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Introduction by the Organisers

Computational quantum chemistry is nowadays a very lively topic, which has a
huge number of applications ranging from Chemistry itself to biology and materials
science. Most of the models are written in terms of variational problems involving
partial differential equations. Mathematics can play an important role in the
analysis of those models as well as in their numerical analysis and in finding robust
and efficient computational techniques to find approximate solutions.

The study of the mathematical aspects of the problems in this area were pio-
neered in the 1970s by E. H. Lieb and coworkers. P.-L. Lions and collaborators,
from the 1980s on, have made major contributions to the field. On the other hand,
the need of efficient software able to simulate large systems calls for a definite en-
hancement of the computational aspects of this theory. It was now due time for
such a workshop, gathering leading international researchers with different scien-
tific backgrounds: mathematics (nonlinear analysis, PDEs, variational methods),



2806 Oberwolfach Report 47/2006

mathematical physics, scientific computing (numerical analysis, large-scale opti-
mization), theoretical chemistry, biochemistry, materials science, ... The workshop
was an opportunity to make a state-of-the art review of the mathematical knowl-
edge, to draw up a list of the potential practical applications and the challenges
to overcome in the near future.

This workshop brought together leading figures from the computational quan-
tum chemistry and applied math communities. These are two communities that
rarely find themselves at the same conference. It was attended by 47 people, most
of them well-known researchers in the field plus some younger researchers. Par-
ticipants from the chemistry side included experts in density functional theory,
quantum Monte Carlo techniques, and quantum dynamics. There were several
”hot” topics discussed prominently at the workshop. Among them, the existence
and the computation of the optimized effective (OEP) potential in DFT perhaps
took central stage. Remarkably, there was enough critical mass of researchers and
discussion time to conclude at this point that the existence and uniqueness of this
OEP is far from certain. The current methods used in practice for its calculation
have shortcomings and there is still lots of room for improvement. Among the
mathematicians, half were nonlinear PDE specialists and mathematical physicists
and another half, numerical analysts and experts in computational issues.

There were 8 review talks opening the various sections in which the workshop
was divided : general models and methods, numerics and approximation, time
evolutions problems, density functional and OEP models, control and controlla-
bility, relativistic models and quantum Monte Carlo simulations. Every section
consisted of the opening (longer) review talk plus some shorter contributions, pre-
senting various, complementary, aspects of the subject.

The talks presented a very large view of the field and this both from the chem-
istry and from the mathematics viewpoint. The models that are nowadays more
popular and used were discussed in depth. The mathematical tools to analyse
those models and compute approximate solutions were discussed and already ex-
isting applications were described. General numerical methods to analyze a priori
or a posteriore errors were presented and discussed in the framework of quantum
theory. Many of the talks were not only presentations of existing results but also
of the limitations of the current knowledge and description of the most important
needs.

In the evenings, after dinner, three round tables were organized in order to
foster interactions and discussions on future subjects of interest, on the possibilities
of further interaction betweeen mathematics and quantum chemistry and on the
modelling and the methodology nowdays available and future prospects. The
precise subjects of the round tables were : ”Optimized Effective Potentials in
DFT”, ”Developing fruitful interactions at the theoretical level” and ”Interactions
between chemists and numerical analysts”. The three evenings gave us an excellent
opportunity to discuss very openly about what is done and what is missing in the
present theories and practice.
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Based on the feedback already received from participants, we consider the or-
ganization of such a workshop equally beneficial for mathematicians and chemists.
We hope other workshops in the same spirit will be organized in the near future.

Maria J. Esteban
Claude Le Bris
Gustavo Scuseria
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Abstracts

A few aspect of QMC for molecules

Michel Caffarel

(joint work with R. Assaraf, A. Khelif, A. Scemama, A. Ramı́rez-Soĺıs)

In this talk a number of recent works aimed at improving quantum Monte Carlo
(QMC) approaches for molecular structure are reported.

1. Improved one-particle properties

First, a recent proposal to greatly increase the efficiency of Monte Carlo calcu-
lations of one-body properties (e.g. charge and spin densities) is presented. The
general idea is to construct an “improved” estimator whose average is identical to
the desired average but with a much smaller variance.[1, 2, 3]

In the case of the charge density, ρ(r), the standard estimator has the following
form

(1) ρ(r) = 〈
N∑

i=1

δ(ri − r)〉Π

where N is the number of particles (here, electrons) and Π the underlying proba-
bility density sampled by Monte Carlo. Our proposed improved estimator is

(2) ρ(r) = − 1

4π

N∑

i=1

〈[ 1

|ri − r| − g]
∇2

i (fΠ)

Π
〉Π,

where the two functions f and g play the role of auxiliary quantities. They are
introduced to decrease as much as possible the variance of the density estimator.
As with any optimization problem, there is no universal strategy for choosing f and
g. However, the guiding principle is to identify the leading sources of fluctuations
and, then, to adjust the auxiliary functions to remove most of them.

Let us emphasize that this approach is not limited to QMC calculations; our
estimator can be readily used in any type of Monte Carlo simulation (e.g. Monte
Carlo for classical thermodynamics). Furthermore and in sharp contrast with the
usual estimator based on the regularization of the delta-function on a grid, our
expression leads to accurate estimates of the density at any point in space, even
in the regions never visited during the Monte Carlo simulation (e.g., in the large-
distance regime). This property is particularly interesting when a global knowledge
of the density map is searched for.

Here, we present an application to the water dimer for which we have been able
to compute a smooth and accurate map of the charge density for a large number
of grid points (51x51x51=132651 points). Remark that such a calculation would
be vastly more difficult with the standard approach. Details of the method can be
found in Ref.[4].
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2. The fermion Monte Carlo method revisited

A second work presented here concerns a detailed mathematical study of a
recent proposal by Kalos et al.[6] -the Fermion Monte Carlo (FMC) method- to
solve the “Fermion-sign” problem. This problem is presently considered as one
of the most important challenge in computational physics. In short, the FMC
method is based on the use of two types of walkers simulating the positive and
negative parts of the signed wavefunction. The “positive” and “negative” walkers
are correlated so that to meet with a high probability and, whenever they meet,
a cancellation step is done. We have performed a careful mathematical analysis
of the various aspects of the method. We have shown that FMC is indeed exact.
However, the method is still unstable but with a weaker instability. We have proved

that the statistical error δE on the energy behaves as δE ∼ e(EF −ẼB)N
√

N
where EF

is the fermi ground-state energy, EB the bose ground-state energy, and ẼB some
effective bose energy verifying EF ≥ ẼB > EB. Note that the exact QMC methods
proposed so far can be viewed as unstable approaches with ẼB = EB (no change
of the Bose state). To summarize, FMC is as an exact fermion method having an
attenuate exponential blow up of statistical fluctuations at large simulation times.
However, the pathological behavior of the error as a function of the number of
fermions (rapid increase of the Bose-Fermi gap) is still present. Details about this
study can be found in Ref.[5].

3. Fixed-node error in chemistry

A last work presented here concerns the role played by the “fixed-node” error in
the chemistry of real systems. It is usually said that the fixed-node approximation
is very good. For total energies it is certainly true since, in general, the fixed-node
error represents only a few percents of the total correlation energy (defined as
the difference between the exact and the Hartree-Fock energies), a result which
is considered as very good in computational chemistry. However, we emphasize
that such impressive result does not necessarily extend to the calculations of the
very small differences of energies involved in chemistry. In other words, the small
errors in total energies can lead to large uncontrolled errors in the very small
energy differences we are interested in. When computing differences of energies
with standard ab initio wavefunction-based and DFT methods a large cancellation
of sytematic errors is at work (use of a common basis set and common molecu-
lar orbitals not involved in the chemical process). This is not the case in QMC
simulations. Let us present two applications illustrating this important point.

A. Dissociation barrier of O4

We are interested in the process: O4 (singlet metastable state) ⇔ O4 [singlet
transition state (TS)] ⇔ 2 O2 (stable triplet state). Experimental results indicate
that the dissociation barrier associated with O4 ⇒ O4(TS) is probably greater
than 10 kcal. Sophisticated ab initio calculations [CCSD(T), ACPF, etc.] lead to
a barrier of about 8-9 kcal. Our fixed-Node DMC calculations give a barrier of
26.2 ± 2.9 kcal with SCF nodes, and 12.7 ± 3.7 kcal with MCSCF nodes. As seen,
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the value of the dissociation barrier is very dependent on the nature of the nodes
(“monoconfigurational” or “multiconfigurational”).

B. Fixed-Node DMC for Cr2.
The chromium dimer is known to be a very difficult problem for all computational
chemistry approaches. The experimental binding energy of this molecule is ∼ -
0.056 a.u. The SCF binding energy (basis set= [20s12p9d5f]) is about +0.795 a.u.
In other words the “SCF molecule” does not exist (unbound by a large amount).
Our fixed-node DMC calculation obtained with SCF nodes leads to: E0(Cr2)-2
E0(Cr) = +0.01(3). Cr2 is therefore found to be unbound (or slightly bound) at
the fixed-node DMC level with “monoconfigurational” nodes, although a large part
of the correlation energy is recovered. Clearly, in this case, multiconfigurational
trial wavefunctions are called for. This result illustrates the importance of correctly
describing the nodal structure of the exact wavefunctions when applying FN-DMC.
Details about fixed-node simulations for “difficult” systems of quantum chemistry
can be found in [7, 8].
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Numerical analysis for electronic structure calculations: an overview

Eric Cancès

The first part of my talk will be devoted to the numerical simulation of the
Hartree-Fock model for molecular systems of moderate size (up to a few hundreds
of electrons). After recalling the structure and the main mathematical proper-
ties of the Hartree-Fock model, I will present some theoretical results on Self-
Consistent Field (SCF) algorithms [1]. In particular, I will analyze the failures of
the Roothaan algorithm [2], and introduce the Optimal Damping Algorithm [3, 4]
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(ODA), which enjoys interesting features. First, it is proved to monotonically
converge toward a critical point of the Hartree-Fock energy satisfying the Aufbau
principle. Second, it is very robust, in the sense that, in most cases, it converges
toward the (hopefully) global minimum, even for crude initial guesses. An im-
provement of ODA, namely the EDDIS algorithm [5], will also be presented. Both
ODA and EDIIS can be extended to Kohn-Sham models [6, 7].
In the second part of my talk, I will describe a variational multilevel domain de-
composition method for solving the linear subproblem arising in Hartree-Fock and
Kohn-Sham calculations, for large size molecular systems (hundred thousands of
electrons). This method has been introduced in [8]. An improvement of it has
been proposed in [9]. This method iterates between local fine solvers and global
coarse solvers, in the spirit of the domain decomposition methods used in other
fields of the engineering sciences. Using this approach, calculations have been
successfully performed on several linear polymer chains containing up to 100,000
atoms and 380,000 atomic orbitals. Both the computational cost and the memory
requirement scale linearly with the number of atoms.
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Models for laser-matter interaction in the high-frequency regime

François Castella

(joint work with E. Dumas)

We consider a laser beam in the three dimensional space R3, sent in a collection of
identical atoms (say in a gas, or in an optical fiber). We let the laser propagate over
long distances with respect to the laser’s wavelength: the regime under study nat-
urally is a high-frequency regime. We wish to describe, along the high-frequency
asymptotics, the laser-matter interaction.

One basic model for laser-matter interaction is the so-called Maxwell-Bloch
system (see e.g. [10], [9], see also [1]). Its unknowns are the electromagnetic field
(E,B) = (E,B)(t, x, y, z) ∈ R6, and the so-called density-matrix ρ = ρ(t, x, y, z),
which is an operator on L2(R3) for each value of time t and space (x, y, z). The
density matrix ρ describes the state of matter, while the field (E,B) describes
the state of the laser signal, at (t, x, y, z). This being settled, the Maxwell-Bloch
system consists on the one hand of a Maxwell equation for the electro-magnetic
field. It reads, in convenient units,

∂tB + curl E = 0,(1)

∂tE − curl B = −∂tP.

Here P is the so-called polarisation: it describes how matter responds to the
presence of the laser field (E,B). In essence, P is proportional with ρ, i.e. it
depends linearly on the state of matter. The system also includes a Schrödinger-
like equation for ρ, namely the Bloch equation, which reads, in convenient units,

∂tρ = −i [Hatom +Hfield , ρ] + dissipation.(2)

Here, [., .] denotes a commutator (between operators), Hatom is the elementary
atomic Hamiltonian, while Hfield is the Hamiltonian created by the laser field and
acting on the collection of atoms. In essence, Hfield is proportional with the field E
(in the so-called dipolar approximation). The dissipative term, whose very value
is not made precise here (see [7], see also [2]), expresses the natural trend of the
atoms to relax towards equilibrium states of Hatom.
The system (1)-(2) with unknowns (E,B, ρ) is nonlinear and coupled: the nonlin-
earity is essentially proportional with the product E × ρ.
Due to the high-frequency regime, we consider a scaled form of (1)-(2): it is valid
for sufficiently weak lasers (so that the optical properties of matter are not modified
by the laser field), and propagating over sufficiently long time scales (so that both
propagative and dispersive effects do take place). We also restrict our attention to
laser beams, propagating in one distinguished direction, say in the direction x (so
that the laser’s extension in the tranverse (y, z) direction is much smaller than its
extension in the propagative x direction).
We prove in [7] that the complete, scaled, Maxwell-Bloch system (6 unknowns
for the field, and one operator-valued unknown for the atoms, all unknowns be-
ing propagated in the three-dimensional space) is asymptotically well described,
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in this regime, by a single, scalar, Schrödinger equation for the asymptotic field
E = E(t, x, y, z), of the form

(∂t − ∂x) E︸ ︷︷ ︸
propagation in the direction x

− i∆y,zE︸ ︷︷ ︸
dispersive effects in the transverse direction

= source.(3)

(Here, E is the limiting envelope of the original field E). Up to the source term
(described below), equation (3) is very reminiscent of the standard paraxial approx-
imation in laser propagation. On top of that, matter is eventually well-described
by a scalar unknown N(t, n) (instead of the operator ρ(t)), indexed by the atoms’
energy levels n. The quantity N(t, n) is the probability, at time t, to find an atom
in the n-th eigenstate of the atomic Hamiltonian Hatom. It satisfies a Boltzmann
like equation, of the form

∂tN(t, n) =
∑

k

σ(n, k) [N(t, k) −N(t, n)] ,(4)

where σ(n, k) ≥ 0 is a transition rate, describing the probability that a given atom
“jumps” from the n-th eigenstate to the k-th eigenstate, under the action of the
external field E (absorption or emission of a photon). Last, it is proved that the
transition rate σ is proportional with |E|2, namely to the laser’s power, while the
source term in (3) is proportional with the product E ×N .
Technically speaking, this result involves tools from three scales geometric optics
[8] (see also [5]), as well as some small divisors estimates.
The present study completes, in the fully nonlinear situation, a previous study
valid in the case where the laser signal (E,B) is considered given at once (rather
than given through the resolution of a Maxwell system), see [3, 4]: in that case the
techniques are quite different, since averaging tools from the analysis of ordinary
differential equations are used (see [12]).
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Séminaire sur les équations aux Dérivées Partielles, 1995–1996, Exp. No. XVII, École Poly-
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Relativistic hydrogenic atoms in strong magnetic fields

Jean Dolbeault

(joint work with M. J. Esteban, and M. Loss)

Abstract. In the Dirac operator framework we characterize and estimate the

ground state energy of relativistic hydrogenic atoms in a constant magnetic field

and describe the asymptotic regime corresponding to a large field strength using

Landau levels. We also define and estimate a notion of critical magnetic field.

