytical solutions) is strongly influenced by the
nonlinear shape of the boundary.

Previous theoretical work has focused on elucidating the nature of these waves
and the attractors that are formed. This has first been performed separately for
stratified, non-rotating fluids – well described as a 2D problem ([8]) – and later
for homogeneous, rotating fluids. The former give rise to internal gravity waves,
the latter to inertial waves. In nature, the two restoring mechanisms come, ad-
mittedly, in a combined form, but it is worthwhile to address them separately
too. Here attention is given to inertial waves in a rotating, homogeneous, rigid-lid
fluid. Very few container shapes are known for which stationary, regular, inviscid,
linearized inertial wave patterns can be computed, notably the axial, finite-sized
annulus and the axial ellipsoidal spheroid. Recently, this was extended to the
rotating, rectangular box, provided the box is positioned horizontally, i.e. has its
sides either parallel or perpendicular to the rotation axis ([6]). In this case verti-
cal standing modes separate from the horizontal (generalized eigenvalue) problem.
The horizontal problem is similar to the classical [9]) problem, concerned with
rotationally modified gravity waves, described in the shallow water approximation
in a rectangular fluid domain. Once this geometric symmetry is broken, by tak-
ing a sloping side wall, inertial wave attractors are produced and, following the
mixing of angular momentum, a cyclonic mean flow is generated ([5]). Inertial
wave attractors are observed in the laboratory for five frequency regimes (and one
exceptional frequency for which a regular wave is predicted). The observations
suggest the existence of an ’inertial wave manifold’ and the waves approaching the
attractor suggest there to be propagation along the manifold. But, while their
horizontal structure can to some extent be unravelled experimentally ([3, 4]), the
exact shape of this manifold and the dynamics on it still need to be elucidated.

By taking a rigid, flat surface and a finite-amplitude, exponential bottom the
homogeneous fluid case is studied more carefully, as it gives rise to a paradox. On
the one hand the appearance of an inertial wave attractor in the cross-channel di-
rection is predicted. On the other hand, assuming a small aspect-ratio of maximum
depth over channel width, as a zeroth order expansion in this small parameter, a
standard expression for a topographic Rossby waves can be derived. These waves
are derived from the same set of linear, inviscid rotating Euler equations, and yet
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have disparate properties: Rossby waves are regular, vertically uniform and have
anisotropic, westward phase propagation, while in this geometry inertial waves are
singular, vertically nonuniform, and apparently horizontally isotropic. The inertial
waves seem to be the more fundamental of the two: no approximation is needed
to describe them. How is the paradox resolved? Does the infinite series (of which
the topographic Rossby wave is just the zeroth order term) diverge locally? Or,
does it co-exist with the inertial wave, as two different type of waves. More work
is needed to come to a conclusion.
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The spontaneous generation of inertia-gravity waves in idealized

baroclinic life cycles

Riwal Plougonven and Chris Snyder

Plougonven, Chris Snyder
Flows on the synoptic scale in the oceans and atmosphere are predominantly ’bal-
anced’ (verifying balance relations such as geostrophy and hydrostatic). This has
allowed the development of ’balanced models’ which simplify the dynamics by fil-
tering out the gravity waves. Understanding the spontaneous generation of gravity
waves from balanced motions is a necessary step to better understand the limita-
tions of these models ([2]). A second motivation is that, although it is known from
observations that jets and fronts (predominantly balanced features of the flow) are
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important sources of gravity waves ([6] and refs therein), they remain too poorly
understood as such to be properly parameterized in Global Circulation Models.

Now, both observation ([3] and refs. therein) and numerical studies ([4, 10]) of
spontaneous generation in atmospheric mid-latitude flows have emphasized upper-
level jet exit regions as a key region of the flow where large amplitude inertia-
gravity waves are found. Although it has often been assumed that this was due
to generation of the waves there, the role of propagation has not properly been
investigated. Another puzzling fact is that, although gravity waves are known from
two-dimensional studies of frontogenesis [9] to be generated from surface fronts,
such generation has not been found in three-dimensional simulations of baroclinic
instability which do display frontogenesis.

