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Introduction by the Organisers

The workshop Spatial Random Processes and Statistical Mechanics was organized
by Kenneth Alexander (USC), Marek Biskup (UCLA), Remco van der Hofstad
(Eindhoven) and Vladas Sidoravicius (IMPA Rio de Janeiro). Some fifty partici-
pants from four continents attended which included senior researchers as well as
mid-carreer and junior scientists, and a few graduate students.

The workshop brought together leading experts in the following fields:

• Interacting random walks and polymers
• Scaling limits in high D and expansion techniques
• Statistical mechanics of interfaces
• Percolation and other systems in 2D
• Random walk in random environment

which represent topics in the wider area of statistical mechanics and interacting
random processes where currently substantial progress is being made.
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In total, there were 22 talks split between the five days so that each day was
focused on one specific topic from the list above. Each day had a long lunch break
between 12:30 and 16:30, which made it possible for researchers to discuss the
latest developments, exchange new ideas or just enjoy the working conditions of
the Institute.

On Wednesday evening, a Special Evening Lecture was delivered by Wendelin
Werner on the subject of Conformal Loop Ensembles which was followed by a
celebration of the Fields Medal that was awarded to Werner at the ICM Madrid
two weeks prior to the meeting. This was considered an important event, as
Werner’s is the first Fields Medal awarded to probability theory as a field, and to
statistical mechanics in particular.

We proceed by a brief overview of the 5 subjects above and a summary of the
principal results of those areas that were reported on in the workshop:

Interacting random walks and polymers : The subject of interacting random walks
and, in particular, polymer models seems more active than ever. Concerning
polymer problems, the present research focuses on detailed understanding of the
problem of heteropolymer absorption at an interface and, particularly, the critical
line separating the localized and delocalized regimes.

Several polymer talks have been presented at the workshop. Francesco Car-
avenna talked about pinning of polymers whose monomers interact via a Lapla-
cian interaction. Francis Comets outlined the approach to directed polymer models
via multiplicative cascades. Fabio Toninelli presented results on the “rounding”
of localization-delocalization transition due to the presence of quenched disorder.
Stu Whittington discussed three models of a polymer subject to a force.

Another talk in this category concerned interacting random walk in relation
to Bose-Einstein condensation. Here Wolfgang König presented results linking
the Gross-Pitaievski approach to Bose-Einstein condensation to certain explicit
problems for interacting Brownian motions. These arise as modifications of the
standard, Feynman-Kac representation of the interacting Bose gas.

Scaling limits in high D and expansion techniques : High-dimensional statistical
mechanics has enjoyed a lot of attention due to the success of the lace-expansion
method. Many critical models were analyzed using this technique and mean-
field exponents were established above the corresponding upper critical dimension.
Several results in this category were presented at the workshop.

Akira Sakai explained his recent breakthrough in applying the lace expansion
to the Ising model. The principal idea is to use the random current representation
which permits the use of BK-like inequalities. Frank den Hollander’s talk focused
on the scaling limit of invasion-percolation cluster on a regular tree. Here the
surprising fact is that, despite its close relation to the ordinary (critical) percola-
tion, the scaling limits of this object is rather different. Martin Barlow reported
on the study of simple random walk on the Incipient Infinite Cluster of directed
(spread-out) percolation above 6 dimensions. The main result is that the spectral
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dimension of this walk is 4/3, in accord with the so-called Alexander-Orbach con-
jecture. Mark Holmes discussed expansion techniques for certain self-interacting
random walks.

Statistical mechanics of interfaces : Droplets and interfaces have been a very active
area of research in probability theory in the last 30 years. At present, the most
intensely studied questions are those of detailed geometrical properties of inter-
faces, including description of their fluctuations and, potentially, scaling limits,
and problems of phase separation.

Three talks on these subjects were presented at the workshop: Senya Shlos-
man outlined a proof of existence of non-translation invariant, Dobrushin-interface
states in certain systems with continuum spins. The main novel idea was the use
of chessboard estimates, rather than contour formalism which is not quite avail-
able in these cases. Ostap Hryniv reported on ongoing work dealing with droplet
formation in 2D Ising model. Here the objective is to derive very precise, local-
limiting type asymptotic for all quantities. Finally, Dima Ioffe discussed methods
for sharp control of random paths—which arise as, e.g., interface lines—possessing
a natural regeneration structure. One of the applications of this is the proof of the
Ornstein-Zernike behavior which is instrumental for the conclusions mentioned in
Ostap Hryniv’s talk.

Percolation and other systems in 2D : Two-dimensional statistical mechanics en-
joyed tremendous boost in the last 5 years due to Schramm’s invention of the
Stochastic Loewner Evolution and the ensuing proofs that this process describes
interfaces in various models at criticality. One of the fundamental results is that
of Smirnov who proved that, for critical percolation on the triangular lattice, the
crossing probabilities converge, in the scaling limit, to Cardy’s formulas.

The problem with Smirnov’s result is that it is extremely special to the (regular)
triangular lattice. Recently, a number of people attempted generalizations beyond
this setting. At our workshop, Vincent Beffara presented a summary of some of his
attempts in this direction and his analysis of various error bounds by comparison
with predictions via SLE. On the other hand, Lincoln Chayes described a model
of interacting percolation where Cardy’s formulas can, after a non-trivial amount
of work, be rigorously justified. In his Special Evening Lecture, Wendelin Werner
sketched the definitions and properties of the Conformal Loop Ensembles which
are the scaling limits of outer boundaries of a class of critical 2D systems.

Another 2D percolation problem was presented in the talk of Rob van den
Berg, who explained the relation of the forest-fire models to the problem of self-
destructive percolation. One of the main issues is the existence of the forest-
fire model beyond a time when an infinite forest first appears; in self-destructive
percolation this boils down to an intriguing conjecture on the continuity of the
infinite cluster density.

Random walk in random environment : The subject of random walk in random
environment is a place of unabating activity, particularly, in the area of quenched
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limit laws. The reversible situations are pretty much well understood so the focus
is on irreversible problems or complicated geometries.

Four major results of this sort were presented at the workshop: Jean-Dominique
Deuschel discussed the irreversible random walks that admit a finite cycle decom-
position. While generally non-reversible, this decomposition allows the use of the
theory developed for reversible situations. Noam Berger talked about the zero-one
law for the speed in sufficiently high dimensions which extends the famous (and
old) results of Kalikow. Ofer Zeitouni presented a new proof of diffusivity for
RWRE in d ≥ 3 in the perturbative regime; this result was published 20 years ago
by Bricmont and Kupiainen but their proof is, to the present day, deemed quite
impenetrable. Finally, as already mentioned, Martin Barlow presented a proof
of the Alexander-Orbach conjecture for the simple random walk on the Incipient
Infinite Cluster for directed percolation above 6 dimensions.

The atmosphere of the workshop was very friendly, and there was ample dis-
cussion, both during and after the lectures. The organizers wish to thank the
“Mathematisches Forschungsinstitut Oberwolfach” for their help in the practical
organization of the workshop, and in particular for providing a superb environment
for this meeting. As the organizing team, we have discussed the possibility of or-
ganizing a similar workshop again in about three years. This idea was encouraged
by many participants.

Kenneth Alexander
Marek Biskup
Remco van der Hofstad
Vladas Sidoravicius
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Abstracts

Pinning models with Laplacian interaction in (1+1)–dimension

Francesco Caravenna

(joint work with Jean–Dominique Deuschel)

We study the path behavior of a class of random fields ϕ : {0, . . . , N} → R with
Laplacian interactions and with in addition a delta–pinning reward for the field to
touch the x–axis, that plays the role of a defect line.

1. The model

For N ∈ N and ε ≥ 0, we consider the probability measure Pε,N on RN−1

defined by

(1) Pε,N

(
dϕ1 · · · dϕN−1

)
=

exp
(
−HN (ϕ)

)

Zε,N

N−1∏

i=1

(
ε δ0(dϕi) + dϕi

)
,

where dϕi is the Lebesgue measure on R, δ0(·) is the Dirac mass at zero, Zε,N

is the normalizing constant (partition function) and the Hamiltonian HN (ϕ) is
defined by

(2) HN (ϕ) :=
N∑

n=0

V
(
∆ϕn

)
, where ∆ϕn := ϕn+1 + ϕn−1 − 2ϕn ,

with zero boundary conditions: ϕ−1 = ϕ0 = ϕN = ϕN+1 := 0.
We allow for a large choice of the potential V (·) : R → R∪ {+∞} appearing in

(2): we only require that the function x 7→ exp(−V (x)) is bounded and continuous
with exp(−V (0)) > 0 and that it satisfies the following integrability conditions:
(3)∫

R

e−V (x) dx < ∞ σ2 :=

∫

R

x2e−V (x) dx < ∞
∫

R

x e−V (x) dx = 0 .

The typical example is of course V (x) = x2.

2. The main results

In the simple case ε = 0, the measure P0,N admits a basic random walk inter-
pretation that allows an explicit analysis. It follows in particular that for large N
the field under P0,N is typically at distance N3/2, hence very far, from the x–axis:
we call this phenomenon delocalization. When ε > 0 the law Pε,N gives the field
a positive reward each time it touches the x–axis. Then the basic question is
whether this reward is strong enough to force the field staying close to the x–axis,
yielding thus a localization scenario, or if delocalization still prevails.

Our results give a precise answer to this question in terms of the path properties
of Pε,N as N → ∞. We show that our model undergoes a phase transition in ε,
namely there exists εc ∈ (0,∞) such that the path properties of Pε,N are essentially
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the same as in the case ε = 0 provided ε < εc, while they are radically different
(exhibiting distinctive features of localization) as soon as ε > εc.

Let us be more precise: we introduce the rescaled and linearly interpolated field
{ϕ̂N (t)}t∈[0,1], defined by

(4) ϕ̂N (t) :=
ϕ⌊Nt⌋
σN3/2

+
(
Nt − ⌊Nt⌋

) ϕ⌊Nt⌋+1 − ϕ⌊Nt⌋
σN3/2

,

and we study the limit in distribution as N → ∞ of the process {ϕ̂N (t)}t∈[0,1]

under Pε,N on C([0, 1]), the space of real valued continuous functions defined on
[0, 1]. Let {Bt}t∈[0,1] denote a standard Brownian motion. We define the integrated

Brownian motion process It :=
∫ t

0 Bs ds and we introduce the Gaussian process

(5) {Ît}t∈[0,1] := {It}t∈[0,1] conditionally on (B1, I1) = (0, 0) .

We can now state our first result.

Theorem 1. The rescaled field {ϕ̂N(t)}t∈[0,1] under Pε,N converges in distribution
on C([0, 1]) as N → ∞. The limit law is:

• If ε < εc, the law of the process {Ît}t∈[0,1];

• If ε ≥ εc, the law concentrated on the constant function f(t) ≡ 0.

By looking on a finer scale, one can show that for ε > εc the typical paths
of the field are really localized close to the x–axis. On the other hand, a more
subtle and interesting scenario shows up in the critical regime ε = εc, where the
behavior of the field appears to be somewhat intermediate between localization
and delocalization. In this regime, by refining the scaling constants N3/2 in the
definition (4) of the rescaled field, one can extract a non-trivial scaling limit, albeit
in a generalized sense. More precisely, we introduce the signed measure µN on
[0, 1] defined by

(6) µN (dt) :=
(log N)5/2

σN3/2
ϕ⌊Nt⌋ dt .

We look at µN under the critical law Pεc,N as a random element of M([0, 1]),
the space of finite signed Borel measures on the interval [0, 1] equipped with the
topology of vague convergence, and we study its convergence in distribution.

Let {Lt}t≥0 denote (a càdlàg version of) the stable symmetric Lévy process
of index 2/5. Since the paths of L are a.s. of bounded variation, we can define
path by path the (random) finite signed measure dL in the Steltjes sense, i.e.
dL

(
(a, b]

)
:= Lb − La. We are now ready to state our main result.

Theorem 2. The random signed measure µN under Pεc,N converges in distribu-
tion on M([0, 1]) as N → ∞ toward the the random signed measure dL.

We point out that dL is a.s. a purely atomic measure, i.e. a sum of Dirac
masses. Roughly speaking, the masses of dL describe the large excursions of the
field {ϕn}n under Pεc,N for large N .
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3. Motivations and a look at the literature

One can interpret Pε,N as a model for a homogeneous linear chain attracted
to a defect line, the x–axis, where the parameter ε ≥ 0 tunes the strength of
the attraction. The inner structure of the chain is described by the Hamiltonian
HN (·), which in our case is made up of Laplacian interaction terms V (∆ϕn). In
dimension higher than 1, fields with this type of interactions are used as models
for membranes, cf. [5, 7]. While some recent mathematical investigations in high
dimensions have been performed, see [6] and [4], the one-dimensional case seem
not to have been considered in the mathematical literature.

One-dimensional fields that have been more studied are those with gradient
interaction, that is with Hamiltonian

∑
n V (∇ϕ(n)) where (∇ϕ)(n) := ϕn−ϕn−1.

These can be viewed as effective models for (1 + 1)-dimensional interfaces, cf.
[3, 2, 1]. We point out that for this kind of models the pinning term ε · δ0(dϕi)
induces a trivial transition (εc = 0), i.e. an arbitrarily small reward is able to
localize the field. Therefore the non-trivial transition (εc > 0) that we have found
in the Laplacian case is non-obvious a priori. Heuristically, we could say that the
Laplacian interaction describes a stiffer chain, more rigid to bending, and therefore
Laplacian models require a stronger reward in order to localize.

