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Introduction by the Organisers

This workshop was well-attended with 47 participants from Europe and over-
seas, among them many promising young scientists. While most participants are
working in mathematical statistics, several participants are experts in approxima-
tion theory or fields of application such as astrophysics or econometrics, too. The
participants exchanged ideas, discussed new developments and established new
projects and interactions for the subsequent tasks.

Traditional nonparametric statistics and new trends. Nonparametric
statistics has undergone dramatic changes during the last two decades. At first
the focus shifted from permutation and rank testing in classical settings such as
comparison of two univariate samples to multi- and even infinite-dimensional prob-
lems such as density estimation and regression. Here new results and techniques
from empirical process theory, a very active research area in itself, played a promi-
nent role.
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At present statisticians working on nonparametrics are facing three kinds of
problems, among others: On the one hand, the research focused strongly on point
estimation, whereas in applications people are in need of tests and confidence sets.
A second problem is the curse of dimensionality. Roughly speaking, the number
of unknown parameters for reasonable approximating models grows exponentially
with the dimension. This problem results in rather slow rates of convergence in
higher dimensions. In addition, many estimation problems are inverse in the sense
of involving indirect measurements and being ill-posed.

Qualitative Assumptions. For all three problems introducing qualitative as-
sumptions is turning out to be a successful strategy with further potential. That
means, in many situations, restrictions on the underlying function parameters such
as e.g. monotonicity, concavity/convexity, or upper bounds on the number of local
extrema may be used to enhance the performance of point estimators substantially
and to replace quantitative smoothness assumptions which are difficult to justify.
In addition, imposing such constraints enables the construction of nonparametric
tests and confidence sets, sometimes even without relying on asymptotic expan-
sions.

Computation and Regularization. In order to deal with the qualitative
assumptions algorithmically, techniques for constrained optimization come into
play. Sometimes it turns out that standard solutions from optimization theory
such as, for instance, quadratic programming, are not efficient for statistical pur-
poses, and alternative procedures such as the pool-adjacent-violators algorithm
have been developed by statisticians. Naturally, regularization methods are used
in this context, too. Regularization methods themselves are a well-known tool
for treating inverse problems. In statistics they are also important in order to
produce “sparse” estimators, i.e. estimators which are easier to interpret because
of few non-zero parameters, few local extrema or other characteristics. In fact, in
many fields of application the underlying parameter itself is assumed to be sparse,
at least approximately. This is in fact the intrinsic reason why nonparametric
curve estimation is possible at all.

Dimensional Asymptotics. More recently some authors showed how to use
regularization successfully in regression problems with sparse parameters but of
dimension p growing almost exponentially with the number n of observations.
Considerations of this type are increasingly important, showing new trade-offs
between flexibility of models and stability of estimation. One obvious example
is the analysis of gene expression data, where the number of parameters (gene
fragments) is in the range of a few hundred to several thousand, while sample
sizes are rarely larger than a few hundred. Here approaches such as penalized
logistic regression turn out to be very promising.

Informal Sessions. In addition to the regular talks (see the abstracts below),
we organized two informal evening sessions with the following talks:
Arnold Janssen: Regions of alternatives with high and low power for goodness-of-
fit tests,
Angelika Rohde: Adaptive goodness-of-fit tests based on signed ranks,
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Melanie Birke: Estimating a convex function in nonparametric regression,
Kaspar Rufibach: The log–concave density estimator as a smoother,
Nicolai Bissantz: Nonparametric testing in noisy inverse problems.
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Abstracts

The Hardy-Littlewood-Pólya monotone rearrangement algorithm

Dragi Anevski

(joint work with Anne-Laure Fougéres)

Sorting a set of discrete data points is an elementary operation. The Hardy-
Littlewood-Pólya [6] monotone rearrangement algorithm can be seen as a con-
tinuous version of a sorting procedure for discrete data. Thus let (x1, . . . , xn)
be a vector, or equivalently x be a function defined on the set {1, . . . , n}. Then
the decreasing rearrangement x̂, defined by x̂(i) = x(i) is given by the (gener-
alized) inverse of x̃(s) = #{i : x(i) > s}. If x is an arbitrary function on the
interval [0, 1], one could do the analogue approach but replace counting measure
# with Lebesgue measure λ, so then x̂ is defined as the (generalized) inverse of
z(s) = λ{t ∈ (0, 1) : x(t) > s}. Let TI denote the map which takes a function x
on it’s monotone arrangement x̂ on an interval I.

The monotone rearrangement algorithm has mainly been used as a device in
analysis, see e.g. [7]. It was only recently applied to statistical estimation problems
by Fougerès [4], where the algorithm was introduced for density estimation.

We introduce the following general two-step approach for estimation of a mono-
tone function: Assume that x is a function in some infinite-dimensional function
class X for which one defining property is that the functions are monotone on
an interval I ⊂ R. Assume that xn is an estimate of x that is smooth, such as
e.g. a kernel estimator, but that is not necessarily monotone. We then propose to
use the monotone rearrangement x̂n of xn as an estimate of x, and we derive the
limit properties for this estimator. The applications of this are e.g. to density and
regression function estimate, cf. [2].

A computational advantage of the proposed estimator is its simple use in prac-
tice: Starting with the estimator xn evaluated at equi-spaced grid points τ1, . . . , τn,
the resulting estimator is obtained as the (discrete) sorting of xn(τ1),
. . . , xn(τn). Furthermore under the assumption of process weak limit distribution
results for (a localized version of) the stochastic part of xn and that the deter-
ministic part of xn is asymptotically differentiable at a fixed point t0, with strictly
negative derivative, it is possible to obtain point wise limit distribution results for
the final estimate x̂n(t0). The estimator is consistent if the preliminary estimator
is.

Possible applications of the general results are to monotone density and re-
gression function estimation, although not limited to these cases. These are the
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problems of estimating f and m respectively in

(i) t1, . . . , tn stationary observations with marginal

decreasing density f on R+,

(ii) (ti, yi) observations from yi = m(ti) + ǫi,

ti = i/n, i = 1, . . . , n,m decreasing on [0, 1],

{ǫi} stationary sequence with mean zero.

Standard approaches in these two problems have been isotonic regression for the re-
gression problem, first studied by Brunk [3], and (nonparametric) Maximum Likeli-
hood estimation for the density estimation problem, first introduced by Grenander
[5]. Lately Anevski and Hössjer [1] gave a unified approch generalizing the results
by Brunk and Grenander and others.

Using kernel estimators, denoted as xn, as preliminary estimators of f and m
one can apply the monotone rearrangement map on xn to obtain a monotone
function.

The general limit distribution result is obtained as follows: Assume that {xn}n≥1

is is a sequence of continuous stochastic processes and decompose

xn(t) = xb,n(t) + vn(t),(1)

with vn the stochastic and xb,n the deterministic part of xn. Given a sequence
dn ↓ 0 and a point t0 (in the interior of the support of x) define the rescaled
determinstic and stochastic parts respectively as

ṽn(s; t0) = d−1
n {vn(t0 + sdn) − vn(t0)},(2)

gn(s) = d−1
n {xb,n(t0 + sdn) − xb,n(t0)}.(3)

The next two assumptions are the main tools to obtain limit distribution re-
sults. The first is a restriction on the process that is typically satisfied by a
large class of processes, such as empirical processes and partial sum processes and
smoothed versions of these, and states that the rescaled process converges weakly
to a nontrivial limit process. The second is a set of properties that the mono-
tone rearrangement map satisfies, and basically states invariant properties of the
map under addition and multiplication of constants and monotonicity. This is
also crucial for obtaining consistency of the resulting estimator and implies that
consistency of xn necessarily gives consistency for T (xn).

(Rescaling for the preliminary estimator) Assume that there exists a stochastic

process ṽ(·; t0) 6= 0 such that ṽn(s; t0)
L→ ṽ(s; t0) on C(−∞,∞) as n → ∞, and

that the functions {xb,n}n≥1 are monotone such that sup|s|≤c |gn(s) − As| → 0,
and for each c > 0 and for some constant A < 0, as n→ ∞.
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(Properties of the monotone rearrangement map T ) The monotone rearrange-
ment map TI satisfies the following:

(i) TI(f + c) = TI(f) + c, if c is a constant,

(ii) TI(cf) = cTI(f), if c > 0 is a constant,

(iii) f ≤ g ⇒ TI(f) ≤ TI(g),

(iv) Let fc(t) = f(ct). Then TI(fc)(u) = TI·c(f)(u/c),

(v) Let fc(t) = f(t+ c). Then TI(fc) = TI+c(f),

proved by Anevski and Fougeres [2]. Under these assumptions it is possible to
derive the limit distribution result

d−1
n [TJ(xn)(t0) − xn(t0)]

L→ T [As+ ṽ(s; t0)](0),(4)

as n → ∞, cf. [2]. It is possible to derive the result under general dependence
assumptions, demanding essentially stationarity for the underlying random parts
{ǫi} and {ti} respectively.

The properties satisfied by T are similar to properties satisfied by the slope of
greatest convex minorant map, used in monotone regression and density estima-
tion, cf. [1]. This possibly suggests a general tool for obtaining limit distributions
for non-regular problems, analogous to the assumption of Hadamard differentia-
bility of the functional for regular problems: namely assuming that the map T
satisfies the above conditions. As a matter of fact, any map T possessing the
above properties will give a limit distribution result analogous to (4), under the
assumptions (2) and (3) on the rescaled preliminary estimator, and the resulting
estimator T (xn) will be consistent if xn is consistent.

An interesting future problem is to find other such maps, and to study simi-
lar maps for other estimation problems, such as e.g. estimation under convexity
assumptions.
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Regularized Mean Estimators in the Multivariate Linear Model

Rudolf Beran

The least squares estimator for the mean response matrix in a multivariate linear
model is known to perform poorly, in risk and in practice, when the rank of the
design matrix equals or nearly equals the number of observed responses. A better
regularized estimator of the multivariate means is constructed as follows:
(a) Express the least squares estimator as the sum of its orthogonal projections
into subspaces determined by pertinent nested submodels of the multivariate linear
model.
(b) Right multiply each summand by any symmetric matrix with eigenvalues in
[0, 1] to generate a class of affine shrinkage candidate estimators. These candidate
estimators can be expressed as the closure of a set of affinely penalized least squares
estimators.
(c) Find, in closed form, the candidate estimator that minimizes estimated qua-
dratic risk.

The risk of this adaptive regularized estimator converges asymptotically to that
of the candidate estimator with smallest quadratic risk. In the asymptotic theory,
the rank of the design matrix tends to infinity while the number of observations
equals or exceeds this rank. Examples of the adaptive regularized estimator include
multivariate discrete spline estimators, multivariate submodel selection estimators,
regularized MANOVA estimators, and a positive-part Efron-Morris estimator.

Iterated Regularization: Boosting and Twin Boosting for
High-Dimensional Data

Peter Bühlmann

We present a statistical perspective on boosting. Special emphasis is given to
estimating potentially complex parametric or nonparametric models, including
generalized linear and additive models as well as regression models for survival
analysis (cf. [1]).

The practical aspects of boosting procedures for fitting statistical models are
illustrated by means of the open-source software package R:mboost ([3]).

