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Introduction by the Organisers

The 1990s saw vigorous activity in the mathematical theory of water waves by
several independent international research groups, and in response we organised a
mini-workshop in Oberwolfach in 2001 entitled Recent Developments in the Math-
ematical Theory of Water Waves. The 2001 meeting, which was devoted to the
exact equations for water waves as written down by Euler, was a great success.
A collection of papers originating at the meeting were published in a special is-
sue of the Philosophical Transactions of the Royal Society and lead to significant
progress on certain famous and outstanding problems in water waves, particularly
local existence and uniqueness, stability, three-dimensional waves, justification of
model equations, convexity results for Stokes waves, and effective and accurate
numerical schemes.

In view of the interest in water waves generated by the 2001 meeting and our
subsequent endeavours, it appeared timely to bring the various research groups
together in another Oberwolfach workshop to intensify research in this subject.
The following topics were chosen as priority research areas for the workshop since
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(i) they represent issues which have been almost fully settled for model equations,
but remain almost fully open for the exact water-wave problem; and (ii) pose
mathematical challenges whose resolution is likely to prove beneficial in a wide
range of situations beyond the water-wave problem:

• Comparison of the diverse mathematical formulations of the hydrodynamic
equations which have recently been found by different researchers;

• Numerical and analytical construction of fully localized three-dimensional
solitary waves;

• Numerical and analytical investigations of stability and instability mech-
anisms for periodic wave trains;

• New scenarios for the generation of freak waves in long wave form;
• Construction of doubly-periodic three-dimensional water waves;
• New results for Dirichlet-Neumann operators.

Significant new results in these areas were reported at the conference and are
summarised in the extended abstracts below. The workshop was attended by
twenty-three researchers from eight countries; there was a good mix of researchers
who had attended the 2001 meeting and those who had not, and a number of
younger researchers new to this field attended. Twenty 45-minute talks were held
in a friendly and informal atmosphere and, in true Oberwolfach spirit, many col-
laborative discussions took place.

Walter L. Craig
Mark D. Groves
Guido Schneider
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Abstracts

Analytical Aspects of Boundary Integral Methods for
Three-Dimensional Water Waves

J. Thomas Beale

Much of my work of the last several years has been concerned with developing
simple, direct methods for computing singular or nearly singular integrals, such
as a layer potential on a curve or surface. Several aspects are described here,
beginning with the connection to water waves. The papers referred to and other
recent papers can be found at my web site.

Numerical methods based on a boundary integral formulation of the water wave
equations have long been used to simulate fully nonlinear, exact, time-dependent
water waves. For surface waves in three dimensions it appears that choices of
discretization can strongly affect the numerical stability as well as accuracy. In
[1] we were concerned with the formulation, accuracy, and stability in the case of
a doubly periodic surface with Lagrangian markers. One version of the method,
similar to ones in use, was proved to converge to the actual solution as long as it
is smooth. The normal velocity at the surface is determined from the potential
by solving an integral equation. This integral equation is a realization of the
Dirichlet-Neuman operator. The singular integrals are computed at points on the
moving surface using a simple discretization with a regularization and then adding
a correction. The wave-like character of the motion depends on the positivity of
a certain operator related to the Dirichlet-Neumann operator, as well as the sign
of the normal pressure gradient. As a consequence, positivity for the discrete
single layer potential seems to be important to maintain numerical stability for
the discrete approximations. The estimates use a class of discrete versions of
pseudodifferential operators. The error analysis leading to convergence depends
on preserving a structure in the linearized discrete equations which appears in the
original system.

The work on water waves led to a more general approach [2, 3] for computing a
singular or nearly singular integral, such as a harmonic function given by a layer
potential on a curve in two dimensions or a surface in three dimensions. The singu-
larity is regularized and a standard quadrature is used for the regularized integral.
Correction terms added for the errors due to regularization and discretization.
These corrections are found by local analysis near the singularity. This technique
could be useful, for instance, in viscous fluid calculations with moving interfaces,
since a pressure term due to a boundary force can be written as a layer potential.
The accurate evaluation of a layer potential at a point near the curve or surface on
which it is defined is not routine, since the integral is nearly singular. In work with
M.-C. Lai [2], we solved boundary value problems in two dimensions by computing
the integral at grid points near the curve as described and using these values to
find those at all points. A similar approach works in three dimensions, with the
surface integrals computed in overlapping coordinate grids on the surface [3]. To
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solve a boundary value problem, we first need to solve an integral equation for the
strength of a dipole layer on the surface. We proved in [3] that the solution of the
discrete integral equation converges to the exact solution. Special care is needed
where the grids overlap.

In work with G. Baker [4] we used a special choice of regularization in a bound-
ary integral calculation of the motion of two layers of inviscid fluid. We considered
the general Rayleigh-Taylor flow with a heavy fluid over a lighter fluid of pos-
itive density. The problem is ill-posed; the calculation was resolved with fixed
regularization, but the limit of zero regularization is not understood.

Current work with John Strain is intended to develop a numerical method for
moving interfaces in viscous fluid. The interface exerts a force on the fluid; the
force could be surface tension or the response of an elastic material. The immersed
boundary method of C. Peskin was designed for this model and has been widely
applied to biological problems. We have begun with the case of two-dimensional
Stokes flow. In our approach, the jumps in pressure and velocity gradient at the
interface lead to a representation of the velocity by layer potentials. With periodic
boundary conditions, we use Ewald summation to write the boundary integral
in a local part, approximated analytically, and a smooth part, computed as a
Fourier series. The decomposition is essentially the same as described above with
regularization. The velocity can be found accurately on or off the interface. The
motion of the interface is found using an adaptive method previously developed
by Strain.

References

[1] J. T. Beale, A convergent boundary integral method for three-dimensional water waves,
Math. Comp. 70 (2001), 977–1029.

[2] J. T. Beale and M.-C. Lai, A method for computing nearly singular integrals, SIAM J.
Numer. Anal. 38 (2001), 1902–25.

[3] J. T. Beale, A grid-based boundary integral method for elliptic problems in three dimensions,
SIAM J. Numer. Anal. 42 (2004), 599–620.

[4] G. Baker and J. T. Beale, Vortex blob methods applied to interfacial motion, J. Comput.
Phys. 196 (2004), 233–58.

Hydrodynamical Instabilities and Energy Estimates for the Free
Boundary Problems of the Euler Equation

Chongchun Zeng

(joint work with Jalal Shatah)

We consider the evolution of free surfaces of incompressible and inviscid fluids.
Neglecting the gravity, we are interested in the cases of 1.) the motion of a droplet
in the vacuum with or without surface tension and 2.) the motion of the interface
between two fluids with surface tension. The evolution of these fluid boundaries
and the velocity fields is determined by the free boundary problem of the Euler’s
equation.
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In the first problem, i.e. one fluid case, let Ωt ⊂ R
n, n ≥ 2, be the bounded

and smooth moving fluid domain. The velocity field v(t, ·) : Ωt → Rn satisfies the
Euler’s equation

(1F)

{
vt + ∇vv = −∇p, x ∈ Ωt ⊂ Rn

∇ · v = 0, x ∈ Ωt

where p(t, ·) is the pressure. The boundary of the domain Ωt moves with the fluid
velocity and the pressure at the boundary may or may not contain the surface
tension, that is

(BC1)

{
Dt = ∂t + v · ∇ is tangent to

⋃
t Ωt ⊂ Rn+1

p(t, x) = ǫ2κ(t, x), x ∈ ∂Ωt, 0 ≤ ǫ ≤ 1

where κ(t, x) is the mean curvature of the boundary ∂Ωt at x ∈ ∂Ωt, and Dt is
the material derivative. This is equivalent to saying the velocity of ∂Ωt is given
by v · N where N is the unit normal to ∂Ωt . The case ǫ = 0 corresponds to the
zero surface tension problem.

In the second problem, i.e. the interface motion between two fluids, Ω+
t and

Ω−
t in Rn, n ≥ 2, are the bounded and smooth moving fluid domains. We assume

that Rn = Ω+
t ∪ Ω−

t ∪ St where St = ∂Ω±
t , and let p± : Ω±

t → R, v± : Ω±
t → Rn,

and the constant ρ± > 0 denote the pressure, the velocity vector field, and the
density respectively. On the interface St, we let N±(t, x), x ∈ St denote the unit
outward normal of Ω±

t (thus N+ + N− = 0), H(t, x) ∈ (TxSt)
⊥ denote the mean

curvature vector, and κ± = H · N±. We also assume that there is surface tension
on the interface given by the mean curvature. Thus the free boundary problem
for the Euler equation that we consider here is given by

(2F)

{
ρ(vt + ∇vv) = −∇p, x ∈ Rn r St

∇ · v = 0, x ∈ Rn r St.

The boundary conditions for the interface evolution and the pressure are

(BC2)

{
∂t + v± · ∇ is tangent to

⋃
t St ⊂ Rn+1,

p+(t, x) − p−(t, x) = κ+(t, x), x ∈ St,

where we introduced the notation v = v+1Ω+ + v−1Ω−
: Rn r St → Rn, etc.

These free boundary value problems have been studied intensively by many
authors. Due to the limitation on the length of this article, we skip the background
description. Our goal in studying these problems is to obtain a priori energy
estimates and our approach is based on the well-known fact that the free boundary
problems can be formulated as Lagrangian systems on infinite dimension manifolds
of volume preserving diffeomorphisms.

Problem (1F, BC1) has a Lagrangian formulation given by

I(u) =
∫∫

Ω0

|ut|2
2 dydt − ǫ2

∫
S(u)dt,

where u(t, ·) ∈ Γ = {Φ : Ω0 → Rn, volume preserving homeomorphisms}, and
S(u) is the surface area of u(∂Ωt). Using this variational derivation, one can write
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the Euler-Langrangian equation of I(u) as

(E-L) D̄tut + ǫ2S′(u) = 0,

where D̄ is the Riemannian connection on Γ induced by the L2 metric on TΓ.
The above form of the equation makes it relatively easy to identify the correct
linearized problem

D̄
2
t w̄ + R̄(ut, w̄)ut + ǫ2D̄2S(u)(w̄) = 0, w̄(t, ·) ∈ Tu(t,·)Γ,

where R̄ is the curvature tensor of Γ. Keeping the highest order terms in the
above equation we obtain

(LN) D̄
2
t w̄ + R̄0(v)w̄ + ǫ2Ā w̄ = lower order terms,

where R̄0(v) is a first order differential operator and Ā is a third order differential
operator. In Eulerian coordinates these terms are given by

R0(v)(w, w) =
∫

∂u(Ω0)
−∇Npv,v|w·N |2 dS, A (u)(w, w) =

∫
∂u(Ω0)

|∇⊤w·N |2 dS

where N is the unit normal and ∇⊤ is the tangential gradient on the boundary of
u(Ω0). Here once again we are led in a natural way to distinguish the two problems
in the following manner.

1) For ǫ > 0 two time derivatives are associated with Ā , which is a positive
semi-definite operator similar to three spatial differentiation, thus roughly speak-

ing, ∂t ∼ (∂x)
3
2 . Therefore one may be led to believe that the regularity of the

Lagrangian coordinates given by ∂tu = v is 3
2 order better than v, which reflects

the regularizing effect of the surface tension. However this is not true for the
Lagrangian coordinates since A is degenerate, and the regularity improvement of
the ∂Ωt is geometric and is not reflected in the Lagrangian coordinates system.

2) For ǫ = 0 the leading term involves R0(v) and thus the Rayleigh-Taylor
instability may occur unless we impose the condition

(RT) −∇Npv,v(t, x) > a > 0 x ∈ ∂Ωt.

In this case two time derivatives are associated with R̄ which is a positive semi-

definite operator similar to one spatial differentiation. Thus, ∂t ∼ (∂x)
1
2 and

comments similar to above hold on the regularity of ∂Ωt.
3) For ǫ > 0 one can directly obtain nonlinear estimates by multiplying (E-L)

by (D2S)kS′.
4) The control that any power R0(v), with (RT) condition, can give over vector

fields is limited by the smoothness of the boundary ∂Ωt. This fact makes the
velocity field v inappropriate vector field to estimate because it is smoother than
what these operators allow. In fact, a divergence free vector field suitable for the
energy estimates turns out to be J = ∇κH which is less smooth than v and one
may verify that it satisfies

D̄
2
t J̄ + R̄0(v)J̄ + ǫ2Ā J̄ = lower order terms.

