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Introduction by the Organisers

The mini-workshop “Logic, Combinatorics and Independence results” took place
on November 25 – December 2, 2006. The workshop was organized by Andrey
Bovykin, Lorenzo Carlucci and Andreas Weiermann and attended by 16 partici-
pants:

• Lev Beklemishev (Moscow)
• Andrey Bovykin (Liverpool)
• Wilfried Buchholz (Munchen)
• Lorenzo Carlucci (Rome)
• Lev Gordeev (Tübingen)
• Henryk Kotlarski (Warszawa)
• Alberto Marcone (Udine)
• Joseph Mileti (Chicago)
• Antonio Montalbán (Wellington)
• Eran Omri (Be’er-Sheva)
• Michael Rathjen (Leeds)
• Sergei Tupailo (Tallinn)
• Stanley Wainer (Leeds)
• Andreas Weiermann (Gent)
• Alan Woods (Crawley)
• Konrad Zdanowski (Warszawa)

There were 16 one-hour talks, two problem sessions and many one-to-one and
small group discussions. The workshop brought together researchers specialis-
ing in several connected disciplines: Reverse Mathematics (Alberto Marcone,
Joseph Mileti, Antonio Montalbán), Proof Theory (Lev Beklemishev, Wilfried
Buchholz, Lev Gordeev, Michael Rathjen, Sergei Tupailo, Stanley Wainer, An-
dreas Weiermann), WQO theory (Alberto Marcone, Antonio Montalbán, Lev
Gordeev, Andreas Weiermann), Models of Arithmetic (Andrey Bovykin, Henryk
Kotlarski, Konrad Zdanowski, Alan Woods), weak arithmetics (Lev Beklemishev,
Alan Woods, Konrad Zdanowski), logical aspects of finite Ramsey Theory (Andrey
Bovykin, Lorenzo Carlucci, Henryk Kotlarski, Joseph Mileti, Eran Omri, Andreas
Weiermann). However, the central theme of the workshop was first-order unprov-
able statements and statements of large logical strength. The subject originated
in the late 1970s in the work of several mathematicians, most notably Jeff Paris
and Harvey Friedman and attracted a large community of researchers at that time.
The discoveries of the Paris-Harrington Principle and unprovability of Kruskal’s
Theorem provided, fourty years after Gödel’s theorems, the first examples of math-
ematically natural unprovable statements. Since then, many other examples were
found in Ramsey Theory, Graph Theory, well-quasi-order theory and other sub-
jects. One of the main objectives of the workshop was to revive research in this
area, especially in view of some spectacular recent developments. These develop-
ments revealed deep connections between the study of logical strength and several
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mathematical disciplines: Analytic Combinatorics, Graph Theory, Tauberian The-
ory, Number Theory, Dynamical Systems. Another objective of the workshop was
to stimulate communication and joint research between researchers from differ-
ent sub-areas of the subject (Ordinal Analysis, Reverse Mathematics, Models of
Arithmetic). All these different areas were represented at the workshop by leading
researchers. The workshop was very successful in setting grounds for comparison
and interaction of methods from these areas. The two open problem sessions re-
sulted in a list of problems of common interest and in better understanding of
possible directions for future research. The talks varied from reports on recent
results and proposals of new general approaches to discussions of new strategies
to tackle long-standing open problems. Time allowed for free informal discussion
and research in small groups that will eventually result in publications.

We would like to thank the Oberwolfach Institute for the wonderful opportunity
to hold a meeting there and for providing NSF travel grants to some participants.
We also thank all the staff working in the institute for the pleasant experience we
all had during our week in Oberwolfach Institute.
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Abstracts

Representing worms as a term rewriting system

Lev D. Beklemishev

Since term rewriting systems are universal models of computation, it is clear
that there must exist some systems for which termination is hard to prove, in
particular, whose termination is not provable in PA. Such examples, however,
would prima facie involve heavy coding in the spirit of Gödel’s incompleteness
theorem.

The question arises, whether there are natural, simple to formulate and mem-
orable examples of such systems. Combinatorial independent principles like the
Hydra battle offer an obvious line of approach. There are several papers reformu-
lating the Hydra battle as a term rewrite system.

A system formulated by N. Dershowitz [2] has only recently been fully analyzed
by G. Moser [3]. The analysis turned out to be rather complicated.1

Alternative systems have been offered by Touzet [4]. They have nicer behavior
and are simpler to analyze, but they only capture parts of the full Hydra battle.
In particular, the termination for each individual system is provable in PA. The
strength of these systems approximates PA from below, but the arity of functions
involved in the systems increases ad infinitum.

The Worm principle is one of the simplest combinatorial principles which looks
almost as a statement of termination for a particular string rewrite system. It
does lead to some natural examples of term rewrite systems whose termination is
not provable in PA. We present three such systems here. Of those three, especially
the second one is memorable and extremely simple, but it is infinite. The third
system, obtained by adapting the second one, is finite and has a simple analysis,
but it is less memorable. In some respects it is closer to the systems by Touzet
than to the one of Dershowitz.

Our main result can be summarized as follows.

Theorem 1. If W is any of the three systems W1, W2, W3 formulated below, W
is terminating. The termination of W is not provable in PA.

An infinite string rewrite system. The following system very closely approximates
the original Worm principle. Consider an infinite alphabet Σ = {a0, a1, a2, . . . }.
Let Sn denote the set of words in the sub-alphabet {ai : i ≥ n}. The system W1

has the following rules:

an+1α −→ (anα)k, α ∈ Sn+1, k ≥ 1.

Here α runs through all words from Sn+1. Hence, this is essentially a schema of
rules.

1At this workshop, W. Buchholz presented a simplification of a system of Dershowitz which
also admits a simplified analysis. It is interesting to compare it with the systems given in this
paper.
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Computations in this system differ from the Worm sequence in the following
aspects: 1) Reductions can occur anywhere within a word, not only at the begin-
ning; 2) The symbol a0 is never erased; thus, a long sequence of a0’s, rather than
an empty word, is computed; 3) k does not depend on the step of the process, but
is chosen freely; 4) α need not be the longest possible part of the word to which
the rule is applicable.
A nicer system. We consider a signature with a constant 0, a binary function
symbol ·, and a unary function symbol f . The system W2 has three rules (the
second and the third one schematic):











(x · y) · z −→ x · (y · z)

f(0) −→ 0m, m ≥ 1;

f(0 · x) −→ (0 · f(x))m, m ≥ 1.

Here xm means x · (· · · (x · (x · x)) · · · ) (m times).
Intuitively, · and f denote certain operations on words from Σ: · corresponds

to concatenation and f(x) is the result of replacing all letters ai in x by ai+1.
Hence, we can define a function mapping every word α ∈ S0 to a ground term α#

as follows. If α = an
0 then α# := 0n. Otherwise, write α = α1a0α2a0 · · ·a0αn,

where all αi ∈ S1. Then

α# := f((α−
1 )#) · 0 · f((α−

2 )#) · 0 · · · 0 · f((α−
n )#),

where we assume the right association of brackets.
Given a worm α and stage m of the game let α[m] denote the next worm.2 The

following lemma is straightforward.

Lemma 1. Suppose α does not begin with a0. Then α# −→∗ α[m]# in W2.

Termination of W2 is easy to obtain by lexicographic path ordering: let 0 pre-
cede · precede f . Unprovability in PA follows from the fact that W2 simulates the
Worm sequence by the stated lemma.
A finite system. In order to make W2 finite, we have to consider step m of the
game as part of the data so that a term encoding (m,α), where α is a worm,
rewrites to a term encoding (m+ 1, α[m]).

We introduce new unary function symbols a, b, b1 and c. (m,α) will be repre-
sented by a term of the form cam(t), where t represents a worm as in W2. The
rules of the system enable the markers a to move to a place within t where a
reduction is to be made. They perform the reduction and become the markers b1.
After the last of the markers a acts, a symbol b appears that eats up all the letters
b1 and they all move to the beginning of the term where c transforms them back
into a.

2The worms here are symmetric to the worms in [1].
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The rules of the system W3 are as follows:

(1) (associativity) (x · y) · z −→ x · (y · z)
(2) (a moves downwards)

a(f(x)) −→ f(a(x)); a(x ·y) −→ a(x) ·y; a(b1(x)) −→ b1(a(x))
(3) (b moves upwards and subsumes b1)

f(b(x)) −→ b(f(x)); b(x) · y −→ b(x · y); b1(b(x)) −→ b(b(x))
(4) (copying)

a(f(0 · x)) −→ b1(f(0 · x) · (0 · f(x))); a(f(0)) −→ b1(f(0) · 0)
(5) (reduction)

f(0 · x) −→ b(0 · f(x)); f(0) −→ b(0)
(6) c(b(x)) −→ c(a(x)); a(b(x)) −→ b(a(x)).

