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Introduction by the Organisers

This conference was the fifth in the series of topology conferences organized by
Gordon, Lück, and Oliver, and the last in which Lück will be an organizer. This
meeting, which currently takes place every second year, is one of the few regularly
occurring conferences anywhere which allows researchers from a wide range of
areas of topology to meet.

There were about 50 participants in this meeting, including researchers in many
different areas of algebraic and geometric topology. This conference was partly
funded by the European Commission, which made it possible to invite and support
many more young participants — thesis students as well as recent postdocs — than
is usually the case.

There were a total of 19 talks at the conference, covering areas such as 3-mani-
folds and knot theory, geometric group theory, algebraic K- and L-theory, and
homotopy theory. Hence it is difficult to separate out themes which covered more
than two or three talks. The following is a brief summary of some of the highlights.

Marc Lackenby’s talk was about the “folk” conjecture in knot theory that cross-
ing number is additive under connected sum. Clearly c(K1#K2) ≤ c(K1)+c(K2);
what one wants is an inequality in the other direction. Applying normal surface
theory to a suitable handle decomposition of the complement of K1#K2 derived
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from a minimal crossing diagram, Lackenby shows that for some explicit universal
positive constant A, the inequality c(K1#K2) ≥ A·(c(K1) + c(K2)) holds.

Nathalie Wahl talked about her ongoing joint work with Allen Hatcher on
the stability of the homology of the mapping class group of certain 3-manifolds.
Namely, she looked at those with n summands of type S2 × S1 and s punctures,
stabilizing with respect to increasing n. The result is that the i-th homology
stabilizes when n ≥ 2i + 2, which improves considerably the previous stability
range.

Also on the subject of 3-manifolds was the talk by Walter Neumann, about his
joint work with Jason Behrstock in which they give the quasi-isometry classifica-
tion of the fundamental groups of graph-manifolds. The result is that for closed
non-geometric graph-manifolds there is only one quasi-isometry class, whereas in
the bounded case the classification corresponds to the classification of the dual
graphs up to so-called bisimilarity (a concept which, interestingly, arises in com-
puter science).

The talks by Thomas Schick and Bernhard Hanke dealt with manifolds with
positive scalar curvature. Hanke described conditions under which a closed man-
ifold with fixed point free S1-action can be shown to have a Riemannian metric
with positive scalar curvature. Schick discussed some connections between the
nonequivariant problem (existence of positive scalar curvature metrics without a
group action) and the Novikov conjecture.

In a different direction, Jesper Grodal and Carles Broto described recent prog-
ress on p-completed classifying spaces and related topics. Grodal described work
which shows that, for a finite group G and a prime p dividing |G|, the funda-
mental group of the geometric realization of the linking category Lc

p(G) is in
many interesting cases isomorphic to G again. The point here is that the cat-
egory Lc

p(G) depends only on the p-completed classifying space BG∧
p , and thus

that the group G can be “recovered” from this p-completed space in certain fa-
vorable cases. Broto described a new class of spaces, classifying spaces of “p-local
compact groups,” which includes p-completed classifying spaces of compact Lie
groups and p-compact groups, for which the spaces have many of the nice homo-
topy theoretic properties of p-completed classifying spaces of compact Lie groups.
Also, in a talk on a related topic, Natalia Castellana described recent work on
connected covers of finite H-spaces.

Geometric group theory was represented by the talks of Karen Vogtmann and
Mike Davis. Vogtmann talked about joint work with Jim Conant about certain
classes defined by Morita in the unstable rational homology of the outer automor-
phism group of a free group. In particular Conant and Vogtmann reinterpret and
generalize these Morita classes, associating a class with every odd-valent graph.
Davis talked about his joint work with Dymara, Januszkiewicz and Okun, giving
a description of the cohomology module H∗(W ; ZW ) of a Coxeter group W with
coefficients in the group ring ZW .

Arthur Bartels, in his talk, described the recent proof of the K-theoretic Farrell-
Jones conjecture with arbitrary coefficients for subgroups of finite products of
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word-hyperbolic groups. (Notice that such groups can be very wild.) This has
many consequences. It implies the Bass Conjecture, the Kaplansky Conjecture
and Moody’s induction conjecture for such groups. If G is such a group and
torsionfree this says that the Whitehead group of G and the projective class group
of ZG both vanish. Another consequence is that the K-theoretic Farrell-Jones
Conjecture with coefficients is true for the examples of groups for which its non-
commutative companion, the Baum-Connes Conjecture with coefficients, is known
to be false by a result of Higson, Lafforgue, and Skandalis.
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Abstracts

The crossing number of composite knots

Marc Lackenby

Possibly the simplest invariant of a knot K is its crossing number c(K), which is
defined to be the minimal number of crossings in any diagram for K. One of the
basic constructions in knot theory is the connected sum of two (oriented) knots
K1 and K2, denoted K1#K2, which is shown below:

# =

The following is a major unsolved problem that is apparently over 100 years
old.

Conjecture. For all (oriented) knots K1 and K2

c(K1#K2) = c(K1) + c(K2).

In my talk, I outlined a proof of a “quasi”-form of this conjecture:

Theorem (L). For all (oriented) knots K1 and K2

c(K1) + c(K2)

213
≤ c(K1#K2) ≤ c(K1) + c(K2).

This is proved using normal surface theory, which is a classical tool in 3-manifold
theory.

Mutliplicative structure in equivariant cohomology

Kathryn Hess

1. Introduction

Let C∗X denote the cubical, integral chain complex of a space X , which admits
a natural coassociative and counital comultiplication δX , given by the composite
chain map

C∗X
C∗∆
−−−→ C∗(X ×X)

AW
−−→ C∗X ⊗ C∗X,

where ∆ is the usual diagonal map and AW is the natural Alexander-Whitney
equivalence. By the Künneth Theorem, if H∗X is torsion free, then δX induces a
comultiplication H∗X → H∗X ⊗H∗X . In general, δX induces a graded commu-
tative multiplication H∗X ⊗H∗X → H∗X , the cup product.

Let E be the total space of a principal G-bundle, where G is a connected
topological group. Let Y be any G-space. The multiplication map µ : G×G→ G
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induces the structure of a chain algebra on C∗G, with multiplication map given
by the composite

C∗G⊗ C∗G
EZ
−−→ C∗(G×G)

C∗µ
−−−→ C∗G,

where EZ is the natural Eilenberg-Zilber equivalence. The action maps E×G→ E
and G× Y → Y similarly induce C∗G-module structures on C∗E and on C∗Y .

Theorem 1.1 (Moore [3]). There is an isomorphism of graded Z-modules

H∗(E ×
G
Y ) ∼= TorC∗G

∗ (C∗E,C∗Y ).

The goal of this talk was to explain how to enrich Moore’s theorem, obtaining
a comultiplicative isomorphism, by taking into account in a coherent manner the
comultiplicative structure on C∗G, C∗E and C∗Y , then to analyze in more detail
the special case G = S1 and E = ES1. This talk was based on the article [1].

2. Enriching Moore’s Theorem

Remark 2.1. All definitions in this section can be formulated more compactly
and more neatly, if less transparently, in terms of co-rings over operads [2].

We begin by describing the algebraic framework for the enriched version of
Moore’s theorem.

Definition 2.2. Let (C, d) be a coassociative, counital chain coalgebra, with co-
multiplication δ : C → C ⊗ C and counit ε : C → R. Let C = coker ε. For any

c ∈ C, let
∑

i ci⊗c
i denote the image of c under the composite C

δ
−→ C⊗C ։ C⊗C.

The cobar construction on C is the chain algebra
(
T (s−1C), dΩ

)
, where T de-

notes the free (tensor) algebra functor, s−1 denotes desuspension and the differ-
ential dΩ is the derivation specified by

dΩs
−1c = −s−1(dc) +

∑

i

(−1)deg cis−1ci ⊗ s
−1ci.

Note that a chain algebra map ϕ : ΩC → ΩC′ gives rise to linear maps

{ϕk : C → (C′)⊗k | degϕk = k − 1, k ≥ 1},

where, in particular, ϕ1 : C → C′ is a chain map, and ϕ2 : C → C′⊗C′ is a chain
homotopy from (ϕ1 ⊗ ϕ1)δC to δC′ϕ1.

Definition 2.3. Let C and C′ be coassociative, counital chain coalgebras. A chain
map f : C → C′ is a DCSH-map if there is a map of chain algebras ϕ : ΩC → ΩC′

such that ϕ1 = f , i.e., f is a map of chain coalgebras up to strong homotopy.

The next two definitions describe the compatibility we require between multi-
plicative and DCSH structure. Let Ik,n = {~ı = (i1, ..., ik) ∈ Nk |

∑
j ij = n} for

any k, n ∈ N.
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Definition 2.4. Let H and H ′ be chain Hopf algebras. A DCSH-map f : H → H ′

with corresponding chain algebra map ϕ : ΩH → ΩH ′ is multiplicative if

ϕn+1(xy) =
∑

1≤k≤n+1
~ı∈Ik,n+1

(
δ
(i1)
H′ ⊗ · · · ⊗ δ

(ik)
H′

)
ϕk(x) ∗ (ϕi1 ⊗ · · · ⊗ ϕik

)δ
(k)
H (y)

for all n ≥ 0 and all x, y ∈ H , where ∗ denotes multiplication in (H ′)⊗n+1.

Let H be a chain Hopf algebra. Recall that a right H-module coalgebra is a
chain complex M that is both an H-module and a coalgebra, where the H-action
map M ⊗H →M is a map of coalgebras.

Definition 2.5. Let f : H → H ′ be a multiplicative DCSH-map, with correspond-
ing chain algebra map ϕ : ΩH → ΩH ′. Let M be a right H-module coalgebra,
and let M ′ be a right H ′-comodule algebra. A DCSH-map g : M → M ′ with
corresponding chain algebra map ψ : ΩM → ΩM ′ is a DCSH-module map if

ψn+1(xy) =
∑

1≤k≤n+1
~ı∈Ik,n+1

(
δ
(i1)
M ′ ⊗ · · · ⊗ δ

(ik)
M ′

)
ψk(x) • (ϕi1 ⊗ · · · ⊗ ϕik

)δ
(k)
H (y)

for all n ≥ 0 and all x, y ∈ H , where • denotes the action of (H ′)⊗n+1 on (M ′)⊗n+1.

The enriched version of Moore’s theorem can now be stated as follows.

Theorem 2.6. Given a multiplicative DCSH-quasi-isomorphism f : H
≃
−→ C∗G

and a DCSH-module quasi-isomorphism g : M
≃
−→ C∗E with respect to f , there is

a DCSH quasi-isomorphism

M ⊗
H
C∗Y

≃
−→ C∗(E ×

G
Y ).

In particular, there is an isomorphism of graded algebras

H∗
(
(M ⊗

H
C∗Y )♯

)
∼= H∗(E ×

G
Y ),

where the superscript ♯ denotes the R-linear dual.

3. Homotopy orbits of circle actions

Identification of a special family of primitives in C∗S
1 is the key to applying

Theorem 2.6 to computing S1-equivariant (co)homology.

Proposition 3.1. There is a set {Tk ∈ C2k+1S
1 | k ≥ 0} of primitives such that

T0 represents the generator of H1S
1 and dTk =

∑k−1
i=0 Ti · Tk−i−1 for all k.

Recall that H∗BS
1 ∼= R[u2] as graded R-modules.

Theorem 3.2. There is a quasi-isomorphism of chain Hopf algebras

f : ΩH∗BS
1 ≃
−→ C∗S

1 : s−1(uk) 7→ Tk−1,

extending to a DCSH-module quasi-isomorphism with respect to f

g : H∗BS
1 ⊗tΩ ΩH∗BS

1 ≃
−→ C∗ES

1,

where H∗BS
1 ⊗tΩ ΩH∗BS

1 denotes the acyclic cobar construction on H∗BS
1.
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Corollary 3.3. Let Y be a left S1-space. There is a DCSH-quasi-isomorphism

(H∗BS
1 ⊗tΩ ΩH∗BS

1) ⊗
ΩH∗BS1

C∗Y
≃
−→ C∗(ES

1 ×
S1

Y ) = C∗YhS1 ,

which gives rise upon dualization to a commutative diagram of cochain algebras

(R[u], 0)
incl.

(R[u]⊗ C∗Y,D) C∗Y

C∗BS1

≃

C∗YhS1

≃

C∗Y.