5) Since A and R0(v) are degenerate for vector fields which are tangential to
the boundary ∂Ωt one needs to add the vorticity ω which controls the rotational
part of the velocity which is tangential to the boundary.
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Following from these facts, we define the energy E = E + ERT where

E =
∫
Ω

1
2 |A k−1DtJ |2 + ǫ2

2 |A k− 1
2 J |2 dx + |ω|2H3k−1(Ω),

ERT =
∫
Ω

1
2R0(v)A k−1J · A k−1Jdx.

The following definition of neighborhood of domains will be needed in the state-
ment of energy estimates

Definition 1. Suppose Ω∗ ⊂ Rn is a bounded domain so that ∂Ω∗ locally is given
by the graphs of H

3
k− 1

2 functions. Let Λ = Λ(Ω∗, 3k − 1
2 , δ) be the collection of all

domains Ω satisfying that there exists a diffeomorphism F : ∂Ω∗ → ∂Ω ⊂ Rn, so
that |F − id∂Ω∗

|
H3k−

1
2 (∂Ω∗)

< δ.

Assuming k > 1
3 (n

2 + 1) and δ > 0 is sufficiently small, we have the following
two theorems which closes the a priori estimates local in time.

Theorem 2. For any Ω ∈ Λ0, we have

ǫ2|κ|2H3k−1(∂Ω) ≤ 3E + C0ǫ
2, |v|2H3k(Ω) ≤ C0(E + E0)

and, if we also assume (RT),

|κ|2H3k−2(∂Ω) ≤ C∗ERT + C0,

for constants C∗ > 0 depending only on a in assumption (RT) and C0 > 0 only
on the set Λ.

Theorem 3. There exists t∗ > 0, depending only on |v(0, ·)|H3k(Ωt) and the set Λ,

such that, for all t ∈ [0, t∗], any solution of (1F, BC1) with Ω0 ∈ Λ(Ω∗, 3k − 1
2 , δ

2 )
satisfies

| d
dtE| ≤ Q, where Q = a polynomial of (|v|H3k(Ωt), |κ|H3k−2(∂Ωt), ǫ|κ|H3k−1(∂Ωt)).

For the second problem, i.e. the interface problem between two fluids, one may
verify that the Lagrangian coordinates maps satisfy:

1) Φ± : Ω̄± → Φ±(Ω̄±) a volume preserving homeomorphism.

2) S , ∂Φ±(Ω±) = Φ(∂Ω±).
Define

Γ = {Φ = Φ+1Ω+ + Φ−1Ω− ; Φ± satisfy 1 and 2 above}.
The system (2F, BC2) is actually the Euler-Lagrangian equation with the La-
grangian action

I(u) =
∫∫

RnrS0

ρ|ut|2
2 dydt −

∫
S(u)dt, u(t, ·) ∈ Γ.

The similar program can be carried out as in the one fluid case. It turns out that,
on the one hand, the principle part of R̄(v, ·)v is a second order semi negative
definite operator which implies the Kelvin-Helmholtz instability. On the other
hand, the principle part of D̄2S is a third order semi-positive definite operator
and thus it regularizes the evolution of the interface and the a priori estimates
follows.
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Mathematical Analysis of Vortex Sheets

Sijue Wu

We consider the motion of the interface separating two domains of the same
fluid in R2 that moves with different velocity along the tangential direction of
the interface. We assume that the fluids occupying the two domains separated
by the interface are of constant densities that are equal, inviscid, incompressible
and irrotational. We also assume that the surface tension is zero, and there are
no external forces. The interface in the aforementioned fluid motion is a so-called
vortex sheet.

In general, there are two approaches in the study of vortex sheet evolution. One
is to solve the initial value problem of the incompressible Euler equation in R2:

(1)






vt + v · ∇v + ∇p = 0

div v = 0,

v(x, y, 0) = v0(x, y)

(x, y) ∈ R2, t ≥ 0

where the initial incompressible velocity v0 ∈ L2
loc(R

2), in which the vorticity
ω0 = curl v0 is a finite Radon measure. Here v is the fluid velocity, p is the
pressure, and the density of the fluid is assumed to be one. Notice that a vortex
sheet gives a measure valued vorticity supported on the interface. This approach
was posed by DiPerna and Majda in 1987 [1]. In 1991, J.M. Delort [2] proved
the existence of weak solutions global in time of Equation (1) for measure-valued
initial vorticity in H−1

loc (R2) that has a distinguished sign. However non-uniqueness
of the weak solutions in v ∈ L2(R2 × (−T, T )) was demonstrated by examples of
V. Scheffer [3] and A. Shnirelman [4], and weak solutions give little information
about the nature of the evolution.

The second approach assumes further that the free interface between the two
fluids remains a curve in R2 at a later time, therefore reduces Equation (1) to the
following evolutionary differential-integral equation:

(2) ∂tz(α, t) = 1
2πi p.v.

∫
1

z(α,t)−z(β,t) dβ.

Here z(α, t) is the parametric equation of the vortex sheet curve Γ(t) in complex
variables at time t, α is the circulation variable, 1/|zα| is the vortex strength, and z
denotes the complex conjugate of z. (2) is the so-called Birkhoff-Rott equation. A
rigorous justification of the equivalence between Equations (1) and (2) for smooth
vortex sheet curves and smooth vortex strength can be found in [5]. A steady
solution of (2) is the flat sheet z(α, t) = α.
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Equation (2) has been actively investigated over the last four decades. A well-
known property of (2) is that perturbations of the flat sheet grow due to the Kelvin-
Helmholtz instability, following from a linearization of Equation (2) about the flat
sheet. Sulem, Sulem, Bardos and Frisch [6] proved that (2) is well-posed locally
in time in analytic class. Duchon and Robert [7] obtained the global existence
of solutions of Equation (2) for a special class of initial data that is close to the
flat sheet. However, numerous results show that a vortex sheet can develop a
curvature singularity in finite time from analytic data. D.W. Moore [8, 9] was
the first to provide analytical evidence that predicts the occurrence and time of
singularity formation, which was verified numerically by Meiron, Baker and Orszag
[10] and by Krasny [11]. For each ν > 0, Duchon and Robert [7] and Caflisch and
Orellana [12] constructed specific examples of solutions z = zν(α, t) of Equation
(2), with zν(·, 0) real analytic, but zν(·, tν) 6∈ C1+ν(R) for some small time tν > 0.
These examples show that the initial value problem of the Birkhoff-Rott equation
(2) is ill-posed in C1+ν(R), ν > 0, and in Sobolev spaces Hs(R), s > 3/2 in
the Hadamard sense. However the existence of solutions in spaces less regular
than C1+ν or Hs, the nature of vortex sheet at and beyond singularity formation
remained unknown.

This suggests that we look for solutions in the largest possible spaces where
Equation (2) makes sense. In a recent work [13, 14], we considered the Birkhoff-
Rott equation (2) in the chord-arc class. The reasons for looking for solutions in
this class are the following: firstly, experimental results and numerical computa-
tions (see [15]) suggest that vortex sheets tend to roll up into infinite spirals after
the singularity formation time. The chord-arc class contains infinitely rolled-up
spiral curves, therefore can be a possible space in which to study the behavior of
solutions after the singularity formation time and prove existence. Secondly, the
chord-arc class is nearly the largest class in which the Birkhoff-Rott equation (2)
makes sense in L2 [13, 14]. The equivalence of (2) with (1) in the chord-arc class
is recently verified in [16].

Let Γ be a rectifiable Jordan curve in R2 given by ξ = ξ(s) in arc-length s. We
say Γ is chord-arc, if there is a constant M ≥ 1, such that

|s1 − s2| ≤ M |ξ(s1) − ξ(s2)|, for all s1, s2.

The infimum of all such constants M is called the chord-arc constant. Examples
of chord-arc curves include Lipschitz curves and logarithmic spirals.

The chord-arc class has a natural correspondence with the BMO class. For a
chord-arc curve ξ = ξ(s), s the arc-length, it is proved in [17] that ξ′(s) exists
almost everywhere, and there is a choice of the argument function b ∈ BMO, such
that ξ′(s) = eib(s). In particular, if the chord-arc constant M is close to 1, then
‖b‖mathrmBMO is close to 0. On the other hand, if b ∈ BMO, and ‖b‖BMO < 1,

then ξ(s) = ξ0 +
∫ s

0 ei b(s′) ds′ defines a chord-arc curve, with chord-arc constant
≤ 1/{1− ‖b‖BMO}.
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Define

‖f‖BMO(a,b),δ0
= supall I⊂(a,b),|I|≤δ0

1
|I|

∫
I |f(α) − fI | dα < ∞,

here fI = 1
|I|

∫
I
f(α) dα, I is an interval. We proved the following three results in

[14].

Theorem 1. Assume that z ∈ H1([0, T ], L2
loc(R)) ∩ L2([0, T ], H1

loc(R)) and that
z is a solution of the Birkhoff-Rott equation (2) for 0 ≤ t ≤ T , satisfying the
following (cf. [13, 14]):

(i) There are constants m > 0, M > 0, independent of t, such that

(3) m|α − β| ≤ |z(α, t) − z(β, t)| ≤ M |α − β| for all α, β ∈ R, 0 ≤ t ≤ T.

Then there is a constant c(m, M) > 0 as follows: if also
(ii) on some fixed interval (a, b), there exist a determination of ln zα and a

constant δ0 > 0, independent of t, satisfying

(4) sup
[0,T ]

‖ ln zα(·, t)‖BMO(a,b),δ0
≤ c(m, M),

then zα ∈ C((a, b)× (0, T )), and for each t0 ∈ (0, T ), zα(·, t0) is analytic on (a, b).

Notice that assumption (ii) is satisfied if zα ∈ C([a, b]× [0, T ]). Roughly Theo-
rem 1 states that if during some positive time period [0, T ], a certain section of the
vortex sheet curve z = z(·, t) is chord-arc and doesn’t roll up too fast and if the
vortex strength 1/|zα| is bounded away from zero and infinity, then for all fixed
t ∈ (0, T ), this section of the vortex sheet curve z = z(·, t) is smooth, in fact real
analytic.

A consequence of Theorem 1 is that after the singularity formation time, the
part of the vortex sheet near the singularity points cannot be a chord-arc curve
that doesn’t roll-up too fast, and meanwhile has a vortex strength that is bounded
away from zero and infinity.

G. Lebeau [18] proved a version of Theorem 1 under some stronger assumptions
that the solution of the Birkhoff-Rott equation (2): z = z(α, t) ∈ C1+ν , for some
ν > 0, the vortex strength is bounded away from zero and infinity, and the vortex
sheets Γ(t) are closed chord-arc curves.

Let Rez and Imz be the real and imaginary parts of the complex number z
respectively. Regarding the existence of solutions, we proved the following

Theorem 2. For any real valued function w0 ∈ H
3
2 (R), there exists

T = T (‖w0‖
H

3
2
) > 0,

such that the Birkhoff-Rott equation (2) has a solution z = z(α, t) for 0 ≤ t ≤ T ,

satisfying ln zα ∈ C([0, T ], H
3
2 (R))∩C1([0, T ], H

1
2 (R)) and Im{(1+i) ln zα(α, 0)} =

w0(α), with the property that there exist constants m, M > 0 independent of t such
that

m|α − β| ≤ |z(α, t) − z(β, t)| ≤ M |α − β|, for all α, β ∈ R, 0 ≤ t ≤ T.

Moreover, for each fixed t0 ∈ (0, T ), z(·, t0) is real analytic (cf. [13, 14]).
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Theorem 2 states that if only half of the data zα(α, 0) is given, there is a
solution of the Birkhoff-Rott equation (2) for a finite time period. Theorem 2 is a
generalization of the existence result of Duchon and Robert [7] to general data.

The following result implies that Theorem 2 is optimal, in the sense that in
general there is no solution of equation (2) satisfying properties (i) and (ii) as
stated in Theorem 2 beyond the initial time t = 0 for arbitrarily given initial data.

Theorem 3. Assume that z ∈ H1([0, T ], L2
loc(R))∩L2([0, T ], H1

loc(R)) is a solution
of the Birkhoff-Rott equation (2) for 0 ≤ t ≤ T , T > 0, satisfying properties (i)
and (ii) on some interval (a, b) as stated in Theorem 1. Assume further that
w0 = Im{(1 + i) ln zα(·, 0)} is real analytic on (a, b). Then zα ∈ C((a, b) × [0, T ))
and Re{(1 + i) ln zα(·, 0)} is also real analytic on (a, b) (cf. [13, 14]).

