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Abstract. Anisotropic motion laws play a key role in many applications
ranging from materials science, biophysics to image processing. All these
highly diversified disciplines have made it necessary to develop common math-
ematical foundations and framworks to deal with anisotropy in geometric
motion. The workshop brings together leading experts from various fields to
address well-posedness, accuracy, and computational efficiency of the math-
ematical models and algorithms.

Mathematics Subject Classification (2000): 53C44, 35K55, 37E35.

Introduction by the Organisers

During the past half-centure much activity among mathematiciants, material sci-
entists and mechaniciants has been done concerning interface problems. Besides
the describing equations in the bulk phases, such problems generally result in an
extra interface condition. The simplest examples of such interface equations are
due to Mullins and include motion by mean curvature

(1) v = −κ
and motion by surface diffusion

(2) v = ∆Sκ

with v the scalar normal velocity, κ the mean curvature of the interface and ∆S the
surface Laplacian. Due to recent technolocical trents especially in semiconductor
and bio-technology towards nanometer scale applications these problems gain more
and more attention. As we approach smaller and smaller scales the influence of the
interface compared to the bulk phases increases and already dominates in appli-
cations such as quantum-dot formation during epitaxial growth, electromigration
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of voids in metal interconnects or motion of vesicles. To provide a theoretical im-
put for such applications material specific parameters concerning their anisotropy
have to be considered in these equations. The goal of this workshop was to deal
with the arriving theoretical and numerical difficulties by considering anisotropic
interface equations.

To avoid geometrical complications associated with surfaces in three-dimensio-
nal space we describe the anisotropic equations in two space dimensions. The
Mullins equations now read

(3) bv = −(ψ0 + ψ′′
0 )κ

and

(4) ρ2v = ∂s(L∂s((ψ0 + ψ′′
0 )κ)

with b = b(θ) a kinetic modulus, depending on the angle θ, ψ0 = ψ0(θ) the free
energy density, ρ the bulk density, L = L(θ) the mobility function and ∂s the
derivative with respect to the arc length. Both equations result from a free energy
of the form E =

∫

γ ψ0(θ)ds, by assuming ψ0 to be smooth. For ψ0 + ψ′′
0 non-

negative the two problems are well-posed. Under these assumptions the problems
can be treated similarly to the isotropic case by considering the weighted curvature
(ψ0 + ψ′′

0 )κ as an unknown.
If ψ0 + ψ′′

0 becomes negative for certain orientations, the equations (3) and
(4) become backward parabolic. Free energy densities which lead to such ill-
posdness are of relevance in thermal facetting during thin film growth. Following
DiCarlo, Gurtin and Podiudugli one can deal with such anisotropies by allowing
the free energy density ψ = ψ(θ, ∂sθ) to depend also on higher order terms. In the
simplest form the free energy now reads E =

∫

Γ ψ0(θ)+ ǫ
2κ

2ds, with ǫ introducing
a new length scale, which smears out corners in the equilibrium shape. The added
Willmore term κ2 can be viewed in a similar way as the gradient term in the
Cahn-Hilliard theory. The resulting equations are

(5) bv = −(ψ0 + ψ′′
0 )κ+ ǫ(∂ssκ+ κ3)

and

(6) ρ2v = ∂s(L∂s((ψ0 + ψ′′
0 )κ)− ǫ(∂ssκ+ κ3)).

Only recently numerics are performed for these equations in a front-tracking, level-
set and phase-field ansatz. Even if all these approaches provide reasonable results,
theoretical arguments make it questionable if the added Willmore functional is
enough to prevent the formation of corners during the evolution in three dimen-
sions. Higer order term resulting from a free energy density ψ(θ, ∂sθ, ∂ssθ, . . .)
might be necessary to provide a smooth curvature.

A second interesting class of problem arises if ψ0 is not smooth. In this case the
geometric evolution laws can not even be written in the formulation (3) and (4) but
rather have to be formulated in a way, which only contains the first derivative of
ψ0. Such anisotropies arise for crystalline materials, with facets in the equilibrium
shape. Numerical approaches for geometric evolution laws with such anisotropies
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have recently been considered again in a front-tracking, level-set and phase-field
approach. In all approaches the idea is basically a weak formulation of the problem,
which only needs the first derivative of ψ0. Analytical results for such anisotropies
are rare.

A third class of interface problems of recent interest, results from applications in
surface science, where in addition to the evolution of the interface also processes,
such as diffusion or decomposition on the evolving surface plays a dominant role.
In addition to the evolution of the surface a PDE on the evolving surface has to
be solved, which might influence its evolution. Such problems arise for example
in the description of biomembranes and have only recently been proposed and
numerical investigations are still rare. Theoretical results on evolution laws on
evolving surfaces are still limited but definitely necessary for the development of
an efficient numerical approach.

In all these classes the exact functional form of the anisotropy is not known
for most materials. Only recently material specific quantities ψ0 + ψ′′

0 have been
computed from first principles or have been derived from coarse grained atomistic
models. The research on anisotropic motion laws is not restricted to mathematics,
instead it is largely driven by applications. However, we believe mathematical
research to play a key role in the development of the necessary theoretical and
numerical approaches to deal with anisotropic motion laws and thus to be a key
ingredient for many applications on nanometer length scales in materials science
and biotechnology.

The focus of this workshop was to bring together the leading materials scientists,
physicists and mathematicians in the field of anisotropic surface evolution. Be-
sides the mathematical aspects of modeling, analysis and simulation of anisotropic
geometric evolution laws also the connection to experimental results and ab ini-
tio computations was dealt with to drive the recent theoretical developments on
anisotropic geometric evolution laws into a direction which is relevant for a large
variety of applications. Ab initio calculations of material specific anisotropy func-
tions and measurements of equilibrium shapes on a nanometer scale are only re-
cently available and the discussion on the right functional form of the anisotropy
is still controversary.