Here, for all y ∈ C∗Y , D(un ⊗ y) = un ⊗ y +
∑

k≥q0 u
n+k+1 ⊗ ωk(y), where

ωk : C∗Y → C∗−2k−1 is a derivation such that [d, ωk] = −
∑k−1

i=0 ωi ◦ ωk−i−1. In
particular, ω0 : C∗Y → C∗−1Y is a chain map inducing the ∆-operation of the
Batalin-Vilkoviskiy structure on H∗Y .

4. Open questions

(1) Do results analogous to Proposition 3.1 and to Theorem 3.2 hold for any
compact Lie group?

(2) What are the meaning and content of the higher operations ωk?

References

[1] K. Hess, A cubical approach to homotopy orbits of circle actions, available on the arXiv
(math.AT/0604592), 2006

[2] K. Hess, P.-E. Parent and J. Scott, Co-rings over operads characterize morphisms, available
on the arXiv (math.AT/0505559), 2006

[3] J. C. Moore, Algèbre homologique et homologie des espaces classifiants, Séminaire Cartan
(1959/60), exposé 7.

Cohomology of Coxeter groups with group ring coefficients

Michael Davis

(joint work with Jan Dymara, Tadeusz Januszkiewicz, Boris Okun)

Suppose (W,S) is a Coxeter system. For T ⊂ S, WT denotes the subgroup gen-
erated by T . T is spherical if WT is finite. S denotes the set of spherical subsets
of S.

LetX be a CW complex and (Xs)s∈S a family of subcomplexes. For each x ∈ X ,
put S(x) := {s ∈ S | x ∈ Xs}. Define U(W,X) (= U) to be the quotient
space (W ×X)/ ∼, where ∼ is the equivalence relation defined by (w, x) ∼ (w′, x′)
if and only if x = x′ and wWS(x) = w′WS(x). W acts on U and X is a strict
fundamental domain (i.e., U/W = X). A W -action on a space is a reflection
group if it is equivariantly homeomorphic to U(W,X) for some X . The action is
proper and cocompact if and only if X is a finite complex and S(x) is spherical
for each x ∈ X . Henceforth, assume this.
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For each w ∈W , put

In(w) := {s ∈ S | l(ws) < l(w)}

In′(w) := {s ∈ S | l(sw) < l(w)},

where l( ) is word length. It is a basic fact that for any w, both In(w) and In′(w)
(= In(w−1)) are spherical subsets of S. Let A := ZW be the group ring and
{ew}w∈W its standard basis. For each T ∈ S, define elements aT and hT in A by

aT :=
∑

w∈WT

ew and hT :=
∑

w∈WT

(−1)l(w)ew.

Let AT denote the right ideal aTA and HT the left ideal AhT . (If T /∈ S, set
AT = HT = 0.) AT is the set of finitely supported functions on W which are
constant on each right coset in WT \W . Put

b′w := aIn′(w)ew, bw := ewhIn(w).

Then {b′w | In
′(w) ⊃ T } is a basis for AT and {bw | In(w) ⊃ T } is a basis for HT .

So, if we define ÂT := Span{b′w | In(w) = T } and ĤT := Span{bw | In(w) = T },
we have direct sum decompositions of abelian groups:

AT =
⊕

U⊃T

ÂU and HT =
⊕

U⊃T

ĤU .

Theorem.

H∗(U) ∼=
⊕

T∈S

H∗(X,X
T )⊗ ĤT

H∗
c (U) ∼=

⊕

T∈S

H∗(X,X
S−T )⊗ ÂT .

The first formula was originally proved in [1], the second in [2]. We give a differ-
ent proof in [6] by using the identifications of these (co)homology groups with cer-
tain equivariant (co)homology groups: HW

∗ (U ;ZW ) = H∗(U) and H∗
W (U ;ZW ) =

H∗
c (U) and then using a direct sum decomposition of the coefficient system on X

induced by ZW . This point of view leads to a computation of the W -module
structures on H∗(U) and H∗

c (U) in the following sense. We have a decreasing fil-
tration of right W -modules A = F0 ⊃ · · · ⊃ Fp, where Fp :=

∑
|T |≥pA

T . This

leads to a filtration of cohomology. (Similarly, there is a decreasing filtration of
left W -modules for homology.) Put

A>T :=
∑

U)T

AU and H>T :=
∑

U)T

HU .

With this terminology, we can state the following result of [6].

Theorem. In filtration degree p, the associated graded term in homology is the
left W -module, ⊕

|T |=p

H∗(X,X
T )⊗HT /H>T ,
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while in compactly supported cohomology it is the right W -module,
⊕

|T |=p

H∗(X,X
S−T )⊗AT /A>T .

These formulas were suggested by our work in [5] on weighted L2-cohomology
of Coxeter groups (see [3] for an abstract).

If U is acyclic, then H∗
c (U) = H∗(W ;ZW ). Moreover, there is a particularly

nice choice of a contractible U . We usually denote it Σ and its fundamental
chamber K [2, 4, 6]. This leads to a formula for H∗(W ;ZW ) with each associated
graded term a sum of terms of the form H∗(K,KS−T )⊗AT /A>T . A consequence
is the following.

Corollary. H∗(W ;ZW ) is always finitely generated as a W -module.

Question. Suppose a group Γ is virtually type FP. Is H∗(Γ;ZΓ) always a finitely
generated Γ-module?

References
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Homological stability and a coloring lemma

Nathalie Wahl

(joint work with Allen Hatcher)

Fix a compact, connected, orientable 3-manifold N and let

Mn,s := N # (#n S
1 × S2) # (#s D

3)

be the manifold obtained from N by adding n handles and removing s balls. Let
An,s denote the group of components of the diffeomorphisms of Mn,s fixing its
boundary pointwise, modulo twists along 2-spheres. We consider two stabilization
maps α, β : An,s → An+1,s induced by gluing a twice punctured torus along one
of its boundaries, and by gluing a 4-punctured sphere along two of its boundaries
respectively. Our main result is the following:

Theorem. The induced maps α∗, β∗ : Hi(An,s; Z) → Hi(An+1,s; Z) are isomor-
phisms when n ≥ 2i+ 2 and surjective when n ≥ 2i+ 1.
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If µ : An,s → An,s+1 and η : An,s → An+1,s−1 denote the maps induced by
gluing a 3-punctured sphere respectively along one and two boundary components,
we have α = ηµ and β = µη. In particular, the above theorem implies that
both µ and η also induce isomorphisms in homology in a range and that the
groups Hi(An,s; Z) are independent of n and s when n ≥ 2i+2. This improves the
main theorem of [4] and fills in a gap in that paper. It turns out that the maps α
and β are more natural than µ and η for proving stability.

When the manifold N we start with is a sphere S3, we have An,1
∼= Aut(Fn)

and An,0
∼= Out(Fn), the automorphism and outer automorphism group of the

free group Fn. In this case, we recover a result of [1, 2, 3] with a new simpler
proof.

We prove the theorem using the action of An,s on simplicial complexes whose
vertices are pairs (S, a), where S is a 2-sphere embedded in Mn,s and a is an arc
intersecting S transversally exactly once and with boundary points in one (for α)
or two (for β) boundary spheres of Mn,s. Our main tool is a coloring lemma, which
allows to “spread the spheres” over simplices, in the spirit of an h-principle.

Let X be a simplicial complex of dimension d and let E be a set of colors. We
say that a coloring of a simplex is good if all its vertices have different colors. We
need the cardinality of E to be at least d + 1 for the existence of good colorings
of X . The following lemma says that d+ 1 is in some sense enough.

Lemma. Any coloring of X can be modified to a good coloring after subdividing
the interior of the badly colored simplices.

The above mentioned results can be found in [5].
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Almost complex 4-manifolds with vanishing first Chern class

Stefan Bauer

Any closed and oriented differentiable 4-manifold X can be equipped with a spinc-
structure or equivalently a stably almost complex structure. The former allows
for a complex Dirac operator and thus a K-orientation class inducing Poincaré
duality in complex topological K-theory. The latter links 4-manifold theory to
complex and symplectic geometry. These structures being equivalent is particular
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to dimension 4 as the natural map between the respective classifying spaces is a
5-equivalence.

There are characteristic classes naturally associated with these structures: A
spinc-structure comes with a first Chern class associated to its complex determi-
nant line bundle and with a first Pontrjagin class reflecting the signature of the
manifold via the formula p1(X) = 3 · sign(X). A stably almost complex struc-
ture comes with a first and a second Chern class. These characteristic classes are
related by

c1(X)2 − 2 · c2(X) = p1(X).

The second Chern class describes the Euler characteristic of X exactly in the case
of an (unstably) almost complex structure. So in the case of an almost complex
4-manifold, vanishing of the first Chern class implies a relation

3 · sign(X) = −2 · χ(X)

between its signature and its Euler characteristic. As the manifold has to be spin,
Rochlin’s theorem tells its signature to be divisible by 16.

These two conditions are to some extent also sufficient for the existence of an al-
most complex 4-manifold with vanishing first Chern class. First note that the Betti
numbers b1, b

+
2 and b−2 of such a manifold are determined by the signature and, say,

the first Betti number. Given a number σ divisible by 16 and an integer b1 ≥ 0,
then one could pose the question whether there exists a 4-manifold realizing these
characteristic numbers and which supports an almost complex structure with van-
ishing first Chern class.

Using Freedman’s classification of simply connected topological 4-manifolds, it
is easy to construct such manifolds topologically: Start with a simply connected
manifold realizing an even intersection form with the correct Betti numbers b±2
and then take connected sum with a suitable number of S3 × S1.

When it comes to differentiable 4-manifolds, the picture is more involved:
For σ ≤ 0, one may start with a suitable simply connected elliptic surface with sig-
nature σ and then take connected sum with suitable numbers of copies of S2×S2

and S3×S1. However, in case σ > 0, it is only possible to find such manifolds if b1
is sufficiently large (using connected sums of K3-surfaces with reversed orientation
and products of spheres).

For an almost complex 4-manifold with vanishing first Chern class to support a
complex structure is a severe restriction: The complex surface has to be minimal
and of Kodaira dimension at most zero. The list of examples is rather short and
known to be complete. It comprises in particular K3-surfaces and tori, but also
other examples found by and named after Bombieri, Inoue, Hopf and Kodaira.
Amongst these surfaces, only the K3-surfaces exhibit nonvanishing signature.

Including closed symplectic 4-manifolds into the consideration, a few more ex-
amples of such with vanishing first Chern class become available. However, K3-
surfaces remain the only known examples with nonvanishing signature. The main
result presented in the talk relates this more or less empirical fact to Seiberg-
Witten theory.
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Theorem. [1] Let X be a closed, almost complex 4-manifold with vanishing first
Chern class. If the dimension b+2 (X) of a maximal positive definite linear sub-
space in the second cohomology of X satisfies b+2 (X) ≥ 4, then the Seiberg-Witten
invariant of X is an even number.

According to a theorem of Taubes [7], the absolute value of the Seiberg-Witten
invariant of a symplectic 4-manifold is 1, as soon as b+2 (X) ≥ 2. So this theorem
applies, in particular, to compact symplectic 4-manifolds.

Corollary. A closed, symplectic 4-manifold X with torsion first Chern class sat-
isfies the inequality

b+2 (X) ≤ 3.

Indeed, if the first Chern class of X is torsion, then there is a finite covering X̃
with vanishing first Chern class, which of course is symplectic. The induced map
H2(X ; R)→ H2(X̃; R) is injective.

Corollary. Let X be a closed symplectic 4-manifold with vanishing first Chern
class and nonvanishing signature. Then X is an integral homology K3-surface.
Moreover, the fundamental group of X has no proper subgroup of finite index.

Indeed, the conditions 3 · sign(X) = −2 · χ(X) and b+2 ≤ 3 can only be met by

manifolds with signature either 0 or −16. Any covering manifold X̃ associated to a
subgroup of finite index n of the fundamental group would be compact symplectic
with signature sign(X̃) = n · sign(X) and with c1(X̃) = 0. The corollary follows
immediately.

Note that every finitely presented group can be realized as the fundamental
group of a symplectic 4-manifold [4]. This leads to the question, whether there
exists a symplectic homology-K3-surface with vanishing first Chern class and non-
trivial fundamental group. Of course one hardly expects a positive answer.