It is easy to see that W3 emulates the Worm sequence. Termination of W3 can
be proved by relating it to the system W2.
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New results and visions of unprovability and logical strength

Andrey Bovykin

I talked about several directions in the subject of Unprovability and Logical
Strength that I am currently working on and about visions of some future devel-
opments that are already within reach.

1. Reverse Mathematics

Reverse mathematics is the study of logical strength and consistency strength
of second-order arithmetical statements. Originally, model-theoretic and recur-
sion-theoretic approaches in the subject complemented each other. Nowadays,
recursion-theoretic analysis is dominating in this area. Interconnections of reverse
mathematics with the topic of this workshop (first-order combinatorial indepen-
dence results) can be best illustrated by the fact that the proof of unprovability of
PH was originally a modification of the (model-theoretic) proof that RT3

2 implies
all of Peano Arithmetic (in [9]). Since then many higher-order strong statements
inspired the discovery of first-order ‘miniaturizations’ that preserved a lot of their
strength.
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My contributions that may have some interest from the point of view of reverse
mathematics are as follows.

• Model-theoretic re-proof of Joseph Mileti’s Theorem on the strength of
CanRT2, the Canonical Ramsey Theorem for pairs [6]. The proof uses
strong initial segments in models of arithmetic.
• Development, together with Andreas Weiermann in [6], of the model-

theoretic method of ‘densities’ to approximate logical strength of second-
order statements by strengths of their first-order iterations. Successful
results so far include the treatment of RT2

2, RegRT2, CanRT2 in [6] and of
Hilbert’s basis Theorem, Kruskal’s Theorem, Infinitary Erdös-Moser prin-
ciple and a few other statements in [7]. Several assertions (e.g., Hindman’s
Theorem) resisted density treatment so far.

There are several beautiful theorems in modern Infinite Ramsey Theory and geo-
metric functional analysis that are the next candidates for application of these
methods (to establish their strength), e.g. Pudlak-Rödl theorem, Gowers’ the-
orems, some statements about blocks and barriers, about strategically Ramsey
sets and about oscillation stability. Possibly, a version of Dvoretzki’s theorem in
geometric functional analysis will have some strength too.

2. Building upon the sine-principle

The sine-principle says: “for all m,n (n < m), there is N such that whenever
a1 < a2 < . . . < aN is an increasing sequence of rational numbers, there is H ⊂ N
of size m such that for any i1 < i2 < · · · < in and i1 < k2 < · · · < kn in H ,

| sin(ai1 · ai2 · . . . · ain
)− sin(ai1 · ak2 · . . . · akn

)| < 2−i1”.

This PA-unprovable statement was proposed by Harvey Friedman in the inter-
net forum FOM. An important feature of this principle is that there is no quantifier
over all colourings as in PH or KM. A proof, using the Rhin-Viola theorem from
number theory, can be found in [2]. The core of this result is the following lemma
(‘every function can be approximated by sine on a subset’): for any ε > 0 and any
dimension n, any number K and any function g : [K]n → [−1, 1], there is a set of
rational numbers A = {a1, a2, . . . , aK} such that for any i1 < i2 < · · · < in ≤ K,
we have

|g(i1, i2, . . . , in)− sin(ai1 · ai2 · . . . · ain
)| < ε.

It is not difficult to prove that every function that satisfies this lemma gives us
an independence result of a similar shape. So, an interesting investigation would
be to catalogue a few other examples of this kind and convert them into shapes
that are interesting in the corresponding mathematical disciplines. Recently, An-
dreas Weiermann found another proof of the lemma, using an effective version of
Kronecker’s result on simultaneous diophantine approximation. This led him to a
new result that sin(x1 · . . . ·xn) can be replaced by {x1 · . . . ·xn}, the fractional part
of the product, and (using results on distribution of zeros of the Riemann zeta-
function on vertical lines), that sine can be replaced by the Riemann zeta-function.



Mini-Workshop: Logic, Combinatorics and Independence Results 3097

It was noticed by the author that sine can also be replaced by the complex expo-
nent, and a new result with a large class of complex functions in place of sine is
forthcoming. Also, Andreas Weiermann proved an independence result about the
logistic mapping in the theory of chaotic dynamical systems using the same ideas
in combination with symbolic dynamics.

3. Ramseyan unprovable statements

Despite the recent spectacular independence results that do not look exactly
WQO-theoretic or Ramsey-theoretic, I still think that Ramsey Theory is the
easiest source of entirely new future independence results. I suggest that more
connections with modern Ramsey Theory should be developed, with the idea of
constructing the right sets of indiscernibles out of certain homogeneous sets, for
example:

• make use of sparseness conditions (∀x < y in H , 2x < y) as in [1] and in
some old papers from the 1980s by the Founders of the subject;
• try to use ascending and descending waves instead of arithmetic progres-

sions to build unprovable versions of van der Waerden’s Theorem;
• try to formulate a new game of Noughts and Crosses to establish an un-

provable version of the Hales-Jewett Theorem;
• combine sieve methods with indiscernibles (a very rudimentary combina-

tion is mentioned in the end of [1]).

Another interesting idea, first mentioned by Alan Woods in his PhD thesis, is
to try to prove unprovability of Hypothesis H: “for any finite collection of ir-
reducible polynomials F1(x), F2(x), . . . , Fn(x) with integer coefficients and such
that

∏

i≤n Fi has no fixed prime divisor, there exist infinitely-many integers m

such that for all i ≤ n, Fi(m) are prime”. This conjecture is extremely strong
and its formulation already provides some necessary ingredients for independence
proofs (e.g. the enumeration of all ∆0-formulas can probably be extracted), so it
begs to become an independence result.

4. Braids

Several independence results can be extracted from Dehornoy’s left-invariant
ordering of positive braids as ωωω

. Some results are translations of transfinite
induction up to ωωω

, using a correspondence between braids and ordinals, another
result (by L. Carlucci and the author) in [5] is a braid-theoretic version of the hydra
battle (for definitions, see L. Carlucci’s abstract on page 3102). The possibility of
such results was originally suggested to Andreas Weiermann by Patrick Dehornoy
and this is currently a fast-developing topic with new results being obtained by
L. Carlucci, P. Dehornoy, A. Weiermann and the author.

There is some hope to translate statements about braids into geometrical, topo-
logical statements, even with some amount of physical meaning, e.g. via Artin’s
Braid Theorem.
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5. Weiermann’s program of finding thresholds

A. Weiermann’s (now well-known) threshold results for the Paris-Harrington
Principle in [10] and for Kruskal’s theorem in [11] started a new program of re-
search: to introduce a threshold parameter and find a gap between provability and
unprovability of the statement in terms of the value of the parameter. Several new
results have emerged recently in this direction, e.g. a theorem by P. Dehornoy and
A. Weiermann on a threshold value for braid principles.

My contributions to this program are: a model-theoretic proof of threshold
results for PH and KM in [4] and a not yet exact threshold result for the Graph
Minor theorem in [3]. For a function f , let GMf be the following statement: “for
every K there is N such that for any sequence of simple graphs G1, G2, . . . , GN

such that |Gi| < K + f(i), there are i < j ≤ N such that Gi is isomorphic to a
minor of Gj”. So far we have:

(1) For any r ≤
√

2 and f(i) = r · √log i, the statement GMf is provable in
I∆0 + exp.

(2) For f(i) = 7 log i, the statement GMf is unprovable in PA.

The proofs rely on Pólya theory and a translation between Graph Minor Theorem
and Kruskal’s Theorem in [8]. We conjecture that the final exact result will be:

(1) For any r ≤
√

2, the statement GMr
√

log is provable in I∆0 + exp.

(2) For any r >
√

2, GMr
√

log is unprovable in PA.
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Another rewrite system for the standard hydra battle

Wilfried Buchholz

In their 1990 Handbook article [1] on term rewriting Dershowitz and Jouannaud
presented a certain rewrite system based on the Kirby-Paris hydra battle [2], and
claimed that the system is terminating. In 2004 Dershowitz gave a corrected
version of this system1 which describes the hydra battle more faithfully. Only
quite recently G. Moser [3] proved that both these systems are terminating. In
our talk we present a variant Q of the 2004 system which is even closer to the
hydra battle and for which termination can be proved in a rather simple way.