Furthermore, we propose Twin Boosting ([2]) which has much better feature
selection behavior than boosting. In addition, for cases with a few important ef-
fective and many noise features, Twin Boosting also substantially improves the
predictive accuracy of boosting. Twin Boosting is as general and generic as boost-
ing. It can be used with general weak learners and in a wide variety of situations,
including generalized regression, classification or survival modeling.
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Adaptive Convex Regression

Tony Cai and Mark Low

Consider the regression model

yi = f(xi) + σzi, i = 0, 1, 2, ..., n

where xi = i/n and zi
iid∼ N(0, 1) and the problem of estimating and providing

confidence intervals for f(x∗) where x∗ = i∗/n is a fixed point in the interval (0, 1).
In this talk we consider the case where the regression function f is assumed to be
convex.

For each j we introduce a linear estimator

δj =

2j−1∑

k=−2j−1

wj,k(yi∗−k + yi∗+k)

where wj,k are all non negative and sum to 1.
An oracle “bandwidth”

joracle = argmin
j

Ef (δj − f(x∗))
2

is defined and related to the oracle risk

Roracle(f) = Ef (δjoracle
− f(x∗))

2.

These provide a natural goal for the performance of a data driven selection pro-
cedure. For 1 ≤ j ≤ J let

δ̄j = 2−j
2j−1∑

k=1

(yi∗−k + yi∗+k)

and set

Tj = δ̄j − δ̄j−1.

These Tj can be used as tests to empirically choose the “best” j since Tj gives an
estimate of the absolute bias of δ̄j+1. The selection rule is given as

ĵ = argmin
1≤j≤J

{
T 2

j + σ22−j
}
.

The estimator of f(x∗) is then defined as

f̂(x∗) = δĵ .

and a (1 − α)-level confidence interval for f(x∗) is given by

CIα = [δĵ − c1zα/2σ2−ĵ/2, δĵ + c2zα/2σ2−ĵ/2].

The performance of these procedures are discussed in terms of two oracle
bounds, a linear oracle bound and a two-function oracle bound. For the linear
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oracle bound consider the class of all symmetric, nonnegative linear estimators

with weights adding to 1, f̂L =
∑
ciyi where ci ≥ 0,

∑
ci = 1, ci∗+j = ci∗−j . The

linear oracle bound is then given by

Rn(f) = inf
f̂L

E(f̂L − f(x∗))
2.

The two-function oracle bound is built from the true unknown convex function,
say f0 and a single alternative and is given by

R∗
n(f0) = sup

f1∈F
inf
f̂

max
i=0,1

Efi
(f̂ − fi(x∗))

2.

We show that

• E(f̂(x∗) − f(x∗))
2 ≤ CRn(f).

• E(f̂(x∗) − f(x∗))
2 ≤ CR∗

n(f).

For confidence intervals, let Ln(f) be that minimum expected length for con-
fidence intervals of f(x∗) which have coverage probability of at least 1 − α over
the collection of convex functions. Then our confidence procedure not only has a
given level of coverage probability but also satisifies EL(CI) ≤ CLn(f) where C
is a small constant.

Asymptotics, shape regularization and local adaptivity

Patrick Laurie Davies

We consider firstly the standard non–parametric regression model

(1) Y (t) = f(t) + σZ(t), t ∈ [0, 1].

Given a sample Y n = {(ti, Y (ti)) : I = 1, . . . , n} of size n the standard measure

of performance for an estimator f̂n based on Y n is the mean integrated squared
error MISE

MISE = E(‖f̂n − f‖2
2)

and its rate of convergence to zero. procedures which attain or almost attain the
optimal rate of convergence are regarded as superior to procedures which do not
have this property. The attainable rate of convergence depends on the smoothness
of f which is taken to be unknown. Some procedures such as wavelets are know to
be able to adapt to the unknown smoothness and hence to automatically converge
faster for smoother functions (Donoho and Johnstone [2]). Other methods such
as the taut string of Davies and Kovac [3] do not have this adaptivity property.
As an example we take the infinitely differentiable function f0(t) = sin(2πt). The
Daubechies least-asymmetric orthonormal compactly supported wavelet with 10
vanishing moments satisfy a Hölder condition of a least 2.9 and hence the rate of
convergence of the MISE is at least n−0.8529. The taut string procedure has a rate
of convergence of at best n−2/3 and simulations show that for sample of size up to
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4 ·106 the wavelets have a superior performance in terms of MISE. We used Nason
[4] to calculate the wavelet reconstruction. If however we put

(2) f1(t) = sin(2πt) + 0.5 exp(−5000(t− 1/2)2)

then the rates of convergence are not altered but for finite sample the roles are
almost reversed with the taut string performing better for sample sizes of between
16 · 104 and 4 · 106. An examination of individual results indicates that the small
bump in (2) effects all those wavelet coefficients for which the wavelet contains
the bump which in turn effects the reconstruction away from the bump. This is
not the case for the taut string where the effect of the bump on the reconstruction
is essentially limited to the bump itself. A possible explanation is that the taut
string is a form of shape regularization. To analyse the shape regularization we
define a universal, honest and non-asymptotic region for f based on a sample Y n

as follows. We put

w(Y n, g, I) =
1√
|I|
∑

ti∈I

(Y (ti) − g(ti))

and

A(Y n, σn, τn) = {g : max
I⊂[0, 1]

|w(Y n, g, I)| ≤ σn

√
τn logn }

where

σn =
1.4826√

2
median (|Y (t2) − Y (t1)|, . . . , |Y (tn) − Y (tn−1)|).

and it can be shown that for an appropriate value of τn which depends only on n
and α the region An is a universal, honest and non-asymptotic region for f with
coverage probability of at least α. If we now regularize in An by minimizing the
number of local extremes then it can be shown that the local rate of convergence
of resulting estimator to f at the point t depends only on the behaviour of f in a
small neighbourhood of t. Moreover the estimator converges automatically at the
rate (logn/n)−1/2 on intervals where f is constant and at (logn/n)−1/3 intervals
where f is monotone. Corresponding results hold if the number of intervals of
convexity or concavity is minimized. In the case of wavelets the effects disappear
as n tends to infinity and cannot therefore be demonstrated asymptotically if the
function f in (1) is kept fixed. In order to overcome this it is intended to use an
idea of Dahlhaus [1] and to consider a sequence of models

(3) Yn(t) = fn(t) + σZ(t), t ∈ [0, 1].

where the fn become increasingly complex as n increases. First simulations indi-
cate that in this situation shape regularized procedures with a slow rate of conver-

gence can be consistent limn→∞ E(‖f̂n−fn‖2
2) = 0 whilst others with a faster rate

of convergence for fixed f may not be consistent lim infn→∞ E(‖f̂n − fn‖2
2) > 0..
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Simple Monotone Regression

Holger Dette

(joint work with Natalie Neumeyer, Kay Pilz)

Consider the common nonparametric regression model

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n,

where {(Xi, Yi)}n
i=1 is a bivariate sample of i.i.d. observations such that Xi has

a positive two times continuously differentiable density f with compact support,
say [0, 1]. The variance function σ : [0, 1] → R

+ and the regression function m :
[0, 1] → R are assumed to be continuous and two times continuously differentiable,
respectively and the regression function m is strictly increasing. We define for
N ∈ N

m̂−1
I (t) :=

1

Nhd

N∑

i=1

∫ t

−∞

Kd

(m̂( i
N ) − u

hd

)
du

as an estimate of m−1(t), where

m̂(x) =

∑n
i=1Kr

(
Xi−x

hr

)
Yi

∑n
i=1Kr

(
Xi−x

hr

)

is the classical Nadaraya-Watson estimate [see Nadaraya (1964) or Watson (1964)],
Kd and Kr denote symmetric kernels with compact support, say [−1, 1], existing
second moment and hd, hr are the corresponding bandwidths converging to 0 with
increasing sample size n. Note that m̂−1

I (t) is strictly increasing and consequently
the same is true for its inverse denoted by m̂I . This statistic is a strictly isotone
and smooth estimate of the regression function m.

Under the certain assumptions of regularity the following results can be proved if
n,N → ∞:
• If limn→∞ hr/hd = ∞, then for all t ∈ (m(0),m(1)) with m′(m−1(t)) > 0,

√
nhr

(
m̂−1

I (t) −m−1(t) + κ2(Kr)h
2
r

(m′′f + 2m′f ′

fm′

)
(m−1(t))

)
D⇒ N (0, g̃2(t)),

where κ2(Kr) =
∫
u2Kr(u)du/2 and the asymptotic variance is given by

g̃2(t) =
σ2(m−1(t))

{m′(m−1(t))}2f(m−1(t))

∫
K2

r (u)du.
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• If limn→∞ hr/hd = ∞, then for every t ∈ (0, 1) with m′(t) > 0,

√
nhr

(
m̂I(t) −m(t) − κ2(Kr)h

2
r

(m′′f + 2m′f ′

f

)
(t)
)

D⇒ N (0, s̃2(t)),

where the asymptotic variance is given by

s̃2(t) =
σ2(t)

f(t)

∫
K2

r (u)du.
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An Empirical Comparison of Nonparametric Regression Methods

Ursula Gather

(joint work with P. Laurie Davies, Henrike Weinert)

Nonparametric regression can be considered as a problem of model choice. We
present the results of a simulation study in which several nonparametric regression
techniques are compared with respect to their behaviour on different test beds.

Consider paired data Yn = {(ti, y(ti))}n
i=1 where the design points are ordered

0 ≤ t1 < · · · < tn ≤ 1 but not necessarily equidistant. The problem is to use
the data to derive a function fn which can be regarded as an adequate denoised
representation of the data. The model we assume for the data is

(1) Y (ti) = f(ti) + σǫ(ti), i = 1, . . . , n,

which represents a signal f corrupted by noise ǫ which we take to be standard
Gaussian white noise. In the context of nonparametric regression the problem
of model choice becomes: estimate f by a function f∗

n ∈ F that minimizes an
expected distance or risk:

(2) E [d (f, f∗
n)] = inf

fn∈F
E [d (f, fn)] ,

where F is some specified class of functions and d(·, ·) is an appropriate loss func-
tion. In addition some model selection rules require the optimization in (2) to
be conducted under constraints, whereby some measure of the complexity of a
model is included in the term to be minimized. We review the following meth-
ods for signal approximation: wavelet regression (WH for hard and WS for soft
thresholding, Donoho and Johnstone, 1994), the unbalanced haar method (UH,
Fryzlewicz, 2006), minimum description length denoising (MDL, Rissanen, 2000),
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a kernel plug-in estimator (PL, Herrmann, 1997) and adaptive weights smoothing
(AWS, Polzehl and Spokoiny, 2000, 2003).

Another approach to nonparametric regression is based on the concept of data
approximation described by Davies (1995, 2003). Although the concept makes use
of properties of the model it does not operate solely within it but poses the question
as to whether the model can be regarded as an adequate approximation to the data.
Risk minimization such as (2) is not involved nor does it make assumptions about
the existence of a true underlying function f. The model with parameters (fn, σn)
is regarded as an adequate approximation if typical data generated under the
model look like the observed data Yn. Within the set of parameter values (fn, σn)
which give an adequate approximation we then select an fn which minimizes one
or more measures of complexity. The “taut-string” (TS and TV) nonparametric
regression method of Davies and Kovac (2001) is an example of this idea. The
measure of complexity is the number of peaks. The definition of approximation is
based on the residuals.

The test beds we use are those introduced in Donoho and Johnstone (1994) and
which are known as Blocks, Bumps, Heavisine and Doppler. We also include a
constant signal as well as a heavily oscillating sine-function which terminates with
a constant.