The Dirac operator for a hydrogenic atom in the presence of a constant magnetic
field B in the x3-direction is given by

HB,ν := HB − ν

|x| with HB := α ·
[
1

i
∇ +

1

2
B(−x2, x1, 0)

]
+ β

where α1, α2, α3 and β are 4× 4 complex matrices, whose standard form in 2× 2
blocks is

β =

(
I 0
0 −I

)
, αk =

(
0 σk

σk 0

)
k = 1, 2, 3 .

Here we have used the notations I =

(
1 0
0 1

)
and σk are the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The coupling constant ν = Zα is supposed strictly less than 1, Z is the nuclear
charge number and α ≈ 1/137.037 is the Sommerfeld fine-structure constant.
See [7] for more details on Dirac’s equation.

The ground state energy λ1(ν,B) is defined as the smallest eigenvalue in the
gap (−1, 1) of HB,ν . As the value of B increases, λ1(ν,B) converges to −1, which
is achieved for some critical field strength B(ν). Our first main result is based on
a min-max characterization of the ground state energy and provides a rough non
perturbative estimate of B(ν):

4

5 ν2
≤ B(ν) ≤ min

(
18 π ν2

[3 ν2 − 2]2+
, eC/ν2

)
.

We are indeed able to extend the results of [4] to the case with a constant
magnetic field. One of the main ingredient is the characterization of λ1(ν,B) as
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the infimum of λ[φ, ν,B] on a set of admissible two components spinors φ, where
λ = λ[φ, ν,B] is either the unique solution to

0 = J [φ, λ, ν,B] :=

∫

R3

( |PBφ|2
1 + λ+ ν

|x|
+ (1 − λ) |φ|2 − ν

|x| |φ|
2
)
d3x

or λ[φ, ν,B] = −1 if J [φ,−1, ν, B] ≤ 0. Here we use the notations PB := − i σ ·
(∇− i AB(x)), AB(x) := B

2 (−x2, x1, 0). This problem is related to the eigenvalue

problem for HB,ν as follows. If ψ =
(

φ
χ

)
is an eigenfunction with eigenvalue λ, the

eigenvalue equation is equivalent to PBχ+ φ− ν
|x| φ = λφ PBφ− χ− ν

|x| χ = λχ

and we can eliminate the lower component χ. The equation for φ is then a critical
point of J [φ, λ, ν,B], with critical vlaue 0.

We also study the asymptotics of B(ν) as ν → 0 using the notion of lowest
relativistic Landau level which leads to a one dimensional effective theory. This
effective theory can be analyzed in great detail and allows to calculate the ground
state energy λL1 (ν,B) of the magnetic Dirac–Coulomb equation in the lowest rel-
ativistic Landau level. It is given by the variational problem

λL1 (ν,B) := inf
f∈C∞

0 (R,C)\{0}
λL[f, ν, B] ,

where λ = λL[f, ν, B] is defined by

λ

∫

R

|f(z)|2 dz =

∫

R

( |f ′(z)|2
1 + λ+ ν aB

0 (z)
+ (1 − ν aB

0 (z)) |f(z)|2
)
dz

and aB
0 (z) := B

∫ +∞
0

s e− 1
2

B s2

√
s2+z2 ds. For B not too small and ν not too large, we

prove the estimate λL1 (ν + ν3/2, B) ≤ λ1(ν,B) ≤ λL1 (ν − ν3/2, B) .
The one dimensional λL1 (ν,B) problem, although not trivial, is simpler to calcu-

late than the λ1(ν,B) problem and allows to prove that limν→0 ν log(B(ν)) = π .
The relativistic Dirac-Coulomb operator in a constant magnetic field differs from
the corresponding Pauli equation studied in [1] by several aspects. First of all, im-
posing that λ1(ν,B) lies in the gap (−1, 1) limitates the strength of the admissible
magnetic field. Next the natural units in which the field is measured, or the char-
acteristic parameters that one uses to adimensionalize the equation, are not the
same. Looking at min-max levels makes the computations rather involved and sig-
nificantly different from the ones based on Raleigh quotients in the non-relativistic
case. Introducing Landau levels in such a framework requires new tools. Hence it
looks rather difficult to establish an asymptotic expansion of B(ν) even as ν → 0.
Surprisingly, our lower estimate of the critical magnetic field converges to some
finite positive limit in the other limiting regime, that is for ν → 1. This clearly
emphasizes the non-perturbative character of the method.

From a physical point of view, the model is motivated by trying to guess the pos-
sibility of spontaneous pair creation in strong external fields. The Dirac-Coulomb
operator allows to take into account simultaneously the Coulomb potential and
the magnetic field in a truly relativistic framework. As far as we know and with
all precautions needed to argue on Dirac’s equation, this is a significant step in
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evaluating critical magnetic fields. From a practical point of view, it seems that
magnetic fields that can compare with the estimates we have found can be ex-
pected to exist only in neutron stars during their gestation and in some special
kind of neutron stars called magnetars, see [6, 5]. Apparently atoms may persist
up to about Z = 40 near the surface of such stars. Although not incompatible
with measured values of the field, our bounds suggest that the magnetic field is
not strong enough for pair creation. An accurate numerical scheme is currently
being investigated, [2]. More details on the theoretical aspects can be found in [3].
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Weak interaction limit for a model of nuclear matter

Bernard Ducomet

(joint work with C. Bardos, F. Golse, A.D. Gottlieb and N.J. Mauser)

We consider a simplified model of nuclear matter given by the renormalized
hamiltonian

HN =
∑

j

Lj +
1

N − 1

∑

j,k

V
(2)
ij +

1

(N − 1)(N − 2)

∑

j,k,ℓ

V
(3)
jkℓ ,

defined on the N-particle space built on a one-particle Hilbert space H including
spin (spin up σ = 1/2 and spin down σ = −1/2) and isospin (neutron τ = −1/2
and proton τ = 1/2) degrees of freedom. We are interested in the weak coupling
limit of the system (in the sense of Spohn [3]), corresponding to the large N limit
of HN .

Aside the one-body contribution, HN contains specific 2-body and 3-body con-
tributions. The one-body term includes the kinetic operator together with the
intrinsic spin-orbit contribution

(1) L := − ~2

2m
∆ + wls L · S.
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where the one-particle angular momentum operator L for each particle, with com-
ponents Lα for α = 1, 2, 3 is

Lα := −i
(
rβ

∂

∂rγ
− rγ

∂

∂rβ

)
,

with (α, β, γ) is a cyclic permutation of (1, 2, 3), and the spin operators S3, S+

and S− are defined by (S3φ) (r, σ, τ) := ~σ φ(r, σ, τ), for σ ∈ {−1/2, 1/2},
(S+φ) (r, σ, τ) := ~

√
(1/2 + σ)(3/2 − σ) φ(r, σ − 1, τ), for σ ∈ {−1/2, 1/2},

and

(S−φ) (r, σ, τ) := ~
√

(1/2 − σ)(3/2 + σ) φ(r, σ + 1, τ), for σ ∈ {−1/2, 1/2},
where one checks that (S+φ) (r, σ = −1/2, τ) = (S−φ) (r, σ = 1/2, τ) = 0, and the
three components Sα, for α = 1, 2, 3, of the spin operator S used in the spin-orbit
interaction are finally defined by S1 = 1

i (S+ + S−), S2 = − 1
i (S+ − S−) and S3.

The isospin operators T1, T2 and T3 are defined exactly by the same expressions,
just by exchanging the respective roles of spin σ and isospin τ .

Concerning the k-body contributions with k = 2, 3, as the nucleon-nucleon
force cannot yet be derived from the QCD theory of strong interactions, several
effective interactions taking into account the medium effects have been built [1].
We concentrate below on the Gogny finite-range D1 interaction [2].

For a two nucleons system (1, 2), let us define the two-body spin exchange
operator Pσ, acting on simple states by

Pσ φ(r1, σ1, τ1)φ(r2, σ2, τ2) = φ(r1, σ2, τ1)φ(r2, σ1, τ2),

and the two-body isospin exchange operator Pτ acting in a similar way on the
variable τ . Then, the two-body contribution V (2) is given by

(2) V
(2)
ij =

2∑

n=1

e−
|ri−rj |2

µn (wn + bnPσ − hnPτ −mnPσPτ ) ,

where the sum involves the operators Pσ, which exchanges spins σi and σj , Pτ

which exchanges isospins τi and τj .

Finally, the three-body term V (3) has a purely spatial smeared contribution

(3) V
(3)
ijk = t3e

− |ri−rj |2+|rj−rk|2

µ2 I.

In these expressions wn, bn, hn, mn, t3 and the nuclear ranges µn are adjusted
to experimental data, with precise values (see [2]).

In order to formulate the problem in the density-operator language, we note AN

the antisymmetric subspace of HN defined by using unitary permutation operators
on HN : if, for any π in the group GN of permutations of {1, 2, . . . , N}, one considers
the permutation operator Uπ as Uπ(ξ1 ⊗ ... ⊗ ξn) = ξπ−1(1) ⊗ ... ⊗ ξπ−1(n)), then
AN := {ψ ∈ HN : Uπψ = sgn(π)ψ ∀π ∈ GN}. A density operator D on HN is
sait to be symmetric if it commutes with every permutation operator Uπ, and
we also note Σn := n!PAN

, where PAN
= 1

N !

∑
π∈GN

sgn(π)Uπ is the projector
whose range is AN .
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For n ≤ N , the nth partial trace T:n of T ∈ T (H⊗N) may be defined for any
orthonormal basis O of H by

(4) 〈T:nw, x〉 =

N−n∑

j=1

∑

yj∈O

〈
T (w ⊗ y1 ⊗ · · · ⊗ yN−n), (x⊗ y1 ⊗ · · · ⊗ yN−n)

〉

for any w, x ∈ H⊗n.
To compare the N -body dynamics on HN to the 1-body dynamics on H, we set

the definition (reminiscent of an explicit formula valid for Slater determinants)

Definition 1. For each N , let DN be a symmetric density operator on HN .
The sequence {DN} has Slater closure if, for each fixed n, limN→∞

∥∥DN :n −
D⊗n

N :1Σn

∥∥
tr

= 0,

If L(N) denotes the previous one body potential − ~
2

2m∆ + wls L · S acting on

a single particle, the free motion of the jth particle is given by the (unbounded)

operator on on H⊗N L(N)
j = I⊗j−1 ⊗ L(N) ⊗ I⊗N−j, where I denotes the identity

operator on H.
In the same stroke, if the k-body potential V (k) is a bounded operator on H⊗k

that commutes with the transposition operator Uπ, for any π ∈ Gk, the operator

V
(k)
i1,i2,...ik

on H⊗N is equal to Vij = U∗
πV

(m)
1,2,...kUπ where π is any permutation in

GN with j = π(ij) for j = 1, ...m, and

V
(k)
1,2,...k (x1 ⊗ x2 ⊗ · · · ⊗ xN ) = V (k)(x1 ⊗ ...⊗ xk) ⊗ · · · ⊗ xN .

Then the renormalized N-particle Hamiltonian operator on HN

(5) HN =
∑

1≤j≤N

L(N)
j +

1

N − 1

∑

1≤i<j≤N

V
(2)
ij +

1

(N − 1)(N − 2)

∑

1≤i<j<k≤N

V
(3)
ijk ,

leads to the von Neumann equation for the N -particle density operator DN (t)

i~
d

dt
DN (t) =

∑

1≤j≤N

[
L(N)

j , DN(t)
]
+

1

N − 1

∑

1≤i<j≤N

[
V

(2)
ij , DN (t)

]

(6) +
1

(N − 1)(N − 2)

∑

1≤i<j<k≤N

[
V

(3)
ijk , DN (t)

]
.

The time-dependent Hartree-Fock (TDHF) equation for a density operator F (t)
on H is

(7) i~
d

dt
F (t) =

[
L(N), F (t)

]
+

[
V (2), F−

2 (t)
]

:1
+

[
V (3), F−

3 (t)
]

:1
,

where F−
n (t) = F (t)⊗nΣn.

The relationship between the N -particle system and the corresponding TDHF
equation is given by the following result [7].
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Theorem 1. For each N , let DN(t) a solution to (6) whose initial value DN (0) is
a symmetric density. Let F (N)(t) be the solution of the TDHF equation (7) whose
initial value is F (N)(0) = DN :1(0).

If {DN (0)} has Slater closure then {DN (t)} has Slater closure and for all t > 0

lim
N→∞

∥∥DN :1(t) − F (N)(t)
∥∥

tr
= 0.

The proof consists in a careful study of the deviation between two hierarchies:
the first one analogous to the BBGKY hierarchy for the reduced density operators
DN :n(t) and the second built on the factorized density operators F⊗n Σn.
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Regularity properties of molecular eigenfunctions and densities

Soren Fournais

(joint work with M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and
T. Østergaard Sørensen)

1. Introduction and results

Suppose given L fixed nuclei with the position and charge of the ℓ’th nucleus
being Xℓ ∈ R3 and Zℓ ∈ R+. Let H be the non-relativistic Schrödinger operator
of the corresponding N -electron molecule in the fixed nucleus approximation, i.e.,

(1) H =

N∑

j=1

(
− ∆j −

L∑

l=1

Zℓ

|xj −Xℓ|
)

+
∑

1≤i<j≤N

1

|xi − xj |
.

