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Introduction by the Organisers

The workshop was organized by V. Bangert (Freiburg), Yu. D. Burago (St. Peters-
burg) and U. Pinkall (Berlin). Out of the 47 participants 22 came from Germany,
8 from the United States, 7 from Switzerland, 4 from Russia, 4 from England and
2 from France.

The official program consisted of 21 lectures and therefore left plenty of space
for fruitful informal collaboration. As a tradition in this meeting there always is
a series of talks that constitute a small course on a chosen topic of current in-
terest. This time this course consisted of three lectures by V. Schroeder (Zürich)
and S. Buyalo (Sankt-Petersburg) on “Asymptotic geometry of Gromov hyperbolic
spaces”. In addition there were several informal talks organized by the partici-
pants, among them an evening devoted to topics related to visualization.
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The program covered a wide range of new developments in geometry. These came
from four major topics:

• Eight talks concerned recent progress in the geometry of submanifolds in
special geometries. In particular many exiting new results were reported
on surfaces in various three- or four-dimensional spaces, including three-
dimensional Lie-groups.

• Five talks were devoted to various topics in Riemannian geometry.
• Five talks concerned the extension of ideas from differential geometry to

more general spaces like discrete groups, polyhedra or manifolds with cur-
vature bounds in the style of Alexandrov. These five talks also included
the mentioned small course.

• Finally there were three talks that do not fit the above categories. They
were devoted to integral geometry, billiards and the volume of hyperbolic
manifolds.

The wide range of topics provided a particularly pleasing environment for the
young participants (among them six Phd-students).
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Abstracts

Shape and symmetry — noncompact symmetric spaces

Jürgen Berndt

(joint work with Hiroshi Tamaru)

Elie Cartan classified in the 1930s the isoparametric hypersurfaces in the real
hyperbolic space RHn. This result easily leads to the classification of homogeneous
hypersurfaces in RHn. Homogeneous hypersurfaces arise as principal orbits of
cohomogeneity one actions. An action is of cohomogeneity one if the orbit space
is one-dimensional. Our aim is the classification of cohomogeneity one actions on
Riemannian symmetric spaces of noncompact type.

Let M be a connected irreducible Riemannian symmetric space of noncompact
type and H a connected closed subgroup of the isometry group of M acting on
M with cohomogeneity one. The orbits of this action form either a Riemannian
foliation on M , or there exists exactly one singular orbit F . We denote by M the
set of all cohomogeneity one actions on M up to orbit equivalence. Then M is a
disjoint union of the subsets MF and MS corresponding to the case of foliation
and singular orbit.

Our first result says that MF is isomorphic to (RPr−1 ∪ {1, . . . , r})/Aut(DD).
Here, r is the rank of M and Aut(DD) is the symmetry group of the Dynkin
diagram associated to M . Aut(DD) acts naturally on the vertices of the Dynkin
diagram, which are simple roots and form a set {1, . . . , r} of r elements, and on
the projective space of the real vector space spanned by the simple roots.

We decompose MS into two disjoint subsets M0
S and M+

S corresponding to
the case when the singular orbit F is totally geodesic or not. We prove that M0

S

corresponds to the congruence classes of reflective submanifolds F of M for which
the perpendicular reflective submanifold F⊥ has rank one, together with five con-
gruence classes of non-reflective totally geodesic submanifolds which are all related
to the exceptional Lie group G2. Finally, we determine M+

S explicitly for complex
hyperbolic spaces and the Cayley hyperbolic plane. For quaternionic hyperbolic
spaces we reduce the classification problem to a problem from quaternionic linear
algebra. For higher rank symmetric spaces we show that two cases can occur.
Firstly, the action is a natural extension from a cohomogeneity one action on a
totally geodesic submanifold determined by a subset of a set of simple roots as-
sociated to M . Secondly, the action is constructed in a similar way to the rank
one case from a gradation of the Lie algebra of the isometry group of M which is
determined by a simple root vector.
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The principal kinematic formula in hermitian vector spaces

Andreas Bernig

(joint work with Joseph H. G. Fu)

The classical principal kinematic formula in Rn, proved by Blaschke, Chern, Had-
wiger and Santaló, is the following identity for compact convex sets K,L ⊂ Rn:

(1)

∫

Ō(n)

χ(K ∩ ḡL)dḡ =
∑

i+j=n

cijµi(K)µj(L).

Here Ō(n) is the isometry group of Rn, endowed with a Haar measure, χ is the
Euler characteristic (i.e. 1 if K ∩ ḡL 6= ∅ and 0 otherwise), the cij are explicitly
known constants and the µi are geometric invariants of convex bodies (the intrinsic
volumes).

In 1990 J. Fu asked what happens when one replaces Rn by Cn and Ō(n) by
Ū(n). We completely solved this question by showing that for K,L ⊂ C

n

(2)

∫

Ū(n)

χ(K ∩ ḡL)dḡ =
∑

K+l=2n,p,q

ck,l,p,qµk,p(K)µl,q(L),

with explicitly known constants ck,l,p,q and geometric invariants µk,p depending
on the hermitian structure.

The proof of (1) can be sketched as follows: fixing L, the left hand side of (1)
is a valuation, i.e. a map which is additive and continuous in K. Moreover, it
is Ō(n)-invariant. By a famous theorem of Hadwiger [7], the space of invariant
valuations is generated by the µi. From there it is easy to derive formula (1)
with unknown constants, and these constants can be fixed by plugging in balls of
various radii for K and L (template method).

In the hermitian case, the analogous first step was worked out by Alesker [1],

who computed the dimension of the space ValU(n) of Ū(n)-invariant valuations
and gave a basis. This yields (2) with unknown constants. However, the tem-
plate method is too weak to determine the constants, except in small dimensions
(Heunggi Park computed them for n = 2, 3 [8]).

Our method is more algebraic and uses the deep result (proved by Alesker [2])
that the space of valuations is a graded algebra satisfying Poincaré duality and
versions of the hard Lefschetz theorem. The kinematic formula is in some sense
the inverse of the product structure [6].

In order to compute the product structure of ValU(n), we introduce an sl2-
representation on this space. The Lefschetz decomposition then yields a diago-
nalization for the Alesker-Poincaré pairing. Computing the eigenvalues is rather
difficult and is based on the hard Lefschetz theorems and some surprising combi-
natorial formulas.

As first applications, we can generalize the Kang-Tasaki-Poincaré formulas for
complex projective spaces of all dimensions of all dimensions and prove a conjecture
concerning the positivity of the Alesker-Poincaré pairing. We also derive a whole
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array of kinematic formulas (where χ is replaced by another valuation µm,r on the
left hand side of (2)).

References

[1] S. Alesker, Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily
invariant valuations. J. Differential Geom. 63 (2003), 63–95.

[2] S. Alesker, The multiplicative structure on polynomial valuations. Geom. Funct. Anal. 14
(2004), 1–26.
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On constrained Willmore tori in the 4–sphere

Christoph Bohle

This report gives a short account of results on constrained Willmore tori in S4

that are obtained by an integrable systems approach similar to the one used by
Hitchin in his study [3] of harmonic tori. As a consequence of our main theorem,
all constrained Willmore tori in S4 can be constructed rather explicitly by methods
of complex algebraic geometry. For a detailed presentation of our results, see [2].

Definition. A conformal immersion f : M → S4 = R
4 ∪ {∞} of a compact

Riemann surface M into the conformal 4–sphere is called constrained Willmore if
it is a critical point of the Willmore functional W =

∫
|II̊ |2dA under infinitesimal

conformal variations (with II̊ denoting the tracefree second fundamental form).

Constrained Willmore surfaces are the solutions to a constrained variational
problem. The notion of constrained Willmore surfaces generalizes that of Will-
more surfaces, the critical points of W under all variations. The fact that both the
functional and the constraint are conformally invariant suggests an investigation
within the framework of Möbius geometry—like the quaternionic projective model
for the conformal geometry of S4 used in [2]—instead of its metric subgeometries.
The metric subgeometries occur in our study mainly as a source of several inter-
esting classes of examples of constrained Willmore surfaces, e.g. CMC surfaces in
3–dimensional space–forms, minimal surfaces in 4–dimensional space–forms and
Hamiltonian stationary Lagrangian surfaces in R

4.
A prototype for our main theorem is the following result on harmonic maps: a

harmonic map f : T 2 → S2 is either of finite type or conformal, i.e., holomorphic
or anti–holomorphic. More precisely, it is of finite type if deg(f) = 0 (Pinkall,
Sterling) and it is conformal if deg(f) 6= 0 (Eells, Wood). In the finite type case
there is a compact Riemann surface Σ attached to f , the so called spectral curve,
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and f is obtained by “algebraic geometric” or “finite gap” integration, which means
that it is the composition of a linear map into the (generalized) Jacobian of Σ and
a holomorphic map on (a subset of) the Jacobian.

Main Theorem. A constrained Willmore immersion f : T 2 → S4 is either of
finite type or “holomorphic”, i.e., super–conformal or Euclidean minimal.

In the “holomorphic” case the immersion f (or its differential) is given in terms
of meromorphic functions on the torus itself: every super–conformal immersion f
is the twistor projection CP

3 → HP
1 of a holomorphic curve in CP

3 and Euclidean
minimal means that there is a point ∞ ∈ S4 such that f : T 2\{p1, ..., pn} →
R4 = S4\{∞} is a Euclidean minimal surface with planar ends p1,...,pn (and its
differential is the real part of a meromorphic 1–form). As in the above prototype
result, the algebraic geometry needed to construct an immersion f that is of finite
type is more involved since f is given in terms of holomorphic functions on an
auxiliary higher dimensional abelian variety, the Jacobian of the spectral curve.
The main theorem generalizes the following previous results:

• CMC tori are of finite type (Pinkall, Sterling 1989, [5])
• Constrained Willmore in S3 are of finite type (Schmidt 2002, [6])
• Willmore tori in S4 with topologically non–trivial normal bundle are of

“holomorphic” type (Leschke, Pedit, Pinkall 2003, [4])

The proof of the main theorem is based on a quaternionic version of Hitchin’s
method for studying harmonic tori in S3 which provides a uniform and geometric
approach to proving and generalizing these previous results. The proof consists of
the following steps:

0.) Formulation of the Euler–Lagrange equation of constrained Willmore sur-
face as a zero–curvature equation with spectral parameter. This arises in
the form of an associated family ∇µ of flat connections on a trivial complex
rank 4 bundle which depends on a spectral parameter µ ∈ C∗.

1.) Investigation of the holonomy representations Hµ : Γ → SL4(C) of ∇µ.
2.) Non–trivial holonomy implies the existence of a polynomial Killing field

(which implies that f is of finite type).
3.) Trivial holonomy implies that f is of “holomorphic” type.

The main difficulty in implementing the strategy of [3] for constrained Willmore
tori is Step 1 of the proof. This is due to the fact that one has to deal with a va-
riety of degenerate cases of collapsing eigenvalues that might occur for the family
of SL4(C)–holonomies of ∇µ (in contrast to the case of harmonic maps into S3,
whose associated family of flat connections has SL2(C)–holonomy). The possible
holonomy representations are given by the following lemma which is proven us-
ing methods of quaternionic holomorphic geometry, in particular the geometric
approach [1] to the spectral curve based on the notion of Darboux transforms.
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Lemma. The associated family ∇µ of a constrained Willmore torus f : T 2 → S4

has a holonomy representation Hµ(γ) belonging to one of the following cases:

I. generically Hµ(γ) has 4 different eigenvalues that are non–constant as
functions of µ

II. generically Hµ(γ) has λ = 1 as an eigenvalue of multiplicity 2 and 2 simple
eigenvalues that are non–constant as functions of µ

IIIa. all holonomies Hµ(γ) are trivial, or
IIIb. generic holonomies Hµ(γ) have two 2×2 Jordan blocks with eigenvalue 1.

If f has topologically non–trivial normal bundle, its holonomy belongs to Case III.

In Cases I and II one can define a so called eigenline curve, i.e., the Riemann

surface Σ
µ→ C∗ that is the 4– or 2–fold branched covering of C∗ parametrizing

the non–trivial eigenlines of the holomorphic family of matrices µ 7→ Hµ(γ) for
γ ∈ Γ\{0} (this is independent of γ because Γ is abelian). To show that Σ can
be compactified we prove the existence of a polynomial Killing field, i.e., a family
of sections ξ of the endomorphism bundle that is polynomial in µ and satisfies
∇µξ(µ, .) = 0.

In Cases IIIa and IIIb we prove the existence of a polynomial family of ∇µ–
parallel sections of the rank 4–bundle over the torus (in Case IIIa) or the existence
of a polynomial Killing field ξ that is nil–potent (in Case IIIb). Investigating the
asymptotics for µ = 0 or µ = ∞ of such polynomial families of sections reveals
that the immersion has to be super–conformal or Euclidean minimal. Thus:

Theorem A. For a constrained Willmore immersion f : T 2 → S4 one of the
following holds:

I. f is of finite type and µ extends to a covering Σ
µ−→
4:1

CP
1,

II. f is of finite type and µ extends to a covering Σ
µ−→
2:1

CP
1,

IIIa. all holonomies are trivial and f is super–conformal or an algebraic Eu-
clidean minimal surface (i.e., the dual minimal surface has no periods),

IIIb. all holonomies are of Jordan type and f is a non–algebraic Euclidean min-
imal surface with planar ends.

If the normal bundle is topologically trivial and the immersion f is not Euclidean
minimal it belongs to Cases I or II. If the normal bundle of an immersion f is
topologically non–trivial, it belongs to the “holomorphic” Cases IIIa or IIIb.