The loss functions we consider are the empirical versions d2(f, g) and d∞(f, g)
of the L2– and L∞–norms (see Donoho and Johnstone, 1994). For any given
test bed with function f and for any given procedure resulting in some fn the
measures of performance are the average values of d2(f, fn) and d∞(f, fn) over
the simulations.

We also introduce a new loss which measures how well the extremes (e.g., peaks
and troughs) of an estimate fn match those of the test signal f. There are two
possible errors. The reconstruction fn can fail to have a local extreme of the
correct type at a point where a target signal f exhibits one. The second type of
error is that fn exhibits a local extreme at a point where the test bed function
does not have one. We propose a peak identification loss (PID):

PID(f, fn) = sgn(nest − nextr) ((nextr − nid) + (nest − nid))

= sgn(nest − nextr) (nextr + nest − 2nid) ,(3)

where the counts (nextr − nid) and (nest − nid) measure the extent of the two
errors described above, since nextr denotes the number of local extremes of the
signal function f , nest the number of local extremes of a reconstruction fn of f ,
and nid the number of local extremes of f that are correctly identified by fn. We
use sgn(nest − nextr) so that it is possible to see if too many (positive sign) or too
few (negative sign) local extremes are identified.

The count nid is the number of correctly identified local extremes by a recon-
struction fn.

We summarize the results of the simulation studies as follows:
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Figure 1. Average rank of the eight methods.

• With the exception of TS and TV the performance with respect to the
peak identification deteriorates as the sample size increases.

• The MDL method often produces too many local extremes.
• The reconstructions produced by kernel and wavelet methods (WH, WS,

AWS and PL) often fails to reproduce the magnitudes of the peaks for the
Bumps function.

• As the Blocks function is piecewise constant all the methods apart from
UH, TS and TV perform poorly as they are designed to give smooth
reconstructions. UH performs very well on the Blocks function.

• There are two types of behaviour for the sine function. Either the signal
is not recognized at all or the reconstruction is reasonable.

• The MDL method performs extremely badly on the white noise test bed.
• Overall TS performs the best. This can also be seen in Figure 1: TS has

the smallest average rank for all performance measures.
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Convex Hulls of Samples in R
d

Piet Groeneboom

In [4] a central limit theorem for the number of vertices Nn of the convex hull of
a uniform sample from the interior of convex polygon was derived. To be more
precise, it was shown that {Nn − 2

3r logn}/{ 10
27r logn}1/2 converges in law to a

standard normal distribution, if r is the number of vertices of the convex polygon
from which the sample is taken. This paper also gives a central limit theorem for
uniform samples in the interior of a circle (which can be extended to a central limit
theorem for uniform samples from convex figures with a smooth boundary), where
both the asymptotic expectation and the variance of the number of vertices are of
order n1/3 instead of order logn. Somewhat remarkably, these different rates can
be conjectured on the basis of results on the concave majorant of Brownian motion
without drift and with (negative) parabolic drift, given in [3] and [5], respectively.

In the unpublished preprint [6] a central limit result for the joint distribution
of Nn and An is given, where An is the area of the convex hull, using a coupling
of the sample process near the border of the polygon with a Poisson point process
as in [4], and representing the remaining area in the Poisson approximation as a
union of a doubly infinite sequence of independent standard exponential random
variables.

We derive this representation from the representation in [4] and also prove
the central limit result of [6], using this representation. The relation between
the variances of the asymptotic normal distributions of number of vertices and
the area, established in [6] corresponds to a relation between the actual sample
variances of Nn and An in [2]. Moreover, in [1] an exact formula for the number of
vertices of the convex hull of a uniform sample from a triangle is announced, which
has as corollary an asymptotic formula for the variance of Nn, corresponding to
the scaling in the central limit theorem of [4]. I will briefly discuss the relation of
these results, announced in [1], with the results in [4] and [6].

If time permits, I will also discuss the generalization of these results to convex
hulls of samples of points, generated by probability distributions on R

d, d > 2.
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Total Variation Regularization for Bivariate Density Estimation

Roger Koenker

(joint work with Ivan Mizera)

L1 penalties have proven to be an attractive regularization device for non-paramet-
ric regression, image reconstruction, and model selection. For function estimation,
L1 penalties, interpreted as roughness of the candidate function measured by their
total variation, are known to be capable of capturing sudden changes in the target
function while still maintaining a general smoothing objective. We explore the
use of penalties based on total variation of the estimated density, its square root,
and its logarithm – and their derivatives – in the context of univariate and bivari-
ate density estimation, and compare the results to some other density estimation
methods including L2 penalized likelihood methods. Connections to maximum en-
tropy and taut string methods can be established via conjugate duality methods.

Our objective is to develop a unified approach to total variation penalized
density estimation offering methods that are: capable of identifying qualitative
features like sharp peaks, extendible to higher dimensions, and computationally
tractable. In bivariate settings we focus on discretizations in which log densities
are represented by piecewise linear functions on Delone triangulations, where to-
tal variation of candidate functions is easily evaluated by summing gradient gaps
along edges of the triangulation. Modern interior point methods for solving con-
vex optimization problems play a critical role in achieving the final objective, as
do piecewise linear finite element methods that facilitate the use of sparse linear
algebra.
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Curves and Modality

Arne Kovac

Given noisy bivariate observations (xi, yi), i = 1, . . . , n at n different time points
t1, . . . , tn we consider the problem of specifying a smooth curve f = (fX , fY ) such
that f approximates the data and is simple in the sense that the number of local
extreme values in the curvature function is as small as possible. In Figure 1 the
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top left panel shows a spiral with added bivariate Gaussian noise and the right
panel a reconstruction obtained from a kernel estimator. The curve is smooth,
but does not approximate the data very well as can be seen in the bottom panel
where the residuals in x- and y-direction are plotted.

We adopt a bivariate version of the multiresolution criterion by Davies and
Kovac (2001) and require the sums of the residuals in x- and y-direction over
stretches of different sizes and locations all to be smaller than what would be
expected from white noise. More specifically we require an approximation to
satisfy simultaneously

∣∣∣∣∣
∑

i∈I

(yi − fy
i )

∣∣∣∣∣ < wI · σ,
∣∣∣∣∣
∑

i∈I

(xi − fx
i )

∣∣∣∣∣ < wI · σ

with wI =
√
|I| · 2 log(2n) for all intervals I of some family I of subintervals of

{1, . . . , n}.
One choice for I is to take all possible subintervals

I1 = { {j, j + 1, . . . , k} for all 1 ≤ j ≤ k ≤ n}.

Figure 1. Noisy spiral and kernel estimator. Top left: Origi-
nal spiral, Top right: Kernel estimator, Bottom left and right:
Residuals in x- and y-direction
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Figure 2. Noisy spiral and two approximations that just sat-
isfy the multiresolution criterion. Left: Kernel estimator, Right:
Total variation penalty

Computational complexity can be reduced by considering a smaller collection like
all intervals with dyadic end points

I2 = { {2jk + 1, . . . , 2j(k + 1)} for all 0 ≤ j ≤ ⌊log2(n)⌋, k = 0, 1, . . . , ⌈ n
2j

⌉}.

This collection has been used for the examples below. The multiresolution criterion
requires the true value of σ. This may be estimated from the data by putting

σ =
1.4826√

2
median (|y2 − y1|, |x2 − x1|, . . . , |xn − xn−1|)

(Davies and Kovac, 2001; Donoho et al, 1995)
We aim to find a curve f that satisfies this multiresolution criterion and is

at the same time as simple as possible. Figure 2 shows in its left panel another
approximation from an kernel estimator, but this time choosing the largest band-
width such that the kernel estimate satisfies the multiresolution criterion above.
Although this estimate approximates the data much better it contains a large
number of spurious local extreme values.

In the univariate setting of non-parametric regression regularisation techniques
based on total variation like the taut string method (Mammen and van de Geer,
1997; Davies and Kovac, 2001) and its generalisations (Dümbgen and Kovac, 2005)
or quantile regression using total variation penalties (Koenker et al, 1994) have
been shown to produce simple estimates.

We consider a two-dimensional total variation penalty and consider minimising
the functional

T (f) =

n∑

i=1

(xi − fX
i )2 +

n∑

i=1

(yi − fY
i )2 +

n−1∑

i=1

λi

√
(fX

i+1 − fX
i )2 + (fY

i+1 − fY
i )2
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Figure 3. Circular noisy versions of Donoho and Johnstone’s
Doppler and Bumps signals and approximations using total vari-
ation penalties and the multiresolution criterion.

The smooth taut string functional by Kovac (2006) can be regarded as a special
case of this functional in one dimension.

In order to obtain approximations that are as smooth and simple as possible
we start with a large global penalty λ1 = · · · = λn−1 and successively reduce
λ on intervals where the multiresolution criterion is not yet satisfied. This local
squeezing technique has been described by Davies and Kovac (2001) and Dümbgen
and Kovac (2005) in more detail. The application of this technique to the spiral
data can be seen in the right panel of Figure 2. The approximation is much
smoother than the kernel estimate.

Finally, Figure 3 shows approximations obtained from circular versions of the
well known Doppler and Blocks functions by Donoho and Johnstone (1994). These
were generated as xj = cos(2πj/n)rj and yj = sin(2πj/n)rj where rj = f(j/n) −
mini(f(i/n), i = 1, . . . , n) + 1 and where f was successively the Doppler and the
Blocks signal. The bivariate total variation penalties generate sharp discontinuities
for the Blocks signal while the functions look smooth and simple elsewhere and
approximate the data very well.
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Limiting Distribution of the MLE for Current Status Data with
Competing Risks

Marloes H. Maathuis

(joint work with Piet Groeneboom, Jon A. Wellner)

We study current status data with competing risks. Such data arise naturally
in cross-sectional studies with several failure causes. Moreover, generalizations of
these data arise in HIV vaccine trials (see [3]). The general framework is as follows.
We analyze a system that can fail from K competing risks, where K ∈ N is fixed.
The random variables of interest are (X,Y ), where X ∈ R is the failure time of
the system, and Y ∈ {1, . . . ,K} is the corresponding failure cause. We cannot
observe (X,Y ) directly. Rather, we observe the ‘current status’ of the system at
a single random time T ∈ R, where T is independent of (X,Y ). This means that
at time T , we observe whether or not failure occurred, and if and only if failure
occurred, we also observe the failure cause Y .

We consider nonparametric estimation of the sub-probability distribution func-
tions F0k(s) = P (X ≤ s, Y = k), k = 1, . . . ,K. The sub-distribution functions
are related to each other, since their sum is the overall failure time distribution,

i.e.,
∑K

k=1 F0k(s) = P (X ≤ s). Thus, we need to estimate a system of functions.
This problem, or close variants thereof, has been recently studied by [3], [4] and

[5]. These papers introduce various nonparametric estimators, provide algorithms
to compute them, and show simulation studies that compare them. However, until
now, very little was known about the large sample properties of the estimators.

We have started to fill this gap by developing the local asymptotic theory for
two estimators: the nonparametric maximum likelihood estimator (MLE) and the
‘naive estimator’ of [5]. We study the MLE because it is a natural estimator that
often exhibits good behavior. The naive estimator is a simpler estimator that was
suggested in the literature, and we consider it for comparison.