Here the xj = (xj,1, xj,2, xj,3) ∈ R3, j = 1, . . . , N , denote the positions of the

electrons, and the ∆j are the associated Laplacians so that ∆ =
∑N

j=1 ∆j is

the 3N -dimensional Laplacian. Let x = (x1, x2, . . . , xN ) ∈ R3N and let ∇ =
(∇1, . . . ,∇N ) denote the 3N -dimensional gradient operator. The operator H is
selfadjoint with operator domain D(H) = W 2,2(R3N ) and form domain Q(H) =
W 1,2(R3N ).
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We have for some time (see [3, 4, 5, 6, 7, 8, 12] and also [11] for earlier work)
been interested in the study of the regularity of solutions ψ to the corresponding
eigenvalue equation

Hψ = Eψ, E ∈ R.(2)

We will here give a quick overview of some of the main results obtained with
pointers to relevant literature. Due to the obvious limitations of space, neither the
review of results nor the list of references can be exhaustive.

Any analysis of this question must start with the observation that since (2) is
an elliptic PDE, solutions will be very regular in most of R3N . More precisely, let
Σ be the set where the coefficients of the operator H are singular,

Σ :=
{
x ∈ R

3N
∣∣ ∏

j,l|xj −Xℓ|
∏

j<k|xj − xk| = 0
}
.

Then, by elliptic regularity, eigenfunctions will be real analytic in R3N \ Σ. The
celebrated ‘Kato cusp condition’ [14] states that on Σ, ψ will have certain specific
singularities. Our first result, Theorem 1, is an improved version of Kato’s result.
It is also related to the work on ‘Fock expansions’ [2, 15].

Theorem 1 (See [6]).
Define yj,ℓ := xj −Xℓ,

F2(x) = −
L∑

l=1

N∑

j=1

Zℓ|yj,l|/2 +
∑

1≤j<k≤N

|xj − xk|/4,(3)

F3(x) =
2 − π

12π

L∑

l=1

Zℓ

∑

1≤j<k≤N

(yj,l · yk,l) ln(|yj,l|2 + |yk,l|2).(4)

Then any solution ψ to equation (2) can be factorized as

ψ = eF2+F3φ3 with φ3 ∈ C1,1(R3N ).(5)

Furthermore, the representation (5) is optimal—C1,1 is the best possible regu-
larity for a product ‘Ansatz’—see [6] for details.

Having a description of the structure of the leading singularities of the eigen-
function ψ we now turn to the (one-electron) density. Given ψ ∈ L2(R3N ) we
define ρ ∈ L1(R3) as

ρ(x) =

N∑

j=1

∫

R3N

|ψ(x)|2δ(xj − x) dx.(6)

The cusp condition for the eigenfunction has been generalised to the density ρ in
[16, 13] (see (9) below for an improvement of that result). Away from the nuclei
one might expect that the integrations in (6) will smooth out the singularities of
ψ to some extent. This turns out to be very much the case.

In order to study pointwise properties of ρ it seems necessary to assume some
kind of decay of the eigenfunction ψ. Since molecular eigenfunctions generally
decay exponentially (see [1, 9] and also [10]) it is natural—and we will do so below
without explicit reference thereto—to assume exponential decay of ψ.
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In the study of the regularity of ρ it is useful to have a differential equation for
the density. Such an equation was derived in [12] and follows from (2) by using
the identity

(7)

N∑

j=1

∫

R3N

ψ(x)(H − E)ψ(x)δ(xj − x) dx = 0 ,

and carrying out the integration. From (7) one finds the (inhomogeneous one-
particle Schrödinger) equation for ρ,

− 1

2
∆ρ− Z

|x|ρ+ h = 0 in R
3 .(8)

Here h is an explicit function (given in terms of ψ) and it is feasible to prove
regularity of h, which by means of (8) and elliptic theory implies regularity of ρ.

Theorem 2 (See [3, 4, 5, 7]).
Let ψ ∈ L2(R3N ) be a solution to (2) and let ρ be the associated density. Then ρ
is real analytic on R3 \ {X1, . . . , XL}. Furthermore, ρ satisfies (‘cusp condition’)

ρ(x) = µ(x) exp(−∑L
l=1Zℓ|x−Xℓ|) with µ ∈ C1,1(R3).(9)

If one wants to understand the singularities of ρ at the nuclei further, one pos-
sibility is to study the spherically averaged density (see also [7] for an alternative).
This makes most sense for atoms, so we assume that L = 1, X1 = 0 and define

ρ̃(r) =

∫

S2

ρ(rω) dω .(10)

Theorem 3 (See [8, 12]).
Let ψ be an atomic eigenfunction with eigenvalue E and suppose that E is below
the essential spectrum. Let ρ̃ be the spherically averaged density associated to ψ.
Then ρ̃ is real analytic on (0,+∞) and ρ̃ ∈ C3

(
[0,+∞)

)
. Furthermore, we have

ρ̃ ′(0) = −Zρ̃(0), ρ̃ ′′(0) ≥ 2

3
Z2ρ̃(0) , ρ̃ ′′′(0) ≤ − 7

12
Z3ρ̃(0) .(11)

The constants in the inequalities in (11) are optimal.
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Mathematical aspects of van der Waals forces

Gero Friesecke

(joint work with P. Gardner)

1. Introduction

In this talk we report on our recent mathematical work [Fr06], [FG06], in which
we
– discuss how van der Waals forces emerge in a long distance limit as rigorous
corrections to the quantum mechanical energy and wavefunction of noninteracting
atoms
– evaluate the VdW constant for a pair of hydrogen atoms in closed form, and
in particular quantify the contribution from the continuous spectrum missed in
the original works of London and coworkers (it turns out to be large, about 40
percent)
– analyse the corrector wave function for hydrogen and prove an explicit angle cor-
relation law which makes quantitative the intuition that the atoms “dynamically
polarize each other”.

Besides their obvious physical interest, vdW forces are
– not captured by standard approximations of quantum mechanics such as Hartree-
Fock- and density functional theory, even in the limit of complete basis sets
– a very good test case to learn something about electron correlation.
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2. Born-Oppenheimer potential energy surface

Starting point of the mathematical analysis is the full Born-Oppenheimer two-
atom potential energy surface

v(|RA −RB|) = E0(HA,B) −
(
E0(HA) + E0(HB)

)

where HA,B is the Hamilton operator of the two-atom system, HA and HB are
the Hamilton operators of the individual atoms, RA and RB are the positions of
the atomic nuclei, and E0 denotes the lowest eigenvalue. Explicitly,

HA,B =

N∑

i=1

(1

2
∇2

ri
− ZA

|ri −RA|
− ZB

|ri −RB|
)

+
∑

i<j

1

|ri − rj |
+

ZAZB

|RA −RB | ,

acting on the antisymmetric subspace of L2((R3 × Z2)
N ), where ZA, ZB are the

nuclear charges and N = ZA + ZB is the number of electrons. The following well
known statement is a rigorous theorem:

Theorem 1 If HA and HB have a zero angular momentum ground state, then as
|RA −RB| = R → ∞ (at fixed e = RA−RB

|RA−RB | ) v(R) = −c6R−6 + O(R−8) for some

constant c6 > 0. If the GS is up to spin nondegenerate,

c6 =
〈
H ′Ψ(0)|

(
(H(0) − E(0))

∣∣∣
{Ψ(0)}⊥

)−1

|H ′Ψ(0)〉,

where H(0) is the noninteracting Hamiltonian of the two atoms and

H ′ =

ZA∑

i=1

ZB∑

j=1

xi ·Dyj , D = I − 2e⊗ e.

The scaling law goes back to fundamental papers by London and coworkers
[EL30], [Lo30]. The formula for c6 is of somewhat later origin (the original work-
ers only considered contributions coming from bound states of the individual atoms
but missed out on contributions coming from scattering states). The basic strat-
egy to derive such a result, going back to London et al, is to
1) Taylor-approximate interactions between far particles
2) Treat these approximate interactions via 2nd (or higher) order perturbation
theory.
The perhaps most interesting phenomenon here, analyzed first in [Ah76], is that
this innocent looking procedure does not lead to a convergent but only an asymp-

totic 1/R series for v(R). In other words the error v(R) − ∑N
j=0 anR

−n becomes
small if N is kept fixed and R becomes large, but not if R is fixed and N becomes
large, so at fixed finite R it is not better to include more and more terms in the
perturbation series. This has to do with the fact that the approximate Hamilto-
nians obtained in 1) are negative polynomials in some direction and hence have
ground state energy −∞. See [Fr06] for more information and a rigorous proof of
Theorem 1.
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3. Van der Waals constant

For a pair of hydrogen atoms the van der Waals constant can be evaluated in
closed form.

Theorem 2 [FG06]

c6=
131072

3

( ∞∑

n=2

∞∑

n′=2

n7(n− 1)2n−5n′7(n′ − 1)2n′−5

(n+ 1)2n+5(n′ + 1)2n′+5(1 − ( 1
2n2 + 1

2n′2 ))

+ 2

∞∑

n=2

∫ ∞

0

n7(n− 1)2n−5k′e−4(arctan k′)/k′

(n+ 1)2n+5(1 − e−2π/k′)(1 + k′2)5(1 + 1
2 (k′2 − 1

n2 ))
dk′

+

∫ ∞

0

∫ ∞

0

ke−4(arctan k)/kk′e−4(arctan k′)/k′

(1 − e−2π/k)(1 + k2)5(1 − e−2π/k′)(1 + k′2)5(1 + 1
2 (k2 + k′2))

dk dk′
)

which evaluates (to 3 decimal places) to

3.924 (60.4%) bound states

+ 2.234 (34.4%) mixed states

+ 0.341 (5.2%) scattering states

= 6.499

One can show that spatially, both electrons stay exponentially localized near their
nucleus, but quite remarkably, the above result says that there is no spectral local-
ization. Instead, 39.6 % of the interaction energy is contributed by states in which
at least one of the electrons has been promoted all the way up into the continuous
spectrum of its atom, past all the infinitely many bound states!

4. What are the electrons doing?

In order to link the somewhat abstract quantum formalism to basic chemical in-
tuition, we have analyzed the structure of the corrector wave function for a pair of
hydrogen atoms. In particular, we have investigated in which regions of two-body
configuration space the probability of finding the electrons is enhanced as com-
pared to the non-interacting system. The main mathematical tool which allows
one to do this are maximum principles for elliptic partial differential equations.
One of our results is the following:

Theorem 3 [FG06]
If in a system of two hydrogen atoms the angle of one electron with the molecular
axis equals θ, then in the limit of large separation the most likely angle of the other
electron is

φ =

{
− arctan(1

2 tan θ), θ ∈ [0, π
2 ],

− arctan(1
2 tan θ) + π, θ ∈ [π

2 , π].
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For example, for θ = 45o, φ seeks value arctan(1
2 ) = 26.565...o:

theta

phi
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Sparse Grids for Schrödinger-type equations

Michael Griebel

For the electronic Schrödinger equation, Yserentant has recently shown that
solution wavefunctions possess bounded mixed weak derivatives. This makes it
worthwhile to explore the benefit of sparse grid or hyperbolic cross techniques to
solve equations of this type.

Sparse grid methods exhibit a substantially lower complexity with respect to
the problem dimension than conventional discretization techniques. Furthermore
there exists a dimension-adaptive sparse grid variant which adaptively determines
important problem dimensions and thus further reduces the dependence of the
complexity from the dimension of the problem under consideration.

We consider the use of sparse grids for Schrödinger type equations and investi-
gate possible applications.

Vibrational Levels Associated with Hydrogen Bonds

Alain Joye

(joint work with G. Hagedorn)

The time–independent Born–Oppenheimer approximation [1] allows one to com-
pute the vibrational levels of a molecule by taking advantage of the large masses of
the nuclei with respect to that of the electrons. Consequently, an approximation of
the ground state energy surface near a non-degenerate minimum is sufficient to get
the low-lying vibrational levels as perturbed levels of the corresponding harmonic
oscillator.
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More precisely, if the configuration space of the nuclei is R
d, and if ǫ−4 denotes

the ratio mass of the nuclei /mass of the electron, there exists a molecular level
E(ǫ) which satisfies, for ǫ small enough,

(1) E(ǫ) = E0 + ǫ2(n1ω1 + · · · ...ndωd) +O(ǫ4),

where E0 is the minimum of the ground state energy surface, nj ∈ N and ωj > 0,
for j = 1, · · · , d, characterize the harmonic d-dimensional approximation. See the
recent review [4] for more details and results.

While this procedure is sufficient and quite successful in many cases, even for
realistic values of ǫ, it cannot directly be applied to describe the phenomenon of
Hydrogen bonding. Indeed, in a molecule which contains a Hydrogen atom partic-
ipating in such bonds, the interaction energy of the Hydrogen bond is experimen-
tally lower than that between the other atoms. Also, the mass of the Hydrogen is
an order of magnitude smaller than that of a typical nuclei, for example, Carbon.
Finally, the experimental data concerning the vibrational spectrum of symmetric
tri-atomic molecules with a Hydrogen bond display significant deviations from the
approximate harmonic spectrum (1). See [2] for an account of these properties.

We propose in [3] an alternative to the Born–Oppenheimer approximation that
is specifically designed to describe molecules with symmetrical Hydrogen bonds.
In our approach, the masses of the Hydrogen nuclei scale like ǫ−3 whereas those
of the heavier nuclei scale like ǫ−4. While the parameter ǫ will eventually tend to
zero for our mathematical results to hold, when ǫ ≃ 0.082, which corresponds to
the mass of the Carbon atom, the mass of the Hydrogen is approximately equal to
1.015ǫ−3, in keeping with our scaling. Also, we employ a specialized form for the
electron energy level surface, which takes into account the fact that the harmonic
potential acting on the Hydrogen atom is weaker than that acting on the other
atoms, by a factor ǫ. Consequently, an-harmonic effects play a role in the leading
order calculations of vibrational levels, as ǫ→ 0, in the following sense.

Within our approach, we prove the existence of a normal form Hamiltonian
HNF , distinct from the harmonic oscillator and independent of ǫ, such that, for ǫ
small enough, there exists a molecular level E(ǫ) which satisfies

(2) E(ǫ) = E0 + ǫ2E2 +O(ǫ2+ξ),

for some ξ > 0, where E2 is an element of the spectrum of HNF .
Our analysis is motivated by an examination of symmetric bi-halide ions, such

as FHF- or ClHCl-, and we work under the simplifying hypothesis that bending
of the molecule is absent. However, we develop a general theory which is suitable
for the description of rigid linear asymmetric tri-atomic molecules as well.
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Information measures for the relativistic hydrogen atom

Jacob Katriel

(joint work with K. D. Sen)

The characterization of inherent quantum mechanical uncertainties and infor-
mation measures has become a rich field of study with direct relevance to the
emerging technologies associated with the paradigm of quantum computation.
The present talk reviews the application of commonly used information mea-
sures, notably the Shannon information entropy [1] Sr = −

∫
ρ(r) ln ρ(r) dr ,

the Fisher information measure [2] Ir =
∫ |∇ρ(r)|2

ρ(r) dr , the residual position en-

tropy [3] S
R/NR
r =

∫ ∞
0

4πr2ρR(r) log
(

ρR(r)
ρNR(r)

)
dr , the average position density

[4] < ρ >=
∫ ∞
0

4πr2
(
ρ(r)

)2

dr , and the average measure of relative distance [5]

S̃r =
∫ ∞
0 4πr2

(
ρR(r) − ρNR(r)

)
log

(
ρR(r)

ρNR(r)

)
dr , as well as the corresponding

momentum space quantities, to the ground state of the relativistic hydrogen-like
atoms. Here, ρ(r) is the position density, R stands for relativistic, NR for non-
relativistic. Spherical symmetry is assumed.