Figure 1. Gravity waves generated in an idealized barclinic life-
cycle. The left-panel shows a horizontal cross-section (z = 13km)
of divergence (colors) and horizontal wind in the reference frame
of the baroclinic wave; x and y indicated in km. The right panel
shows a vertical cross-section through the dashed line indicated in
the left panel; horizontal coordinate in km, z in m. The red line
indicates the tropopause. The black segments are the prediction
of the slope of the phase lines, obtained from a coarse-grained
knowledge of the background flow.

In order to understand and quantify the generation of gravity waves from jets
and fronts, we have carried out numerical simulations of baroclinic life cycles in a
periodic channel on the f -plane, using the Weather and Research Forecast Model.
Such idealized simulations have been widely used in dynamic meteorology as rep-
resentative of mid-latitude synoptic systems. Ongoing work on these simulations
has already shown that:

• the emission of gravity waves occurs in specific regions of the flow, where
temperature gradients collapse (surface and upper-level fronts). The simu-
lations have shown a richer array of regions generating gravity waves than
were previously described [8].

• consideration of propagation effects (wave-capture, [1]) provides valuable
information regarding the localization, orientation and intrinsic frequency
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of some of the excited gravity waves [7]. Knowledge of the large-scale flow
is sfficient to predict the angle of the phase lines to the horizontal (cf.
Fig. 1). Hence, jet exit regions play a key role for reasons related to the
propagation of the gravity waves. This does not rule out that they may
also be key regions for generation; it rather shows that generation and
propagation cannot be thought of separately.
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Exponential smallness of inertia-gravity-wave generation

Jacques Vanneste

(joint work with I. Yavneh, E. I. Ólafsdóttir and A. B. Olde Daalhuis)

The mid-latitude dynamics of the atmosphere and oceans is characterised by a
large time-scale separation between the slow large-scale motion (termed balanced
motion), and the fast inertia-gravity waves (igws). The corresponding frequency
ratio ǫ is small for igws of all scales in the quasi-geostrophic regime, with small
Rossby and Burger numbers, thought to be the most relevant at mid-latitudes.
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Together with the slowness of the external forcing, this explains why the levels of
igw activity typically encountered are very low.

The explanation can be formalised by writing the equations of motion in the
form

∂s

∂t
= Ns(s, f ; ǫ),

∂f

∂t
+ Lf = Nf(s, f ; ǫ),

separating the slow variables s from the fast variables f . Here, Ns and Nf group
the nonlinear terms, and L is a linear operator, with spectrum specL ⊂ {iω :
ω ∈ R, |ω| > ǫ−1} [1]. For ǫ = 0, there is an invariant slow manifold f = 0,
corresponding physically to geostrophic balance. For ǫ 6= 0, slow manifolds can also
be constructed using iterations or expansions in powers of ǫ: these are not invariant
but, formally, can have an arbitrary accuracy ǫN (in the sense that the vector
field (∂ts, ∂tf) makes an O(ǫN ) angle with the manifold). Optimal-truncation
arguments then suggest (and in some cases prove) that an exponential accuracy
can be achieved [2]. Since motion transverse to a slow manifold is interpreted as
igws, this indicates that in suitably initialised balanced flows, igw-phenomena
can at most be exponentially weak in ǫ.

We demonstrate that exponentially weak igw phenomena do occur by analysing
two models of igw generation in a simple horizontal Couette flow in a Boussinesq
(and for simplicity hydrostatic) rotating stratified fluid. The first is a form of
spontaneous generation that arises when a vortex, taken with Gaussian potential-
vorticity distribution, is placed in the Couette flow. In the linear approximation
which we employ, the potential vorticity evolves slowly through simple advection.
Other fields, such as the vertical component of the vorticity ζ, exhibit the gener-
ation and subsequent propagation of igw-packets. This can be estimated asymp-
totically by expansion of the linearised equations of motion in terms of sheared
modes of the form

(1) ζ(x, y, z, t) =

∫
ζ̂(k, l,m, t) exp [i(kx+ (l − Σkt)y +mz)] dxdydz,

where Σ is the shear and (k, l,m) can be interpreted as components of a wavevec-
tor. This reduces the problem to the study of (uncoupled) ordinary differential

equations for the amplitudes ζ̂(k, l,m, t). These equations have been studied in [3]
and [4], where it is shown that igw oscillations appear through a Stokes phenom-
enon. The amplitude of the oscillations, which is exponential small in the Rossby
number ǫ = |Σ|/fC ≪ 1, where fC is the Coriolis frequency, and their form can
be estimated explicitly using exponential asymptotics. Carrying out the triple
integration in (1) using asymptotic and numerical methods provides a detailed
description of the wavepacket emitted [5]. Compared with entirely numerical ap-
proaches, our asymptotic treatment has the advantage of removing ambiguities in
the intialisation procedure (the initial state can be chosen entirely free of igws),
and in the diagnostic of igws (which are completely separated from the balanced
motion).