In [1] we prove that both the MLE and the naive estimator are consistent
and converge globally and locally at rate n1/3. We also show that the local rate
of convergence is optimal in a minimax sense. The proof of the local rate of
convergence of the MLE uses new methods, and relies on a rate result for the sum
of the MLEs of the sub-distribution functions which holds uniformly on a fixed
neighborhood of a point.

In [2] we use these rate of convergence results to derive the local limiting dis-
tributions of the estimators. The limiting distribution of the naive estimator is
given by the slopes of the convex minorants of K correlated Brownian motion
processes with parabolic drifts. The limiting distribution of the MLE involves a
new self-induced process. We prove that this process exists and is almost surely
unique. Finally, we present a simulation study showing that the MLE is superior
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to the naive estimator in terms of mean squared error, both for small sample sizes
and asymptotically.
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Additive Isotone Regression

Enno Mammen

(joint work with Kyusang Yu)

This talk is about optimal estimation of the additive components of a nonpara-
metric, additive isotone regression model. We discuss a backfitting estimator that
is based on iterative application of the pool adjacent violator algorithm to the
additive components of the model. Our main result states the following oracle
property. Asymptotically up to first order, each additive component is estimated
as well as it would be (by a least squares estimator) if the other components were
known. This goes beyond the classical finding that the estimator achieves the same
rate of convergence, independently of the number of additive components. The
result states that the asymptotic distribution of the estimator does not depend on
the number of components.

We have two motivations for considering this model. First of all we think that
this is a useful model for some applications. But our main motivation comes from
statistical theory. We think that the study of nonparametric models with several
nonparametric components is not fully understood. The oracle property that is
stated in this paper for additive isotone models has been shown for smoothing
estimators in some other nonparametric models. This property is expected to
hold if the estimation of the different nonparametric components is based on lo-
cal smoothing where the localization takes place in different scales. An example
are additive models of smooth functions where each localization takes place with
respect to another covariate. In Mammen, Linton and Nielsen (1999) the oracle
property has been verified for the local linear smooth backfitting estimator. As lo-
cal linear estimators also isotonic least squares is a local smoother. The estimator
is a local average of the response variable but in contrast to local linear estimators
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the local neighborhood is chosen by the data. This data adaptive choice is auto-
matically done by the least squares minimization. This understanding of isotonic
least squares as a local smoother was our basic motivation to conjecture that for
isotonic least squares the oracle property should hold as for local linear smooth
backfitting.

The study of the oracle property goes beyond the classical analysis of rates of
convergence. Rates of convergence of nonparametric estimators depend on the
entropy of the nonparametric function class. If several nonparametric functions
enter into the model the entropy is the sum of the entropies of the classes of the
components. This implies that the resulting rate coincides with the rate of a model
that only contains one nonparametric component. Thus, rate optimality can be
shown for a large class of models with several nonparametric components by use
of empirical process theory. Rate optimality for additive models was first shown
in Stone (1985).

It may be conjectured that the oracle property holds for a much larger class
of models. In Horowitz, Klemela and Mammen (2006) a general approach was
introduced to applying one-dimensional nonparametric smoothers to an additive
model. The procedure consists of two steps. In the first step, a fit to the addi-
tive model is constructed using the projection approach of Mammen, Linton and
Nielsen (1999). This preliminary estimator uses an undersmoothing bandwidth,
so its bias terms are of asymptotically negligible higher order. In a second step,
a one-dimensional smoother operates on the fitted values of the preliminary esti-
mator. For the resulting estimator the oracle property was shown: This two step
estimator is asymptotically equivalent to the estimator obtained by applying the
one-dimensional smoother to a nonparametric regression model that only contains
one component. It was conjectured that this result also holds in more general
models where several nonparametric components enter into the model. Basically,
a proof could be based on this two step procedures. The conjecture has been ver-
ified in Horowitz and Mammen (2004, 2006) for generalized additive models with
known and with unknown link function.

For more details on additive isotone regression see also Mammen and Yu (2006).
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Lasso-Type Recovery of Sparse Representations for High-Dimensional
Data

Nicolai Meinshausen

The Lasso was introduced by Tibshirani (1996) and has since been proven to be
very popular and well studied (Knight 2000, Zhao 2005, Zou 2005, Wright 2006).
Some reasons for the popularity might be that the entire regularization path of the
Lasso can be computed efficiently (Osborne 2000, Efron et al. 2004), is able to han-
dle more predictor variables than samples, and selects sparse interpretable models.
Several extensions and variations have been proposed (Yuan 2005, Zhao 2004, Zou
2005, Candes 2005). The LARS algorithm of Efron et al. (2004) produces the exact
solutions of the Lasso for all penalty parameters in a computationally very effi-
cient manner. See also the original homotopy algorithm of Osborne (2000). These
solutions have undoubtedly contributed much to the popularity of the Lasso.

The Lasso estimator, as introduced by Tibshirani (1996), is given by

(1) β̂λ = arg min
β

‖Y −Xβ‖2
ℓ2 + λ‖β‖ℓ1 ,

where X = (X1, . . . , Xp) is the n × p matrix whose columns consist of the n-
dimensional predictor variables Xk, k = 1, . . . , p. The vector Y contains the
n-dimensional set of real-valued observations of the response variable.

The distribution of Lasso-type estimators has been studied in Knight (2000).
Variable selection and prediction properties of the Lasso have been studied exten-
sively for high dimensional data with p ≫ n, a frequently encountered challenge
in modern statistical applications.

Most of the work (e.g. Greenshtein 2003, van de Geer 2006) has focused on the
behavior of prediction loss, even though van de Geer (2006) obtains also bounds
on the ℓ1-norm distance between the true coefficient vector. We focus exclusively
on the properties of the estimate of the coefficient vector under squared error loss
and try to understand the behavior of the estimate under a violated irrepresentable
condition. The aim is to see whether meaningful models can be build. Some
examples of other recent work in this direction are Meinshausen (2004), Donoho
(2006), Zhao (2005) and Candes (2005).

An estimator is sign consistent if and only if

P{sign(β) = sign(β̂)} → 1 n→ ∞.

It was recently discovered (Zhao 2005, Zou 2005, Meinshausen 2004) that the
Lasso estimator can only be sign consistent if the design matrix satisfies the so-
called irrepresentable condition. The latter condition can easily be violated in
applications due to the presence of highly correlated variables.

We examine the behavior of the Lasso estimators if the irrepresentable condition
is violated. Our main result will show ℓ2-consistency of the Lasso, even if the
irrepresentable condition is not fulfilled. An estimator is said to be ℓ2-consistent
if

‖β̂ − β‖ℓ2 → 0 n→ ∞.
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Convergence rates will also be derived. An ℓ2-consistent estimator is attractive, as
important variables are chosen with high probability and falsely chosen variables
have very small coefficients.

Even though the Lasso cannot recover the correct sparsity pattern, we show
that the estimator is still consistent in the ℓ2-norm sense for fixed design under
the conditions on (a) the number s of non-zero components of the vector β, (b) the
minimal eigenvalues of covariance matrices that are induced by selecting of order
s variables. The results are extended to vectors β in weak ℓq-balls with 0 < q < 1.

We also show that the Lasso estimator can be made sign consistent, even under a
violated irrepresentable condition, by two-stage procedures, by thresholding small
coefficients. Preferably, selected variables are first re-estimated with less bias by
relaxing the penalty parameter. These results support procedures like Lars-OLS
hybrid (Efron et al., 2004), Gauss-Dantzig selector (Candes 2005), or Relaxed
Lasso (Meinshausen 2006).

To summarize, it is known the Lasso is bound to select some noise variables
under a violated irrepresentable condition. The obtained results are encouraging
as they show that the Lasso selects at least all important variables with high
probability.
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Inference using Shape-Restricted Regression Splines

Mary Meyer

Nonparametric function estimation methods are appealing because they require
only minimal, qualitative assumptions. Often the only theoretically valid assump-
tions can be stated in terms of smoothness or shape restrictions; for example, it
might be known that the mean response is a decreasing and convex function of
the predictor, or the trend function is increasing and smooth, or the density is
unimodal, etc. In practice, however, parametric methods are typically preferred:
the usual software packages provide easy estimation and inference methods, and
parameters are readily interpretable. Therefore, an important class of inference
methods involves the test of a desired parametric form against the valid, qualitative
assumptions.

Scatterplot smoothers are among the popular nonparametric methods. One of
the difficulties inherent in inference with these methods stems from sensitivity of
the fits to user-defined parameters such as bandwidth or smoothing parameter.
These may be somewhat arbitrary, and it is undesirable for the inference conclu-
sions to vary with these choices. On the other hand, ordinary shape-restricted
methods such as isotonic or convex regression do not require any such subjec-
tive input, but inference methods are cumbersome due to the large dimensions of
the models, and the fits are often unsatisfying because they are not smooth, and
“spike” at the endpoints.

Regression splines are a popular nonparametric function estimation method
because they are smooth, flexible, parsimonious, and are very easy to compute.
The unrestricted versions are known to be sensitive to knot number and placement,
but if assumptions such as monotonicity or convexity may also be imposed on
the regression function, the shape-restricted regression splines are robust to knot
choices. Further, shape-restricted regression splines are more computationally
efficient than the ordinary shape-restricted regression estimators and do not have
the spiking problem at the end points. The relatively small degrees of freedom
and the insensitivity of the fits to the knot choices allow for practical inference
methods, even with small sample sizes.

Tests of constant versus increasing and linear versus convex regression function
have been established using ordinary shape-restricted regression for the alternative
fit. The distribution of the test statistic under the null hypothesis is known to be
that of a mixture of beta random variables. These tests, when implemented with
shape-restricted regression splines, have higher power than the standard version.
The derivation of the test statistic is similar, and again the distribution under the
null hypothesis is a mixture of beta distributions, but the number of distributions
in the mix is substantially smaller.

The extension of these tests to the more general test where the null hypothesis
is that the regression function has a specific parametric form, versus a qualitative
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alternative involving shape, is possible using the regression splines for the alter-
native fit. A test for linear versus increasing regression function is presented, and
some nice properties demonstrated.

Primal and Dual Formulations for the Estimation of a Probability
Density via Regularization: Divergences, Entropies, and Likelihoods

Ivan Mizera

(joint work with Roger Koenker)

General schemes relevant for the estimation of a probability density via regulariza-
tion are investigated—the primal and dual formulations of the discretized version.
The primal formulation,

(P) −wTEg + J(−Dg) +
∑

j

sjψ(hj) = min
g

! subject to hj ≥ gj

is motivated by the case when ψ(h) = eh (when we can put g = h, the constraint
is not needed); in this case, it is a discretization of the usual penalized maximum
likelihood scheme

− 1

n

n∑

i=1

log f(xi) + λJ(− log f) +

∫
f = min

f
!

The (strong) dual of (P) is

−
∑

j

sjψ
∗(fj) − J∗(u) = max

f,u
!

subject to Sf = (ETw +DTu) � 0,

(D)

where S = diag(s), and ψ∗, J∗ are conjugates of convex functions ψ and J . The
instances of J and D cover the usual regularization prescriptions using quadratic
and L1 (total variation) penalties, the Lagrange as well as the constrained version,
and also some instances of regularization by shape constraints [5]. For L1 penalties
in particular, (D) becomes

−
∑

j

sjψ
∗(fj) = max

f,u
!

subject to Sf = (ETw +DTu) � 0, ‖u‖∞ ≤ λ,

the formulation that can be interpreted as the maximization of some entropy
function, or, alternatively, minimization of some information divergence over a
sieve given by the constraints [1].