As an illustration we present the relativistic Shannon position entropy SR
r =

log
(

πΓ(2γ+1)
2Z3

)
+ (2γ + 1) − 2(γ − 1)Ψ(2γ + 1) , where Ψ(z) is the Digamma

function. In the nonrelativistic limit γ → 1 this expression reduces to SNR
r =

3 + log(π)− 3 log(Z). The relativistic correction can be expanded as SR
r −SNR

r ≈
−(αZ)2 +

(
3
8 − π2

12

)
(αZ)4 + · · · .

We point out and illustrate a well-established but largely ignored difficulty as-
sociated with the common formulation of the uncertainty principle in terms of
position and momentum variances, when applied to the radial coordinate in a
spherically symmetric system. This difficulty arises as a consequence of the fact
that the radial momentum operator is not self-adjoint [6]. Its most direct manifes-
tation involves the fact that the position space expectation value of the commonly
used “radial momentum operator” [7] p̂r = −i

(
∂
∂r + 1

r

)
vanishes, whereas the mo-

mentum space expectation value of the radial momentum p in the ground state of
the hydrogen-like atoms is given by the non-zero expression 8Z

3π .
In the coordinate representation all the information measures considered al-

lowed analytic evaluation of the integrals involved. This has not been the case
for the corresponding momentum space quantities, that required numerical inte-
gration. What we find particularly puzzling is the fact that for the ground state
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of the relativistic hydrogen atom the closed analytic expression for the position-
space expectation value of the Laplacian < ΨD| − ∇2|ΨD >= 2−γ

γ(2γ−1)Z
2, where

γ =
√

1 − (αZ)2, agrees, as should be expected, with the numerically evaluated
average over p2 in momentum space, and still we failed to evaluate the latter
analytically.

Several relativistic information measures exhibit singularities at particular nu-

clear charges, notably Z =
√

3
2α ≈ 118.68 and Z =

√
15

4α ≈ 132.68, whose significance
remains to be elucidated.
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Some thoughts on the numerical solution of the eigenvalue problem

Richard B. Lehoucq

We consider the electronic structure generalized eigenvalue problem

HUℓ = MUℓΛℓ,
(
H,M ∈ R

n×n, Uℓ ∈ R
n×ℓ, Λℓ ∈ R

ℓ×ℓ
)

that arises during an SCF iteration where H is Hermitian, M is symmetric positive
semi-definite. We order the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn located on the diagonal
of Λℓ. Electronic structure calculations typically require 25%−50% of the leftmost
eigenpairs n = 1, 000− 10, 000 for Gaussians; n increases up to 100, 000 for plane
wave calculations, and 1% − 5% of the eigenpairs are of interest.

Two broad classes of eigensolvers are dense methods that consume O(n2) stor-
age and O(n3) computation. LAPACK is the archetype. The second class are
sparse methods where H only needs to be known via a matrix-vector multiplica-
tion. Subspace iteration, inverse iteration, Davidson and Lanczos methods are the
archetypes. Cost of orthogonality and, to a lesser extent, lack of robustness are
the difficulties with these approaches.

My presentation discusses some alternatives that need to be considered. These
include

• computing the quantity of interest, or the functional, for example, the
density;

• avoiding the SCF iteration and computing the ground state directly;
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• Linear scaling techniques [4] (that perhaps exploit mulitlevel precondition-
ers)

• Domain decomposition approaches [1] that avoid the onerous cost of or-
thogonality

For example, computing an approximation to the density (matrix)

Uℓ(U
T
ℓ MUℓ)

−1UT
ℓ ∈ R

n×n, Uℓ ∈ R
n×ℓ

directly. Such a technique avoids computing the eigenvectors and instead, com-
putes the quantity of interest, namely an approximation to the matrix function
directly. Consider subspace approximations to matrix functions. For example,
generate a subspace via the Lanczos iteration as depicted in Figure 1. The compu-

Figure 1. Density matrix methods in a Lanczos subspace. The
Lanczos matrices Q and QT represent interpolation and restric-
tion to a subspace.

tation is O(n3) but has smaller prefactor. A convergence theory subspace density
matrix methods is possible via a relationship with subspace iteration.

Another example is an approach for avoiding the SCF iteration via a Carr-
Parnello (CP) type of approach (see [13] for a discussion) applied to computing
the electronic ground state. We now pose CP as an abstract minimization problem.

Let Nẍ = x( x
T
Hx

xT Mx
) − Hx ≡ f , where N ∈ Rn×n is a symmetric positive definite

matrix. Find u ∈ Rn so minu ‖u − N−1f‖N subject to 1
2 ẋ

T Nẋ = ν
2 . This

is nothing more than Gauss’ principal of least constraint (GPLC) subject to a

non-holonomic constraint. The optimality system is Nẍ = f − Nẋ( ẋ
T
f

ν ) = (I −
1
ν NẋẋT )f . I remark that the fictitious mass matrix N represents a change of
coordinate or (preconditioning). This view may help to justify rigourously the
many CP choices (and derive others) that are physics based.
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On the Computation of Excited States with MCSCF Methods

Mathieu Lewin

(joint work with E. Cancès and H. Galicher)

In Quantum Chemistry, the multiconfiguration (MCSCF) method is the main
tool for the computation of excited states of quantum electrons in a molecule. We
report here results which have been obtained in [4] and in a collaboration [1] with

Éric Cancès and Hervé Galicher. An extended review can be found in [5]. Let
us consider a molecule containing M nuclei and N non-relativistic electrons. The
nuclei are treated as pointwise particles, of charges Zm and located at positions
Rm ∈ R3, m = 1...M . The state of the N electrons is an normalized antisymmetric

wavefunction Ψ ∈ ∧N
i=1 L

2(R3) with associated energy E(Ψ) = 〈Ψ, HNΨ〉 where
HN is the N -body quantum Hamiltonian:

HN =

N∑

i=1

(
−∆xi

2
+ V (xi)

)
+

∑

1≤i<j≤N

1

|xi − xj |
, V (x) =

M∑

m=1

−Zm

|x−Rm| .

When N − 1 < Z :=
∑M

m=1 Zm, the spectrum of HN takes the form σ(HN ) =
{λ0 ≤ λ1 ≤ · · · } ∪ [Σ,∞) where λi is a sequence of eigenvalues of finite multiplic-
ity converging to the bottom of the essential spectrum Σ. We denote by Ψ̄i an
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associated sequence of eigenfunctions, HN Ψ̄i = λiΨ̄i.
In the MCSCF method, one chooses a number of orbitals K ≥ N and restricts
HN to the class of N -body wavefunctions having the special form

Ψ(c,Φ) =
∑

1≤i1<···<iN≤K

ci1,...,iN
ϕi1 ∧ · · · ∧ ϕiN

where ∧ is the usual antisymmetric tensor product, c = (ci1,...,iN
) ∈ S(K

N)−1 and
Φ = (ϕ1, ..., ϕK) ∈ (H1(R3))K ,

∫
R3 ϕjϕj = δij . The associated energy

EK
N (c,Φ) :=

〈
Ψ(c,Φ), HNΨ(c,Φ)

〉
∧

N
1 L2(R3)

= 〈c,HΦc〉
R
(K

N)

is quadratic with respect to c but non quadratic with respect to the orbitals ϕi’s.
In the previous formula, we have introduced the matrix HΦ of the Hamiltonian
HN when it is restricted to the space VΦ := Span(ϕi1 ∧ · · · ∧ϕiN

). Any stationary
point (c,Φ) of EK

N on the manifold

MK
N :=

{
(c,Φ ∈ S(K

N)−1 × (H1(R3))K ,

∫

R3

ϕiϕj = δij

}

is the solution of a complicated system of K nonlinear coupled elliptic partial dif-
ferential equations for the orbitals ϕi’s together with a simple eigenvalue equation,
HΦc = βc, for the configuration coefficients c.

The existence of a minimizer for EK
N on MK

N and the convergence of the as-
sociated N -body wavefunction towards a ground state Ψ̄0 of the Hamiltonian as
K → ∞, was proven by Friesecke in [2]. A different proof was given in [4], allow-
ing to treat more practical methods in which not all the Slater determinants are
considered. In the special cases K = N (Hartree-Fock model) and K = N + 2,
proofs were already given respectively by Lieb and Simon [6] and Le Bris [3].

For excited states, the situation is more involved: the nonlinear energy EN
K has a

lot of critical points and it was observed that not all correspond to physical states.
Let us denote by µK

d (Φ), d = 0...
(
K
N

)
−1 the eigenvalues of the Hamiltonian matrix

HΦ in a fixed orbitals basis Φ = (ϕ1, ..., ϕK). In Quantum Chemistry (see, e.g.,
[8]), a dth excited state is usually defined as a pair (c,Φ) such that c is a (d+1)th
eigenvector of HΦ and Φ minimizes µK

d (Φ), i.e. it is a solution of:

(1) µK
d := inf

Φ
µK

d (Φ).

However (1) is a minimization of an eigenvalue of a matrix depending of a param-
eter Φ, a very ill-posed variational method in general: on the one hand in case
of degeneracy it could be that the energy has no critical point at the so-defined
level (see examples in [4, 1, 5]). On the other hand, there is no general numerical
method for eigenvalue minimization except in very special cases.

In [4], an alternative definition of the dth excited state energy was proposed.
It is based on a complicated nonlinear min-max variational problem which does
not suffer from the above theoretical drawback. More precisely, the dth MCSCF
excited state energy was defined as: λK

d = inf f∈C0(Sd,MK
N )

f(−x)=(−)·f(x)

supt∈Sd EK
N (f(t))

where (−) · (c,Φ) = (−c,Φ) and the existence of stationary points with a Morse
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index at most d at the levels λK
d was proved. Additionally it holds λK

d ≥ λd and
limK→∞ λK

d = λd.
For the first excited state, the above formula can be simplified: one obtains that

λK
1 equals the mountain pass energy on the manifold MK

N , between two ground
states having opposite configuration coefficients. Denoting by (c0,Φ0) a minimizer
of EK

N on MK
N , the formula reads

(2) λK
1 := inf

γ∈C0([0;1],MK
N )

γ(0)=(c0,Φ0), γ(1)=(−c0,Φ0)

sup
t∈[0;1]

EK
N (γ(t)).

This definition is somewhat natural since also for the linear case, one can obtain the
first excited state Ψ̄1 as a mountain pass point between Ψ̄0 and −Ψ̄0. Furthermore,
it suggests a new algorithm for the computation of the first excited state which
was described and tested in [1]: after having found an MCSCF ground state, one
solves the mountain pass problem by deforming discretized paths on the manifold
until convergence of the highest point along the path.

This algorithm was tested in [1] on the simplest case of two-electron systems.
For the molecule H2, the first singlet excited state was searched in the whole space
without imposing any symmetry (for the Schrödinger case, it is known that the
ground and first excited states have a certain symmetry). As already predicted in
[7], we found that the definition (1) is not valid in this case: the optimal c1 is the
first eigenvector of the Hamiltonian matrix HΦ1 and not the second. Additionally,
we observed a symmetry breaking phenomenon: although the nonlinear ground
state automatically has the same symmetry as the Schrödinger solution, this is
not valid for the first nonlinear excited state which has no particular symmetry,
in contrary to the true solution. Furthermore the following inequality was ob-
served λK

1 < µK
1 and the solution of the variational problem (1) is in this case an

unphysical (spurious) solution of the MCSCF equations.
All this shows that computing excited states with MCSCF methods is not an

easy task and that the definition (2) could be a useful tool in particular when the
simpler definition (1) fails.
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Tutorial on coherent states

Elliott H. Lieb

This was a spontaneous, unplanned talk of an hour about the definition and
use of coherent states to estimate properties of the ground states of atoms and
molecules. The material was largely from my review article [1, pages 621-622].
There was also mention of ‘upper’ and ‘lower’ symbols to to get upper and lower
bounds to ground state energies [2], [3] , [4] .

The reason this material was presented was that it was felt, in discussions,
that there were some chemists and mathematicians who were unfamiliar with this
helpful mathematical device and who might want to hear something about it.
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Variational approximations in quantum molecular dynamics

Christian Lubich

The talk considered models that are intermediate between the full molecular
Schrödinger equation and classical molecular dynamics described by Newtonian
equations of motion for the nuclei. A large variety of such models have been
proposed in the literature, but practically all of them rely on the Dirac–Frenkel
variational approximation principle, which in an abstract form can be stated as
follows: given an approximation manifold M, an approximation u(t) ∈ M to

a solution of the Schrödinger equation i~ψ̇ = Hψ is determined by the condi-
tion that at all times t, the defect is orthogonal to the tangent space at the
current approximation value: 〈i~u̇ − Hu, δu〉 = 0 for all δu ∈ TuM. The
approximation is thus determined by the choice of the approximation manifold:
the time-dependent Born-Oppenheimer approximation, the (multiconfiguration)
time-dependent Hartree method, and Gaussian wavepacket dynamics are widely
known examples.

The talk discussed the different interpretations of the Dirac-Frenkel variational
approximation: provided that the tangent spaces are complex linear, it can be
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viewed as both an orthogonal and a symplectic projection. The latter interpre-
tation implies that the equations of motion retain a Hamiltonian structure, and
a Poisson structure in local coordinates. The interpretation as an orthogonal
projection permits to derive approximation results: an a posteriori error bound
and, under suitable assumptions satisfied for example in the multiconfiguration
Hartree method and in Gaussian wavepacket dynamics, a quasi-optimality result
which bounds the approximation error of the variational approximation in terms of
the best-approximation error of the wave function on the approximation manifold.