Let F denote the signature consisting of the constant 0 and the binary function
symbols g, d, h. Let T := T (F ,V) be the set of all terms over F and a countably
infinite set V of variables. Let H := T ({0, g}) be the set of all closed terms over
{0, g}. The elements of H can be seen as representations of finite trees (hydras) or,
equivalently, nested finite sequences: 0 stands for the empty sequence, and g(a, b)
represents a ∗ 〈b〉. Now working in H, a single step in the (standard) hydra battle
can be described as the transition from (a, n) ∈ H× IN to (a[n], n+1) ∈ H × IN,
where a[n] is defined by recursion on the build up of a. Since we want to model
the hydra battle in an ordinary (single sorted) term rewriting system, we identify
IN with the subset {0, 1, 2, . . .} of H, where 0 := 0 and n+1 := g(n, 0), and define
a[c] for arbitray a, c ∈ H such that a[n] corresponds to a[n].

Notation. In the sequel the letters a, b, c always denote elements of H (hydras),
while q, r, s, t denote arbitrary terms from T. By lh(t) we denote the number of
symbols of t.

Definition of a[c] ∈ H for a, c ∈ H

0[c] := 0

g(a, b)[c] :=



















a if b = 0

a if b = g(b0, 0) & c = 0

g(g(a, b)[c0], b0) if b = g(b0, 0) & c = g(c0, c1)

g(a, b[c]) if b = g(b0, b1) with b1 6= 0

The rewrite system Q over T is given by the following rules:
(Q0) h(g(x, y), z)→ h(d(g(x, y), z), g(z, 0))
(Q1) d(0, z)→ 0

(Q2) d(g(x, 0)), z)→ x
(Q3) d(g(x, g(y, 0))), 0)→ x
(Q4) d(g(x, g(y, 0)), g(z, v))→ g(d(g(x, g(y, 0)), z), y)
(Q5) d(g(x, g(y, g(u, v))), z)→ g(x, d(g(y, g(u, v)), z))

1https://listes.ens-lyon.fr/wws/arc/rewriting



3100 Oberwolfach Report 52/2006

The rules (Q1)-(Q5) model exactly the recursive definition of d(a, c) := a[c], while
(Q0) models (one step of) the hydra battle.

Remark.

(a) If t ∈ T({0, g, d}) is Q-irreducible then t ∈ H.
(b) If t = h(a, c) is irreducible then a = 0.

Definition.

W 0 := ∅, Wn+1 := {t : ∀t′(t→Q t′ ⇒ t′ ∈Wn)};
W :=

⋃

n∈INW
n.

We will now prove that Q is terminating, i.e. ∀t(t ∈ W ).

The following Lemma 1 holds, since for each t there are only finitely many t′ such
that t→Q t′.
Lemma 1. t ∈ W ⇔ ∀t′(t→Q t′ ⇒ t′ ∈W ).

Lemma 2.

(a) s ∈Wm & t ∈Wn ⇒ g(s, t) ∈Wm+n;
(b) g(s, t) ∈ Wn ⇒ s, t ∈Wn;
(c) s ∈Wm & r ∈Wn ⇒ d(s, r) ∈W .
Proof.

(a) and (b) are obvious, since Q contains no rule with g as leading symbol. Part
(c) is proved with the help of (a) and (b) by induction on ω ·(m+n)+lh(s)+lh(r).

Definition of v(t) ∈ H

1. v(0) := v(x) := 0;
2. v(g(s, t)) := g(v(s), v(t));
3. v(d(t, r)) := v(t)[v(r)];
4. v(h(t, r)) := 0.

Lemma 3. q →Q q′ =⇒ v(q′) = v(q).
Proof by straightforward induction on lh(q).

Definition of o(a) ∈ On
o(0) := 0 and o(g(a, b)) := o(a)#ωo(b).

Lemma 4. a 6= 0 ⇒ o(a[c]) < o(a).
Proof by straightforward induction on lh(a) using elementary ordinal arithmetic.

Definition. o(t) := o(v(t)).

Lemma 5. ∀t, r ∈W (h(t, r) ∈W ).
Proof by induction on o(t).
Assume: t̃ ∈W & ∀t, r ∈W (o(t) < o(t̃)⇒ h(t, r) ∈W ) (MIH)
To prove: ∀r ∈ W (h(t̃, r) ∈ W ).
By side induction on m+ n we prove:
∀t, r(o(t) ≤ o(t̃) & t ∈Wm & r ∈Wn ⇒ h(t, r) ∈W ).
Assumptions: (1) o(t) ≤ o(t̃), (2) t ∈Wm, (3) r ∈ Wn.
Let h(t, r)→Q q. To prove: q ∈W .
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We only consider the following two cases.
1. q = h(t′, r) with t →Q t′: Then, by Lemma 3, v(t′) = v(t) and therefore, by
(1), o(t′) = o(t) ≤ o(t̃). We also have t′ ∈ Wm−1 and r ∈ Wn. Hence q ∈ W by
the side induction hypothesis.
2. t = g(t0, t1) and q = h(d(t, r), g(r, 0)):
By Lemma 4 and (1) we get (4) o(d(t, r)) < o(t) ≤ o(t̃).
By Lemma 2 from (2) and (3) we get d(t, r), g(r, 0) ∈ W .
Hence q = h(d(t, r), g(r, 0)) ∈W by (4) and MIH.

Theorem. ∀t(t ∈W ).
Proof by induction on lh(t) using Lemma 2a,c and Lemma 5.

Remark. The above termination proof can be “locally” formalized in PA.
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Some results on theorems unprovable in Peano Arithmetic and its

subsystems

Lorenzo Carlucci

Some results are presented about ‘mathematically natural’ theorems indepen-
dent from Peano Arithmetic and its subsystems.

1. Phase transition for Regressive Ramsey functions

A contribution to Weiermann’s programme of phase transitions for indepen-
dence results (see Andreas’ abstract on page 3121) is presented: the full classifica-
tion of the Kanamori-McAloon principle for fixed arbitrary dimension d+ 1 with
respect to the IΣd subsystem of Peano Arithmetic PA. The results of this section
are joint with Lee and Weiermann [4].

A colouring F of the set of the d-tuples of non-zero natural numbers is called
f -regressive (f a number-theoretic function) if for each d-tuple σ with minimum
s we have F (σ) < f(s). The Kanamori-McAloon principle in dimension d and
parameter f (KMd

f ) says that for all k, there exists an ℓ so large that for every

f -regressive colouring F of the d-tuples of elements of {1, . . . , ℓ}, there exists an
ℓ-element set H ⊆ {1, . . . , ℓ} such that F assigns the same colour to all d-tuples
from H with the same minimum (such a set H is called min-homogeneous for F ).
KM :≡ (∀d)KMd

identity is often considered one of the most ‘natural’ examples of

a theorem independent from PA, and KMd+1
identity is independent of IΣd.
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The Schwichtenberg-Wainer Hierarchy is defined as follows.

F0(x) := x+ 1; Fα+1(x) := F x
α (x); Fα(x) := Fα[x](x).

It is well-known that Fωd
dominates all IΣd-provably total functions, where ωd

denotes a tower of d ω’s, and that d 7→ Fωd
dominates the provably-total functions

of PA.
Let logd denote the d-th iteration of the binary logarithm.

Theorem 1 (Carlucci, Lee, Weiermann, 2005). Let

fd
α(i) = ⌊ F

−1
α

(i)
√

logd(i)⌋.
Then, for all d > 0,

IΣd ⊢ KMd+1

fd−1
α

iff α < ωd.

Corollary 2. IΣd 0 KMd+1
⌊logc⌋

iff c ≤ d− 1.

For the upper bound (provability part), a non-trivial adaptation of a proof by

Erdös and Rado is used. The Skolem function of KMd+1

fd−1
α

is shown to be primitive

recursive in Fα, for α < ωd.
For the lower bound (unprovability), a key ingredient is to force the existence

of min-homogeneous sets whose elements are spread out with respect to some
relevant function. Non-trivial adaptations of methods from [7] are used.

The case d = 1 was already proved by Kojman, Lee, Omri and Weiermann
(see Omri’s abstract on page 3115). Surprisingly, the phase transition for the
Kanamori-McAloon principle with unbounded dimensions with respect to full Peano
Arithmetic has a different form, and is the same as the phase transition for the
Paris-Harrington principle (as established by Weiermann [9]).

The above results were used by Bovykin in his recent work on Friedman’s Sine
Principle in [2].