The fundamental group of a symplectic manifold with vanishing first Chern
class and vanishing signature has a corresponding property: Any subgroup of
finite index has rank at most 4. Of course, this narrows the range of possible
fundamental groups of such manifolds. But still there is a considerable gap if
one compares with the groups known to be realizable by symplectic manifolds of
Kodaira dimension zero.

Partial results with regard to the main theorem were obtained by Morgan-
Szabo [6] under the assumption b1(X) = 0 and by Tian-Jun Li [5] under the
assumption b1(X) ≤ 4.

The proof of the main theorem is modelled on the stable cohomotopy proof [2]
of Morgan-Szabo’s result. The concept can be explained in a few words: In its
stable homotopy interpretation [3], the Seiberg-Witten invariant is the degree of a
monopole map. Source and target depend on index data of the given 4-manifold
in a controllable way. So it suffices to show that under the assumptions of the
theorem there are only maps of even degree between the relevant spaces. This
follows from equivariant obstruction theory using the fact that the vanishing of
the first Chern class leads to additional symmetry of the monopole map.
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Uncompleting classifying spaces

Jesper Grodal

(joint work with Bob Oliver)

The information encoded in a finite group G is equivalent to the information
encoded in its classifying space BG. In homotopy theory, one can complete a
space at a prime p, which produces the p-completed classifying space BG∧

p . When
G is abelian this procedure simply gives the classifying space BS of the Sylow
p-subgroup of G, and all information prime to p is lost. When G is non-abelian
the resulting space BG∧

p is a much more complicated object, but still an invariant
of the “p-local structure” of the group, suitably defined.

In this talk we showed that often, when G is “non-abelian enough”, this p-
completion process can in fact be reversed! We explained theorems saying that for
many “sufficiently complicated” groups G, the space BG can be recovered from
the p-completed space BG∧

p for just a single prime p. In other words the p-local
structure in G in fact completely determines its global structure. The approach
goes via a certain category Lp(G) called the p-local finite group of the group (see
e.g., [1] or [2] for definitions). We propose the fundamental group π1(Lp(G)) as
an interesting invariant of the p-local structure of the group.

For several groups we get “local-to-global” theorems:

Theorem (Grodal-Oliver [3]). Suppose that G is either

(1) A p-solvable group with Op′ (G) = 1.
(2) A finite group of Lie type of rank ≥ 3 with Op′(G) = 1.
(3) Σpn with n ≥ 3 and p = 2 (probably also OK for p odd).
(4) Several of the larger sporadic groups for p = 2, e.g., the Monster, M24,

Co3, . . .

Then π1(Lp(G)) = G, and in particular G can be recovered from its p-local struc-
ture Lp(G).
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For other groups G, such as linear groups over Fq for q a prime power differ-
ent from p, easy examples show that the p-local structure cannot determine the
group G uniquely. However, our work indicate that even in those cases π1(Lp(G))
can be a sort of “best global approximation” to the p-local finite group Lp(G),
which is an interesting group, though not necessarily finite:

Theorem (Grodal-Oliver [3]). Suppose that G = SOn(Fq) for q ≡ 3, 5(8), n ≤ 8,
then π1(SOn(Fq)) ∼= SOn(Z[12 ])
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The L-theory of PSL2(Z) and connected sums of manifolds

James F. Davis

(joint work with Frank Connolly)

This is an application of a program to prove the Farrell-Jones isomorphism con-
jecture in L-theory for groups which act properly, co-compactly by isometries on
non-positively curved manifolds and is work in progress.

Fix a closed manifold Xn = X1#X2 and n > 2. Let π1X = G1 ∗G2.
The connected sum problem is: Is every homotopy equivalence h : M → X

splittable? I.e., is M = M1#M2 and h ≃ h1#h2 for suitable homotopy equiva-
lences hi?

Metatheorem (Stallings, Browder, Cappell). For n > 4, the answer depends
only on G1, G2, the orientation characters, and n (mod 4).

Answers:

• Yes, if π1 = 1 (Browder)
• No, for X = RP 4k+1#RP 4k+1 (Cappell)
• Yes, if n = 4k + 3, X orientable (Cappell)
• Yes, if M and X are h-cobordant (Stallings). In fact he showed Wh(G1 ∗
G2) = Wh(G1)⊕Wh(G2)

Cappell showed:

L̃n(G1 ∗G2) = L̃n(G1)⊕ L̃n(G2)⊕UNiln(Z; ẐG1, ẐG2),

where ẐG is the Z[Z2]-module Z[G − e] with involution g 7→ g−1.

He also showed that UNiln(Z; ẐG1, ẐG2) vanishes ifG1 andG2 have no elements

of order 2, and that UNiln+1(Z; ẐG1, ẐG2) = 0 iff every homotopy equivalence h
is splittable.



2596 Oberwolfach Report 43/2006

We reduce the connected sum problem to very special fundamental groups:
There is a splitting of abelian groups with involution

ẐG =
⊕

g2=1

Zg ⊕
⊕

g2 6=1

(Zg + Zg−1).

In other words,

ẐG =
⊕

Z’s⊕
⊕

H ’s,

where H = Z⊕ Z with the involution switching the two summands.

Lemma (CD). UNiln(Z;P,Q) is symmetric, bilinear in P and Q:

UNiln(Z;P,Q) = UNiln(Z;Q,P ),

UNiln(Z;P ⊕ P ′, Q) = UNiln(Z;P,Q)⊕UNiln(Z;P ′, Q).

Thus the connected sum problem reduces to three special cases:

• The group UNil(Z;H,H) ⊂ L̃(Z3 ∗ Z3) vanishes by Cappell.

• UNil(Z; Z,Z) ⊂ L̃(Z2 ∗ Z2) is computed recently using algebra (Z2 ∗ Z2 is
the infinite dihedral group).

• The computation of UNil(Z; Z, H) ⊂ L̃(Z2 ∗Z3) requires geometry (Z2 ∗Z3

is the modular group PSL2(Z)).

The L-theory of the infinite dihedral group was computed by Cappell, Connolly-
Ranicki, Connolly-Davis, Banagl-Ranicki:

UNiln(Z; Z,Z) =





0 n ≡ 0, 1 (mod 4)

(Z2)
∞ n ≡ 2 (mod 4)

(Z2)
∞ ⊕ (Z4)

∞ n ≡ 3 (mod 4).

One consequence of this computation is: There existsM4 ≃ RP 4#RP 4 which is
no (non-trivial) connected sum. This uses 0 6= UNil3(Z; Z,Z) ∼= UNil5(Z; Z−,Z−)
and Wall realization.

Theorem (CD). The Farrell-Jones isomorphism conjecture in L-theory for Z2∗Z3

implies

UNiln(Z; Z, H) =
⊕

Γ

UNiln(Z; Z,Z),

where Γ is the set of conjugacy classes of maximal infinite dihedral subgroups of
the group Z2 ∗ Z3.

This solves the connected sum problem:

• Every homotopy equivalence h : Mn → X1#X2 is splittable when n ≡ 0, 3
(mod 4).
• When n ≡ 1, 2 (mod 4) and π1 has some 2-torsion there are obstructions.

To prove the isomorphism conjecture in L-theory one uses the isomorphism
Z2 ∗ Z3

∼= PSL2(Z). Then Γ corresponds to reciprocal geodesics in the orb-
ifold H/PSL2(Z). For more on these see Letter to J. Davis about reciprocal
geodesics [5].
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Currently we have proven the isomorphism conjecture in L-theory for crystal-
lographic groups and the isomorphism conjecture for negatively curved groups is
work in progress.
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Quasi-isometric classification of graph manifolds groups

Walter D. Neumann

(joint work with Jason Behrstock)

When we speak of quasi-isometry of groups the metric in question is the word
metric with respect to some finite generating set. Two groups are “weakly com-
mensurable” if they can be made isomorphic by taking finite index subgroups of
quotients by finite normal subgroups. Weakly commensurable finitely generated
groups are quasi-isometric.

A compact 3-manifold M (possibly with boundary) is “geometric” if M − ∂M
admits a geometric structure in Thurston’s sense. By Perelman it is now known
that any irreducible 3-manifold has a “geometric decomposition” – a decomposition
along tori and Klein bottles into geometric pieces.

There is a considerable literature on quasi-isometric rigidity and classification
of 3-manifold groups. The rigidity results can be briefly summarised:

Theorem. If G is a group which is quasi-isometric to the fundamental group of
a 3-manifold M then G is weakly commensurable with π1(M

′) for some 3-mani-
fold M ′. Moreover, M ′ is irreducible respectively geometric if and only if M is.

This quasi-isometric rigidity for geometric 3-manifold groups is the culmina-
tion of the work of many authors, key steps being provided by Gromov-Sullivan,
Cannon-Cooper, Eskin-Fisher-Whyte, Kapovich-Leeb, Rieffel, Schwartz [2, 3, 5,
7, 12, 13]. The reducible case reduces to the irreducible case using Papasoglu and
Whyte [11] and the irreducible non-geometric case is considered by Kapovich and
Leeb [7].

The classification results in the geometric case can be summarized:
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Theorem. There are exactly seven quasi-isometry classes of fundamental groups
of closed geometric 3-manifolds, namely any such group is quasi-isometric to one

of the eight Thurston geometries (S3, S2 × E1, E3, Nil, H2 × E1, P̃SL, Sol, H3)

but the two geometries H2 × E1 and P̃SL are quasi-isometric.
If a geometric manifold M has boundary, then it is either Seifert fibered and its

fundamental group is quasi-isometric (indeed commensurable) with F2 × Z, or it
is hyperbolic, in which case quasi-isometry also implies commensurability [13].

The talk reported progress on classification in the non-geometric case. The
geometric version of JSJ decomposition (e.g., [10]) gives uniqueness up to isotopy
for the minimal decomposition along tori and Klein bottles of an irreducible non-
geometric 3-manifold M into geometric pieces. These geometric pieces are either
hyperbolic or Seifert fibered. As a first step to classification, it is not hard to see
that the existence of pieces of either type in the decomposition is a quasi-isometry
invariant [6, 8]. We describe the case that there are no hyperbolic pieces, so M is
a “graph manifold” in the sense of Waldhausen.

We associate to the geometric JSJ decomposition of M its two-colored decom-
position graph Γ(M) which has a vertex for each Seifert piece and an edge for each
decomposing torus or Klein bottle; vertices of Γ(M) are colored black or white
according to whether the Seifert piece includes a boundary component of M or not
(bounded or without boundary). A two-colored tree is similarly associated to the

decomposition of the universal cover M̃ into its fibered pieces. This infinite valence
two-colored tree is denoted BS(M), since it is the Bass-Serre tree corresponding
to the graph of groups JSJ-decomposition of π1(M).

The Bass-Serre tree BS(M) can be constructed directly from the decomposition
graph Γ = Γ(M) by first replacing each edge of Γ by a countable infinity of edges
with the same endpoints and then taking the universal cover of the result, so we
also call it BS(Γ). If BS(Γ1) ∼= BS(Γ2) we say Γ1 and Γ2 are bisimilar.

A weak covering map φ : Γ → Γ′ between two-colored graphs is a color-pre-
serving graph homomorphism satisfying: for any vertex v of Γ and every edge e′

at φ(v), there is at least one edge e at v mapping to e′. An example of such a map
is the map that collapses any multiple edge of Γ to a single edge. Any covering
map of irreducible non-geometric graph manifolds induces a weak covering map of
their two-colored decomposition graphs.

If a weak covering map f : Γ → Γ′ exists then clearly BS(Γ) = BS(Γ′), so Γ
and Γ′ are bisimilar. In fact, the equivalence relation generated by the relation
of existence of a weak covering map is bisimilarity. In this form the equivalence
relation is known to computer scientists, from whom the “bisimilarity” terminology
is borrowed (they call weak covering “bisimulation”).

Proposition. Consider countable connected graphs with at least one edge. Then
each equivalence class of two-colored graphs includes two characteristic elements:
a unique tree that weakly covers every element in the class (the Bass-Serre tree);
and a unique minimal element, which is weakly covered by all elements in the class.
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For example, if all the vertices of a graph have the same color, then the minimal
graph for its bisimilarity class is a single vertex with a loop attached and the Bass-
Serre tree is the single-colored regular tree of countably infinite degree.