The second part of the talk discussed numerical integration methods for the
equations of motion resulting from variational approximations. After a digression
into splitting methods for the linear Schrödinger equation, variational splitting
methods were introduced as a formal analogue for the treatment of the variational
equations of motion. It turns out that variational splitting can be put to good use
in various situations: in the multiconfiguration time-dependent Hartree method it
leads to explicit integrators without step size restriction by the space discretization,
and with approximation properties that parallel those of splitting methods in the
linear case. Particularly nice properties of variational splitting are obtained for
Gaussian wavepacket dynamics: there, the substeps can be solved analytically
and explicitly, leading to a method for which the numerical flow is a Poisson map,
which preserves the norm and preserves linear and angular momentum in the
case of translational or rotational invariance, and has no drift in the energy over
exponentially long times in the time step. In the semi-classical limit the variational
splitting integrator turns into the Verlet scheme, which is the standard integration
method in classical molecular dynamics.
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Reduced Basis Approach for Rapid Electronic Structure Calculations

George S. H. Pau

(joint work with E. Cancès, C. Le Bris, Y. Maday, A. T. Patera)

1. Introduction

Computational quantum chemistry problems generally require the repetitive
determination of certain selected output of interest, s — such as the ground state
energies of the system and the forces exerted on the nuclei — as functions of input
parameter µ ∈ D — such as nuclei positions and dimensions of the simulation
cell of a crystalline system — where D ∈ RP is the parameter space in which our
input µ varies. These outputs, s(µ) are functionals of a field variable u(µ) — such
as the molecular or crystalline orbitals, and the electron density — which satisfies
the µ-parametrized partial differential equations, derived from the Hartree Fock or
the Density Functional Theory models. In practice, the solution u(µ) is obtained
though a high-dimensional Galerkin approximation (of dimension N ), such as
the planewave method. Clearly, solving the resulting discrete algebraic system is
computationally intensive, and in some cases, impractical in any realistic real-time,
many query context.

The above abstraction of the problems into one of input-output relations high-
lights several computational opportunities, which can be successfully exploited by
the reduced-basis techniques to obtain rapid and reliable solutions. First, we ex-
ploit the parametric manifold arguments to project the solution into a significantly
lower-dimensional system (of dimension N , with N ≤ N ) to obtain the reduced
basis approximant to the solution u(µ). Availability of a posteriori error estimate
then qualifies the accuracy of the approximation and provides a guide to increased
solution accuracy by simply increasing the richness of the reduced basis space.
Second, we can, in most cases, decompose the differential operators into sum of Q
products of parameter-dependent functions and parameter-independent operators;
reduced basis procedures then exploit this underlying affine parametric structure
to design effective offline-online computational procedures which willingly accept
greatly increased initial preprocessing — offline — expense in exchange for greatly
reduced marginal — online — “in service” cost.

The reduced-basis approach and in particular associated a posteriori error es-
timation procedures have been successfully developed for (i) linear elliptic and
parabolic PDEs that are affine in the parameter [5, 6, 7, 9, 12] ; and (ii) elliptic
PDEs that are at most quadratically nonlinear in the first argument [8, 10, 11].
For these problems, the operation count for the online stage — in which, given a
new parameter value, we calculate the reduced-basis output and associated error
bound — depends only on N (typically small) and Q, but it is independent of N .
The essential components of the reduced basis method are

(1) Reduced basis approximation (N ≪ N ): rapidly convergent global reduced
basis approximation spaces are generated by Galerkin projection onto a
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space WN spanned by solutions of the governing partial differential equa-
tions at N judiciously chosen samples in parameter space. Here, WN is
simply an approximation of the parametric manifold.

(2) A posteriori error estimation: the dual norms of the primal and adjoint
error residual equations, and an approximate stability constant, are used
to provide inexpensive yet sharp bounds for the errors in the outputs of
interest.

(3) Offline/online decompositions: exploit affine nature (with respect to the
input parameter µ) of the linear and bilinear forms — or render them affine
using empirical interpolation techniques [1, 4] — to decouple the genera-
tion and projection stages of the approximation process. Since N ≪ N ,
the projection system (although dense) provides significant computational
speedups compared to typical methods, such as the planewave method.

(4) Optimal Sampling Strategies: exploit the rigorous error estimates produced
by the reduced-basis approximation as a guide to pick parameter samples
judiciously. Exhaustive parameter explorations can be undertaken — re-
lying on the computational speedups and the accurate predictions — to
uncover relevant (significant) parametric dependence of the outputs.

This work entails extending the reduced basis techniques to quantum chemistry
problems, particularly electronic structure calculations based on Density Func-
tional Theory models. We shall demonstrate the effectiveness of the techniques in
two applications: geometry optimization and band structure calculation.

2. Geometry Optimization

We are interested in the rapid determination of the ground state energy, E(µ), of
some molecular systems — in [2], we applied the reduced basis techniques to a hy-
drogen molecular system based on the Hartree Fock model and a crystal structure
based on the Density Functional Theory — with possible applications in geometry
optimization and multiscale simulations. Here, we will focus on a crystal structure
characterized by the parameter µ, particularly those parameters that describe the
geometric variation of the simulation cell. Application of the reduced basis tech-
niques to this problem leads to three main issues: (i) the parametrizations of the
Kohn-Sham equations can be complex, for example due to a set of moving nuclei
and periodic boundary conditions; (ii) the equations can contain both non-affine
terms and also very nasty nonlinear terms, for example the local pseudopoten-
tial term and the exchange-correlation term; and (iii) the solution sought is not
scalar — for each µ, it is a set of orthonormal eigenvectors of some mean-field
hamiltonian (which itself depends on µ, but also, self-consistently, on u(µ)).

We effect the parametrization of the equations by mapping the solutions onto a
fixed reference domain; positions of nuclei can be parametrized by mapping them
onto unique locations in the reference domain. We then render all nonaffine and
nonlinear functions affine by using empirical interpolation procedure. Lastly, we
introduce the vector reduced-basis space which allows us to exploit the inherent
orthogonality properties between, and the common smoothness of the solutions
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ui(µ), 1 ≤ i ≤ ne, where ne is the number of bands. Given a parameter sample
SN = {µ1, . . . , µN}, we define the associated reduced-basis spaces as

WN = span {û(µn), 1 ≤ n ≤ N},
= span {ζ̂n, 1 ≤ n ≤ N};

where ζ̂ ≡ (ζ1, . . . , ζne
) are basis functions obtained after

û(µn) ≡ (u1(µn), . . . , une
(µn)), 1 ≤ n ≤ N

are aligned and pseudo-orthogonalized [2]; these two preprocessing steps will lead
to smaller N and better stability in the resulting discrete system. Then, an ap-

proximation of û in WN is given by ûN (µ) =
∑N

n=1 ψn(µ)ζ̂n. This construction
also allows us to only impose the normality constraints on ûN ; we prove that the
orthogonality constraints are increasingly satisfied as error in ûN decreases and it
is easily verifiable during computation.

Our preliminary results based on a 1-dimensional periodic problem indicate
that the reduced-basis space is rapidly convergent with N and N scales as ne +C,
where C is a small integer. In addition, the complexity of the online computa-
tion is independent of N . The energy E(µ) can also be easily approximated to
an accuracy of 10−10 with this approach. Progress is currently being made to
demonstrate the same with 3-dimensional model with multiple nuclei and more
complex parametrization of the unit cell.

3. Band Structure Calculation

In the second application, we are interested in the rapid determination of û(k),
given any k in the first Brillouin zone (BZ) for a periodic Hamiltonian operator
of the form − 1

2∆ − i|k|∇ + Veff ; this has potential applications in improving the
efficiency of Self-Consistent Field (SCF) algorithms by reducing the costs of eval-
uating û(k) within each SCF iteration, and in rapid reconstruction of the band
structure diagram.

We propose a reduced-basis approach: we construct a reduced basis space
spanned by the solutions at N k-points in BZ and our reduced basis approxi-
mation of û(k) is a Galerkin projection onto this space; here, an augmented basis
space, defined asWNA

= span {ζi,n, 1 ≤ i ≤ ne, 1 ≤ n ≤ N}, works better than the
vectorized reduced basis space described in previous section. The parametrization
of the equations is also considerably simpler compared to previous application;
the equation is affine in the parameter space. In addition, V is not dependent on
k and the resulting equation is more akin to a linear eigenproblem. We are also
able to construct an efficient asymptotic a posteriori error estimation procedure
for our approximations, enabling us to control the accuracy of the approximation,
and provide an inexpensive guide to efficiently construct an optimal reduced basis
space. Let nk be the number of k points for which û(k) needs to be approximated
accurately. Then, to leading order, the complexity of obtaining the reduced basis
approximant ûN (k) is O(NN c +nk(Nne)

3) where c reflects the complexity of the
solver used to obtain û(k); this can be compared to O(nkN c) if û are computed
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at all nk points. We conclude that the reduced basis approach will be competitive
with the existing techniques, for example the special k-points technique, if N ≪ nk

and Nne ≪ N .
Our results based on a 3-dimensional empirical pseudopotential model for Si [3]

is rapidly convergent and our error estimate is a good surrogate to the actual error.
The number of basis functions also increases linearly with ne. With ne = 7, we
require only 119 basis functions.
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One-electron reduced density matrix functional theory -functionals,

ionization potentials, and response properties

Katarzyna Pernal

Density matrix functional theory (DMFT) offers an attractive alternative to
the DFT (density functional theory) formalism. By employing the one-particle
reduced density matrix (1-matrix) as the main variable, one avoids any references
to the fictitious non-interacting state (the explicit expression in terms of the 1-
matrix for the kinetic energy functional is known) that constitutes a conceptually
weak aspect of practical implementations of DFT.

The main properties of the 1-matrix functionals and the main issues concerning
the related variational equations will be briefly discussed. Then a recent progress
in the development of new 1-matrix functionals aimed at reproducing accurate
electronic energy for closed-shell molecules will be presented.

Within the density matrix functional theory one is not limited to computing ap-
proximate ground-state energy. The connection between the variational equations
and the extended Koopmans’ theorem equations offers a simple way of computing
the ionization potentials without obtaining the energy for the ionized species. This
method, together with the results for the recently proposed functionals, will be
presented in the second part of the talk. Finally an algorithm proposed for com-
puting second-order response properties that originates from perturbed variational
equations for the 1-matrix will be discussed.
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Free energy profiles in Molecular Dynamics

Mathias Rousset

(joint work with G. Stoltz, T. Lelièvre)

Consider a classical dynamical system in R3N with an interaction potential V , and
a selected degree of freedom (called the reaction coordinate) ξ : R

3N → R, usually
exhibiting a typical evolution of the system at a slow time scale. The free energy
is a function of all different values z of ξ. It is defined through the normalisation
of the Boltzmann distribution of configurations restricted to the fixed value z of
their reaction coordinate. The free energy gives the Boltzmann weights of the
equilibrium distribution of the reaction coordinate.
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In many applications, the quantity of interest is the free energy difference between
an initial and a final state (characterized by two different values of the parameter
z). These differences characterize the relative stabilities of several species, as well
as their transition kinetics. Classical techniques to this end fall within three main
classes. The first one, dating back to Kirkwood [11], is thermodynamic integration,
which computes for each value of z the derivative of the free energy using some
finite temperature sampling of a constrained dynamics (like constrained Hamilton-
ian dynamics (see [1]) or Brownian dynamics (see [5, 3])). Some finite difference of
free energy can also be considered, which is essentially the free energy perturba-
tion method, was introduced by Zwanzig [24]. The second and most recent class
of methods uses dynamics arising from a switching at a finite rate. This can be
done using nonequilibrium dynamics with a suitable exponential reweighting in
an ensemble of realizations of these dynamics, as introduced by Jarzynski in [9].
Notice that the thermodynamic integration and free energy perturbation meth-
ods can be seen respectively as the limits of infinitely slow and fast switching of
nonequilibrium dynamics. Instead of being imposed a priori, this switching may
also arise as the result of a bias of the dynamics which is as close as possible to the
target free energy to be computed, as in the celebrated umbrella sampling [22].
In a more subtle fashion, this bias can be learned using adaptive techniques, for
example [4, 7]. In this case, the dynamics is progressively forced to leave regions
where the sampling of the reaction coordinate has been completed.

It is still a matter of debate which method is the most efficient. While some
results show that out of equilibrium methods can be competitive in some situa-
tions [6], other studies disagree [15]. Generally speaking, methods using a bias
seem to be more relevant that methods using constraints, but some mathematical
justifcation of is lacking.

We propose in our list of papers, some mathematical analysis and refinements
of these methods.
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Quantum control: theoretical, numerical and experimental results

Gabriel Turinici

Controlling the evolution of molecular systems at quantum level has been en-
visioned from the very beginnings of the laser technology. However, approaches
based on designing laser pulses resulting from intuition alone did not succeed in
general situations due to the very complex interactions that are at work between
the laser and the molecules to be controlled, which results e.g., in the redistribu-
tion of the incoming laser energy to the whole molecule which prevents it from
acting accordingly to the intuition. Even if this circumstance initially slowed down
investigations in this area, the realization that this inconvenient can be recast and
attacked with the tools of (optimal) control theory [8] greatly contributed to the
first positive experimental results [2, 11, 18, 5, 4, 7, 9].

Historically, the first applications that were envisioned were the manipulation of
chemical bonds (e.g., selective dissociation) or isotopic separation. Then, further
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poly-atomic molecules were considered in strong fields, High Harmonic Genera-
tion) [6] was introduced and more techniques are also explored to enhance detec-
tion in the atmosphere. Beyond chemistry, applications are also important for the
emerging generations of laser sources [3].

The purpose of this contribution is to explore the contributions coming from
mathematicians and that are useful in quantum chemistry framework. We will
explore :

- the controllability which speaks to the possibility to control a quantum system
to a given target state. Although geometric control is already giving an abstract
answer, more intuitive criterions are also available [15, 16, 1, 12, 13]. Beyond the
one-molecule setting, recent works have shown that surprising recent results [17]
show that a single laser source may be able to independently control a finite number
of uncoupled quantum systems

- the possibility to numerically find a solution to the control problem is given
by the introduction of specific iterative algorithms, among which the monotonic
algorithm. The monotonic algorithms have the very convenient property of im-
proving at each iteration the quality of the solution. These algorithms are shown
to be equivalent to Lyapunov formulations [14] and also represent an alternative
view where one asks for providing at each instant a good solution candidate.

- the possibility to gain information on the system at hand, especially in the
situations when the control can be found without such previous data on the system.
We investigated in recent works [10] what are the information / measurements that
can lead to an unique identification of the characteristics of the system and of the
coupling operators : the problem is thus restated as an uniqueness of the solution
of an inverse problem.
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Parareal in time control for quantum systems

Julien Salomon

(joint work with Y. Maday, G. Turinici)

Following recent encouraging experimental results in quantum control, numeri-
cal simulations have known significant improvements through the introduction of
efficient optimization algorithms. Yet, the computational cost still prevents using
these procedures for high-dimensional systems often present in quantum chemistry.
Using the parareal in time framework, we present here a time parallelization of
these schemes which allows to reduce significantly their computational cost while
still finding convenient controls.