Acknowledgements

We are very grateful to Yvan Velenik and Ostap Hryniv for suggesting the
present problem to us.
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Critical properties of directed polymers interacting with a random
defect line

Fabio Lucio Toninelli

(joint work with Giambattista Giacomin)

Consider a renewal process, with generic configuration τ ⊂ N ∪ {0} defined as
follows: τ0 = 0 and {τi − τi−1}i are IID random variables. We call P the law
of the renewal and we set K(n) := P(τ1 = n), for n ∈ N ∪ {∞}. Of course,∑

n∈N
K(n) + K(∞) = 1. We will make the folliwing important assumption:

K(n) ∼ n−α(1)

for n → ∞, for some 1 ≤ α < ∞. (For a more precise condition, see for instance
[2].) Note that if K(∞) > 0 then the renewal process is transient: τ contains only
a finite (but random) number of points.

Now we modify the law P to define pinning measures PN,ω as follows:

dPN,ω

dP
(τ) =

e
∑ N

n=1(βωn−h)1{n∈τ}

ZN,ω
1{N∈τ}.(2)

Here, β ≥ 0, h ∈ R, N ∈ N and ωn are IID random variables with law P and such
that E ω1 = 0, E ω2

1 = 1. Note that sites n where (βωn − h) > 0 favor the event
n ∈ τ and viceversa.

For the results below to hold, some technical condition on P are reaquired. We
refer to the original papers for details.

The model is motivated by physical and biological applications, e.g., disordered
wetting phenomena in (1 + 1) dimensions and the modelization of the DNA de-
naturation transition (cf. [3] and references therein). Typically, one should keep
in mind the situation where τi are the return times of some Markov Chain Sn,
i.e., τ = {n : Sn = 0}. S should be thought of as the configuration of a di-
rected polymer interacting with a defect line (S = 0) where random charges ωn

are placed.
The free energy, defined as

F (β, h) = lim
N

1

N
log ZN,ω,

is known to exist and to be almost-surely constant. Moreover, one proves easily
that F (β, h) ≥ 0. One decomposes the phase diagram (β, h) into two regions: the
localized phase L = {(β, h) : F (β, h) > 0} and the delocalized phase D = {(β, h) :
F (β, h) = 0}. The nomenclature refers to the fact that in L the “contact fraction”

LN :=
1

N
|τ ∩ {1, . . . , N}|

is non-zero in the thermodynamic limit, while the opposite is true in D.
For a given β ≥ 0, the critical point is defined as

hc(β) := inf{h : F (β, h) = 0}.
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We are interested in investigating the way the free energy vanishes for h approach-
ing the critical point hc(β) from below. This is of course a question on the nature
of the phase transition. In the homogeneous situation (β = 0) it is known that
the transition is of first order (F (0, h) ∼ (hc(0) − h)) if

∑

n∈N

nK(n) < ∞,

while in the opposite situation, say if α < 2, the transition is smooth: in particular,

F (0, h) ∼ (hc(0) − h)1/(α−1).

Our main result is the following [2] [3]:

Theorem 1. For every β > 0 there exists a finite c(β) such that

0 < F (β, h) ≤ αc(β)(h − hc(β))2(3)

for h < fc(β).

In other words, an arbitrarily weak amount of disorder is enough to smoothen
the transition. The proof of the theorem is based on an energy-entropy argument
inspired by Ref. [1], plus large-deviation type estimates on the probability of
finding rare but very favorable regions where the disorder is atypically favorable
to polymer-line contacts.

In particular, the above theorem implies that at the critical point the order
parameter vanishes in the thermodynamic limit:

lim
N→∞

EN,ω(LN ) = 0(4)

almost surely, for β > 0 and h = hc(β). In the same situation, we can give finer,
finite-size type estimates on the order parameter [4]:

EN,ω(LN ) = O(N−1/3 log N).(5)

This result is a consequence of the previous theorem, plus some concentration of
measure ideas.

A natural and interesting open question concerns the true order of the transition
in presence of disorder. There is rather general consensus that for β small and
α < 3/2 the transition is of the same order as in the pure case, while for α ≥ 3/2
predictions in the physics literature are rather contradictory.
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Linear polymers subject to a force: Directed walk models

S. G. Whittington

The development of experimental techniques such as atomic force microscopy and
optical tweezers has made it possible to apply a force to an individual polymer
molecule. This paper is about simple combinatorial models which describe the
response of a linear polymer to an applied force.

Lattice models of linear polymers capture many of the large scale (universal)
features of the physical system and several different models can be used to describe
the conformational and thermodynamic properties. The polymer can be modelled
as a random walk, a directed walk or a self-avoiding walk, for instance. Self-
avoiding walks have the advantage that they mimic the excluded volume effect
(the fact that one monomer takes up space to the exclusion of other monomers)
but they are notoriously difficult to handle. This is especially true when modelling
a polymer subject to a force since we know very little about the path properties
of self-avoiding walks, especially in low dimensions. Here we use directed walk
models which can be solved by combinatorial techniques.

We consider three situations: (i) a polymer adsorbed at an impenetrable sur-
face and pulled off the surface by a force, (ii) a collapsed polymer pulled into an
expanded form by a force, and (iii) a polymer confined between two parallel lines
or planes.

A linear polymer in solution can adsorb at an impenetrable surface and a simple
model of this phenomenon is a Dyck path where we keep track of the number of
vertices in the distinguished line. Consider the square lattice Z2 with coordinate
system (x1, x2) where x1 and x2 are integers. A Dyck path is a directed walk on
Z2 with two kinds of directed edges (1, 1) and (1,−1). The walk starts at the
origin, ends on the line x2 = 0 and has no vertices with negative x2-coordinate. If
we write dn(v) for the number of Dyck paths with n edges and with v + 1 vertices
in the line x2 = 0 we can define the generating function

D(x, z) =
∑

v,n

dn(v)xvzn

and D satisfies the equation

D(x, z) = 1 + xz2D(1, z)D(x, z).

The thermodynamic properties of the model are determined by the singularities
of D. A force can be incorporated by allowing the walk to end at any x2 ≥ 0
and keeping track of the x2-coordinate of the nth vertex. If we write dn(v, h) for
the number of such walks with n edges, v + 1 vertices in x2 = 0 and with the
x2-coordinate of the last vertex being h we can define the generating function

F (x, y, z) =
∑

n,v,h

dn(v, h)xvyhzn

and F satisfies the relation

F (x, y, z) = D(x, z)[1 + yzF (1, y, z)].
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The function F has three singularities, z = z1 = 1/2, corresponding to a desorbed
phase, z = z2(x), corresponding to an adsorbed phase and z = z3(y), correspond-
ing a desorbed phase where the desorption is due to the applied force. From this
one can construct the critical force-temperature curve which describes the force
needed to cause desorption as a function of temperature [3]. The model can be
extended to Motzkin paths and to partially directed walks.

The conformational properties of a polymer depend on the quality of the solvent
in which it is dissolved. Typically at high temperatures the solvent is good and
the polymer is an expanded coil. At low temperatures the solvent is poor and
the polymer is a fairly compact ball, tending to minimize its surface area to avoid
unfavourable monomer-solvent interactions. A simple model of this phenomenon
is a partially directed walk on Z2 with vertex-vertex interactions [1]. A partially
directed walk is a walk with no West steps and in which a North step cannot
follow a South step, and vice versa. In addition, for technical reasons, the first
step is an East step. If two vertices of the walk are unit distance apart but are
not incident on a common edge of the walk, these two vertices define a contact.
Let bn(k) be the number of n-edge partially directed walks with k contacts. We
define the generating function

G(x, z) =
∑

k,n

bn(k)xkzn.

A method developed by Temperley [5] can be used to derive recurrence relations
which determine the generating function G(x, z). The singularities of G determine
the thermodynamics of the model and it is known [1] that the model displays a
phase transition from a compact to an expanded form.

The model can be extended to incorporate a force in the x1-direction which
tends to pull the polymer into an expanded form. (This is joint work with Jennifer
Lee.) One needs to keep track of the span s of the walk in the x1-direction and
form the generating function

H(x, y, z) =
∑

k,s,n

bn(k, s)xkyszn

where x is conjugate to the number of contacts, y is conjugate to the span and z is
conjugate to the number of edges. Again using Temperley’s approach, recurrence
relations can be derived which determine H and the singularities of H determine
the thermodynamic behaviour. We have investigated the singularity structure and
used this to derive the critical force-temperature behaviour. The force-temperature
curve agrees with that derived by Rosa et al [4] using a transfer matrix argument.
Our approach allows us to say more about the singularity structure but the order
of the transition in the presence of a force is an open question.

The third situation considered here is a polymer confined between two parallel
planes. This is a crude model of the steric stabilization of a dispersion by polymer
molecules weakly adsorbed on the surfaces of colloidal particles. As the particles
approach one another the polymer loses entropy and this results in an entropic
repulsive force. This can be modelled by a Dyck path confined between two lines,
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say x2 = 0 and x2 = w. If there are no other interactions then it is easy to see
that the entropy is strictly monotone increasing in w in the infinite n limit. If the
Dyck path has attractive interactions with the confining lines then the net effect
can be an attractive or repulsive force between the confining lines [2]. This is a
crude model of sensitized flocculation of dispersions, where adsorbed polymers can
destabilize a colloidal dispersion.

Suppose that we consider Dyck paths with maximum x2-coordinate less than or
equal to w. Suppose that vertices in x2 = 0 contribute a weight a and vertices in
x2 = w contribute a weight b. The generating function Lw(a, b, z) clearly depends
on w and satisfies the relation

Lw+1(a, b, z) = Lw

(
a,

1

1 − bz2
, z

)

for w ≥ 1. It is easy to see that

L1(a, b, z) =
1

1 − abz2
.

The model can be solved completely at certain special values of a and b. In the
(a, b)-plane (a, b > 0) the curve ab = a+ b corresponds to zero force in the w → ∞
limit (where n → ∞ first and then w → ∞). The asymptotics (ie large w) can be
worked out everywhere in the (a, b)-plane (a, b > 0).

The model can be extended in various ways. We have looked at Motzkin paths
and partially directed walks (joint work with Gary Iliev, Richard Brak and Andrew
Rechnitzer) and we have some partial results for the corresponding self-avoiding
walk model (joint work with Enzo Orlandini and Buks van Rensburg).
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Fluctuations of the front in a one-dimensional X + Y → 2X reaction

Alejandro F. Raḿırez

(joint work with Francis Comets and Jeremy Quastel)

Consider the following model of a combustive or epidemic reaction on the integer
lattice: There are two types of particles; X particles, which move as independent,
continuous-time, symmetric, nearest neighbor random walks of total jump rate 2,
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and Y particles which do not move. Initially the Y particles occupy sites 1, 2, . . .,
with a fixed number a ≥ 1 of Y particles at each site. Initially there is at least
one X particle at 0, and any distribution of X particles at sites . . . ,−2,−1, such
that

∑
x≤0 η(0, x)eθx < ∞, where θ > 0 is a number that will be chosen small

and η(0, x) is the number of X particles at site x at time 0. We want to study
the long time asymptotics of the rightmost site rt, visited by the X particles up
to time t, which we call the front. We adopt the convention that initially each
one of the sites . . . ,−2,−1, 0 has already been visited by an X particle so that
r0 = 0. We will show that regeneration time methods as developed in the context
of transient Random Walks in Random Environments (for example [3] or [7]), can
give interesting information about the behavior of the front.

Let η(x, t) be the number of X particles at site x at time t. Note that we can
just think of an X particles as branching into a + 1 particles each time it jumps
to a rt + 1 with the result that there are a + 1 particles at site rt + 1 and without
keeping track of the Y particles.

Let S := {(r, η) : η ∈ N...,r−r,r} and consider the state space,

S′
θ := {(r, η) ∈ S :

∑

x≤r

eθ(x−r)η(x) < ∞}.

If Sθ is endowed with the metric d((r, η), (r′, η′)) = |r − r′|+ ∑
x≤0 eθx|η(x + r) −

η′(x + r′)| we have the following.

Proposition 1. Assume that (r, η) ∈ S′
θ. Then, (rt, η(t)) ∈ S′

θ and the process is
Feller.

Let us call Tx,y the first time the front rt is in the position y, given that the initial
condition of the process was r0 = x and η0 = aδx, the configuration with a particles
at site x and no particles at sites y < x. It is possible to construct a coupling
between the random variables {Tx,y : y > x ≥ 0} so that the subadditivity property
Tx,y ≤ Tx,z +Tz,y holds for every x < z < y. Using Kingman’s subadditive ergodic
theorem one can then show that there exists a v > 0 independent of the initial
condition (0, η) ∈ Sθ such that,

lim
t→∞

rt

t
= v a.s.

In [6] this was shown for certain initial conditions.
The main results discussed in this report are the following.

Theorem 2 (Central limit theorem). For θ > 0 small enough, there exists σ2

nonrandom, 0 < σ2 < ∞, and independent of the the initial conditions (0, η) ∈ S′
θ,

such that

(1) Bǫ
t := ǫ1/2

(
rǫ−1t − ǫ−1vt

)
, t ≥ 0,

converges in law as ǫ → 0 to Brownian motion with variance σ2.
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Theorem 3 (Ergodic theorem). Consider the process as seen from the front,
τ−rtη(t). For θ > 0 small enough, there exist exactly two invariant measures: One
supported on the configuration with no particles, and another, µ∞. The domain
of attraction of the first consists of exactly the configuration with no particles.
Any nontrivial configuration in S′

θ is in the domain of the second; if we denote
by µt the distribution of the process τ−rtη(t), then µt → µ∞ in the sense of weak
convergence of probability measures.