Our main theorem is:

Theorem. The following are equivalent for irreducible non-geometric graph man-
ifolds M and M ′:

(1) M̃ and M̃ ′ are bilipschitz homeomorphic.
(2) π1(M) and π1(M

′) are quasi-isometric.
(3) BS(M) and BS(M ′) are isomorphic as two-colored trees.
(4) The minimal two-colored graphs in the bisimilarity classes of the decom-

position graphs Γ(M) and Γ(M ′) are isomorphic.

One can list minimal two-colored graphs of small size, yielding, for instance,
that there are exactly 2, 6, 26, 199, 2811, 69711, 2921251, 204535126, . . . quasi-
isometry classes of fundamental groups of non-geometric graph manifolds that are
composed of at most 1, 2, 3, 4, 5, 6, 7, 8, . . . Seifert pieces.

The theorem gives just one quasi-isometry class of closed non-geometric graph
manifolds: the minimal two-colored graph is a single white vertex with a loop.
This answers a question of Kapovich and Leeb. Similarly, there is just one quasi-
isometry class of non-geometric graph manifolds that have boundary components
in every Seifert piece: the minimal graph is a single black vertex with a loop.

The latter answers a question of Bestvina on RAAGs (right-angle Artin groups).
In unpublished work with Kleiner and Sageev he has proved quasi-isometric rigid-
ity results for RAAGs whose presentation graphs are far from being trees. He
asked what happens for RAAGs whose presentation graphs are trees. RAAGs
with small presentation trees (diameter ≤ 2) give groups of the form (free)×Z,
while larger trees give fundamental groups of non-geometric graph manifolds with
boundary components in every Seifert component. Thus, excluding the “small”
cases, there is just one quasi-isometry class of RAAGs with presentation trees,
answering Bestvina’s question and showing that quasi-isometry behavior of his
RAAGs is dramatically different from those with presentation trees.

An Artin group is quasi-isometric to a 3-manifold group if and only if the com-
ponents of the presentation graph are trees or 2-weighted triangles, in which case
the manifold is a graph-manifold so our results can be applied [1] (strengthening
a result of Gordon [4]).

Commensurability classification for non-geometric graph manifold groups is far
from understood but is known to be much richer than quasi-isometry [9], and both
classifications for general Artin groups are wide open.
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p-local compact groups

Carles Broto

(joint work with Ran Levi, Bob Oliver)

In 1994 Dwyer and Wilkerson [3] defined p-compact groups as p-local homotopy
theoretic analogue of compact and connected Lie groups, where p is a fixed prime
number. We later defined p-local finite groups [1] as the p-local objects that model
the p-local structure of finite groups. The aim of this talk is to define the concept
of p-local compact group, as a unifying theory that gathers together p-local finite
groups and p-compact groups.

In [1], a p-local finite group is defined as a triple (S,F ,L) where S is a finite
p-group, F a saturated fusion system over S, and L a centric linking system
associated to F . In case of p-local compact groups the finite p-group S is replaced
by a discrete p-toral group, and the fusion and linking systems is adapted to the
new situation with small changes. Precise definitions follow below.

Write Z/p∞ =
⋃

n≥1 Z/pn ∼= Z[ 1
n
]/Z.

Definition. A discrete p-toral group P is a group that fits in an extension

P0 −→ P −→ P/P0,

where P0
∼= (Z/p∞)r and P/P0 is a finite p-group. We call P0 the identity com-

ponent, r the rank of P , and π0(P ) = P/P0 the group of components.

Discrete p-toral groups are characterized by being artinian and locally finite
p-groups. The identity component of a discrete p-toral group is a characteristic
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subgroup that can also be described as the subset of all infinitely p-divisible ele-
ments of P and also as the minimal subgroup of finite index in P . We measure
the size of P as |P | = (r, |π0(P )|) with lexicographical order. The class of discrete
p-toral groups is closed under taking subgroups, quotients, and extensions.

The p-completed classifying space of a discrete p-toral group P0 of rank r with
trivial group of components is BP0

∧
p ≃ (BT r)∧p , where T r = (S1)r is a torus of

rank r. So, in general, if P has rank r, then BP∧
p fits in a fibration sequence

(BT r)∧p −→ BP∧
p −→ Bπ0(P ),

where T r = (S1)r is a torus of rank r. Thus BP∧
p is a p-compact toral group [3].

In fact, all p-compact toral groups arise in this manner.
Saturated fusion systems are defined in a way similar to the finite case. A fusion

system F over a discrete p-toral group S consists of a set HomF(P,Q) for every
pair P , Q of subgroups of S such that

HomS(P,Q) ⊆ HomF (P,Q) ⊆ Inj(P,Q)

and form a category where every morphism decomposes as an isomorphism fol-
lowed by an inclusion. A fusion system is called saturated if it satisfies some extra
axioms. Now, to the axioms of saturation due to Puig [4, 1] for fusion systems
over finite p-groups we add a new axiom that concerns infinite subgroups of S.
We include here the complete set of axioms.

Definition. Let F be a fusion system over a discrete p-toral group S.

(1) A subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ |CS(P ′)| for
all P ′ ≤ S that are F -conjugate to P .

(2) A subgroup P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(P ′)| for
all P ′ ≤ S that are F -conjugate to P .

(3) We will say that F is saturated if the following axioms are satisfied:
(I) Sylow Axiom: If P ≤ S is fully normalized in F , then P is fully

centralized in F , OutF (P ) is finite, and OutS(P ) ∈ SylpOutF (P ).
(II) Extension Axiom: If P ≤ S and ϕ ∈ HomF (P, S) are such that
ϕP is fully centralized, and if we set

Nϕ =
{
g ∈ NS(P )

∣∣ ϕcgϕ−1 ∈ AutS(ϕP )
}
,

then there is ϕ ∈ HomF(Nϕ, S) such that ϕ|P = ϕ.
(III) Continuity Axiom: If P1 ≤ P2 ≤ P3 ≤ · · · is an increasing se-

quence of subgroups of S, with P∞ =
⋃∞

n=1 Pn, and ϕ ∈ Hom(P∞, S)
is any homomorphism such that ϕ|Pn

∈ HomF(Pn, S) for all n, then
ϕ ∈ HomF(P∞, S).

The definitions of F -centric and F -radical subgroups in a fusion system F
over a finite p-group carry over to the case of fusion systems over discrete p-toral
groups. Indeed, it is proved that there is a finite number of F -conjugacy classes
of subgroups which are F -centric and F -radical and then that Alperin’s fusion
theorem holds.
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Like in the finite case, a centric linking system associated to F is a category L
whose objects are the F -centric subgroups of S, together with a functor

π : L −→ Fc,

and “distinguished” monomorphisms δP : P → AutL(P ) for each F -centric sub-
group P ≤ S, which satisfy the same axioms (A), (B), and (C), as in the p-local
finite group case [1, Definition 1.7].

Definition. A p-local compact group is a triple (S,F ,L), where S is a discrete
p-toral group, F is a saturated fusion system over S, and L is a centric linking
system associated to F . The classifying space is the p-completed nerve of the
centric linking system |L|∧p .

The algebraic structure of a p-local compact group is completely determined by
its classifying space. However some important differences with the finite case are
worth mentioning. The following is a key theorem.

Theorem. If (S,F ,L) is a p-local compact group, then:

(a) For any discrete p-toral group Q, Rep(Q,L)
∼=
−→ [BQ, |L|∧p ], where we

define Rep(Q,L) = HomF(Q,S)/F-conjugacy.
(b) If ρ ∈ HomF (Q,S) and ρ(Q) is F-centric, then

BZ(ρ(Q))∧p ≃ map(BQ, |L|∧p )θ◦Bρ ,

where θ : BS → |L|∧p is the canonical map induced by the distinguished
homomorphism δS.

Part (a) of the theorem shows that the fusion system can be obtained from
the classifying space. However, in part (b) we observe that ρ(Q) being discrete
p-toral might generate non-trivial homotopy groups in dimension 2 in the mapping
spaces map(BQ, |L|∧p )θ◦Bρ. For this reason we have to develop a new strategy in
order to recover the centric linking system from the classifying space.

The orbit category Oc(F) of a fusion system F over a discrete p-toral group S
is the category with objects all subgroups of S that are F -centric, and where
MorO(F)(P,Q) = RepF (P,Q); that is, Inn(Q)\HomF (P,Q). The classifying space
functor induces a homotopy functor B : Oc(F0) −→ hoTop defined by setting
B(P ) = BP .

Given a centric linking system L associated to F , the left homotopy Kan ex-
tension of the constant point functor along the projection L → Oc(F), defines

a rigidification B̃ of B, that in turn, produces a homotopy colimit decomposi-

tion hocolimOc(F) B̃ ≃ |L|. A rigidification of the homotopy functor B is a lift-

ing B̃ : Oc(F) −→ Top of B to the category of topological spaces, together with a

natural homotopy equivalence of functors (in hoTop) from B to ho ◦ B̃.
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It turns out that this construction can be reversed and we obtain a one-to-one
correspondence





linking systems
associated to F0

up to isomorphism




−→←−





rigidifications O(F0)→ Top
of the homotopy functor B

up to natural homotopy equivalence



 .

We can also look at the p-completion B∧
p of B that assigns BP∧

p to a F -centric
subgroup P of S. Obstruction theory shows that the above set is also in one-to-
one correspondence with rigidifications of B∧

p , up to natural homotopy equivalence.
From any of these three sets, one obtains the classifying space, and conversely, a
classifying space associated to a saturated fusion system over a discrete p-toral
group S determines a rigidification of B∧

p , and therefore an associated centric
linking system. It follows that the centric linking system is determined, up to
isomorphism, by the homotopy type of the classifying space. In particular:

Theorem. If (S,F ,L) and (S′,F ′,L′) are two p-local compact groups such that
|L|∧p ≃ |L

′|∧p , then (S,F ,L) and (S′,F ′,L′) are isomorphic as p-local compact
groups.
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Trace invariants for fixed and periodic points

Bjørn Jahren

Let f : X → X be a self–map of a finite complex. The fundamental Nielsen
equivalence relation between fixed points of f is defined by: x ∼ x′ if and only of
there is a path ω from x to x′ such fω ≃ ω (homotopy relative endpoints). This
relation is classically motivated and studied via covering spaces, but my interest in
the subject comes from the observation that it also has the following interpretation:

Think of the homotopy fω ≃ ω as a homotopy from the constant path in x
to the constant path in x′ through paths from points y to f(y), and let Λ(f) be
the space of such paths. Then the fixed point set Fix(f) of f can be identified
with the subset of constant paths in Λ(f), and Nielsen equivalence of two fixed
points just says that the points are in the same component of Λ(f). Note that
Λ(f) ≈ MapN(R, X), i.e., the homotopy fixed point set of the additive monoid of
natural numbers, acting by f . Hence Nielsen theory can be considered a very early
instance of a “lim = holim” problem. I will discuss how this point of view leads
to new interpretations of classical invariants, with indications of how this can be
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generalized to give new invariants for fixed and periodic points of parametrized
maps. Most of this is work in progress, partly joint with Bruce Williams.

The most important invariant in the classical theory is the Nielsen–Reidemeister
trace ρ(f) — an obstruction to finding a map homotopic to f without fixed points
and a refinement of the Lefschetz number of f . The trace ρ(f) lies in a free Z–
module R(f) = ZGφ, where Gφ is the set of twisted equivalence classes of G =
π1(X,x0), depending on a choice of basepoint x0 and a path from x0 to f(x0).
The dependence of these choices is a nuisance, but our first observation is:

Lemma. Gφ ≈ π0(Λ(f)).

It follows that R(f) is isomorphic to H0(Λ(f)), which does not depend on any
choices, and it is natural to ask if there is a definition of ρ(f) directly as an element
of H0(Λ(f)) which avoids choices. I will describe two such definitions. Assume in
the following, for simplicity, that X is an oriented, closed, connected manifold of
dimension n.

Note that Λ(F ) is defined so that the left square in the following diagram is a
pullback:

Λ(f) −−−−→ XI ∆̃
←−−−− X

ev0

y (ev0,ev1)

y =

y

X
Γ(f)
−−−−→ X ×X

∆
←−−−− X

Here evt is evaluation at t and Γ(f)(x) = (x, f(x)). Moreover, ∆ is the diagonal

map, and ∆̃ maps a point x to the constant path at x.
Recall that the Lefschetz number can be thought of as the homology intersection

of the diagonal and the graph of f in X ×X . The idea is to lift this to the upper
horizontal line in the diagram, and “intersect” X and Λ(f) in XI .