We remark that by assigning the full data z(α, 0) for the Birkhoff-Rott equation
(2) it is equivalent to assigning the initially incompressible velocity (with the initial
vorticity supported on a curve) for the incompressible Euler equation (1).

Theorems 2–4 were proved after we derived the elliptic nature of the Birkhoff-
Rott equation (2) in chord-arc class. Notice that equation (2) is fully nonlinear.
Roughly speaking, we derived the ellipticity of (2) by taking a derivative with
respect to α to (2), and by using results and techniques from harmonic analysis.
However, since the solution class we considered (i.e. chord-arc) has minimum reg-
ularities, taking derivatives to the equation doesn’t make sense. A strict proof
(see [14]) for the ellipticity of (2) in chord-arc class was through taking difference
quotient with respect to α. Theorems 2–4 follow from exploiting the elliptic nature
of equation (2) and developing new analysis tools (see [14]).
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Dynamics of Solitary Gravity-Capillary Waves

Paul A. Milewski

We now know that both the Euler equations and various models allow for localized
solitary gravity-capillary waves in two- and three-dimensions in water of arbitrary
depth [2],[3], whereas, with gravity alone, solitary waves exist only in shallow water
and only in two-dimensions. With the exception of extremely shallow water (Bond
number less than 1/3) these capillary-gravity waves are of the “wavepacket” type.
They can be seen as bifurcating from the minimum of the phase-speed curve c(k)
where

(1) c′(k) = 1
k (cg(k) − c(k)) = 0.

Thus, in a wave-packet expansion, the carrier wave and the envelope have the same
leading order speed and the surface displacement is an oscillatory solitary pulse.
Although the existence (numerical, asymptotic and rigorous) of these waves has
been studied by various authors, little is known about their dynamics. The most
obvious equation describing their behavior, the (focusing) Nonlinear Schrödinger
(NLS) equation, cannot predict even the existence of the two families of waves that
are observed. These two solutions are denoted waves of depression and elevation
in the literature and correspond to whether the crest of the envelope is located
at the crest or trough of the carrier. The NLS equation would predict solutions
with an arbitrary phase between the carrier and the envelope. We approach this
problem by writing a more general small amplitude equation that describes the
waves:

(2) Rt + iHR = N (R),

where iH has the Fourier symbol for right-travelling capillary-gravity waves in deep
water sign(k)(|k|(1 + k2))1/2 and N (R) is the formal small amplitude expansion
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for the nonlinear terms. This equation has capillary-gravity solitary waves (see
Figures below) of both types, and does not appear to have any asymmetric waves.

−100 −50 0 50 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

−100 −50 0 50 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Figure 1. Wavepacket solitary waves of elevation and depression.
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Figure 2. [Left] Depression (triangles) and elevation (circles)
subcritical solitary wave-packet branches bifurcating from the
minimum of c(k). The NLS curve (dashed) is shown. [Right]
Inelastic collisions of depression waves

It also contains the defocusing NLS in the appropriate asymptotic limit and thus
is an appropriate setting to study the fluid problem and the limitations of NLS. In
time dependent calculations, the solitary waves of depression are stable and those
of elevation unstable as has been observed in another model (a fifth order KdV [1]
for shallow water). Collisions between waves exhibit a variety of phenomena with
waves sometimes losing their “travelling” status (and becoming wave-packets) to
inelastic collisions (see Figure above). We are also pursuing similar questions for
three-dimensional wave-packet solitary waves (as shown in Figure 3).
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solitary waves from [2]
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Stability of Periodic Waves for the Nonlinear Schrödinger Equation

Mariana Haragus

(joint work with Thierry Gallay)

We consider the one-dimensional defocusing nonlinear Schrödinger equation (NLS)

(1) iUt(x, t) + Uxx(x, t) − |U(x, t)|2U(x, t) = 0 ,

where x ∈ R, t ∈ R, U(x, t) ∈ C. This equation possesses a six-parameter family
of quasi-periodic solutions of the general form

(2) U(x, t) = ei(px−ωt) V (x − ct) , x ∈ R , t ∈ R ,

where p, ω, c are real parameters and the wave profile V is a complex-valued periodic
function of its argument. We investigate the stability properties of these particular
solutions [1, 2].

A crucial role in our stability analysis is played by the following four continuous
symmetries of the NLS equation:

• phase invariance: U(x, t) 7→ U(x, t) eiφ, φ ∈ R;
• translation invariance: U(x, t) 7→ U(x + ξ, t), ξ ∈ R;

• Galilean invariance: U(x, t) 7→ e−i
(

v
2 x+ v2

4 t
)
U(x + vt, t), v ∈ R;

• dilation invariance: U(x, t) 7→ λU(λx, λ2t), λ > 0.
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These symmetries are also useful to understand the structure of the set of all quasi-
periodic solutions of (1). Assume that U(x, t) is a solution of (1) of the form (2),
where V : R → C is a bounded function. In view of the Galilean and the dilation
invariance, we can assume without loss of generality that c = 0 and ω ∈ {−1; 0; 1}.
Setting U(x, t) = e−iωtW (x), we see that W (x) = eipxV (x) is a bounded solution
of the ordinary differential equation

(3) Wxx(x) + ωW (x) − |W (x)|2W (x) = 0 , x ∈ R .

If ω = 0 or ω = −1, it is straightforward to verify that W ≡ 0 is the only bounded
solution of (3), thus we assume from now on that ω = 1. Equation (3) is actually
the stationary Ginzburg-Landau equation and the set of its bounded solutions is
well-known. There are two kinds of solutions of (3) which lead to quasi-periodic
solutions of the NLS equation of the form (2):

• A family of periodic solutions W (x) = (1−p2)1/2 ei(px+φ), where p ∈ [−1, 1]
and φ ∈ [0, 2π]. The corresponding solutions of (1) are called plane waves.
The general form of these waves is

U(x, t) = ei(px−ωt) V ,

where p ∈ R, ω ∈ R, and V ∈ C satisfy ω = p2 + |V |2.
• A family of quasi-periodic solutions of the form W (x) = r(x) eiφ(x), where

the modulus r(x) and the derivative of the phase φ(x) are periodic with
the same period. Any such solution can be written in the equivalent form
W (x) = eipx Q(2kx), where p ∈ R, k > 0, and Q : R → C is 2π-periodic.
In particular,

(4) U(x, t) = e−itW (x) = ei(px−t)Q(2kx)

is a quasi-periodic solution of (1) of the form (2) (with c = 0 and ω = 1).
We refer to such a solution as a periodic wave, because its profile |U(x, t)|
is a (non-trivial) periodic function of the space variable x. Important
quantities related to the periodic wave (4) are the period of the modulus
T = π/k, and the Floquet multiplier eipT . For small amplitude solutions
(|Q| ≪ 1) the minimal period T is close to π, hence k ≈ 1, and the Floquet
multiplier is close to −1, so that we can choose p ≈ 1.

While the plane waves form a three-parameter family, the periodic waves form
a six-parameter family of solutions of (1).

The stability question is well-understood for plane waves [5], but it turns out
to be much more difficult for periodic waves. In contrast to dissipative systems
for which nonlinear stability of periodic patterns has been established for rather
general classes of perturbations, including localized ones (see e.g. [4]), no such
result is available so far for dispersive equations. While this problem remains
open, we treat here two particular questions: orbital stability with respect to
periodic perturbations, and spectral stability with respect to bounded or localized
perturbations.
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Our first result shows that the periodic waves of (1) are orbitally stable within
the class of solutions which have the same period and the same Floquet multiplier
as the original wave:

Theorem 1 (Orbital stability [2])
Let X = H1

per([0, 2π], C) and assume that Uper(x, t) = ei(px−t)Qper(2kx) is a solu-
tion of (1) with p ∈ R, k > 0, and Qper ∈ X. Then there exist positive constants
C0 and ǫ0 such that, for all R ∈ X with ‖R‖X ≤ ǫ0, the solution U(x, t) =
ei(px−t)Q(2kx, t) of (1) with initial data U(x, 0) = eipx(Qper(2kx) + R(2kx)) sat-
isfies, for all t ∈ R,

(5) infφ,ξ∈[0,2π] ‖Q(·, t) − eiφQper(· − ξ)‖X ≤ C0‖R‖X .

The proof of Theorem 1 relies upon the general approach to orbital stability
developed by Grillakis, Shatah, and Strauss [3]. The main difficulty is to verify the
assumptions of the stability theorem in [3]. We first check that the second variation
of the energy functional at the periodic wave has exactly one negative eigenvalue.
This result is first established for small waves (by perturbation arguments), and
then a continuity argument allows to extend it to waves of arbitrary size. We
next consider the structure function (which is called “d(ω)” in [3]) and show, by
a direct calculation, that its Hessian matrix has a negative determinant. Both
properties together imply orbital stability. We point out that this stability result
holds uniformly for all quasi-periodic solutions of (1) with small amplitude [1].

Next, we investigate the spectral stability of the small periodic waves with re-
spect to bounded, or localized, perturbations. Although spectral stability is weaker
than nonlinear stability, it provides valuable information about the linearization
of the system at the periodic wave. Our second result is:

Theorem 2 (Spectral stability [1])
Let Y = L2(R, C) or Y = Cb(R, C). There exists δ1 > 0 such that the following
holds. Assume that Uper(x, t) = ei(px−t) Qper(2kx) is a solution of (1) with Qper ∈
X, ‖Qper‖X ≤ δ1, and p, k ≈ 1. Then the spectrum of the linearization of (1)
about the periodic wave Uper in the space Y entirely lies on the imaginary axis.
Consequently, this wave is spectrally stable in Y .

The proof of Theorem 2 is based on the so-called Bloch-wave decomposition,
which reduces the spectral study of the linearized operator in the space Y to the
study of the spectra of a family of linear operators in a space of periodic functions.
The advantage of such a decomposition is that the resulting operators have com-
pact resolvent, and therefore only point spectra. The main step in the analysis
consists in locating these point spectra. For our problem, we rely on perturbation
arguments for linear operators in which we regard the operators resulting from
the Bloch-wave decomposition as small perturbations of operators with constant
coefficients. The latter ones are actually obtained from the linearization of (1)
about zero, and Fourier analysis allows to compute their spectra explicitly. The
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restriction to small amplitudes is essential in this perturbation argument, and we
do not know whether spectral stability holds for large waves.

Finally, we point out that these results can be extended to the focusing NLS
equation

iUt(x, t) + Uxx(x, t) + |U(x, t)|2U(x, t) = 0 .

In contrast to the defocusing case, the focusing NLS equation possesses two dif-
ferent families of quasi-periodic solutions of the form (2), one for ω > 0 and the
other for ω < 0. While for periodic perturbations the same orbital stability result
holds [2], it turns out that the small periodic waves are spectrally unstable in this
case [1]. The instability is of side-band type, and therefore cannot be detected in
the periodic set-up used for the analysis of orbital stability.
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Leapfrogging in Coupled KdV Equations

Douglas Wright

The Korteweg-de Vries (KdV) equation, ut + (uxx + u2)x = 0, is a well-known
model for many processes involving the evolution of long waves. Korteweg &
de Vries and Boussinesq initially derived this equation to model the behavior
of surface water waves in a flat-bottomed canal. (Here x ∈ R is the spatial
dimension, t is time and u is roughly proportional to the surface elevation of
the water.) The KdV equation famously possesses solitary wave solutions of the

form u(x, t) = 3c
2 sech2

(√
c

2 (x − ct − x0)
)

where the wave-speed c is any positive

number.
Gear & Grimshaw in [3] derived a system of coupled KdV equations to model

interactions of long waves, for example in a stratified fluid. Their model is of the
form

ut +
(
uxx + u2 + ǫ1vxx + ǫ2∂uH(u, v)

)
x

= 0

vt +
(
vxx + v2 + ǫ1uxx + ǫ2∂vH(u, v)

)
x

= 0.
(1)

Here ǫ1, ǫ2 are constants, and H is a smooth real valued function (precisely, it is
a polynomial). The functions u and v can be thought of as the displacement from
horizontal of the fluid interfaces. Equations similar to (1) also arise in the study
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Figure 1. Sketch of one half of a “period” of leapfrogging. After
this point, the process repeats but with the roles of u and v re-
versed.

of two-dimensional atomic lattices and head-on collisions of solitary water waves.
Notice that if ǫ1 = ǫ2 = 0, then (1) simplifies to two completely uncoupled KdV
equations.