In particular, a Willmore torus f : T 2 → S4 that is not Euclidean minimal
either has trivial normal bundle and is of finite type (belonging to Case I) or it
has non–trivial normal bundle and is super–conformal (Case IIIa). Examples of
constrained Willmore tori belonging to Case II are provided by:

Theorem B. If a conformal immersion f : T 2 → S4 admits a point ∞ ∈ S4

at infinity such that the (Euclidean) Gauss map T 2 → Gr+(2, 4) = S2 × S2 of
the corresponding immersion into R4 = S4\{∞} has a harmonic factor, then it
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is constrained Willmore. Moreover, it belongs to Case II above if the harmonic
factor is non–conformal and to Case III if it is conformal.

Examples of constrained Willmore immersions f : T 2 → S4 belonging to Case II
are CMC tori in R3 and S3, Hamiltonian stationary Lagrangian tori in R4 and
Lagrangian tori with conformal Maslov form in R4.
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Bending the helicoid

Matthias Weber

(joint work with William Meeks III)

In [1], Colding and Minicozzi consider the question of the compactness of a se-
quence {Mn}n∈N of embedded minimal surfaces in a Riemannian three-manifoldN
which are locally simply connected in the following sense: for each small open ge-
odesic ball in N and for each n sufficiently large, Mn intersects the ball in disk
components, with each disk component having its boundary in the boundary of
the ball. They prove that every such sequence of minimal surfaces has a subse-
quence which converges to a possibly singular limit minimal lamination L of N . In
certain cases, the minimal lamination L is nonsingular and is a minimal foliation
of N . In this case, they prove that the singular set of C1-convergence consists of a
properly embedded locally finite collection S(L) of Lipschitz curves that intersect
the leaves of L transversely; we call such a limit foliation L a Colding-Minicozzi
limit minimal lamination.

An application by Meeks [3, 2] of this local picture for a minimal disk centered
at a point of large almost-maximal curvature demonstrates that the singular curves
S(L) of a Colding-Minicozzi lamination L have class C1,1 and are orthogonal to
the leaves of L.

In all previously considered examples (see e.g. the recent examples in [4]) of
sequences of locally simply connected minimal surfaces which converge to a mini-
mal foliation L with nonempty singular set of C1-convergence S(L), the set S(L)
consisted of geodesics.

In the following, we provide a complete characterization as to what curves can
occur as singular curves:
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Theorem. Every properly embedded C1,1-curve α in an open set O in R
3 has

a neighborhood foliated by a particular Colding-Minicozzi limit minimal lamina-
tion L with singular set of C1-convergence being α. The minimal leaves of this
lamination L are a C1,1-family of pairwise disjoint flat disks of varying radii. The
disks are centered along and orthogonal to α. More generally, if N is a closed
regular neighborhood of α formed by disjoint flat disks orthogonal to α and N ′

is a similarly defined foliation in the interior of N , then N ′ is contained in a
Colding-Minicozzi minimal lamination which lies in N .

The main step in the proof of our Theorem is to first prove the theorem when
α is analytic with a compact exhaustion α(1) ⊂ α(2) ⊂ ... ⊂ α(n) ⊂ ..., where
α(i) is a compact connected arc in α. We do this by giving an essentially explicit
construction of a sequence of embedded compact bent helicoids Hα,n which contain
α(n) ⊂ α as an “axis” and whose Gauss maps rotate faster and faster along α(n)
as n → ∞. In this case, the Hα,n converge to a family of pairwise disjoint flat
disks of varying radii orthogonal to α. The construction of the Hα,n is based
on the classical Björling formula. Our main difficulty in proving our Theorem
in the analytic case is to demonstrate the embeddedness of the Hα,n in a fixed
neighborhood of α(n). The general case of the theorem follows from the analytic
case by approximating α by a sequence of embedded analytic curves with uniformly
locally bounded curvature, which is always possible for C1,1-curves.

In the special case that α is the unit circle in the (x1, x2)-plane, then, for
all n ∈ N, we can choose α(n) = α and each compact annular bent helicoid
Hn = Hα,n contains α and is the image of a compact portion of a globally defined
explicit periodic complete minimal immersion fn : C → R3. In this case, we let Hn

denote the image complete minimal annulus fn(C) and define compact embedded
annuli Hn ⊂ Hn which converge to the limit minimal foliation L of R3−x3-axis by
vertical half planes and with S(L) = α. We also describe the analytic Weierstrass
data for their image finite total curvature annuli Hn in terms of simple rational
functions on the punctured complex plane C − {0}.

The complete minimal annulus Hn has finite total curvature −4π(n + 1) with
the dihedral group D(2n) of symmetries and contains n lines in the (x1, x2)-plane
passing through the origin. The large symmetry group and the explicit represen-
tation of Hn allows us to define the compact embedded annuli Hn ⊂ Hn which
converge to the minimal foliation L of R3. By way of approximation, this special
case of a circle plays a key role in the proof of our Theorem in the more general
case where α is an arbitrary properly embedded analytic curve in an open set O.
This is because at every point of the analytic curve the related bent helicoids that
we construct are closely approximated by the related bent helicoids of the second
order approximately osculating circle at the point.
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Alexandrov’s theorem, weighted Delaunay triangulations

and mixed volumes

Ivan Izmestiev

(joint work with Alexander I. Bobenko)

I present the results of our work posted on the web as http://www.arxiv.org/

abs/math.DG/0609447.

Theorem 1 (A.D.Alexandrov, 1942). Let M be a 2-sphere equipped with a convex
polyhedral metric. Then there is a convex polytope P in R3 with boundary isometric
to M . Besides, P is unique up to a rigid motion.

The uniqueness part of this theorem is essentially due to Cauchy. The proof
of the existence part given by Alexandrov is much more involved. In [2] he cites
Minkowski’s theorem on the existence and uniqueness of a polytope with given
face normals and face areas and gives two proofs of it. One is Minkowski’s original
proof based on the concavity properties of the volume, the other is by Alexandrov’s
method used in the proof of Theorem 1. Alexandrov poses the problem of finding
a proof of Theorem 1 similar to the variational proof of Minkowski’s theorem.

We present a proof that fulfills these requirements probably as much as possible.
The proof is based on the properties of the total scalar curvature functional H for
a certain kind of polyhedral metrics on the ball. We use the fact that the Hessian
of this functional is non-degenerate. This is proved using the rather unexpected
equality (1). This equality establishes a link between our proof and the variational
proof of Minkowski’s theorem. The functional H was studied by Volkov, a student
of Alexandrov, see the Supplement to [2]. Volkov gave also another proof of
Alexandrov’s theorem in his PhD dissertation in 1955. Volkov’s proof does not
make use of the total scalar curvature and is conceptually different from ours.

An outline of our approach follows.
Let T be a geodesic triangulation of M with the vertices at the singularities.

Construct a pyramid over every triangle of T and glue them together to form a
polyhedral ball P with the boundary M . If the dihedral angles at the boundary
edges of P are less or equal π, then P is called a generalized convex polytope.
A generalized convex polytope is defined by its radii ri which are lengths of the
interior edges, and it has the curvatures κi around the interior edges. Our aim is
to make the curvatures vanish.

To achieve this, we proceed as follows. First, we prove the local rigidity of
generalized convex polytopes (under some assumptions). This allows us to realize
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any small deformation of the curvatures through an appropriate deformation of
radii. Then, we construct a global deformation that ends with a zero-curved
generalized, that is a usual, convex polytope. To construct the deformation, we
study the space of generalized convex polytopes and show that no degeneration
occurs when we go our way.

Here is an outline of the first step (local rigidity). Define the total scalar
curvature of P as

H(P ) =
∑

i

riκi +
∑

e

ℓe(π − θe),

where ℓe is the length of, θe is the dihedral angle at, a boundary edge e. The
Schläfli formula implies that the Jacobian of the map r 7→ κ equals the Hessian of
the function H :

∂κi

∂rj
=

∂2H

∂ri∂rj
.

Thus the local rigidity is equivalent to the non-degeneracy of the Hessian of H .
In order to prove the non-degeneracy of H , we introduce the dual polyhedron P ∗

by generalizing the concept of the polar duality between polytopes and polyhedra.
We establish the following equality.

(1)
∂2H

∂ri∂rj
(P ) =

∂2vol

∂hi∂hj
(P ∗),

where the hi’s are the altitudes of the generalized polyhedron P ∗. In the classical
situation, the signature of the latter Hessian is known, and this information is
expressed in the Alexandrov-Fenchel inequalities. By generalizing the classical
proof, we establish the following

Theorem 2. The Hessian
(

∂2H
∂ri∂rj

)
is non-degenerate if 0 < κi < δi. Here δi is

the curvature of the i-th singularity in the metric of M .

For the second step of the proof, we prove the following lemma.

Lemma. If (T, r) is a convex generalized polytope, then T is the weighted Delaunay
triangulation of S with weights r2i at singularities. The converse is true provided
that pyramids over triangles of T with side lengths ri exist.

We describe the space of weights of weighted Delaunay triangulations. The
deformation used to obtain the convex polytope P with boundary M starts with
a generalized polytope (T, r), where T is the Delaunay triangulation of M , and
all of the radii ri are equal to a sufficiently large R. Then we deform the radii so
that the curvatures decrease proportionally: κi(t) = t · κi(1). The proof that no
degenerations occur involves several technical lemmas.

Our proof gives rise to an algorithm for constructing the polytope with the
given metric on the boundary. The algorithm was implemented by Stefan Sechel-
mann. The program is available at http://www.math.tu-berlin.de/geometrie/
ps/software.html

Figure 1 shows two examples of its output.
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Figure 1. Convex surfaces glued from two Euclidean pieces iden-
tified along the boundary. Left: Disc and equilateral triangle.
Right: Two Reuleaux triangles (triangles of constant width); the
vertices of one are identified with the midpoints of the sides of the
other.
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Quasi-minimizing varieties in spaces of nonpositive curvature

Urs Lang

(joint work with Bruce Kleiner)

The goal of this work is to establish “higher rank analogs” of some well-known
phenomena from hyperbolic geometry like the stability of quasigeodesics, the vis-
ibility property, and the boundary homeomorphism induced by a quasi-isometry.
Throughout this note, X = (X, d) denotes a proper geodesic metric space sat-
isfying Busemann’s nonpositive curvature condition globally: for every pair of
(constant speed) geodesics σ, τ : [0, 1] → X , the function t 7→ d(σ(t), τ(t)) is con-
vex. Each pair of points in X is then connected by a unique geodesic segment, and
X is contractible. Moreover, we impose the following large-scale rank condition
on X : every asymptotic cone Xω of X (ω a non-principal ultrafilter on N) has
“rectifiable” dimension n in the sense that n is the maximal number for which
Xω receives a Lipschitz map from some subset of Rn whose image has nonzero
n-dimensional Hausdorff measure. For instance, these conditions are satisfied if X
is a cocompact Hadamard manifold (or CAT(0)-space) containing an n-flat (iso-
metrically embedded copy of Rn) but no (n + 1)-flat, or, more specifically, if X
is a nonpositively curved symmetric space of rank n. In fact, our results are new
even in this last case.

We investigate n-dimensional surfaces in X with polynomial volume growth of
order n. As we want to prove, among other things, the existence of complete
minimizing surfaces with prescribed asymptotic behavior, the space of surfaces
in question should possess suitable compactness properties. An adequate chain
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complex is provided by the integral currents of geometric measure theory. In the
general context of metric spaces, such a theory was established by Ambrosio–
Kirchheim in [1]. Thus In(X) will denote the abelian group of n-dimensional
integral currents in that sense. An element S ∈ In(X) should roughly be viewed
as an n-dimensional Lipschitz surface with an integer-valued multiplicity function.
By definition, S has finite total mass M(S) (area counting multiplicity), and its
boundary ∂S belongs to In−1(X). It is possible to adapt the Ambrosio–Kirchheim
theory so as to accommodate locally integral currents in X , cf. [6]; associated with
S ∈ In,loc(X) is a Radon measure (locally finite mass) ‖S‖, and ∂S ∈ In−1,loc(X).
We will denote by Zn(X) and Zn,loc(X) the respective spaces of (locally) integral
cycles in X .

Now let S ∈ In,loc(X). S is called quasi-minimizing with constant Q ≥ 1 or just
Q-minimizing if

M(S′) ≤ QM(T )

whenever S′, T ∈ In(X), ‖S‖ = ‖S′‖ + ‖S − S′‖ (i.e. S′ is a “piece” of S), and
∂T = ∂S′. A 1-minimizing current is minimizing. For a ≥ 0, c > 0 and p ∈ X , we
say that S is (c, a)-controlled at p if

‖S‖(B̄(p, r)) ≤ crn

for all r ≥ a; note that the exponent n equals the dimension of S. If this holds for
every p ∈ X , then we say that S is (c, a)-controlled on X .

Theorem 1 (persistence of (quasi-)minimizers). Given X and Q, a, c, L, there
exist ā, c̄, b such that the following holds. Suppose S ∈ Zn,loc(X) is Q-minimizing
and (c, a)-controlled at some point p in X. Let d′ be any metric on X that is
L-bi-Lipschitz equivalent to d. Then there is a current S′ ∈ Zn,loc(X) such that
S′ is minimizing with respect to d′, both S and S′ are (c̄, ā)-controlled on X, and
there is a uniform bound Hd(spt(S), spt(S′)) < b on the Hausdorff distance of their
supports. Moreover, there exists a current V ∈ In+1(X) such that ∂V = S − S′

and ‖V ‖(B̄(x, r)) ≤ c̄rn for all x ∈ X and r ≥ ā.