The workshop started with introductory lectures on classical isotropic geomet-
ric evolution laws, such as mean curvature flow, surface diffusion and Willmore
flow in which analytical as well as numerical results have be discussed. After in-
troducing the different sources of anisotropy in these models the main part of the
workshop started with recent results on higher order evolution laws, resulting from
curvature dependent surface free energies. Front tracking, phase field and level set
methods were discussed for these equations. Further talks dealed with crystalline
anisotropies and their analytical and numerical treatment in geometric evolution
laws as well as work on evolution laws including species transport along the sur-
face. In the last part of the workshop several applications from image processing,
materials science and biophysics were discussed.
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Abstracts

On singular perturbations of some partial differential equations

Giovanni Bellettini

It is known that mean curvature flow of the boundary of a smooth bounded open
subset of R

n develops singularities at finite time: the simplest example is when
n = 2, for which the singularity is the disappearence of the curve, i.e., when the
curve reduces to a point [5]. It is therefore reasonable to regularize the problem
with a sequence of problems which admit a global solution and then to try to
pass to the limit as the regularization parameter converges to zero. One possible
regularization consists in adding, at the level of the energy functionals, an higher
order term. For the case of immersed curves γ, the regularized functional reads as

Gǫ(γ) :=

∫

γ

(1 + ǫκ2) ds,

where s is the arclength parameter, κ is the curvature of the curve and 0 < ǫ << 1.
The gradient flow of Gǫ becomes

(1)
∂γ

∂t
=
(

κ− 2ǫ∂2
sκ− ǫκ3

)

ν,

where ν is a suitable choice of the normal unit vector to the curve. The first result,
proved in the joint paper [1] with C. Mantegazza (Scuola Normale Superiore, Pisa)
and M. Novaga (University of Pisa), is the convergence of solutions to (1) to the
original curvature flow as ǫ→ 0, before the shrinking time. A similar result holds
(before singularities) for the mean curvature flow of an n-dimensional manifold M
flowing by mean curvature in R

n+m, n ≥ 1, m ≥ 1. In this case we add to the area
functional a term similar to ǫ

∫

M
|∇k−3B|2 , where B is the second fundamental

form of M and k > [n/2] + 2 (see [1] for all details). Such a term guarantees
the global existence of the geometric flow for positive ǫ. Note that, in the case of
surfaces flowing in R

3, the regularizing equation is of order six. The statement of
the convergence result is the following.

Let ϕ0 : M → R
n+m be a smooth immersion of a compact n–dimensional

manifold without boundary. Let Tsing > 0 be the first singularity time of the

mean curvature flow ϕ : M × [0, Tsing) → R
n+m of M . For any ǫ > 0 let ϕǫ :

M × [0,+∞)→ R
n+m be the flows associated with the regularized functionals, all

starting from the same initial immersion ϕ0. Then the maps ϕǫ converge locally

in C∞(M × [0, Tsing)) to the map ϕ, as ǫ→ 0.
Another type of singular perturbation concerns the so-called Perona-Malik

equation [6]. Such an equation is of forward-backward parabolic type, depend-
ing on the values of the gradient of the solution. In one space dimension, it arises
as the gradient flow of the nonconvex functional

1

2

∫

(0,1)

φ(ux) dx,
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where φ(p) = log(1 + p2), and reads as

ut = (φ′(ux))x.

Such an equation provides an interesting (and peculiar) example of gradient flow
of nonconvex energies: other examples can be obtained by taking φ(p) = (1−p2)2,
or considering the geometric evolutions of curves by the gradient flow of the energy

∫

γ

ϕ(ν) ds,

where ϕ : R
2 → R is one-homogeneous and {ϕ ≤ 1} is a smooth compact even

nonconvex set containing the origin in its interior.
One possible way of regularizing the Perona-Malik equation is via the fourth

order problems

(2) ut = φ′′(ux)uxx − ǫuxxxx,

see also [7] in case of a different equation, and [4]. We have discussed some the-
oretical and numerical results concerning the behaviour of solutions uǫ to (2) for
small ǫ > 0, such as the formation of microstructures for short times, and the
coarsening for large times. Such results have been obtained in collaboration with
G. Fusco (University of l’Aquila) and N. Guglielmi (University of l’Aquila), see
[2], [3].
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Cartoon Extraction Based on Anisotropic Image Classification

Benjamin Berkels

(joint work with Martin Burger, Marc Droske, Oliver Nemitz, Martin Rumpf)

We propose a new approach for the extraction of cartoons from 2D aerial images.
An already classical approach for cartoon extracton is the Rudin-Osher-Fatemi
model [5]. This method and its variants are well-suitable to restore sharp edge
contours. But at corners formed by edges they come along with a significant
rounding artifact. In particular for images characterized by rectangular shapes
this hampers the identification of structures and destroys a proper cartoon repre-
sentation.

We assume, that the given possibly noisy and locally destroyed image contains
primarily structures with straight edges and corners with right angles. Further-
more, we assume that the orientation of these structures varies in space. In par-
ticular we do not fix an orientation a priori. The aim is now to extract a cartoon
representation of image shapes, while preserving or even enhancing edges and sharp
corners. This extraction can also be regarded as an image restoration technique.
As a prototype application we consider aerial images of city zones.

Here we propose a joint classification of image anisotropies and a discontinuity-
preserving denoising model based on an anisotropic variant of the ROF-model
[2].

A Variational Approach. Let us first state the main goals of the model. For
the restored image u it is desirable to preserve the functional features of the signal
such as discontinuities of codimension one (e.g. edges for twodimensional images)
and at the same time geometric features, such as the shape of the level sets of the
original signal, with its characteristics of codimension two. For the non-texture
part of images it can often be assumed that in many areas the anisotropic structure
does not vary strongly in space. Hence, we aim not only at the preservation of
geometric features but also at restoration in smaller areas, where strong corruption
of the morphology can still be recovered by the shape information in the vicinity.

Since it is well known that the l1-norm as anisotropy will restore right angles
aligned to the coordinate axes we use a rotated l1-norm as anisotropy and introduce
a free parameter α, which represents the angle of the rotation. This leads to the
energy

E[u, α] :=
λ

s

∫

Ω

|u− u0|s dx+

∫

Ω

|M(α)∇u|1 dx+

∫

Ω

1

2

(

µ1|∇α|2 + µ2|∆α|2
)

dx,

where 1 ≤ s <∞ and M(α) denotes the orthogonal matrix for a rotation by −α.
We consider a higher order regularization energy for α, because the focus of the
proposed restoration method is the treatment of corners, which are co-dimension
two objects.