2. Long games on positive braids

Two rewriting games on positive braid words are introduced, much in the spirit
of Kirby-Paris’ Hydra Game. Game 1 is played on positive braids with three
strands and has an Ackermannian length. Game 2 is played on arbitrary positive
braids and its termination is unprovable in IΣ2. These results are part of an
ongoing investigation joint with A. Bovykin, P. Dehornoy and A. Weiermann.
The eventual goal is to obtain natural algebraic independence results on the braid
group, a natural and well-studied mathematical structure.

The n-strand braid group Bn is a group with the following presentation:

Bn = 〈σ1, . . . , σn−1;σiσj = σjσi for |i− j| ≥ 2, σiσjσi = σjσiσj for |i− j| = 1〉.
A braid is called positive if it has a representation without σ−1

i for any i. We
denote the set of positive n-strand braids by B+

n .
Dehornoy defined in [5] a left-invariant linear ordering of braids. Laver later

showed [8] that Dehornoy’s ordering is a well-ordering when rescricted to positive
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braids. Burckel [3] showed that the order-type is ωωω

(the reason for this order-
type of braids essentially coming from Higman’s Lemma).

Rules of Game 1

For each word a = bmn

n b
mn−1

n−1 . . . bm1
1 ∈ {1, 2}∗ and n ∈ N we define the reduct a[n]

of a as follows.

• If a = a01, then a[n] = a0.
• Otherwise, let bmi

i be the first block of a with more than two letters. Put

a[n] = bmn

n . . . bmi−1
i b

mi−1+n
i−1 . . . bm1

1 .

Proposition 3. Game 1 terminates but the termination is unprovable in IΣ1.

If a ≤ b, we let w[a↑b] := a(a + 1)2 . . . (b − 1)2b2(b − 1)2 . . . (a + 1)2a, and

w[b↓a] := b(b − 1)2 . . . (a + 1)2a2(a + 1)2 . . . (b − 1)2b. We call these words waves
from a to b and from b to a respectively.

Let w = ∗ba∗. We define b̂, the first crossing of b in w as follows: (1) if a > b,

then b̂ is the first occurrence of a letter c ≤ b in a∗; (2) if a < b, then b̂ is the first
occurrence of a letter c ≥ b in a∗; (3) if a∗ = ǫ or there is no occurrence as in

1, 2, then b̂ = ǫ. For example, in 3124, 4 is the first crossing of 3. In 25342, the
rightmost 2 is the first crossing of the leftmost 2.

Rules of Game 2

Given a word w let we define its reduct w[k] for every k > 0 as follows.

• If the last letter of w is 1 then a[w] is obtained from w by deleting this 1.
• Otherwise, let bmi

i be the first block in w with more than two letters. Let

w be of the form w = ∗bmi

i w0b̂i∗, where b̂i is the first crossing of bi in w

(if b̂i = ǫ, then w = ∗bmi

i w0). Let m be the minimal letter in w0 and M
be the maximal letter in w0.

Then, w[k] is defined by the following substitution:

∗bmi

i w0 →֒







































bmi−1
i (bi + 1)2(w[(bi+1)↑M ])

k(bi + 1)

if ǫ 6= w0 = aw1, a > bi,

bmi−1
i (bi − 1)2(w[(bi−1)↓m])

k(bi − 1)

if ǫ 6= w0 = aw1, a < bi.

bmi−1
i (bi − 1)2(w[(bi−1)↓1])

k(bi − 1)

if w0 = ǫ.

Note that Game 2 restricted to B3 is essentially the same as Game 1.

Proposition 4. Game 2 terminates but the termination is unprovable in IΣ2.

Proofs using ordinals and comparison with fast-growing hierarchies are avail-
able, as well as model-theoretic proofs developed by Bovykin using Indicator The-
ory, see [1].
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Strong WQO phase transitions

L. Gordeev

(joint work with A. Weiermann)

1. Summary

We investigate phase transitions for well-quasi-ordering (also referred to as well-
partial-ordering, abbr.: wpo) results with respect to nested finite sequences and
nested finite trees under the homeomorphic embedding with symmetrical gap con-
dition. We consider three wpo spaces:

(1) nested finite sequences,
(2) finite trees labeled by nested finite sequences,
(3) nested finite trees.

With every wpo W in question we correlate a natural PA-extension T (below
Π1

1TR0), that proves the corresponding 2-order sentence WPO (W). Furthermore,
we consider the appropriate parametrized 1-order slow well-partial-ordering sen-
tence SWP (W , · · · , x) with x ranging over computable reals and actually compute
a real number λ and prove that the following hold:

(1) if x < λ then SWP (W , · · · , x) is provable in PA,
(2) if x > λ then SWP (W , · · · , x) is not provable in T.

Such (uniquely determined) λ is called phase transition for SWP (W , · · · , x).
In limit cases we replace computable reals r by computable functions f : N →
R and prove analogous theorems. These results strengthen familiar Kruskal-
Friedman-Gordeev-Kriz wpo theorems and Weiermann’s phase transitions con-
cerning Kruskal-Friedman-Schütte-Simpson cases.
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2. Preliminaries

2.1. Partial and linear well orderings. By E and ≤ we denote partial and lin-
ear countable well orderings (abbr.: wpo and wo), respectively. A wo O = (W,≤)
is called a linearization of a wpo W = (W,E) iff (∀x, y ∈W ) (x E y → x ≤ y).
A wpo W = (W,E) is called enumerated iff it is supplied with a bijection, also
called enumeration, ν : N → W . For any enumerated wpo W = (W, ν,E) we fix
its lexicographical linearization Wν = (W,≤ν) that is defined as follows

W ×W ∋ x ≤ν y :⇔ (∀i ∈ N) (ν (i) E x←→ ν (i) E y) ∨ (∃i ∈ N)

(ν (i) 5 x ∧ ν (i) E y ∧ (∀j < i) (ν (j) E x←→ ν (j) E y))

2.2. Partial orderings on labeled sequences and trees.

Definition 1. A labeled finite tree T is embeddable with symmetrical gap con-
dition into a labeled finite tree T ′ (abbr.: T E T ′) iff there is a homeomorphic
embedding h : T → T ′ such that (∀x ∈ T ) (x ≤ h (x)) and min

≤
(x, x′) ≤ y holds for

any two neighbors x, x′ in any path P ⊂ T and any y ∈ h (P ) ⊂ T ′. Here ≤ stands
for the underlying wo on the set of labels occurring in T, T ′. Note that E is a wpo.
1-D trees, i.e. trees without branchings, are called labeled sequences. Embedding
of labeled finite sequences is an obvious 1-D specialization of general definition for
trees. All finite structures in question are supplied with natural enumerations (ν)
and norm functions (#).

Remark 2. Without loss of generality we can just as well replace vertex-labeled
trees by the corresponding edge-labeled trees.

2.3. Nested sequences and trees. By Seqd we denote the set of nested finite
sequences, i.e. finite sequences, finite sequences labeled by finite sequences, etc.,
where d stands for the depth of nesting in question. By E1

d and ≤1
d we denote

the corresponding embedding relation and its linearization, respectively, which
are defined by simultaneous recursion on d. Thus Seq1 ∼= N and Seq2 corresponds
to the set of finite sequences with labels from N.

By Tsd, E2
d and ≤2

d we denote the set of finite trees with labels from Seqd, the
corresponding embedding relation and its linearization, respectively.

By Ttd we denote the set of nested finite trees, i.e. finite trees, finite trees
labeled by finite trees, etc., where d stands for the depth of nesting in question;
the corresponding wpo E3

d and wo ≤3
d are defined by simultaneous recursion on d.

In particular Tt0 = Ts0 is the set of plain (unlabeled) finite trees.

3. Basic results

For any wpo W = (W,E) let WPO (W) be an abbreviation of “W is a wpo”
in the form (∀f : N→W ) (∃i < j ∈ N) (f (i) E f (j)). For any wpo W = (W,E),
0 < d ∈ N and 0 ≤ r ∈ Q, let SWP (W,E, d, r) be the corresponding first order
refinement of WPO (W)

(∀K ∈ N) (∃M ∈ N) (∀x0, · · · , xM ∈W )

((∀i ≤M) (# (xi) ≤ K + r · ⌈logd (i+ 1)⌉)→ (∃i < j ≤M) (xi E xj))
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Theorem 3. (1) If r < 1 ≤ d then PA ⊢ SWP
(

Seq2,E1
d, d, r

)

.

(2) If r > 1 then PA 0 SWP
(

Seq2,E1
2, 2, r

)

and ∆1
1CA 0 SWP

(

Seq3,E1
3, 3, r

)

.

Theorem 4. For any computable f : N→ Q and I (x) := x, the following holds.