In the first approach, joint work with my student Ingrid Seem, we approximate
the diagram by a diagram of covering spaces. The vertical maps are fibrations,
and we may construct associated covering spaces by “collapsing components of the
fibers” — producing a diagram

Λ(f)
γ

−−−−→ XI ∆
←−−−− X

p

y p′

y =

y

X
Γ(f)
−−−−→ X ×X

∆
←−−−− X

Now consider the following sequence of maps:

Hn(X)
∆∗→ Hn(XI)

PD
← Hn

c (XI)
γ∗

→ Hn
c (Λ(f))

PD
→ H0(Λ(f))

≈
← H0(Λ(f)).

PD is Poincaré duality, so this defines a homomorphism Hn(X)→ R(f).

Theorem (J.–Seem [4]). This composition maps the fundamental class [X ] ∈
Hn(X) to ρ(f) ∈ Rf .
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Remark. If we choose a basepoint, there is a natural identification of XI with
the more familiar X̃ ×π1(X) X̃, where X̃ is the universal covering space of X.

The second approach deals directly with X and Λ(f) as subspaces of XI and
is based on the fact that Λ(f) essentially has an n–dimensional normal bundle
neighborhood U in XI , gotten by pulling the normal bundle of Γ(f)(X) in X×X
back over the map p. Then we have a map X → XI → XI/(XI − U). But
XI/(XI −U) is equivalent (deforms to) to the Thom space of the normal bundle,
so composing with the Thom isomorphism, we get a homomorphism

Hn(X)→ Hn(XI/(XI − U) ≈ H0(Λ(f)) ≈ R(f)

Theorem. This homomorphism maps the fundamental class [X ] to ρ(f).

These approaches to ρ(f) have the advantage that they do not require any
assumption about the fixed points of f , e.g., that they should be isolated. Homo-
topy invariance is also obvious. Moreover, it is easy to extend to families of maps,
and both approaches can be adapted to give invariants for coincidences of maps.
But for these generalizations the second approach is the most interesting, since
the invariants will lie in higher homology groups, and Λ(f) has more interesting

homology than Λ(f).
There is yet another interpretation of R(f), namely as the framed bordism

group Ωfr
0 (Λ(f)) ≈ π0(Q(Λ(f)+). As an element here, ρ(f) can be defined using

transversality and the Thom–Pontrjagin construction. It also appears as an ap-
plication of the “homotopy intersection theory” in [2]. This is the interpretation
we will use in our study of periodic points.

Periodic orbits

I conclude with the following brief sketch of basic ideas behind ongoing joint work
with Bruce Williams.

Periodic points are fixed points of powers of f , and ρ(fn) is an obstruction to
finding a map homotopic to fn without fixed points, hence also an obstruction
to finding a map homotopic to f without points of period n. But since points of
period n also have period mn, there should be some kind of structure on the set of
invariants reflecting this. More specifically, the sets Fix(fn) have natural actions
of the cyclic group Cn such that Fix(fmn)Cm = Fix(fn), and we would like some
refinement of homotopy fixed point sets Λ(fn) with a similar structure. The idea
is to study n–periodic orbits instead, considered as elements of Xn.

Let f (n) : Xn → Xn be defined by

f (n)(x1, . . . , xn) =
(
f(xn), f(x1), . . . , f(xn−1)

)
.

Then the fixed points of f (n) are precisely the n–periodic orbits of f . Moreover,
the Cn–action onXn lifts to an action on Λ(f (n)) such that Λ(f (mn))Cm = Λ(f (n)),
restricting to Fix(f (mn))Cm = Fix(f (n)).

Because of the Cn–action, it is now more natural to consider ρ(f (n)) in Cn–
equivariant stable homotopy QCn(Λ(f)).
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Proposition. (1) ρ(f (n)) can naturally be chosen to lie in QCn(Λ(f))Cn .
(2) Restriction to Cm–fixed points defines a map

QCmn(Λ(f))Cmn → QCn(Λ(f))Cn

taking ρ(f (mn)) to ρ(f (n)).

Note that this is very reminiscent of the system of restriction maps of the
cyclotomic structure used in the construction of topological cyclic homology [3].
Unfortunately, there does not seem to be an analogue of the Frobenius maps in
the present situation. But, using the Segal–tom Dieck splitting, we get more
information on the system of invariants ρ(f (n)).

Let p be a prime an consider the numbers pk, k = 1, 2, . . . . Then

QCpn (Λ(f (pn)))Cpn ≃
∏

l≤n

Q
(
Λ(f (pl))hC

pl

)
.

Corollary. There is an invariant ρ∞(f) = (ρ1, ρ2, . . . ) ∈
∏

l≥0Q(Λ(f (pl))hC
pl

)

such that ρk represents (in π0) an obstruction to deforming f to a map without
points of period exactly pk

Remark. These results are closely related to results obtained by other methods by
R. McCarthy and Y. Iwashita [1].
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Resolutions of unbounded chain complexes

Jérôme Scherer

(joint work with Wojciech Chachólski and Wolfgang Pitsch)

Here is the setup of the problem. Let A denote a bicomplete abelian category
and Ch(A) the category of unbounded chain complexes in A. We fix a class W
of objects, which we wish to consider as injectives in A (the dual case where one
works with projective objects can be handled in the same way). A morphism
f : X• → Y• of chain complexes is a W-equivalence if, for any object W ∈ W , the
morphism f∗ : A(Y•,W )→ A(X•,W ) is a quasi-isomorphism in Ch(Z).

In [2], Christensen and Hovey work in the projective case. In order to do
“relative homological algebra”, in particular to construct projective resolutions in
this setting, they analyze when Ch(A) can be given a Quillen model structure [3],
where of course the weak equivalences should be theW-equivalences. They succeed
to do so in many cases, for example when A is the category of bimodules over a
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k-algebra A and W is the class of free A-bimodules. In this case they show that
the class of homotopy classes [ΣnA,N ] ∼= HHn(A;N) for any (chain complex of)
A-bimodule N .

Our point of view is that for most applications one does not really need to know
Ch(A) is a model category. We will instead provide a “model approximation”,
roughly speaking a model category which is easier to deal with, and in which
Ch(A) can be embedded. In this way important characteristics of model categories
still hold:

(1) One can form the homotopy category Ho(Ch(A)) and deduce that homo-
topy classes [X•, Y•] form a set.

(2) One can construct injective (fibrant) resolutions and thus construct right
derived functors in the relative setting.

Definition. Let C be a category with a distinguished class of weak equivalences.
A model categoryM together with a pair of adjoint functors

l : C ⇄M : r

forms a right model approximation if

(1) the left adjoint l sends weak equivalences to weak equivalences,
(2) the right adjoint r sends weak equivalences between fibrant objects to weak

equivalences,
(3) for a fibrant object X ∈M, if a morphism lA→ X is a weak equivalence,

then so is its adjoint A→ rX .

The algorithm to build a (fake) fibrant replacement for an object A ∈ C is then
as follows. Push A into the model categoryM with the functor l. Using the model
category structure in M construct a fibrant replacement lA → R(lA). Take the
adjoint A → r(R(lA)). This is not really a fibrant replacement in C, not only
because there is no model structure on C, but more seriously because the lifting
property with respect to acyclic cofibrations might fail, for some obvious choice of
cofibrations.

Example. When D is a model category and I is a small category, it is not known
whether the category C = Fun(I,D) of D-valued diagrams indexed by I form a
model category. There is however an obvious choice of weak equivalences, namely
the natural transformations of diagrams F → G such that F (i) → G(i) is a
weak equivalence in D for all i ∈ I. We proved in [1] that there always exists a
model approximation. Consider the simplex category of the nerve N(I), where
the morphisms are generated by the face and degeneracy maps and define M to
be the full subcategory Funb(N(I)op,D) of functors indexed by N(I)op that are
bounded, in the sense that degeneracies induce isomorphisms.

The projection functor ε : N(I)op → I yields a pair of adjoint functors

ε : Fun(I,D) ⇄ Funb(N(I)op,D) : εk,

where εk denotes the right Kan extension. This forms a model approximation.
In particular the homotopy limit of any functor F : I → D can be computed by
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taking the limit of the (fake) fibrant replacement:

holim
I

F = lim
I
εk(R(ǫF )).

Let us now go back to chain complexes. To do relative homological algebra, we
will exhibit a model approximation for Ch(A). The only standing assumption is
that there are “enough injective objects”. More precisely we will assume that any
object A ∈ A admits a W-monomorphism A→W to some object of the class W .
Whereas unbounded chain complexes are difficult to handle, bounded ones are
tame. Let us denote by Ch(A)≤0 the category of bounded above chain complexes
(differentials have degree −1 and the chain complexes are zero in positive degrees).

Proposition. The category Ch(A)≤0 admits a model category structure where the
weak equivalences are the W-equivalences.

The model approximation for Ch(A) will be constructed out of bounded chain
complexes by taking towers. The objects of the category Tow(Ch(A)≤0) of towers
are sequences X0

• , X
1
• , X

2
• , . . . of chain complexes in Ch(A)≤0 together with struc-

ture maps ΣX i+1
• → X i

• for all i > 0, which should remind the reader of spectra.
Weak equivalences are levelwise W-equivalences.

Proposition. The category Tow(Ch(A)≤0) is a model category.

The structure maps provide towers in A of the form

Xm
n ← Xm+1

n−1 ← Xm+2
n−2 ← . . .

for all n ≤ 0 and m ≥ 0. Taking the limit yields thus a functor

lim : Tow(Ch(A)≤0)→ Ch(A)

to unbounded chain complex, which is right adjoint to the truncation functor. We
are now ready to state our main result.

Theorem. The pair of adjoint functors Trunc : Ch(A) ⇄ Tow(Ch(A)≤0) : lim
forms a model approximation.

To conclude, let us remark that when A is the category of R-modules and the
classW consists of all injective R-modules, then the fibrant resolution we construct
coincides with the “right injective resolutions” Spaltenstein constructs in [4]. In
his work there is no mention of the word model category.
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On the cohomology of highly connected covers of finite H-spaces

Natàlia Castellana

(joint work with Juan A. Crespo, Jérôme Scherer )

Consider a finite complex X and an integer n. Does its n-connected cover X〈n〉
satisfy any cohomological finiteness property? Of course, some restriction on the
fundamental group will be needed, as the universal cover of S1 ∨ S2 is an infinite
wedge of copies of S2.

The kind of prototypical theorems we have in mind are the Evens-Venkov re-
sult [4, 10] that the cohomology of a finite group is Noetherian, the analog for
p-compact groups obtained by Dwyer and Wilkerson [3], and the fact that the
mod p cohomology of an Eilenberg-Mac Lane space K(A, n), with A abelian of
finite type, is finitely generated as an algebra over the Steenrod algebra, which
can easily been inferred from the work of Serre [8] and Cartan [1].

This last observation leads us to ask first whether or not the mod p cohomology
of a finite Postnikov piece is also finitely generated as an algebra over the Steenrod
algebra and second, since a finite complex X and its n-connected cover X〈n〉 only
differ in a finite number of homotopy groups, if H∗(X〈n〉; Fp) satisfies the same
property.

In this research project we offer a positive answer when X is an H-space, based
on the analysis of the fibration P → X〈n〉 → X , where P is a finite Postnikov
piece. In fact, we prove a strong closure property for H-fibrations.

Theorem. Let F → E → B be an H-fibration in which both H∗(F ; Fp) and
H∗(B; Fp) are finitely generated unstable algebras. Then so is H∗(E; Fp).

This applies in particular to highly connected covers of finite H-spaces, see next
corollary.

Corollary. Consider an H-space X with finite mod p cohomology. Then the mod p
cohomology of its n-connected cover X〈n〉 is a finitely generated Ap-algebra.

In our previous work [2], we proved that the theorem holds whenever the base
space is an Eilenberg-Mac Lane space. The proof relied mainly on Smith’s work [9]
on the Eilenberg-Moore spectral sequence. He shows that given an H-fibration

F
i
−→ E

π
−→ K(A, n), where A is either Z/p or a Prüfer group Zp∞ and n ≥ 2, there

is a coexact sequence of Hopf algebras

Fp −→ H∗(E)//π∗ i∗

−→ H∗(F ) −→ R −→ Fp,

and R is described in turn by a coexact sequence of Hopf algebras

Fp −→ Λ −→ R −→ S −→ Fp,

where Λ is an exterior algebra, and S ⊆ H∗(K(A, n− 1)) is a Hopf subalgebra.
Our strategy is the same and we need to analyze carefully certain Hopf subal-

gebras of H∗(F ; Fp). Observe that the property for an unstable algebra K to be a
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finitely generated Ap-algebra is equivalent to say that the module of the undecom-
posable elements QK is finitely generated as unstable module. It is often better
to work with this module because it is smaller than the whole algebra and, above
all, the category of unstable modules is locally Noetherian [5].