Please note that we do not rely on estimated shape classification, which is used
to specify a given anisotropy a priori like previous models [3].
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Figure 1. Original image (left), computed cartoon (middle) and
classification (right).

Postprocessing by Bregman iteration. The coefficients have to be chosen
adequately to balance the fidelity energy and the anisotropic length functional in
such a way that the sharpening of edges is indeed energetically more preferable
than just keeping destroyed edges in their initial shape. This leads to a rather
small coefficient for the fidelity term resulting in a significant loss of contrast. To
compensate for this loss, we proceed iteratively for with the minimization problems
resulting from the following Bregman iteration [4]:

(uk+1, αk+1) := arg min
(u,α)

{
∫

Ω

|M(α)∇u|1,δ dx+
λ

2

∫

Ω

(u0 + vk − u)2 dx+ Eα[α]

}

,

where vk+1 := vk +u0−uk+1, v0 := 0, k = 0, . . .. Thereby we retain high contrast
already in the early stage of the iteration.

Numerical implementation. We employ a time discrete gradient flow with
metric

g(w1, w2) = (w1, w2)L2 +
σ2

2
(∇w1,∇w2)L2 ,

where wi = (ui, αi) to simultaneously minimize the regularized energy for u and
α in each Bregman iteration (cf. [1]). The step-size τ of the gradient flow is
controlled by the Armijo-rule.

Therefor we need the gradient of the energy and so we have to regularize the cor-
ner singularities in the anisotropy. Thus, we replace the l1-norm by its regularized
version |x|1,δ = |x1|δ + |x2|δ with |z|δ =

√

|z|2 + δ2.
Further we consider a uniform rectangular mesh C covering the whole image

domain Ω and use a standard bilinear Lagrange finite element space. The inte-
grals

∫

Ω
vw dx and

∫

Ω
∇ξ · ∇ϑ dx result in the usual mass (M) and stiffness (L)

matrices. Since we deal with piecewise bilinear finite elements, we introduce a
second unknown w = −∆α and write

∫

Ω
∆α∆ϑ =

∫

Ω
∇w · ∇ϑ, which leads to the

matrix LM−1L.
Acknowledgment. This project is partially supported by the Deutsche Forschungsgemein-
schaft (SPP 611), the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung
(SFB F 013 / 08), and the Johann Radon Institute for Computational and Applied
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Strongly Anisotropic Motion Laws, Curvature Regularization, and

Time Discretization

Martin Burger

(joint work with Frank Haußer, Christina Stöcker, Axel Voigt)

In this talk we discuss the numerical solution of anisotropic motion laws with
surface energies of the form

(1) E[Γ] =

∫

Γ

(

γ0(~n) +
ǫ

2
H2
)

dHN−1,

where ~n denotes the unit outer normal and H the mean curvature of the curve
or surface Γ. Particular attention is paid to the strongly anisotropic case with γ0

(respectively its one-homogeneous extension) being nonconvex and ǫ being small.
In this case, the dynamics by attachment-detachment kinetics (fourth order) and
surface diffusion (sixth order) become like a geometric spinodal decomposition.
After a fast initial time scale, the surface facets (with rounded corners) and a
coarsening among the facets appears on different time scales. The behaviour is
illustrated in Figure 1, showing the initial value and time steps 1, 5, 30, 300, and
580 (see [3] for detailed parameter settings).

Figure 1. Shape change of an Ω-shape to equilibrium by strongly
anisotropic surface diffusion, see [3].
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The complex behaviour caused by the strong nonlinearities and the high order of
the underlying evolution equations is a strong challenge to computational schemes.
As usual the first issue is the choice of a shape representation, in the present
application graph-like representations (cf. [2]), parametric curves (cf. [6]), as well
as level set methods have been used (cf. [3]). Obviously the latter allows for most
flexibility concerning the topology of the evolving shapes, but also has to be dealt
with most carefully due to missing maximum principles in the high-order evolution
equations. The proposed approach is therefore to compute the evolution on a grid
locally refined around the zero level set and avoid numerical influence of other
level sets by redistancing after small time steps (cf. [3]).

In any case of shape representation, particular attention has to be paid to
suitable time discretizations. Therefore, the second part of the talk was concernced
with the design of stable semi-implicit time discretizations in an automated way
based on metric gradient flow formulations (cf. [1]). The natural implicit time
discretization for such gradient flows is

Γ(t) = arg min
Γ∈M

{

1

2τ
d(Γ,Γ(t− τ))2 + E[Γ]

}

where M is a manifold of shapes, equipped with a metric d. Both attachment-
detachment kinetics and surface diffusion can be formulated in this way with the
same energy functional by adapting the choice of the metric (cf. [4]). From
an abstract point of view, each dissipative discretization scheme for the metric
gradient flows can be written in the form

Γh(t) = arg min
Γ∈Mh

{

1

2τ
dh(Γ,Γh(t− τ))2 + Eh[Γ]

}

,

with a discretized manifold Mh (depending on the shape representation) and
approximations of metric and energy. We show that stable semi-implicit schemes
can be obtained by quadratic approximations of metric and energy, leading only
to linear systems to be solved in each time steps. The crucial step in order to gain
stability is a majorization property of the approximate energy Eh with respect to
the energy E, which leads to energy dissipation. The computed energy dissipation
in the strongly anisotropic surface diffusion (in the case of the above Ω-shape) is
shown in Figure 2. Besides the schemes used in [2, 3] most known stable schemes for
geometric evolution equations can be put into this framework and automatized, e.g.
explicit schemes with time step restrictions, the schemes constructed by Deckelnick
and Dziuk [5] for weighted mean curvature flow and surface diffusion, as well as
the schemes presented by Robert Nürnberg (parametric) and Peter Smereka (level
set) in this workshop.
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Figure 2. Energy dissipation during the shape change of an Ω-
shape, see [3].

[3] M. Burger, F. Haußer, C. Stöcker, A. Voigt, A level set approach to anistropic flows with
curvature regularization, Preprint (2006), submitted.

[4] W.C. Carter, J.E. Taylor, J.W. Cahn, Variational methods for microstructural evolution,
JOM 49 (1997), 30-36.