We review special cases that yield various Rényi α-entropies [4] in the dual for-
mulation: the Shannon entropy (the Kullback-Leibler divergence), with ψ(u) = eu

and primal penalizing log f ; the Simpson-Gini entropy (the χ2 divergence), with
ψ(u) = u2/2 and primal penalizing f ; the case corresponding to the minimum
Hellinger distance estimation, with ψ(u) = −1/u and primal penalizing −1/

√
f ;
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and other [3]. Conditions assuring that the dual minimizer is a density are dis-
cussed; finally, the connections of solutions penalizing the total variation of g to
the stretched (taut) string density estimators are presented [2].
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Excess Mass and Related Statistical Methods

Wolfgang Polonik

The excess mass approach has been introduced independently by Hartigan (1987)
and Müller and Sawitzki (1991). Hartigan used the approach to construct a non-
parametric estimate of a convex density level set. Müller and Sawitzki introduced
the excess mass functional, a measure of concentration of a distribution, and con-
structed tests for modality. First extension have been proposed in Nolan (1991)
and Polonik (1995).

Connections of the excess mass approach to a surprising number of other sta-
tistical methods exist. This includes nonparametric maximum likelihood density
estimation under order restrictions (Polonik, 1998), majorization (Hardy, Little-
wood and Polya, 1929, 1952), the so-called Hartigan’s dip test of unimodality
(Hartigan and Hartigan, 1985), binary classification (Tsybakov, 2004, Steinwart
et al., 2005), and split point estimation in decision trees (Bühlmann and Yu,
2002, Banerjee and McKeague, 2006). Further connections exist to estimating
minimum volume sets, including the classical ‘shorth’ and the minimum volume
ellipsoid as special cases, and to generalized quantiles (Polonik, 1997). The spirit
underlying the excess mass approach can also be found in PRIM, a bump hunting
algorithm proposed by Friedman and Fisher (1999) and analyzed by Polonik and
Wang (2006), and also in vertical density representation (Troutt, 1991, Troutt,
Pang and Hou, 2004).

The excess mass idea has also been utilized in Priebe and Marchette (2000) for
density estimation, in Fisher and Marron (2001) for mode testing, for statistically
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analyzing a well-known computer vision algorithm, the Hough transform, in Gold-
enshluger and Zeevi (2004), and also in the construction of classification methods
for locally stationary time series (Chandler and Polonik, 2006). Related ideas also
are used in Minotte and Scott (1993) and Minotte (1997), again in the context of
investigating modality.

In this talk the excess mass approach will be reviewed, and some of the indicated
connections will be presented from a certain unified point of view, with the goal
of providing a more comprehensive understanding of the methods involved.
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Multivariate Regression Estimation with Monotonicity Constraints

Regine Scheder

(joint work with Holger Dette)

In a recent paper [1], a smooth monotonizing procedure is proposed for a one-
dimensional nonparametric regression setting. In this talk, I describe two ap-
plications of this procedure in multivariate settings. We address monotonicity
constraints in traditional regression models and in quantile regression models.
The problem of estimating a strictly monotone and smooth regression function
in two or more variables is discussed in a nonparametric regression context. Our
method starts with an unconstrained estimator and uses successively the one-
dimensional isotonization procedure. The procedure calculates the monotonized
inverse of the function. After that an inversion of the function is necessary. To
use the method stepwise for each variable, we show that the monotonizing proce-
dure applied in one variable does not destroy the monotonicity of the regression
function in another variable. There are several advantages of this step-by-step
monotonizing procedure. In each step, a comparison with the original estimator
is possible. The method can be easily adjusted for a given problem, e.g., if the
regression function is assumed to be strictly increasing in one variable and strictly
decreasing in another one. Sometimes, it might be necessary or sufficient to mono-
tonize only one direction. Although the procedure monotonizes one direction per
step, the actual order of monotonizing has no substantial influence. All these fea-
tures turn the customized usage of this procedure into an easily applicable and
comprehensible method. An implementation of this isotonization is provided in
the R package monoProc [5].
The second part of the talk focuses on conditional Quantile Regession estimation.
There are two ways to define conditional quantiles. One method uses the check
function ρα(u) = |u|+ (2α− 1)u to formulate a minimization problem (see [4] for
more details). The other method relies on the fact that the conditional quantile
function is the inverse of the conditional distribution function of Y given x. There
are some problems in this approach. First of all to get the inverse you need to
have an isotone estimate of the conditional distribution function. For the usual
Nadaraya-Watson-Estimator, this is the case as long as a positive kernel function
is used, but this estimate has some asymptotic disadvantages compared to local
linear estimators which are on the other hand not necessarily monotone (see [3]).
A perfect workaround is the above motivated method of monotonization. The
monotonizing procedure for the regression model is a two-stage method in each
step. For the quantile regression model, the first stage is sufficient to get the
monotonized inverse of the estimated distribution function. This is a very ap-
pealing technique, because the asymptotic behavior of local linear estimators can
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be preserved, and it is easy to implement. Another drawback of estimating the
conditional quantile function through the inverse of the distribution function is
the curse of dimensionality which occurs easily when considering many covariates.
A common way to deal with that is to assume an additive model and use mar-
ginal integration. We can show that this estimator of the additive component has
a one-dimensional rate of convergence. We illustrate this approach with a data
example.
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An Introduction to the 3U Method and Its Application to
Measurement Error Problems

Jiayang Sun

(joint work with Xiaofeng Wang and Michael Woodroofe)

Many interesting practical problems can be formulated as studies about data with
measurement errors. For example, density estimation from astronomical data with
additive errors is related to a deconvolution problem; regression estimation with
errors in covariates arises naturally in a general linear model with a repeated mea-
sures design. In this talk, we present our new research in these areas when the
errors are homogeneous or inhomogeneous. Our new density estimator is “sub-
optimal”, stable and easy to compute. In particular, no Fourier transformation
(as it is for most deconvolution estimators) is needed in our computational formu-
lae. The idea is to start from the case when errors are uniformly distributed. It
then proceeds to the case when errors are distributed as a mixture of uniforms,
hence approximating a large class of error distributions (including the normal dis-
tribution), in the spirit of how most random numbers are generated. Based on a
representation of our new density estimator for data with measurement errors, we
demonstrate how a new nonparametric regression estimator for data with errors
in covariates can be established based on a ”density-clone”. We also discuss their
implications to symbolic data analysis. This opens up a new line of research on
deconvolution and errors in covariates problems.
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Sparsity oracle inequalities in high-dimensional regression and density
estimation

Alexander B. Tsybakov

(joint work with F. Bunea, M.H. Wegkamp)

We study regression and density estimation methods based on penalized empir-
ical risk minimization with an ℓ1 penalty. In regression problems, we observe
(X1, Y1), . . . , (Xn, Yn) a sample of independent random pairs distributed as a ran-
dom variable (X,Y ) ∈ X × R, where X is a Borel subset of R

d. We denote the
probability measure of X by µ. The goal is the estimation of the unknown re-
gression function f(X) = E(Y |X). In density estimation problems, we observe
independent random variables X1, . . . , Xn with common probability density f on
R

d and we want to estimate f .
In both cases the estimators that we propose are linear combinations, with

data-dependent weights, of functions fj : X → R in a given dictionary FM =
{f1, . . . , fM}. We show below that our estimators mimic unknown sparse approx-
imations of f within the dictionary FM , if such approximations exist. We will
characterize sparsity in the following way. For any λ = (λ1, . . . , λM ) ∈ R

M , define

fλ(x) =
∑M

j=1 λjfj(x). Let M(λ) =
∑M

j=1 I{λj 6=0} = Card J(λ) denote the num-
ber of non-zero coordinates of λ, where I{·} denotes the indicator function, and
J(λ) = {j ∈ {1, . . . ,M} : λj 6= 0}. The value M(λ) characterizes the sparsity of
the vector λ: the smaller M(λ), the “sparser” λ. We are particularly interested in
the case where M is very large, M ≫ n. We obtain results in the form of sparsity
oracle inequalities, i.e., oracle inequalities involving the “true” small dimension
M(λ) in place of the huge redundant dimension M . The suggested methods and
sparsity oracle inequalities can be applied in the following three scenarios:

(i) sparse parametric models with M ≫ n parameters: in this case f = fλ∗ for
some λ∗ ∈ R

M , and we get that our estimators converge with the L2-rate
O(n−1M(λ∗) logM);

(ii) nonparametric regression and density estimation in classical settings where
{f1, . . . , fM} are the firstM functions of an orthonormal basis: in this case
typically M ≤ n and the obtained oracle inequalities imply near minimax
convergence rates of our procedures on various functional classes;

(iii) aggregation of arbitrary regression or density estimators: in this case
f1, . . . , fM are preliminary estimators of f constructed from a training
sample independent of the current observations, and our results imply
that the suggested procedures lead to near optimal rates of aggregation.

We refer to [1, 2, 3, 4] for a more detailed exposition of our results and discussion
of the implications (i) – (iii). Sparsity oracle inequalities for some settings different
from ours are given in [6, 8], see also [7]. We now define our estimators and present
some selected sparsity oracle inequalities separately for each of the two problems.
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Regression. Our vector of data-dependent weights λ̂ = (λ̂1, . . . , λ̂M ) is ob-
tained via penalized least squares:

λ̂ = argmin
λ∈RM

{
1

n

n∑

i=1

{Yi − fλ(Xi)}2 + pen(λ)

}
,(1)

where the penalty is given by

pen(λ) = rn,M

M∑

j=1

‖fj‖n|λj |

with ‖g‖2
n = n−1

∑n
i=1 g

2(Xi) for any function g : X → R. Here rn,M is a positive

constant. A sensible choice is rn,M = A
√

log M
n , for a suitably large constantA > 0.

The corresponding estimate of f is f̂ =
∑M

j=1 λ̂jfj . Let ‖g‖2 =
∫
g2(x)µ(dx).

We define the oracle set

Λ =
{
λ ∈ R

M : ‖f − fλ‖2 ≤ Cf r
2
n,MM(λ)

}
,

for some positive constant Cf which is allowed to depend on f . If Λ is non-
empty, we say that f has the weak sparsity property relative to the dictionary
FM . Informally, this definition can be related to the intuitive notion of sparsity
if for all the oracle values λ ∈ Λ we have M(λ) ≪ M . Weak sparsity can be
viewed as a milder version of the strong sparsity (or simply sparsity) property
which commonly means that f admits an exact representation f = fλ∗ for some
λ∗ ∈ R

M , with hopefully small M(λ∗). Consider the “correlations”

ρM (i, j) =
< fi, fj >

‖fi‖‖fj‖
, 1 ≤ i 6= j ≤M,

where < ·, · > stands for the scalar product induced by ‖ · ‖, and define the
coherence numbers (cf. [5])

ρ(λ) = max
i∈J(λ)

max
j 6=i

|ρM (i, j)|.

To state the result, we need the following assumptions:

Assumption (A1) ∃ b <∞ such that E{exp(|Y − f(X)|) |X} ≤ b (a.s.).
Assumption (A2) ∃ L <∞ such that max1≤j≤M ‖fj‖∞ ≤ L, ∃ c0 > 0 such that
‖fj‖ ≥ c0 for all 1 ≤ i, j ≤M and ‖f‖∞ = supx |f(x)| <∞.