Minimisation principles for density-functional theory: Relativity and

time-dependence

Trond Saue

Density-functional theory treats electron correlation efficiently at low computa-
tional cost and has therefore become the dominant method in the field of theoret-
ical chemistry [1, 2]. In my talk I would like to adress, if time allows, two issues
concerning DFT that calls for the expertise of mathematicians, namely i) the rel-
ativistic extension of the Hohenberg-Kohn theorem that establishes a one-to-one
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correspondence between the ground-state electron density and energy, and ii) the
quasienergy formalism [3, 4, 5] as an alternative to the Runge-Gross theorem [6]
for time-dependent DFT. Both issues requires the demonstration of the existence
of a minimsation principle. I will focus on the first issue.

The importance of relativity in chemistry is now widely established. 4-com-
ponent relativistic molecular calculations, starting from the Dirac equation, have
nowadays reached a stage of maturity that allows such calculations to be carried
out on a routine basis and with a wide choice of methods such as Hartree-Fock
(HF), Density Functional Theory (DFT), Möller-Plesset perturbation theory as
well as Configuration Interaction (CI) and Coupled Cluster (CC) expansions. A
rigorous justification of 4-component relativistic DFT was provided by Rajagopal
and Calloway [7] by the relativistic extension of the Hohenberg-Kohn theorem in
the framework of full QED. However, this is not the framework in which conven-
tional 4-component relativistic calculations are carried out. Moreover, the exis-
tence of the required minimisation principle is only postulated, not proven, in the
framework of full-fledged QED. I will argue that a minimisation principle can be
obtained by inclusion of vacuum polarisation in 4-component relativistic theory.

It is known that the Dirac equation is not exact since it does not predict the
splitting between the 2S 1

2
and 2P 1

2
states in hydrogen observed by Willis E. Lamb

and R. C. Retherford in 1947. The Lamb shift is due to vacuum polarization and
the self-energy of the electron. The two effects have opposite sign, with the latter
dominating. Recently there has been some interest in assessing the effect of QED
corrections in chemistry. For the ns−levels of heavier elements (Z > 50), the QED
effects have been found to cancel about -1% of the relativistic effects obtain by
conventional 4-component calculations [8, 9, 10].

At this point one may ask what has to be added to conventional 4-component
relativistic calculations in order to make them QED calculations. In conventional
calculations external fields are added as parameters whereas in QED particles and
fields fully interact. External fields are furthermore quantized. Finally, the fully
relativistic two-electron interaction is usually truncated to the Coulomb term only.
Certainly the QED corrections can be added perturbatively by evaluating the rel-
evant Feynman diagrams. However, as pointed out by David J. Gross in his 2004
Nobel lecture: “. . . the Feynman rules were too successful. They were an im-

mensely useful, picturesque and intuitive way of performing perturbation theory.

However, these alluring qualities also convinced many that all was needed from

field theories were these rules. They diverted attention from the non-perturbative

dynamical issues facing field theory. . .Today we know that there are many phenom-

ena, especially confinement in QCD, that cannot be understood perturbatively.”

It would be immensely useful to formulate QED in a variational manner that can
be grafted onto existing quantum chemical methodology.

This paper addresses the variational inclusion of the smaller contribution to
the Lamb shift, that is vacuum polarization, and was inspired by the rarely cited
work of Chaix and Iracane [11, 12]. I will sketch the minimisation principle that
follows upon the variational inclusion of vacuum polarization. A first version of the
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theory appeared in [13]. In the following we will use the repeated index summation
convention.

Although both formalisms arose in physics, second quantization combined with
exponential parametrization has become a powerful tool in the framework of quan-
tum chemistry. The second-quantized Hamiltonian is obtained by introduction of
field operators Ψ(1) = ϕp (r1) ap In conventional quantum chemical methodology,
the second-quantized electronic Hamiltonian is given by

Ĥ =

∫
Ψ†(1)ĥ(1)Ψ(1)dτ1 +

1

2

∫ ∫
Ψ†(1)Ψ†(2)ĝ(1, 2)Ψ(2)Ψ(1)dτ1dτ2

= hpqa
†
paq +

1

4
Lpq,rsa

†
pa

†
rasaq

where appears anti-symmetrized two-electron integrals Lpq,rs = (pq | rs)−(ps | rq) .
This Hamiltonian operates in Fock space, spanned by occupation-number vectors
which are eigenfunctions of the number operator N̂ = a†pap.
Consider next the Hartree-Fock variational ansatz expressed in second-quantiza-
tion formalism with exponential parametrization. We start from an occupation

number vector that maps into a single Slater determinant |Φ〉 = a†1a
†
2 . . . a

†
N |0〉

where the vacuum state is defined by ai |0〉 = 0; ∀ai.
We next introduce an orbital rotation operator which conserves particle number

κ̂ = κpqa
†
paq; κpq = −κ∗qp;

[
κ̂, N̂

]
= 0.

We may now write the Hartree-Fock variational ansatz as
∣∣∣Φ̃

〉
= exp [−κ̂] |Φ〉 =

ã†1ã
†
2 . . . ã

†
N |0〉 ; ã†p = exp [−κ̂] a†p exp [κ̂]The orbital rotation operator induces rota-

tions amongst the orbitals of our 1-particle basis, but the vacuum itself is conserved
exp [−κ̂] |0〉 = |0〉 .
A first step towards QED is to introduce a particle-hole formalism by redefining
the field operators as Ψ = ϕ+

p bp + ϕ−
p d

†
p where we have introduced electron anni-

hilation operators bp associated with the positive-energy orbitals ϕ+
p and positron

creation operators d†p describing the creation of positrons whose orbitals are ob-

tained by charge conjugating the associated negative-energy orbitals ϕ−
p . This

leads to a much more involved Hamiltonian

Ĥ = h++
pq b

†
pbq + h+−

pq b†pd
†
q + h−+

pq dpbq + h−−
pq dpd

†
q

+
1

4
L++++

pqrs b†pb
†
rbsbq+

1

4
L+−++

pqrs b†pb
†
rbsd

†
q+

1

4
L+++−

pqrs b†pb
†
rd

†
sbq+

1

4
L+−+−

pqrs b†pb
†
rd

†
sd

†
q

+
1

4
L++−+

pqrs b†pdrbsbq+
1

4
L+−−+

pqrs b†pdrbsd
†
q+

1

4
L++−−

pqrs b†pdrd
†
sbq+

1

4
L+−−−

pqrs b†pdrd
†
sd

†
q

+
1

4
L−+++

pqrs dpb
†
rbsbq+

1

4
L−−++

pqrs dpb
†
rbsd

†
q+

1

4
L−++−

pqrs dpb
†
rd

†
sbq+

1

4
L−−+−

pqrs dpb
†
rd

†
sd

†
q

+
1

4
L−+−+

pqrs dpdrbsbq+
1

4
L−−−+

pqrs dpdrbsd
†
q+

1

4
L−+−−

pqrs dpdrd
†
sbq+

1

4
L−−−−

pqrs dpdrd
†
sd

†
q
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which couples occupation-number vectors with different particle number, but con-
serves charge.
Consider now the Hartree-Fock method in this new framework. For bound elec-
tronic states we start from an occupation-number vector |Φ〉 = b†1b

†
2 . . . b

†
n |0〉 with

the vacuum defined as(bp |0〉 = 0, ∀bp) and (dp |0〉 = 0, ∀dp) . The varia-
tional Hartree-Fock ansatz is now given by

∣∣∣Φ̃
〉

= exp [−κ̂] |Φ〉 ; κ̂ = κ++
pq b

†
pbq︸ ︷︷ ︸

κ̂++

+ κ+−
pq b†pd

†
q︸ ︷︷ ︸

κ̂+−

+ κ−+
pq dpbq︸ ︷︷ ︸

κ̂−+

+ κ−−
pq dpdq︸ ︷︷ ︸

κ̂−−

Using the unitarity of the orbital rotation operator we may now rewrite the HF

ansatz as
∣∣∣Φ̃

〉
= b̃†1b̃

†
2 . . . b̃

†
n

∣∣∣0̃
〉

with transformed creation operators

b̃†p = exp [−κ̂] b†p exp [κ̂] = b†qUqp; U = exp [−κ]
Note, however, that the vacuum is no longer conserved

∣∣∣0̃
〉

= exp [−κ̂] |0〉 =
{
1 − κ−−

pq dpdq − κ−−
pp +O(κ2)

}
|0〉 6= |0〉

The difference between the modified, dressed vacuum and a chosen reference vac-
uum corresponds to vacuum polarization.

The present formalism has been implemented in a development version of the
DIRAC04 code. However, if we evaluate the expectation value of the QED Hamil-
tonian with respect to the reference determinant we obtain the standard HF energy
expression, but with all the negative-energy orbitals included amongst the occu-
pied orbitals, thus leading to an infinite negative energy. In order to avoid working
with infinite energies renormalization procedures are introduced in QED. Our for-
malism will furthermore have to cope with singularties. These questions will be
addressed in my presentation.
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[8] P. Pyykkö, M. Tokman, and L. N. Labzowsky. Phys. Rev. A, 57, R689, (1998).

[9] K. G. Dyall, C. W. Bauschlicher, D. W. Schwenke, and P. Pyykkö. Chem. Phys. Lett., 348,
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Conceptual problems in Density Functional Theory

Andreas Savin

The topic is not new (cf. [1, 2] and references therein). The electronic structure
calculations based upon density functionals are highly successful and widely used.
Moreover, the Hohenberg-Kohn theorems and the Kohn-Sham method seem to
give them a firm basis. However, several basic issues are not solved, and hamper
the progress to achieve high accuracy.
The density functional theory aims to obtain the ground state energy and density
by using density functionals which can be rigorously defined. Unfortunately, the
exact definition does not give a prescription to be followed in practice: approxi-
mations are needed.
No approximations are known to satisfy the following two basic requirements:

• to provide reasonable error estimates,
• to be systematically improvable, in the sense that one knows how to im-

prove approximations for reducing the errors.

Typically, the approximations for density functionals have the form: F (n) =∫
f(n↓(r), n↑(r), |∇n↓(r)|, |∇n↑(r)|, ...|d3r, where n↓(r) and n↑(r) are the spin-up

and spin-down densities, respectively (positive functions in R3, which integrate to
the number of electrons with spin-up and spin-down, respectively). The function
f is chosen to yield accurate properties for selected systems, e.g., the energy of
the uniform electron gas, and/or to satisfy some know properties, e.g., scaling
relationships.
This type of approximation is restrictive, as it does not satisfy a requirement
considered fundamental for chemistry, namely to insure that the energy (or a
conveniently chosen part of it) is size-consistent. (The concept of size-consistency
is related to that of extensivity. It means that if one calculates the energy of the
system A and that of the system B separately, E(A) and E(B), respectively, one
knows the energy of the composite system of A and B, as long as these two entities
do not interact, e.g., at infinite separation; it is E(A) +E(B). It is expected that
even an infinitesimal interaction will only change infinitesimally the energy from
E(A) + E(B).)
If the approximation given above is used, size-consistency would be guaranteed if
the function f were intensive (intensive meaning that its value in r in the domain
of space pertaining to system A, ΩA, is not changed by the presence of the system
B). A corresponding statement can be made for the integration over the region of
atom B. As the integral in the composite system is the sum over the regions of
the individual (sub-)systems, extensivity could be guaranteed.
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As the density n(r) = n↓(r)+n↑(r) is believed to be intensive, one expects exten-
sivity. However, n↑, and n↓ are not intensive, as it is shown by a simple counter-
example: the hydrogen molecule at infinite separation of the nuclei. While a sin-
gle hydrogen atom (doublet ground state) has a spin-density equal to its density,
the spin-density of the molecule (singlet ground state) is zero. Simple counter-
examples can be also given for the density itself, when the ground-state of the
system A is degenerate, as different states can have different densities, and an
infinitesimal interaction with B can select one of the states. This change is not
infinitesimal, and depends on the nature of B.
In order to obtain the ground state energy of the system, an Euler-Lagrange equa-
tion is used, and the functional derivative of the density functional yields a function
in R3, a potential. However, by the definition of the density functionals, this po-
tential is only defined up to an arbitrary constant which is considered irrelevant,
as related to the zero of energy which can be arbitrarily chosen.
However, when two systems are put together, each can have its individual constant,
and a supplementary degree of freedom appears which has to be fixed in order to
avoid charge transfer between the individual (sub-)systems. The approximations
do not take this into account.
It is worth mentioning that such effects can take place within a system, e.g., for
the two different spins, or for its different parts (e.g., core and valence).
A further problem is that the Hohenberg-Kohn theorem is not valid in a finite
space. In practice, this is not an issue, as long one first defines an approximate
functional, and obtains from it a potential. However, if one wants to see how
the real potential looks like (or in the optimized effective potential method) this
becomes important, as we do not know how to approach systematically the infinite
basis set potential.
As an example, it can be shown that with finite basis sets one can find the exact
wave function in the given basis set (the full CI wave function) as the solution to
the Kohn-Sham problem which is a single Slater determinant in the infinite basis
set.
There is, however a way to show us what the approximations should be, by intro-
ducing model potentials and model interactions in a model Hamiltonian operator,
Hm. A parameter λ can be chosen in a way to have the physical operator for
a given value of a parameter, e.g., λ = 1. In density functional theory, one also
chooses to obtain, for another value of the parameter, e.g. λ = 0, a non-interacting
system. For each λ, the energy of the system is given by E = Em(λ)+C(λ) where
Em(λ) = 〈Hm(λ)〉 is the energy of the model system, and C a correction defined
by the equation above. As E is independent of λ, 0 = ∂λEm + ∂λC or, in an

integral form: C(0) =
∫ 1

0 ∂λH(λ)dλ with E(1) = E,C(1) = 0. This procedure,
called adiabatic connection in density functional theory, allows us to understand
the meaning of the corrections we try to construct with approximations.
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Mathematical aspects of relativistic models

Eric Séré

(joint work with J. Dolbeault, M.J. Esteban)

In this talk, we deal with some linear and nonlinear models appearing in rel-
ativistic quantum chemistry. In these models, the negative continuous spectrum
of the free Dirac operator is the source of important mathematical and physical
difficulties.

In the first part, we consider a min-max principle allowing to characterize and
compute the eigenvalues of linear Dirac operators with an external potential in
the gap of their essential spectrum. This principle was first proposed by Talman
[10] in 1986. We present rigorous results on this principle and its generalizations
[4, 7, 1, 3]. We describe a related stable algorithm [2] to compute the eigenvalues.
This algorithm avoids spurious states.