[5] K.Deckelnick, G.Dziuk, A fully discrete numerical scheme for weighted mean curvature flow,

Numer. Math. 91 (2002), 423-452.
[6] F. Haußer, A. Voigt, A discrete scheme for regularized anisotropic surface diffusion, a sixth

order geometric evolution equation, Interf. Free Bound. 7 (2005), 1-17.

Moving Boundary Applications in Process and Interconnect TCAD

Hajdin Ceric

(joint work with Johann Cervenka, Erasmus Langer, Siegfried Selberherr)

Modern Technology Computer Aided Design (TCAD) applications demand math-
ematical descriptions of physical phenomena, which are both accurate and suitable
for numerical implementation. In the case of an evolving surface, mathematical
models include material exchange between surface and surrounding phases and,
at the same time, material transport along the surfaces. Stress phenomena often
play a crucial part in the formation and evolution of free surfaces and, therefore, a
model framework must also consistently include mechanical sub-models. For some
applications, such as simulation of crystalline texture evolution, it is also neces-
sary to extend the single surface models towards surface models for multiphase
systems.

The numerical handling of mathematical models has to produce computation-
ally efficient algorithms with reasonable demand on computer resources. Conver-
gence and stability conditions should not impose strong restrictions on the choice
of simulation domain geometries and discretization meshes.

The most general form of an evolving surface normal speed vn(r) used in TCAD
applications is

(1) vn(r) = ∇s(D(r)(qE(r) + γsΩ∇sκ) · t) + F (r).

The first term corresponds to surface material transport which is driven by the
external field (E(r)) and the curvature gradient (∇sκ). D(r) is the anisotropic
surface diffusivity, t is the unit vector tangential to the surface, γs is the surface
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energy, Ω is the volume of an atom, q is the effective charge, and F (r) is the general
speed function depending on the material exchange with the surrounding phases.
Equation (1) describes the motion of a sharp interface, which implies that any
utilized numerical approach has to deal with spatial discretization of an evolving
surface. The surface is described by specifying a usually large number of points on
it. Over the time the phase surface evolves and changes its morphology and even
more points may be required to accurately describe it. Such techniques are quite
complicated to implement and also tend to have rather poor numerical stability.

For the investigation of electromigration induced void evolution we have applied
a modified Chan-Hilliard equation [2, 1]. Here, the dominant material transport
is electromigration and self-diffusion at the void surface. A material exchange
between a metal bulk and the void surface is neglected so that the sharp interface
formulation of the moving boundary given by (1) can be simplified by setting
F (r) ≡ 0. The Chan-Hilliard theory enables a representation of an evolving void
surface as interface between two phases. Both phases are defined by values of an
order parameter φ, which takes the value +1 in the metal and the value −1 in the
void area. This interface between phases is not sharp but has a finite width where
φ takes values between −1 and +1. The phase field interpretation of the model
equation (1) is

(2)
∂φ

∂t
=

2D

ǫπ
∇ · (∇µ+ qE),

(3) µ =
4Ωγs

ǫπ
(f ′(φ)− ǫ2∆φ).

where µ is the chemical potential, f(φ) is the double obstacle potential as defined in
[1], and ǫ is a parameter controlling the void-metal interface width. The equation
system (2),(3) is solved by means of a finite element method in combination with
adaptive mesh refinement [2]. The described approach is utilized for investigation
of void behavior in the vicinity of high gradient electrical fields and void collision
with a barrier layer [2].

During deposition or etching in process technology a material is added or re-
moved from the free evolving surface, respectively. A general assumption is low
adatom mobility so that the first term in (1) can be neglected and the surface
evolution is defined by the simple relation vn(r) = F (r). The speed function is
generally related to properties of the reactor, where the deposition or etching pro-
cess takes place. In this case it is convenient for simulation to apply the Level Set
method [4]. This approach is presented considering as an example the etching of
sacrificial silicon dioxide (SiO2) layer by hydrofluoric acid (HF).
The chemical reaction on the surface of the sacrificial layer is [3]

(4) 6 HF + SiO2 ←→ H2SiF6 + 2H2O.

The transport of the etching agent (HF) occurs via linear diffusion,

(5)
∂CHF

∂t
= ∇ · (D∇CHF),
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with the boundary conditions C(0, t) = Cb where the etching agent enters the
simulation domain. On the interface between the sacrificial layer surface and the
etch medium (etching front) the following boundary relationships hold

CHF(r, t) = Cs,

∂CHF

∂n
= JHF = k1Cs + k2C

2
s ,(6)

for t > 0. r is the position vector belonging to the etching front and n is the
normal vector.

The geometrical shape of the etching front is described by the Level Set function
φ. The zero iso-surface is equivalent to the geometrical interface. The Level Set
function has a same meaning as order parameter in Chan-Hilliard theory and
therefore the same symbol φ is used. For a given speed function F the governing
equation of the Level Set is [4],

(7)
∂φ

∂t
+ F‖∇φ‖ = 0.

On the basis of equation (4) we obtain the characteristic speed function for sacri-
ficial etching at the etching front,

(8) F = −∆δ

∆t
= −6 JHF

1

ρSiO2

,

where ∆δ is a small displacement of the etch front during time step ∆t. This
locally determined speed function is extended to the whole simulation domain in
order to solve equation (7). The relationships (6) can now be rewritten to include
the Level Set description of the etching front. Introducing a parameterized surface
description rφ = rφ(α1, α2), where α1, α2 ∈ R and are chosen so that φ(rφ) = 0,
leads to

CHF(rφ, t) = Cs,

1

‖∇φ‖∇CHF · ∇φ
∣

∣

∣

r=rφ

= JHF = k1Cs + k2C
2
s .(9)

By means of equations (5) and (7) and the interfacial conditions (9) the moving
boundary problem is well-defined. Simulations based on this model are used for
investigations of a sacrificial layer profile in dependence on an etch agent distribu-
tion.
Acknowledgment. This work has been supported by the European Community
PROMENADE IST-2002-2.3.1.2 project.
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A finite element method for anisotropic mean curvature flow of graphs

Klaus Deckelnick

(joint work with Gerhard Dziuk)

We consider a family of hypersurfaces Γt ⊂ R
n+1, 0 ≤ t < T , which evolve

according to the weighted mean curvature flow

(1) V = −Hγ on Γt.