A modified version of this process, depending on a parameter M ≥ a, where an
X particle is annihilates whenever it jumps to a site which already has M particles
was studied in [2]. The model of this report has been considered in the physics
literature (see [5]). Recently there has been a resurgence of interest in such models
due to the experimental detection of strong deviations from mean field behavior.
On the other hand, in [1] and [6], the model is studied in arbitrary dimensions
starting with an initial configuration with one X particle at 0 and 1 at each other
site, proving a shape theorem for the set of visited sites in the ballistic scale. In
[4], Kesten and Sidoravicius consider a model where the Y particles move as well.
If we call DX and DY the corresponding jump rates, they prove that if DX = DY ,
initially the total number of particles is given by a product Poisson and there is a
finite number of X particles, then the asymptotic shape of the set of sites visited
by the X particles is also described by a shape theorem.

The proofs of theorems 2 and 3 are based on the use of a renewal structure of the
process. Regeneration time methods were already used by Kesten in [3] to study
the invariant measure of an i.i.d. environment as seen from a one dimensional ran-
dom walk on that environment (RWRE). Our approach to define the regeneration
times in terms a sequence of stopping times is inspired in the methods presented
in [7] for multidimensional RWRE. At a heuristic level, regeneration occurs each
time the front moves forward and the particles behind it never catch it up later on.
After such a time, the behaviour of the front depends only on the a newly created
particles sitting at the front at that time, but not on those behind the front at
that time. The idea is to find an increasing sequence {κn : n ≥ 1} of regeneration
times, having independent increments and such that the probability of the event
{κn > t} decreases fast enough as t → ∞ providing good enough integrability
conditions. As in [2], in order to estimate the tails of the regeneration times, it
is useful to decouple particles initially on the front from those behind it. Never-
theless, a crucial difficulty and difference in the construction of the sequence of
stopping times with respect to [2], is that in this model the number of X particles
per site is not bounded. This requires a control in terms of some norm of the size of
the cloud of particles behind the front. To do so, we introduce at each time t ≥ 0,
an exponential norm depending on the parameter θ and on an integer z, which is
given by

∑
x≤rt

eθ(x−rt)ηz(t, x). Here, ηz(t, x) is the number of X particles at site

x and at time t which originated from some branching (of an X particle) at some
site y ≤ z. This is a measure of the magnitude of the density of particles from rt

to −∞, which originated from some site y ≤ z. We then define a stopping time
S depending on an integer length L, as the first hitting time to a site of the form
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r0 + jL, j ≥ 1, such that the exponential norm of the particles originating to the
left of r0 + (j − 1)L is small enough. In [2], the corresponding stopping time was
defined simply as the first time the front advances L steps to the right. One of
the main difficulties of our proof, is to show that the tails of the law of S provide
good enough integrability conditions for the corresponding regeneration times and
the associated position of the front. We are able to do this only for small values of
θ and large values of L: we obtain polynomially decaying tails of a degree which
increases linearly with L for the regeneration times {κn : n ≥ 2}.

The results presented in this report can be easily extended to the case where the
initial configuration of the Y particles is a product Poisson measure of parameter
1 at sites 1, 2, . . .. Nevertheless, it remains a challenge to extend them to more
general stochastic front dynamics, as for example the case studied in [4] where the
Y particles have a positive jump rate DY > 0.
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Interacting Brownian motions and the Gross-Pitaevskii formula

Wolfgang König

(joint work with Stefan Adams and Jean-Bernard Bru)

Consider a quantum system of N particles in a trap potential W : Rd → [0,∞]
with mutually repellent pair interaction potential v : (0,∞) → [0,∞]. This system
is described by the Hamilton operator

HN = −
N∑

i=1

∆i +

N∑

i=1

W (xi) +
∑

1≤i<j≤N

v
(
|xi − xj |

)
, x1, . . . , xN ∈ Rd.

The trap potential W is supposed to are continuous, say, and to explode to ∞
at infinity. Examples are W (x) = |x|2 or W = ∞1lΛc for a bounded box Λ, but
much more general trap potentials are possible. The interaction potential, v, is
supposed to decay quickly at infinity and to explode to ∞ at zero. An example
is v = ∞1l(0,a∗) for some a∗ > 0. The main goal is the description of the system
at zero or very low temperature in the limit as N → ∞ with the box Λ tending
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to Rd coupled with N . In particular, one seeks to mathematically understand
Bose-Einstein condensation, which states that the N -particle wave function can
be asymptotically described by a single-particle wave function.

From now we restrict to d = 3 and replace W by the rescaling WN (·) =
L−2

N W (·L−1
n ) for some scale function LN → ∞. An ambitious goal is to han-

dle rescalings such that the particle density N/L3
N stays bounded and bounded

away from zero, but in this talk we only consider the a particular dilute system:
we shall put LN = N . By a rescaling argument, we can leave W unchanged and
replace instead v by N2v(·N). For the rest of this talk, we keep it like that.

In a series of papers around 2000, see [LSSY05], Lieb, Seiringer and Yngvason
identified the large-N behavior of the ground state of HN ,

NχN = min
h∈H1(R3N ) : ‖h‖2=1

〈h,HNh〉 = 〈h∗
N ,HNh∗

N 〉,

and its ground state, h∗
N , in the limit N → ∞. They found that χN converges

towards the Gross-Pitaevskii formula,

χGP
α = inf

ϕ∈H1(R3) : ‖ϕ‖2=1

(
‖∇ϕ‖2

2 + 〈W, ϕ2〉 + 4πα‖ϕ‖4
4

)
,

where the parameter α > 0 must be taken equal to the scattering length of the
pair potential v.

The behaviour of the system at positive temperature 1/β is described in terms
of the trace of e−βHN , which in turn can be written as

Tr(e−βHN ) =

∫

(R3)N

dx
[ N⊗

i=1

Eβ
xi,xi

][
e−HN,β

]
,

where Eβ
x,y is the (non-normalised) expectation with respect to a Brownian bridge

that runs from x at time zero to y at time β, and

HN,β =

∫ β

0

W (Bi
t) dt +

∑

1≤i<j≤N

∫ β

0

v
(
|Bi

t − Bj
t |

)
dt.

Bosons are described in the same way by a system of symmetrised Brownian
bridges, where the i-th Brownian bridge runs from xi to xσ(i), and an expectation is
taken over a uniformly distributed random permutation σ of the numbers 1, . . . , N .

In the present talk, we do not consider this canonical model, but the Hartree
model, where HN,β is replaced by

KN,β =

∫ β

0

W (Bi
t) dt +

∑

1≤i<j≤N

∫ β

0

1

β

∫ β

0

v
(
|Bi

t − Bj
s |

)
dtds.

That is, the particle interaction is replaced by a path interaction. This model is
not as ‘physical’, but it is in the same spirit, and we hope to solve problems in
future about the Hartree model that are currently too difficult for the canonical
model. We introduce and analyse the Hartree model and variants in our papers
[ABK06a], [ABK06b] and [AK06].
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One of our first results about the Hartree model is that its free energy (i.e.,
the large-β exponential rate of its total mass) is described in terms of the ground
product energy, Nχ⊗

N , of HN , i.e., by the minimum of 〈h,HNh〉 taken over all
normalised functions h of product form. (This variational formula is sometimes
called theHartree formula and gave the model its name.)

Furthermore, we analysed the behavior of χ⊗
N in the limit N → ∞ under the

assumption that the integral
∫

v(|x|) dx is finite. We obtain the same statement
as Lieb et. al. above and the same limiting formula, the Gross-Pitaevskii formula.
However, the scattering length must be replaced by that integral.

Furthermore, we study the effect of symmetrisation to the model in general. We
do this in any dimension d, but without (trap or pair) interaction. Hence we must
replace the Lebesgue measure as the initial distribution of our Brownian bridges
by some probability measure m on Rd. We show that the mean of the normalised
occupation measures of the motions,

µN =
1

N

N∑

i=1

1

β

∫ β

0

ds δBi
s
,

satisfies a large-deviation principle on the set of probability measures on Rd. That
is, we identify a rate function Im,β such that, formally,

1

N !

∑

σ

∫

(Rd)N

m(dx1) · · ·m(dxN )
N⊗

i=1

Pβ
xi,xσ(i)

(µN ∈ A) ≈ e−N infA Im,β .

Our formula for Im,β is explicit and interpretable, but involved. Luckily, it turns
out that, for the important special case of m being the Lebesgue measure on some
bounded box, Im,β can be identified in much easier terms: it turns out to be equal
to β times the energy of the squareroot of the density of the measure, i.e., equal
to the map ϕ2(x) dx 7→ β‖∇ϕ‖2

2.
It is known that this function governs the large deviations of the occupation

measures of a single Brownian motion in the large-time limit. The fact that this
function also governs the ones of the mean of the occupation measures of N sym-
metrised motions can be interpreted by saying the main contribution comes from
those permutations that have so many cycles of length of order N that their lengths
sum up to N . Indeed, for such a permutation, the integral over x1, . . . , xN splits
into independent pieces over the indices belonging to the cycles, and these may
be seen as single Brownian bridges of length equal to β times the respective cycle
length. Each of these independent pieces represents a single Brownian motion with
time length of order N .
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Random walks on the incipient infinite cluster for oriented percolation

M. T. Barlow

(joint work with A. A. Járai, T. Kumagai, G. Slade)

Following recent work in [2, 6, 13, 14] random walks on supercritical percolation
clusters in Zd are now quite well understood. For the critical case, on the other
hand, very little is known. It is believed that at p = pc, all clusters are finite – this
is known (for standard bond percolation on Zd) when d = 2 or d ≥ 19. While it
may be possible to formulate interesting questions about random walks on finite
clusters, this is less straightforward than considering the asymptotics of random
walk on a fixed infinite graph.

In [11] Kesten defined the incipient infinite cluster (IIC) for Z2. Let AN be
the event that C(0), the cluster containing 0, is connected to the boundary of
[−N, N ]2. Let

(1) P(N)(·) = Ppc(·|AN ).

Kesten proved that P(N) converged to a law P̃ ; the IIC is C(0) under P̃ . In [12]
Kesten proved that simple random walk on the IIC (for Z2) is subdiffusive, and
also obtained much more detailed results on the SRW on the IIC for the binary
tree B.

Let Γ = (G, E) be an infinite, connected locally bounded graph. We write
d(x, y) for the usual graph distance, and denote balls by

B(x, r) = {y : d(x, y) < r}.
Let µx be the degree of the vertex x; we extend µ to a measure on G and write

V (x, r) = µ(B(x, r)),

which (following terminology for manifolds) we sometimes call the volume of the
ball B(x, r). The simple random walk X = (Xn, n ≥ 0, P x, x ∈ G) on Γ is defined
by

P z(Xn+1 = y|Xn = x) = P (x, y)

where

P (x, y) =

{
1/µx, if y ∼ x,

0, otherwise.

The transition density of X , or discrete time heat kernel on Γ is

pn(x, y) =
P x(Xn = y)

µy
= pn(y, x).
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The spectral dimension of Γ is defined by

ds = ds(Γ) = −2 lim
n→∞

log pn(x, x)

log n

(if this limit exists). Note that ds(Z
d) = d. In [1] Alexander and Orbach conjec-

tured that the spectral dimension of the IIC is 4
3 in all dimensions. (The actual

conjecture in [1] is stated less precisely, and in a slightly different way). This is
now thought to be false for small d, but it is likely that this is true for d > dc = 6,
the upper critical dimension for percolation.

Not enough is yet known about the IIC for standard percolation; but note that
the IIC has been constructed for spread-out models for d > 6 in [7]. The IIC for
(spread-out) oriented percolation in Zd ×Z+, d > 4, is better understood. In this
case, one considers the oriented graph with vertex set Zd×Z+, and with (oriented)
edges given by

(x, n) → (y, n + 1) if and only if||x − y||∞ ≤ L.

Here L ≫ 1.

Theorem 1. Let d > 6, and C̃ be the IIC for spread-out oriented percolation in

Zd × Z+. If L ≥ L0(d) then ds(C̃) = 4/3.

The proof of this theorem falls into two parts, which use quite different sets
of techniques. The first is to consider SRW on a family of random graphs Γ(ω)
satisfying suitable hypotheses, and using random walk and heat kernel methods
to prove that one has ds(Γ) = 4/3, a.s. The second part is to prove that the
IIC for oriented percolation satisfies these hypotheses: this is done using the lace
expansion.

Let (Ω, P) be a probability space, carrying a family Γ(ω) of random graphs
such that for each ω ∈ Ω, Γ(ω) = (G(ω), E(ω)) is an infinite connected graph
with vertex degree bounded by some constant C1, and there is a marked vertex
0 ∈ G(ω). Write

V (r) = V (r)(ω) = Vω(0, r) = µω(Bω(0, r))(2)

Reff(r) = Reff(0, B(0, r)c).(3)

Here Reff denotes the effective resistance when Γ(ω) is considered as an electric
network with unit resistors on each edge.

Let λ ∈ [1,∞). Define J(λ) = J(λ)(ω) ⊂ [1,∞) by: r ∈ J(λ) (“r is good”) if:

r2/λ ≤ V (r) ≤ λr2 and r/λ ≤ Reff(r) ≤ λr.

Definition. (Γ(ω)) satisfies Hypothesis A if there exists C2 > 0, q > 0 such that

P(r ∈ J(λ)) ≥ 1 − C2

λq
,

for each r ∈ [1,∞).