Fix some L0 <∞ such that E[f2
i (X)f2

j (X)] ≤ L0. Set L(λ) = ‖f − fλ‖∞.
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Theorem 1. Assume that (A1) and (A2) hold. Then, for all λ ∈ Λ such that
45M(λ)ρ(λ) ≤ 1 we have, with probability at least 1 − πn,M (λ),

‖f̂ − f‖2 ≤ Cr2n,MM(λ)

and

|λ̂− λ|1 ≤ Crn,MM(λ),

where C is a constant only depending on c0 and Cf , and

πn,M (λ) ≤ exp

(
−C2

M(λ)

L2(λ)
nr2n,M

)

+10M2 exp

(
−C1n min

{
r2n,M ,

rn,M

L
,

1

L2
,

1

L0M2(λ)
,

1

L2M(λ)

})
,

for some constants C1, C2 depending on c0, Cf and b only.

Density estimation. In this case, we define a vector λ̂ of data-dependent
weights in the form

λ̂ = arg min
λ∈RM

{
− 2

n

n∑

i=1

fλ(Xi) + ‖fλ‖2
Leb +

M∑

j=1

ωj |λj |
}

where

ωj = 4Lj

√
2 log(M/δ)

n
with Lj = ‖fj‖∞,

0 < δ < 1/2 is a small tuning parameter, and ‖g‖2
Leb =

∫
g2(x) dx. We call the

resulting estimate of f the SPADES estimator (SPArse Density EStimator). It is

given is by f♠(x) = fλ̂(x), ∀x ∈ R
d. Set F (λ) = maxj∈J(λ)

‖fj‖∞

‖fj‖Leb
, for all λ ∈ R

M ,

and define ρ(λ) as above, but using ‖ · ‖Leb and the corresponding scalar product
< ·, · >Leb in place of ‖ · ‖ and < ·, · > in the expression for ρM (i, j).

Theorem 2. Assume that Lj <∞ for 1 ≤ j ≤M . Then, with probability at least
1− 2δ, for all n ≥ 1, α > 1 and all λ ∈ R

M that satisfy 32F (λ)ρ(λ)M(λ) ≤ 1, we
have the following oracle inequality:

‖f♠ − f‖2
Leb +

α

2(α− 1)

M∑

j=1

ωj |λ̂j − λj | ≤
α+ 1

α− 1
‖fλ − f‖2

Leb

+
(16α)2

α− 1
F 2(λ)M(λ)

log(M/δ)

n
.

References

[1] F. Bunea, A.B. Tsybakov, and M.H. Wegkamp, Aggregation for Gaussian regression, Ann.
Statist., to appear (2007).

[2] F. Bunea, A.B. Tsybakov, and M.H. Wegkamp, Aggregation and sparsity via ℓ1-penalized
least squares, Proceedings of 19th Annual Conference on Learning Theory, COLT-2006.
Lecture Notes in Artificial Intelligence 4005 (2006), 379–391. Springer-Verlag, Heidelberg.



Qualitative Assumptions and Regularization in High-Dimensional Statistics 2989

[3] F. Bunea, A.B. Tsybakov, and M.H. Wegkamp, Sparsity oracle inequalities for the Lasso,
Preprint (2006).

[4] F. Bunea, A.B. Tsybakov, and M.H. Wegkamp, Sparse density estimation and aggregation
with ℓ1 penalties, Preprint (2006).

[5] D.L. Donoho, M. Elad, and V. Temlyakov, Stable Recovery of Sparse Overcomplete Repre-
sentations in the Presence of Noise, IEEE Trans. Info. Theory 52 (2006), 6–18.

[6] V. Koltchinskii, Sparsity in penalized empirical risk minimization, Preprint (2006).
[7] A.B. Tsybakov, Comments on “Regularization in Statistics”, by P.Bickel and B.Li, Test

15 (2006), 303–310.
[8] S.A. van de Geer, High dimensional generalized linear models and the Lasso, Research report

No.133 (2006), Seminar für Statistik, ETH, Zürich.

A Bound for the Empirical Risk Minimizer

Sara A. van de Geer

Suppose we observe n i.i.d. copies X1, . . . , Xn of a random variable X ∈ X with
distribution P . Let F be a given class of functions f on X. The empirical risk
minimizer is

f̂ := arg min
f∈F

Pnf, Pnf :=
1

n

n∑

i=1

f(Xi).

Let F(0) ⊃ F and define the target

f0 = arg min
f∈F(0)

Pf,

and its best approximation

f∗ = argmin
f∈F

Pf.

The excess risk at f is defined as

E0(f) = P (f − f0).

In this note, we prove a bound for the excess risk E0(f̂). The result is a slightly
modified version of Theorem 2 in Koltchinskii (2006). Namely, we allow that the
target f0 is not in the model class F.

Note that

(1) E0(f̂) = E0(f
∗) + P (f̂ − f∗).

This can be seen as a decomposition into approximation error E0(f
∗) and estima-

tion error P (f̂ − f∗).
The idea is now to find good upper bounds for the right hand side of (1). By

an easy argument, the estimation error can be bounded by

P (f̂ − f∗) ≤ |(Pn − P )(f̂ − f∗)|.
This shows that the empirical process plays an important role. The increments of
empirical process can be studied in terms of the variance of the functions involved.
Since in (1), it is the excess risk which is on the left hand side, we need to bound
variances in terms of excess risk. This we call the margin behavior.
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To handle the empirical process behavior, we apply a concentration inequality
of Bousquet (2002). Let

σ2(f) := Pf2 − (Pf)2,

and let

Fσ := {f ∈ F : σ(f − f0) ≤ σ}, σ > 0.

Consider the maximal increment of the empirical process

Z(σ) := sup
f∈Fσ

|(Pn − P )(f − f0)|, σ > 0.

The empirical process behavior is the behavior of EZ(σ) as function of σ.

Bousquet’s inequality. Suppose ‖f − f0‖∞ ≤ 1 for all f ∈ F. Then

P

(
Z(σ) ≥ EZ(σ) +

√
2t/n

√
σ2 + 2EZ(σ) +

t

3n

)

(1) ≤ e−t ∀ t > 0.

The margin behavior of E0(f) is the behavior of E0(f) for σ(f−f0) small. This
is described by

D(ǫ) = sup{σ(f − f0) : f ∈ F : E0(f) ≤ ǫ}, ǫ > 0.

Define

φ(ǫ) =
√
nEZ(D(ǫ)).

We first present a result for the weighted empirical process (see Massart (2000),
Bartlett, Bousquet and Mendelson (2005)).

Lemma 1. Suppose that, for some 0 < γ < 1, the function φ(ǫ)/ǫγ is non-
increasing in ǫ for ǫ bigger than, or equal to, some lower bound ǫn. Then for all
ǫ ≥ ǫn,

E

(
sup

f∈F, E0(f)>ǫ

√
n|(Pn − P )(f − f0)|

E0(f)

)

≤ Cγ
φ(ǫ)

ǫ
,

where

Cγ :=
γ−γ/(1−γ)

1 − γ
.

The conjugate of a convex increasing function G on [0,∞) with G(0) = 0, is
defined as the function H(v) = supu≥0[uv −G(u)].
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Lemma 2. Suppose ‖f − f0‖∞ ≤ 1 for all f ∈ F. Assume that φ(ǫ)/ǫγ

(0 < γ < 1) as well as D(ǫ)/ǫ, are non-increasing in ǫ ≥ ǫn. Assume furthermore
that

4Cγφ(ǫ) + 2
√

2tD(ǫ) ≤ ψ(ǫ), ǫ ≥ ǫn.

where ψ is a function with convex increasing inverse ψ−1 having conjugate H. The
constant Cγ is from Lemma 1. Let 0 < δ < 1/2 be arbitrary, and define

ǫt,n :=

[
δH(

1

δ
√
n

) +
2t

3nδ

]
∨ ǫn.

Then for all ǫ ≥ 1
1−2δ (ǫt,n + E0(f

∗)), we have

P(E0(f̂) > ǫ) ≤ 2e−t.

Proof. Note first that for E0(f) > ǫ, we have ǫ‖f − f0‖∞/E0(f) ≤ 1 and
ǫσ(f − f0)/E0(f) ≤ D(ǫ). By Bousquet’s inequality, with probability at least
1 − e−t, uniformly in f ∈ F with E0(f) > ǫ,

|(Pn − P )(f − f0)|

≤ E0(f)

ǫ

[
4Cγ

φ(ǫ)√
n

+

√
2t

n
D(ǫ) +

2t

3n

]
.

Moreover

E0(f̂) ≤ |(Pn − P )(f̂ − f0)|
+(Pn − P )(f∗ − f0) + E0(f

∗)

≤ |(Pn − P )(f̂ − f0)| +
√

2t

n
D(ǫ) +

t

3n
+ E0(f

∗),

with probability at least 1 − e−t. Here, we used Bernstein’s inequality, and the

fact that E0(f
∗) ≤ ǫ implies σ(f∗ − f0) ≤ D(ǫ). It follows that if E0(f̂) > ǫ, then

with probability at least 1 − 2e−t,

E0(f̂) <
E0(f̂)

ǫ

[
4Cγ

φ(ǫ)√
n

+ 2

√
2t

n
D(ǫ) +

2t

3n

]

+E0(f
∗) +

t

3n

≤ ψ(E0(f̂))√
n

+
E0(f̂)

ǫ

2t

3n
+ E0(f

∗) +
t

3n

≤ ψ(E0(f̂))√
n

+ δE0(f̂) + E0(f
∗) +

t

3n
,

where we used that ǫ ≥ 2t/(3nδ). Now, we have for all z > 0,

ψ(z)√
n

≤ δz + δH

(
1

δ
√
n

)
.
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So, using the bound 1 ≤ 2/δ, we arrive at

E0(f̂) ≤ 2δE0(f̂) + δH

(
1

δ
√
n

)
+ E0(f

∗) +
2t

3nδ
,

which implies

E0(f̂) ≤ 1

1 − 2δ

(
δH

(
1

δ
√
n

)
+ E0(f

∗) +
2t

3nδ

)
≤ 1

1 − 2δ
ǫn,t < ǫ.

⊔⊓
As an example, suppose that |F| = M <∞. Then for D(ǫ) ≥

√
log(2M)/(2n),

we have

φ(ǫ) ≤ 2D(ǫ)

√
2 log(2M)

n
.

Assume now that D(ǫ)/ǫγ ↓ for some 0 < γ < 1. Let D ≥ D be a concave
increasing function, with inverse D−1 having conjugate H. We can take

ψ(ǫ) = D(ǫ)
(
8Cγ

√
2 log(2M) + 2

√
2t
)

:= D(ǫ)ct.

Thus,

ψ−1(σ) = D−1(σ/ct),

and

H(ǫ) = H(ǫct).

We obtain

ǫt,n = δH

(
8Cγ

√
2 log(2M) + 2

√
2t√

nδ

)
+

2t

3nδ
∨ D−1

(√
log(2M)

2n

)
.

In the special case of quadratic margin behavior, we have D(ǫ) =
√

2ǫ (say), so
that we may take γ = 1/2, Cγ = 4 and H(ǫ) = ǫ2/2. This gives

ǫt,n =
1

δ

(
32
√

log(2M) + 2
√
t√

n

)2

+
2t

3nδ
.
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Regularization by Gaussian process priors

Aad van der Vaart

(joint work with Harry van Zanten)

Gaussian processes have been suggested as prior models for regularizing func-
tions in nonparametric statistical estimation. (E.g. Kimeldorf and Wahba (1970),
Ghosal and Roy (2006), Rasmussen et al. (2006).) For instance, a sample path of
a Gaussian process:

• can be used directly as a prior model for a regression function w0, where
the observations are a sample (x1, Y1), . . . , (xn, Yn) from the regression
model Yi = w0(xi) + ei, with mean zero errors.