In the second part, we discuss rigorous results [5, 8, 6] that have been obtained
on the Dirac-Fock model [9], which is a nonlinear theory describing the behavior
of N interacting electrons in an external electrostatic field. In particular we focus
on the problematic definition of the ground state and its nonrelativistic limit.
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The Ground State Energy of Heavy Atoms According to Brown and

Ravenhall: Absence of Relativistic Effects in Leading Order

Heinz Siedentop

(joint work with R. Cassanas)

The energy of heavy atoms has attracted considerable interest in the context of
nonrelativistic quantum mechanics. Lieb and Simon [14] proved that the leading
behavior of the ground state energy is given by the Thomas-Fermi energy which
decreases as Z7/3. The leading correction to this behavior, the so called Scott
correction was established by Hughes [12, 13] (lower bound), and Siedentop and
Weikard [16, 17, 18, 19, 20] (lower and upper bound). In fact even the existence
of the Z5/3-correction conjectured by Schwinger was proven (Fefferman and Seco
[8, 9, 10, 3, 11, 6, 4, 5, 7]). Later these results where extended in various ways,
e.g., to ions and molecules.

Nevertheless, from a physical point of view, these considerations are question-
able, since large atoms force the innermost electrons on orbits that are close to
the nucleus where the electrons move with high speed which requires a relativistic
treatment. Our main goal in this paper is to show that the leading energy contri-
bution is unaffected by relativistic effects, i.e., the asymptotic results of Lieb and
Simon [14] remain also valid in the relativistic context, whereas the question mark
behind the quantitative correctness of the other corrections persists.

Sørensen [15] took a first step in this direction. He considered the Chan-
drasekhar multi-particle operator and showed that the leading energy behavior
is given by the non-relativistic Thomas-Fermi energy in the limit of large Z and
large velocity of light c. Nevertheless, a question from the physical point of view
remains: Although the Chandrasekhar model is believed to represent some quali-
tative features of relativistic systems, there is no reason to assume that it should
give quantitative correct results. Therefore, to obtain not only qualitatively cor-
rect results it is interesting, in fact mandatory, to consider a Hamiltonian which –
as the one by Brown and Ravenhall [1] – is derived from QED such that it yields
the leading relativistic effects in a quantitave correct manner.

Brown and Ravenhall [1] describe two relativistic electrons interacting with an
external potential. The model has an obvious generalization to the N -electron
case. The energy in the state ψ is defined as

E :

N∧

ν=1

(H1/2(R3) ⊗ C
4) → R

ψ 7→ (ψ, (

N∑

ν=1

(Dc,Z − c2)ν +
∑

1≤µ<ν≤N

|xµ − xν |−1)ψ)

(1)
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where Dc,Z := α· c
i∇+c2β−Z| · |−1 is the Dirac operator of an electron in the field

of a nucleus of charge Z. As usual, the four matrices α1, ..., α3 and β are the four
Dirac matrices in standard representation. We are interested in the restriction E
of this functional onto QN :=

∧N
ν=1(H

1/2(R3) ⊗ C4) ∩ HN where

(2) HN :=

N∧

ν=1

H;

the underlying one-particle Hilbert space is

(3) H := [χ(0,∞)(Dc,0)](L
2(R3) ⊗ C

4).

Note that we are using atomic units in this paper, i.e., me = ~ = e = 1.
As an immediate consequence of the work of Evans et al. [2] this form is bounded

from below, in fact it is positive (Tix [21, 22]), if κ := Z/c ≤ κcrit := 2/(π/2+2/π).
(In the following, we will assume that the ratio κ ∈ [0, κcrit) is fixed.) According
to Friedrichs this allows us to define a self-adjoint operator Bc,N,Z whose ground
state energy

(4) E(c,N, Z) := inf σ(Bc,N,Z) = inf{E(ψ)|ψ ∈ QN , ‖ψ‖ = 1}
is of concern to us in this paper. In fact – denoting by ETF(Z,Z) the Thomas-
Fermi energy of Z electrons in the field of nucleus with atomic number Z and
q = 2 spin states per electron – our main result is

Theorem 2. For given κ = Z/c ∈ [0, 2/π] and Z tending to infinity

E(Z/κ, Z, Z) = ETF(Z,Z) + o(Z7/3).

This result, given here for the neutral atomic case, has obvious generalizations
to ions and molecules. To keep the presentation short we refrain from presenting
them here, as their treatment follows the same strategy.
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The Relativistic Scott Correction

Jan Philip Solovej

(joint work with T. Østergaard Sørensen and W. L. Spitzer)

In this talk we discuss the relativistic Scott correction. For simplicity we restrict
the discussion to atoms although similar results can be proved for molecules (see
[11]).

The starting point is the Hamiltonian for an atom with nuclear charge Z s

HN,Z =

N∑

i=1

(
Ti −

Z

|xi|

)
+

∑

1≤i<j≤N

1

|xi − xj |
.

Here N is the number of electrons and xi ∈ R3, i = 1, . . . , N are the electron
coordinates. We shall specify the kinetic energy operators Ti acting on functions
of xi below. We are actually interested in the neutral case, when the number of
electrons N is equal to Z. For simplicity and to avoid complications if Z is not an
integer, in which case exact neutrality cannot be achieved, we shall here consider
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the ground state energy defined by

E(Z) = inf{(Ψ, HN,ZΨ) | Ψ anti-symmetric N -body wave function,∫
|Ψ|2 = 1, N = 1, 2 . . .}.

Thus E(Z) is the energy minimized over particle number N . Our main result
below holds also for the neutral case. The wave functions Ψ above are functions
of the electron coordinates xi ∈ R3 and the electron spin σi = ±1. They are anti-
symmetric when two particle indices i, j are interchanged. The energy infimum
will not be affected if we restrict to wave functions that are smooth.

In the non-relativistic case we take the kinetic energy operators to be Ti =
− 1

2∆i. We are using units in which Planck’s constant ~ and the mass and charge
of the electron are all chosen to be 1. In this case the ground state energy, which
we denote Enr(Z), has an asymptotic expansion for large Z given by

Enr(Z) = −CTFZ
7/3 +

1

2
Z2 + CDSZ

5/3 + o(Z5/3)

as Z → ∞. The leading term was predicted by Thomas [13] and Fermi [3] and
proved rigorously by Lieb and Simon [6]. The second term is the Scott term
predicted by Scott [7] and proved rigorously by Hughes [4] (lower bound) and
Siedentop and Weikard [8]. The third term was predicted by Schwinger [10] relying
on a result of Dirac [1]. It was proved rigorously by Fefferman and Seco [2]. The
non-relativistic Scott correction for molecules was proved by Ivrii and Sigal [5].

The main result of this talk is to generalize the Scott term to a relativistic sit-
uation. Unfortunately, we do not have a mathematically satisfactory formulation
of relativistic quantum mechanics. We will instead consider a simplified model,
which we hope has some correct qualitative characteristics of a relativistic quan-
tum theory. Our model is arrived at by replacing the non-relativisic kinetic energy
operators given above by the corresponding operators deduced from Einsteins for-
mula Ti =

√
−c2∆i + c4 − c2. Recall that we are using units in which the mass

of the electron and Planck’s constant are 1. In these units the physical value of c,
the speed of light, is approximately 137. We shall however think of c as a large
parameter which we will let tend to infinity.

It is a fact that if Z/c > 2
π , then the operator HN,Z above is not bounded below

(if originally defined on smooth compactly supported functions), i.e., the ground
state energy defined above is −∞. If Z/c ≤ 2

π then the ground state energy, which
we now denote Er(Z) (suppressing its dependence on c) is finite.

Thus we cannot consider the limit of Er(Z) as Z → ∞ for fixed c. Instead we
will consider the limit Z → ∞, c→ ∞ with Z/c fixed. A similar limit was studied
by Schwinger [9]. Our main result in [11] is stated in the next theorem.

Theorem 4. There exists a function S : [0, 2/π) → R such that

Er(Z) = −CTFZ
7/3 +

1

2
Z2S(Z/c) + o(Z2)
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as Z → ∞, c → ∞ with Z/c ≤ ν < 2/π. The error term o(Z2) depends only on
the parameter ν.

The constant CTF in this theorem is the same as in the non-relativistic case as
realized by Sørensen in [12]
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Quantum Chemistry using Numerical Orbitals

James D. Talman

Progress on an ongoing research program to develop and improve methods
for using numerical defined basis orbitals in molecular structure calculations will
be reported. In the usually MO-LCAO approach single-particle electron wave
functions are expanded in the form

(1) φi(r) =
∑

j

cjiχj(r − Rj).

The χj(r − Rj) are superpositions of Gauss-type orbitals (GTOs) and the Rj

are usually the nuclear coordinates. The GTOs are used since they make the
determination of the various matrix elements required almost trivial. On the other
hand, they are not particularly suitable for the description of various electronic
properties, such as the electron density at the nuclei, and at large distances.
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In this project, the basis orbitals χj are instead taken to be numerically defined
on a mesh centered on the associated nucleus. This permits the variational opti-
mization of the orbitals, thereby drastically reducing the size of the required basis
set. The corresponding optimization with GTOs is rarely attempted. The basic
problem then is to obtain the multicenter integrals required in electron structure
calculations:

(2) ωij =

∫
χi(r − Ri)χj(r − Rj)dr

(3) VNkm =

∫
χk(r − Rk)

1

|r − RN |χm(r − Rm)dr

(4) v(kl,mn) =

∫
χk(r − Rk)χl(r

′ − Rl)
1

|r − r′|χm(r − Rm)χn(r′ − Rn)drdr′

the overlap, nuclear attraction and electron-electron repulsion integrals.
The essential strategy is to employ a translation formula that can be written,

if flm(r) = f(r)Ylm(r̂),

flm(r − R) =
∑

LL′MM ′

(2L+ 1)(2L′ + 1)R(lLL′mMM ′)

× YLM (r)YL′M ′(R)FLL′(r,R; f)(5)

where

(6) FLL′(r,R; f) =
2

π
il+L′−L

∫ ∞

0

jL(kr)jL′ (kR)f̃(k)k2dk

and

(7) f̃(k) =

∫ ∞

0

jl(kr)fl(r)r
2dr.

The coefficients R(lLL′mMM ′) are expressible in terms of 3 − j or Gaunt coeffi-
cients. The sum is necessarily truncated at some L = Lmax.

A method [1] has been developed that permits the very efficient and accurate
calculation of the functions FLL′(r,R; fl). This permits the calculation of the
overlap integrals of Eq. (2) in a simple way.

The nuclear attraction integrals are obtained by expanding each factor about
a center that is chosen to optimize the convergence rate of the resulting series [2].
In the case of CH4, Lmax = 6 yields mH accuracy.

The electron-electron repulsion integrals are obtained by interpreting them as
the electrostatic energy of two charge distributions defined by the orbital products
[3]. Each charge distribution is obtained by expanding the orbital factors about
the mid-point between their centers, and multiplying the two expansions. The
product can be reduced by using the standard identity for the expansion of a
product of spherical harmonics. The resultant integral for the matrix element is
evaluated in momentum space.

These methods for obtaining the necessary integrals for arbitrary orbitals lead
to the possibility of variationally optimizing the orbitals. The Euler- Lagrange



Mathematical and Numerical Aspects of Quantum Chemistry Problems 2859

equations for the orbitals subject to the constraint that the molecular orbitals φi

remain orthonormal can be derived and lead to a system of coupled inhomogeneous
equations that resemble the Schroedinger equation [4]. The Hartree-Fock self-
consistency problem, and the orbital optimizations are solved iteratively.

The program also includes the determination of the energy gradients with re-
spect to the nuclear coordinates. However, the Hessian matrix problem has proved
to be intractable.

Preliminary work has also been carried out on applying the approach in DFT
LDA calculations for molecules [5].

The advantages of the approach are that the wave functions give a much better
description of the electron behavior at the nuclei and at large distance, and that
much smaller basis sets are required in comparison with the GTO method at a
given level of accuracy. In addition, since the wave functions can approximate HF
wave functions much more accurately, the so-called basis set superposition error,
should be much smaller or negligible.

As an example, the HF problem for CH4 has been solved in the minimal basis of
1s, 2s, 2p orbitals on C and 1s orbitals on H. Eight orbital optimizations and total
energy calculations required 65 second on an HP laptop. The resulting energy is
≈ 28 mH above the estimate obtained in the pV6Z basis set [6].
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A rigorous surface hopping algorithm for propagation through conical

crossings

Stefan Teufel

(joint work with C. Lasser and T. Swart)

We consider the standard model problem for propagation through a conical inter-
section of electronic surfaces in molecular dynamics, namely the time-dependent
Schrödinger equation iε d

dtψ
ε(t) = Hεψε(t) , ψε(0) ∈ L2(R2,C2) , with Hamil-

tonian operator Hε = − ε2

2 ∆ ⊗ 1C2 +

(
x1 x2

x2 −x1

)
. The eigenvalues ±|x| of

the potential matrix display a conical crossing at x = 0. Our main result is the
construction of a semigroup that approximates the Wigner function associated
with the solution of the Schrödinger equation at leading order in the semiclassi-
cal parameter ε. The semigroup stems from an underlying Markov process which
combines deterministic transport along classical trajectories within the electronic
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surfaces and random jumps between the surfaces near the crossing. Our semi-
group can be viewed as a rigorous mathematical counterpart of so-called tra-
jectory surface hopping algorithms, which are of major importance in chemical
physics’ molecular simulations. The key point of our analysis, the incorporation
of the non-adiabatic transitions, is based on the Landau-Zener type formula of
Fermanian-Kammerer and Gérard [1] for the propagation of two-scale Wigner
measures through conical crossings.

We also compare numerical solutions of the Schrödinger equation to numerical
solutions of the surface hopping algorithm, both numerically converged, in order
to test the validity of the semigroup in realistic settings. For a wide range of
parameters the systematic error of our surface hopping algorithm is below 2%.

The mathematical results are published in [2], the numerical results are available
as a preprint [3].
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Optimised effective potentials in magnetic response calculations

David J. Tozer

(joint work with A. M. Teale, A. J. Cohen, O. B. Lutnaes, T. Helgaker)

There is currently much interest in the determination of uncoupled, second-order
magnetic response properties in density functional theory, using hybrid exchange-
correlation functionals with multiplicative exchange-correlation potentials [1, 2,
3, 4, 5]. For main-group nuclei, high quality results have been obtained using
potentials from the constrained search and optimised effective potential (OEP)
approaches [6, 7].