Numerically computed solutions of (1) sometimes display a phenomenon called
“leapfrogging”. This is a solution which looks like a solitary wave in each com-
ponent and where each wave oscillates about a shared center of mass. Figure 1
provides a sketch of this behavior. There have been a number of numerical and
formal investigations into this phenomenon (see [6]), but little rigorous analysis.

I have, with A. Scheel in our paper [8], developed a novel explanation of leapfrog-
ging when the coupling is weak. We do this as follows. First we study the existence
solitary wave solutions to (1) when |ǫ1|+ |ǫ2| is close to zero. Our approach is per-
turbative; an enormous amount of information is known about the existence and
stability of solitary waves in single KdV equations and, as a consequence, we have
a more or less complete understanding of solitary wave solutions in the uncoupled
problem. We are able to use a Liapunov-Schmidt analysis to determine the ex-
istence of a variety of solitary wave solutions for weak coupling. Specifically we
prove the existence of four different types of solitary waves. The first type is O(1)
in the u component and O(|ǫ1|+ |ǫ2|) in the v component. The second is the same
as the first but with the roles of u and v switched1. The third (and more inter-
esting) type of solution is O(1) in both components simultaneously. The u and v
components are even functions on their own and share a common center of mass.
We call this solution a piggybacking solitary wave as it appears that the wave in
one component is riding on the back of the other. We have also determined a
criterion for the existence of a fourth type of solitary wave which is O(1) in both
components but the components do not share a common center—these are partic-
ularly interesting because there are few examples of solitary waves in dispersive
equations which are asymmetric. See Figure 2 for a sketch of these different types
of solitary waves.

1These solutions have been discovered previously using variational means in [1] and [2].
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Figure 2. The four different types of solitary waves. The wave
in the bottom left corner is the piggybacking solitary wave.

After we have established the existence of these different types of solitary waves,
we then examine their stability. The first two types of solitary waves are orbitally
stable, and this follows from an application of the abstract theory of Grillakis,
Shatah & Strauss (see [4] and [5]). This theory does not apply to the piggybacking
solitary wave. Instead, using reduction methods and perturbation techniques, we
compute the spectrum of the linearization of (1) about the piggybacking solution2.
We find for ǫ1 and ǫ2 non-zero that the spectrum of the linearization consists of:
(i) a double zero eigenvalue (ii) the essential spectrum (which consists of the
entire imaginary axis)3 and either (iii-a) two real-valued eigenvalues (one positive

and one negative) each of size O(
√

|ǫ1| + |ǫ2|) or (iii-b) a complex conjugate pair
whose real parts are positive and of O(|ǫ1| + |ǫ2|) and whose imaginary parts are

O(
√

|ǫ1| + |ǫ2|).
Note that in either case (iii-a) or (iii-b) these waves are linearly unstable.

Moreover, it is this last scenario (iii-b) which explains leapfrogging. Since the
imaginary parts of these eigenvalues are non-zero, the instability is oscillatory,
just as leapfrogging is. Moreover, this result establishes that leapfrogging is a
transient phenomenon. In addition to our analytic results, in [8] we carry out a
number of numerical simulations of leapfrogging over long time intervals which
display this transience. What we observe is that the amplitude of the leapfrogging
oscillation grows in magnitude while simultaneously “radiation” is emitted behind
the waves. Eventually the solitary wave splits in two and the emission of radiation
ceases. That is, it breaks into the superposition of two solitary waves (one each
of the first two types described above) which have different speeds. The radiation
emitted during the leapfrogging lags behind both waves and slowly disperses.

2In fact, we compute this spectrum for the asymmetric solitary wave as well. The results are
not different than in the piggybacking case.

3This complicates the perturbation analysis and makes necessary the use of an exponentially
weighted function space, see [7].



3028 Oberwolfach Report 50/2006

References

[1] J. Albert and F. Linares, Stability and symmetry of solitary-wave solutions to systems mod-
eling interactions of long waves. J. Math. Pures Appl. (9), 79(3):195–226, 2000.

[2] J. Bona and H. Chen, Solitary waves in nonlinear dispersive systems. Discrete Contin. Dyn.
Syst. Ser. B, 2(3):313–378, 2002.

[3] J. A. Gear and R. Grimshaw, Weak and strong interactions between internal solitary waves.
Stud. Appl. Math., 70(3):235–258, 1984.

[4] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of
symmetry. I. J. Funct. Anal., 74(1):160–197, 1987.

[5] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of
symmetry. II. J. Funct. Anal., 94(2):308–348, 1990.

[6] B. A. Malomed, “Leapfrogging” solitons in a system of coupled KdV equations. Wave Motion,
9(5):401–411, 1987.

[7] R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves. Comm. Math. Phys.,
164(2):305–349, 1994.

[8] J. D. Wright and A. Scheel, Solitary waves and their linear stability in weakly coupled KdV
equations. ZAMP, to appear.

Hamiltonian Expansions for Water Waves over a Random Bottom

Walter Craig & Catherine Sulem

This pair of talks describes the asymptotic behavior of wave motions in the free
surface of a perfect fluid (water, in applications) which lies over a fluid region with
variable bathymetry. The hydrodynamical significance of the work is to studies
of nonlinear wave propagation in coastal regions, as well as to global scale prop-
agation of tsunamis; cases in which the bottom topography is approximately but
not perfectly known. It is a well known fact that in a channel of fixed constant
depth, the Euler equations for incompressible irrotational flows have solitary wave
solutions which propagate energy and momentum rapidly over long distances with
little attenuation. The question is to what extent this capability is retained when
the fluid is not of constant depth, in which case coherent wave motions will en-
counter environments varying in space and modulation and scattering effects may
result in significant attenuation. Our work is a reappraisal of the paper of Rosales
& Papanicolaou [6], who consider the scaling regime of the Korteweg - deVries
equations, and who treat the problem as one of homogenization, that is, of find-
ing effective coefficients for the long wave models of free surface water waves in a
channel with a variable depth bed. The case in which the bottom topography is
periodic is shown to homogenize completely in [6], a result which is recovered and
extended in Craig, Guyenne, Nicholls & Sulem [4] using method of Hamiltonian
perturbation theory for PDE. The fact that it fully homogenizes can be explained
by a scale separation lemma for periodic coefficients in the latter reference.

In the present work we take up the case of a random bottom, namely we consider
situations in which the bottom of the fluid region is taken to be a realization
of a stationary ergodic process which exhibits a sufficiently strong property of
mixing. We show that this problem does not homogenize fully, and that there are
realization dependent phenomena that are as important as the dispersion and the
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nonlinear effects in the long wave limit. We furthermore show that in this limit,
the random effects are governed by a canonical limit process which is equivalent
to a white noise through Donsker’s invariance principle, with one free parameter
the variance σ. The coherent wave motions of the KdV limit are shown to be
preserved, while at the same time the random effects on solutions of the KdV are
described, and the degree of scattering due to the variable bottom is quantified.
In this result we extend the random topography discussed in [6] to the case σ > 0.

1. Water waves Hamiltonian

The problem of free surface water waves concerns the time evolution of a fluid
region S(η, b) := {x ∈ Rd−1, b(x) < y < η(x, t)}, in which we solve for a potential
function ϕ(x, y, t) and a free surface η(x, t) satisfying the ideal fluid equations.
The acceleration of gravity is g. It suffices to specify the boundary values for the
potential on the free surface, ϕ(x, η(x, t), t) = ξ(x, t) because the resulting elliptic
boundary value problem at each instant of time is well posed.

The Hamiltonian for the problem of water waves is given in Zakharov [7], and
elaborated in Craig & Sulem [5] in terms of the Dirichlet – Neumann operator for
the fluid region;

(1) H(η, ξ) =
∫

1
2ξ(x)G(η, β)ξ(x) + g

2η2(x) dx ,

where the bottom of the channel is described by y = b(x) := −h+β(x), and where
G(η, β) is the Dirichlet – Neumann operator for the fluid domain. The operator
G(η, β) is analytic in both arguments (η, β), and its Taylor expansion in the case
of a variable bottom is described in [4].

The long wave regime is probed through a series of scaling transformations,
a theory of which is given in Craig, Guyenne & Kalisch [3]. For the Boussinesq
scaling regime one sets

(2) X = εx , εβ′(X/ε) = β(x) , εξ′(X) = ξ(x) , ε2η′(X) = η(x) ,

(and subsequently drops the primes, for notational convenience). The principal
terms that emerge from the resulting expansion in powers of ε are

H(η, β; ε) = ε3

2

∫
(h|DXξ|2 + gη2)dX − ε4

2

∫
β(x)|DXξ|2dX(3)

+ ε5

2

∫
(ξDηDXξ − h3

3 ξD4
Xξ)dX

− ε5

2

∫ (
β(x)D tanh(hD)β(x)

)
|DXξ|2dX + O(ε6) ,

which retains some of the influence of the short scale variations of the bottom to-
pography β(x). Further transformations of this expression give rise to the Hamil-
tonian for the KdV equation and for the scattering that results from reflections
from the variable bottom topography [4], these are discussed in Section 3 below.

2. Stationary ergodic processes

The problem is concerned with a statistical ensemble of fluid regions, expressed
through the choice of the bottom boundary from a set Ω of realizations ω, which we
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indicate by writing β(x, ω). The set of realizations is a probability space (Ω,M, P)
with an ergodic one parameter group of measure preserving translations {τy}y∈R

(and a filtration of the measurable sets, My, y ∈ R adapted to {τy}y∈R). For our
purpose we take Ω ⊆ S′ the space of tempered distributions, and we will require
a mixing condition to hold on the probability measure P;

(4) |P(A ∩ τy(B)) − P(A)P(B)| < ϕ(y)
√

P(A)P(B) ,

for sets A ∈ M{y≤0} and B ∈ M{y≥0}, with a mixing rate that satisfies

(5)
∫ ∞
0

ϕ1/2(y) dy < +∞ .

The variance of the process β(x, ω) is defined to be

(6) σ2
β := 2

∫ ∞
0 E(β(0, ω)β(0, τyomega)) dy ,

which is finite by (5). We note that if β(x, ω) = ∂xγ(x, ω) for some stationary
process γ ∈ C1, then σβ = 0. The principal terms of the Hamiltonian (3) that we
must understand in the limit of small ε are

− 1
2

∫
β(X/ε)|u(X)|2 dX ,(7)

− 1
2

∫ (
β(X/ε)D tanh(hD)β(X/ε)

)
|u(X)|2 dX ,(8)

where u(X) := ∂Xξ(X). These integrals are in the form of a stationary ergodic
process of the short scale variables x = X/ε being tested by a function of the long
scale variables X . This observation leads to a study of the asymptotic behavior in
the small parameter ε of integrals of the form

(9)
∫ +∞
−∞ γ(X/ε)f(X) dX ,

for f(X) ∈ S for example. Our main tool for averaging theory of the terms (7)(8)
in the Hamiltonian is the following distributional version of Donsker’s invariance
principle [1].

Theorem 2.1. Suppose that γ(x; ω) is a stationary ergodic process which is mix-
ing, with a rate ϕ(y) which satisfies the condition (5). Then the integral (9)
behaves as follows as ε → 0

(10)
∫

γ(X/ǫ, ω)f(X) dX =
∫ (

E(γ) +
√

εσγ∂XBω(X)
)
f(X) dX + o(

√
ε) ,

where Bω(X) is normal Brownian motion.

3. The Korteweg deVries equation with random coefficients

Following the analysis of the previous section, one derives the KdV approxi-
mation for surface water waves in the long-wave scaling regime. Using r(X, t) to
represent the principal component of the solution, which propagates to the right,
and s(X, t) the component of the solution that is reflected by interactions with
the bottom topography, the equations of motion are

∂tr = −∂X

(
c0(X, ε, ω)r + ε2(c1∂

2
Xr + c2r

2)
)

(11)

∂ts = ∂X

(
c0(X, ε, ω)s

)
− 1

4

√
g/h

(
σβ∂XΓω(X)r

)
.(12)
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Here, Γω(X) = ∂XBω(X) is given by a normalized white noise process, the overall
wavespeed c0(X, ε, ω) is a realization dependent function, given by the expresson

(13) c2
0(X, ε, ω) = g

(
h − ε3/2σβΓω(X) − ε2a

)
,

and the coefficients c1, c2 and a are averaged quantities, mean values stemming
from integrals such as in (7)(8). Solutions to (11)(12) are to be understood in a
distributional sense, and as limits of a regularisation procedure. This is one of
the topics discussed in [2], in which in particular it is shown that the property of
propagation of coherent waveforms is preserved with a random bottom, affected
only by some random distortion due to the bathymetry, and by a random element
of scattering as per (12).
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Well-Posedness of the Generalized Proudman-Johnson Equation

Hisashi Okamoto

The singularity/regularity problem of Euler’s equations for incompressible in-
viscid fluid motion is a notoriously difficult problem. Related problems for water-
waves are equally difficult. I therefore wish to consider models which are easier to
solve but interesting enough to show singular or near-singular points of solutions.