Note that S′ is quasi-minimizing with constant Q = L2n with respect to the
original metric d. This type of result has a long history, starting with the work
of Morse on the hyperbolic plane and leading to rather general results on (quasi)-
minimizing surfaces of arbitrary dimension in spaces of negative curvature. We
refer to [5] for one of the most recent contributions and an account of these devel-
opments. There is a parallel circle of results on periodic metrics, initiated by the
work of Hedlund on the two-dimensional torus and including the investigation of
minimal hypersurface laminations and properties of the stable norm of compact
riemannian manifolds. See [2], [3], and the references there. To the best of our
knowledge, the above theorem is now the first general “non-periodic” result in this
direction for spaces of nonpositive curvature.

Denote by RX the set of all geodesic rays σ : R+ → X of constant (possibly
zero) speed. Two elements σ, τ ∈ RX are asymptotic if supt≥0 d(σ(t), τ(t)) < ∞;
this defines an equivalence relation ∼ on RX . The Tits cone CTX of X is the set
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RX/∼ equipped with the metric defined by

d([σ], [τ ]) := lim
t→∞

d(σ(t), τ(t))/t;

recall that t 7→ d(σ(t), τ(t)) is convex. For every r > 0, the map hr : CTX → CTX ,
hr([σ(·)]) := [σ(r · )], dilates the metric by the factor r. For every basepoint p ∈ X ,
there is a natural 1-Lipschitz map expp : CTX → X satisfying expp([σ]) = σ(1)
for every σ ∈ RX with σ(0) = p. Moreover, CTX admits a natural isometric
embedding into any asymptotic cone Xω of X with fixed basepoint. In particular,
the rank assumption on X implies that Im,loc(CTX) = {0} for all m > n. This
implies further that every Σ ∈ Zn,loc(CTX) is conical with respect to the vertex
o of CTX , i.e. invariant under hr for every r > 0, hr#Σ = Σ, and hence Σ is
(c, 0)-controlled at o for some c. For p ∈ X and 0 < t ≤ 1, define hp,t : X → X
such that hp,t(x) = σ(t) for the geodesic σ : [0, 1] → X from p to x.

Theorem 2 (unique tangent cone at infinity). Suppose S ∈ Zn,loc(X) is Q-
minimizing and (c, a)-controlled at p ∈ X, for some Q, a, c, p. As t → 0, hp,t#S
converges weakly to a current S↓p ∈ Zn,loc(X) which is conical with respect to p,
i.e. invariant under hp,t for every t ∈ (0, 1]. Moreover, there is a unique element
Σ ∈ Zn,loc(CTX) such that expp# Σ = S↓p, and Σ is (c, 0)-controlled at o. In fact,
for every q ∈ X, the weak limit S↓q := limt→0 hq,t#S exists, and expq# Σ = S↓q.

We denote this unique tangent cone Σ ∈ Zn,loc(CTX) of S by CTS and call it
the Tits cone of S. We also show that spt(S) and spt(S↓p) lie within “sublinear”
distance of each other, in terms of the distance from p.

Theorem 3 (asymptotic Plateau problem). Given X and c > 0, there exist ā, c̄
such that the following holds. Whenever Σ ∈ Zn,loc(CTX) is (c, 0)-controlled at o,
then there exists a minimizing current S ∈ Zn,loc(X) such that S is (c̄, ā)-controlled
on X and CTS = Σ.

Combining the last two theorems, we obtain precise information on the ge-
ometry at infinity of a quasi-isometric embedding f of X into another space
X̄ of the same type (i.e., there exist constants L, a such that L−1d(x, y) − a ≤
d(f(x), f(y)) ≤ Ld(x, y) + a for all x, y ∈ X).

Theorem 4 (quasi-isometric embedding). Let X̄ be another space like X. Then
every quasi-isometric embedding f : X → X̄ naturally induces a monomorphism
CTf : Zn,loc(CTX) → Zn,loc(CTX̄) of abelian groups. Moreover, if L denotes the
lattice of subsets of CTX generated by {spt(Σ): Σ ∈ Zn,loc(CTX)}, and L̄ denotes
the respective lattice of subsets of CTX̄, then there is a unique injective lattice
homomorphism F : L → L̄ with the property that F (spt(Σ)) = spt((CTf)(Σ)) for
every Σ ∈ Zn,loc(CTX). Finally, for every A ∈ L, A is L-bi-Lipschitz homeomor-
phic to F (A), where L is the multiplicative quasi-isometry constant of f .

The map CTf is determined in the following way. Given Σ ∈ Zn,loc(CTX), let
S ∈ Zn,loc(X) be a solution of the asymptotic Plateau problem for Σ according to
Theorem 3. Then it is possible to replace f by a Lipschitz map g that coincides
with f on spt(S) up to a uniformly bounded error. Now the push-forward S̄ :=
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g#S ∈ Zn,loc(X̄) is quasi-minimizing in X̄ in a coarse sense, for which Theorem 2
is still valid. Thus S̄ possesses a well-defined Tits cone Σ̄ = CTS̄ ∈ Zn,loc(CTX̄),
and CTf is characterized by the property that (CTf)(Σ) = Σ̄. When specialized to
a quasi-isometry between two nonpositively curved symmetric spaces, Theorem 4
yields an isomorphism of the associated Tits buildings. As an application, one
obtains a relatively quick proof of the rigidity theorem of Kleiner–Leeb [4] for
symmetric spaces of noncompact type without rank one de Rham factors. Some
of our results also extend to non-proper spaces.
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Boundary rigidity and filling volume minimality

Sergei Ivanov

(joint work with Dmitri Burago)

Let M be a compact Riemannian manifold with boundary ∂M . The boundary
distance function of M is the restriction of the geodesic distance dM of M to ∂M×
∂M . The term “boundary rigidity” means that the metric is uniquely determined
by its boundary distance function. More precisely, we say that M is boundary rigid
if every compact Riemannian manifold M ′ with the same boundary and the same
boundary distance function is isometric to M via a boundary preserving isometry.

R. Michel [7] conjectured that every simple Riemannian manifold is boundary
rigid where “simple” means that the boundary ∂M is strictly convex, every two
points x, y ∈ M are connected by a unique geodesic, and geodesics have no con-
jugate points. In is easy to see that all simple manifolds are topological discs.
The conjecture has been proved in a number of partial cases including all two-
dimensional simple manifolds [8] and regions in certain symmetric spaces [7, 5, 1].

One of our main results asserts that if M is C2-close to a region in Euclidean
space, then M is boundary rigid. To the best of our knowledge, this is the first
known example of boundary rigid metrics in higher dimensions which are not
locally-symmetric. Our result also requires only C2-smoothness.

We treat boundary rigidity as the equality case of the minimal filling problem.
We say that M is a minimal filling if, for every orientable M ′ with ∂M ′ = ∂M ,
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the inequality

(1) dM ′(x, y) ≥ dM (x, y) for all x, y ∈ ∂M

implies that

(2) vol(M ′) ≥ vol(M).

In other words, a minimal filling is a Riemannian manifold which realizes the filling
volume of its own boundary.

We conjecture that every simple manifold M is a minimal filling, furthermore,
equality in (2) implies that M ′ satisfying (1) is isometric to M via a boundary-
preserving isometry. This would imply Michel’s rigidity conjecture since the vol-
ume of a simple manifold is determined by its boundary distance function (by
means of an integral formula due to Santaló).

So far we were able to carry out this plan for metrics close to a Euclidean one.
Our main result is the following:

Theorem [4]. Let D ⊂ Rn be a compact region with a smooth boundary. There
exists a C2-neighborhood U of the Euclidean metric on D such that for every
g ∈ U , the Riemannian manifold M = (D, g) is a minimal filling and boundary
rigid.

Actually U can be defined explicitly in terms of curvature. If the boundary is
strictly convex, it suffices to assume that the boundary of M is strictly convex and
max |K| · diam(M) ≤ c(n) where K is the sectional curvature of M .

In the theorem itself, we do not assume convexity of the boundary. The non-
convex case is reduced to the convex one by a cut-and-paste argument (that is, by
attaching an appropriate “collar” to both manifolds).

Plan of the proof. Our approach to boundary rigidity grew from [2, 6, 3] where
we study minimality in normed spaces and ellipticity of surface area functionals.
Even though the proof is not directly based on Finsler geometry, it is strongly
motivated by Finsler considerations.

Suppose M and M ′ are as above, namely M is close to a convex Euclidean
region, and M ′ is such that ∂M ′ = ∂M and dM ′ ≥ dM on ∂M . We denote their
common boundary by S.

Step 1. Construct maps Φ : M → X and Φ′ : M ′ → X to an appropriate Banach
space X so that Φ and Φ′ agree on S, Φ is smooth and distance preserving, and
Φ′ is nonexpanding. This is possible due to simplicity of M and the inequality
between the boundary distances in M and M ′.

In fact, we set X = L∞(S), write down Φ in terms of distance functions in M
and construct Φ′ as a Lipschitz extension from the boundary. Using the assumption
that M is close to a flat region, we make Φ C1-close to a standard isometric linear
map from Rn to X ≃ L∞(Sn−1). This is needed for Step 3.

Assuming that a notion of n-dimensional area in X is defined, the problem now
reduces to the following: prove that the surface Φ(M) has area no greater than
that of Φ′(M ′), and in case of equality the two surfaces coincide. In other words,
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we need to prove that Φ(M) is a unique global area minimizer among the surfaces
with the same boundary.

Step 2. Define a suitable notion of n-dimensional area in X and prove that Φ(M)
is a minimal surface (with respect to a suitable class of variations).

Unfortunately the standard definitions of area (e.g., the Hausdorff measure
or the Holmes–Thompson area) do not serve our purposes. So we introduce a
special (not translation-invariant) area function in X . The area comes from a
“Riemannian structure” (that is, a point-wise scalar product) in X defined as
follows. For an x ∈ M , define a measure µx on S as a push-forward under the
geodesic flow of a suitably normalized Haar measure on the unit sphere in TxM .
Then a scalar product at Φ(x) ∈ X is defined as the L2-product with respect to µx.
This structure is extended from Φ(M) to the whole X so that it is invariant under
translations along certain codimension-n subspace transversal to Φ(M).

The area defined this way is not natural from geometric viewpoint but it has
the key features needed in Step 1: all Lipschitz-1 maps are area-nonexpanding and
Φ is area-preserving. A straightforward but cumbersome computation shows that
Φ(M) is indeed a minimal surface with respect to this area.

Step 3. Show that Φ(M) is a global area-minimizer. The argument here models
a proof of the following fact: if f : Dn → Rm is a function such that |df | ≤ c(n)
and the graph of f is a minimal surface in Rn+m, then this graph is a global
area-minimizer. The proof is based on the convexity of area with respect to linear
variations in “almost orthogonal” directions.
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Nilpotency and almost nonnegative curvature

Wilderich Tuschmann

(joint work with Vitali Kapovitch and Anton Petrunin)

Almost nonnegatively curved manifolds were introduced by Gromov in the late
seventies [Gro80], with the most significant contributions to their study made
by Yamaguchi in [Yam91] and Fukaya and Yamaguchi in [FY92]. We establish
several new properties of these manifolds which yield, in particular, new topological
obstructions to almost nonnegative curvature.

Recall that a closed smooth manifold is said to be almost nonnegatively curved
if it can Gromov-Hausdorff converge to a single point under a lower curvature
bound. By rescaling, this definition is equivalent to the following one:

Definition. A closed smooth manifold M is called almost nonnegatively curved if
it admits a sequence of Riemannian metrics {gn}n∈N whose sectional curvatures
and diameters satisfy sec(M, gn) ≥ −1/n and diam(M, gn) ≤ 1/n.

Almost nonnegatively curved manifolds generalize almost flat as well as non-
negatively curved manifolds. One main source of examples comes from a theorem
of Fukaya and Yamaguchi. It states that if F → E → B is a fiber bundle over
an almost nonnegatively curved manifold B whose fiber F is compact and admits
a nonnegatively curved metric which is invariant under the structure group, then
the total space E is almost nonnegatively curved [FY92]. Further examples are
given by closed manifolds which admit a cohomogeneity one action of a compact
Lie group (compare [ST04]).

To put our work into perspective, let us briefly recall some previously known
results: Let M = Mm be an almost nonnegatively curved m-manifold.
∗ Gromov proved in [Gro78] that the minimal number of generators of the fun-

damental group π1(M) of M can be estimated by a constant C1(m) depending
only on m, and in [Gro81] that the sum of Betti numbers of M with respect to
any field of coefficients does not exceed some uniform constant C2 = C2(m).

∗ Yamaguchi showed that, up to a finite cover, M fibers over a flat b1(M ; R)-
dimensionsal torus and that Mm is diffeomorphic to a torus if b1(M ; R) =
m [Yam91].

∗ Fukaya and Yamaguchi proved that π1(M) is almost nilpotent, i.e., contains a
nilpotent subgroup of finite index, and also that π1(M) is C3(m)-solvable, i.e,
contains a solvable subgroup of index at most C3(m) [FY92].

∗ If a closed manifold has negative Yamabe constant, then it cannot volume col-
lapse with scalar curvature bounded from below (see [Sch89, LeB01]). In par-
ticular, no such manifold can be almost nonnegatively curved.