2468 Oberwolfach Report 41/2006

We write

pω
n(x, y) = P x

ω (Xn = y)/µω(y),(4)

τr = min{n : d(Xn, 0) > r}.(5)

Theorem 2. Suppose (Γ(ω)) satisfies Hypothesis A. Then
(a) There exists N0(ω) with P(N0 < ∞) = 1 such that for n > N(ω),

(log n)−α1n−2/3 ≤ pω
2n(0, 0) ≤ (log n)α1n−2/3.

In particular, ds(Γ) = 4
3 , P-a.s.

(b) There exists R0(ω) with P(R0 < ∞) = 1 such that for r > R0(ω),

(log r)−α2r3 ≤ E0
ωτr ≤ (log r)α2r3.

Remarks. 1. See [4] for similar results for the IIC for the binary tree. In that
case P(r 6∈ J(λ) ≤ exp(−λp), and the error terms were of order log log.
2. This result more or less removes the ‘random walk’ component from the re-
maining high dimensional problems for SRW on the IIC. For example, to prove
the AO conjecture for ordinary percolation one would need to prove the IIC satis-
fies Hypothesis A. This means solving (hard) questions about the geometry of the
cluster.
3. The proofs use methods developed in [3], which looks at ‘strongly recurrent’
graphs for which

V (x, r) ≍ rα, x ∈ G, r ≥ 1(6)

Reff(x, B(x, r)c) ≍ rδ x ∈ G, r ≥ 1.(7)

4. Usually control of SRW on a graph requires control (e.g. in terms of volume,
resistance) of all balls. A surprising feature of Theorem 2 is that pn(0, 0) and E0τr

can be bounded just using information on balls B(0, r), r ≥ 1.
5. See [5] for more detailed results.

For spread-out oriented percolation we have the following result.

Theorem 3. Let d > 6, and L ≥ L0(d) ≫ 1. Then the IIC for spread-out oriented
percolation satisfies Hypothesis A.

Remarks. 1. The upper critical dimension for oriented percolation is 4, so one
might expect to have this result for d > 4. In fact, using the results of [8, 9, 10]
the ‘volume bounds’ part of Hypothesis A does hold when d > 4. However, the
proof of the lower bound for the resistance required d > 6.
2. The situation for d = 5, 6 is not clear. Because the SRW on the IIC is a ran-
dom walk on an unoriented graph, the SRW ‘sees’ connections which the oriented
percolation process misses.
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Invasion percolation on regular trees

Frank den Hollander

(joint work with Omer Angel, Jesse Goodman and Gordon Slade)

We consider invasion percolation on a rooted regular tree. The edges of the tree
are assigned i.i.d. uniform (0, 1) random variables, and an infinite cluster is grown
from the root by successively adjoining the edge in the outer boundary of the
cluster that carries the smallest weight. It is known that, with probability 1,
lim supm→∞ wm = pc, where wm is the weight of the m-th edge accepted in the
invasion percolation cluster (IPC) and pc is the critical probability for ordinary
percolation.

For the IPC, we identify the scaling behaviour of its r-point function for any
integer r ≥ 2, and of its volume both at and below a given height above the
root. In addition, we derive scaling estimates for simple random walk on the IPC
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starting from the root. We find that, while the power laws of the scaling are the
same as for the incipient infinite cluster (IIC) for ordinary percolation, the scaling
functions differ. Thus, somewhat surprisingly, IPC and IIC have different scaling
limits.

A key ingredient in the proofs is the following representation. The IPC can
be viewed as consisting of a uniformly random infinite backbone with, for each
k ∈ N0 emerging from the k-th vertex on the backbone, independent supercritical
percolation clusters with parameter Wk > pc conditioned to stay finite, where
Wk is the maximal weight of the edges in the backbone above the k-th vertex.
On the tree, by duality, a supercritical percolation cluster with parameter p > pc

conditioned to stay finite has the same law as a subcritical percolation cluster
with a dual parameter p̂ < pc. Therefore, the IPC can be viewed as consisting
of a uniformly random infinite backbone with, for each k ∈ N0 emerging from
the k-th vertex on the backbone, independent subcritical percolation clusters with

parameter Ŵk < pc.
Since the IIC has the same representation but with all the emerging percolation

clusters critical, it follows that the IPC is stochastically dominated by the IIC.

Since, with probability 1, Ŵk ↑ pc as k → ∞, it also follows that far above the
root IPC and IIC have the same law locally. We show that

(
k

[
1 − Ŵ⌈kt⌉/pc

])

t>0
=⇒ (L(t))t>0,

where the right-hand side is the lower envelope of the Poisson process with in-

tensity 1 on the positive quadrant. The slow decay of Ŵk towards pc causes an
anomalous scaling behaviour. For instance, while for the IIC the r-point function
only depends on the total volume of the spanning tree connecting the root with
the r − 1 designated vertices, for the IPC the r-point function depends on the
topology of the spanning tree and the lengths of its segments.

Asymptotic behavior of the critical two-point function for Ising
ferromagnets above four dimensions

Akira Sakai

We consider the Ising model on the d-dimensional integer lattice Zd. Let Λ be a
finite subset of Zd containing the origin o ∈ Zd. We denote a spin variable at x ∈ Λ
by ϕx ∈ {±1}. The thermal average of a function f at the inverse temperature
p ≥ 0 is defined by

〈f〉p;Λ =
2−|Λ|

Zp;Λ

∑

ϕ∈{±1}Λ

f(ϕ) e−pHΛ(ϕ),(1)

where Zp;Λ is the normalization and HΛ(ϕ) is the Hamiltonian defined as

HΛ(ϕ) = −
∑

{x,y}⊂Λ

Jx,yϕxϕy,(2)
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where {Jx,y}x,y∈Zd is a collection of spin-spin couplings.
Suppose that the spin-spin couplings are finite-range, translation-invariant and

Zd-symmetric, and that Jo,x ≥ 0 for any x ∈ Zd (i.e., ferromagnetic). Then, for
d ≥ 2, there is a pc ∈ (0,∞) such that the two-point function Gp(x) defined as

Gp(x) = lim
Λ↑Zd

〈ϕoϕx〉p;Λ,(3)

decays exponentially as |x| ↑ ∞ if p < pc, while Gp(x) is bounded away from 0
if p > pc (see [1] and references therein). It is generally believed that the critical
two-point function decays in powers of |x| as

Gpc(x) ≈ |x|−(d−2+η) (|x| ↑ ∞),(4)

where η is a critical exponent. It is of interest to investigate this exponent, since
we believe in universality: η is insensitive to the precise definition of Jo,x ≥ 0.

Let

τx,y = tanh(pJx,y).(5)

In [6] we proved the following lace expansion:

Proposition 1. For any p ≥ 0 and any Λ ⊂ Zd, there exist π(j)

p;Λ(x) and R(j+1)

p;Λ (x)
for x ∈ Λ and j ≥ 0 such that

〈ϕoϕx〉p;Λ = Π(j)

p;Λ(x) +
∑

u,v

Π(j)

p;Λ(u) τu,v〈ϕvϕx〉p;Λ + (−1)j+1R(j+1)

p;Λ (x),(6)

where Π(j)

p;Λ(x) =
∑j

i=0(−1)i π(i)

p;Λ(x). For the ferromagnetic case, we have

π(j)

p;Λ(x) ≥ δj,0δo,x, 0 ≤ R(j+1)

p;Λ (x) ≤
∑

u,v

π(j)

p;Λ(u) τu,v〈ϕvϕx〉p;Λ.(7)

To derive the above lace expansion (with the exact expressions of the expan-
sion coefficients π(i)

p;Λ(x) and the remainder R(j+1)

p;Λ (x)), we exploited the so-called

random-current representation and the “source-switching” lemma [3]. We should
emphasize that the lace expansion is an identity, not an inequality, so that it holds
for any spin-spin coupling. For example, (6) holds for a spin glass.

In [6] we were able to control the expansion coefficients and the remainder
only when the spin-spin couplings are translation-invariant, Zd-symmetric and
nonnegative. Two examples that satisfy these properties are the nearest-neighbor
interaction (i.e., Jo,x = 1{‖x‖1=1}) and the following spread-out interaction:

Jo,x = L−dµ(L−1x) (1 ≤ L < ∞),(8)

where µ : [−1, 1]d \ {o} 7→ [0,∞) is a bounded probability distribution, which is
Zd-symmetric and and piecewise continuous so that L−d

∑
x∈Zd µ(L−1x) approxi-

mates
∫

Rd ddx µ(x) ≡ 1.
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Proposition 2. Let ρ = 2(d− 4) > 0. For the nearest-neighbor model with d ≫ 1
and for the spread-out model with L ≫ 1, there are finite constants θ and λ such
that

|Π(j)

p;Λ(x) − δo,x| ≤ θδo,x +
λ(1 − δo,x)

|x|d+2+ρ
(j ≥ 1), |R(j)

p;Λ(x)| → 0 (j ↑ ∞),(9)

for any p ≤ pc and any x ∈ Λ ⊂ Zd.

The proof of these bounds depends on bounds on the expansion coefficients in
terms of two-point functions. These diagrammatic bounds are results of counting
the number of “edge-disjoint connections,” which correspond to applications of the
BK inequality in percolation [2].

Let

τ ≡ τ(p) =
∑

x

τo,x, D(x) =
τo,x

τ
, σ2 =

∑

x

|x|2D(x).(10)

Due to (9) uniformly in Λ ⊂ Zd, there is a limit Πp(x) ≡ limΛ↑Zd limj↑∞ Π(j)

p;Λ(x)
such that

Gp(x) = Πp(x) + (Πp ∗ τD ∗ Gp)(x), |Πp(x) − δo,x| ≤ θδo,x +
λ(1 − δo,x)

|x|d+2+ρ
,(11)

for any p ≤ pc and any x ∈ Zd, where (f ∗ g)(x) =
∑

y∈Zd f(y) g(x − y). We note

that the identity in (11) is similar to the recursion equation for the random-walk
Green’s function:

Sr(x) ≡ δo,x +

∞∑

i=1

riD∗i(x) = δo,x + (rD ∗ Sr)(x),(12)

where f∗i(x) = (f∗(i−1) ∗ f)(x). The leading asymptotics of S1(x) for d > 2 is
known as ad

σ2 |x|−(d−2), where ad = d
2π−d/2Γ(d

2 − 1) (e.g., [4, 5]). Following the
model-independent analysis of the lace expansion in [4, 5], we obtain the following
asymptotics of the critical two-point function:

Theorem 3. Fix any small ǫ > 0, and let d ≥ 5 and ǫ̃5 = ǫ1{d=5}. For the
nearest-neighbor model with d ≫ 1 and for the spread-out model with L ≫ 1, we
have that, for x 6= o,

Gpc
(x) =

A

τ(pc)

ad

σ2|x|d−2
×

{(
1 + O(|x|−2/d+ǫ̃5)

)
(NN model),(

1 + O(|x|−2+ǫ)
)

(SO model),
(13)

where constants in the error terms may vary depending on ǫ, and

τ(pc) =

( ∑

x

Πpc
(x)

)−1

, A =

(
1 +

τ(pc)

σ2

∑

x

|x|2Πpc
(x)

)−1

.(14)

Although we restricted ourselves in [6] to the nearest-neighbor model for d ≫ 4
and to the spread-out model for d > 4 with L ≫ 1, it is strongly expected that our
method can show the same asymptotics of the critical two-point function for any
finite-range model (which satisfies the required symmetries) above four dimensions,
by taking the coordination number sufficiently large.
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The Airy1 and Airy2 processes in the TASEP

Patrik L. Ferrari

We consider a stochastic interacting particle system, the totally asymmetric simple
exclusion process (TASEP) on Z in continuous time. At any given time t, every
site j ∈ Z can be occupied at most by one particle. Thus a configuration of the
TASEP can be described by η = {ηj, j ∈ Z|ηj ∈ {0, 1}}. ηj is called the occupation
variable of site j, which is defined by ηj = 1 if site j is occupied and ηj = 0 if site
j is empty.

The dynamics of the TASEP is defined as follows. Particles jumps on the
neighboring right site with rate 1 provided that the site is empty. This means that
jumps are independent of each other and occur after an exponential waiting time
with mean 1, which is counted from the time instant when the right neighbor site
is empty.

On a macroscopic scale the density of particles u(x, t) evolves deterministically
according to the Burger’s equation ∂tu + ∂x(u(1 − u)) = 0 [15]. Therefore it
is natural to focus on fluctuations properties and large deviations, which have
some interesting and unexpected features. The observables analyzed in our recent
works [3, 2] are the positions of given particles, which are closely related to inte-
grated particle currents. It turns out that the observables fluctuation depends on
the initial condition. Thus the natural question is to analyze which kind of initial
conditions leads to a common limit distribution and limit process.

The first result in this direction has been obtained with step initial conditions.
To be precise, let us denote by xk(t) the position at time t of the particle with
label k. Then step initial condition means xk(0) = −k, k ∈ N, which is studied by
Johansson [8, 9] in terms of a corner growth model. The positions of particles fluc-
tuate on a t1/3-scale while two particles are (in this scale) non-trivially correlated
if they are at a distance of order t2/3. For example,

(1) lim
t→∞

x[t/4+u(t/2)2/3](t) − (−2u(t/2)2/3 + u2(t/2)1/3)

−(t/2)1/3
= A2(u)



2474 Oberwolfach Report 41/2006

where A2 is the Airy2 process (usually simply called Airy process), first discovered
in the polynuclear growth (PNG) model under droplet growth [13]. The 1/3 and
2/3 exponents are the one of the KPZ universality class [10]. The Airy2 process
is the marginal of the determinantal point process with extended Airy kernel. A2

appears also in Dyson’s Brownian Motion [4], where the motion of the largest
eigenvalue properly rescaled converges to the Airy2 process [9]. In particular, the
one-point distribution of A2 is the GUE Tracy-Widom distribution [19]. The same
result holds if one focuses around k ∼ αt, α ∈ (0, 1), but with different numerical
factors.