(1) If f ≺∞ I then ∀k (∃d > k) PA ⊢ SWP
(

Seqd,E1
d, d, f (d)

)

.
(2) If I ≺∞ f then:

(a) (∃k) ATR0 0 (∀d > k) SWP
(

Seqd,E1
d, d, f (d)

)

,

(b) ATR ⊢ (∀d > 0) SWP
(

Seqd,E1
d, d, f (d)

)

.

Let ρ (d) := 1
8

(

−d+
√
d2 + 16

)

and ℓ (d) := − logρ(d) (2). Note that ℓ (1) ≈
.7369095552, ℓ (2) ≈ .5902344834, while ℓ (d) → 0 as d → ∞. For brevity we

also identify ℓ (1) with constant function ℓ (1) : N ∋ x 7→ ℓ (1) ∈ R. By ID
(d)
<ω we

denote a formal system that is defined by recursion ID
(1)
<ω := ID<ω , ID

(d+1)
<ω :=

ID
<o

(

ID
(d)
<ω

) . Note that ID<ω = Π1
1CA0 and ID

(d)
<ω → Π1

1TR0 as d→∞.

Theorem 5. For any d > 1 the following holds, where ϕ0 (0) := 1, ϕ1 (0) := ω,
ϕ2 (0) := ε0, ϕd+1 (0) := ϕ (ϕd (0) , 0); thus ϕd (0)→ Γ0 as d→∞.

(1) If r ≤ ℓ (d) then PA ⊢ SWP
(

Tsd,E2
d, 2, r

)

.

(2) If r > ℓ (d) then ID<ϕd(0) 0 SWP
(

Tsd,E2
d, 2, r

)

.

Theorem 6. For any d ≥ 0 the following holds.

(1) If r ≤ ℓ (1) then PA ⊢ SWP
(

Ttd,E3
d, 2, r

)

.

(2) If r > ℓ (1) then ID
(d+1)
<ω 0 SWP

(

Ttd,E2
d, 2, r

)

.

Theorem 7. For any computable f : N→ R the following holds.

(1) If f ≺∞ ℓ (1) then ∀k (∃d > k) PA ⊢ SWP
(

Ttd,E3
d, 2, f (d)

)

.
(2) If ℓ (1) ≺∞ f then:

(a) (∃k) Π1
1TR0 0 (∀d > k) SWP

(

Ttd,E3
d, 2, f (d)

)

,

(b) Π1
1TR ⊢ (∀d > 0) SWP

(

Ttd,E3
d, 2, f (d)

)

.

A survey of full satisfaction classes

Henryk Kotlarski

The goal of my lecture1 is to give a survey of the theory of full satisfaction
classes. I follow my paper [7]. I hope that this sort of problems is of some logical
interest.

Arithmetize the language L of Peano arithmetic. It is convenient to pick a
formalization such that no function symbols are allowed, but we have names for all
natural numbers. By z̄ we denote the name for z. Say that D is a full satisfaction

class if it satisfies the usual condition on truth given by A. Tarski, i.e.,

1This is my lecture on satisfaction classes, given in Oberwolfach, during Workshop on Logic,
Combinatorics and Independence Results, in November 2006. It is not intended to be
published.
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(1) If D(ϕ), then Sent(ϕ);
(2) if ϕ is of the form ā+ b̄ = c̄, then D(ϕ) iff a+ b = c;
(3) the same for other atomic formulas in L;
(4) D(¬(ϕ)) iff not D(ϕ);
(5) D(ϕ ∧ ψ) iff D(ϕ) and D(ψ);
(6) D(∃xϕ(x)) iff D(ϕ(m̄)) for some m.

This definition is a single sentence in L∪ {D}. Think of it as follows. Let M be a
model of PA which has a full satisfaction class D. Then D is just a notion of truth
for all objects in M of which M thinks that they are Gödel numbers of sentences
(including nonstandard ones). Thus, D determines a semantics for the language
in the sense of M .

Robinson [15] was the first to treat seriously nonabsoluteness of finiteness in the
very definitions of the language. Krajewski [11] found the appropriate definitions
and proved that satisfaction for the language in the sense of a given model M
of PA is not uniquely determined by M .

Theorem 1. There exists a model M of PA which has many full satisfaction classes.
Precisely, if D0 is a full satisfaction class for a countable model M for PA such
that (M,D0) is recursively saturated, then D0 has continuum many automorphic

images, i.e., {D ⊂ SentM : ∃g ∈ Aut(M)D = g ∗D0} is of power 2ℵ0 .

This result follows (nowadays) immediately from the countable version of the
Chang–Makkai theorem and Tarski’s theorem on undefinability of truth. Some
strengthenings of this result are known, cf. [4].

Knowing that semantics for L in the sense of M need not be unique for some
models M for PA we ask the question when does such a semantics exist? That is,
which models M admit a full satisfaction class? This question was answered by
Krajewski, Lachlan and the present author [8].

Theorem 2. Every countable recursively saturated model M for PA has a full
satisfaction class.

Corollary 3. The theory “PA+ D is a full satisfaction class” is conservative over PA.

This result seems to be slightly surprising. The reason is that in many cases
one proves consistency of some theory T is a theory T1 essentially by constructing
in T1 a full satisfaction class for T . For example, this is one of the reasons for
which the second order arithmetic proves consistency of PA. The reason for which
consistency does not follow from the existence of a full satisfaction class is that
we do not have induction in the language L∪ {D}, where D is given by the proof
of theorem 2. Thus, we cannot prove by induction on the length of a given proof
d ∈M that all of its items are D–true.

In fact, induction in the language L ∪ {D} fails in a much more surprising
manner. Let Ai be the disjunction of i + 1 copies of the obviously true sentence
0 = 0. But we need to distribute parentheses in this disjunction, so we define: A0

is (0 = 0) and Ai+1 is (Ai ∨Ai).
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Theorem 4. If M is a countable recursively saturated model of PA, then it admits
a full satisfaction class making some Ai false.

The essential reason for which theorem 2, corollary 3 and theorem 4 hold is
lemma 5, which says that there is no uniform bound for heights of proofs of sen-
tences Ai in the following version of ω–logic. Let Γ0 be the set of all true atomic
sentences and negated false atomic ones. Let Γi+1 be Γi together with the set of
all sentences which can be derived from elements of Γi by a single application of a
rule of predicate calculus or by a single application of the ω–rule: infer ψ∨∀x ϕ(x)
from all sentences ψ ∨ ϕ(m̄).

Lemma 5. For every k there exists r such that Ar /∈ Γk.

This seems to be an innocent result, but its proof is rather torturous. V. Hal-
bach [3] gave another proof of theorem 2.

Alistair Lachlan [12] proved that theorem 2 has the following converse.

Theorem 6. If M is a nonstandard model of PA which admits a full satisfaction
class, then M is recursively saturated.

Let me remark that the proof of theorem 2 gives a full satisfaction class which
makes all instances of induction true (of course, including nonstandard ones). It
turns out that if we require all theorems of PA be true, then we obtain satisfaction
classes which are not that pathological. I studied this phenomenon in [6].

Theorem 7. The following theories are equal:

(1) PA+ “D is a full satisfaction class” + ∆0 induction in L ∪ {D};
(2) PA+ “D is a full satisfaction class” + ∀ϕ [PrPA(ϕ)⇒ D(ϕ)].

It follows for example that if M admits a full ∆0 inductive satisfaction class,
then it must satisfy ConPA and much more, for example iterated uniform reflection
(iterated < ω times). Let me say something more in this direction. In the system
of ω–logic described above the use of each rule increased the height of the proof.
Change it to the system in which only the use of the ω–rule increases the measure
of complexity of the proof. More exactly, we let Γ0(ϕ) be PrPA(ϕ), Γn+ 1

2
(ϕ)

be “ϕ is of the form η ∨ ∀zψ(z) and for all z Γn(η ∨ ψ(z̄)), and Γn+1(ϕ) be
∃〈ξ0, · · · ξr−1〉∀i < r Γn+ 1

2
(ξ) ∧ PrPA(∧∧i<r → ϕ).

Theorem 8. Let M be a countable recursively saturated model of PA. Then M
has a full ∆0–inductive satisfaction class iff for all n ∈ N, M |= ¬Γn(0 = 1).

But this system of ω–logic also may be inconsistent:

Theorem 9. Let M be a countable recursively saturated model of PA which ad-
mits a full ∆0–inductive satisfaction class. Then it admits a full ∆0–inductive
satisfaction class which makes Γj(0 = 1) true for some j ∈M .