The model which I consider is a generalized version of an equation by Proudman
and Johnson discovered in 1961. With t, time variable, and x, 1D spatial variable,
the model equation reads:

(1) ftxx + ffxxx − afxfxx = νfxxxx.

I consider this equation in 0 < x < 1 with the periodic boundary condition. Here,
a is a real parameter. For more details, see [4]. Well-posedness of (1) which is
local in time is proved in [4] with appropriate function spaces of L2-type.

The author and X. Chen, in [1], proved that (1) is well-posed globally in time if
−3 ≤ a ≤ 1. Numerical experiments suggest that blow-up of solutions occur when
a < −3 or 1 < a; see [4].
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In a recent paper [3] the author considers the case of ν = 0, where the global
well-posedness is proved when −2 < a < 1, and blow-ups are mathematically
proved to exist if −∞ < a ≤ 2. No mathematical conclusion can be drawn if
1 < a, although blow-up is expected to occur.

Our result supports the result in [2] that the convection term suppresses the
blow-up of solutions and the well-known proposition that viscosity helps the global
existence.
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Deriving Modulation Equations via Lagrangian and Hamiltonian
Reduction

Alexander Mielke

Modulation equations can be seen as effective macroscopic equations describing the
evolution of a microscopically period pattern. We discuss general strategies how to
pass from the microscopic systems to a macroscopic one by using the Hamiltonian
or the Lagrangian structure.

The derivation of macroscopic equations for discrete models (or continuous
models with microstructure) can be seen as a kind of reduction of the infinite
dimensional system to a simpler subclass. If we choose well-prepared initial con-
ditions, we hope that the solution will stay in this form and evolve according to
a slow evolution with macroscopic effects only. We may interpret this as a kind
of (approximate) invariant manifold, and the macroscopic equation describes the
evolution on this manifold. We refer to [Mie91] for exact reductions of Hamiltonian
systems and to [DHM06, GHM06, Mie06, GHM07] for the full details concerning
this note.

As the easiest example we consider the one-dimensional Klein-Gordon equation

utt = uxx − au − bu3, (t, x) ∈ [0,∞) × R.

The sum of the kinetic and potential energy gives the Hamiltonian

H(u, ut) =
∫

R

(
1
2u2

t +
1
2u2

x+a
2u2+ b

4u4
)
.

As we are interested in modulated waves we embed this system R into the cylinder
Ξ = R×S1, where S1 contains the additional microscopic phase variable. The
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continuous Hamiltonian system is

(1)
∂2

t u = ∆(1,0)u − au + bu3 with a > 0, u ∈ L2(Ξ),

and ∆(1,0)u(x, φ) := uxx(x, φ).

Introducing p = ∂τu, this is a canonical Hamiltonian system with

Hcont(u, p) =
∫
Ξ

1
2p2 + 1

2

(
∇(1,0)u

)2
+ a

2u2 + b
4u4 dxdφ.

Like the original KG equation the enlarged problem (1) is translationally invari-
ant in the x direction. Moreover, it is invariant under translations in the phase
direction φ. This leads to the two first integrals Isp(u, p) =

∫
Ξ

p ∂xu dx dφ and

Iph(u, p) =
∫
Ξ

p ∂φudxdφ. Using the symmetry transformation

(ũ, p̃) = T sp
ct T ph

(ω−cθ)t(u, p), H̃ = H− cIsp − (ω−cθ)Iph

the associated canonical Hamiltonian system Ωcan(ũt, p̃t) = DH̃(ũ, p̃) on L(Ξ)2 is
still fully equivalent to a family of uncoupled KG chains.

Introducing a suitable scaling, which anticipates the desired microscopic and
macroscopic behavior, will expose the desired limit. For this we let

(ũ(x, φ), p̃(x, φ)) = (εU(εx, φ−θx), εP (εx, φ−θx)),

which keeps the canonical structure (after moving a factor ε arising from dy = εdx
into the time parameterization τ = ε2t). We obtain the new Hamiltonian

Hε(U, P ) =
∫
Ξ

1
2ε2

([
P−ωUφ−εcUy

]2
+

(
∇(ε,θ)U

)2

+aU2 −
[
ωPUφ+εcPUy

]2
)
+ b

4U4 dydφ,

where ∇(ε,θ) = εUy + θUφ. The modulation ansatz now reads

(U(y, φ), P (y, φ)) = Rε(A)(y, φ) = (Re A(y)eiφ, ω ReA(y)eiφ) + O(ε),

and leads to Hε(Rε(A)) = HnlS(A)+O(ε) and DRε(A)∗ΩcanDRε(A) = Ωred+O(ε)
with

HnlS(A) =
∫

R
ωω′′|Ay|2 + 3b

8 |A|4 dy and Ωred = 2iω.

Thus, the macroscopic limit is the one-dimensional nonlinear Schrödinger equation

2iωAτ = −2ωω′′Ayy + 3
2b|A|2A.

Of course, a mathematically rigorous justification of the nonlinear Schrödinger
equation as a modulation equation was known long before (see [KSM92, Sch98,
GM04, GM06]). However, the emphasis here is to see how the Hamiltonian and
Lagrangian structures need to be transformed to converge to the desired limits.



3034 Oberwolfach Report 50/2006

References

[DHM06] W. Dreyer, M. Herrmann, and A. Mielke, Micro–macro transition for the atomic chain
via Whitham’s modulation equation. Nonlinearity, 19, 471–500, 2006.

[GHM06] J. Giannoulis, M. Herrmann, and A. Mielke, Continuum description for the dynamics
in discrete lattices: derivation and justification. In A. Mielke, editor, Analysis, Modeling
and Simulation of Multiscale Problems, pages 435–466. Springer-Verlag, Berlin, 2006.

[GHM07] J. Giannoulis, M. Herrmann, and A. Mielke, Lagrangian and Hamiltonian two-scale

reduction. In preparation, 2007.
[GM04] J. Giannoulis and A. Mielke, The nonlinear Schrödinger equation as a macroscopic limit

for an oscillator chain with cubic nonlinearities. Nonlinearity, 17, 551–565, 2004.
[GM06] J. Giannoulis and A. Mielke, Dispersive evolution of pulses in oscillator chains with

general interaction potentials. Discr. Cont. Dynam. Systems Ser. B, 6, 493–523, 2006.
[KSM92] P. Kirrmann, G. Schneider, and A. Mielke, The validity of modulation equations for

extended systems with cubic nonlinearities. Proc. Roy. Soc. Edinburgh Sect. A, 122,
85–91, 1992.

[Mie91] A. Mielke, Hamiltonian and Lagrangian flows on center manifolds. With applications
to elliptic variational problems, volume 1489 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin, 1991.

[Mie06] A. Mielke, Weak convergence methods for the micro-macro transition from from disrcete
to continuous systems. In preparation, 2006.

[Sch98] G. Schneider, Justification of modulation equations for hyperbolic systems via normal
forms. NoDEA Nonlinear Differential Equations Appl., 5(1), 69–82, 1998.

Criticality of Water Waves, and the Generation of Dark Solitary
Waves in Shallow Water

Thomas J. Bridges

Criticality, uniform flows and bulk quantities such as mass flux, total head and
the momentum flux are at the heart of the subject of open-channel hydraulics.
However, attempts to generalize criticality to non-trivial flows and unsteady flows
have been largely unsuccessful. The main questions are: what is the appropriate
mathematical model for criticality? And, what are the implications of criticality?

Recent results [1, 2, 3] show that criticality is equivalent to degeneracy of a
relative equilibrium (RE) characterization of the flow. RE are solutions which are
aligned with a group orbit. The water wave problem has natural symmetries so
that a surprising variety of well-known flows are in fact RE. An example is the
classical Stokes traveling wave interacting with a mean flow.

In [2] the concept of “secondary criticality” of water waves is introduced, to
indicate when a non-uniform state, such as a Stokes traveling wave, goes through
criticality. The theory shows that secondary criticality of water waves signals a
bifurcation to a new class of steady dark solitary waves which are biasymptotic to
a Stokes wave with a phase jump in between, and synchronized with the Stokes
wave. The bifurcation to these new solitary waves – from Stokes gravity waves in
shallow water – is pervasive, even at low amplitude. The theory works because
the hydraulic quantities can be related to the governing equations in a precise way
using the Hamiltonian formulation of water waves.
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Surprisingly, this approach to the study of criticality has led to a new theory
for the nonlinear behavior near a degenerate RE. The case of degenerate periodic
orbits, interpreted as degenerate RE, was reported in [1], and the general case
of a symmetric Hamiltonian system with an n-dimensional symmetry group is
treated in [5]. Using symplectic Jordan chain theory, one shows that the degener-
acy of an RE leads to an additional pair of eigenvalues, in the linearization about
an RE. Applying normal form theory shows that the saddle-center bifurcation of
eigenvalues leads to a homoclinic bifurcation in the reduced system transverse to
the group orbit. A new observation is that the curvature of the pullback of the
momentum map to the Lie algebra determines the leading order behavior of the
nonlinear normal form for the homoclinic bifurcation. There is also an induced
geometric phase in the homoclinic bifurcation. The backbone of the analysis is the
use of singularity theory for smooth mappings between manifolds applied to the
pullback of the momentum map. In the Thom-Boardman classification of singu-
larities, degeneracy of a relative equilibrium corresponds to a singularity of type
Σ1(P) where P is the pullback of the momentum map. Higher order singularities,
Σ11(P), et cetera, are also possible. But the leading order singularity Σ1(P) is the
most interesting, and most likely to occur in applications.

The theory of criticality can also be extended to unsteady flows [2]. For example,
the theory leads to a new formulation of the Benjamin-Feir instability for Stokes
waves in finite depth coupled to a mean flow, which takes the criticality matrix
as an organizing center. Unsteady criticality appears to generate unsteady dark
solitary waves in the nonlinear problem.

There is also an interesting connection between unsteady criticality and wave
breaking [4]. It is well known that the Stokes traveling wave is unstable to su-
perharmonic (SH) perturbations. (Superharmonic perturbations have the same
wavelength as the basic Stokes wave.) The Stokes traveling wave is a relative
equilibrium, and the point where SH instability occurs is precisely where the mo-
mentum of the Stokes wave has a maximum considered as a function of the wave-
speed. In other words, SH instability is associated precisely with degeneracy of a
relative equilibrium. Applying the nonlinear theory shows that a homoclinic bifur-
cation – in time – will occur. This theory explains the results found in numerical
simulations of the unstable Stokes wave [4]. However, this theory is formal as the
time dependent water wave equations have an infinite number of purely imaginary
eigenvalues in addition to the saddle center bifurcation. It is an open problem
to determine the dynamics of an infinite-dimensional Hamiltonian system near a
saddle-center bifurcation, and the nature of the induced homoclinic bifurcation.
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Existence and Stability of Fully Localised Three-Dimensional Solitary
Gravity-Capillary Water Waves

Mark D. Groves

The classical water-wave problem concerns the irrotational flow of a perfect fluid
of unit density subject to the forces of gravity and surface tension. The fluid
motion is described by the Euler equations in a domain bounded below by a rigid
horizontal bottom {y = −h} and above by a free surface which is described as
a graph {y = η(x, z, t)}, where the function η depends upon the two horizontal
spatial directions x, z and time t. In terms of an Eulerian velocity potential
φ(x, y, z, t) the mathematical problem is to solve the equations

φxx + φyy + φzz = 0, − h < y < η,

φy = 0, y = −h,

φy = ηt + ηxφx + ηzφz, y = η

and

φt + 1
2 (φ2

x + φ2
y + φ2

z) + gη

− T
[

ηx√
1+η2

x+η2
z

]

x
− T

[
ηz√

1+η2
x+η2

z

]

z
= 0, y = η,

where g and T are respectively the acceleration due to gravity and the coefficient of
surface tension. A fully localised solitary wave is a solution to the above problem of
the form η(x, z, t) = η(x− ct, z), φ(x, y, z, t) = φ(x− ct, y, z), where c is a positive
constant and η(x − ct, z) → 0 as |(x − ct, z)| → ∞. Figure 1 shows a numerical
computation of a fully localised solitary wave in certain parameter regime (Parau,
Vanden-Broeck & Cooker [6]).