Besides the step-initial condition explained above, two other situations are of
particular interest. One is the stationary initial condition, where the one-point
distribution has been obtained in [7]. The second are deterministic initial condi-
tions leading to a macroscopically uniform density profile, thus called flat initial
conditions. The simplest realization is obtained by setting xk(0) = −2k, k ∈ Z.

In [16] an important new result has been discovered, allowing the analysis of
such initial conditions. First of all, as expected by universality, the fluctuations
of the position of a particle is governed by the GOE Tracy-Widom distribution,
F1 [20]. This result is a combination of [16, 6], that is,

(2) lim
t→∞

P(x[t/4](t) ≤ −st1/3) = F1(2s).

More importantly, for flat initial condition, the analogue of the Airy2 process has
been determined, which we denote by A1 and call Airy1 process. It is the marginal
of the determinantal point measure with the extended kernel KF1 given as follows.
Let B0(x, y) = Ai(x + y) and ∆ the one-dimensional Laplacian, then
(3)

KF1(u1, s1; u2, s2) = −(e(u2−u1)∆)(s1, s2)1(u2 > u1) + (e−u1∆B0e
u2∆)(s1, s2).

The process A1 has m-point joint distributions at u1 < u2 < . . . < um given by a
Fredholm determinant (regarded as its Fredholm series)

(4) P

( m⋂

k=1

{A1(uk) ≤ sk}
)

= det(1− χsKF1χs)L2({u1,...,um}×R)

where χs(ui, x) = 1(x > si).
In [3] we analyze the continuous-time TASEP with xk(0) = −2k, k ∈ Z, and

show that the joint distributions of particle positions are given by a Fredholm
determinant of a kernel. Then in the appropriate scaling limit we obtain pointwise
convergence of the kernel to KF1 . The analysis starts from a determinantal for-
mula of the joint distributions of particle position obtained by Schütz [17]. In [2]
we consider the discrete-time TASEP with sequential update for which the corre-
sponding of Schütz formula has been determined in [14]. The analogue formula
for parallel update has been obtained in a recent work [11], but whether a similar
approach as in [3, 2] can be applied has still to be investigated. There are other
update rules introduced in the literature, but we will not discuss them. For a
review, see [18].
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Instead of restricting to density 1/2 (the d = 2 case) we consider a more general
set of initial conditions: for any integer d ≥ 2, we take xk(0) = −dk, k ∈ Z. By
universality it is expected that the limit process is independent of d (if d ≥ 2). This
is proven in [2], where we show convergence of Fredholm determinants too, thus
convergence in the sense of finite-dimensional distributions to the Airy1 process.
The final result, rewritten for continuous-time TASEP, is

(5) lim
t→∞

x⌊αt+µt2/3⌋(t) + dµut2/3

−κt1/3
= A1(u)

with κ = 21/3(d(d−1))2/3

d , α = d−1
d2 , and µ = 25/3(d(d−1))1/3

d2 .
As briefly discussed in [3], the TASEP can also be reinterpreted as a stochastic

growth model, a directed last passage percolation, and a directed polymer model.
Step initial conditions corresponds to point-to-point directed polymers [8, 9] and
corner growth [13]. There the Airy2 process appears. Flat initial condition trans-
lates into growth on a flat substrate [12, 1, 5] and point-to-line directed polymers.
In particular, d ≥ 3 is growth on a flat but tilted surface, and to our knowledge,
the analysis of the limit distribution and/or limit process has not been carried out
before for models in the KPZ class.
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An expansion for self-interacting random walks

Mark Holmes

(joint work with Remco van der Hofstad)

1. Introduction

We introduce an expansion that is valid for random walks that are self-in-
teracting in the sense that the transition probabilities are allowed to depend on
the history of the walk, including such models as reinforced random walks. To
be precise, for a path ~ωi = (ω0, . . . , ωi), we write p~ωi(x, y) for the conditional
probability that the walk steps from ωi = x to y, given the history of the walk ~ωi.

Let Q denote the law of the self-interacting random walk, i.e.

Q(~ωn = (x0, x1, . . . , xn)) =

n−1∏

i=0

p~ωi(xi, xi+1).

The goal is to investigate the two-point function

cn(x) = Q(ωn = x).

2. Expansion

We define the concatenation of two walks into a single walk in the obvious way:

(~ηj ◦ ~ωm)(i) =

{
η(i) when 0 ≤ i ≤ j,
ω(i − j) when j ≤ i ≤ m + j.

Then cn+1(x) can be written as

∑

~ω
(0)
1

D(ω(0)

1 )
∑

~ω
(1)
n :ω

(0)
1 →x

n−1∏

i=0

p~ω
(0)
1 ◦~ω

(1)
i (ω(1)

i , ω(1)

i+1),

where D(x) = p∅(0, x). Now

n−1∏

i=0

p~ω
(0)
1 ◦~ω

(1)
i =

n−1∏

i=0

[
p~ω

(1)
i +

(
p~ω

(0)
1 ◦~ω

(1)
i − p~ω

(1)
i

)]
.
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Applying the following expansion many times

n−1∏

i=0

(ai + bi) =

n−1∏

i=0

ai +

n−1∑

j=0

( j−1∏

i=0

(ai + bi)
)
bj

( n−1∏

i=j+1

ai

)

we obtain cn+1(x) = (D ∗ cn)(x) +
∑∞

m=2(πm ∗ cn+1−m)(x), where πm is some
quantity involving differences in transition probabilities

∆(i)

ji+1 =
(
p

~ω
(i−1)
ji−1+1◦~ω

(i)
ji − p~ω

(i)
ji

)
(ω(i)

ji
, ω(i)

ji+1).

We then proceed with an inductive analysis of the Fourier transform of the
recursion equation for cn+1(·). The remaining ingredient of the analysis is model
specific and involves estimating diagrams that arise as bounds for the “coefficients”
πm of the recursion.

3. Models and results

We apply the expansion to two models, namely excited random walk (ERW)
in high dimensions and once edge-reinforced random walk with drift (OERRWd),
when the excitement/reinforcement parameter is sufficiently small. Excited ran-
dom walk Initially there is one cookie at each site in Zd. Random walker prefers
step e1 to −e1 whenever he eats a cookie, i.e. the first time he visits each site.
Therefore

p~ωi(y, y + x) =
1 + β(e1 · x)I[y /∈ ~ωi−1]

2d
I[|x| = 1]

Benjamini and Wilson [1] showed that this model has a positive drift (in the
sense of lim infn→∞ ωn/n > c) when d > 4, while Kozma proved this in dimensions
2 and 3 ([4] and [3]). We use the fact that the ERW is a simple random walk in
the remaining d−1 directions in the model dependent part of the analysis to prove
the following CLT for ERW.

Theorem 1. Fix d > 8. There exist β0 > 0 such that for β ≤ β0 θ ∈ [−1, 1]d,
and Σ ,

(a) Eβ [ωn] = θn[1 + O
(
n−1

)
].

(b) Varβ(ωn) = Σn[1 + O
(

log n

n1∧
d−7
2

)
]

(c) ωn−θn√
n

d
=⇒ N (0, Σ).

Zerner [5] investigates more general classes of ERW, and his methods may enable
an alternative proof of the above theorem.

The expansion is also used to prove a CLT for the OERRWd in Zd (all d) in
which the edges are directed and have initial weights that are translation invariant
but induce a drift, and the reinforcement parameter is sufficiently small. In this
case the drift remains after reinforcement and large deviations estimates can be
used for the model dependent part of the analysis.
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4. Remarks

Our methods also work for the boundedly-ERRWd case provided the supremum
of the reinforcement is sufficiently small, and for undirected edges where the drift
is in the definition of the walk itself rather than the edge weights. We could
also prove a CLT for a model in dR + dN dimensions where the edges in dR of
the dimensions are reinforced and edges in the remaining dN dimensions are not
reinforced, for dN > 7.

The condition d > 8 in the CLT for excited random walk is practically meaning-
less, and we expect that we can lower this dimension by proving more appropriate
diagrammatic bounds and improving the inductive analysis of the recursion equa-
tion. A major improvement in this inductive analysis would be required before
our methods might yield a (self-contained) proof of a CLT for OERRW in Zd.

In [2] the authors show that OERRW on a tree has linear speed, and it may be
possible to prove monotonicity in the speed for this model using our methods, as
the drift is given explicitly in terms of πm using our expansion.
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Rigid interfaces in systems with continuous symmetry

Senya Shlosman

(joint work with Yvon Vignaud)

The first example of a pure state describing the coexistence of phases, separated
by an interface, was discovered by R. Dobrushin in 1972, [D]. There he was
studying the low temperature 3D Ising model. He was considering the Ising spins
in a cubic box VN with (±)-boundary condition σ±, i.e. all spins of σ± are (+) in
the upper half-space and (−) in the lower half-space. Such a boundary condition
forces an interface Γ into VN , separating (+)-phase from the (−)-phase. Dobrushin
have shown that in the thermodynamic limit N → ∞ the distribution of Γ goes
to a proper limit (in contrast with 2D case) and describes the coexistense of the
(+)- and (−)-phases. His method of analysis was what is now called the cluster
expansion, based on Pirogov-Sinai Contour Functional theory . Later on this
approach was applied to other discrete models in [HKZ, GG].

The phenomenon of coexistense of phases of systems with continuous symmetry
was not described in the literature. The purpose of the talk is to show that
in dimension d = 3 some systems with continuous symmetry in the multyphase
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regime also have non-translation-invariant states, describing the coexistence of
states, with the rigid interface separating them.

The talk is based on a joint work with Yvon Vignaud, where we establish the
existence of the interfaces by using the restricted Reflection Positivity method.

In it, we study the so-called non-linear σ-model, considered recently in [ES1,
ES2]. Its Hamiltonian is given by

H (ϕ) = −
∑

x,y∈Z
3,

|x−y|=1

(
1 + cos (ϕx − ϕy)

2

)p

,

with ϕx ∈ S1. For p large enough this model exhibits the following behavior:
at high temperatures it has unique Gibbs state (the chaotic state), while at low
temperatures it presumably has infinitely many ordered Gibbs states, indexed by
magnetization. Moreover – and that is the main result of [ES1] – there exists a
critical temperature Tc = Tc (p) , at which we have the coexistence of the chaotic
state and the ordered states. (Of course, all these states are translation-invariant.)

The above statement is valid in any dimension d ≥ 2. The purpose of the talk
is to explain that in dimension d = 3 at the critical temperature Tc the system has
also non-translation-invariant states, describing the coexistance of ordered states
and chaotic state, with the rigid interface, separating them.
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Birth of the critical droplet and related topics

Ostap Hryniv

(joint work with D. Ioffe and R. Kotecký)

In a recent paper by Biskup, Chayes and Kotecký [1], the authors study the
phenomenon of formation/dissolution of equilibrium droplets in finite systems at
values of parameters corresponding to phase coexistence. More specifically, they
consider the 2D Ising model in volumes of size L2, at inverse temperature β > βcr,
and overall magnetisation conditioned to take the value m∗L2−2m∗vL, where β−1

cr

is the critical temperature, m∗ = m∗(β) is the spontaneous magnetisation and vL is
a certain sequence of positive numbers. The authors show that the critical scaling
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for droplet formation/dissolution occurs when vLL−4/3 converges to a definite
limit. In particular, they identify a dimensionless parameter ∆ proportional to
this limit, a non-trivial critical value ∆cr and a function λ∆ such that the following
holds: For ∆ < ∆cr, there are no droplets beyond the O(log L) scale, while for
∆ > ∆cr there is a single, Wulff-shaped droplet of the opposite phase with the total
spin inside contributing a fraction λ∆ ≥ λcr = 2/3 of the overall magnetisation
shift 2m∗vL and there are no other droplets beyond the O(log L) scale. Moreover,
the parameters λ∆ and ∆ are related via a universal relation that apparently is
system-independent.

The purpose of this talk is to report on a joint work with D. Ioffe and R. Kotecký
[7], where the above phenomenon of emergence of the critical droplet is studied on
a much finer scale. Our main results read as follows.

Theorem 1. In the setup of the paper [1], define

δ = lim
L→∞

vL − ∆c L4/3

L2/3 log L

then there is a constant δcr ∈ (0,∞) such that in the limit L → ∞ one has (a.s.):

if δ < δcr: no droplets beyond the O(log L) scale;
if δ > δcr: a single droplet of volume

λ∆vL ≥ λcrvL ≡ 2vL/3

of “correct” shape and no other droplets beyond the O(log L) scale.

Theorem 2. In the setup of Theorem 1, define

ρ = lim
L→∞

vL − ∆c L4/3 − δcr L2/3 log L

L2/3
;

then, as L → ∞, the probability of observing a single droplet under the magneti-

sation constraint m∗L2−2m∗vL is given by
(
1+a e−bρ

)−1
with positive constants

a, b determined through basic characteristics of the system.
In addition, the function λ∆ has an expansion similar to that of vL L−4/3 with

the leading term λcr = 2/3.