∗ The Â-genus of a closed spin manifold X of almost nonnegative Ricci curvature
satisfies the inequality Â(X) ≤ 2dim(X)/2 ([Gal83], [Gro96, page 41]).
In [KPT06] we study almost nonnegatively curved manifolds by combining col-

lapsing techniques with a non-smooth analogue of the gradient flow of concave
functions which we call the “gradient push”. This notion, which plays a key role
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in the proofs of our results, is based on the construction of gradient curves of λ-
concave functions used in [PP96] and bears many similarities to the Sharafutdinov
retraction [Sha78].

The first main result of [KPT06] concerns the hitherto unexplored relation
between curvature bounds and the actions of the fundamental group on the higher
homotopy groups. Recall that an action by automorphisms of a group G on an
abelian group V is called nilpotent if V admits a finite sequence of G-invariant
subgroups

V = V0 ⊃ V1 ⊃ . . . ⊃ Vk = 0

such that the induced action of G on Vi/Vi+1 is trivial for any i. A connected
CW-complex X is called nilpotent if π1(X) is a nilpotent group that operates
nilpotently on πk(X) for every k ≥ 2.

Theorem A (Nilpotency Theorem). Let M be a closed almost nonnegatively
curved manifold. Then a finite cover of M is a nilpotent space.

Example. Let h : S3 × S3 → S3 × S3 be defined by h : (x, y) 7→ (xy, yxy). This
map is a diffeomorphism with the inverse given by h−1 : (u, v) 7→ (u2v−1, vu−1).
The induced map h∗ on π3(S

3×S3) is given by the matrix Ah = ( 1 1
1 2 ). Notice that

the eigenvalues of Ah are different from 1 in absolute value. Let M be the mapping
cylinder of h. Clearly, M has the structure of a fiber bundle S3 × S3 →M → S1,
and the action of π1(M) ∼= Z on π3(M) ∼= Z2 is generated by Ah. In particular,
M is not a nilpotent space and hence, by Theorem A, it does not admit almost
nonnegative curvature. This fact doesn’t follow from any previously known results.

Our next main result provides an affirmative answer to a conjecture of Fukaya
and Yamaguchi [FY92, Conjecture 0.15].

Theorem B (C-Nilpotency Theorem for π1). Let M be an almost nonnegatively
curved m-manifold. Then π1(M) is C(m)-nilpotent, i.e., π1(M) contains a nilpo-
tent subgroup of index at most C(m).

Example. For any C > 0 there exist prime numbers p > q > C and a finite
group Gpq of order pq which is solvable but not nilpotent. In particular, Gpq does
not contain any nilpotent subgroup of index less than or equal to C. Whereas
none of the results mentioned so far excludes Gpq from being the fundamental
group of some almost nonnegatively curved m-manifold, Theorem B shows that
for C > C(m) none of the groups Gpq can be realized as the fundamental group
of such a manifold.

Notice that Theorem B is new even for manifolds of nonnegative curvature.
Moreover, Vitali Kapovitch and Burkhard Wilking proved recently that Theo-
rem B does in fact also hold for manifolds of almost nonnegative Ricci curvature.

In [FY92] Fukaya and Yamaguchi also conjectured that a finite cover of an
almost nonnegatively Ricci curved manifoldM fibers over a nilmanifold with a fiber
which has nonnegative Ricci curvature and whose fundamental group is finite. This
conjecture was later refuted by Anderson [And92]. It is, on the other hand, very
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natural to consider this conjecture in the context of almost nonnegative sectional

curvature.

Theorem C (Fibration Theorem). Let M be an almost nonnegatively curved

manifold. Then a finite cover M̃ of M is the total space of a fiber bundle

F → M̃ → N

over a nilmanifold N with a simply-connected fiber F . Moreover, the fiber F is
almost nonnegatively curved in the sense of the following definition.

Definition. A closed smooth manifold M is called almost nonnegatively curved
in the generalized sense if for some nonnegative integer k there exists a sequence
of complete Riemannian metrics gn on M ×R

k and points pn ∈M ×R
k such that

(1) the sectional curvatures of the metric balls of radius n around pn satisfy

sec(Bn(pn)) ≥ −1/n;

(2) for n→ ∞ the pointed Riemannian manifolds ((M × Rk, gn), pn) converge in
the pointed Gromov-Hausdorff distance to (Rk, 0);

(3) the regular fibres over 0 are diffeomorphic to M for all large n.

Due to Yamaguchi’s fibration theorem [Yam91], manifolds which are almost
nonnegatively curved in the generalized sense play the same central role in col-
lapsing under a lower curvature bound as almost flat manifolds do in the Cheeger-
Fukaya-Gromov theory of collapsing with bounded curvature (see [CFG92]).

Clearly, if k = 0, the above definition reduces to the standard one. It is, however,
an open question whether all manifolds which are almost nonnegatively curved in
the generalized sense are indeed almost nonnegatively curved in the strict sense.
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Asymptotic geometry of hyperbolic spaces I & III

Viktor Schroeder

This abstract outlines the first and third lectures of a three part minicourse given
jointly with Sergei Buyalo. In this minicourse we discussed recent new aspects of
the asymptotic geometry of Gromov hyperbolic spaces. In particular we focussed
on the following embedding theorem [BDS].

Theorem (S. Buyalo, A. Dranishnikov, V. Schroeder). Every Gromov hyperbolic
group Γ admits a quasi-isometric embedding into the product of n+1 copies of the
binary metric tree where n = dim ∂∞Γ is the topological dimension of the boundary
at infinity.

The new and surprising feature of our result is that the trees involved are of uni-
formly bounded valence. It is much easier to construct embeddings into products of
infinite valence trees. One can for example constructs quasi-isometric embeddings
of the hyperbolic plane H2 into the product of two trees where the embeddings are
equivariant with respect to actions of some surface group. However, these trees
have infinite valence at every vertex.

It has to be mentioned, that the embeddings we construct are by no means equi-
variant with respect to Γ. In fact some hyperbolic groups do not admit nontrivial
actions on trees [dlHV].

The result should be compared with the Bonk-Schramm embedding theorem
[BoS], which implies in particular:

Theorem (Bonk-Schramm). Γ be a Gromov hyperbolic group. Then there is a
number N ∈ N such that Γ admits a roughly similar embedding into the standard
hyperbolic space HN .

The advantage of the Bonk-Schramm embedding is that the target space is (in
contrast to a product of trees) itself a hyperbolic space, and the property of the
embedding map (rough-similarity) is quite strong. The dimension N of the target
space depends however on Γ.
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The advantage of our embedding is that the dimension of the target space is
optimal and depends only on the topological dimension of Γ. This becomes clear
in the following examples.

Consider hyperbolic buildings X(p, q), p ≥ 5, q ≥ 2, whose apartments are
hyperbolic planes with curvature −1, whose chambers are regular hyperbolic p-
gons with angle π/2, and whose link at each vertex is the complete bipartite graph
with q + q vertices as studied by Bourdon [Bou]. Indeed there are infinitely many
quasi-isometry classes of these buildings (distinguished by the conformal dimension
of their boundary). However all of them admit cocompact group actions and hence
are quasi-isometric to some hyperbolic group Γ(p, q). The topological dimension
of their boundary is 1 (actually ∂∞X(p, q) is the Menger curve). Thus by our
result, they all allow quasi-isometric embeddings into the product of two binary
trees.

On the other hand, ifX and Y are hyperbolic and f : X → Y is a quasiisometric
embedding, then the conformal dimensions satisfy dimC(∂∞X) ≤ dimC(∂∞Y ) (see
[Bou, 1.7]). Thus the existence of a quasi-isometric embedding of X(p, q) into a

hyperbolic space HN implies N − 1 = dimC(∂∞ HN ) ≥ dimC(∂∞X(p, q)). The
cited paper contains the estimate

dimC(∂∞X(p, q)) ≥ log(q − 1) + log p

2 log p
,

hence we see that the dimension of the target space HN has to be arbitrarily large
as q → ∞.

The proof of our embedding result consists of three main steps:

Step 1: Construction of a quasi-isometric embedding Γ → ∏
c Tc of Γ into a

finite product of trees Tc, where each tree Tc has in general infinite valence.
Step 2: Construction of a map Tc → T of the infinite valence tree Tc into the

binary tree T . Hence we also have a product map
∏

c Tc →∏
c T .

Step 3: Proof that the composition Γ →∏
c Tc →

∏
T is quasi-isometric.

The most inventive part of our proof is Step 2, the construction of the map
Tc → T . The construction is based on what we call Alice’s diary (compare this
also to the prepublication [DS2]). Certainly any map from an infinite valence
tree to a finite valence tree looses information. In particular the map is in no
way quasi-isometric. The delicate point is that Alice’s diary still contains enough
information in order to prove in the last step that the composition Γ → ∏

c T is
quasi-isometric.
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Manifolds with large systolic volume

Stéphane Sabourau

Consider a nonsimply connected closed n-manifold M endowed with a Riemannian
metric g. The systole of (M, g), denoted by sys(M, g), is defined as the length of
the shortest noncontractible loop in M . Define the systolic volume of M as

σ(M) = inf
g

vol(M, g)

sys(M, g)n

where g runs over the space of all metrics on M .
The topological conditions that ensure the positivity of the systolic volume are

well understood. In [4], M. Gromov proved that the systolic volume of essential
manifolds (in particular, of aspherical manifolds and of connected sums of aspher-
ical manifolds) is bounded away from zero. More precisely, there exists a positive
constant Cn such that every essential n-manifold M satisfies

(1) σ(M) ≥ Cn.

Conversely, I. Babenko [1] showed that a closed oriented manifold with positive
systolic volume is essential.

The systolic inequality (1) can be improved by taking into account the topology
of the manifold. One of the goals of systolic geometry is to better understand how
the systolic volume depends on this topology. There is some evidence suggesting
that the systolic volume of manifolds with “complicated” topology or fundamental
group is large. For instance, M. Gromov [4, 6.4.D’], [5, 3.C.3] showed that the sys-
tolic volume of a closed manifold with large simplicial volume is large. Specifically,
there exists a positive constant Cn depending only on n such that every closed
n-manifold M satisfies

(2) σ(M) ≥ Cn
||M ||

logn(1 + ||M ||) ,

In this note based on the articles [6] and [7], we first present two other systolic
inequalities for aspherical manifolds using, on the one hand, the minimal entropy
and, on the other hand, the algebraic entropy of the fundamental group. We refer
to [6] for precise definitions.

Recall that the minimal entropy of M is defined as

MinEnt(M) = inf
g

Ent(M, g) vol(M, g)
1

n

where g runs over the space of all metrics on M .
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Our first result shows how the systolic volume and the minimal entropy are
related, cf. [6].

Theorem A. Every closed orientable aspherical manifold M of dimension n 6= 3
satisfies

σ(M) ≥ Cn
MinEnt(M)n

logn(1 + MinEnt(M))
,

where Cn is a positive constant depending only on n.

M. Gromov showed in [3] that every n-manifold M with simplicial volume ||M ||
satisfies

MinEnt(M)n ≥ Cn||M ||,

where Cn a positive constant depending only on n. Thus, Theorem A, which is a
consequence of a slightly more general result, cf. [6], provides a partial generaliza-
tion of inequality (2).

Our second result shows how the systolic volume of some manifolds is related
to the algebraic entropy of their fundamental groups, cf. [6].

Theorem B. Every closed orientable aspherical n-manifold M satisfies

σ(M) ≥ Cn
Entalg(π1(M))

log(1 + Entalg(π1(M)))
,

where Cn is a positive constant depending only on n.

Examples show that the topological conditions on M cannot be completely
dropped, even though they can be slightly relaxed, cf. [6].

In the following, we study the systolic volume of sequences of connected sums
of aspherical manifolds and sequences of hyperbolic manifolds, where none of the
previous systolic inequalities yield effective estimates in general.

Before stating our results, recall that the systolic area of a closed surface Σk of
genus k goes to infinity as k goes to infinity by inequality (2). The surface Σk can be
described as a connected sum of k tori or as a surface admitting a hyperbolic metric
(of area 4π(k − 1)). In higher dimension, no manifold satisfies these two features,
but we can separately study the systolic volume of the manifolds satisfying either
one. In each case, we obtain manifolds with large systolic volume, as explained
below.

Our first result deals with connected sums, cf. [7].
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Theorem C. Let M be a closed orientable aspherical n-manifold. Then, the
systolic volume of the connected sums #kM = M# . . .#M of k copies of M is
unbounded. More precisely,

σ(#kM) ≥ Cn
k

exp(C′
n

√
log k)

,

where Cn and C′
n are two positive constants depending only on n.

In particular, the systolic volume of the connected sum of a large number of
n-dimensional tori is large, even though its simplicial volume vanishes when n ≥ 3.
We can also replace #kM by the connected sum M1# · · ·#Mk of k closed oriented
aspherical n-manifolds in the theorem.

Theorem C provides a partial answer to a question raised in [5, p. 330] asking
for the asymptotic behaviour of σ(#kM). Note that a sublinear upper bound on
σ(#kM) has been established in [2]. A more precise asymptotic estimate still
needs to be found.

Our next and last result deals with hyperbolic manifolds, cf. [7].

Theorem D. Let {Mi} be a sequence of infinitely many, non-homeomorphic,
closed hyperbolic n-manifolds. Then, the systolic volume of the Mi’s is unbounded,
that is

lim
i→∞

σ(Mi) = ∞.

This result was already known for n = 2 and n ≥ 4 as an application of
H. C. Wang’s finiteness theorem and inequality (2). In the three-dimensional case,
there exist infinitely many closed hyperbolic manifolds whose simplicial volume,
minimal entropy and algebraic entropy of their fundamental groups are bounded.
Therefore, Theorem D applies in cases not covered by the systolic inequalities
previously stated.
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[2] I. Babenko & F. Balacheff, Géométrie systolique des sommes connexes et des revêtements
cycliques, Math. Ann. 333 (2005), 157–180.