Solutions of the hydrodynamic problem for solitary waves are characterised as
critical points of the energy

H(η, ξ) =
∫

R2

{
1
2ξG(η)ξ + 1

2gη2 + T (
√

1 + η2
x + η2

z − 1)
}

dxdz

subject to fixed values of the momentum

I(η, ξ) =
∫

R2 ηξx dxdz,

both of which are conserved quantities of the hydrodynamic problem. The role of
the Lagrange multiplier is played by the wave speed c and G(η) is the Dirichlet-
Neumann operator defined by G(η)ξ := ∇φ.(−ηx,−ηz, 1)|y=η, where the potential
function φ is the harmonic extension of ξ into the fluid domain with Neumann
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Figure 1. A fully localised solitary wave; the arrow shows the x direction.

data at y = −h (e.g. see Craig & Nicholls [2]). Minimisers of H subject to the
constraint I = 2µ are of particular interest due to their stability properties (see
below).

Proceeding formally, let us first fix η and minimise H(η, ·) subject to the con-
straint I(η, ·) = 2µ. This problem admits a unique minimiser ξη, which satisfies
G(η)ξη = ληηx for some nonzero Lagrange multiplier λη. The next step is to min-
imise J(η) := H(η, ξη); an explicit calculation shows that J(η) = K(η) + µ2/L(u),
where

K(η) =
∫

R2

{
1
2gη2 + T (

√
1 + η2

x + η2
z − 1)

}
dxdz,

L(η) =
∫

R2 ηK(η)η dxdz, K(η) = −(G(η)−1ηx)x.

The following lemma attaches a rigorous meaning to the operator K and shows
that K, L are analytic functionals on a neighbourhood of the origin in Hs+3/2(R2)
for s > 1; it is proved by generalising the methods introduced by Nicholls & Reitich
[5].

Lemma 1. Choose s > 1. The operator K(η) ∈ B(Hs+1(R2), Hs(R2)) is an
analytic function of η ∈ BR(0) ⊂ Hs+3/2(R2) for some R > 0.

The key ingredients in the proof of the main theorem are (i) the minimisation
technique for quasilinear variational problems due to Buffoni [1]; and (ii) the es-
timates on nonlocal operators in the concentration-compactness method due to
Groves & Sun [3].

Theorem 2. Suppose that T/gh2 > 1/3 and take µ0 sufficiently small. There
exists a set M ∈ (0, µ0) of positive measure with the property that the following
statements hold for each µ ∈ M .

(i) The functional J has a nonzero minimiser in BR(0) ⊂ H3(R2).
(ii) Let {ηn} ∈ BR(0) ⊂ H3(R2) be a minimising sequence for J . There exists

a sequence {(xn, zn)} ⊂ R2 such that {ηn(· + xn, · + zn)} converges to a nonzero
minimiser of J in BR(0) ⊂ H3(R2).
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Corollary 3. Let H
1/2
∗ (R2) = {ξ ∈ H

1/2
loc (R2) : ∇ξ ∈ H−1/2(R2)}/R with

‖ξ‖
H

1/2
∗ (R2)

= ‖∇ξ‖H−1/2(R2), take β, µ as specified in Theorem 2 and consider

the problem of minimising H(η, ξ) on the manifold {I(η, ξ) = 2µ}.
(i) This problem admits a minimiser in a neighbourhood of the origin in the

energy space E = {(η, ξ) ∈ H3(R2) × H
1/2
∗ (R2)}.

(ii) Let {(ηn, ξn)} ∈ BR(0) ⊂ E be a minimising sequence. There exists a
sequence {(xn, zn)}⊂R2 with the property that {(ηn(·+xn, ·+zn), ξn(·+xn, ·+zn))}
converges to a nonzero minimiser in BR(0) ⊂ E.

It is a general principle that a solution of a nonlinear evolution equation which
can be characterised as a minimiser of one conserved quantity on a level set of
another is orbitally stable; this principle has the technical requirements that (i) the
equation is globally well posed in its energy space (the space in which minimisation
is acccomplished); (ii) the minimiser is unique (up to spatial translations); and (iii)
all minimising sequences converge (up to adjustments by spatial translations). It
is an open question whether conditions (i) and (ii) are satisfied for the water-wave
problem, and we therefore weaken the definition of stability here. The set S of
minimisers identified in Corollary 3 is said to be conditionally energetically stable
(Mielke [4]): any solution (η, ξ) ∈ C1([0, T ],X ) of the hydrodynamic problem,
where X is continuously embedded in E , whose initial datum is near an element of
S (in the metric of E) remains close to an element of S (in the metric of E) over
its lifetime [0, T ].
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Traveling Doubly-Periodic Gravity Water Waves in Resonant Cases

Gérard Iooss

(joint work with Pavel Plotnikov)

We consider traveling water waves which form a bi-periodic horizontal pattern
on the free surface, in absence of surface tension, for a potential flow in an infinitely
deep fluid layer. Such waves may be considered as the result of the nonlinear
superposition of two plane waves making an angle 2θ between them. There are
two parameters in the problem: θ and the dimensionless bifurcation parameter
µ = gL/c2 (L is the wave length along the direction of the traveling wave and
c is the velocity of the wave), bifurcation occurs for µ = cos θ. This talk is
concerned with the building of an asymptotic expansion of these waves, including
the resonant cases. This case means that the dispersion relation for the wave
vectors K = (n, τm), (n, m) ∈ Z2 which takes the form

(1) n2 + τ2m2 = n4(1 + τ2), τ = tan θ

has not only the basic solution (1, 1) in N2.

1. We show how to build an asymptotic expansion of bi-periodic monomodal
traveling waves in all cases, in terms of the amplitudes ε1 and ε2 of the two incident
plane waves (monomodal means that at main order (ε1, ε2) only the 4 wave vectors
(±1,±τ) occur. We show in case of symmetric waves that the expansion may be
written in terms of powers of ε = ε1 = ε2. For the non-symmetric waves (ε1 6= ε2),
the expansion is in terms of powers of ε1 and ε2 until the degree p − 2, where p
is the minimal value of the integer m ≥ 2 solution of the dispersion relation (1).
Then, higher orders of the expansion are in powers of ε with coefficient functions
of α ∈ (0, 1) where ε1 = αε, ε2 = (1 − α)ε.

2. For multimodal waves, i.e. waves such that at the main order at least 8 wave
vectors (±n0,±τm0), (±n1,±τm1) occur ((n0, m0) and (n1, m1) being solutions
of (1)), we give general results for a large family of resonant angles θ, about the
construction of formal expansions of such solutions in terms of two parameters
(which reduce to one parameter in the symmetric case).

3. The proof of existence of these waves in all cases is valid only for symmetric
monomodal waves, as shown in Figures i) and ii) below, the proof is detailed in
the talk by Pavel Plotnikov, where for the treatment of the small divisor problem
we use the Nash-Moser theorem (see [1]), here complicated in the resonant cases
by the infinite dimensional kernel, as in the situation treated in [2].
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i) ii) iii)

Symmetric 3-dim traveling wave, i) θ = 5.7o, ii) θ = 16.7o, iii) non symmetric waves

θ = 16.7o, ε2/ε1 = 0.3 . The arrow is the direction of propagation of the waves. Crests

are white and troughs are dark.
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Small Divisor Problem in the Theory of Three-Dimensional Water
Gravity Waves

Pavel Plotnikov

(joint work with Gérard Iooss)

We consider periodic waves at the surface of an infinitely deep perfect fluid,
only subjected to gravity g and resulting from the nonlinear interaction of two
symmetric traveling waves making an angle 2θ between them. This talk deals
with the non-resonant case when the dispersion equation has the only basic solu-
tion in the lattice of periods, and the linearized problem has the only symmetric
doubly-periodic solution. The main goal is the proof of existence of solutions to
the nonlinear problem bifurcating from the trivial solution. The essential difficulty
here is that we assume the absence of surface tension, which leads to a so-called
small divisor problem. We show that the linearized operator at a non-trivial point
can be reduced, by the change of independent variables, to a canonical pseudodif-
ferential operator with constant coefficients in the principal part. The peculiarity
of our problem is that the small divisors form clusters in the lattice of periods. We
employ a modification of the Weyl theory on uniform distributions of irrational
numbers modulo 1 to deduce the effective estimates of small divisors and to prove
the invertibility of the principle part of the canonical operator. The most substan-
tial ingredient of our approach is the descent method which allows to reduce the
canonical pseudodifferential equation on the 2-dimensional torus to a Fredholm
type equation (see [1],[2]). Finally we exploit the Nash-Moser implicit function
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theorem and prove the existence of bifurcating doubly-periodic symmetric waves
for any value of the parameter in a Cantor set dense at 0.
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Particle Trajectories in Stokes Waves

Adrian Constantin

Ocean waves are classified as either sea or swell. Irregular patterns made up
of various waves with different speeds, wavelengths and heights are called sea.
When these waves move past the area of influence of the generating winds, they
sort themselves into groups with similar speed and wavelengths. This process
produces swell that is characteristically a regular pattern of undulation of the
ocean surface. Swell often moves thousands of miles away from a storm to a
shore somewhere (for example, swell originating from Antarctic storms has been
recorded close to the Alaskan coast after more than 5000 miles). These progressing
groups of swell with the same origin and wavelength are called wave trains: two-
dimensional waves (that is, the motion is identical in any direction parallel to
the crest line), periodic, travelling at constant speed. Wave trains propagating at
the water’s free surface with an irrotational flow (i.e. of zero vorticity) within the
fluid are called Stokes waves. Watching the sea or a lake it is often possible to
trace such a wave as it propagates on the water’s surface. Contrary to a possible
first impression, what one observes traveling across the sea is not the water but
a wave pattern, as enunciated intuitively in the fifteenth century by Leonardo da
Vinci in the following form: “... the wave flees the place of its creation, while
the water does not; like the waves made in a field of grain by the wind, where
we see the waves running across the field while the grain remains in its place”
[12]. In other words, the displacements of the water particles induce a much more
rapid motion of the free surface wave, a fact supported by field evidence [13]. It
is widely believed (see for example any classical textbook on water waves) that
particles in water above a flat bed execute a circular motion as such a wave passes
over. Support for this conclusion is given by the only known explicit solution with
a non-flat free surface for the governing equations in water of infinite depth [8],
solution for which all particle paths are circles of diameters decreasing with the
distance from the free surface. More convincingly perhaps, the conclusion seems to
be supported by experimental evidence: photographs [7, 17, 18] or movie films [2]
of small buoyant particles in laboratory wave tanks (see also the comments in [10]).
Due to the mathematical intractability of the governing equations for water waves,
the classical approach [11, 16, 18] towards explaining this aspect of water waves
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consists in analyzing the particle motion after linearizing the governing equations.
At least within the linear water wave theory, it appears that all particle paths are
closed (cf. [6, 7, 9, 11, 13, 17, 18]). However, an analysis of the average energy flow
within linear water wave theory (see [6, 9]) indicates that during the passage of a
periodic surface wave the water particles in the fluid experience on average a net
displacement in the direction of wave propagation, termed Stokes drift – see [19]
for recent calculations. The accommodation of this observation with the classical
theory on the particle motion below the surface of a wave train is perhaps best
summarized by Longuet-Higgin’s [14]: “In progressive gravity waves of very small
amplitude it is well known that the orbits of the particles are either elliptical or
circular. In steep waves, however, the orbits become quite distorted, as shown by
the existence of a mean horizontal drift or mass-transport in irrotational waves.”

Actually, for a periodic traveling water wave propagating over a flat bed in an
irrotational flow, no particle trajectory is closed, unless the free surface is flat.
Over a period, each trajectory consists of a backward/forward movement of the
particle, and the path is an elliptical arc (which degenerates on the flat bed) but
with a forward drift. Interestingly, we reach this conclusion both working with
the governing equations for water waves (nonlinear theory) as well as within the
framework of linear water theory. The methods differ considerably: while for linear
water waves we rely on phase plane analysis [5], the nonlinear theory consists in
the analysis of a free boundary value problem for harmonic functions [4].