Our second model reassesses the instabilities of a horizontal Couette flow in
a channel [6, 7]. Because the velocity profile has no inflection point, this flow is
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Figure 1. Growth rates of the unbalanced instabilities of a hor-
izontal Couette flow in a channel as a function of the Rossby
number ǫ. Asymptotic (curves) and numerical (symbols) results
are compared for different modes instabilities associated with the
interactions between pairs of Kelvin and/or inertia-gravity waves.

stable in any balanced approximation, however accurate. Studying the Boussinesq
equations reveals that the flow is nonetheless unstable, through unbalanced insta-
bilities which involve the linear interaction of pairs of waves, either igws or Kelvin
waves (kws). Because the two waves involved in instabilities are exponentially lo-
calised in different parts of the channel, their interaction is exponentially weak, and
the growth rates are exponentially small, with rough asymptotics σ ≍ exp(−Ψ/ǫ),
where Ψ = 2, 2.8 and π, for the fastest-growing instability associated with kw-
kw, kw-igw and igw-igw interactions, respectively [8] (see Figure 1). Only the
latter type of instabilities is possible when the shear is cyclonic, i.e. ΣfC < 0.

The two models studied illustrate distinct mechanisms of wave generation by
balanced motion. In the first model, it is the spontaneous evolution of an initially
perfectly balanced state that leads to igw emission through what might term a
conversion mechanism, corresponding mathematically to a Stokes phenomenon; in
the second model, an instability of a (steady) balanced flow leads to the ampli-
fication of a small unbalanced perturbation. What is exponentially small differs
between the two models — wave amplitude vs. growth rate — but in both case a
significant level of unbalance can only be achieved if the Rossby number ceases to
be small.
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[4] E. I. Ólafsdóttir, A. B. Olde Daalhuis and J. Vanneste, Multiple Stokes multi-
pliers in a inhomogeneous differential equation with a small parameter, Proc.
R. Soc. London A461 (2005), 2243–2256.
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Macroturbulence and Hadley Circulation Dynamics

Tapio Schneider

(joint work with Simona Bordoni and Christopher C. Walker)

In Earth’s atmosphere, large-scale eddy momentum fluxes strongly influence the
strength of the summer Hadley cells but less strongly influence the strength of the
cross-equatorial winter Hadley cells. Where frictional processes and the vertical
advection of momentum by the mean meridional circulation can be neglected—in
the upper branches of the circulation where streamlines are horizontal—the mean
zonal momentum balance in a statistically steady state is approximately

(1) (f + ζ̄)v̄ = f(1 − Ro)v̄ ≈ S,
with local Rossby number Ro = −ζ̄/f , eddy momentum flux divergence S, and
with the bar denoting a zonal and temporal mean along isobaric surfaces (other
symbols have their usual meaning). The local Rossby number in the upper branches
of the Hadley circulation, where streamlines are horizontal, is a nondimensional
measure of the influence of eddy momentum fluxes on the strength of the circula-
tion, or, because the absolute vorticity f + ζ̄ = f(1 − Ro) = −(a2 cosφ)−1∂φm̄ is
proportional to the meridional gradient of absolute angular momentum per unit
mass m̄ = (Ωa cosφ + ū)a cosφ, it is a nondimensional measure of the flatness of
angular momentum contours in the meridional plane [e.g., 4]. If Ro → 0, angular
momentum contours are vertical; the mean meridional circulation is tied to the
eddy momentum flux divergence. If Ro → 1, angular momentum contours are
horizontal; the eddy momentum flux divergence approaches zero, and the mean
meridional circulation decouples from the eddy momentum flux divergence. In
Earth’s atmosphere, the local Rossby number in the upper branches of the Hadley
circulation, where streamlines are horizontal, varies from Ro . 0.2 in the summer
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cells to Ro & 0.5 in the cross-equatorial winter cells, with intermediate values
in the equinox cells [8]. Regionally, in the Asian monsoon anticyclone, the local
Rossby number can reach about 0.7 according to monthly-mean reanalysis data
[7].