Here V is the normal velocity of Γt and Hγ denotes its anisotropic mean curvature
with respect to the smooth, positive, convex and 1–homogeneous weight function
γ : R

n+1 \ {0} → R. The law (1) can be interpreted as the L2–gradient flow of the
weighted area

∫

Γ γ(ν)dA, where ν denotes the unit normal to Γ.
Let us assume that the surfaces Γt are graphs over some base domain Ω ⊂ R

n, so

that Γ(t) = {(x, u(x, t)) |x ∈ Ω} with the orientation given by ν = (∇u,−1)√
1+|∇u|2

. The

evolution law (1) then translates into the following PDE for the height function u:

(2) ut −
√

1 + |∇u|2
n
∑

i,j=1

γpipj
(∇u,−1)uxixj

= 0 in Ω× (0, T ),

to which we add the following boundary and initial conditions

u = g on ∂Ω× (0, T ),(3)

u(·, 0) = u0 in Ω.(4)

Assuming that γ is strictly convex, i.e.

∃γ0 > 0 D2γ(p)q · q ≥ γ0|q|2 ∀p, q ∈ R
n+1, |p| = 1, p · q = 0

an existence and uniqueness result for the initial–boundary value problem (2)–(4)
follows from results due to [9] under suitable conditions on γ, u0, g and ∂Ω (see
also [2]). The variational form of (2),

∫

Ω

utϕ
√

1 + |∇u|2
+

n
∑

i=1

∫

Ω

γpi
(∇u,−1)ϕxi

= 0 ∀ϕ ∈ H1
0 (Ω), 0 ≤ t ≤ T

forms the basis for discretizing the problem in space. Let Th be a regular family
of triangulations of Ω, Ωh =

⋃

S∈Th
S and Xh the space of linear finite elements

as well as Xh0 := Xh ∩H1
0 (Ωh). Furthermore, let τ > 0 be a time step, tm := mτ
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and denote by um
h ∈ Xh the approximation to u(·, tm). We now introduce the

Algorithm: given um
h ∈ Xh, find um+1

h ∈ Xh such that um+1
h − Ihg ∈ Xh0 and

1

τ

∫

Ωh

(um+1
h − um

h )ϕh

Qm
h

+

n
∑

i=1

∫

Ωh

γpi
(∇um

h ,−1)ϕh,xi

+λ

∫

Ωh

γ(νm
h )

Qm
h

∇(um+1
h − um

h ) · ∇ϕh = 0 ∀ϕh ∈ Xh0.

Here Ih is the usual Lagrange interpolation operator while we also used the ab-

breviations Qm
h =

√

1 + |∇um
h |2 and νm

h =
(∇um

h ,−1)
Qm

h

. Note that in each time step

a linear system of equations has to be solved. Our main results are a stability
estimate and an optimal error estimate for natural geometric quantities:
Theorem: Suppose that

λ inf
|p|=1

γ(p) >
1√

5− 1
max

{

sup
|p|=1

|∇γ(p)|, sup
|p|=1

|D2γ(p)|
}

.

Then we have for M ≥ 1

a)

M−1
∑

m=0

τ

∫

Ωh

|V m
h |2Qm

h +

∫

Ωh

γ(νM
h )QM

h ≤
∫

Ωh

γ(ν0
h)Q0

h.

b) There exists τ0 > 0 such that for all 0 < τ ≤ τ0
M−1
∑

m=0

τ

∫

Ω∩Ωh

|V (·, tm)−V m
h |2Qm

h + max
0≤m≤M

∫

Ω∩Ωh

|ν(·, tm)−νm
h |2Qm

h ≤ c(τ2 +h2).

Here, V (·, tm) = − ut(·,tm)√
1+|∇u(·,tm)|2

and V m
h = − (um+1

h
−um

h )/τ

Qm
h

.

Proof. see Theorem 3.1 and Theorem 4.3 in [3].

An error analysis for a semi–discretization in space of (2)–(4) is carried out in
[2]. A number of results have been obtained for the anisotropic evolution of one–
dimensional graphs. The case of a nonconvex weight function γ is studied in [7].
For such a problem, numerical calculations are carried out in [6]. Analysis and
numerical results for a crystalline anisotropy can be found in [5]. In [8] the surface
energy is approximated by a crystalline one and a convergence analysis for the
resulting scheme is given. A description of anisitropic motion by mean curvature
in the context of Finsler geometry is given in [1] and [10] gives a survey of various
mathematical approaches to (1). We finally note that the above techniques can be
used in order to analyze a finite element scheme to approximate graph solutions
of anisotropic surface diffusion, see [4].
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High-resolution flux-based level set method

Peter Frolkovic

(joint work with Karol Mikula)

New method for numerical solution of nonlinear degenerate level set equation will
be presented. The method is formally second order accurate and consistent when
applied with 2D/3D unstructured grids using different types of elements. It was
implemented using a multilevel grid structure (”multi-grids”) by applying a lo-
cal refinement and coarsening of the computational mesh in time. The method
is closely related to standard ”flux-based” finite volume methods and can be im-
plemented by relatively minor changes to existing codes for nonlinear advection-
diffusion problems. Several 2D/3D examples will be shown involving ones with
topological changes of the interface and with a grid adaptivity.