[3] M. Gromov, Volume and bounded cohomology, Publ. IHES. 56 (1981), 213–307.

[4] M. Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), 1–147.
[5] M. Gromov, Systoles and intersystolic inequalities. In: Actes de la Table Ronde de Géométrie
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Gauss Equation for subspaces in metric spaces of curvature

bounded above

Stephanie B. Alexander

(joint work with Richard L. Bishop)

Alexandrov spaces are metric spaces with curvature bounds in the sense of local
triangle comparisons with constant curvature spaces (see [6]). Analogues of the
Gauss Equation, governing the passage of curvature bounds to subspaces from
ambient spaces, tend to be challenging in Alexandrov spaces. For instance, a ma-
jor unsolved problem in the theory of spaces of curvature bounded below (CBB)
is whether the boundary of a convex set inherits the curvature bound. Some-
what more is known for curvature bounded above (CBA). A classical theorem of
Alexandrov states that a curvature bound above is inherited by ruled surfaces [5].
It is an open problem whether saddle surfaces inherit such a bound, but “metric
minimizing” surfaces do so by a theorem of Petrunin [13].

Say N is a subspace of extrinsic curvature ≤ A in M if there is a length-
preserving map F : N →M between intrinsic metric spaces, where N is complete,
and intrinsic distances dN = s and extrinsic distances dM = r satisfy

(1) s− r ≤ A2

24
r3 + o(r3)

for all pairs of points in N having s sufficiently small. For Riemannian subman-
ifolds, this is equivalent to a bound, |II| ≤ A, on the second fundamental form.
For Riemannian subsets, the corresponding condition is positive reach [10]. In
CAT(K) spaces (the global version of CBA by K), curves of extrinsic curvature
≤ A satisfy global arc/chord comparisons with curves of constant curvature A in
the simply connected, 2-dimensional space form SK of curvature K [1]. Recently
Lytchak proved that if M has CBA by K, then a subspace N of bounded extrinsic
curvature has some intrinsic curvature bound above [8].

We extend the Gauss Equation to CBA spaces by proving the following sharp
bound on the intrinsic curvature of subspaces of bounded extrinsic curvature.

Theorem 1 (Gauss Equation). Suppose N is a subspace of extrinsic curvature
≤ A in an Alexandrov space of CBA by K. Then N is an Alexandrov space of
CBA by K +A2.

This bound is realized by constantly curved hypersurfaces of Euclidean, spheri-
cal and hyperbolic spaces. At first one might think that Riemannian submanifolds
of higher codimension offer a counterexample to this theorem, and that the correct
bound should be K + 2A2. On closer inspection, however, one sees that for any
plane section, normals to the submanifold may be chosen so that at most two of the
corresponding subdeterminants of II are nonzero and one of them is nonpositive.
Therefore for Riemannian submanifolds, while the sharp lower bound is K − 2A2

when ambient curvature is ≥ K, the sharp upper bound is K +A2 when ambient
curvature is ≤ K.
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There are important classes of subspaces for which we can compute sharp ex-
trinsic curvature bounds, hence sharp intrinsic curvature bounds by Theorem 1.
Fibers of warped products are such a class. Warped products of Alexandrov
spaces extend standard cone and suspension constructions from 1-dimensional to
arbitrary base, and gluing constructions from 0-dimensional to arbitrary fiber [3],
and we expect them to be a major source of constructions and counter-examples
in the Alexandrov setting. Theorem 1 allows us to calculate the intrinsic curvature
bound of the fiber of a CAT(K) warped product.

Another significant application of Theorem 1 is to injectivity radii. Our next
theorem gives a sharp estimate on the injectivity radius of a subspace of bounded
extrinsic curvature, in terms of the circumference c(A,K) of a circle of curvature
A in the model space SK . Set π/k = ∞ if k ≤ 0.

Theorem 2. Suppose N is a subspace of extrinsic curvature ≤ A in a CAT(K)
space. Then

(2) injN ≥ min{ π√
K +A2

,
1

2
c(A,K)}.

Even in the case of Riemannian manifolds, this estimate on the injectivity radius
of a submanifold is new as far as we know. Much weaker dimension-dependent esti-
mates have been used in [7] and [16]. The existence of some dimension-independent
bound in the general case is proved in [10].

The following corollary holds, in particular, for Riemannian submanifolds with
|II| ≤ A in a Hadamard manifold.

Corollary. Let N be a subspace of extrinsic curvature ≤ A in a CAT(0) space M .
Then N has injectivity radius at least π/A, and any closed ball of radius π/2A in
N is CAT(A2). If M is CAT(−A2), then N is CAT(0) and embedded.

Finally we show how the geometry of Alexandrov spaces provides an abundance
of almost convex subspaces whose extrinsic curvature bounds can be computed.
In what follows, suppose M is complete with either CBA or CBB.

A locally Lipschitz continuous function f : M → R is λ-concave (or semicon-
cave) if (f ◦ γ)′′ ≤ λ in the barrier sense for every unit-speed geodesic γ, i.e.,
f(γ(x))−λx2/2 is concave. We say f is almost concave if λ > 0, and very concave
if λ < 0. (Then −f is −λ-convex, so studying almost concave functions is equiva-
lent to studying almost convex ones.) Gradient curves of λ-concave functions were
used to study CBB spaces by Perelman-Petrunin in [12]. The Soul Theorem and
Sharafudtinov retraction [15] provided inspiration. See Petrunin’s survey [14] for
a beautiful exposition of CBB spaces using semiconcave functions. Lytchak has
shown that gradient curves also work in CBA and more general metric spaces [9].

We give some examples to illustrate how semiconcave and semiconvex functions
arise naturally in spaces with curvature bounds. Here CS denotes a convex set,
and “f ′′ ≥ f” means this inequality holds on every geodesic.
(1) f = d2

p/2 is 1 -convex on CAT(0), 1 -concave on CBB by 0.
(2) On CAT(−1): f = cosh dp and f = sinh dCS satisfy f ′′ ≥ f .
(3) On CAT(1): f = sin (min {distance to a π-CS, π

2 }) satisfies f ′′ ≥ −f .
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(4) On CBB(−1): f = cosh dp and f = sinh dbdry satisfy f ′′ ≤ f .
(5) On CBB(1): f = sin dbdry satisfies f ′′ ≤ −f .

Perelman proved in [11] that dbdry is concave in a complete space of CBB by
0; the examples above involving dbdry have the same proof (also see [14]). See [2]
for a discussion of all the constructions above.

We prove the following bound on the extrinsic curvature of almost convex sub-
sets, using gradient curve methods. The existence of some bound in this setting
was proved by Lytchak [9]. At a point where the gradient length is continuous,
our bound becomes |λ|/|∇f |p, which is the sharp bound on extrinsic curvature in
the smooth case.

Theorem 3. On any CBA or CBB space, a superlevel (sublevel) set of a λ-

concave (λ-convex) function f at p has extrinsic curvature ≤ |λ|
√

2
|∇f |2p

− 1
G2

p
,

where Gp = lim supq→p |∇f |q.

References

[1] S. Alexander, R. Bishop, Comparison Theorems for Curves of Bounded Geodesic Curvature
in Metric Spaces of Curvature Bounded Above, Diff. Geom. App. 6 (1996), 67–86.

[2] S. Alexander, R. Bishop, FK-convex functions on metric spaces, Manuscripta Math. 110
(2003), 115–133.

[3] S. Alexander, R. Bishop, Curvature bounds for warped products of metric spaces, Geom.
Funct. Anal. 14 (2004), 1143–1181.

[4] S. Alexander, R. Bishop, Gauss Equation and Injectivity Radii for Subspaces in Spaces of
Curvature Bounded Above, Geom. Dedicata, 117 (2006), 65–84.

[5] A. D. Alexandrov, Ruled surfaces in metric spaces, Vestnik Leningrad. Univ. 12, 1957
(Russian).

[6] D. Burago, Yu. Burago, S. Ivanov, A Course in Metric Geometry, Graduate Studies in
Mathematics, Vol. 33, Amer. Math. Soc., Providence, 2001.

[7] K. Corlette, Immersions with bounded curvature Geom. Dedicata 33 (1990), 153–161.
[8] A. Lytchak, Geometry of Sets of Positive Reach, Manuscripta Math. 115 (2004), 199–205.
[9] A. Lytchak, Open Map Theorem for Metric Spaces, Algebra i Analiz 17 (2005), 139–159.

[10] A. Lytchak, Almost Convex Subsets, Geom. Dedicata 115 (2005), 201–218.
[11] G. Perelman, Alexandrov spaces with curvature bounded from below II, preprint (1991),

www.math.psu.edu/petrunin.
[12] G. Perelman, A. Petrunin, Quasigeodesics and Gradient Curves in Alexandrov Spaces,

preprint (1994), www.math.psu.edu/petrunin.

[13] A. Petrunin, Metric minimizing surfaces, Elec. Res. Announc. Amer. Math. Soc. 5 (1998),
47–54.

[14] A. Petrunin, Semiconcave functions in Alexandrov’s geometry, preprint (2006),
www.math.psu.edu/petrunin.

[15] V. Sharafudtinov, The Pogorelov-Klingenberg theorem for manifolds homeomorphic to Rn,
Sib. Math. J. 18 (1977), 915–925.

[16] Z. Shen, A convergence theorem for Riemannian submanifolds, Transactions Amer. Math.
Soc. 347 (1995), 1343–1350.



Geometrie 2729

Constructing discrete K-surfaces

Ivan Sterling

(joint work with Tim Hoffmann and Ulrich Pinkall)

Old and new approaches to the theoretical, computational and physical construc-
tion of discrete pseudospherical surfaces in R3 (“Discrete K-Surfaces”) were pre-
sented.

1. Twisted metal

G. T. Bennett introduced a “new mechanism” in 1903 [1]. The relation between
this mechanism and discrete K-surfaces (including a mechanical description of the
Bäcklund transformation) is in [2]. The theory of discrete K-Surfaces was devel-
oped by Sauer [6], Wunderlich [8] and Bobenko-Pinkall [3]. In 1951 Wunderlich
built a model which still exists today (Figure 1). It is also possible to build de-
formable prototypes by attaching ring terminals to the ends of butt splices for the
edges; small bolts and wing nuts for the vertices. Besides assisting in research,
these models are also useful in teaching. For example, the 1-dimensional curves
on Bennett’s isogram (the asymptotic coordinate lines) model discrete curves of
constant torsion.

Figure 1. Wunderlich’s Model (1951)

2. Scissors-paper-tape and crocheting

On the other hand, in the early 1970’s Thurston [7] outlined a completely different
way of constructing certain discrete K-surfaces. These surfaces became well-known
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because of Henderson’s paper models and Taimina’s crocheted models [4]. A rather
generic example is in Figure 2.

Figure 2. Henderson-Taimina-Thurston Discrete K-Surface

3. New examples

There are very few examples of discrete K-surfaces with higher genus or several
ends. Of particular interest are those which approximate K-surfaces. Figure 3
shows an example by Tim Hoffmann based on work in his dissertation [5]. By

Figure 3. Hoffman Discrete K-Surface

adjusting the parameters in the Thurston construction it is possible to find other
examples (Figure 4).
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Figure 4. Hoffman-Sterling Discrete K-Surface

4. Computer Graphics

The computer graphics used here were generated using jReality. jReality is a Java
3D viewer for mathematics. A demonstration of some of its features were presented
by Ulrich Pinkall. More details and examples can be found at www.jreality.de.
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Asymptotic geometry of hyperbolic spaces II

Sergei Buyalo

This is the second lecture of a three part minicourse given jointly with Viktor
Schroeder. In this lecture, we discuss two of the three major ingredients of the
following binary embedding theorem [BDS] which is the main topic of this mini-
course.



2732 Oberwolfach Report 45/2006

Theorem (S. Buyalo, A. Dranishnikov, V. Schroeder). Every Gromov hyperbolic
group Γ admits a quasi-isometric embedding into the product of (n + 1) copies
of the binary metric tree where n = dim ∂∞Γ is the topological dimension of the
boundary at infinity.

The notion of the linearly controlled dimension or the ℓ-dimension of a metric
space Z, ℓ-dimZ, is introduced in [Bu1] (under the name capacity dimension),
and turns out to be useful in many questions, [Bu2]. Its definition is close to that
of the classical covering dimension with only additional point that we require that
the Lebesgue number of coverings involved in the definition is linearly controlled
by the mesh of the coverings. The first step in the proof of the binary embedding
theorem is the following

Theorem 1. Let X be a visual hyperbolic space with finite ℓ-dimension, of the
boundary at infinity, ℓ-dim(∂∞X) = n < ∞. Then there exists a quasi-isometric
f : X → T1 × · · · × Tn+1, where T1, . . . , Tn+1 are simplicial metric trees.

It is a remarkable feature of the proof that both the source space X and the
target trees T1, . . . , Tn+1 are actually recovered from of the boundary at infinity
Z = ∂∞X via constructions related to various coverings of Z. The initial space X
is replaced in the proof by the hyperbolic approximation of Z, and the target trees
appear as combinatorial objects associated with an appropriately constructed infi-
nite sequence of colored coverings of Z arising from the notion of the ℓ-dimension.