In this work, we investigate whether similar improvements are obtained for
transition metal chemical shifts, which are a significant challenge for theoretical
methods. Specifically, we use the Yang-Yu [8] implementation of the OEP, in
which the Kohn-Sham potential is written vs(r) = vext(r) + v0(r) +

∑
t btgt(r) ,

where vext(r) is the external potential, v0(r) is a fixed reference potential, and the
final term is an expansion in a Gaussian basis set. Our calculations highlight the
importance of a well-chosen reference potential and the sensitivity of the results to
the choice of potential expansion. In particular, special care is required to avoid
unphysical structure in the exchange-correlation potentials when hybrid function-
als are used and this is consistent with a number of other recent studies [9, 10]. We
avoid this structure in the present work through a judicious choice of cutoff in the
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singular value decomposition. Our results demonstrate that the use of the OEP
approach does lead to notable improvements in chemical shifts. For full details,
see Ref. [11].

In addition to chemical shifts, we demonstrate that the uncoupled OEP ap-
proach also leads to very high quality rotational g tensors, which quantify the
shift in rotational energy levels when a molecule is placed in an external magnetic
field. The results surpass those from a functional that was specifically designed to
yield high quality magnetic response parameters. For full details, see Ref. [12].

Finally, we highlight unexpected differences between the rigorous OEP exchange
potentials and approximate potentials determined using the localised Hartree-Fock
(LHF) [13] approach. By comparing with near-exact quantities, we demonstrate
that the differences mimic the effect of electron correlation, which is consistent
with the observation that LHF shielding constants are in rather good agreement
with experimental values, despite the absence of an explicit correlation functional.
For full details, see Ref. [14].
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Regularity properties and the hyperbolic cross space approximation

of electronic wavefunctions

Harry Yserentant

Atoms and molecules are physically described by the Schrödinger equation for
a system of charged particles that interact by Coulomb attraction and repulsion
forces. As the nuclei are much heavier than the electrons, the electrons almost
instantaneously follow their motion. Therefore it is usual in quantum chemistry
to separate the motion of the nuclei from from that of the electrons, that is, to
look for the eigenvalues and eigenfunctions of the electronic Schrödinger operator

H = − 1

2

N∑

i=1

∆i −
N∑

i=1

K∑

ν=1

Zν

|xi − aν |
+

1

2

N∑

i,j=1
i6=j

1

|xi − xj |

written down here in dimensionless form or atomar units. It acts on functions with
arguments x1, . . . , xN ∈ R3, the coordinates of given N electrons. The positions
a1, . . . , aK ∈ R3 of the nuclei are kept fixed. The positive values Zν are the charges
of the nuclei in multiples of the electron charge.

The problem with this equation is its high dimensionality which immediately
rules out standard discretization methods like finite differences or finite elements.
Current approximation methods, with the Hartree-Fock methods and the density
functional theory based methods as the classical examples, are used with much
success, but more resemble simplified models than true discretization methods in
the sense of numerical analysis. The regularity theorems in [Y1], [Y3] might form
a possible point of attack for the construction of such direct methods. To some
degree, they also underpin the orbital picture of atoms and molecules and explain
why Hartree-Fock-methods work so well.

To state these regularity theorems, one has to keep two things in mind. First,
that the bottom of the essential spectrum of the electronic Schrödinger operator
is less than or equal to zero. Therefore the eigenfunctions for negative eigenvalues
are of main interest in quantum chemistry. We restrict ourselves to such eigen-
functions. Secondly, the true wavefunctions do not only depend on the positions
but also on the spins of the electrons and are, by the Pauli principle, antisymmet-
ric with respect to the simultaneous exchange of the electron positions and spins.
The admissible solutions of the electronic Schrödinger equation are those that are
components of such a full spin-dependent wavefunction. This means that every
such solution is antisymmetric with respect to the exchange of the positions of the
electrons of same spin and vanishes where two such electrons meet. In the sequel,
the sets I− and I+ of the indices associated with the electrons with spin up and
spin down are fixed. For s = 0 and s = 1, let

|||u|||2±,s =

∫ ( N∑

i=1

∣∣ ωi

Ω

∣∣2
)s ∏

i∈I±

(
1 +

∣∣ ωi

Ω

∣∣2
)
|û(ω)|2 dω,
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with ωi ∈ R
3 the momentum of the electron i and Ω a scaling parameter. The

norms given by this expression are composed the L2-norms of certain high-order
mixed derivatives, the maximum order of which increases with the number of
electrons. In [Y1] it has been proved that the given eigenfunctions are located in
the corresponding Hilbert spaces and are therefore much smoother as one might
first expect. In [Y3] we could recently quantify this result and estimate the norms
of these mixed derivatives in terms of the L2-norm of the eigenfunctions. For

Ω ≥ 4C
√
N max(N,Z),

the given eigenfunctions satisfy the estimates

|||u|||±,0 ≤
√

2e ‖u‖0, |||u|||±,1 ≤
√

2e ‖u‖0,

where C is a small generic constant that neither depends on the number N of the
electrons nor on the total charge Z of the nuclei or their positions.

The minimum Ω ≤ 4C
√
N max(N,Z) for which these estimates hold for all

eigenfunctions of the described kind fixes an intrinsic length scale of the considered
atomar or molecular system. Length scales like this naturally appear in estimates
that relate derivatives of distinct order to each other. Such length scales have to
be incorporated in the definition of the corresponding norms to compensate the
different scaling behavior of the derivatives and to obtain estimates that are inde-
pendent of the choice of units. The crucial point here is that the given upper bound
for the optimal scaling parameter is both independent of the particular eigenfunc-
tion and of the number, the charge, and the position of the nuclei. The proof of
this theorem is based on a mixture of variational arguments and Fourier analysis
and essentially utilizes the fact that the wavefunctions vanish where electrons with
same spin meet. The analysis of simplified models in which the electron-electron
interaction is neglected shows that our upper estimate for the minimum Ω can in
general probably not be improved, but also suggests that this estimate is far too
pessimistic for bigger molecules consisting of many atoms.

The estimates above mean that the Fourier transforms of the eigenfunctions are
concentrated around the cartesian products of the hyperbolic crosses

∏

i∈I−

(
1 +

∣∣ ωi

Ω

∣∣2
)
≤ R2,

∏

i∈I+

(
1 +

∣∣ ωi

Ω

∣∣2
)
≤ R2,

that is, along 3- respectively 6-dimensional coordinate spaces. The wavefunctions
behave in this respect similarly as products of three-dimensional orbitals, that is,
as Hartree-Fock methods anticipate and chemists always believed. To quantify
this, let χR be the characteristic function of the domain above and

(PRu)(x) =
( 1√

2π

)3N
∫
χR(ω)û(ω) exp(iω · x) dω

the projection of a function u onto the space of functions with Fourier transforms
vanishing outside this region. For all eigenfunctions u of the given kind then

‖u− PRu‖0 ≤ 2
√
e

R
‖u‖0, |u− PRu |1 ≤ 2

√
e

R
Ω ‖u‖0.
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For R chosen sufficiently large, it suffices therefore to look for approximation spaces
that are able to approximate the projections PRu or similar parts of the eigen-
functions u well and to neglect the other frequency components. This is a much
simpler task than to approximate functions in the full space.

Sparse grid type functions are very well suited to this purpose. A construction
of this kind has been presented in [Y3], where the scaling discussed here has still
to be built in. The idea is to replace the function χR above by a superposition

χR(ω) ≤
∑

l
χ(l)(ω) ≤ 1

of functions χ(l) of tensor product structure. The factors of which the χ(l) are
composed cut off single frequency bands. The function with the Fourier transform

ω →
∑

l
χ(l)(ω) û(ω)

then approximates u at least as well as the projection PRu. The single parts on
the right hand side are then approximated separately, making use of the fact that
the Fourier transforms of the eigenfunctions are infinitely differentiable. To keep
the number of degrees of freedom under control, the symmetry properties of the
wavefunctions inevitably have to be taken into account [Y4].
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Optimized Effective Potentials

Weitao Yang

(joint work with T. Heaton-Burgess, F. A. Bulat )

Kohn-Sham density functional theory (KS DFT) [1] enjoys wide application
owing to the computational accessibility afforded by formulating the many body
problem in terms of the noninteracting KS reference system. However, the ex-
act exchange-correlation energy functional Exc and corresponding local potential,
vxc, are unknown. The future success of DFT is dependent on the availability of
suitable approximations for Exc. Significant interest is being shown for the de-
velopment of implicit density functionals, depending explicitly on the KS orbitals
[2]. For such functionals, vxc cannot be directly obtained as a simple functional
derivative and requires an OEP method for its determination [3, 4, 5].

The OEP concept first appeared within the Hartree-Fock (HF) formalism [6],
and later was employed in DFT [7] using the HF exact exchange energy functional
(EXX). These conventional approaches identify the local KS potential for exact
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exchange as that obtained from solving δE[{φKS
i }]/δvs(r) = 0, which in turn leads

to a linear integral equation to be solved for the OEP. The rigorous justification
of the OEP method as a variational minimization has however only recently been
provided within the potential functional formulation [8]. This formulation lends
itself to a direct approach to solving for the OEP [5] where the minimization of
the energy functional over local potentials is considered.

The discrete representation of the OEP problem in finite basis sets for both
the Kohn-Sham orbitals and the potential can be ill-posed [9, 10]: While the
total OEP energy is stable with respect to the changes in the potential, there
can be many different potentials, including nonphysical ones, having numerically
degenerate total energies. This has lead to some degree of confusion of what in
fact constitutes a valid, finite basis, OEP implementation [10]. Up to now, the
origin of this ill-posedness has been unaccounted for.

We will show that the ill-posed nature of the discrete OEP originates from the
use of unbalanced basis sets. This ill-posedness does not imply that the OEP
method is unphysical by construction, rather, just that it can lead to nonphysical
potentials. The regularization method developed in this work insures that the
physical context of finite basis OEP calculations are maintained in all cases, with
generation of physically meaningful potentials.

Our OEP implementation is the direct optimization approach of Yang and Wu
[5] where the trial potential is expanded in a finite basis set, {gt}, as vσ

s (r) =
vext(r) + v0(r) +

∑
t b

σ
t gt(r). Here vext is the external potential of the system

under consideration and v0 is a fixed reference potential, taken as the Fermi-
Amaldi potential (or the Coulomb potential for LDA) for the sum of the atomic
densities so to enforce the correct asymptotic behavior upon vs. Transferring the
functional dependence from the KS potential on to the expansion coefficients {bσt }
in this way gives rise to an efficient implementation of the OEP based on the
unconstrained minimization of E({bσt }) with readily available analytic derivatives
[5].

We take the classical approach to ill-posed problems and further incorporate
some desirable measure to regularize the solution [11]. It is clear that any nonphys-
ical oscillatory behavior in the potential will be confined to the basis set expansion
vb =

∑
t btgt. We thus introduce a λ–regularization by constraining our solutions

to yield smooth potentials as measured by the smoothing norm ||∇vb||, thereby
restricting the nonphysical variations in the potential because of unbalanced basis
set. This norm is certainly not unique, however is simple to implement and will be
seen to produce very satisfying results. We define a regularized energy functional
as

Ωλ(b) = EYW(b) + λ||∇vb(r)||2,(1)

where ||∇vb(r)||2 = 2bTTb, T is the kinetic energy integral matrix in the poten-
tial basis and EYW(b) is the OEP energy calculated according to the Yang-Wu
procedure. The energy derivatives with respect to the coefficients are modified
accordingly as ∇bΩλ = ∇bE

YW + 4λTb and ∇2
b
Ωλ = ∇2

b
EYW + 4λT.



2866 Oberwolfach Report 47/2006

This regularization procedure, together with an L-curve analysis, allows us to
determine the physically meaningful OEP potential and energy from calculations
performed with any basis sets, as shown for numerous examples of atoms and
molecules. Our work also calls for the construction of balanced potential basis
sets for efficient OEP calculations.

This talk is based on a manuscript submitted for publication by the same au-
thors. Support from the National Science Foundation is gratefully acknowledged.
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Order N methods in electronic structure calculations at finite

temperature

Gilles Zérah

(joint work with S. Le Roux)

. The recursion method is an orbital free method, and is therefore adapted to
systems for which such calculations would lead to very large computation times.
This is for example the case of high temperature plasmas, where the broadening of
the Fermi-Dirac distribution leads to a rapid increase of the number of populated
states. This size has so far limited the temperature range which has been covered
by Ab initio molecular dynamics methods where the electrons receive full quantum
mechanical treatment and the ions are propagated classically on the resulting
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energy surface. While this approach has been extensively used in the past ten
years in this field and was rather successful at computing the physical properties
of dense plasmas, [4, 5, 6, 7] it has only been possible to perform simulations
above 10 eV or so by resorting to approximate expressions of the kinetic energy
functional.[8]

An alternative setting of the recursion method, more easily extensible toward
high temperatures, has been devised by Baroni and Giannozzi[9], in which the elec-
tronic density is directly computed on a regular mesh in real space. This method
is therefore well suited for an implementation in the Kohn-Sham formalism, since
the electronic density is the central quantity in this formalism, and the basis set
can be easily increased to achieve convergence. A variant of this approach was
later elaborated, which relies on a direct evaluation of the diagonal elements of
the Fermi density matrix operator at finite temperature. Fermi density matrix
[15]:

ρ(r) = < r| 1

1 + eβ(H−µ)
|r >(1)

This electronic density is approximated as:

ρh(ri) =
1

h3
< ui,h

0 | 1

1 + eβ(H−µ)
|ui,h

0 >

=
1

h3

(
< ui,h

0 |1|ui,h
0 > − < ui,h

0 | 1

1 + e−β(H−µ)
|ui,h

0 >

)

where ui,h
0 is an approximation of the Dirac delta function. The last term of this

expression is put in tridiagonal form according to the Lanczos procedure:

e−β(H−µ)ui,h
n = bi,hn ui,h

n−1 + ai,h
n ui,h

n + bi,hn+1u
i,h
n+1

and can be computed as a continued fraction as:

h3ρh(ri) = 1 +
1

−1 − a0 −
b21

−1 − a1 −
b22
. . .

(2)

noted 1 +
∑∞

k=0(−b2k)|(−1 − ak).
This approach has already been presented in a previous paper [12], but no

assessment of its numerical properties were given at the time.
The aim of the present work is to analyze the convergence properties of this

latter method in many respects:

• Understand the convergence properties
• Establish an error estimate
• Analyze the ”locality properties”

This assessment has been made using two examples: the free electron gas and
the helium plasma.
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In the course of this research, we have established someproperties of the method.
First,it is possible to obtain quite high an accuracy, at least in the studied cases.
We think this is due to the use of the exponential of the Hamiltonian, a compact
operator, for which convergence properties of the recursion coefficients is guar-
anteed. Second, the method is stable, Third, an accurate and easy to compute
estimate of the error has been devised, a particularly useful property when per-
forming practical calculations.

Finally, the growth of the recursion vector, can be evaluated and,this allows
to effectively truncate the recursion vector and perform calculation with order N
scaling.
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