• can be used after a monotonic transformation Ψ : R → [0, 1] to the
unit interval in the setting of classification, where we observe a sample
(X1, Y1), . . . , (Xn, Yn) with Yi ∈ {0, 1} and P(Yi = 1|Xi = x) = Ψ◦w0(x).

• can be used for density estimation after exponentiation and renormaliza-
tion, where the observations are a sample X1, . . . , Xn from the density
x 7→ exp(w0(x))

∫
exp(w0(t)) dt.

Considering the unknown function as a sample path of the Gaussian process and
the observations as sampled from the model specified by this realization, we can
construct the conditional distribution of the function given the observations, by
Bayes’ rule. This “posterior distribution” is a random measure on the parameter
set, and can also be studied under the assumption that the observations are sam-
pled from a fixed distribution given by a “true” function w0, without adopting the
Bayesian frame-work. We study whether the posterior distributions contract to
the true parameter w0, and the rate at which this happens, as the informativeness
of the data increases indefinitely.

For contraction to happen it typically suffices that the true function is in the
support of the Gaussian process. Van der Vaart and Van Zanten (2006) have
obtained the following upper bound on the rate of contraction. For a Borel mea-
surable Gaussian random variable W in a Banach space (B, ‖ · ‖), let (H, ‖ · ‖H) be
its reproducing kernel Hilbert space (RKHS). For given w0 ∈ B define

(1) φw0(ε) = inf
h∈H:‖h−w0‖<ε

‖h‖2
H
− log P

(
‖W‖ < ε

)
.

Then in statistical settings in which the statistically relevant distance combines
correctly with the norm ‖ · ‖ on the Banach space B and where n describes the
informativeness of the data in the usual way, the posterior contracts at the rate
εn satisfying

(2) φw0(εn) ≤ nε2n.

This is true for the three settings described previously, where in the case of re-
gression this has been proved for Gaussian errors and using the L2-distance, in
the classification example for the logistic link and the L2-distance on the functions
Ψ ◦ w, and in the density estimation problem when using the Hellinger distance.
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The function ε 7→ φw0(ε) is closely related to the probability that the Gaussian
variable W falls in a ball of radius ε around w0. This probability for w0 = 0 is
known as the small ball probability and has been studied in many papers. (E.g
Kuelbs and Li (1993), Li and Shao (2001).)

A common test case for nonparametric methods is the performance if the true
parameter belongs to a regularity class, such as a Hölder space Cα[0, 1] or a Besov
space. Within our Bayesian context we ask which Gaussian priors will lead to
the optimal rate of contraction, e.g. in the Hölder case whether the smallest εn

satisfying the preceding display is of the order n−α/(2α+1).
We have studied several classes of priors. Two examples which (nearly) achieve

this aim are based on integrated Brownian motion and rescaled stationary pro-
cesses.

For α > 0 and B a standard Brownian motion the Riemann-Liouville process
with Hurst parameter α > 0 is defined as

Rt =

∫ t

0

(t− s)α−1/2 dBs, t ≥ 0.

The process R is a centered Gaussian process with continuous sample paths. It can
be viewed as a multiple of the (α+1/2)-fractional integral of the “derivative dB of
Brownian motion”. Since Brownian motion is “regular of order 1/2”, the Rieman-
Liouville process R ought to be a good model for “α-regular functions”, except
for the fact that through its definition as an integral from 0 its derivatives at 0
are tied down. Relaxation at 0 can be achieved by adding a Gaussian polynomial.
The Gaussian process

(3) Wt =

⌊α⌋+1∑

k=0

Zkt
k +Rt,

where Z1, . . . , Z⌊α⌋+1 are i.i.d. standard normal variables independent of R turns
out to be an appropriate model for “α-regular functions”. Indeed, it can be shown
to lead to the optimal rate of convergence n−α/(2α+1) if the true parameter is
α-regular. If the true parameter is of a different regularity, then the posterior will
still contract to the true parameter, but at a suboptimal rate: never faster than
n−α/(2α+1) and slower than n−β/(2β+1) if the true regularity β is smaller than α.
For instance, for Brownian motion itself (α = 1/2) the rate is never faster than
n−1/4. This is a consequence of the low small ball probability of Brownian motion.

As a second example consider a sequence of mean-zero Gaussian process Wn =
(Wn

t : 0 ≤ t ≤ 1) with covariance function

EWn
s W

n
t = φ

(s− t

cn

)
,

for a symmetric function φ : R → R and constants cn ↓ 0. This corresponds to
a rescaling of a sample path on [0, 1/cn] of the stationary Gaussian process with
covariance function φ to the interval [0, 1]. We assume that the spectral measure
µ corresponding to φ satisfies

∫
eαλ dµ(λ) < ∞ for some α > 0 and possesses a

positive density relative to Lebesgue measure. Under this condition Van der Vaart
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and Van Zanten (2007) show that the rate of contraction is the optimal one up
to a logrithmic factor, if cn is set equal to the usual bandwidth n−1/(2α+1) for
nonparametric smoothing. The proof is based on a new small ball probability
for smooth Gaussian processes and a study of the approximation properties of the
reproducing kernel Hilbert space. The exponent φ0(ε) of the small ball probability
of the process Wn relative to the uniform norm on C[0, 1] is bounded above by

1

cn

(
log

1

ε

)2

,

up to logarithmic factors.
Thus for every level of regularity there exist Gaussian processes that achieve

the optimal posterior rate of contraction. The Bayesian approach to choose the
prior from these various candidate priors is to put a prior on the regularity level α,
and consider the Gaussian process priors as conditional priors given the regularity.
It is known that for certain priors on α this hierarchical procedure will obtain the
posterior rate for any regularity level of the true parameter. The exact class of
priors on α for which is true is under study.

References

[1] S. Ghosal and A. Roy, Posterior consistency of Gaussian process prior for nonparametric
binary regression, Preprint (2006).

[2] S. Ghosal, J.K. Ghosh and A.W. van der Vaart, Convergence rates of posterior distributions,
Ann. Statist. 28 (2000), 500–531.

[3] G. Kimeldorf and G. Wahba, A correspondence between Bayesian estimation on stochastic
processes and smoothing splines, Ann. Math. Statist. 41 (1970), 495–502.

[4] J. Kuelbs and W. Li, Metric entropy and the small ball problem for Gaussian measures, J.
Functional Analysis 116 (1993), 133–157.

[5] W. Li and Q.-M. Shao, Gaussian processes: inequalities, small ball probabilities and ap-
plications, Stochastic processes: theory and methods, Handbook of Statistics 19 (2001),
533–597, North Hollard, Amsterdam.

[6] C.E. Rasmussen and C.K.I. Williams, Gaussian processes for machine learning, MIT Press,
Boston (2006).

[7] A.W. van der Vaart and J.H. van Zanten, (2006), Rates of contraction of posterior distri-
butions based on Gaussian process priors, Preprint (2006).

[8] A.W. van der Vaart and J.H. van Zanten, Small ball probabilities of smooth Gaussian pro-
cesses and Bayesian inference with rescaled Gaussian process priors, Preprint (2007).

A Goodness-of-fit Test for Semiparametric Models and Models with
Shape Constraints in Multiresponse Regression

Ingrid van Keilegom

(joint work with Song Xi Chen)

We propose an empirical likelihood test that is able to test the goodness-of-fit of
a class of semiparametric regression models. The class includes as special cases
fully parametric models, semiparametric models, like the multi-index and the par-
tially linear models, and models with shape constraints, like monotone regression
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models. Another feature of the test is that it allows both the response variable
and the covariate be multivariate which means that multiple regression curves can
be tested simultaneously. The test also allows the presence of infinite dimensional
nuisance parameters in the model to be tested. It is shown that the empirical
likelihood test statistic is asymptotically normally distributed under certain mild
conditions and permits a wild bootstrap calibration. Despite the fact that the class
of models which can be detected consistently by the proposed test is very large,
the empirical likelihood test enjoys good power properties against departures from
a hypothesized model within the class.
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Forward Stagewise Regression and the Lasso

Günther Walther

(joint work with Trevor Hastie, Jonathan Taylor, Rob Tibshirani)

The Lasso [1] is a method for regularizing a least squares regression. The Lasso
fits a linear model

β(x) = β0 +

p∑

j=1

xjβj

through the criterion

min
β

n∑

i=1

(yi − β0 −
∑

j

xijβj)
2 subject to

p∑

j=1

|βj | ≤ s.

We consider forward stagewise algorithms for solving least squares regression prob-
lems. The iterative nature of these algorithms makes them difficult to analyze. We
show that forward stagewise (in the limit for infinitesimal step sizes) can be char-
acterized as a monotone version of the Lasso: If we expand the predictor set X to
X̃ = [X : −X], then Lasso solves

min
β

n∑

i=1

(yi − β0 − [
∑

j

xijβ
+
j −

∑

j

xijβ
−
j ])2 subject to β+

j , β
−
j ≥ 0,

p∑

j=1

|βj | ≤ s.

If one requires additionally that the paths β+
j (s), β−

j (s) be non-decreasing in s for

all j, then the β-paths (collapsed to the original predictor set X) of this monotone
Lasso coincide with the paths of forward stagewise regression.

We also study a condition under which the coefficient paths of the Lasso are
monotone, in which case it can be shown that the different algorithms coincide.
Finally, we compare the Lasso and forward stagewise procedures in a simulation
study involving a large number of correlated predictors.
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Exploiting Non-Data Information

Roger Wets

The major objective of this analysis is to lay the groundwork to include in the
formulation of statistical estimation problems information beyond that provided
by the observed samples. Of course, this is by no means the first article dealing
with related issues! To begin with, every parametric estimation problem includes
in its formulation significant non-data information. Even, in the formulation of
non-parametric problems, there a large number of papers that deal with various
ways to include non-parametric information. For example, simply assuming that
the distribution of the random phenomena can be described by a density func-
tion implicitly includes non-data information in the formulation of the estimation
problem. But, there is a large literature that goes much beyond that. As a few
examples, one could refer to the work of Groenenboom, Jongbloed and Wellner on
how to include shape information, Thompson and Tapia and Wahba on to include
smoothness information about the density function, and so on. And then there is
the extensive litterature that deals with Bayesian statistics there is presumed to
be probabilistic information about the neighborhood of the (true) distribution.

What’s different here is that we introduce a general framework that applies to
a wide variety, if not all, situations when there is non-data information availale,
and that moreover, leads us to numerical procedures that can take advantage of
such additional information; and this applies to the parametric as well as the non-
parametric case. Essentially, this approach allows us to include in the formulation
of the estimation problem any information one might have about the stochastic
phenomena.

In this work we present a strong law of large numbers for nonparametric con-
strained maximum likelihood. The consistency result relies on convergence of the
estimation problems to a limit problem, whose solution is the true density, with
repect to the hypo-distance topology τaw, also called the Attouch-Wets topology.
Associated with this topology are distance estimates which ultimately should allow
us allow us to quantify the convergence rate for this estimation approach.