The main difficulty with the functor Q(−) is the failure of left exactness.
To what extent this functor is not left exact is precisely measured by André-

Quillen homology HQ
∗ (−). We can briefly recall from Schwartz’s book [7] how

one computes André-Quillen homology in our setting. The symmetric algebra
comonad S(−) yields a simplicial resolution S•(A) for any commutative algebra A.

The André-Quillen homology groupHQ
i (A) is the i-th homology group of the com-

plex obtained from S•(A) by taking the module of indecomposable elements (and
the differential is the usual alternating sum). Because the Steenrod algebra acts

on the symmetric algebra via the Cartan formula, the Fp-vector space HQ
i (A) is

equipped with an action of Ap This yields the same unstable module HQ
i (A) as the

derived functor computed with a resolution in the category of unstable algebras
[7, Proposition 7.2.2]. In our setting we can compute these unstable modules.

Proposition. Let A be a Hopf algebra which is a finitely generated unstable Ap-

algebra. Then HQ
0 (A) = QA and HQ

1 (A) are both finitely generated unstable mod-

ules. Moreover, HQ
i (A) = 0 for i > 1.

This proposition yields then our main algebraic structural result about the
category of unstable Hopf algebras.

Theorem. Let B be a Hopf algebra which is a finitely generated unstable Ap-
algebra. Then so is any unstable Hopf subalgebra of B.

For plain unstable algebras, this is false, as pointed out to us by Hans-Werner
Henn. Consider the unstable algebra H∗(CP∞ × S2;Fp) ∼= Fp[x] ⊗ E(y), where
both x and y have degree 2. Turn the ideal generated by y into an unstable
subalgebra by adding 1. This is isomorphic, as an unstable algebra, to Fp ⊕

Σ2Fp ⊕ Σ2H̃∗(CP∞;Fp), which is not finitely generated.
All this discussion leads naturally to ask whether the same statement holds for

more general spaces.

Question. Let X be a finite space with π1X finite and n ≥ 1. Is H∗(X〈n〉;Fp)
finitely generated as an algebra over the Steenrod algebra?
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Orbivariant K-theory

André Henriques

Orbispaces are spaces with extra structure. The main examples come from topo-
logical group actions X G and are denoted [X/G], their underlying space, or
coarse moduli space being X/G. By definition, every orbispace is locally of the
form [X/G], but the group G might vary.

We shall work with orbispaces whose coarse moduli spaces are CW-complexes,
and whose stabilizer groups are compact Lie groups. We also require the stratifi-
cation of the coarse moduli space by the type of stabilizer group to be compactible
with the CW structure. A convenient model for an orbispace is then given by a
topological groupoid [2, 3].

An orbispace always comes with a map to its coarse moduli space. By a sub-
orbispace X′ ⊂ X, we shall mean an orbispace obtained by pulling back along a
subspace of the coarse moduli space.

If X is an orbispace modeled by a topological groupoid G, then a vector bundle
over X is a vector bundle over the space of objects of G equipped with an action
of the arrows of G. It is tempting to define K-theory as the Grothendieck group
of vector bundles. But, as shown in [1], this is not always a good idea, even if X

is compact. For example, one needs the following condition to prove excision:

Definition 1 (Lück, Oliver [1]). An orbispace X has enough vector bundles if for
every suborbispace X′ ⊂ X and every finite dimensional vector bundle V on X′,
there exists a finite dimensional vector bundle W on X and a linear embedding
V →֒W .

This condition is not always satisfied (see Example 3, and [1, Section 5]).

Theorem 2. Let X be a compact orbispace (i.e., its coarse moduli space is com-
pact). Then the following are equivalent:

(1) X is a global quotient by a compact Lie group, i.e., X = [X/G] for some
compact Lie group G acting on a compact space X.

(2) X has enough vector bundles.
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(3) There exists a vector bundle W on X such that for every point x the action
of Aut(x) on Wx is faithful.

Proof. 1. ⇒ 2. Let X G be such that X ≃ [X/G], and let X ′ ⊂ X be the G-
invariant subspace corresponding to X′ ⊂ X. Let V be a vector bundle on X′ and
let Ṽ be the corresponding G-equivariant vector bundle on X ′. It is well known
that any equivariant vector bundle Ṽ on a compact space X ′ embeds in one of the
form X ′×M , where M is a representation of G. Let W be the vector bundle on X

corresponding to X ×M → X . Since Ṽ embeds in X ×M , the bundle V embeds
in W .

2. ⇒ 3. Suppose that X has enough vector bundles, and let {Ui} be a finite
cover of X such that Ui ≃ [Xi/Gi]. Let Mi be faithful representations of Gi, and
let Vi be the vector bundles on Ui corresponding to Xi ×Mi → Xi. Since Mi is
faithful, the stabilizer groups act faithfully on the fibers of Vi. Let Wi be vector
bundles on X such that Vi →֒ Wi, and let W :=

⊕
Wi. Clearly, the stabilizer

groups act faithfully on the fibers of W .
3. ⇒ 1. Let P be the total space of the frame bundle of W . The stabilizer

groups act faithfully on the fibers of W , hence they act freely on the fibers of P .
Having no stabilizer groups, P is a space. We have X = [P/O(n)] and so X is a
global quotient. �

Example 3. Let P → S3 be the principal BS1-bundle classified by

1 ∈ [S3, B(BS1)] = Z.

Then X := [P/ES1] does not have enough vector bundles.

Proof. We show that X is not a global quotient by a compact Lie group. Indeed,
suppose that X = [X/G]. Since X → S3 is homotopically non-trivial, the map
X → S3 needs to be be a non-trivial G-fiber bundle with fiber S1\G G. Let
H = AutG(S1\G) be the structure group of that bundle. All compact Lie groups
have trivial π2, therefore [S3, BH ] = π3BH = π2H = 0. The bundle X → S3 is
trivial, a contradiction. �

More generally, any S1-gerbe whose class in H3 is non-torsion is an orbispace
without enough vector bundles.

Since there exist orbispaces without enough vector bundles, vector-bundle-K-
theory is not a cohomology theory. So we need another definition for K-theory of
orbispaces. Our preferred one, inspired by [4], is the following:

Definition 4. Let C := C × X be the trivial bundle. A cocycle for K0(X) is
a chain complex of C-modules (not necessarily locally constant) which is locally
quasi-isomorphic to a bounded complex of finite dimensional vector bundles. Two
K0-cocycles on X represent the same element in K0(X) if they extend to a K0-
cocycle on X× [0, 1].

If X is a space (by which we mean that X is a CW-complex, not necessarily
compact) this definition recovers the usual topological K-theory of X.
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The Farrell-Jones conjecture in algebraic K-theory for
word-hyperbolic groups

Arthur Bartels

(joint work with Wolfgang Lück and Holger Reich)

Let G be group and R be a ring. Roughly speaking, the Farrell-Jones conjecture
in algebraic K-theory [2] says that the algebraic K-theory of the group ring RG
can be computed from knowlege of the algebraic K-theory of RV , where V runs
over the family VCyc of virtually cyclic subgroups of G. More precisely, it asserts
that the assembly map

αVCyc : HG
∗ (EVCycG;KR)→ K∗RG

is an isomorphism.
In this talk I discussed applications and the proof of the following result.

Theorem. The Farrell-Jones conjecture in algebraic K-theory holds for word-
hyperbolic groups.

This result implies that for a torsion-free word-hyperbolic group the Whitehead
group Wh(G) and the reduced class group K̃0(ZG) are trivial. There are also
applications to the Bass conjecture for word-hyperbolic groups, the Kaplansky
conjecture and Waldhausen Nil-groups. For example, if G is a torsion-free word-
hyperbolic group that is in addition sofic and F is a skew-field, then there are
no non-trivial idempotents in FG, i.e., the Kaplansky conjecture holds in this
situation.

The proof uses controlled algebra to express the assembly map αVCyc as a forget-
control map, a transfer argument and a mixture of large scale and small scale
geometry to “gain control”. An important ingredient is the following equivariant
version of the fact that word-hyperbolic groups have finite asymptotic dimension.

Theorem. Let G be a word-hyperbolic group and X be the compactification of the
Rips complex X of G. Then there is a number N ∈ N depending only on G, such
that for every R > 0 there is a cover UR of G×X by open sets with the following
properties:

(1) dimUR ≤ N ;
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(2) for every x ∈ X the Lebesgue number of the induced cover of G × {x} is
at least R;

(3) for U ∈ UR and g ∈ G we have g(U) ∈ UR, where we consider the diagonal
action of G on G×X;

(4) for U ∈ UR the set {g | gU ∩ U 6= ∅} is a virtually cyclic subgroup of G.

The proof of this theorem uses Mineyev’s contruction of a flow space for hy-
perbolic groups [3] and a generalization of the long and thin cells of Farrell and
Jones [1].
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Morita cycles in the homology of Out(Fn)

Karen Vogtmann

(joint work with James Conant)

The abelianization map from a finitely-generated free group Fn to the free abelian
group Zn induces a map on outer automorphism groups which is an isomorphism
onto GL(n,Z) for n = 2, but not for any n > 2. There are many other represen-
tations from finite-index subgroups of Out(Fn) onto to arithmetic groups, but we
know that Out(Fn) itself is not arithmetic for any n ≥ 3. Although not arithmetic,
it shares a large number of properties with arithmetic groups. Many of these fea-
tures are cohomological, including strong cohomological finiteness properties and
(virtual) duality.

In this talk I described three chain complexes which can be used to study the
rational homology of Out(Fn) and gave some indication of how they are related.
I then used them to study certain cycles defined by S. Morita in [8] (see also [9]),
proving in particular that they are unstable in the strongest possible sense.

The first of the three chain complexes is obtained by considering the action
of Out(Fn) on the spine of Outer space. This spine is a finite-dimensional, con-
tractible cubical complex on which Out(Fn) acts with finite point stabilizers and
compact quotient, so that the quotient is a rational K(π, 1) for Out(Fn). The
chain complex is the CW-chains on the quotient; the k-chains are indexed by pairs
consisting of a graph G and a forest F ⊂ G with k edges. If we consider base-
pointed graphs, we get an analogous cube complex whose quotient computes the
homology of Aut(Fn). The Degree theorem of [4] proves that this cube complex
contains small invariant subcomplexes Ak which are k-dimensional and (k − 1)-
connected, so act as skeleta for the entire complex. The quotient of Ak by Aut(Fn)
is not only small, making low-dimensional homology calculations possible, but it
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is independent of n for n > 5k/4, proving that the (k − 1)-st rational homology
of Aut(Fn) is independent of n in this range. Using homotopy-theoretic meth-
ods, S. Galatius has recently completely determined the stable rational homology,
which turns out to be trivial in all dimensions [3].

The second chain complex is the Chevalley-Eilenberg complex for the Lie alge-
bra of an infinite-dimensional symplectic Lie algebra ℓ∞ defined by M. Kontsevich
in [6, 7]. Kontsevich proved that the homology of ℓ∞ is basically equal to the
direct sum of the homologies of the groups Out(Fn) for all n. S. Morita recog-
nized the positive part of the finite approximation ℓg of ℓ∞ to be the same as the
Lie algebra hg,1 associated to a surface of genus g with one boundary component;
he then used a certain “trace” function which he had defined on hg,1 to define
cocycles on the chain complex [8]. He proved that the first of these cocycles gives
a non-trivial cohomology class, which by Kontsevich’s theorem corresponds to an
element of H4(Out(F4)). It was known that H4(Out(F4)) ∼= Q [5], so that this
element gives all of the homology in this rank and dimension.