Rather than giving more details here (see [7]), let me state a more familiar proof
theoretic characterization of the theory with a full satisfaction class. It is taken
from [10]. Fix a system of notations for ordinals below εε0 . Let TI(α) denote the
scheme of transfinite induction over α. Let ω0(α) = α and ωm+1(α) = ωωm(α).
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Theorem 10. Fix m ∈ N. Let M be a countable recursively saturated model
of PA. Then admits a full Σm–inductive satisfaction class iff for all k ∈ N,
M |= TI(εωm(k)).

Similarly for full induction in the language with D. Let ωm = ωm(ω).

Theorem 11. Let M be a countable recursively saturated model of PA. Then
admits a full inductive satisfaction class iff for all k ∈ N, M |= TI(εωm

).

Ratajczyk [14] studied inductive full satisfaction classes from the point of view of
partition properties in the Paris–Harrington style and gave a sentence independent
from “PA+ D is an inductive full satisfaction class”. Smith [16, 18, 17] showed
that the countability assumption is essential in theorem 2. Engström shows that
it is possible to work in the language with function symbols. Kossak and the
present author [5] show more concrete sentences in the sense of the model under
consideration made true by some full inductive satisfaction class and made false
by another one. Ratajczyk and the author [9] give a description of first order
consequences of the existence of a full inductive satisfaction class in terms of
consistency of some version of ω–logic iterated to the transfinite. In his recent [1]
Cieśliński shows that if D is a full satisfaction class closed under provability in
predicate calculus, then it is already ∆0–inductive, so a weaker assumption of
making logic true suffices in theorem 7.

A weaker notion, that of a partial inductive satisfaction class was used to study
recursively saturated models of PA.

The following is a list of all known to me references on full satisfaction classes.
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On Fräıssé’s conjecture for linear orders of finite Hausdorff rank

Alberto Marcone

(joint work with Antonio Montalbán)

Let LO be the class of countable linear orders. If L,L′ ∈ LO let L � L′ mean
that there exists an order preserving embedding of L into L′. L ∼ L′ abbreviates
L � L′ and L′ � L. In this case we say that L and L′ are equimorphic.

Fräıssé’s conjecture (FC) is the statement that LO is well-quasi-ordered by �,
i.e. that there are neither infinite descending chains nor infinite antichains. Fräıssé
formulated this conjecture in 1948 ([1]). Laver ([4]) established FC in 1971 by
proving a stronger statement using Nash-Williams’ notion of better quasi-order
([8]). Laver’s Theorem states that LO is better-quasi-ordered by 4 (actually Laver
proved even more, extending the result beyond LO). All known proofs of Fräıssé’s
conjecture actually establish Laver’s theorem.

It is easy to state FC in the language of second order arithmetic, and it has been
a longstanding open problem in reverse mathematics ([11] is the main reference
for this research program) to establish its exact axiomatic strength (see [5] for a
survey of the area). Laver’s proof can be carried out within the strong system Π1

2-

CA0, and Shore ([9]) showed that FC implies ATR0. Since FC is a Π1
2 statement,

standard model theoretic considerations show that FC does not imply Π1
1-CA0 over

ATR0. More recently Montalbán ([7]) showed that FC is equivalent over RCA0 to
other statements about linear orders.

An easy observation is that to establish FC it suffices to consider scattered linear
orders, i.e. lineal orders L ∈ LO such that Q � L (all non-scattered countable linear
orders are equimorphic). Scattered linear orders were first studied by Hausdorff a
century ago ([2]), and his results lead to the notion of Hausdorff rank.

Definition 1. If L is a linear order we define for every ordinal α an equivalence
relation ≈α on L such that ≈α-equivalence classes are intervals in L:

• ≈0 is equality;
• if α > 0 then x ≈α y iff there exists β < α such that there are finitely

many ≈β-equivalence classes between x and y.
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Let the Hausdorff rank of L, rkH(L), to be the least α such that there exists finitely
many ≈α-equivalence classes, if such an α exists.

Hausdorff essentially showed that rkH(L) exists if and only if L is scattered.
Moreover it is easy to see that if L is countable scattered then rkH(L) is a countable
ordinal.

Let α be an ordinal and let LOα = {L ∈ LO : rkH(L) < α } and FCα be the
statement that LOα is well-quasi-ordered by �. Our goal is to gather information
on the strength of FC by looking at the strength of various FCα. The first step
in this project is the study of FCω, i.e. of Fräıssé’s conjecture for linear orders of
finite Hausdorff rank.

It is well-known that a quasi-order (Q,≤) is a well quasi-order if and only if all
its linear extensions are well-orders.

Definition 2. If (Q,≤) is a well quasi-order let

o(Q,≤) = sup{α : α is the order type of a linear extension of (Q,≤) }.
De Jongh and Parikh ([3]) showed that this sup is actually attained.
The starting point of our reverse mathematics results is the computation of

o(LOω,�). Recall that the Veblen functions give an ordinal notation system for
ordinals below Γ0. They are defined by letting ϕ0(α) = ωα and, for β > 0, ϕβ(α) =
the α-th common fixed point of all ϕγ with γ < β. In particular ϕ1 enumerates
the ε-numbers, i.e. the critical points of the exponential function.

Theorem 1. o(LOω,�) = ϕ2(0), i.e. the least fixed point of the ε function.

The ordinal ϕ2(0) is the proof-theoretic ordinal of the system ACA+
0 which

consists of RCA0 plus the statement “for every X , X(ω) (the arithmetic jump of
X) exists” (see [10] for recent results about ACA+

0 ).

The proofs of FC make use of the notion of indecomposable linear order.

Definition 3. A linear order L is indecomposable if whenever L = L1 + L2 then
L � L1 or L � L2.

It follows from FC that every scattered linear order is the finite sum of indecom-
posable linear orders. Montalbán ([7]) showed that the latter statement is indeed
equivalent to FC over RCA0.

We use Montalbán’s signed trees to study indecomposable scattered linear or-
ders.

Definition 4. A signed tree ia a pair (T, sT ) where T ⊆ ω<ω is a nonempty
well-founded tree and sT : T → {+,−}. Let ST be the set of all signed trees.

If (T, sT ), (T ′, sT ′) ∈ ST a map f : T → T ′ is a homomorphism if

• σ ⊂ τ implies f(σ) ⊂ f(τ) for every σ, τ ∈ T ;
• sT ′(f(σ)) = sT (σ) for every σ ∈ T .

If there exists a homomorphism from (T, sT ) to (T ′, sT ′) we write (T, sT ) �
(T ′, sT ′). (T, sT ) and (T ′, sT ′) are equimorphic (and we write (T, sT ) ∼ (T ′, sT ′))
if (T, sT ) � (T ′, sT ′) and (T ′, sT ′) � (T, sT ).
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To each (T, sT ) ∈ ST we associate a countable linear order lin(T, sT ) so that:

(1) each lin(T, sT ) is scattered indecomposable and each scattered indecom-
posable countable linear order different from 1 is equimorphic to lin(T, sT )
for some (T, sT ) ∈ ST;

(2) (T, sT ) � (T ′, sT ′) (in ST) if and only if lin(T, sT ) � lin(T ′, sT ′) (in LO),
and in particular (T, sT ) ∼ (T ′, sT ′) if and only if lin(T, sT ) ∼ lin(T ′, sT ′);

(3) rkH(lin(T, sT )) and the height of the tree T differ by at most one.

Details of the definition of lin can be found in [7] and [6].
In particular indecomposable linear orders of finite Hausdorff rank are repre-

sented by signed trees of finite height. Since each of these trees is easily seen to
be equimorphic to a finite signed tree, we study LOω by looking at STω, the set of
finite signed trees.

Theorem 2. RCA0 proves that the following are equivalent:

(1) STω is well-quasi-ordered by �;
(2) ϕ2(0) is well-ordered.

Theorem 3. RCA0 proves that FCω implies that STω is well-quasi-ordered by �.

Theorem 4. ACA
+
0 proves that if STω is well-quasi-ordered by � then FCω holds.

Theorems 2 and 4 yield an upper bound for the complexity of FCω:

Theorem 5. ACA
+
0 + “ϕ2(0) is well-ordered” proves FCω.

To obtain a lower bound for the complexity of FCω we start by noticing that
some of the intermediate steps in Shore’s proof that FC implies ATR0 ([9]) show
that RCA0 proves that FCω implies ACA0. Shore’s arguments can be refined to
yield:

Theorem 6. RCA0 proves that FCω implies ACA′
0.