It is instructive to compare the results above with their analogues for random
graphs [5, 9]: The result of [1] as well as that of Theorem 1 are similar in spirit to
the famous random graph theorem by Erdös and Rényi [5], whereas Theorem 2 is
analogous to the famous “birth of the giant component” result [9].

We introduce the main ideas of the proof on the example of a simpler Self-
Avoiding Polygon model, where, in addition to the sharp large deviation result for
SA polygons centred at the origin and enclosing large area, one can also derive
an analogue of the invariance principle for the fluctuations around the limiting
shape [6].

The approach used in the proof of the main results—Theorems 1 and 2—is
based upon an accurate evaluation of the contributions of fluctuations of the total
spin as well as the statistics of phase boundaries [8, 2]. As a result, we obtain
a sharp asymptotics of large and moderate deviations for the magnetisation of
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the 2D Ising model, that were previously obtained only on the logarithmic scale
(cf. [3, 10, 4, 8]). Our results are valid in the whole “droplet regime” for arbitrary
β > βcr and various boundary conditions (constant, free, periodic).
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Fluctuation theory of connectivities for subcritical random
cluster measures

Dmitry Ioffe

(joint work with Massimo Campanino and Yvan Velenik)

We develop a fluctuation theory of connectivities for subcritical random cluster
models. The theory is based on a comprehensive non-perturbative probabilistic
description of long connected clusters in terms of essentially one-dimensional chains
of irreducible objects. Statistics of local observables, eg displacement, over such
chains obey classical limit laws, and our construction leads to an effective random
walk representation of percolation clusters.

The results include a derivation of a sharp Ornstein-Zernike type asymptotic
formula for two point functions, a proof of analyticity and strict convexity of
inverse correlation length and a proof of an invariance principle for connected
clusters under diffusive scaling.

In two dimensions duality considerations enable a reformulation of these re-
sults for supercritical nearest-neighbour random cluster measures, in particular
for nearest-neighbour Potts models in the phase transition regime. Accordingly,
we prove that in two dimensions Potts equilibrium crystal shapes are always an-
alytic and strictly convex and that the interfaces between different phases are
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always diffusive. Thus, no roughening transition is possible in the whole regime
where our results apply.

Our results hold under an assumption of exponential decay of finite volume
wired connectivities in rectangular domains that is conjectured to hold in the whole
subcritical regime; the latter is known to be true, in any dimensions, when q = 1,
q = 2, and when q is sufficiently large. In two dimensions our main Assumption
holds whenever there is an exponential decay of connectivities in the infinite volume
measure. By duality this includes all supercritical nearest-neighbour Potts models
with positive surface tension between ordered phases.

CLEs

Wendelin Werner

(joint work with Scott Sheffield)

Oded Schramm has defined SLEs (Schramm-Loewner Evolutions) in [3], arguing
that these are the only possible conformally invariant scaling limits of interfaces
for various two-dimensional lattice models from statistical physics. This had led to
numerous work that improved the mathematical understanding of these questions.
Recall that an SLE is a random curve (with no self-crossings) joining two prescribed
boundary points of a prescribed simply connected domain. SLEs are the only
such curves that combine a conformal invariance property and a “domain Markov
property”. The discrete counterpart of this last property is satisfied by many
discrete models, and should therefore still be valid in the scaling limit (provided
that this limit exists).
Motivated by the desire to further understand the possible conformally invariant
models arising in statistical physics (and for instance their relations with conformal
field theory), we would like to understand not only the law of one interface, but
the joint law of all interfaces in a domain. When the boundary conditions on the
domain are “monochromatic” the interfaces form a family of loops. This leads us
to define a property for random families of loops defined in a domain, that we call
the CLE (conformal loop-ensemble) property, in the following way:

• For each simply connected domain D, a simple loop-ensemble in D is a
collection (γj , j ∈ J) of mutually disjoint self-avoiding loops in D.

• We furthermore assume that two loops can not be nested (no loop discon-
nect another loop from ∂D).

• Suppose now that the law PD0 of a random loop-ensemble in a given simply
connected domain D0 (that is not equal to the entire complex plane) is
invariant under any fixed conformal map from D0 onto itself. Then, this
allows to define for any other simply connected domain D (that is not equal
to the entire complex plane) the law PD of a conformal loop-ensemble in
D, as the image of PD0 under a conformal map that maps D0 onto D. By
definition, the family (PD) then satisfies that for any D and any conformal
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Figure 1. CLE in D

Figure 2. CLE in D intersected with D′

map Φ : D → Φ(D), Φ ◦ PD = PΦ(D). We say that such a random loop-
ensemble is conformally invariant.

• Suppose that (PD) is a conformally invariant random loop-ensemble. Sup-
pose that D′ ⊂ D are two simply connected domains and that ∂D ∩ ∂D′

contains a point (i.e. a prime end) A. Suppose that (γj , j ∈ J) is a CLE
in D. There exists two sorts of loops: Those that stay in D′ (that we call
(γj , j ∈ J ′)) and those that do not stay in D′ (that we call (γj , j ∈ I)).

We call D̃ the connected component of D′ \∪j∈Iγj for which A ∈ ∂D̃. We
say that (PD) satisfies the CLE property if (for all such D and D′), the
law of (γj , j ∈ J ′) given (γj , j ∈ I) is PD̃.

This property is expected to hold for the scaling limits of the outermost loops of
critical O(N) models, Ising model on the triangular lattice etc. This property is
rather simple to sketch on this sequence of three pictures...

The main result that I want to present is that:

Theorem[Sheffield-W. [6]]. There exists exactly a one-parameter family of ran-
dom simple loop-ensembles that satisfy the CLE property. More precisely, for
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Figure 3. CLE in D̃

each d ∈ (4/3, 3/2] there exists exactly one CLE such that a.s. the loops have
all a Hausdorff dimension d (and are SLEκ-loops with κ ∈ (8/3, 4] such that
d = 1 + κ/8). And these are the only random simple loop-ensembles that satisfy
the CLE property.

The proof of this theorem has two quite different parts:

• First, we show that if a family satisfies the CLE property, then the loops
in the CLE can be defined as SLEκ loops for some κ ∈ (8/3, 4]. To do
this, one proceeds in several steps that we sketch in the talk. The first one
is to show that the CLE-family is characterized by an (infinite) measure
supported on the set of loops (here one has just one loop) that touch the
boundary of a given D at just one given point z0. Then, we show that the
CLE property implies that this infinite measure is the excursion measure
of some SLE process for a parameter κ ∈ (8/3, 4].

• The second part is to construct explicitly a one-parameter family of CLEs.
This is done by means of the fractal percolation procedure with Brownian
loops, as described in [7]. More precisely, consider the outermost bound-
aries of clusters of loops of a Poisson point process of loops in D defined
under the intensity cµD where µD is the measure on self-avoiding loops in
D as defined in [8] (or equivalently via the Brownian loop-measure defined
in [2]) and c > 0. It can be shown that for each subcritical c (i.e. for
each c such that the above procedure does construct loop-ensembles, and
this is true for small enough c), this random loop-ensemble does satisfy
the CLE property. Hence, by the first step, it corresponds to one of the
SLEs. But the distortion properties of SLEs as derived in [1], and further
considerations on this loop-soup yield that the relation between c and κ is
c(κ) = (6 − κ)(3κ − 8)/2κ and that all c ≤ 1 are subcritical.

This allows to show that the exploration trees as defined in [5] via the SLE(κ, κ−
6) processes define also random loop-ensembles that satisfy the CLE property, and
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–combined with the upcoming work of Schramm and Sheffield [4]– it could also
show that these CLEs can be found in Gaussian Free Fields.
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Critical percolation in “other” 2D lattices and 2D Incipient Infinite
Cluster estimates

Vincent Beffara

In recent years, the mathematical understanding of critical two-dimensional sys-
tems in statistical mechanics has improved dramatically with the introduction by
Schramm of SLE processes. However, the number of such models for which a
formal proof of convergence to SLE in the scaling limit is still rather limited (the
only cases where a general proof is known are loop-erased random walks, uniform
spanning trees and level lines of Gaussian free fields).

It was a spectacular result by Smirnov [5] that crossing probabilities of critical
site-percolation on the regular triangular lattice do indeed converge, in the scaling
limit, to values predicted by Cardy, and this constitutes the main step in a formal
proof that the percolation exploration path converges to the trace of an SLE6

process (see [2]).
Smirnov’s proof is quite miraculous, and uses features of the geometry of the

triangular lattice several times. This dependence of the proof itself on the details
of the model can be weakened a little, but nevertheless it is very difficult to extend
it to other cases; and the one such extension that was achieved by Chayes and Lei
(see [3] and the next abstract in the present volume), while extremely involved,
still uses a lattice with the same symmetries as the triangular lattice.

The main question is then that of universality, i.e. determining whether the
scaling limit of critical percolation in other 2D lattices (exists and) is the same,
and in particular whether Cardy’s formula holds in more generality. The aim
of this talk is to present a possible approach to this question, relating a partial
universality result for a family of lattice models to a specific estimate for the rate
of convergence in the construction of an IIC-like object.
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Start with Bernoulli bond-percolation on the square lattice Z2. We want to
relate it to site-percolation on a regular triangulation of the plane; let Λ0 be the
covering graph of Z2, defined as follows: The vertex set of Λ0 is the set of edges ofZ2, and two such edges are connected by an edge of Λ0 if they share an endpoint.
Λ0 is a square lattice on which every second face is replaced by a complete 4-
vertex graph (see Fig. 1); it is very easy to check that bond-percolation on Z2 and
site-percolation on Λ0 are exactly equivalent.

Figure 1. The graph Z2 and its covering graph Λ0 — apparent
edge intersections that are not marked by a black disc are not
vertices of Λ0, which is not planar.

Since we like to work on planar triangulations, add a vertex at the center of
each of the squares of Λ0, to get the usual square lattice with centered faces Λ. Let
Pq be the product of Bernoulli measures over the vertices of Λ, each site having
parameter 1/2 if it corresponds to an original edge of Z2, q if it is at the center of
one of the empty squares of Λ0 (we will call such a vertex a site of type II), and
1 − q otherwise (and the remaining vertices we call sites of type III).

The measure Pq is critical, in the sense that one gets Russo-Seymour-Welsh
a priori estimates for crossing probabilities; clearly P0 is exactly equivalent to
the initial bond-percolation probability measure, while P1/2 is usual critical site-
percolation on a regular triangulation of the plane and lends itself to at least part
of Smirnov’s approach.

Now fix a, b > 0 and let Bn be an an × bn box; let fn(q) be the probability,
under measure Pq, that there is a chain of open vertices connecting the two sides
of Bn having length an. The partial version of universality we are interested in is
then the following: Assume that the sequence of functions (fn) has a limit f ; we
say that we have partial universality if f is constant. One way to ensure this is to
show that f ′

n goes to 0 uniformly in q.
Luckily, we have a version of Russo’s formula for f ′

n, namely:

∂qfn(q) =
∑

z∈V (Λ)∩Bn

εzP (z is pivotal),

where ε is +1 for sites of type II, −1 for sites of type III and 0 otherwise. Here as
usual, a pivotal site is a site z whose state, conditionally to the rest of the system,
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determines whether the crossing event occurs (if z is opened) or not (if z is closed).
This is equivalent to the existence, starting from the 4 neighbors of z, of 4 disjoint
chains of vertices, connecting them to the 4 sides of Bn, and each being composed
of either open sites (for the two going to the sides of length an), or of closed sites
(for the other two). Such an event is commonly referred to as the existence of 4
arms.

In order to get local cancellations in the above sum, one needs to compare a
typical pivotal site of type II to one of site III far away from the box boundary.
This is closely related to the following problem. Let νn be the measure obtained
by conditioning Pq to producing 4 such arms between the origin and a square of
diameter 2n centered at 0. For every cylindrical event A, it is possible to show,
following Kesten ([4]), that νn(A) has a limit ν(A) as n goes to infinity, and that ν
extends to a probability distribution on configuration in the whole plane; we call
it the four-armed incipient infinite cluster, or IIC4 for short.

Let Fn be the σ-field of events depending only on the state of vertices within
the square of diameter 2n centered at 0. From Kesten’s constructions follows that,
as m → ∞,

sup
A∈Fn

|νm(A) − ν(A)| 6 C e−c
√

log(m/n).

This is not small enough to ensure cancellation in Russo’s formula; indeed, one
would need an estimate of the form

sup
A∈Fn

|νm(A) − ν(A)| 6 C
( n

m

)ζ4

with ζ4 large enough.
As it turns out, such an estimate would follow if one knew that crossing proba-

bilities converged to Cardy’s formula, for one could then use SLE methods. More
specifically, in the case of conditioning by the existence of 2 arms instead of 4,
the corresponding SLE event would be that the trace of a radial SLE6 in the disc
touches a small circle around 0 before disconnecting 0 from the unit circle. Then
ζ2 would be expressed in terms of the difference between the first two eigenvalues
of the generator of the following diffusion, with Dirichlet boundary conditions on
[0, 2π]:

dXt =
√

6 dBt + cotan
Xt

2
dt.

These eigenvalues can be exactly computed, and one gets

λk =
(3k + 2)2 − 1

12
.

Those are the exponents describing the decay of the existence probabilities for
3k+2 arms, in other words the error term when approximating the IIC measure by
a finitely conditioned one is given in terms of the probability of a percolation event.
Understanding why this is the case would certainly lead to an SLE-free proof, and
this in turn would imply that partial universality as described earlier does in fact
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hold in this particular setup. However, such a combinatorial interpretation is still
missing.

References

[1] V. Beffara, Quantitative estimates for the Incipient Infinite Cluster of 2D Percolation, in
preparation.