In this theorem, the target trees T1, . . . , Tn+1 typically have infinite valence of
vertices, see [BS]. Furthermore, The ℓ-dimension is larger than or equal to the
topological dimension, dimZ ≤ ℓ-dimZ for every metric space Z, and there are
simple examples of compact metric spaces with ℓ-dimension arbitrarily larger than
the topological dimension.

Thus it is important to know for which spaces equality holds. Let λ ≥ 1 and
R > 0 be given. A map f : Z → Z ′ between metric spaces is λ-quasi-homothetic
with coefficient R if for all z, z′ ∈ Z, we have

R|zz′|/λ ≤ |f(z)f(z′)| ≤ λR|zz′|.
This property can be regarded as a perturbation of the property to be homothetic,
and the coefficient λ describes the perturbation.

A metric space Z is locally similar to a metric space Y , if there is λ ≥ 1 such
that for every sufficiently large R > 1 and every A ⊂ Z with diamA ≤ 1

R there
is a λ-quasi-homothetic map f : A→ Y with coefficient R. If a metric space Z is
locally similar to itself then we say that Z is locally self-similar. Major examples of
compact, locally self-similar metric spaces are the boundaries at infinity of Gromov
hyperbolic groups (regarded with visual metrics).

The second ingredient of the proof of the binary embedding theorem is the
following

Theorem 2 (S. Buyalo, N. Lebedeva). The ℓ-dimension of every compact, locally
self-similar metric space Z is finite and coincides with the topological dimension,
ℓ-dimZ = dimZ.
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We note that Theorems 1 and 2 yield the following result conjectured by M. Gro-
mov, [Gr, Section 1.E′

1], see [BL].

Theorem 3. The asymptotic dimension of any hyperbolic group G equals topo-
logical dimension of its boundary at infinity plus 1, asdimG = dim ∂∞G+ 1.

According to Theorems 1 and 2, we have constructed a quasi-isometric em-
bedding of every hyperbolic group G into the product T1 × . . . ,×Tn+1 of metric
simplicial trees, where n = dim ∂∞G. However, the nature of the construction is
that these trees have infinite valence of the vertices. The most interesting and deep
part of the binary embedding theorem deals with passing from the embedding into
the product of infinite valence trees to an embedding where the target trees have
uniformly bounded valence of the vertices. This is explained in the third lecture
of the minicourse.
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Bryant surfaces with smooth ends

G. Paul Peters

(joint work with Christoph Bohle)

Bryant surfaces—the surfaces of constant mean curvature 1 in hyperbolic space—
have been studied intensively since Robert Bryant’s influential paper [4], cf. [13]
and the surveys [8, 10]. The following observation led us to introduce the notion of
Bryant surfaces with smooth ends: the simplest nontrivial Dirac sphere [7] which
is a surface of revolution related to a 1–soliton solution of the mKdV equation [12,
6, 1], is an immersed sphere that, besides the two points on the axis of rotation,
is a Bryant surface in the Poincaré ball model of hyperbolic space (see the left
surface in Figure 1).

Definition. A Bryant surface E in the Poincaré ball model B3 ⊂ R3 of hyper-
bolic space is a smooth Bryant end if there is a point p∞ ∈ ∂B3 on the asymptotic
boundary such that E ∪ {p∞} is a conformally immersed open disc in R3.
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Figure 1

From the Möbius geometric point of view, smooth Bryant ends correspond to
planar minimal ends in R3: both can be smoothly extended through the ideal
boundary, i.e., the 2–sphere at infinity in the case of hyperbolic space and the
point at infinity in the case of R3 = S3 \ {∞}. We obtain the following analog to
the theorem that a planar minimal end may be parametrized by the real part of a
holomorphic C3–valued map with a pole at the end.

Theorem 1. A surface E in the Poincaré ball is a smooth Bryant end if and
only if there exists a holomorphic null immersion F : ∆ \ {0} → SL(2,C) with a
pole at 0 such that F ′F−1 has a pole of order 2 and E is parametrized by Bryant’s
representation formula

(BRF) f =
1

x0 + 1



x1

x2

x3


 ,

(
x0 + x3 x1 + x2i
x1 − x2i x0 − x3

)
= FF̄ t.

A deeper analogy becomes apparent when one considers compact surfaces in S3

obtained by extending Bryant surfaces with smooth ends or minimal surfaces with
planar ends through the respective ideal boundary. As Robert Bryant proved in
[3, 5], the inversion of a complete finite total curvature minimal surface with planar
ends extends to a compact Willmore surface (critical point of the Willmore energy
W =

∫
H2dA) whose Willmore energy is 4π times the number of ends. Moreover,

all Willmore spheres in S3 are extended minimal surfaces with planar ends and
the possible Willmore energies of Willmore spheres are W ∈ 4π(N∗ \ {2, 3, 5, 7}).
For Bryant surfaces, we prove:

Theorem 2. Compact Bryant surfaces with smooth ends have Willmore en-
ergy W = 4πn, where n ∈ N∗ is the total pole order of the Bryant representation,
which is greater or equal to the number of Bryant ends. The possible Willmore
energies of Bryant spheres with smooth ends are 4π(N∗ \ {2, 3, 5, 7}).

Note that the Willmore energyW of the compact surface of genus g and the total
curvature of the minimal or Bryant surface are related by W +

∫
KdA = 4π(1−g).

In order to prove Theorem 2 we use the fact that Bryant spheres with smooth
ends are related to rational null immersions into the non–degenerate quadric Q3 ⊂
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Figure 2

CP
4 via Bryant’s representation formula (BRF) and

SL(2,C) =
{
F =

(
a b
c d

)
| ad− bc = 1

}

∼= Q3 \ {e = 0} = {Φ = [a, b, c, d, e] ∈ CP
4 | ad− bc− e2 = 0, e 6= 0 }.

With this identification Theorem 1 becomes:

Theorem 1’. If E is a smooth Bryant end, then there exists a holomor-
phic null immersion Φ: ∆ → Q3 that parametrizes E via (BRF). Conversely,
if Φ: ∆ → Q3 is a holomorphic null immersion that intersects {e = 0}

(1) transversely at 0, then F and F−1 (restricted to ∆ \ {0}) parametrize
smooth horospherical Bryant ends, or

(2) non–transversely at 0, then either F or F−1 (restricted to ∆ \ {0}) para-
metrizes a smooth catenoidal Bryant end.

We then show that (similar to minimal surfaces with planar ends) the degree d
of the null immersion Φ into Q3 and the Willmore energy of the corresponding
Bryant surface with smooth ends are related by W = 4πd. This proves the first
statement of Theorem 2. The second statement follows from the fact that rational
null immersions into Q3 exist for every degree, except 2, 3, 5, and 7, cf. [5] .

Figure 1 shows three surfaces obtained from one degree 4 rational null immersion
into Q3: a Bryant sphere with smooth ends and Willmore energy W = 16π (which
is a catenoid cousin), a minimal sphere with 4 planar ends, and its inversion, which
is a Willmore sphere with W = 16π.

Figure 2 shows two Bryant spheres with smooth ends that are obtained applying
an orthogonal transformation to the rational null immersion used for the surfaces in
Figure 1. For the first surface the orthogonal transformation fixes the hyperplane
{e = 0} at infinity. Such transformations were also studied by Wayne Rossman,
Masaaki Umehara, and Kotaro Yamada [9, 11]. The transformation for the second
surface does not fix the hyperplane at infinity, such that both catenoidal ends open
up, and one gets a surface with 4 horospherical ends (marked points).

Both Bryant spheres with smooth ends and Willmore spheres in S3 are exam-
ples of a more general class of surfaces in S3 which we call soliton spheres, cf. [1].
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Generalizing Robert Bryant’s result about Willmore spheres and the second state-
ment of Theorem 2, we prove that the quantization W ∈ 4πN∗ \ {2, 3, 5, 7} holds
for all soliton spheres in S3.
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Critical metrics of the Schouten functional

Udo Simon

(joint work with Z. Hu, S. Nishikawa,)

Using the Schouten tensor, we introduce a new functional on the space of Rie-
mannian metrics on a compact manifold and study its critical points, in particular
in the subclass of conformally flat metrics, for all dimensions n ≥ 3. We present
some of our major results with emphasis on n = 4. A full version of the paper with
additional results, proofs and references has been submitted for publication.

Notation. Let Mn, n ≥ 3, be an n-dimensional compact, connected, smooth
manifold, M(M) the space of Riemannian metrics and D(M) the group of dif-
feomorphisms. For a fixed metric g let Riemg denote its Riemannian curvature
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tensor, Ricg its Ricci tensors, Rg its (non-normed) scalar curvature, W the Weyl
conformal curvature tensor and Eg := Ricg − (Rg/n)g its trace-free Ricci tensor.

Definitions. (i) Ag := Ricg − Rg

2(n−1) g is called the Schouten tensor, it controls

the non-conformally invariant part of Riemg:

Riemg = W +
1

n− 2
A ∧ g.

(ii) σk(Ag) denotes the k-th elementary symmetric function of eigenvalues of Ag

(with respect to g) and

Fk[g] :=

(∫

Mn

dvolg

)(2k−n)/n ∫

Mn

σk(Ag) dvolg

is called the k-th Yamabe functional.
(iii)

S[g] :=

(∫

Mn

dvolg

)(4−n)/n ∫

Mn

|Ag|2 dvolg.

is called the Schouten functional.

Remark. S[g] = 0 if and only if (Mn, g) is Ricci-flat.

Euler-Lagrange equations for S[g]. g ∈ M(M) critical point ⇐⇒ (1) and (2)
are satisfied:

(1) ∆gEij −
(n− 2)(2n− 3)

2(n− 1)2
R,ij +

(n− 2)(2n− 3)

2n(n− 1)2
∆gRgij + 2EklWkilj

− 4

n− 2
Ek

i Ekj +
n2 − 8n+ 8

2n(n− 1)2
REij +

4

n(n− 2)
|Eg|2gij = 0

and

(2)
(n− 2)2

n− 1
∆gR − (n− 4)|Eg|2 −

(n− 2)2(n− 4)

4n(n− 1)2
R2

g

+ (n− 4)Vol(Mn, g)−4/nS[g] = 0.

Corollary. (i) Any Einstein metric is critical for S.
(ii) n = 4: If g ∈ M(M) is critical for S then Rg = const .

Conformal flatness in dimension n = 4

Theorem. Let M4 be compact. A locally conformally flat metric g ∈ M(M) is
critical for S if and only if (i) or (ii) is satisfied:
(i) The scalar curvature of (M4, g) is zero.
(ii) (M4, g) is a space form with Rg = const. 6= 0.
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Proposition. (i)

F2[g] = −1

4

∫

M4

|W |2 dvolg + 8π2χ(M4),

Thus F2[g] is a conformal invariant.
(ii) g conformally flat =⇒ g critical for F2[g] (there is no variational characteri-
zation of 4-dim. space forms in terms of F2[g]); in case of conformal flatness F2[g]
depends only on the topology.

Conformal flatness in dimension n 6= 4

Theorem. Let (Mn, g), n 6= 4, be compact, locally conformally flat with Rg = 0.
Then g is critical for S if and only if (i) or (ii) is satisfied.

(i) If n odd, then (Mn, g) flat space form.
(ii) If n = 2m even, then (Mn, g)

– either is a flat space form
– or its universal cover (M̃n, g̃) is (M̃n, g̃) = Sm(c) × Hm(c).

Theorem. Let (Mn, g), n 6= 4, be compact, locally conformally flat with Rg 6= 0
constant. Then g is critical for S if and only is (Mn, g) is a space form.

Critical metrics of S on S
3

Using a 1-parameter family of Berger metrics we constructed an example of a crit-
ical metric of the Schouten functional S on S3 that is neither Einstein nor locally
conformally flat.

S-optimal metrics on four-manifolds

Definitions. (i) Let Mn be a compact n-manifold, n ≥ 3. g is called an S-optimal
metric (LeBrun) if it is an absolute minimizer of the functional S: S[g̃] ≥ S[g] for
every metric g̃ ∈ M(M).

(ii) IS(Mn) := inf
g∈M(M)

S[g] (invariant under action of D(M)).

(iii) (M4, g) oriented. We call:
g anti-self-dual ⇐⇒ W+ = 0 (self-dual Weyl tensor);
g self-dual ⇐⇒ W− = 0 (anti-self-dual Weyl tensor).

Theorem. (1) For every k ≥ 6, the Schouten functional, defined on the simply

connected 4-manifold kCP
2
, admits a scalar flat and anti-self-dual critical metric

which is neither locally conformally flat nor Einstein. Moreover,

IS(kCP
2
) = 8(k − 4)π2.

(2) For every k ≥ 14, the Schouten functional defined on the simply connected

4-manifold CP
2♯kCP

2
admits a scalar flat and anti-self-dual critical metric which
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is neither locally conformally flat nor Einstein. Moreover,

IS(CP
2♯kCP

2
) = 8(k − 9)π2.

Theorem. Let M be a compact oriented 4-manifold. If g ∈ M(M) is a Kähler
metric for some complex structure of M4, then we have

S[g] ≥
{

8π2[7τ − 2χ] for τ ≥ 0,

−8π2[3τ + 2χ], τ < 0,

where χ is the Euler-characteristic and τ the signature; equality holds if and only
if g is a self-dual or anti-self-dual Kähler metric.