Dynamics of fluid vesicles with coexisting domains

Frank Haußer

(joint work with John Lowengrub, Andreas Rätz, Axel Voigt)

The strongly increasing interest in bilayer lipid membranes with coexisting fluid
domains results from the hypothesized coupling of lipid phase segregation in the
membrane to fundamental cell biological processes, such as membrane signaling
and trafficing. Changes in lipid composition are assumed to assist or antagonize
the membrane curvature on one side, but also might respond to the curvature by
concentrating in domains of curvature that they prefer on the other side. Strong
curvature variations have recently been observed experimentally in giant liposmes
of relatively simple lipid compositions, where different lipids segregate according
to their chemical properties and lead to the formation of buds and thus mod-
ify the membrane curvature locally. Subdomains of distinct curvature may have
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precise biological properties, thus an understanding how lipid components can dy-
namically influence to membrane morphology is of utmost importance. With the
curvature as one of the crucial incrediences to determine properties of membranes
it seems natural to model the evolution within a continuum framework. This is
further justified by the different length scales which come into play. The thickness
of the bilayer is in the nanometerrange, while a typical size of a vesicle is in the
micrometer range. This length scale separation allows the vesicle to be described
as an elastic surface. The surface free energy is defined as F [Γ, u] = FB +FS +FT

with

FB[Γ, u] =
1

2

∫

Γ

bn(u)
(

H −H0(u)
)2
dΓ +

∫

Γ

bg(u)KdΓ bending energy

FS [Γ, u] =

∫

Γ

γ(u)dΓ excess energy

FT [Γ, u] =

∫

Γ

δ2

2
|∇Γu|2 +W (u)dΓ line energy

A thermodynamic consistend model can be derived from mass conservation and
energy dissipation, see [1] and reads

∂tu+∇Γ · (uT) + uV H −∇Γ · (βu∇Γ
δF

δu
) = 0

V = −βv

(

n
δF

δΓ
− uH δF

δu

)

βu∇Γ
δF

δu

T = −βt

[

(

1− n⊗ n
)δF

δΓ
+ u∇Γ

δF

δu

]

.

This is a coupled system of 4th order equations, the evolution for the concentra-
tion u is of Cahn-Hilliard type and defined on an evolving surface, the evolution
of the surface in normal direction is governed by a generalized Willmore flow and
the tangential movement results from the last equation. In addition we require
constraints on the volume and surface area. The area can be required to remain
constant globally or locally. In either case the constraints are incorporated by La-
grange multipliers. For the local inextensibility constraint the governing equations
modify to

V = V u + βV (λvol +Hλlocarea)

T = Tu − βT∇Γλ
locarea

the Lagrange multipliers are determined from

d

dt
V ol(t) =

∫

Γ(t)

V ndΓ = 0; HV +∇Γ ·T = 0.

Special parts of this highly nonlinear model have been considered numerically.
In [2] the Cahn-Hiliard equation is solved on a stationary surface. Neglecting
the concentration dependence, the Willmore flow with volume and local area con-
straints can be solved by modifying the parametric algorithm for Willmore flow
introduced in [3]. Fig. 1 shows the evolution with and without constraints.
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Figure 1. Evolution by Willmore flow without and with con-
straints on volume and local area.
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The anisotropic motion in human brains

Chiu-Yen Kao

(joint work with Marcel Jackowski, Lawrence Staib )

Determination of axonal pathways provides an invaluable means to study the
connectivity of the human brain and its functional network. Diffusion tensor
imaging (DTI) is unique in its ability to capture the restricted diffusion of wa-
ter molecules which can be used to infer the directionality of tissue components.
In this talk, a white matter tractography method based on anisotropic wavefront
propagation in diffusion tensor images was introduced. A front propagates in the
white matter with a speed profile governed by the isocontour of the diffusion tensor
ellipsoid. By using the ellipsoid, we avoid possible misclassification of the prin-
cipal eigenvector in oblate regions. The wavefront evolution is described by an
anisotropic version of the static Hamilton-Jacobi equation, which is solved by a
sweeping method in order to obtain correct arrival times. Pathways of connection
are determined by tracing minimum-cost trajectories using the characteristic vec-
tor field of the resulting partial differential equation. Connectivity results using
normal human DTI brain images are illustrated and discussed.

In the second half of the talk, we discuss the sweeping method based on the Lax-
Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of
arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions.
By using the Lax-Friedrichs numerical Hamiltonian, we can easily obtain the so-
lution at a specific grid point in terms of its neighbors, so that a Gauss-Seidel



Mini-Workshop: Anisotropic Motion Laws 2297

type nonlinear iterative method can be utilized. Furthermore, by incorporating
a group-wise causality principle into the Gauss-Seidel iteration by following a fi-
nite group of characteristics, we have an easy-to-implement, sweeping-type, and
fast convergent numerical method. However, unlike other methods based on the
Godunov numerical Hamiltonian, some computational boundary conditions are
needed in the implementation. We give a simple recipe which enforces a version
of discrete min-max principle. Some convergence analysis is done for the one di-
mensional eikonal equation. Extensive 2-D and 3-D numerical examples in crystal
growth and elastic waves illustrate the efficiency and accuracy of the approach.

Methods for computing and applications of the curve and surface

evolution equations

Karol Mikula

In our talk we discussed a Lagrangean and Level-set approaches to solution of the
geometrical partial differential equations and the application of the computational
methods in real situations.

First we present Lagrangean computational methods, stabilized by tangen-
tial velocity functional, used for numerical solution of geometric equation v =
β(x, ν, k, kss) governing the motion of closed plane curves in the context of free
boundary problems. The normal velocity v of an evolving curve may depend on
its spatial position x, tangential angle ν, curvature k, and the intrinsic Laplacian
of curvature kss. Such complex models appear, e.g., in thermodynamics with an
anisotropic interfacial structure, in the elastic curve evolution in crystal growth,
in the affine invariant multiscale shape analysis related to morphological image
smoothing and in geodesic curvature flows on surfaces used in 2D digital image
segmentation. We discuss suitable choices of tangential velocity and various ex-
amples of curve evolution with applications.

Next we present 2D and 3D semi-implicit complementary volume numerical
scheme for solving Riemannian mean curvature flow of graphs and level sets applied
to 2D and 3D image segmentation, edge detection, missing boundary completion
and subjective contour extraction. We discuss level-set models leading to mean
curvature driven image segmentation and outline basic advantages of the so-called
subjective surface method given by the solution of the level-set equation

(1) ut =
√

ε2 + |∇u|2∇.
(

g(|G ∗ ∇I0|) ∇u
√

ε2 + |∇u|2

)

,

where g is nonincreasing (so called Perona-Malik) function, ε > 0 and G∗∇I0 is a
smoothed gradient of the segmented image. We present an experimental order of
convergence of the method on nontrivial examples of exact solutions in case of the
mean curvature motion in level-set formulation and discuss computational results
related to biological and medical image segmentation.