Depending on whether eddy momentum fluxes strongly or weakly influence
their strength, Hadley cells respond differently to variations in thermal driving.
The strength of a Hadley cell with Ro → 0 in the upper branch does not respond di-
rectly to variations in thermal driving. It only responds indirectly through changes
in eddy momentum flux divergence and, possibly, through changes in the Hadley
cell extent, which affects the relevant value of the Coriolis parameter in the zonal
momentum balance (1) [8]. The strength of a Hadley cell with Ro → 1 in the
upper branch—a Hadley cell in the angular momentum–conserving limit in which
streamlines and angular momentum contours coincide—responds directly to vari-
ations in thermal driving [3, 1, 2]. The seasonal variations of the local Rossby
number in the upper branches of Earth’s Hadley circulation lie between these ex-
tremes and suggest that the character of a Hadley cell’s response to variations in
thermal driving may change in the course of the seasonal cycle.

I presented simulations with an idealized general circulation model (GCM) with
zonally symmetric boundary conditions that showed that, over wide parameter
ranges, the strength of the Hadley circulation displays clear scaling relations with
regime transitions. For circulations with hemispherically symmetric thermal driv-
ing, the strength of the Hadley circulation typically, albeit not always, scales
with the strength of the eddy momentum flux divergence near the latitude of its
streamfunction extremum [8]. The regime transitions in the scaling behavior of
the Hadley circulation are regime transitions in the scaling behavior of large-scale
eddy fluxes, which can be understood by considering the interaction of eddies with
the mean flow and particularly with the mean thermal stratification [8, 6]. For
circulations with hemispherically asymmetric thermal driving, the cross-equatorial
Hadley cell is in one of two regimes distinguishable according to whether eddy mo-
mentum fluxes strongly or weakly influence the strength of the cell. In the course
of a simulated seasonal cycle, the cross-equatorial Hadley cell undergoes transi-
tions between the two regimes, which resemble the transitions in Earth’s tropical
circulation associated with the onset and end of monsoons [5].
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Linear baroclinic instability in the world’s oceans

K. Shafer Smith

Satellite altimetric observations of the ocean surface reveal a circulation dominated
by turbulent flow on scales of 50 to 250 km, the oceanic mesoscale. The apparent
eddy dominance at the oceanic mesoscale was first noted, however, from ship-
going observations in the early 1970s. Using available data, Gill, Green, and
Simmons [1] noted the concurence of eddy activity with steep isopycnal gradients,
and pointed out that the oceanic mean available potential energy resulting from
these isopycnal gradients is about 1000 times larger than the kinetic energy of
the gyre-scale circulation. These two facts, they argued, are consistent with the
hypothesis that eddies are generated by baroclinic instability. Baroclinic instability
develops in flow where both rotation and stratification are important, as they are
at the oceanic mesoscale, and acts to convert mean available potential energy
to eddy kinetic energy. Gill et al. also perform some simple linear instability
calculations and show that the resulting growth rates are roughly consistent with
observed eddy timescales.

Recent analyses of the global statistics of eddies using satellite altimetry [2] are
consistent with most aspects of this picture, demonstrating that eddy activity, for

example, is well correlated with estimates of the Eady growth rate f/Ri1/2 from
hydrographic data. Stammer [2] also analyzes the horizontal scale of the observed
eddies, and argues that it is linearly correlated with the local first deformation
scale. In the simplest examples of linear baroclinic instability, such as the Eady
and Phillips models [see, e.g., 3], the scale of fastest linear growth is also near the
deformation scale, and so this apparent correlation seems to be reasonable. There-
fore, one might argue that the observed eddy structure can be largely predicted
and understood through linear theory. Is this a reasonable conclusion?

While the fundamentals of baroclinic instability theory have been understood
for half a century, and great progress has been made in understanding its relation to
the mean atmospheric circulation, no systematic investigation of even the linear
instability of the mean ocean state has been presented in the literature. This
state of affairs is due to the fact that, earlier than the past decade, data for the
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ocean has been very sparse. It is only recently that global hydgrographic atlases
have approached completeness, and so a program of systematic investigation of
the ocean’s linear instabilty characteristics has not been feasible until now. The
present report discusses the methods and results of such a program, with the
explicit goal of comparing observed eddy statistics to those predicted by linear
theory. The null hypothesis is that the entire field is described by the local linear
instability of the slowly-varying mean state.