Acknowledgments. The authors are grateful to Claude LeBrun for his comments.
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Parabolic submanifold geometry

Francis Burstall

(joint work with David Calderbank)

Parabolic geometry is Cartan geometry modelled on a real flag manifold, that is,
a homogeneous space G/P with G a real semisimple Lie group and P a parabolic
subgroup. It is our contention that a uniform approach to the geometry of sub-
manifolds of such a G/P can be obtained as a relative Cartan geometry modelled
on a homogeneous inclusion H/Q→ G/P of flag manifolds. Our theory applies to
(among others): arbitrary submanifolds of the conformal n-sphere; generic hyper-
surfaces in projective space; generic submanifolds in projective space of dimension
k and codimension k(k + 1)/2; generic CR submanifolds of S2n+1.

Parabolic geometry. Let Σk be a k-manifold and G/P a k-dimensional real flag
manifold. Suppose we are given:

• a principal G-bundle E → Σk with G-connection θ ∈ Ω1
E ⊗ g;

• a reduction F ⊂ E of E to structure group P .

In this situation, θ|F mod p descends to a bundle-valued 1-form, the solder form

βθ ∈ Ω1
Σk ⊗ [g/p] where p is the Lie algebra of P and, for any P -module W ,

[W ] = F ×P W .
If βθ is an isomorphism, we say that θ is a Cartan connection and call the

whole package (E,F, θ) a Cartan geometry. The intuition is that the reduction F
associates a copy of G/P to each x ∈ Σk and then the solder form identifies TxΣk ∼=
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g/p ∼= TePG/P . Thus TΣk inherits the first order structure of G/P : typically this
is a filtration (induced by the central descending series of the nilradical of p) along
with a G0-structure and family of G0-connections on the associated graded tangent
bundle, for G0 the quotient of P by its nilradical.

Many well-known geometries arise this way such as conformal geometry (G/P
a real quadric); projective geometry (G/P a projective space) and CR geome-
try (G/P a Hermitian quadric). However, the problem arises that many Cartan
connections induce the same structure on Σk. To get a unique choice requires a
digression into Lie algebra homology.

The nilradical of p is its Killing polar p⊥ which is, via the Killing form, isomor-
phic to (g/p)∗. Given a P -module W , there is a P -invariant chain complex

∂→ ∧n
p⊥ ⊗W

∂→ ∧n−1
p⊥ ⊗W

∂→ · · · → 0

whose homology Hn(p⊥,W ) is computed by Kostant’s version of the Borel–Bott–
Weil theorem [6]. In the presence of a Cartan connection θ, we use the solder form
to get a chain complex of bundle morphisms

∂→ ∧n T ∗Σk ⊗ [W ]
∂→ ∧n−1 T ∗Σk ⊗ [W ]

∂→ · · · → 0

and homology bundles Hn(Σk, [W ]).
We apply these ideas to the curvature Rθ ∈ Ω2

Σk ⊗ [g] of our Cartan connection

and say that the connection is normal if ∂Rθ = 0.

Theorem ([4, 7]). Under favourable circumstances, there is a unique normal Car-
tan connection, up to isomorphism, inducing the given structure on Σk.

Moreover, thanks to the Bianchi identity, the homology class JRθK controls the
entire curvature:

Theorem ([4]). JRθK = 0 if and only if Rθ = 0 if and only if Σk is locally
isomorphic to G/P .

For example, the theorem applies to conformal manifolds Σk when k ≥ 3 (in
this case, the result goes back to Cartan) and here JRθK is the Weyl curvature
when k ≥ 4 and the Cotton–York tensor when k = 3. By contrast, when k = 2,
the uniqueness assertion fails: the normal Cartan connections parametrise Möbius
structures in the sense of Calderbank [2].

Parabolic submanifold geometry. Now fix an n-dimensional real flag manifold
G/P and contemplate immersions Σk → G/P or, equivalently, reductions of the
trivial bundle E = Σk × G to structure group P . Our strategy is to model this
situation on a homogeneous inclusion H/Q→ G/P with H a semisimple subgroup
of G such that Q := H ∩ P is a parabolic subgroup of H . Thus, for such an H ,
we have a fixed reduction FP of E to P and we contemplate reductions FH to H
so that FH ∩ FP is a reduction of FH to Q.

The left Maurer–Cartan form of G gives a flat G-connection θ ∈ Ω1
E ⊗ g which

decomposes
θ = θh + θm
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according to the H-invariant splitting g = h ⊕ m. Then θh is an H-connection on
FH while θm descends to an [m]-valued 1-form on Σk.

Any Q-module has an invariant filtration indexed by weight (the eigenvalues of
a certain grading element in the centre of the Levi factor q0) for which q⊥ acts by
lowering operators.

Definition. A reduction FH is good if θh is a Cartan connection and θm has
negative weight.

A reduction Σk → G/H should be viewed as a map into the space of H/Q’s in
G/P . Thus, for H/Q a conformal k-sphere in Sn, a reduction is a map into the
space of k-spheres in Sn (thus a congruence of k-spheres). It is a good reduction
when the spheres have first order contact at the corresponding points of Σk (thus
Σk envelops the congruence). For H/Q an (n − 1)-quadric in real projective n-
space, a reduction is a congruence of quadrics and it is good if the quadrics have
second order contact at corresponding points of Σk.

The existence of a good reduction can have implications for the geometry of
the submanifold and the question of when good reductions exist is still under
consideration: in all the sample geometries we have investigated, ad hoc arguments
can be used to establish existence but we presently lack a general understanding.

However, once good reductions are available, one can again normalise via Lie
algebra homology. We say that a good reduction is normal if ∂θm = 0 and prove:

Theorem. In favourable circumstances, there is a unique normal reduction FΣk

and a canonical choice θ̂h of normal Cartan connection thereon.

In fact, the geometry is completely controlled by θ̂h and the homology class
JθmK. In examples, these primitive data can be found in the classical literature:
for submanifolds of the conformal n-sphere, the normal reduction is the central
sphere congruence of Blaschke [1] while JθmK is simply the trace-free part of the
second fundamental form. Again, for hypersurfaces of projective space, the normal
reduction is the congruence of Lie quadrics (see [1]) and JθmK is the Darboux cubic
form.

We can recover the immersion from the primitive data θ̂h, JθmK. Indeed, given

a normal Cartan geometry (FΣk , FΣk,Q, θ̂h) on Σk along with a negative weight

section JθmK of the homology bundle H1(Σ
k, [m]), one can recover θm ∈ Ω1

Σk ⊗
[m] via the Čap–Slovák–Souček theory of differential lifts of sections of homology
bundles [5]. Further, one can then recover θh and so construct a connection θ on
FΣk ×H G. The whole issue now is the flatness of θ: if θ is flat, we have a local
isomorphism of (FΣk ×H G, θ) with Σk ×G equipped with the trivial connection.
The reduction of FΣk to Q will give us a map Σk → G/Q and thus the immersion
Σk → G/P . So when is θ flat? This amounts to differential equations on JθmK
of a universal character: for each k ≥ 0 Calderbank–Diemer [3] define k-linear

operators µk : ⊗kC∞(Σk, H1(Σ
k, [g])) → C∞(Σk, H2(Σ

k, [g])) with µ0 = JRθ̂hK
and µ1 the curved Bernstein–Gelfand-Gelfand operator of Čap–Slovák–Souček [5].
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Theorem. θ is flat if and only if

(1)
∑

k≥0

µk(JθmK, . . . , JθmK) = 0.

Thus (1) is the Gauss–Codazzi–Ricci equation of our submanifold geometry.
Since θm has negative weight and the operators µk preserve weight, the sum in
(1) is finite. In fact, in both conformal submanifold geometry and projective
hypersurface geometry, all summands vanish for k ≥ 3.
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[2] D.M.J. Calderbank, Möbius structures and two dimensional Einstein–Weyl geometry, J.
Reine Angew. Math. 504 (1998), 37–53.

[3] D.M.J. Calderbank and T. Diemer, Differential invariants and curved Bernstein–Gelfand–
Gelfand sequences, J. Reine Angew. Math. 537 (2001), 67–104.
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Configuration spaces of plane polygons, sub-Riemannian geometry

and periodic orbits of inner and outer billiards

Serge Tabachnikov

This is a report on recent work by a number of authors concerning periodic trajec-
tories of inner and outer billiards and using ideas from sub-Riemannian geometry
and the theory of exterior differential systems [1, 2, 4, 6, 11].

The main motivation is an old conjecture that the set of periodic billiard tra-
jectories has zero measure (with respect to the canonical invariant measure of the
billiard transformation). This conjecture is open for about 25 years; it is rele-
vant to the spectral geometry (the Weyl asymptotics of the eigenvalues of the
Laplace operator). For 2-periodic billiard trajectories this result is easy, and for
3-periodic ones it was proved in different ways in [8, 9, 13, 12] (the first proof was
computer-assisted).

On the other hand, there is an abundance of convex billiard tables possessing an
invariant curve consisting of 2-periodic trajectories: any smooth curve of constant
width bounds such a table. In [5], a billiard table is constructed possessing an
invariant curve consisting of 3-periodic trajectories. A natural question is whether
such examples are rare or common and how to construct them systematically.
Each of the questions can be asked for outer billiards as well (see [3, 10] for a
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survey of outer – also known as dual – billiards); no results for outer billiards were
previously known.

An n-periodic billiard trajectory is a plane n-gon, and the law of billiard reflec-
tion determines the directions of the billiard curve at the vertices of the polygon.
This defines an n-dimensional distribution D on the space of non-degenerate plane
n-gons. The distribution D is tangent to the level hypersurfaces of the perime-
ter length function; fixing the perimeter, we obtain an n-dimensional distribution
on 2n − 1-dimensional manifold M of polygons with unit perimeter. A similar
construction applies to outer billiards with the perimeter function replaced by the
area one.

The first result is that D is totally non-integrable: the tangent space to M is
spanned by D and the first commutators of the vector fields tangent to D. This
result holds in the inner and the outer settings.

A billiard table possessing an invariant curve consisting of n-periodic trajecto-
ries can be interpreted as a curve g(t) = (P1(t), . . . , Pn(t)) ⊂ M with t ∈ [0, 1],
tangent to D (such curves are called horizontal) and satisfying the monodromy
condition: (P1(1), . . . , Pn(1)) = (P2(0), . . . , Pn(0), P1(0)). Starting with a circular
billiard, one can perturb the respective horizontal curves to obtain new billiard ta-
bles possessing an invariant curve consisting of n-periodic trajectories. One proves
a theorem that, for each n and every rotation number k coprime with n, this con-
struction yields a Hilbert manifold worth of billiard tables with an invariant curve
consisting of n-periodic trajectories having rotation number k. This applies to
both inner and outer billiards, see [1, 2, 4]. In particular, one has explicit formulas
for outer billiards with an invariant curve consisting of 3-periodic trajectories [4].
A subtle point is to prove that the horizontal curves enjoy sufficient flexibility; as
explained in [7], this is not true in general.

A problem arises whether invariant curves consisting of periodic trajectories can
coexist for different periods (or for the same period but different rotation numbers).
Of course, a circle or an ellipse provides an example of such coexistence; are there
other examples? A negative answer would imply the famous Birkhoff conjecture:
the only integrable plane billiard is the one inside an ellipse.

If the set of n-periodic trajectories has a non-empty interior then the distribu-
tion D admits a horizontal 2-dimensional disk. For n = 3, one can prove that such
disks do not exist, in both inner and outer settings, and this implies that the set
of 3-periodic inner or outer billiard trajectories is a null set. For inner billiards,
this provides a new proof of a known result, see [1, 2, 6], and for outer ones, this
is a new result proved in [4]. In a recent preprint [11], Tumanov and Zharnitsky
obtain the same result for n = 4 in the outer set-up, unless the billiard table has
four corners that form a parallelogram.
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Mean curvature of surfaces in TS2

Wilhelm Klingenberg

(joint work with Brendan Guilfoyle)

We consider here the neutral Kähler metric on L = TS2, considered as the space of
oriented affine lines in R3 [1] [2]. In terms of local holomorphic coordinates (ξ, η)
on TS2, this metric has expression:

(1) ds2 =
2i

(1 + ξξ̄)2

(
dη dξ̄ − dη̄ dξ +

2(ξη̄ − ξ̄η)

1 + ξξ̄
dξ dξ̄

)
,

We will look at surfaces in L which arise as the graph of a local section of the
bundle L → S2, that is, a map ξ → (ξ, η = F (ξ, ξ̄)).

Proposition 1. The metric induced on the graph of a section by the Kähler metric
is given in coordinates (ξ, ξ̄) by

G =
2

(1 + ξξ̄)2

[
iσ −λ
−λ −iσ̄

]

with inverse

G
−1 =

(1 + ξξ̄)2

2∆

[
iσ̄ −λ
−λ −iσ

]
,

where σ = −∂F̄ , λ = Im (1 + ξξ̄)2∂
(
F (1 + ξξ̄)−2

)
and ∆ = λ2 − σσ̄. Here, and

throughout, ∂ represents differentiation with respect to ξ.
In particular, the determinant of the induced metric is |G| = 4∆(1 + ξξ̄)−4.

Thus, the metric is lorentz if λ2 < σσ̄, riemannian if λ2 > σσ̄ and degenerate if
λ2 = σσ̄.

The area form of the induced metric is
√
|G| dξ∧ξ̄, and the following proposition

deals with stationary values of the area functional:
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Proposition 2. A surface Σ →֒ L which is given by the graph of a function
ξ → (ξ, η = F (ξ, ξ̄)) is area-stationary iff

i∂

(
λ√
|∆|

)
− (1 + ξξ̄)2∂̄

(
σ

(1 + ξξ̄)2
√
|∆|

)
= 0.

Area-stationary surfaces have the following property:

Proposition 3. On an area-stationary graph
√
|∆|Gjk∇j∇k

√
|∆| = 2λ

where ∇ is the Levi-Civita connection associated with the induced metric G.