[2] F. Camia and C.M. Newman, Critical Percolation Exploration Path and SLE(6): a Proof
of Convergence, preprint, arXiv math.PR/0604487.

[3] L. Chayes and H.K. Lei, Cardy’s Formula for Certain Models of the Bond–Triangular Type,
preprint, arXiv math-ph/0601023.

[4] H. Kesten, The incipient infinite cluster in two-dimensional percolation, Probab. Theory
Related Fields 73 (1986), 369–394.

[5] S. Smirnov, Critical Percolation in the Plane: Conformal Invariance, Cardy’s Formula,
Scaling Limits, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 239–244.

A Universality Result for 2D Percolation Models

Lincoln Chayes

(joint work with Helen K. Lei)

This abstract summarizes the talk concerning [1] that was delivered by one of us
(L.C.) at the 2006 Oberwolfach meeting Spacial Random Processes and Statistical
Mechanics. The starting point of the research – from a certain perspective – is
the seminal result of S. Smirnov [4]. In this work, Smirnov showed that the so–
called Carleson–Cardy functions, functions related to crossing probabilities in a
(conformal) triangle, had a particular scaling limit: They are harmonic functions
obeying certain boundary conditions on any triangle. These boundary conditions
are asymptotically satisfied in the percolation problem defined on the discretization
of any triangle and hence, if some version of harmoniticity or analyticity can be
established at the discrete level, conformal invariance follows. Smirnov addressed
this problem for the critical site percolation model on the triangular lattice. For
this geometry, an approximate version of the Cauchy–Riemann equations among
the triple of the Cardy–Carleson functions was demonstrated by exploiting the
exact color symmetry of the random hexagon tiling realization of this problem.

But the purported “power” of scaling theory for critical models is the notion that
all models of a similar type should have the same scaling behavior – universality.
Till now, there has been little substantive progress in this direction; the talk
concerned a (modest) example where this form of universality was demonstrated
to be the case.

From our perspective, this work began a while ago with the investigation of
bond percolation – and general q–state Potts and random cluster models – on the
triangular bond lattice [2]. The relevant ingredient from [2] is a straightforward
perspective on the somewhat mysterious duality relation for the bond problem
on this lattice. The key is to abandon independence on any single triangle while
keeping disjoint up–pointing triangles independent. Thus, as far as connectivity is
concerned, there are only five (rather than eight) relevant configurations a single
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such triangle: full, empty, and three single bond events. Parametrizing the model
in terms of the respective probabilities of these events a, e, and s, with a+e+3s =
1, it is not hard to see that the duality/criticality condition is simply a = e. (Much
of this had been realized in the physics community, especially in the context of spin
systems where the local correlations are represented by three–body interactions.
See [5] and the references therein.) The desirable feature of this perspective is that
the breakdown maps directly into a modified hexagon tiling of the plane. The “a”
and “e” configurations correspond to yellow and blue hexagons while the three
“s” configurations correspond to three half yellow and half blue configurations in
which the hexagon is split at the midpoints of two opposing edges. It is noted
that not all of the possible splits appear, ergo the model does not enjoy full color
reversal symmetry. This and other features render the full bond problem too hard,
at least for the present, and we have to make certain modifications.

The model we treat will be described presently; first let us first fix some par-
lance. We call a hexagon surrounded by 6 other hexagons a flower. We call the
middle hexagon an iris and the six surrounding hexagons petals. Here we first re-
strict attention to configurations where the hexagons allowed to exhibit the mixed
configuration are insulated from each other and second we introduce local corre-
lations forbidding certain configurations on the flowers. Explicitly, our model is
defined as follows: Tile the plane with hexagons, some of which are designated to
be irises in such a way that flowers are disjoint. The iris can be yellow, mixed or
blue with the appropriate probability, petals and all other hexagons are only al-
lowed to be pure blue or pure yellow. Finally, in certain triggering configurations,
when there are exactly three blue petals, exactly two of which are contiguous, we
forbid the iris from exhibiting the mixed configuration.

What has been accomplished with the flower model is the restoration of a strictly
local version of self–duality: E.g., if one asks that a designated subset of petals
be blue and blue connected inside the flower, then that has the same probability
as if one asked the question in yellow. Furthermore, the model enjoys many of
the advantages afforded by a hexagon tiling of the plane. The work therefore
divided into two episodes which in practice were not disjoint: First establishing
that the model as described display the standard features of a lattice percolation
model at criticality and second using these critical ingredients and the underlying
hexagonal/triangular geometry in an adaptation of the methods of [4].

The crucial device, for both of the episodes, is an object that is termed a path
designate, which, in a statistical sense, replaces the notion of a microscopic path.
A path designate is, as a geometric object, a collection of paths. These paths all
agree with each other (and the microscopic definition) on the complement of flow-
ers. However, within the flowers, only the entrance and exit petals are specified
along with the requirement that they be somehow connected within. Therefore,
two paths in the same path designate which goes through the same flower may
exhibit different microscopic connections within the flower. The path designa-
tion event, which comes in two colors, is that some microscopic realization of the
path designate is monochrome. Since the existence of a path designation event
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is equivalent to the existence of an actual microscopic connection, a preliminary
result which goes a long way towards ingredients necessary for both episodes is
the following:

Theorem 1. Consider the model as described above with arbitrary placement of
the flowers. Let r, r′ denote points (hexagons) which are not irises. Then the
probability of a connection between r and r′ is the same in blue as it is in yellow.

Theorem 1 goes much of the distance to proving the critical ingredients, but
two additional difficulties had to be overcome: The RSW lemmas and the FKG
property. With regards to the former, which demonstrates a weak scale invariance
of crossing probabilities, we are forced into periodic arrangements of flowers so as
to use the standard arguments [3] to establish these properties. An input to the
RSW lemmas is a set of correlation inequalities known as the FKG property. For
independent percolation models, these inequalities hold for all increasing events,
a property that was irrevocably lost when we introduced the triggers. However,
under the assumption ae ≥ 2s2 (a condition that was borrowed from [2]), we are
able to prove a curtailed but sufficient version of the FKG property, which holds
for path type events.

As for episode two, the fundamental difficulty in extending the result of [4] to
other lattices is to establish the so–called Cauchy–Riemann relations which relate
pieces of the discrete derivatives of the Cardy–Carleson functions to one another.
These relations were established in [4] via the ability, at the microscopic level,
to switch colors without changing the probabilities of events. In particular, the
needed extension of Theorem 1 is to establish that probabilities of connections
are the same for both colors in the (conditioned) presence of paths of fixed color.
It is easy to demonstrate that this is patently false for the model at hand. New
machinery has to be developed.

Conditional color symmetry in our model is disrupted on the level of single
flowers: In particular this means that the probability of, say, a connection from
one petal to another in the presence of conditioned petals has a bigger probability
in blue than it does in yellow. (The conditioned petals are fixed and may be
blue or yellow; ostensibly they belong to another path.) If the conditioned petals
are blue, then we may forbid, as a random event, any blue path from touching
them. The probability of this event is set so as to lower the overall probability
of a blue “transmission” down to that of a yellow. On the other hand, if the
conditioned petals are yellow, we could allow a yellow path to share the conditioned
petals, again with the appropriate probability. Ultimately what is needed is a set
of random variables, whose distribution is strongly coupled with the underlying
percolation configurations, which provide or deny “permissions” for transmissions
in these conditioned situations. We call these ∗–rules. The upshot is there is a
theorem along the lines of Theorem 1, but now the “connection” takes place in
the presence of pre–conditioned paths. As is clear from the above discussion, the
definition of connection, disjoint, etc. has to be rethought with the notion of these
permissions taken into account.
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The penultimate step is to substitute the ∗–ruled versions of path events in
the definition of the Cardy–Carleson functions. Some work is required to show
that these ∗–functions obey the appropriate Cauchy–Riemann relations (bound-
ary conditions are still satisfied) but they are not, after all, exactly the objects of
interest. However, a detailed analysis of the configurations which lie in the sym-
metric difference of the starred and unstarrred versions show that the difference
between the two vanishes (in the L1 sense) as the mesh scale tends to zero. The
desired result is therefore recovered for the original Cardy–Carleson functions.
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Percolation-like problems in the study of forest-fires

J. van den Berg

(joint work with R. Brouwer and B. Vágvölgyi)

1. Background and motivation

The self-destructive percolation model on the square lattice is described as fol-
lows: First we perform independent site percolation on this lattice: we declare
each site occupied with probability p, and vacant with probability 1− p, indepen-
dent of the other sites. We write {V ↔ ∞} for the event that there is an infinite
occupied path starting at V .
Let, as usual, θ(p) denote the probability that a given site, say O = (0, 0), be-
longs to an infinite occupied cluster. It is well-known that there is a critical value
0 < pc < 1 such that θ(p) > 0 for all p > pc, and θ(p) = 0 for all p ≤ pc. Now
suppose that, by some catastrophe, the infinite occupied cluster (if present) is de-
stroyed; that is, each site in this cluster becomes vacant. Further suppose that
after this catastrophe we give the sites independent ‘enhancements’, as follows:
Each site that was already vacant in the beginning, or was made vacant by the
catastrophe, becomes occupied with probability δ, independent of the others. Let
Pp,δ be the distribution of the final configuration.

We use the notation θ(p, δ) for the probability that, in the final configuration,
O is in an infinite occupied cluster:
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θ(p, δ) := Pp,δ(O ↔ ∞).

Note that O is occupied in the final configuration if and only if the above men-
tioned enhancement was successful, or O belonged initially (before the catastrophe)
to a non-empty but finite occupied cluster. This gives

Pp,δ(O is occupied ) = δ + (1 − δ)(p − θ(p)).

Also note that, in the case that p ≤ pc, nothing happens in the above catastro-
phe, so that in the final configuration the sites are independently occupied with
probability p + (1 − p)δ. In particular, if p ≤ pc, then

(1) θ(pc, δ) = θ(pc + (1 − pc)δ) > 0,

for each δ > 0.

It turns out (see Proposition 3.1 of [1]) that, if p > pc, a ‘non-negligible’ enhance-
ment is needed after the catastrophe to create again an infinite occupied cluster.
More precisely, for each p > pc there is a δ > 0 with θ(p, δ) = 0. A much more
difficult question is whether the needed enhancement goes to 0 as p ↓ pc. By
(1) one might be tempted to reason intuitively that this is indeed the case. In
[1] it was shown that for the analogous model on the binary tree this is correct.
However, in [1] a conjecture is presented which says, in particular, that for the
square lattice (and other planar lattices) there is a δ > 0 for which θ(p, δ) = 0 for
all p > pc. In Section 4 of [1] and in [2] we showed remarkable consequences for
certain forest-fire models.

Note that, since θ(pc, δ) > 0, the above conjecture says that the function θ(·, ·) has
discontinuities at points of the form (pc, δ) with δ sufficiently small. This naturally
raises the question whether this function is continuous in the complement of a
region of such form: is there a δ > 0 such that θ(·, ·) is continuous outside the set
{pc} × [0, δ]? We have proved in [3] that this is indeed the case. The next section
gives a formal statement of this result and some remarks about the proof.

2. A (partial) continuity theorem and some remarks on its proof

The conjecture mentioned in the previous subsection raises the natural question
whether θ(·, ·) is continuous outside the indicated ‘suspected’ region. The following
theorem states that this is indeed the case.

Theorem 1. There is a δ ∈ (0, 1) such that the function θ(·, ·) is continuous
outside the segment {pc} × (0, δ).

A rough outline of the proof of Theorem 1 is as follows: First we show that if
θ(·, ·) is strictly positive in some open region, then it is continuous on this region.
It is also shown that if θ(p, δ) = 0, then θ(·, ·) is continuous at (p, δ). These two
results reduce the proof of Theorem 1 to showing that if θ(p, δ) > 0 and p 6= pc,
then θ(p, δ) > 0 in an open neighborhood of (p, δ). This in turn requires a suitable
finite-size criterion for sdp. Finally, to obtain such criterion one needs a result
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which, roughly speaking, says that if for each n the probability of crossing an n×n
square is large, then also the probability of (for instance) crossing a given 2n × n
square (in the ‘difficult’ direction) is large. For ordinary percolation such result
exists since the late seventies: it is (a version of) the RSW theorem. Unfortunately,
if one tries to adapt the proof of that theorem to our self-destructive model, very
serious difficulties appear, due to the dependencies in the model. However, we
could reach our goal (and complete the proof of Theorem 1) by modifying (and
slightly strengthening) a recent box-crossing theorem of Bollobás and Riordan (see
[4], which they had used for the so-called Voronoi percolation model.

The finite-size criterion we obtain differs in a subtle way from the one for ordi-
nary percolation: the box involved must have a size depending on p, and it turns
out that the required size goes to infinity as p approaches pc from above. This is
why Theorem 1 does not work for p = pc (when δ is small).
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Dynamical models for circle covering: Brownian motion and Poisson
updating

Johan Jonasson

(joint work with Jeffrey Steif)

1. The classical (static) circle covering model.

Let C denote the circle with circumference 1 and consider a decreasing sequence
{ℓn}n≥1 of positive numbers approaching 0. Let {Un}n≥1 be a sequence of inde-
pendent random variables each of which is uniformly distributed on C. Let In

be the open arc of C with center point Un and length ℓn. Put E := lim supn In

and F := Ec. It follows immediately from the Borel-Cantelli Lemma that for each
x ∈ C, P (x ∈ E) = 1 if and only if

∑∞
n=1 ℓn = ∞. Fubini’s Theorem yields

immediately that in this case F has Lebesgue measure 0 a.s. In 1956, Dvoretzky
(see [1]) raised the question of whether in the

∑
n ℓn = ∞ case it was possible that

F was nonempty and gave examples where this occurred. There were a number of
various contributions to this question with the final result proved by Shepp (1972):
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Theorem 1 (L. Shepp). P (F = ∅) = 1 if and only if
∞∑

n=1

1

n2
eℓ1+...+ℓn = ∞.