The dataset of Gouretski and Koltermann [4, denoted GK04 hereafter] provides
monthly, seasonal and annual averages of temperature and salinity gridded at 1/2
degree in the horizontal, on 45 fixed depth levels, from 72S to 90N at all longitudes.
In the present study we use annually averaged data, though comparisons were
made to seasonally averaged results, showing negligible differences. Where data is
not available from observations, an objective analysis (or Gauss-Markov) method
is used to interpolate existing data. Notably, the GK04 dataset interpolation is
performed in such a way that neutral stability is ensured (this is not the case
for the World Ocean Atlas 2001 dataset). See GK04 for details and an explicit
comparison to the World Ocean Atlas 2001 dataset.

The intrinsic buoyant stability of the dataset allows for the straightforward
computation of “neutral” density [5] for the entire world ocean. Neutral density is
a locally referenced density and so represents the dynamically active component
of the buoyancy field.

Before proceeding to the velocity and instability calculations, we compute the
vertical modes of the density field, or in other words the vertical structure of
resting solutions to the quasigeostrophic equations [see, e.g., ref. 3]. Specifically, we
seek solutions φm = φm(z) with eigenvalues λm to the Sturm-Liouville eigenvalue
equation

(1) −f
2ρ0

g

d

dz

(
φm

dρ/dz

)
= −λ2

mφm, with
dφ

dz

∣∣∣∣
0

=
dφ

dz

∣∣∣∣
−H

= 0,

for each vertical profile of neutral density ρ = ρ(z). In the above, f = 2Ω sin(θ)
is the Coriolis parameter at latitude θ, with rotation rate Ω, g is the gravitational
acceleration and ρ0 is the mean density for that vertical profile, and we have
assumed a flat bottom and rigid lid. The resulting eignevalues λm are the local
internal deformation wavenumbers, or the reciprocals of the Rossby deformation
radii, and the eigenfunctions φm form a complete set onto which other continuous
functions of z satisfying the same boundary conditions as φm can be projected.

We follow Chelton et al. [6] and compute solutions to (1) numerically, using
centered differences. Note as a technical point that there are a number of GK04
profiles with levels at which the centered estimate of the vertical derivative of the
density between two prescribed depth levels is zero. At these points we simply
skip down to the next level at which there is an increase in density, and so always
retreive a non-zero vertical profile of the density derivative. The resulting contours
of the first deformation radii are plotted in figure 1.
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Figure 1. The first internal deformation radii, plotted in 10 Km
intervals from 10 Km to 200 Km, as calculated from the GK04
dataset.

Next we compute the the thermal wind velocity field for the entire dataset as
follows. The hydrostatic pressure field is calculated from the density field, and
horizontal centered differences are then used to estimate the horizontal isopyc-
nal gradients. The horizontal gradients are then used to compute the velocity
field through geostrophic balance. The arbitrary offset is fixed by removing the
barotropic component of the flow.

Given the density structure and vertical profiles of the vertical shear of the
mean horizontal velocity field, one can calculate the linear baroclinic instability
for each profile, assuming a doubly-periodic domain (reasonable if one assumes
that local vertical, as opposed to horizontal or boundary-induced inhomogeneities
produce the instability connected to the eddies). However, rather than proceed
with a vertical differencing of the local quasigeostrophic linearized about the mean,
we first project the equations onto a truncated set of the local vertical modes.