Proof. This hinges on the (derived Codazzi-Minardi) identity:

−(1 + ξξ̄)2∂̄

(
σ

(1 + ξξ̄)2

)
= ∂ρ̄+

2F̄

(1 + ξξ̄)2

where ρ = (1 + ξξ̄)2∂
(
F (1 + ξξ̄)−2

)
. �

Let f : Σ → L be an immersed surface. Then the mean curvature flow is given
by the equation

ḟ⊥ =

(
G

jk∇L

∂f
∂xk

∂f

∂xk

)⊥

where ∇L is the Levi-Civita connection associated with the ambient metric on L

and ⊥ is projection perpendicular to the tangent space of Σ.

Proposition 4. For a graph in L, the mean curvature flow is

Ḟ = G
jk∂j∂kF +

iσ̄

∆

(
(σξ − ρ̄ξ̄)(1 + ξξ̄) + F̄ − ξ̄2F

)
.
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The fcc lattice and the cusped hyperbolic 4-orbifold of minimal volume

Ruth Kellerhals

(joint work with Thierry Hild)

Let Q be a cusped hyperbolic n-orbifold of finite volume, that is, Q is the quotient
of hyperbolic space Hn by a cofinite discrete group Γ < Iso(Hn) containing
parabolic elements. A result of Kazdan-Margulis-Heintze implies that the volume
spectrum of all cusped hyperbolic n-orbifolds contains a minimum value vn > 0.
We discuss the problem to determine vn and to describe all those n-orbifolds whose
volumes realise vn.
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We present a fairly general method to deal with this problem and show that
the quotient space Q∗ of H4 by the hyperbolic Coxeter group Γ4

∗ = [4, 32,1] with
diagram

Σ∗ : ◦–——◦–——◦–——◦
◦
∣∣ 4

is the unique non-compact hyperbolic 4-orbifold of minimal volume. The orbifold
Q∗ is isometric to a hyperbolic Coxeter 4-simplex of volume v4 equal to π2/1, 440
with precisely one vertex at infinity. Its vertex neighborhood is a cone over the
euclidean tetrahedron ∆fcc which is a fundamental domain for the action of the
symmetry group of the famous fcc lattice given by the parabolic Coxeter group
Γfcc < Γ4

∗ with diagram

Σfcc : ◦–——◦–——◦
◦
∣∣ 4

.

By a well known result of C. F. Gauss, the fcc packing is the unique lattice pack-
ing of E3 with maximal density π/

√
18. Indeed, our methods are based on results

about crystallographic groups and lattice packings in E3 as well as horoball geome-
try in hyperbolic space. In particular, a conjugacy class of a subgroup of parabolic
type in Γ gives rise to a canonical cusp in Q = Hn/Γ. It turns out that for a given
sufficiently small upper volume the canonical cusp is maximal within the nested
set of cusped neighborhoods.

Our theorem generalises the area minimality property of the triangle group
(2, 3,∞) . By [5], it is known that the quotient of H2 by the group Γ2

∗ = (2, 3,∞)
with fundamental triangle of non-zero angles π/2, π/3 is the unique 2-orbifold of
area v2 which equals to π/6.

Furthermore, R. Meyerhoff [4] showed that among the non-compact oriented
hyperbolic 3-orbifolds the oriented double cover of the quotient of H3 by the Cox-

eter group Γ3
∗ = [3, 3, 6] with diagram ◦–——◦–——◦—

6
–——◦ is of minimal volume.

The methods which we develop allow us to conclude that the space H3/[3, 3, 6] is
the hyperbolic 3-orbifold of minimal volume and as such is unique. Therefore, v3
is equal to 1

8 JI(π
3 ) ≃ 0.04229 where JI denotes the Lobachevsky function.

Recently, T. Hild [2] extended the methods in order to resolve analoguous ques-
tions for cusped hyperbolic orbifolds of higher dimensions. The following table
contains parts of his results. For 5 ≤ n ≤ 9, he shows that the minimal volume
n-orbifold is a quotient of Hn by a simplex Coxeter group Γn

∗ up to one exception:
The group Γ7

∗ has a fundamental domain which arises by halfening the Coxeter
simplex with flip-invariant diagram as shown in the table by means of the obvious
hyperplane. The relevant values vn were determined in [3] and are explicit rational
multiples of Riemann’s zeta function, a particular L-function, and some power of
π in the even dimensional cases, respectively.

Recently, T. Hild [2] extended the methods in order to resolve analoguous ques-
tions for cusped hyperbolic orbifolds of higher dimensions. The following table
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n Γn
∗ vn

5 r r r r r r
4 7 ζ(3)

46,080
≈ 1.83 · 10−4

6
r r r r r r

r

4
π3

777,600
≈ 3.98 · 10−5

7 Z2-extension of

r r r r r r

r

r

√
3 L(4,3)

1,720,320
≈ 9.46 · 10−7

8
r r r r r r r r

r

π4

4,572,288,000
≈ 2.13 · 10−8

9
r r r r r r r r r

r

ζ(5)
22,295,347,200

≈ 4.65 · 10−11

contains parts of his results. For 5 ≤ n ≤ 9, he shows that the minimal volume
n-orbifold is a quotient of Hn by a simplex Coxeter group Γn

∗ up to one exception:
The group Γ7

∗ has a fundamental domain which arises by halfening the Coxeter
simplex with flip-invariant diagram as shown in the table by means of the obvious
hyperplane. The relevant values vn were determined in [3] and are explicit rational
multiples of Riemann’s zeta function, a particular L-function, and some power of
π in the even dimensional cases, respectively.
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Surfaces in three-dimensional Lie groups

Iskander A. Taimanov

(joint work with Dmitry A. Berdinsky)

We give an exposition of the Weierstrass (or spinor) representation for surfaces in
three-dimensional Lie groups. For the commutative Lie group R

3 this is the known
representation for surfaces in the three-dimensional Euclidean space studied since
the middle of the 1990’s and for the unit sphere in four-space G = SU(2) it was
earlier developed by the speaker (see [4]). Here we are mostly concerned with the

Lie groups Nil (a nilpotent group), Sol (a solvable group), and S̃L2 endowed with
Thurston’s geometries.

The derivational equations for a surface f : M → G with a given conformal
parameter z are written in terms of Ψ = f−1f ∈ g where g = T1G is the Lie
algebra of G. These equations take the form

∂Ψ∗ − ∂̄Ψ + ∇ΨΨ∗ −∇Ψ∗Ψ = 0, ∂Ψ∗ + ∂̄Ψ + ∇ΨΨ∗ + ∇Ψ∗Ψ = e2αHf−1(N),

where N is the unit normal vector, and expanding Ψ =
∑3

k=1 Zkek in the linear
base e1, e2, e3 for g we rewrite these equations in the form of the Dirac equation
Dψ = 0 where

D =

[(
0 ∂
−∂̄ 0

)
+

(
U 0
0 V

)]

and Z1 = i
2 (ψ̄2

2 +ψ2
1), Z2 = 1

2 (ψ̄2
2 −ψ2

1), Z3 = ψ1ψ̄2. The induced metric takes the

form e2α dz dz̄ = (|ψ1|2 + |ψ2|2)2 dz dz̄. For surfaces in R
3 we have U = V = 1

2He
α

and for surfaces in SU(2) we have U = V̄ = 1
2 (H + i)eα where H is the mean

curvature.
The Willmore functional for a surface in a general three-space equals

∫
(H2 +

K̂)dµ where K̂ is the sectional curvature of the ambient space along the tangent
plane and dµ is the induced measure. In terms of the Weierstrass representation
for surfaces in R3 and SU(2) the Willmore functional equals 4

∫
UV idz∧dz̄

2 . Its
relation to the spectral theory of the Dirac operator D pointed out by the speaker
in 1995 was studied in the last years (see the survey [4]).

These methods allow us to obtain the analogue of the Weierstrass representation
of minimal surfaces:

Theorem 1 ([2]). For the Weierstrass representation of surfaces in Lie groups
the potentials U and V take the form

U = V =
Heα

2
+
i

4
(|ψ2|2 − |ψ1|2) for G = Nil,

and

U =
Heα

2
+ i

(
1

2
|ψ1|2 −

3

4
|ψ2|2

)
,

V =
Heα

2
+ i

(
3

4
|ψ1|2 −

1

2
|ψ2|2

)
for G = S̃L2.
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The potentials for the case of G = Sol are defined outside the zero measure set
and this representation is more complicated [2].

Corollary 1 ([2]). For minimal surfaces in G the spinor ψ meets the equations

∂̄ψ1 =
i

4
(|ψ2|2 − |ψ1|2)ψ2, ∂ψ2 = − i

4
(|ψ2|2 − |ψ1|2)ψ1 for G = Nil,

∂̄ψ1 = i

(
3

4
|ψ1|2 −

1

2
|ψ2|2

)
ψ2, ∂ψ2 = −i

(
1

2
|ψ1|2 −

3

4
|ψ2|2

)
ψ1 for G = S̃L2,

∂̄ψ1 =
1

2
ψ̄2

1ψ̄2, ∂ψ2 = −1

2
ψ̄1ψ̄

2
2 for G = Sol.

Let us define the (spinor) energy functional for compact oriented surfaces with-
out boundary as

E(M) =

∫

M

UV
idz ∧ dz̄

2
.

For surfaces in R3 and SU(2) it is a quarter of the Willmore functional however
in other cases it differs.

Corollary 2 ([2]). The spinor energy E(M) of a surface M equals

1

4

∫

M

(
H2 +

K̂

4
− 1

16

)
dµ for G = Nil,

1

4

∫

M

(
H2 +

5

16
K̂ − 1

4

)
dµ for G = S̃L2.

The Hopf quadratic differential equals Adz2 = (∇fz
fz, N)dz2 and, by the Hopf

theorem, for surfaces in R3 it is holomorphic if and only if the surface has constant
mean curvature.

Methods of the general Weierstrass representation allows us to derive the fol-
lowing

Theorem 2 ([2]). 1) A surface in Nil has constant mean curvature if and only if

the quadratic differential Ã dz2 =
(
A+ Z3

2

2H+i

)
dz2 is holomorphic.

2) If surface in S̃L2 has constant mean curvature then the quadratic differential

Ã dz2 =
(
A+ 5

2(H−i)Z
2
3

)
dz2 is holomorphic.

In both cases the e3 axis is chosen to be the axis of a rotational symmetry.

Thus for the special cases of surfaces in Nil and S̃L2 we obtain another deriva-
tion to the result by Abresch–Rosenberg that certain generalizations of the Hopf
differential for constant mean curvature (CMC) surfaces in three-spaces with four-
dimensional isometry group are holomorphic [1]. Their differential is equal to

(H + iτ)Ã dz2 where τ is the bundle curvature of the one-dimensional bundle over
two-manifold with constant curvature such that this fibration is locally isometric
to the three-dimensional ambient space.

Recently Fernandez and Mira showed that for all other ambient spaces with
four-dimensional isometry group which are different from the space forms and
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Nil there are non-CMC surfaces for which the Abresch–Rosenberg differential is
holomorphic.

Let us return to the spinor energy functional E(M). It appears that for sur-
faces in Nil it resembles the Willmore functional in many geometrical aspects. In
particular, we have

Theorem 3 ([3]). For all CMC spheres in Nil the spinor energy is equal to π.

Theorem 4 ([3]). Given a closed surface M in Nil obtained by revolving a curve
γ in the half-lane {ρ ≥ 0, z ∈ R} = Nil/SO(2) around the z-axis, the spinor energy
of M equals

E(M) =
π

8

∫

γ

(
σ̇ − sinσ

ρ

)2√
4ρ2 + ρ4ds+

πχ(M)

2
(1)

where σ is the angle between γ and ∂
∂ρ (in the metric dρ2+ 4ρ2

4ρ2+ρ4 dz
2 for which the

projection Nil → Nil/SO(2) is a submersion) and χ(M) is the Euler characteristic
of M . Moreover if σ̇ = sin σ

u everywhere on the surface then it is a CMC sphere.

Corollary 3. For spheres of revolution E(M) ≥ π and the equality is attained
exactly at CMC spheres. For tori of revolution E(M) > 0.

We remark that for surfaces in R
3 the CMC spheres are the round spheres

and they give solutions to the isoperimetric problem for all volumes, the Willmore
functional attains on these spheres minimal possible value which is 4π (i.e., E = π)
and these are all closed umbilic surfaces in R3.

It is conjectured that the CMC spheres are isoperimetric surfaces in Nil and
actually that holds for small volumes. The spinor energy functional is constant
on the CMC spheres, attains on them its minimal possible value for surfaces of
revolution (and we think for all surfaces) and these spheres are not umbilic but
another similar quantity which is (σ̇ − sin σ

ρ ) vanishes exactly on them.

We think that the spinor energy functional is the right generalization of the
Willmore functional for surfaces in Lie groups since it respects solutions to the
isoperimetric problem (at least for small volumes). We have a guess that in general
the isoperimetric surfaces in homogeneous spaces are detected as kind of instantons
for a certain functional similar to the Willmore functional and this functional is
equal on these surfaces to some topological term. (We remark that for the CMC

spheres in S2 × R we have
∫

M (H2 + K̂ + 1)dµ = 16π.)
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Dr. Stephane Sabourau

Laboratoire de Mathematiques et
Physique Theorique
Universite de Tours
Parc de Grandmont
F-37200 Tours

Prof. Dr. Viktor Schroeder

Institut für Mathematik
Universität Zürich
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