Finally, we would like to point out that our conclusion is not in contradiction
to the photographs referred to above. For the purpose of these photographs, the
water was kept in a narrow glass container with parallel walls with small metallic
particles mixed in the water and a long exposure (as long as half the period of
the surface wave) made it possible to distinguish path curves as elliptical arcs (cf.
[17]). Thus the photograph in [15] on page 686 from an experiment performed to
trace a particle trajectory at the surface is indicative of the path of every particle
above the flat bed. With respect to Gerstner’s explicit solution [8], notice that
the Gerstner flow has non-constant vorticity [3]. We show that within linear as
well as within nonlinear irrotational water wave theory, the particle paths are
almost closed and the more we approach the free surface, the more pronounced
the deviation from a closed orbit becomes.
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Three-Dimensional Gravity Capillary Solitary Waves and Related
Problems

Jean-Marc Vanden-Broeck

Three dimensional gravity capillary water waves are considered. Accurate nu-
merical computations are presented for the full Euler equations. The codes are
based on boundary integral equation formulations. Solitary waves with decaying
oscillations in the direction of propagation and monotonic decay in the direction
perpendicular to the direction of propagation are found in water of infinite depth
[1]. Further results in water of finite depth and for interfacial waves are also pre-
sented ([2], [3] and [4]). Our findings are consistent with computations on model
equations by Milewski [5], asymptotic calculations by Kim and Akylas [6] and
analytical results by Groves and Sun [7]. In addition related problems involving
gravity capillary free surface flows generated by moving references are studied. It is
shown that accurate solutions can be computed by including a small Rayleigh vis-
cosity in the dynamic boundary condition. The properties of the three dimensional
waves are similar to those found before for two-dimensional waves (see Hunter and
Vanden-Broeck [8], Vanden-Broeck and Dias [9] for numerical work and Dias and
Iooss [10] for a review of analytical work).
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Stable, High-Order Computation of Traveling Water Waves and Their
Linear Dynamic Stability

David P. Nicholls

The motion of the surface of an ideal fluid under the influence of gravity and cap-
illarity, the “Water Wave Problem”, is one of the oldest and most fundamental
in fluid mechanics. Successful modeling techniques for this problem are crucial in
many applications such as the generation and propagation of tsunamis. In a pair
of recent papers [11, 12] the author, in collaboration with F. Reitich, developed a
novel, stable and high-order Boundary Perturbation scheme for the reliable numer-
ical simulation of traveling solutions of the water wave equations. In this talk we
discuss this Boundary Perturbation technique (the method of Transformed Field
Expansions) and its extension to address the equally important topic of dynamic
stability of these traveling wave forms. More specifically we describe, and provide
the theoretical justification for, a new numerical algorithm to compute the spec-
trum of the linearized water wave problem as a function of the amplitude of the
traveling wave [10].

The question of existence and stability of traveling water waves has received
a great deal of attention, and a full account of the results known to date is well
beyond the scope of this abstract (however, please see the survey article of Dias &
Kharif [4]). While much is known about two-dimensional waves (water with one
depth dimension and one lateral dimension), there are few results about existence
and stability of genuinely three-dimensional patterns.

Regarding existence of three-dimensional traveling water waves, the most gen-
eral results to date are those of Craig & Nicholls [2] who, in the presence of



Mathematical Theory of Water Waves 3045

resonance, established existence of traveling capillary-gravity water waves with
arbitrary fundamental period. Other existence results in three dimensions include
those of Sun [14] who viewed the traveling wave as generated by a surface pressure,
and Groves & Mielke [6] and Groves [5] who have studied traveling waves using a
“spatial dynamics” approach. The results most closely related to those we present
are those of Reeder & Shinbrot [13] who demonstrate the existence and para-
metric analyticity of “short-crested” capillary-gravity waves of sufficiently small
amplitude. Akin to the method we adopt, Reeder & Shinbrot also use a “domain
flattening” change of variables. Our results expand on those of [13] in two im-
portant directions: First, our derivations demonstrate that the free boundary and
velocity potential are jointly analytic in space and bifurcation parameter (a fact
that does not follow from separate analytic dependence); and second, our devel-
opments allow for the interaction of wavetrains of arbitrary amplitude ratio, i.e.
not necessarily short-crested waves. To attain the latter, our approach entails the
use of multi-dimensional perturbation parameters.

Regarding dynamic stability, results can be classified not only by the type of
basic traveling wave they consider, but also by the class of permitted perturba-
tions which may grow or decay from this equilibrium state. For example, the work
of Benjamin & Feir [1] and Zakharov [15] focused upon two-dimensional Stokes
waves and the evolution of two-dimensional perturbations. By contrast, the cal-
culations of Chen & Saffman [3] and MacKay & Saffman [9] focus upon three-
dimensional perturbations of two-dimensional traveling waves, while Ioualalen et
al , e.g. [7, 8], consider three-dimensional perturbations of three-dimensional pat-
terns (short-crested waves). Another means of classification is the periodicity
requirements of the traveling wave and/or perturbation. Finally, we must specify
a notion of stability: Nonlinear, linear, or spectral? We will consider traveling
waves which can be generated by the algorithm of Nicholls & Reitich [11, 12] (e.g.
periodic Stokes waves in two dimensions and periodic short-crested waves in three
dimensions) and quite general quasi-periodic perturbations which need not have
the same periodicity as the traveling wave. Additionally, the method considers
the spectrum of the water wave problem linearized about these solutions and thus
constitutes a study of spectral stability.

Zakharov’s realization of the water wave problem as a Hamiltonian system [15]
implies that the best stability that one can expect is weak stability (that small
disturbances will remain small) and not strong stability (where small disturbances
decay exponentially fast). In the context of a spectral stability analysis, this
notion of weak stability is characterized by the spectrum of the linearization of the
dynamical water wave problem about a traveling solution being pure imaginary;
for trivial waves (“flat water”) this can be verified explicitly.

For non-trivial traveling profiles a straightforward approach to determining
stability is to linearize the water wave problem about an approximate travel-
ing wave and simulate the spectrum via a numerical eigensolver. This lineariza-
tion/eigensolve approach has been investigated by Ioualalen et al [7, 8] and is an
active line of research being pursued by the speaker in collaboration with W. Craig
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using a stabilized numerical scheme. However, this method does ignore some of the
information available to us regarding the traveling waves. We recall that [2, 13, 11]
demonstrated that traveling waves come in branches (two dimensions) or surfaces
(three dimensions) which can be specified by a parameter ε which is meant to
represent wave height or wave slope. In the linearization/eigensolve procedure
outlined above this information is used solely to compute the basic traveling wave
and information regarding the dependence of the spectrum upon ε is lost. Our
point of view is that thinking of the spectrum as an (analytic) function of ε gives
valuable insights into the nature of the onset of instability in this problem.

One can imagine the spectrum “moving” smoothly as a function of the branch
parameter ε; this is guaranteed by our new theorem [10] for generic choices of
perturbation quasiperiod. The question now arises: Can spectrum on the imagi-
nary axis (e.g. at ε = 0) move into the right-half of the complex plane resulting in
instability of the base traveling wave? MacKay & Saffman [9], using the Hamil-
tonian structure of the water wave problem, showed that a necessary (though not
sufficient) condition for eigenvalues to move off the imaginary axis is that they col-
lide. This observation is important for us as we propose to measure the strength
of an instability by finding, for each configuration (i.e. choice of perturbation
quasiperiod), the value of ε of the first eigenvalue collision.

It is well-known that collisions can occur in the linear problem, i.e. there may be
eigenvalues of multiplicity higher than one for ε = 0. These instances of resonance
represent an easily identified source of potential instability (though not all such
resonances give rise to instability, see [9] § 4) for traveling waves. Unfortunately,
due to the nature of our scheme as it is currently formulated, we are unable to
address configurations which feature these resonances (i.e. higher multiplicity of
the eigenvalues). While this may appear to be a shortcoming of our approach, it
is a reflection of the somewhat imprecise nature of our (and [9, 7, 8]) instability
criterion: Collision of eigenvalues. If we choose this as our test, then in a resonant
configuration instability already exists at ε = 0 and more finely-tuned techniques
must be used. However, if we are in a (generic) non-resonant configuration then
our new method can be used to give reliable and highly accurate estimates of the
onset and strength of instabilities in traveling water waves.
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Initial Value Problems for Free-Surface Flows in 3D Fluids

David M. Ambrose

(joint work with Nader Masmoudi)

We study the well-posedness of free-surface problems in irrotational 3D fluids. The
method is quite similar to the method used previously by the speaker and by the
speaker and Masmoudi for two-dimensional fluids. The primary difference in the
formulation of the problems is that in this higher-dimensional case, there is no
direct analogue of arclength.

In the case of a two-dimensional free surface surrounded by three-dimensional
fluids, we are able to choose two non-physical tangential velocities to enforce a
suitable parameterization of the surface. This choice of non-physical tangential
velocity does not change the dynamics; instead, it only reparameterizes the free
surface. Thus, we are able to place two conditions on the parameterization. We
now describe the surface as X(α, β, t) = (x(α, β, t), y(α, β, t), z(α, β, t)), with α
and β the spatial parameters. In [4, 2, 5], we make the choice that

Xα · Xα = Xβ · Xβ , Xα ·Xβ = 0.

This choice of parameterizations has a beneficial feature; if X has s+1 derivatives,
then we might expect E = Xα · Xα = Xβ ·Xβ to have only s derivatives. This is
not the case. It turns out that E has the same regularity as X.

There are difficulties in the three-dimensional problems which were not present
in the two-dimensional problems, but the general lines of the previous method can
be followed. The main difficulty in the three-dimensional problems is in working
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with singular integrals (including the Birkhoff-Rott integral) on a two-dimensional
domain. This is much more delicate than the one-dimensional singular integrals
encountered in the earlier cases. Nevertheless, we are able to work with these
integrals, and we are able to write systems of evolution equations for each of the
vortex sheet with surface tension, the irrotational water wave, and Darcy flows.
Well-posedness of each problem can then be proved.

1. The vortex sheet with surface tension

The vortex sheet with surface tension is the interface between two fluids shearing
past each other. The dependent variables we use in describing the motion are κ, the
mean curvature of the free surface, and µ, the jump in velocity potential across the
free surface. We will denote by Λ the operator

√
−∆. We find in [4] the following

evolution equations:

(1) κt = 1
4
√

E

[
∂α

1√
E

Λ 1√
E

µα + ∂β
1√
E

Λ 1√
E

µβ

]
+ T · ∇κ + f1,

(2) Λµt = τΛκ + 1√
E

(
(µαH1 + µβH2)

2(κ)
)

+ T · ∇Λµ + f2.

In these equations, H1 and H2 are Riesz transforms, and T is the vector of trans-
port speeds. The positive, constant coefficient of surface tension is τ, and f1 and
f2 are collections of lower-order terms.

As was the case in the free-surface problems in two-dimensional fluids studied
by the speaker, the terms fi arise in two ways. One is as commutators, such as
the commutator of the Riesz transform and multiplication by a smooth function.
The other way we generate smooth remainders is by approximating the Birkhoff-
Rott integral with Riesz transforms and other singular integral operators. In the
current setting, some care must be taken in making this approximation of the
Birkhoff-Rott integral. In [4], we prove that both of these kinds of remainders are
smooth enough to allow energy estimates on this system to be performed.

For the system (1), (2), we are able to perform energy estimates. These esti-
mates lead to a proof of well-posedness of the vortex sheet with surface tension in
3D. Since (1), (2) form a quasilinear system in which one time derivative is like
3/2 of a space derivative, before performing estimates, we simply need to sym-
metrize the system. To prove well-posedness, an iterative scheme is used. The
approximate problem is a linear equation, and it can be proved to have solutions.
The approximate system is set up in such a way that the energy estimates are still
possible to be carried out. Then, we are able to pass to the limit, getting existence
of solutions to (1), (2).

2. Darcy Flow in 3D Fluids

We now consider the case of two fluids subject to Darcy’s Law, separated by
a sharp interface, without the effect of surface tension. The fluids have (possibly
different) constant viscosity and density. This problem is treated in [2].
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As before, we use an isothermal parameterization, and we use mean curvature,
κ, as the dependent variable. As in the case of Hele-Shaw flow without surface
tension [1], we derive a quasi-linear parabolic evolution equation. We thus find
short-time well-posedness as long as a condition is satisfied, and this condition can
be interpreted in the equal-density case as requiring that the more viscous fluid
be displacing the less viscous fluid.

The evolution equation for curvature can be written as

κt = −kΛ(κ) + T · ∇κ + f.

We must have k uniformly positive at the initial time to guarantee short-time
well-posedness. The quantity k is

k(α, β, t) =
Rh+2AµW·n̂

2
√

E
.