This latter step is taken for the following reasons. Sharp vertical gradients,
prevalent particularly near the surface, result generically in baroclinic instabilities
at very small horizontal scales (less than 1 Km) and with fast growth rates (less
than 1 day) [7]. It seems unreasonable to expect that, if such instabilities are truly
present, the annually averaged mean state could possibly represent the shorter
timescale mean that actually leads to such instabilities. In other words, such small
and fast instabilities will surely alter the local mean on short timescales. Rather
we seek to quanitfy the instability of the slowly varying mean state, and so avoid
the fast-small modes by considering only the instability of the first N baroclinic
modes. A posteriori, it will be apparent that this neglect of sharp gradients is not
significant to the story. Even with the filtered data, the resulting horizontal scales
of maximum growth will turn out to be uniformly smaller than the observed eddy
scales.
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Projection of the mean velocities onto the neutral vertical modes has a second,
related effect. Geostrophically balanced horizontal gradients of buoyancy at the
top surface yield vertical shears at the upper surface. Thus when such gradients
are present, the mean velocity does not satisfy the same boundary condition at
z = 0 as the vertical modes φm calculated in (1). Therefore the surface component
of the mean shear (or equivalently the horiztonal buoyancy gradient itself) will be
effectively removed from the calculation by projection onto the vertical modes.
This removes instabilities of the Charney and Eady type, leaving only instabili-
ties due to sign changes of the interior mean potential vorticity gradient via the
Charney-Stern-Pedlosky criterion [see, again, ref. 3]. Eady instabilities, caused
by interactions of edge waves at the upper and lower surfaces, are not expected
since there are negligible gradients of buoyancy in the oceanic abyss. Charney-
type instabilities, however, resulting from the interaction of the upper surface and
interior flow, are likely to exist in many places in the ocean. However, like the
sharp vertical gradients in the interior, with oceanic parameters these instabilities
are also uniformly small and fast, and so we neglect them with the same rationale.

Given the mean zonal and meridional velocities, ~̄u(z) = (ū(z), v̄(z)), at a given
horizontal location, we compute the projections

~Um =

∫ 0

−H

~̄u(z) φm(z) dz −→
∑

n

~̄un φmn ∆n

where ∆n is the discretized vertical spacing, φmn is the m-th vertical mode, dis-
cretized with index n replacing the coordinate z, and ~̄un is the discretized velocity
profile. For a given profile, up to 45 depth levels may be present, yielding a total of
44 baroclinic vertical modes. We project the velocity onto only the first 15 modes.

The complete linear instability problem projected onto vertical modes is then

(2) Aijψj = −ω ψi,

where ω is the frequency and

Aij =
1

K2 + λ2
i

[
kβ δij +

∑

m

~K · ~Um εijm

(
λ2

m − λ2
j −K2

)
]

with β the northward gradient of the Coriolis paramter, and ~K = (k, ℓ) the hor-
izontal wavevector with modulus K. The triple interaction coefficient εijm is
calculated by the integral of the product of vertical modes i, j and m, over the
full depth of the domain, and δij is the Kronecker delta. At each gridpoint, we
solve (2) for each wavenumber on a 100× 100 grid with moduli ranging from λ1/5
to 20λ1. This is sufficient to capture all the growth for all profiles checked.

The maximum growth rates at each horizontal location yield values ranging
from about 1/30 to 1/2 days−1, as expected (not shown). More interestingly and
to the point, figure 2 plots the ratio of the scale of maximum growth Lmax to
the local deformation scale (shown in figure 1). The resulting scales of maximum
growth, even after filtering small scale growth via the projection onto a truncated
set of vertical modes, is everywhere smaller than the local first deformation radius.
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Figure 2. The scale of maximum baroclinic growth for the GK04
dataset, nondimensionalized by the local radius of deformation.

Stammer [2] demonstrates that the observed eddy scales, by contrast, are ev-
erywhere larger than the local deformation scale. Stammer proposes a linear
correlation with the deformation scale R1 = λ−1

1 , given by Lmax = 0.8R1 + 88.
Moreover, the raw data, seen in figures 21a and 24 of Stammer’s paper, indicate
that a linear fit is only marginally justified. To make the matter stark, in the
Antarctic Circumpolar Current (ACC), where deformation scales are of order 10
Km (see figure 1), the observed eddy scale is nearly 100 Km. Given that the scale
of maximum linear baroclinic growth is another 1/3 smaller than the deformation
scale, one can safely conclude that linear theory, while fairly accurate in predict-
ing timescales and locations of eddy activity, completely fails to predict the spatial
scale of the eddies. Nonlinear studies of baroclinic growth in the presence of ver-
tical shears and density structures similar to those found in the ACC [8] indicate
that a strong inverse cascade should ensue, resulting in an eddy scale much larger
than the scale of maximum linear growth. One can thus further conclude that
a strong nonlinear cascade of energy is necessary to explain the observed eddy
statistics.
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