We begin by illustrating the approach via some examples, basically how the
method would be used in generating density estimates given a small collection
of samples coming from an exponential distribution. A separate report will deal
extensively with a specific implementation of the strategy laid out here; in fact, an
alternative to the one based on using basis functions or wavelets. The description
of the general framework of the problem that we consider as well as the strategy
that will be followed to obtain consistency is dealt with form a very comprehen-
sive viewpoint. The methodology relies on approximation theory for optimization
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problems and some compactification argument via the Hilbert-Schmidt embed-
ding.

Estimating Dark Matter Distributions

Michael Woodroofe

(joint work with Xiao Wang, Jayanta Palm, Matthew Walker, Mario Mateo)

In addition to the mass that astronomers can see (mostly in the form of stars), there
is matter that they cannot see but which has to be there. The dwarf spheroidal
galxies in the neigborhood of the Milky Way provide a good illustration. They are
very dim with about 106 − 107 stars, but spread over a fairly large area, roughly
2− 6 kpc: If all matter present were visible, then there would not be enough mass
to hold the system together (and, so, the dwarf spheroidals would not exist). The
missing mass is called dark matter. Most of the mass in the dwarf spheroidals is
thought to be dark matter.

The talk explains how estimate the distribution of total mass (including dark
matter) from a sample of stars and, especially, the role of shape resricted estimation
in the estimation process. Statistically, this is an inverse problem with missing
data. The available data consists of velocity measurments in the line of sight from
earth and positions of the stars projected on the plane orthognal to the line of
sight. Thus, one position coordinate and two velocity coordinates are missing. If
the mass distribution were known, then the positions and velocities of stars would
be determined from the equations of motion in classical mechanics. The inverse
problem is to recover the distribution of mass from a sample of observed (projected
position) and (line of sight) velocities.

The inverse problem is solved by Jean’s Equations (also from classical mechan-
ics) which expresses the distribution of (total) mass in terms of the marginal den-
sity of position and the velocity dispersion, the conditional expeptation of squared
velocity given position. Unsurprisingly, these equations simply in the presence of
spherical symmetry and isotropy. That leaves the missing data. The marginal
density and velocity dispersion can be expressed as an Abel transformation of the
density of observed position, and the conditional expection of observed velocity
given observed position. The Abel transformation is easily inverted and, so, the
distribution of mass can be expressed in terms of the distrrbution of observables.

The inverse Abel transformation has two important properties. From Jean’s
Equation, it is a convex function of its argument; and it can be expressed as
an expectation and, so, admits an unbiased estimator. Viewed as function, the
unbiased is highly irregular with lots of infinite discontinuities, but becomes regular
when when the convexity requirement is imposed. The regularized estimator of the
inverse Abel Transformation can then be used to construct estimators of velocity
dispersions and the mass distributions. The process is illustrated by simulations
and application to data from Fornax, one of the dwarf spheroidal galaxies.
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The non-parametric approach described above is made possible by recent ad-
vances in instrumentation which will make samples of 1500 or more stars available
from each of the dwarf speroidals. Early researchers had only samples of size 50
and less and, so, were forced to used parametric models. While formal goodness
of fit tests are still to be developed, our non-parametric estimates to not appear to
be consistent with the parametric ones (the traumatic intraoccular test), and our
estimates of the total mass of Fornax is about 3 times larger than earlier ones.

Rate consistency of the LASSO in model dimension and bias

Cun-Hui Zhang

(joint work with Jian Huang)

The linear regression model can be written as

y =

p∑

j=1

βjxj + ε = Xβ + ε,(1)

where y ∈ R
n is the response vector, xj are the columns of the design matrix

X ≡ (xij)n×p, β ≡ (β1, . . . , βp)
′ is the vector of unknown regression coefficients,

and ε is the error vector. For a given penalty level λ ≥ 0, the LASSO (Tibshirani,
1996) estimator of β is

β̂ ≡ β̂(λ) ≡ argmin
β

{
‖y − Xβ‖2/2 + λ‖β‖1

}
,(2)

where ‖ · ‖ is the Euclidean distance and ‖β‖1 =
∑

j |βj | is the ℓ1 norm. We
consider

Â ≡ Â(λ) ≡
{
j ≤ p : β̂j 6= 0

}
, q̂ ≡ q̂(λ) ≡

∣∣Â
∣∣,(3)

as the model selected by the LASSO and its dimension. Compared to the classical
variable selection methods such as subset selection, the LASSO has two advan-
tages. First, the selection process in LASSO is based on continuous trajectories
of regression coefficients as functions of the penalty level and hence more stable
than subset selection methods. Second, the LASSO is computationally feasible
for high-dimensional data (Osborne, Presnell and Turlach, 2000; Efron, Hastie,
Johnstone and Tibshirani, 2004). In contrast, computation in subsect selection is
combinatorial and not feasible when p is large.

Meinshausen and Buhlmann (2006) showed that, for neighborhood selection in
Gaussian graphic models, under a neighborhood stability condition, the LASSO is
consistent even when the number of variables is of greater order than the sample
size. Zhao and Yu (2006) formalized the neighborhood stability condition in the
context of linear regression as a strong irrepresentable condition. They showed
that under this condition, the LASSO selects exactly the set of non-zero regression
coefficients, provided that these coefficients are bounded away from zero at certain
rate. In this paper, the regression coefficients outside an ideal model are assumed
to be small but not necessarily zero. Under a partial Riesz condition on the
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correlation of design variables, we prove that the LASSO selects a model of the
right order of dimensionality and controls the bias of the selected model at a level
determined by the contributions of small regression coefficients and threshold bias.
Consequently, the LASSO selects all coefficients greater than a threshold level
determined by the controlled bias of the selected model. An interesting aspect of
our results is that the logarithm of the number of variables can be of the same
order as the sample size for certain random dependent designs.

We study model selection properties of the LASSO under a sparsity condition
on β and a partial Riesz condition (PRC) on X. The sparsity condition asserts

p∑

j=q+1

∣∣β(j)

∣∣ ≤ η1, where |β(1)| ≥ · · · ≥ |β(p)|.(4)

Compared with the typical sparsity assumption for variable selection with η1 = 0
and |β(q)| bounded away from 0 at a specified rate, (4) is mathematically weaker
and much more realistic as it specifies a connected set in the parameter space R

p of
β. Under (4), a sensible goal is to select a sparse model which fits the mean vector
Xβ well. The natural definition of the sparsity of the selected model is q̂ = O(q).

We say that the selected model fits the mean Xβ well if B̃ ≡
∥∥(I − P̂)Xβ

∥∥ is

small, where P̂ is the projection from R
n to the linear span of the set of the

selected variables xj . The case of orthonormal design (Donoho and Johnstone,
1994) indicates that under the conditions we impose, the maximum of the following

three quantities is a reasonable benchmark for B̃2:

(5) λη1, η
2
2 ,

qλ2

n
, where η2 ≡ max

A⊂A0

∥∥∥
∑

j∈A

βjxj

∥∥∥ ≤ max
j≤p

∥∥xj

∥∥η1.

Thus, we say that the LASSO is rate consistent in model selection if q̂ = O(q)

and B̃2 = O(1)max
(
η1λ, η

2
2 , qλ

2/n
)
. We prove the rate consistency of the LASSO

under (4) and the PRC which controls the range of eigenvalues of covariate matrices
of subsets of a fixed number of design variables. Define XA = (xj , j ∈ A) and ΣA =
X′

AXA/n. The design matrix X satisfies the PRC with rank q∗ and spectrum
bounds 0 < c∗ < c∗ <∞ if

c∗ ≤ ‖XAv‖2

n‖v‖2
≤ c∗, ∀ A with |A| = q∗ and v ∈ R

q∗

.(6)

Since ‖XAv‖2/n = v′ΣAv, all the eigenvalues of ΣA are inside the interval [c∗, c
∗]

under (6) when the size of A is no greater than q∗.
In terms of the scale invariant ratios r21 ≡ c∗η1n/(qλ) and r22 ≡ c∗η2

2n/(qλ
2)

of the quantities in (5) and C ≡ c∗/c∗ of the upper and lower bounds in (6), we
explicitly express in our theorem the O(1) for rate consistency in variable selection
as

M∗
1 ≡ M∗

1 (λ) ≡ 2 + 4r21 + 4
√
Cr2 + 4C,

M∗
2 ≡ M∗

2 (λ) ≡ 8

3

{1

4
+ r21 + r2

√
C
(√

2 +
√

2C
)

+ C
(1

2
+

4

3
C
)}
,



Qualitative Assumptions and Regularization in High-Dimensional Statistics 3001

M∗
3 ≡ M∗

3 (λ) ≡ 8

3

{1

4
+ r21 + r2

√
C(1 + 2

√
1 + C) +

3r22
4

+ C
(5

6
+

2

3
C
)}
.

We define a lower bound for the penalty level as λ∗ ≡ min
{
λ : M∗

1 (λ)q+ 1 ≤ q∗
}
.

With this λ∗ and the c∗ of the PRC, we consider the LASSO path in the interval

max
(
λ∗, 2

√
2(1 + c0)c∗n log(p ∨ an)

)
≤ λ ≤ λ∗ ≡ max

j≤p

∣∣x′
jy
∣∣(7)

with c0 ≥ 0 and large an satisfying p/(p ∨ an)1+c0 ≈ 0.
Theorem 1. Suppose ǫ ∼ N(0, σ2I) and (4) and (6) hold. Then, there exists

a set Ω1 in the sample space of (X, ǫ) such that

P
{
(X, ǫ) ∈ Ω1

}
≥ 2 − exp

( 2p

(p ∨ an)1+c0

)
≈ 1 − 2p

(p ∨ an)1+c0

and the following assertions hold in the event (X, ǫ) ∈ Ω1 for all λ satisfying (7):

q̂(λ) ≤ M∗
1 (λ)q,

B̃2(λ) ≤ M∗
2 (λ)qλ2/{c∗n},∑

j 6∈A0

∣∣βj

∣∣2I{β̂j(λ) = 0} ≤ M∗
3 (λ)qλ2/{c∗c∗n2}.

The partial Riesz condition may hold for large random design matrices with p as
large as ean for certain a > 0. Suppose (yi, xij , j ≤ p) are iid copies of a Gaussian
vector (Y, ξkj

, j ≤ p) and that the Riesz condition holds for the infinite sequence of

random variables ξk: ρ∗‖b‖2
2 ≤ E

∣∣∣
∑∞

j=1 bjξj

∣∣∣
2

≤ ρ∗‖b‖2
2, where b = {bj, j ≥ 1}.

Proposition 1. Suppose that the n rows of a random matrix Xn×p are iid
copies of a sub-vector of a zero-mean Gaussian sequence {ξk} satisfying the above
Riesz condition. Let ǫk, k = 1, . . . , 4, be positive constants in (0, 1) satisfying
2ǫ1+3ǫ2 ≤ 1 and ǫ3+ǫ4 = {ǫ2−log(1−ǫ2)}/2. Then, for c∗ = τ∗ρ∗, c

∗ = τ∗ρ∗ and
q∗ ≤ min(p, ǫ1n) satisfying log{

(
p
q∗

)
(2q∗−1)} ≤ ǫ3n, the partial Riesz condition (6)

holds with probability greater than 1−2e−nǫ4, where τ∗ = 1+ǫ1−
√
ǫ1 + ǫ2(

√
1 + ǫ2+√

1 − ǫ2) and τ∗ = (
√

1 + ǫ2 +
√
ǫ1 + ǫ2)

2.
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