The given results represent a joined works with Daniel Ševčovič and with S.
Corsaro, A. Sarti and F. Sgallari.
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Variational Approximation of Anisotropic Geometric

Evolution Equations

Robert Nürnberg

(joint work with John W. Barrett, Harald Garcke)

We present a new variational formulation of both isotropic and fully anisotropic
geometric evolution laws. Given a parameterization ~x(ρ, t) : R/Z× [0, T ]→ R

2 of
the closed curve Γ ⊂ R

2, we note that isotropic mean curvature flow and surface
diffusion can be written as, respectively,

(1) V := ~xt . ~ν =

{

κ

−∆s κ
, κ ~ν = ∆s ~x ,

with κ the mean curvature of Γ and ~ν a unit normal. Note that because the
tangential component ψ = ~xt . ~τ of the velocity ~xt is not prescribed in (1), there
exists a whole family of solutions ~x, even though the evolution of Γ is uniquely
determined.

On introducing the appropriate spaces V h
0 and Wh

0 of periodic piecewise linear
vector- and scalar-valued parametric finite elements, we propose the following

approximation to (1), see [3, 2]. Find { ~Xm+1, κm+1} ∈ V h
0 ×Wh

0 such that

〈
~Xm+1 − ~Xm

τm
, χ ~νm〉hm −

{

〈κm+1, χ〉hm
〈∇s κ

m+1,∇s χ〉m
= 0 ∀ χ ∈Wh

0 ,(2a)

〈κm+1 ~νm, ~η〉hm + 〈∇s
~Xm+1,∇s ~η〉m = 0 ∀ ~η ∈ V h

0 ;(2b)

where 〈f, g〉m :=
∫

Γm f . g ds =
∫

R/Z
f . g | ~Xm

ρ | dρ with 〈·, ·〉hm the mass lumped in-

ner product. It is now straightforward to show that there exists a unique solution
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{ ~Xm+1, κm+1} ∈ V h
0 ×Wh

0 to (2a,b). Moreover, the scheme (2a,b) is uncondition-
ally stable. A remarkable feature of our method is, that it introduces a tangential
velocity that redistributes the nodes in such a way, that they are eventually equidis-
tributed. Although this cannot be shown for the fully discrete scheme (2a,b), this
behaviour is observed in practice. Furthermore, it can be shown that a continu-
ous in time semidiscrete version of (2a,b), as well as a fully discrete fully implicit
version, equidistribute the vertices.

The approximation (2a,b) can be generalized to cover the geometric evolution
of curve networks, where different curves move by their given normal velocities and
where certain conditions have to hold at triple junctions, where three curves meet
at a point. It turns out that the natural generalization of the weak formulation
used to derive (2a,b) approximates all the necessary triple junction conditions
correctly. Hence our parametric finite element approximation for the evolution of
curve networks by mean curvature flow and surface diffusion, respectively, is given
by (2a,b), with V h

0 and Wh
0 replaced by the appropriate finite element spaces, and

with 〈f, g〉m :=
∫

Γm f . g ds :=
∑NC

i=1

∫

Γm
i

fi . gi ds, where NC is the number of
curves.

Another advantage of our scheme (2a,b), that follows from the formulation (1),
is that other evolution laws can be handled easily. For example, nonlinear mean
curvature flow, V = f(κ), including the inverse mean curvature flow, area pre-

serving mean curvature flow, V = f(κ) −
∫

Γ
f(κ) ds
∫

Γ
1 ds

, Willmore flow for curves,

V = −∆s κ − 1
2 κ

3, as well as an intermediate flow between area preserving mean

curvature flow and surface diffusion, V = −∆s ( 1
α − 1

ξ ∆s)
−1

κ, can be approxi-

mated. All of these approximations will exhibit the equidistribution property of
the scheme (2a,b).

Given an anisotropy function γ and an anisotropic mobility β : S1 → R>0, the
fully anisotropic evolution equations corresponding to (1) are given by

(3) ~xt . ~ν =

{

β(~ν) κγ

−∇s . (β(~ν)∇s κγ)
, κγ ~ν = [γ′(~ν)]⊥s ,

where κγ is the weighted mean curvature. A wide class of anisotropies can be
modelled by

(4) γ(~p) =

L
∑

ℓ=1

γ(ℓ)(~p) =

L
∑

ℓ=1

√

~p .G(ℓ) ~p ⇒ γ′(~p) =

L
∑

ℓ=1

[γ(ℓ)(~p)]−1G(ℓ) ~p ,

where G(ℓ) ∈ R
2×2, ℓ = 1 → L, are symmetric and positive definite; and we

restrict our analysis to anisotropies of the form (4). This enables us to prove
stability bounds for our fully discrete (parametric) approximations for anisotropic
geometric evolution laws, see (5a,b) below, something that is new in the literature.
We remark that variants of our proposed scheme can be used for anisotropies that
are more general than (4), but it does not seem to be possible to prove analogue
stability results in these more general situations.
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On recalling the finite element spaces V h
0 and Wh

0 , we propose the following

approximation to (3), see [1]. Find { ~Xm+1, κm+1
γ } ∈ V h

0 ×Wh
0 such that

〈
~Xm+1 − ~Xm

τm
, χ ~νm〉hm −

{

〈β(~νm)κm+1
γ , χ〉hm

〈β(~νm)∇s κ
m+1
γ ,∇s χ〉m

= 0 ∀ χ ∈ Wh
0 ,(5a)

〈κm+1
γ ~νm, ~η〉hm +

L
∑

ℓ=1

〈[γ(ℓ)(~νm)]−1G(ℓ) [ ~Xm+1
s ]⊥, ~η⊥s 〉m = 0 ∀ ~η ∈ V h

0 .(5b)

Note that for γ(~p) = |~p| and β ≡ 1 the scheme (5a,b) collapses to the isotropic
scheme (2a,b). As mentioned earlier, it is possible to show that the scheme (5a,b)
is unconditionally stable. In addition, the scheme (5a,b) moves the vertices tan-
gentially, so that the nodes are eventually equidistributed with respect to some
nontrivial weighting function that depends on γ. Moreover, it is possible to ap-
proximate crystalline surface energies very accurately with (4). Hence one can use
(5a,b) in order to simulate crystalline mean curvature flow as well as crystalline
surface diffusion.