Here the system ACA′
0 consists of RCA0 plus the statement “for every X and

n, X(n) exists”. ACA′
0 is properly weaker than ACA+

0 and properly stronger than
ACA0.

Theorem 6 cannot be strengthened by replacing ACA′
0 with ACA+

0 . In fact FCω

holds in the ω-model consisting of all arithmetic sets, where ACA+
0 fails.

Theorems 2, 3 and 6 yield:

Theorem 7. RCA0 proves that FCω implies ACA′
0 + “ϕ2(0) is well-ordered”.
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[2] F. Hausdorff. Grundzüge einer Theorie der geordneten Mengen. Math. Ann., 65(4):435–505,
1908.

[3] Dick H. J. de Jongh and Rohit Parikh. Well-partial orderings and hierarchies. Nederl. Akad.
Wetensch. Proc. Ser. A 80=Indag. Math., 39(3):195–207, 1977.
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The Strength of the Rainbow Ramsey Theorem

Joseph Mileti

(joint work with Barbara Csima)

The Rainbow Ramsey Theorem is essentially an “anti-Ramsey” theorem which
roughly states that certain colorings always have a large heterogeneous section.
To begin, we first recall Ramsey’s Theorem.

Definition 1. Given a set Z and an n ∈ N+, we let [Z]n = {x ⊆ Z : |x| = n}.
Theorem 2 (Ramsey’s Theorem). Suppose that n, k ∈ N+ and that f : [N]n → k.
There exists an infinite set H such that f is constant on [H ]n. Such an H is called
homogeneous for f . We denote the formal statement of this fact in second-order
arithmetic by RT n

k .

The Rainbow Ramsey Theorem puts a finiteness conditions on the number of
times each color may appear instead of the total number of possible colors.

Definition 3. A function f : [N]n → N is called k-bounded if |f−1(c)| ≤ k for all
c ∈ N.

Theorem 4 (Rainbow Ramsey Theorem - Galvin). Suppose that n, k ∈ N+ and
that f : [N]n → N is k-bounded. There exists an infinite set R such that f is
injective on [R]n. Such an R is called a rainbow for f . We denote the formal
statement of this fact in second-order arithmetic by RRT n

k .

Surprisingly, one can prove RRT n
k from RT n

k by a clever but simple argument
which is easily formalized from RCA0, the standard base theory of reverse math-
ematics. In particular, any computability-theoretic upper bounds of solutions to
computable instances of Ramsey’s Theorem will apply to computable instance of
the Rainbow Ramsey Theorem. The following fundamental result characterizes
the location of homogeneous sets for computable f : [N]n → k in terms of the
arithmetical hierarchy.
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Theorem 5 (Jockusch). For every computable f : [N]n → k, there exists a Π0
n

set homogeneous for f . Furthermore, for each n ≥ 2, there exists a computable
f : [Nn → 2 such that no Σ0

n set is homogeneous for f .

As a consequence, we get the same upper bounds for the Rainbow Ramsey
Theorem, and using similar diagonalization techniques we obtain the same lower
bounds.

Theorem 6. For every computable k-bounded f : [N]n → N, there exists a Π0
n set

which is a rainbow for f . Furthermore, for each n ≥ 2, there exists a computable
2-bounded f : [N]n → N such that no Σ0

n set is a rainbow for f .

Thus, we can diagonalize at the same level for both theorems. However, if we
want to compare strengths in the sense of reverse mathematics, an analysis of what
can be coded into the Turing degrees of solutions to computable instances should be
our goal. To obtain a distinction in this sense between Ramsey’s Theorem and the
Rainbow Ramsey Theorem, we need to give a proof which does not filter through
Ramsey’s Theorem. As with most partition theorems, we do this by a sequence
of finite approximations which leave infinitely many points left to continue the
construction.

Definition 7. Let f : [N]2 → N.

• A finite set F is heterogeneous for f if f is injective on [F ]2.
• If F is heterogeneous for f , we let

V iabf(F ) = {a ∈ N : F ∪ {a} is heterogeneous for f}
We call V iabf(F ) the set of viable numbers for F .
• If F is heterogeneous for f , we say that F is admissible for f if V iabf(F )

is infinite.

The fundamental fact is that if F is admissible for f , then there exists at
most |F | many elements of V iabf(F ) which destroy admissibility when added to
F . This allows one to recursively build a rainbow by avoiding “bad” elements.
However, this simple upper bound on the number of bad elements gives a lot more
information. If we choose to continue by picking an element of V iabf(F ) in a
sufficiently random manner, then with very high probability we should be able to
continue adding elements to build a rainbow. This idea can be used to prove the
following result.

Theorem 8. Suppose that f : [N]2 → N is 2-bounded and computable. Let X be
2-random. There exists an X-computable rainbow for f .

Using the relativization of this result together with van-Lambalgen’s Theorem,
we can in fact build entire models below 2-randoms.

Theorem 9. Suppose that X is 2-random. There exists an ω-model of RCA0 +
RRT 2

2 in which every set is X-computable.

This is sharp contrast to the situation for Ramsey’s Theorem.
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Theorem 10 (Mileti). There exists a computable f : [N]2 → 2 such that

µ({X ∈ 2N : X computes a set homogeneous for f}) = 0

Combining these results, we conclude that RRT 2
2 is in fact strictly weaker than

RT 2
2 .

Corollary 11. RCA0 +RRT 2
2 6⊢ RT 2

2 .

The question of whether RRT n
2 implies RT n

2 for any n ≥ 3 is still open, although
we can show that RCA0 + RRT 2

2 6⊢ RRT 3
2 . One conjecture is that n-randomess

suffices for RRT n
2 , which would imply that that RRT n

2 is strictly weaker than
RRT n+1

2 for all n (thus providing a strictly ascending chain of combinatorial state-
ments below ACA0).

Sharp thresholds for Ackermannian Ramsey Numbers

Eran Omri1

(joint work with Menachem Kojman, Gyesik Lee, Andreas Weiermann)

Omri, Eran
Suppose g : N → N is a function. A nonempty set X ⊆ N is g-large if |X | ≥
g(minX). A coloring C : [N]2 → N is g-regressive if C({m,n}) ≤ g(min{m,n})
for all {m,n} ⊆ N.

The g-large Ramsey number of k and c, denoted R∗
g(k, c), is the least N so that

N
∗−→g (k)c.

This symbol means: for every coloring C of [N ]2 by c colors there is a g-large
C-homogeneous subsets of N of cardinality at least k.

The g-regressive Ramsey number of k, denoted Rreg
g (k), is the least N so that

N
min−→ (k)g.

This symbol means: for every g-regressive coloring C : [N ]2 → N there exists
a min-homogeneous H ⊆ N of size at least k, that is, the color C(m,n) of a pair
{m,n} ⊆ H depends only on min{m,n}.

We compute below the sharp thresholds on g at which g-large and g-regressive
Ramsey numbers cease to be primitive recursive and become Ackermannian. We
prove:
Theorem 1. Suppose g : N→ N is nondecreasing and unbounded. Then R∗

g(k, c)
is bounded by some primitive recursive function in k and c if and only if for every

t > 0 there is some M(t) so that for all n ≥M(t) it holds that

g(n) < logn/t

and M(t) is primitive recursive in t.

1Supported by the Lynn and William Frankel center for Computer Sciences.
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Theorem 2. Suppose g : N→ N is nondecreasing and unbounded. Then Rreg
g (k)

is bounded by some primitive recursive function in k if and only if for every t > 0
there is some M(t) so that for all n ≥M(t) it holds that

g(n) < n1/t

and M(t) is primitive recursive in t.

We also identify the threshold below which g-regressive colorings have usual
Ramsey numbers, that is, admit homogeneous, rather than just min-homogeneous
sets, and give a lower bound of

A53(22274

)

on the Id-regressive Ramsey number of k = 82, where A53 is the 53-d approxi-
mation of Ackermann’s function.
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The natural numbers in constructive set theory

Michael Rathjen

1. Introduction

In our forthcoming monograph on constructive set theory (see [1]), Peter Aczel
and the author develop constructive mathematics within the framework of intu-
itionistic set theory. Many a times the monograph strives to single out the weakest
set-theoretic axioms required for developing a specific part of mathematics. Being
the mother structure of mathematics, the set of natural numbers deserves a lot of
attention. The weakest set theory considered in [1] is Elementary Constructive Set
Theory (ECST ). ESCT has an Axiom of Infinity which allows one to prove the
existence of the von Neumann natural numbers ω as well as the Peano axioms for
the successor function. Experience with ECST , however, induced us to conjecture
that ECST is not strong enough to prove the existence of the addition function
on ω. As a result, we isolated a new axiom, dubbed Finite Powers Axiom (FPA),
to ensure the existence of all primitive recursive functions on ω. The objective
of this abstract is to confirm the hunch that ECST is insufficient to capture the
structure (N; 0, 1,+,×).