Here, R is essentially the difference in density between the two fluids (multiplied by
the constant acceleration due to gravity) and Aµ is the difference in viscosity. The
normal component of the Birkhoff-Rott integral, W·n̂, is the normal velocity of the
free surface. Also, h = (0, 0, 1) · n̂. Given the assumption that k is positive, energy
estimates are possible, and then well-posedness follows by standard methods.

We remark that a similar approach has recently been used by Cordoba and
Gancedo for this problem, in the viscosity-matched case [6].

3. The Water Wave in 3D

For the irrotational water wave, we again use an isothermal parameterization,
and we use κ as a dependent variable. Unlike for the vortex sheet with surface
tension, µ is not a good enough variable to use in the case of the water wave (i.e.,
it would be quite difficult to find estimates uniform in surface tension using µ).
Instead, we introduce a variable B, which is related to the difference between our
nonphysical tangential velocities, and the Lagrangian tangential velocities of fluid
particles on the free surface. This is analogous to the approach of [3]. We are able
to find a system of evolution equations for κ and B :

κt = 1
2
√

E
B + T · ∇κ + f1,

Bt = −τ
[
LL∗κ + 1√

E
κΛ(H1κα + H2κβ)

]
− cΛκ + T · ∇B + f2.

The operators L and L∗ are adjoints, and each acts like 3/2 of a derivative. The
quantity c is important; it is

c = −∇p · n̂ > 0.

That c is uniformly positive at the initial time is now known as the Generalized
Taylor Condition; Wu has proved that this condition is satisfied as long as the
interface is non-self-intersecting [7].

After formulating this system of quasilinear evolution equations, we are able to
perform energy estimates which are uniform in surface tension. Passing to the limit
as surface tension goes to zero, we have a new proof of existence of irrotational
water waves in 3D without surface tension.
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Well-Posedness of the KDV Equation in a Quarter Plane or a Finite
Domain

Shu-Ming Sun

(joint work with J.L. Bona and B.-Y. Zhang)

The research considered here concerns small amplitude long waves on the sur-
face of an ideal fluid of finite depth over a flat horizontal bottom under the force
of gravity. Interest is focused upon waves which propagate essentially in the pos-
itive horizontal x-direction and without significant variation in the transverse y-
direction of a standard xyz-Cartesian frame in which gravity acts in the negative
z-direction. For such waves, the full three-dimensional Euler equations can be
reduced to approximate models with only one independent spatial variable.

Assume that h0 is the undisturbed depth and the free surface is represented by
z = u(x, t) = h(x, t)−h0 where t is proportional to elapsed time and h(x, t) is the
depth of the water column over the spatial point x at time t. Under the classical
small-amplitude, long wave-length assumptions which feature a balance between
nonlinear and dispersive effects, the evolution equation

(1) ut + ux + uux + uxxx = 0

is a formal reduction of two-dimensional Euler equations usually called the Korte-
weg-de Vries (KdV) equation. The auxiliary data attached to the evolution equa-
tion are the initial and boundary conditions

(2) u(x, 0) = u0(x) , x > 0 ; u(0, t) = g(t) , t > 0

where the domain is x > 0 and t > 0, which is called a quarter-plane problem.
The initial-boundary-value problem (IBVP) (1)–(2) arises when modeling the

effect in a channel of a wave maker mounted at one end [1], or in modeling near-
shore zone motions generated by waves propagating from deep water. Indeed, the
IBVP is a natural model whenever waves determined at an entry point propagate
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into a quiescent patch of a medium for which disturbances are governed approxi-
mately by the KdV equation. It can be imagined that water at rest in a channel is
set in motion by a wave maker mounted at the left end of the channel. If the fre-
quency and amplitude of the wave-maker oscillations are appropriately restricted,
this will generate small-amplitude long waves that propagate down the channel,
and thus will be brought into being wave motion that corresponds more or less
exactly to the KdV regime.

When comparison between experimentally produced waves is made with model
prediction, one usually has to depend upon numerical approximation of its solu-
tion. Whenever a numerical scheme is set up for calculating the solutions of the
equation, the spatial domain is necessarily of limited extent and two-point bound-
ary value problems cannot be avoided. For this, a bounded domain [0, L] is used
and two extra boundary conditions

(3) u(L, t) = g1(t), ux(L, t) = g2(t)

are imposed. In practice, it is often the case that u0(x) ≡ 0 with g1(t) = g2(t) = 0,
corresponding to an initially undisturbed medium with homogeneous boundary
conditions at the right end.

Here, our research mainly focuses on the proof of the well-posedness of these
problems ((1)–(2) or (1)–(3)) by making use of modern methods for the study
of nonlinear dispersive wave equation. Roughly speaking, local and global well-
posedness are obtained for initial data u0(x) in the class Hs(R+) and boundary

data g(t) in H
1+s
3

loc (R+) for the possible smallest s. The precise theorems can be
stated as follows. The first theorem is the local and global well-posedness of (1)–(2)
in x > 0, t > 0 [2].

Theorem 1. For given −3/4 < s ≤ 1, there exists a constant b ∈ (0, 1
2 ) such that

for u0(x) ∈ Hs(R+), g(t) ∈ H
3b+s−1/2

3 (R+) with certain compatibility condition,
there exists a T dependent on the corresponding norms of u0, g so that the IBVP
(1)–(2) is locally well-posed in Hs(R+) and the solution u ∈ C([0, T ]; Hs(R+))
satisfies

‖u(·, t)‖Hs(R+) ≤ C
(
‖u0‖Hs(R+) + ‖g‖

H
3b+s−1/2

3 (R+)

)
.

If g ∈ H
s+1
3 (R+), then

‖u(·, t)‖Hs(R+) ≤ C
(
‖u0‖Hs(R+) + ‖g‖

H
s+1
3 (R+)

)
.

Moreover,, the IBVP (1)–(2) is globally well-posed (i.e., T is independent of the

initial and boundary data) in Hs(R+) × H
s+1+ǫ

3

loc (R+) for ǫ > 0 and 0 ≤ s < 3 or

in Hs(R+) × H
s+1
3

loc (R+) for s ≥ 3.

The next one is the local and global well-posedness of two-point boundary value
problem (1)–(3) in x ∈ (0, L), t > 0 [3].
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Theorem 2. For given s > −1 and any r > 0, there exists a T ∗ = T (r) > 0

such that if (u0(x), g(t), g1(t), g2(t)) ∈ Hs(0, L)× H
(s+1)

3 (0, T ∗) × H
(s+1)

3 (0, T ∗) ×
H

s
3 (0, T ∗) satisfies some compatibility conditions and ‖(u0(x), g(t), g1(t), g2(t))‖ <

r, then there exists a unique solution u ∈ C([0, T ∗); Hs(0, L)) for the IBVP (1)–(3)
and the problem is locally well-posed. Moreover, for given −1 < s < 0 and any
T > 0 (global well-posedness) with some ǫ > 0, if g1(t) = g2(t) = 0, (u0(x), g(t)) ∈
Hs(0, L)×H

ǫ+1
3 (0, T ), then there exists a unique solution u ∈ C([0, T ); Hs(0, L))∩

C((0, T ); L2(0, L)). If g(t) is smooth in Hm(0, T ), then u ∈ C((0, T ); Hm(0, L))

for any m > 0. For s ≥ 0 and T > 0, if (u0(x), g(t)) ∈ Hs(0, L)×H
s+1
3 +δ(s)(0, T )

with some compatibility conditions and δ(s) = ǫ if 0 ≤ s < 3 and 0 if s ≥ 3, then
there is a unique solution u ∈ C((0, T ); Hs(0, L)).

We also obtained that if the initial and boundary conditions are chosen from
function classes that include suitable decay of u0(x) as x → +∞, then for fixed
T > 0, the solution of (1)–(3) will converge to the solution of (1)–(2) as L goes to
infinity [4].

Theorem 3. Let u∞(x, t) be the solution of the IBVP (1) and (2) with u0(x) ∈
Hs(R+) and g(t) ∈ H

s+1+ǫ
3 (0, T ) for some s in [0, 3], where ǫ > 0 is any positive

constant. Assume u0 is supported on [0, N ], say. Let uL(x, t) be the solution of the
two-point boundary-value problem (1)–(3) for 0 ≤ x ≤ L and t ≥ 0 with the same
initial condition and the boundary condition indicated in (2) and g1(t) = g2(t) = 0
in (3), where L > N . Assume that the compatibility condition u0(0) = g(0) is
satisfied if 1/2 < s ≤ 3. Then, u∞(x, t) and uL(x, t) exist for t ∈ [0, T ] and the
inequality

supt∈[0,T ] ‖u∞(·, t) − uL(·, t)‖Hs(0,L) ≤ Ce−bL ,

holds, where C only depends on the corresponding norms of u0(x) and g(t). In

case u0 ∈ Hs(R+) and g ∈ H
s+1
3 (0, T ), the same result holds at least on some

time interval [0, T ∗] for some T ∗ ∈ (0, T ].

It is worth remark that the constant C can be shown to be of the form eγT under
reasonable assumptions on the boundary data g with u0 ≡ 0. The constant γ is,
for physically relevant data g, of order one, as is the constant b. In consequence,
we see that if solutions uL on a time interval [0, T ] are in question and the data is
physically relevant, then L must be chosen to be of the form

L ≥ O(T ) + | log δ|

to have an approximation to the solution of the quarter-plane problem of error
at most δ, uniformly on [0, T ]. Notice that once L ≥ O(T ) the error decays
exponentially with larger values of L, a very satisfactory result from a practical
perspective.
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Recent Results in the Theory of Ocean Waves

Jerry L. Bona

(joint work with Jean-Claude Saut)

This lecture focused upon one of the possible generative mechanisms for what are
often termed Rogue Waves or sometimes Freak Waves. These are very big waves
that appear occasionally in the deep ocean. Such waves have been reported by
mariners for centuries, but have only been taken seriously fairly recently. They are
unlike tsunamis in a number of ways. First, they persist in relatively small portions
of space-time, unlike tsunamis which can propagate coherently for thousands of
miles. Secondly, they are of truly large amplitude even in the deep ocean, whereas
tsunamis are of small amplitude in deep water, often unnoticeable there in fact.
Their existence only becomes clear when they enter shallower water. And while
we have a pretty clear idea of the ways tsunamis can be generated, it is otherwise
with Rogue waves.

One of the suggested mechanisms for the generation of Rogue waves is what we
will call concurrence. Roughly speaking, this simply amounts to the possibility
that small waves spread out in the ocean might, on occasion, get together en
masse and add up to something really significant. It is our purpose to investigate
the plausibility of this mechanism within the mathematical framework of classical
water wave models. What is reported is joint work with Jean-Claude Saut (see
[1], [2], [3]).

We begin with the Korteweg-de Vries model

ut + ux + uux + uxxx = 0.

It is elementary to see that for the linearized version of this equation, a kind of
dispersive focusing can occur by placing shorter and shorter wavelength compo-
nents out near x = +∞. It is an interesting bit of analysis to see that the initial
value problem for the nonlinear KdV equation has the same property, which we
term dispersive blow-up.

An immediate objection to this analysis as far as its application to Rogue waves
is concerned is that the model is uni-directional and we are making use of waves
traveling in the wrong direction. This can be remedied by consideration of a
Boussinesq system of equations, which does allow for two-way propagation of
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waves. It turns out this system also exhibits the dispersive blow-up phenome-
non. Moreover, this latter result can be generalized to a fully three dimensional
Boussinesq system. Thus, an initial wave and velocity configuration that is too
small to even bed seen with the naked eye can, in this approximation, concentrate
wave components and, in finite time, lead to a wave with a infinite amplitude.

A further objection can be raised, which is that the foregoing theory makes
use of the unbounded group and phase velocities that obtain within certain of the
Boussinesq (and the KdV) approximations. As the full Euler equations do not
possess this property, it is still not clear whether or not the theory might pertain
to the development of real Rogue waves by concurrence.

A final result was mentioned, that grows out of the preceding. Another way of
looking at what was established for the KdV equation and for Boussinesq systems
is that these equations are not well posed in L∞-type spaces. That is, no matter
how small the initial data is restricted as far as its maximum values are concerned,
the resulting solution can take on values as large as we like in finite time. Looked
at this way, the issue is clarified. The authors have been able to show that at least
the linearized, two-dimensional Euler equations are not well posed in L∞, thereby
coming closer to being able to say that concurrence is a possible mechanism for
the formation of Rogue waves.
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