Finally, the scheme (5a,b) extends naturally to the anisotropic geometric evolu-
tion of curve networks. We are currently working on extending the ideas presented
here to the isotropic and anisotropic evolution of hypersurfaces in R

3.
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A Variational Formulation for a Level Set Representation of

Multiphase Flow and Area Preserving Curvature Flow

Peter Smereka

(joint work with Selim Esedoglu)

In this talk, variational descriptions for various level set formulations involving
curvature flow are revisited. It is emphasized that a correct formulation requires
one to consider all the level curves, not just the zero level set. This boils down
to choosing the correct inner product for the gradient flow. Also discussed in
this talk is the level set formulation of multiphase motion proposed by Zhao et al
[1]. In their approach a separate level set function was associated to each phase.
This required the introduction of a constraint to prevent vacuum formation and/or
overlapping of phases. The authors then construct an energy functional in terms
of the level set functions and include the constraint using Lagranges method.
The Dirac delta functions that arise during the derivation of the Euler-Lagrange
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equations are replaced by |∇φ| terms, a process Zhao et al call rescaling. A careful
examination of this work reveals that the constraint actuals changes the normal
velocity.

The talk given presents joint work in which a variational level set formulation
for multiphase motion is given in which the constraint and the rescaling are re-
moved. The main ideas are a novel representation of n phases using n − 1 level
set functions which has the advantage that the constraint which prevented over-
lapping or vacuum is not needed. In addition, by including the contribution of all
level sets, not just the zero contour, in the energy functional and using the correct
inner product one is able to produce a variational approach for a level set represen-
tation for multiphase flow. In addition, a variational formulation area preserving
curvature flow is presented. In this flow the area (or volume) enclosed by each
of the level sets is preserved. Each algorithm has been implemented numerically
and the results of such computations are presented. The area preserving flow was
successfully used for the super-resolution of images.
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Towards a kinetic model for surface diffusion

Axel Voigt

(joint work with Lev Balykov, Frank Haußer, Andreas Rätz)

A classical interpretation of surface diffusion considers the H−1 gradient flow of
a surface free energy. Let Γ = Γ(t) be a compact smooth connected and oriented
hypersurface in IRd+1 and define E[Γ] =

∫

Γ γ dΓ as the surface free energy. If we

define the chemical potential µ = δE
δΓ , the surface flux j = −ν∇Γµ, the evolution

law reads V = −∇Γ · j, with V being the normal component of the velocity.
Different numerical approaches have been derived for this nonlinear 4th order
equation, Fig. 1 shows the simulation results obtained with a parametric approach
if γ = 1. In many applications the surface free energy density γ is a function of

Figure 1. Surface diffusion on the Stanford bunny, surface mesh
with ≈ 70.000 elements, see [1].

orientation. We consider convex and nonconvex functions. In the nonconvex case
an additional higher order regularization by a Willmore functional is used, which
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turns the surface diffusion model into a 6th order equation. Numerical approaches
for this equation are discussed. For a graph formulation see [2], for a parametric
setting see [3], for a level set approach see [4] and a phase-field approximations
results from the following free energy

E[φ] =

∫

Ω

ǫ

2
|γ(n)∇φ|2 +

1

ǫ
G(φ) dx+

α2

2

∫

Ω

1

ǫγ(n)
(−ǫγ(n)∆φ+

1

ǫγ(n)
G′(φ))2 dx

with φ being the phase-field variable, G(φ) a double well potential, ǫ the diffuse
inteface width and α a new length scale over which corners are smeared out, see
[5].

Non of these approaches considers kinetic effects. To incorporate kinetics associ-
ated with the rearrangement of atoms on the surface the model has to be modified.
We define µ = δE

δΓ + bV , with b a kinetic coefficient. Even if the equilibrium shape
does not change, the pathway towards the equilibrium significantly differs if b 6= 0.
For a comparison with non nonconvex γ see [6]. The actual quantitities respon-
sible for changes in the surface morphology, however are still not considered. On
a microscopic picture, the surface changes due to attachment and detachment of
free adatoms on surface defects. Models which include these free adatoms are
only derived recently, see [7] and can be interpreted as a diffusion equation on
an evolving surface, were the evolution is governed by a modified mean curvature
flow.

∂tu+ V + uHV = ∆Γµ

bV +
δE

δΓ
− µ− uHµ = 0,

with u the adatom concentration. The chemical potential µ is now defined as
µ = ∂uγ(u). A phase field approximation can be derived from the following energy

(1) E[φ, u] =

∫

Ω

( ǫ

2
|∇φ|2 +

1

ǫ
G(φ)

)

γ(u) dx

see [8]. Numerical simulations indicate the presence of different time scales. On a
fast time scale the adatom concentration adjusts to the local curvature, on a time
scale comparable to models without adatoms, the morphology evolved towards
its equilibrium shape, and on a slow time scale the adatom concentration and
morphology adjusts to the global minimum.

The kinetic effects associated with the attachemnt and detachment of adatoms
on surface defects are incorporated through the coefficient b. In contrast to the
functional form of γ and ν, for which material specific quantities can be computed
from microscopic models, such as MD or DFT, a material specific from for b
is not directly available. Models which circumvent this difficulty, by combining
continuum and atomistic models have been introduced in [9, 10, 11]. In these
models all kinetic effects are considered in a mean field approach and the normal
velocity follows directly from the convection of surface defects.
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Simulation dislocation dynamics in thin films using level set method

Yang Xiang

(joint work with Jerry Quek, Yongwei Zhang, David J. Srolovitz, Chun Lu)

The control of the density and location of dislocations (line defects) in heteroepi-
taxial thin-film is very important in designing semiconductor-based electronic de-
vices. We have developed a level set method based, three dimensional dislocation
dynamics simulation method to describe the motion of dislocations in thin films.
This method is based on the level set method for dislocation dynamics in bulk
materials proposed by Xiang et al. [1]. The dislocation location is given by the
intersection of the zero level sets of a pair of level set functions. This representa-
tion does not require discretization and tracking of the dislocation and therefore
handles topological changes naturally. The simulation method incorporates the
elastic interactions of the dislocations and the stress fields throughout the film
and substrate. Using the above approach, various dislocation interactions within
a thin film are simulated.
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