The third chain complex is a graphical interpretation of the subcomplex of
symplectic invariants in the Chevalley-Eilenberg complex. Since the symplectic
Lie algebra is simple, this subcomplex is quasi-isomorphic to the entire complex.
Following Kontsevich, we use Weyl’s invariant theory to identify symplectic in-
variants with pairs consisting of a trivalent graph G and a forest F ⊂ G, where
the forest must contain all of the vertices of G. When Morita’s cocycles are rein-
terpreted on the subcomplex of symplectic invariants, they have a very simple
description in terms of graphs, and it was shown in [1] that the second cocycle in
Morita’s series also gives a non-trivial cohomology class, this time corresponding
to an element of H8(Out(F6)). Recently Ohashi computed that H8(Out(F6)) ≃ Q

[10], so again this element gives all of the homology in this rank and dimension.
The graphical version of Morita’s cocycles can be realized back in the original

chain complex for the spine of Outer space, where it is obvious that they lift to
cycles for the homology of Aut(Fn). By Galatius’ theorem, these cycles must
vanish eventually under the stabilization maps Hk(Aut(Fn)) → Hk(Aut(Fn+1)),
but in general they are in dimensions far below the known stable range. We prove
that in fact they vanish after a single stabilization, so that they are very unstable
indeed. The talk ended with the conjecture that all of the Morita classes are
non-trivial; also with speculation that the Morita classes may generate all of the
unstable rational homology of Out(Fn) and that the map Out(Fn) → GL(n,Z)
described in the first paragraph of this abstract may map Morita classes non-
trivially in some dimensions.
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Positive scalar curvature with symmetry

Bernhard Hanke

We develop equivariant analogues of the construction techniques introduced by
Gromov-Lawson and Schoen-Yau for positive scalar curvature metrics. Part of the
nonequivariant discussion can be translated more or less directly to the equivariant
context. As shown in [1], this applies in particular to the surgery principle [2],
which states that the class of smooth manifolds admitting metrics of positive scalar
curvature is closed under surgery of codimension at least 3. However, the following
equivariant bordism principle requires a refined argument because it is based on
handle cancelation techniques that in general do not carry over to the equivariant
world (which is illustrated by the failure of equivariant analogous of the h- and
s-cobordism theorems):

Theorem A. Let G be a compact Lie group and let Z be a compact connected
oriented G-bordism (with an orientation preserving G-action) between the closed
G-manifolds X and Y . Assume the following:

i. The cohomogeneity of Z is at least 6,
ii. the inclusion of maximal orbits Ymax →֒ Zmax is a (nonequivariant) 2-

equivalence (i.e., a bijection on π0, an isomorphism on π1 and a surjection
on π2),

iii. each singular stratum of codimension 2 in Z meets Y .

Then, if X admits a G-invariant metric of positive scalar curvature, the same is
true for Y .

We remark that by a classical result of Lawson-Yau [3], closed connected ef-
fective G-manifolds admit G-invariant metrics of positive scalar curvature if the
identity component of G is non-abelian. Hence, Theorem A is useful mainly for
finite or for toral G.

Our Theorem A is almost a direct analogue of the corresponding nonequivari-
ant result [6, Theorem 3.3]. In particular, the dimension restriction i. and the
connectivity restriction for the inclusion Ymax →֒ Zmax stated in point ii. translate
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to analogous requirements in the nonequivariant setting if G = {1}. However, if G
is not trivial, we need an additional assumption on codimension-2 singular strata.

Theorem A is useful for constructing equivariant metrics of positive scalar cur-
vature only if it can be combined with powerful structure results for geometric
equivariant bordism groups implying that the manifold X in Theorem A can be
assumed to admit an equivariant positive scalar curvature metric under general
assumptions on the manifold Y . Two main difficulties occur at this point. Firstly,
explicit geometric generators of equivariant bordism groups are known only in a
very limited number of cases. Secondly, whereas conditions i. and ii. in Theorem A
can be achieved under fairly general assumptions on the manifold Y (by performing
appropriate surgeries on Zmax), it is a priori not clear under what circumstances
condition iii. holds.

We present a solution to the last mentioned problem if G = S1 and the G-
action on Z is fixed point free. The idea we use is to alter a given bordism Z
by cutting out equivariant tubes connecting Y with each of the codimension-2
singular strata in Z that are disjoint from Y . This replaces the bordism Z and
the manifold Y by other manifolds Z ′ and Y ′ so that each codimension-2 singular
stratum in Z ′ meets Y ′. In particular, Theorem A can be applied to Z ′ (after
some more manipulations of Z ′, but we omit these details here). We must now
understand how Y can be recovered from Y ′. A closer inspection of the situation
shows that Y ′ is obtained from Y by adding certain codimension-2 singular strata
with finite isotropies. Conversely, Y can be reconstructed from Y ′ by a kind
of codimension-2 surgery process that removes these additional singular strata
and puts back free ones instead. We show by a somewhat involved geometric
argument that this surgery step preserves the existence of S1-invariant positive
scalar curvature metrics under fairly general assumptions. Roughly speaking, we
replace the “bending outwards” process in the surgery step due to Gromov-Lawson
and Schoen-Yau by a “bending inwards” process. We remark that this kind of
positive scalar curvature preserving codimension-2 surgery only works under the
additional S1-symmetry on Z.

With the help of this surgery method, we conclude that the original manifold Y
admits an invariant metric of positive scalar curvature if the manipulated one Y ′

admits such a metric. Arguing in this rather roundabout manner, assumption iii.
of Theorem A is no longer a true obstacle against the construction of equivariant
positive scalar curvature metrics on fixed point free S1-manifolds. This insight is
now combined with a classical theorem of Ossa [4], which states that fixed point
free S1-manifolds (satisfying the additional technical hypothesis formulated in the
next theorem) are S1-boundaries, to complete the proof of the following result, an
equivariant version of the well known existence result of positive scalar curvature
metrics on closed simply connected non-spin manifolds of dimension at least 5 due
to Gromow and Lawson [2]:

Theorem B. Let M be a connected closed oriented fixed point free S1-manifold
so that all normal bundles around H-fixed components (H ⊂ S1 being a closed
subgroup) in M are complex S1-bundles. If the dimension of M is at least 6,
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the union of maximal orbits of M is simply connected and does not admit a spin
structure, then M admits an S1-invariant metric of positive scalar curvature.

We remark that no additional assumption on codimension-2 singular strata
in M is needed. It is not clear at present to what extent Ossa’s theorem can be
generalized to the spin case so that we leave the discussion of a corresponding
S1-equivariant analogue of Stolz’ theorem [5] for later consideration.
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The functor category Fquad

Christine Vespa

1. Introduction

In recent years, one of the categories of functors which has been studied is the
category F(p) of functors from the category Ef of finite dimensional Fp-vector
spaces to the category E of all Fp-vector spaces, where Fp is the prime field with
p elements. One algebraic motivation for the special interest in the category F(p)
follows from the link with the stable cohomology of general linear groups. In fact,
Dwyer proved in 1980 [3] that, for any finite objects P and Q of F(p) (i.e., P and Q
admit finite composition series), the following inverse system

· · · → Hk(GLn+1

(
Fp),Mn+1

)
→ Hk(GLn

(
Fp),Mn

)
→ · · · ,

where Mn = HomE(P (Fn
p ), Q(Fn

p )), stabilizes. In 1999, Suslin proved in the
appendix of [4] and, independently, Betley showed [2] that there exists an iso-
morphism between the stable value of the previous system and the extension
groups Extk

F(p)(P,Q). Whereas the stable cohomology groups are not readily
accessible by direct computation, this theorem reduces their determination to
homological algebra calculations in the category F(p) where we have powerful
computational tools.

Then, it is natural to seek to construct categories of functors for other families
of algebraic groups and, in particular, the orthogonal groups.

This report presents the construction of a category of functors Fquad which
has some good properties as a candidate for the orthogonal group over the field
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with two elements and to give several results about the structure of this category.
Henceforth, we will denote the category F(2) by F .

We refer the interested reader to [5, 6, 7, 8] for details.

2. Definition of the category Fquad

Let Eq be the category having as objects finite dimensional F2-vector spaces
equipped with a non-degenerate quadratic form and with morphisms linear maps
which preserve the quadratic forms. Observe that all morphisms of Eq are injec-
tive linear maps; however, the constructions which relate the category F and the
stable cohomology of general linear groups use, in an essential way, the existence
of retractions in the category Ef . As a consequence, to consider similar construc-
tions in the category Fquad, we have to add orthogonal projections formally to Eq.
For this, we imitate the construction of the coSpan-category coSp(C) of a cate-
gory C equipped with pushouts introduced by Bénabou [1]. In this construction,
the pushout is used to define the composition. However, the category Eq does not
admit pushouts. To resolve this difficulty, we define the notion of a pseudo-pushout
in Eq.

Definition. Let f : V → W ≃ V⊥V ′ and g : V → X ≃ V⊥V ′′ be morphisms
of Eq. The pseudo-pushout of f and g is the object, unique up to isometry,X⊥

V
W ≃

V⊥V ′⊥V ′′ in Eq.

This definition uses the non-degeneracy of the spaces in an essential way and
allows the construction of a category Tq which generalises the category of Bénabou.

Definition. The category Tq is the category having as objects those of Eq and, for
V and W objects of Tq, HomTq

(V,W ) is the set of equivalence classes of diagrams

in Eq of the form V
f
−→ X

g
←− W for the equivalence relation generated by the

following relation R: V
f
−→ X1

g
←− W R V

u
−→ X2

v
←− W if there exists a

morphism α in Eq such that α ◦ f = u and α ◦ g = v. The composition is given by
the pseudo-pushout.

For a morphism f : V → W of Eq, the morphism of Tq represented by the

diagram: W
Id
−→ W

f
←− V is a retraction of that represented by the diagram:

V
f
−→W

Id
←−W .

Definition. The category Fquad is the category of functors from Tq to E .

The category Fquad is abelian and has enough injective and projective objects.
The Yoneda lemma gives a set of projective generators of Fquad indexed by a set R
of representatives of isometry classes of non degenerate quadratic spaces. These
projective objects will be denoted PV , for an element V of R.

3. Some results about the simple objects of Fquad

A first family of simple objects of Fquad is obtained thanks to the following theo-
rem, which relates the category Fquad to the category F .
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Theorem. There exists a fully-faithful, exact functor ι : F →֒ Fquad which pre-
serves the simple objects.

To define the subcategory Fiso of Fquad, we need to introduce the category Eqd
having as objects finite dimensional F2-vector spaces equipped with a (possibly de-
generate) quadratic form and with morphisms, injective linear maps which preserve
the quadratic forms. Since Edeg

q admits pullbacks, the category of spans Sp(Edeg
q )

is defined, where the Span-category Sp(C) of a category C equipped with pullbacks
is the dual construction of the coSpan-category. The category Fiso is defined to
be the category of functors from Sp(Edeg

q ) to E . The category Fiso is related to
the category Fquad by the following theorem.

Theorem. There exists a fully-faithful, exact functor κ : Fiso → Fquad which
preserves the simple objects.

We obtain the following classification of the simple objects of the category Fiso.

Theorem. There is a natural equivalence Fiso ≃
∏

V ∈S F2[O(V )]−mod of cate-
gories; where S is a set of representatives of isometry classes of quadratic spaces
(possibly degenerate) and O(V ) is the orthogonal group associated to the quadratic
space V .

The object of Fiso which corresponds, via this equivalence, to the module
F2[O(V )] is denoted by IsoV and will be called the isotropic functor associated to
the quadratic space V .

To exhibit the existence of other simple objects in the category Fquad we de-
compose certain projective generators. We denote by H0 (resp. H1) the non-
degenerate quadratic space of dimension two such that the Arf invariant is equal
to 0 (resp. to 1). We obtain the following decompositions of the projective objects
PH0

and PH1
, in which new functors Mix0,1 and Mix1,1 of Fquad, called mixed

functors, appear and where Q is the projective object of F given by the Yoneda
lemma and associated to the vector space F⊕2

2 .

Theorem. We have the following direct sum decompositions:

PH0
= ι(Q)⊕ (Mix⊕2

0,1 ⊕Mix1,1)⊕ κ(IsoH0
);PH1

= ι(Q)⊕Mix⊕3
1,1 ⊕ κ(IsoH1

).

For ε ∈ {0, 1}, the functor Mixε,1 is neither an object of F , nor an object
of Fiso. The functor Mixε,1 is isomorphic to a subfunctor of ι(PF

F2
) ⊗ κ(Iso(x,ε))

where Iso(x,ε) is the isotropic functor associated to the degenerate quadratic space
of dimension one, generated by x and such that q(x) = ε.