In particular if ℓn = c/n for all n, then P (F = ∅) = 1 if and only if c ≥ 1.

The special cases ℓn = c/n for a constant c were known earlier. For background,
proofs and other results (concerning among other things the Hausdorff dimension
of F ), see Kahane [2].

2. The dynamical circle covering model.

In this work, we consider two dynamical variants of the above problem. In
the first of these models, each of the centers Un perform independent Brownian
motions on C, each with variance 1. In the second model, we associate independent
Poisson processes with the different intervals, where the Poisson process associated
with the nth interval has intensity ℓ−α

n for some real parameter α. At the times of
the Poisson process associated to the nth interval, In is given a new center, chosen
uniformly on C, independent of everything else We refer to the two models as the
Brownian model and the Poisson model respectively.

We then ask for each of these two models if there are exceptional times at
which we see different “covering behavior” from that which is seen in the static
model. We have potentially four (or even more) different types of exceptional
times, depending on the ℓn’s and which of the two models we are looking at.

(I) times when a fixed point is not covered even though
∑

n ℓn = ∞,
(II) times when the circle is not fully covered even though∑

n eℓ1+ℓ2+...+ℓn/n2 = ∞,
(III) times when a fixed point is covered i.o. even though

∑
n ℓn < ∞,

(IV) times when the circle is fully covered i.o. even though∑
n eℓ1+ℓ2+...+ℓn/n2 < ∞,

Types (III) we consider less important and for type (IV) we have no results so far.
Therefore this talk is focused on exceptional times of type (I) and (II). For all our
results we assume that the arc lengths decrease reasonably nicely, i.e.

(1) ∃M0, M1 : 0 < M0 ≤ M1 < ∞ : ∀n : M0 ≤ nℓn ≤ M1.

For a fixed point x ∈ C, it follows immediately from the Borel-Cantelli Lemma
that P (x ∈ F ) = 0 and hence for any of the dynamical models, by Fubini’s
Theorem, {t : x ∈ Ft} has Lebesgue measure 0 a.s. The question we address first
is when there are exceptional times t at which x is covered by only finitely many
of the In,t’s; i.e., x ∈ Ft. See [2] for the definition of Hausdorff dimension which
we denote here by HD.

Theorem 2. Assume that (1) holds. Consider the Brownian model. Fix x ∈ C
and let un :=

∏n
k=1(1 − ℓk).

(i). If lim infn n2un < ∞, then P (∃t ∈ [0, 1] : x ∈ Ft) = 0. In particular, if
ℓn = c/n for all n, then this holds if c ≥ 2.
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(ii). If
∑∞

n=1 eℓ1+ℓ2+...+ℓn/n3 < ∞, then P (∃t ∈ [0, 1] : x ∈ Ft) = 1. In particular,
if ℓn = c/n for all n, then this holds if c < 2.
(iii). Let

β0 := inf{β :

∞∑

n=1

eℓ1+ℓ2+...+ℓn

n1+β
< ∞}.

Then

HD({t ∈ [0, 1] : x ∈ Ft}) = (1 − β0

2
) ∧ 0 a.s.

In particular, in the case ℓn = c/n for all n with c ≤ 2, we have

HD({t ∈ [0, 1] : x ∈ Ft}) = 1 − c

2
a.s.

The Poisson model turns out to be very amenable to our analysis and we obtain
an exact condition for having exceptional times of type (I).

Theorem 3. Assume that (1) holds. Consider the Poisson model with parameter
α > 0. Fix x ∈ C.
(i). Then P (∃t ∈ [0, 1] : x ∈ Ft) = 1 if and only if

∞∑

n=1

eℓ1+ℓ2+...+ℓn

n1+α
< ∞.

In particular, if ℓn = c/n for all n, then this holds if and only if c < α.
(ii). Let, as in Theorem 2,

β0 := inf{β :

∞∑

n=1

eℓ1+ℓ2+...+ℓn

n1+β
< ∞}.

Then

HD({t ∈ [0, 1] : x ∈ Ft}) = (1 − β0

α
) ∧ 0 a.s.

In particular, in the case ℓn = c/n for all n with c ≤ α, we have

HD({t ∈ [0, 1] : x ∈ Ft}) = 1 − c

α
a.s.

The next two results deal with the question of exceptional times of type (II).

Theorem 4. Assume that (1) holds. Consider the Brownian model and let un be
defined as in Theorem 2.
(i). If lim infn n3un < ∞, then

P (∃t ∈ [0, 1] : Ft 6= ∅) = 0.

In particular if ℓn = c/n for all n, then this holds if c ≥ 3.
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(ii). If
∑∞

n=1 eℓ1+ℓ2+...+ℓn/n4 < ∞, then

P (∃t ∈ [0, 1] : Ft 6= ∅) = 1.

In particular if ℓn = c/n for all n, then this holds if c < 3.
(iii). Let, as in Theorem 2,

β0 := inf{β :

∞∑

n=1

eℓ1+ℓ2+...+ℓn

n1+β
< ∞}.

Then a.s.

(a) HD({(t, x) : x ∈ Ft}) =





2 − β0

2 if 0 ≤ β0 ≤ 2
3 − β0 if 2 ≤ β0 ≤ 3
0 if β0 ≥ 3

(b) HD({x : ∃t : x ∈ Ft})





= 1 if 0 ≤ β0 < 2
≤ 3 − β0 if 2 ≤ β0 ≤ 3
= 0 if β0 ≥ 3

(c) HD({t : Ft 6= ∅})





= 1 if 0 ≤ β0 < 1

≤ 3−β0

2 if 1 ≤ β0 ≤ 3
= 0 if β0 ≥ 3

In particular, in the case ℓn = c/n for all n and c < 3, then the dimension
bounds are simply obtained by plugging in c for β0.
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On the limiting velocity of high dimensional random walk in random
environment

Noam Berger

Let d ≥ 1. A Random Walk in Random Environment (RWRE) on Zd is defined
as follows: Let Md denote the space of all probability measures on {±ei}d

i=1 and

let Ω =
(
Md

)Z
d

. An environment is a point ω ∈ Ω. Let P be a probability measure
on Ω. For the purposes of this paper, we assume that P is an i.i.d. measure, i.e.

P = QZ
d

for some distribution Q on Md and that P is uniformly elliptic, i.e. there exist
ǫ > 0 s.t. for every e ∈ {±ei}d

i=1,

Q({d : d(e) < ǫ}) = 0.

For an environment ω ∈ Ω, the Random Walk on ω is a time-homogenous Markov
chain with transition kernel

Pω (Xn+1 = z + e|Xn = x) = ω(z, e).
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The quenched law P z
ω is defined to be the law on

(
Zd

)N
induced by the kernel

Pω and P z
ω(X0 = z) = 1. We let P = P ⊗ P 0

ω be the joint law of the environment
and the walk, and the annealed law is defined to be its marginal

P =

∫

Ω

P 0
ωdP (ω).

We consider the limiting velocity

S = lim
n→∞

Xn

n
.

Based on the work of Zerner [4] and Sznitman and Zerner [3] we know that S
exists P-a.s. Further more, there is a set A of size at most two such that almost
surely S ∈ A.

Zerner and Merkl [5] proved that in dimension two a 0-1 law holds and therefore
the set A is of size one, i.e. a law of large numbers hold in dimension two (see also
[2] for a continuous version).

The main result presented is as follows:

Theorem 1. For d ≥ 5, there is at most one non-zero limiting velocity, i.e. if
A = {S1, S2} and S1 6= 0 then S2 = 0.

Theorem 1 has the following immediate corollary:

Corollary 2. For d ≥ 5, if the distribution is distributionally symmetric, then the
limiting velocity is an almost sure constant.

Based on Theorem 1, we can also establish various connections between some
of the important open problems in the field.

The talk is based on the paper [1].
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Majorizing multiplicative cascades for directed polymers in
random media

Francis Comets

(joint work with Vincent Vargas)

Let ω = (ωn)n∈N be the simple random walk on the d-dimensional integer lat-
tice Zd starting at 0, defined on a probability space (Ω,F , P ). We also consider
a sequence η = (η(n, x))(n,x)∈N×Zd of real valued, non-constant and i.i.d. random
variables defined on another probability space (H,G, Q) with finite exponential
moments. The path ω represents the directed polymer and η the random envi-
ronment. The polymer is weighted according to the total reward it collects on his
way,

Hn(ω)
def.
=

n∑

j=1

η(j, ωj)

For any n > 0, we define the polymer partition function by

Zn = P [exp(βHn(ω))]

where β ∈ R+ is the inverse temperature. We use the notation P [X ] for the
expectation of a random variable X . The free energy of the polymer is defined as
the limit

(1) p(β) = lim
n→∞

1

n
ln(Zn(β)/Q[Zn(β)])

where the limit exists Q-a.s. and in Lp for all p ≥ 1 and is non-random. An
application of Jensen’s inequality to the concave function ln(·) yields p(β) ≤ 0. As
shown in [1], there exists a βc ∈ [0,∞] such that

p(β)

{
= 0 if β ∈ [0, βc],

< 0 if β > βc.

Determining the critical value βc is an important question in the study of directed
polymers. In fact, for β > βc (and only in this case), the polymer localizes in
narrow corridors with positive probability. It is not known how to characterize
directly these corridors, and therefore this criterion for the transition localiza-
tion/delocalization is rather efficient since it does not require any knowledge on
them. Hence, it is of primer importance to get good upper bounds on p in order
to spot the transition.

In this work, we find a family of upper bounds for p, given by the free energies
ptree

m (β) of models on trees depending on an integer parameter m (m ≥ 1). These
trees are deterministic and regular, with random weights, they fall in the scope of
the generalized multiplicative cascades [3] or smoothing transformations [2] which
are well known generalizations of the random cascades introduced by Mandelbrot
for a statistical description of turbulence. When the environment variables have
nice concentration properties – e.g., gaussian or bounded η’s –, we prove that the
polymer free energy is the infimum over m of the one of the m-tree model.
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An important corollary is:

In dimension d = 1, βc = 0.

There is a clear consensus on this fact in the physics literature, but the present
proof seems to be the first one.
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Quenched invariance principle for random walks in random
environment admitting a bounded cycle representation

Jean-Dominique Deuschel

(joint work with Holger Kösters)

We consider a class of random walks admitting a bounded cycle decomposition.
That is, a random walk (Xn)n∈N on Zd such that

p1(x, y) = P (Xn+1 = y|Xn = x) =
1

π(x)

∑

γ∈C
w(γ)1(x,y)∈γ ,

where C = {γ = (x0, x1, ..., xn = x0), xi ∈ Zd} is a family of oriented cycles,
w(γ) ≥ 0 is the weight of the cycle γ and π(x) > 0, x ∈ Zd is the so-called
centering measure. Assuming the cycles are of bounded length and diameter, also
that the chain is uniformly irreducible, we show a gaussian bound for the transition
probabilities pn(x, y) = P (Xn = y|X0 = x):

pn(x, y) ≤ c1

nd/2
exp(−‖x − y‖2

c2n
)

for some c1, c2 > 0. This estimate is based on Mathieu’s result, cf. [M], and a
Nash inequality.

Next we consider a model of random walk in random environment, with tran-
sitions depending on randomness ω ∈ Ω −→ p1(x, y)(ω) which is ergodic with
respect to the shift (θz)z∈Zd such that as usual

p1(x + z, y + z)(ω) = p1(x, y)(θzω).

We assume the above bounded cycle decomposition. Note that the reversible
random conductances model with trivial two points cycles is a particular case, see
[S], thus our model extends to the non reversible situation. Assuming uniform
irreducibility, we prove a quenched invariant principle for the rescaled process

t ∈ R+ −→ βN (t) = X[Nt]/N
1/2
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plus polygonal interpolation. That is, for almost all environments ω, βN converges
weakly as N → ∞ to a Brownian motion with non-degenerate deterministic co-
variance matrix.

A corresponding annealed CLT result (that is averaged with respect to the
environment) has been proved recently in the special case of two-fold walks by
Komorovski and Olla in [K]. We adapt the quenched proof of Sidoravicius and
Sznitman, [S], to the non reversible case using corrector, the sector condition and
the above heat kernels upper bounds.
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Multiscale analysis of exit distributions for random walks in random
environments

Ofer Zeitouni

(joint work with Erwin Bolthausen)

We present a multiscale analysis for the exit measures from large balls in Zd, d ≥ 3,
of random walks in certain i.i.d. random environments which are small perturba-
tions of the fixed environment corresponding to simple random walk. Our main
assumption is an isotropy assumption on the law of the environment, introduced
by Bricmont and Kupiainen. Under this assumption, we prove that the exit mea-
sure of the random walk in a random environment from a large ball, approaches
the exit measure of a simple random walk from the same ball, in the sense that
the variational distance between smoothed versions of these measures converges
to zero. We also prove the transience of the random walk in random environ-
ment. The analysis is based on propagating estimates on the variational distance
between the exit measure of the random walk in random environment and that of
simple random walk, in addition to estimates on the variational distance between
smoothed versions of these quantities.

Reporter: Markus Heydenreich
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