The decompositions of the projective objects PH0
and PH1

into indecomposable
summands give rise to a complete classification of the simple functors of Fquad

which are non-zero on at least one of the spaces H0 or H1. The definition of
polynomial functor extends to Fquad. An important application of the previous
classification is the description of the polynomial functors of the category Fquad.

Theorem. The polynomial functors of Fquad are in the image of the functor ι.
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4. Open questions

(1) Does the analogue, for the orthogonal groups over F2, of the system de-
scribed in the introduction stabilize?

(2) What is the analogue of the Betley-Suslin theorem for the category Fquad?
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Positive scalar curvature and the Novikov conjecture

Thomas Schick

(joint work with Bernhard Hanke, Dieter Kotschick, John Roe)

Let M be a closed smooth spin manifold of dimension m. There are important
obstructions to the existence of a Riemannian metric on M with positive scalar
curvature, based on the Dirac operator. Particularly powerful among them is the
K-theoretic index in the (real) K-theory of the (real) reduced C∗-algebra of the
fundamental group, αred(M) ∈ KOm(C∗

redπ1M), a certain completion of the group
ring Rπ1M . Closely related is αmax(M) ∈ KOm(C∗

maxπ1M), mapped to αred(M)
under the canonical homomorphism, both constructed in [10, 8, 9].

However, work of Gromov-Lawson [4, 3] provides other invariants which also
use the index of Dirac operators, e.g., based on enlargeability, to be explained
below.

Question. How much information is contained in αred(M) (or αmax(M))?

Answer. Stephan Stolz [12] proves that the strong Novikov conjecture (i.e., the
injectivity of the Baum-Connes map KO∗(Bπ1M)→ KO∗(C

∗
redπ1M) for torsion-

free π1M) implies the stable Gromov-Lawson-Rosenberg conjecture: 0 = αred(M)
if and only if the product of M with a sufficiently high power of the Bott-manifold
admits a metric of positive scalar curvature. This implies that, as long as π1(M)
satisfies the strong Novikov conjecture, αred(M) contains all index theoretic ob-
structions to positive scalar curvature on M .

(Note however, that the counterexamples to the unstable Gromov-Lawson-
Rosenberg conjecture of [11, 1] show that additional, non index-theoretic, ob-
structions, exist as well.)



2622 Oberwolfach Report 43/2006

The goal of the talk is to relate αred(M) to enlargeability without assuming the
Novikov conjecture. We need the following definition:

Definition. A manifold M as above is called enlargeable if for every ε > 0 there
is a connected covering Mε → M and a map fε : Mε → Sm with the following
properties:

(1) fε is constant outside a compact subset of Mε.
(2) The degree of fε is not zero.
(3) fε is ε-Lipschitz (where we use the lift of a fixed Riemannian metric on M ,

and the standard metric on Sm).

Examples of enlargeable manifolds are manifolds with non-positive sectional
curvature.

Gromov and Lawson [4] introduced enlargeability and proved that enlargeable
spin manifolds do not admit a metric of positive scalar curvature, by producing
bundles of very small curvature such that the twisted Dirac operator has non-trivial
index.

Theorem. (1) (Hanke-S. [5, 6]): If M is an enlargeable spin manifold, then
0 6= αmax(M) ∈ Km(C∗

maxπ1M).
(2) (Hanke-Kotschick-Roe-S.): If M is an enlargeable spin manifold, then 0 6=

αred(M) ∈ Km(C∗
redπ1M).

Of course, the second result implies the first one. However, the first easily gener-
alizes to other situations, where bundles with small curvature are used to produce
obstructions to positive scalar curvature, e.g., if M is only area-enlargeable. The
proof of the second result, on the other hand, makes essential use of the special
geometric situation given by enlargeability. It uses methods from coarse geome-
try [7].

We actually derive (along the way) that enlargeability obstructs positive scalar
curvature on the universal covering of M for any metric coarsely equivalent to a
π1(M)-invariant metric.

Note that the result implies the Novikov conjecture, provided we can represent
every class of KO∗(BΓ) by fundamental classes of enlargeable spin manifolds with
fundamental group Γ.

Question. (1) Gromov’s notion of infinite (stable) K-area [2] is a particularly
efficient way to obstruct positive scalar curvature, based on the index of
the Dirac operator twisted with almost flat bundles. Does this imply
αmax(M) 6= 0? It is quite likely that one can prove this rather easily using
the methods of [6]. A problem is that Gromov treats stable K-area using
the family index theorem; for this, a suitable connection to αmax has not
yet been worked out.

(2) Does this (at least in special cases like for area-enlargeability) carry over
to αred(M)? This seems to be completely open at the moment.

(3) How much of the Novikov conjecture follows from the Theorem, i.e., how
much of KO∗(BΓ) can be represented by fundamental classes of enlarge-
able spin manifolds with fundamental group Γ?
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(4) What is the relation of αred(M) or of αmax(M) to the codimension 2
obstructions invented by Gromov-Lawson in [4] (particularly powerful for
3-dimensional aspherical manifolds)?
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Symmetric powers of spheres

Neil P. Strickland

(joint work with Johann Sigurdsson)

This is a preliminary report on a project to understand, extend and consolidate
a dense network of connections between various phenomena in stable homotopy
theory. In this abstract we map out certain parts of this network.

One way into the maze is to consider symmetric powers of spheres. Given a
finite dimensional vector space V , we have a sphere SV = V ∪ {∞}. We can
then form the n’th unstable symmetric power (SV )n/Σn. This is the V ’th space
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in an orthogonal prespectrum, which we call SPn(S0). By the Dold-Thom the-
orem [4], the colimit SP∞(S0) = lim→n SPn(S0) is just the integer Eilenberg-
MacLane spectrum H . This gives an interesting filtration of H , whose quotient
spectra SP

n
(S0) = SPn(S0)/ SPn−1(S0) have a variety of different descriptions.

One theme of our work is to try to provide uniform combinatorial models for
as many spaces as possible. For the SPn(S0) themselves, the best we can do is
as follows. Let F be the category of finite sets and bijections. This is symmetric
monoidal under the disjoint union, so it has a K-theory spectrum K(F), which is
well-known to be equivalent to S0. Next, a multiset means a finite set A in which
each element a is assigned a multiplicty ν(a) > 0. A morphism from (A, ν) to
(B,µ) is a function f : A→ B that is bijective up to multiplicity, in the sense that∑

f(a)=b ν(a) = µ(b). We write M for the category of multisets, and Mk for the

subcategory where each point has multiplicity at most k. A theorem of Kathryn
Lesh [10] then shows that K(Mk) = SPk(S0), whereas K(M) = SP∞(S0) = H .

Using Lesh’s theorem and its proof, we find that SP
n
(S0) is the unreduced

suspension of B(Mn−1
n ), where Mn−1

n is the category of multisets of total mul-
tiplicity n and maximum multiplicity less than n. We also have B(Mn−1

n ) ≃
S(∞Wn)/Σn, where Wn = {x ∈ Rn |

∑
i xi = 0} and S(·) denotes the unit

sphere. For another description, let P(A) denote the partially ordered set of par-
titions of a finite set A. This has a smallest element ⊥ (the partition as a single
block) and a largest element ⊤ (the partition into blocks of size 1). This implies
that the geometric realisation P (A) = |P(A)| is contractible. However, we can de-

fine a subcomplex Ṗ (A) as follows. The simplices in P (A) are indexed by chains

σ = {π0 < π1 < · · · < πd} in P(A), and we let Ṗ (A) denoe the union of those

simplices σ for which σ 6⊇ {⊥,⊤}. We then put P̂ (A) = P (A)/Ṗ (A). We also
write WA = {x : A → R |

∑
a x(a) = 0}, and note that ΣA acts on the (based)

space SWA ∧ P̂ (A), so we can form the homotopy orbit space (SWA ∧ P̂ (A))hΣA
.

A theorem of Arone and Dwyer [1] tells us that this is equivalent to SP
n
(S0),

where n = |A|.
This allows us to make contact with a number of other interesting ideas. Firstly,

it is known that the space P̂ (A) is a wedge of spheres, with only one nontrivial
homology group, which is closely related to the operad for Lie algebras. There
are some issues about grading, signs and duality here. The nicest way to package

them is to consider instead the spectra Q(A) = F (P̂ (A), SWA). The theorem
is then that H∗Q(A) = Lie(A), concentrated in degree zero. Here Lie(A) is the
space of Lie words in variables {xa | a ∈ A} that involve each variable exactly
once, or in other words, the A’th space in the operad for Lie algebras. This
suggests that the spectra Q(A) should also form an operad. This is in fact the
case, as follows from the work of Michael Ching [3]. One way to see this is to show
that the contractible spaces P (A) form an operad, and that the operad structure

maps are open embeddings away from Ṗ (A). We can thus do a Pontrjagin-Thom

collapse to make the based spaces P̂ (A) into a cooperad. The spaces SWA also
form an operad in a natural way, and by combining these structures we make Q
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into an operad. To get the operad structure on P (A), one can show that P (A) is
homeomorphic to a certain space of rooted trees, where the leaves are labelled by
the elements of A, each internal edge is assigned a length, and the distance from
the root to any leaf is equal to one. The operad composition is then given by a
kind of grafting. Alternatively, one can show that P (A) is homeomorphic to the
space of maps h : C(A)→ [0, 1] (where C(A) is the set of nonempty subsets of A)
such that h({a}) = 0 and h(U ∪V ) = max(h(U), h(V )) whenever U∩V 6= ∅. (This
avoids the slightly fiddly equivalence relations implicit in the tree description.)

The spectra Q(A) also appear in Goodwillie calculus. (This is the reformulation
by Arone and Mahowald [2] of a result of Brenda Johnson [6].) The upshot is that
for any space X , there is a natural tower of spaces

0 = X0 ←− Ω∞Σ∞X = X1 ←− X2 ←− X3 ←− · · ·

with inverse limit X , such that the fibre of Xn → Xn−1 is Ω∞(F (P̂ (n), X(n))hΣn
).

In particular, when X = S1 we have Xn = Ω∞ΣQ(n). We have still not fully un-
derstood the relationship between this appearance of Q(A) in Goodwillie calculus
and its previous appearance (in a slightly different form) in the symmetric power
filtration. One of our main tasks is to elucidate this. In both appearances, the
rôle of the operad structure is mysterious.

So far we have worked integrally, but many more interesting phenomena ap-
pear if we localise at a prime p (which we do implicitly from now on). Firstly,

it is known that SP
n
(S0) = 0 unless n is a power of p, so we need only consider

the spectra H(k) = SPpk

(S0). These filter the integer Eilenberg-MacLane spec-
trum H , and there is an analogous filtration of the mod p Eilenberg-MacLane
spectrum H by subspectra H(k). It is known that the resulting filtration of

the Steenrod algebra H
∗
H is by the length of admissible monomials. There is

some interesting algebra related to the dual filtration of H∗H , which we have
not yet fully understood. It was shown by Arone and Dwyer that the spec-

tra L(k) = Σ−kH(k)/H(k − 1) = Σ−kSP
pk

(S0) can be described in terms of the
poset of subgroups of (Z/p)k and thus in terms of the Steinberg module and Hecke
algebra for GLk(Z/p). This makes contact with various other applications of the
Steinberg module in topology, notably in various papers of Mitchell, Priddy and/or
Kuhn (see [11, 12, 7], for example). As the spectra H(k) give a multiplicative fil-
tration of the ring spectrum H , we find that the quotients L(∗) form a differential
graded ring object in the homotopy category of spectra, so the spaces Ω∞L(∗)
give a differential graded ring in the homotopy category of spaces. It is known
that this object is chain homotopy equivalent to Z (considered as a discrete ring
in grading zero); this was conjectured by Whitehead, and later proved by Kuhn
and Priddy [9].

Now let K(n) denote Morava K-theory. One can show that the chain com-
plex K(n)∗L(∗) is contractible, either by a direct argument, or by applying the
Bousfield-Kuhn functor [8] to the Whitehead conjecture. Moreover, one can show
that the groups K(n)∗L(k) are built from the Steinberg modules for elementary
abelian subgroups of the formal group for K(n). Similar descriptions can be given
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for many other parts of the theory, either in Morava K-theory itself, or in the ap-
proximation given by the Hopkins-Kuhn-Ravenel generalised character theory [5].
This in turn leads to many connections with the study of power operations in
Morava E-theory.
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Gebäude 25.22
Universitätsstraße 1
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