2. Elementary Constructive Set Theory

ECST is based on the following axioms and axiom schemes: Extensionality,
Pairing, Union, Replacement, ∆0-Separation, and Strong Infinity:

∃a[Ind(a) ∧ ∀b[Ind(b)→ ∀x ∈ a(x ∈ b)]],
where we use the following abbreviations.

• Empty(y) for “y is the empty set”,
• Succ(x, y) for y = x ∪ {x},
• Ind(a) for (∃y ∈ a)Empty(y) ∧ (∀x ∈ a)(∃y ∈ a)Succ(x, y).

3. Main Result

Theorem ECST does not prove the existence of the addition function on ω.

Proof sketch: Let M be an elementary recursively saturated extension of NL :=
(N; 0, S,<). Let HYPM be the least admissible set above M (see [2], Ch.II,sect.5).
HYPM is a model of Kripke-Platek set theory with urelement structure M. Let
M be the domain of M. Since M is recursively saturated it follows from [2], II.7.2
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that every relation on M in HYPM is first-order definable on M. In consequence
of this,

HYPM 6|= ∃f [f : M ×M →M ∧ ∀x ∈M f(x, 0) = x(1)

∧ ∀x, y ∈M f(x, S(y)) = S(f(x, y))]

for otherwise an addition relation would be definable in M and thus, as NL ≺M,
addition would be definable in NL, which is impossible. Any subset of N definable
in NL is either finite or has finite complement.

Next we shall utilize the fact that HYPM is a model of Kripke-Platek set theory.
By transfinite recursion in HYPM we define the class of M -sets, ∈M -elementhood,
and an equivalence relation≈M on M -sets as follows: M is an M -set with x ∈M M
iff x ∈M . Each a ∈M is an M -set with x ∈M a iff x <M a. A set b is an M -set iff
all its elements are M -sets. For M -sets a, b, a ≈M b holds iff ∀x ∈ a ∃y ∈ b x ≈M y
and ∀y ∈ b ∃x ∈ a x ≈M y.

In a further step we view the class ofM -sets equipped with ∈M and≈M (notated
(M;∈M ,≈M )) as a (non-wellfounded) set-theoretic universe wherein the role of
ω is played by the M -set M . We wish to interpret the theory ECST in (M;∈M

,≈M ). This, however, requires a further step in which we graft onto (M;∈M ,≈M )
a type-theoretic structure TM and subject ECST to a functional interpretation
in TM. For intuitionistic set theories with ∈-induction this has been carried out
by W. Burr in his dissertation (see [3]). We also have to ensure that in TM
one cannot define new relations on HYPM. This follows from the fact that the
functional terms in the interpretation do not involve recursors and is ultimately
to be proved via a normalization theorem. As a result of (1) it then follows that
the existence of the addition function on ω is not provable in ECST . 2.

Conjecture. ECST has a finitistic consistency proof (i.e., the consistency of
ECST is provable in PRA).
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Set Theory, Automorphisms, and External Forcing

Sergei Tupailo

I am based on Boffa’s 1988 theorem [1] that NF is consistent if there is a model
M of ZF, a cardinal κ ∈M , and an ∈-automorphism σ of M such that 2κ = σ(κ).
Boffa has conjectured that such a model does exist, but has given no indication
how this might be shown. Can we prove Boffa’s conjecture, or whatever variation
can be taken instead of it?

A non-trivial (external) automorphism σ of a model of ZF exists by the Ehren-
feucht-Mostowski theorem. With a little more effort, for example using consistency
of ZF with V = L, one can achieve σ(κ) > κ, for κ being a regular cardinal. But
Boffa’s theorem asks more: it wants 2κ = σ(κ). Can we arrange for this??

The idea which immediately springs into mind is to use forcing to achieve this goal.
Further reflections have shown that the only way to go is through fine structure
of Easton’s iterated forcing.
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Predicative Arithmetic and Slow Growing Bounds

S.S. Wainer

1. The Theory EA(I;O)

We describe a weak system of arithmetic developed in Ostrin and Wainer, anal-
ogous to PA, but with two kinds of variables – induction (or “input”) variables
x, y, z and quantifier (or “output”) variables a, b, c, which play roles correspond-
ing to the normal/safe recursion variables of Bellantoni and Cook. Our theory is
closely related to the ramified, intrinsic theories developed previously by Leivant,
but the formalism here is a particularly simple and straightforward revision of full
arithmetic, codifying basic principles of Nelson’s “Predicative Arithmetic”. Thus
two fundamental ideas guide the theory: (i) proofs are parameterized by their
numerical inputs, which control the lengths of inductions and, once introduced,
cannot be quantified; (ii) quantifiers range over values defined or computed from
the inputs. The induction axioms are

A(0) ∧ ∀a(A(a)→ A(a+ 1))→ A(x)

or equivalently, and more explicitly,

A(0) ∧ ∀a(A(a)→ A(a+ 1))→ ∀a ≤ x.A(a) .

Thus the theory is really a theory of input–bounded induction, and its computa-
tional strength turns out to be that of I∆0 + exp.
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The principal logical restriction which must be applied to such theories concerns
the ∃-introduction and (dually) ∀-elimination rules. Only “basic” terms: variables
or 0 or their successors or predecessors, may be used as witnesses. The effect
is that an arbitrary term may be used to witness an existential quantifier, but
only when it has been proven to be defined. Thus, provided we formulate the
theory carefully enough, Σ1–proofs will correspond to computations, and bounds
on proof-size will yield complexity measures.

A numerical function f(~x) is provably recursive if it has a provable Σ1 definition
∃aB(~x, a) with inputs ~x.

Theorem 1.1. Every elementary (E3) function is provably recursive in the theory
EA(I;O), and every sub-elementary (E2 or equivalently LINSPACE) function is
provably recursive in the fragment which allows induction only on Σ1 formulas.

One can obtain upper bounds by embedding EA(I;O) into an appropriate infini-
tary system analogous to that for full PA. However, because of the “pointwise–at–
x” nature of induction, the ordinal assignment to each rule is now of a particularly
simple kind: if β is assigned to a premise and α is assigned to the conclusion, then
the restriction is that β <x α for the fixed input x (where <x is the transitive
closure of β <x β + 1 and λx <x λ). This means that each proof with ordinal
bound α can be collapsed to a proof of finite height Gα(x) where G is the slow–
growing hierarchy. Since, for ordinals α < ε0 the functions Gα are exponential
polynomials, the bounds on Σ1 proofs are elementary. Consequently,

Theorem 1.2. The provably recursive functions of EA(I;O) are exactly the ele-
mentary (E3) functions, and the provably recursive functions of its Σ1 inductive
fragment are subelementary (E2).

By adding axioms for (iterated) inductive definitions to EA(I;O) one obtains
theories ID1(I;O), ID2(I;O) etc. Since the ordinal of ID1 is the Bachmann–
Howard ordinal, and since below this, the slow–growing functions exhaust the
provably recursive functions of PA, ID1(I;O) has computational strength equiv-
alent to full PA, and ID2(I;O) has strength that of classical ID1 etcetera. In his
Leeds thesis (2004), Williams gives a detailed analysis of the IDn(I;O) for n < ω.
As shown also by Wirz in his Bern thesis (2005), provable transfinite induction
in such theories is of the following weak form (similar to one first considered by
Schmerl):

A(0) ∧ ∀β(A(β)→ A(β + 1)) ∧ ∀λ(∀a ≤ x.A(λa)→ A(λ))→ ∀β <x αA(β) .

This enables one to prove termination of the slow–growing function Gα(x) but
nothing more.
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Phase transitions in logic and combinatorics

Andreas Weiermann

1. Introduction

Phase transition is a type of behaviour wherein small changes of a parameter of
a system cause dramatic shifts in some globally observed behaviour of the system,
such shifts being usually marked by a sharp ‘threshold point’. (Everyday life ex-
amples of such thresholds are ice melting and water boiling temperatures.) This
kind of phenomena nowadays occurs throughout many mathematical and com-
putational disciplines: statistical physics, evolutionary graph theory, percolation
theory, computational complexity, artificial intelligence etc.

The last few years have seen an unexpected series of achievements that bring
together independence results in logic, analytic combinatorics and Ramsey Theory.
These achievements can be intuitively described as phase transitions from provabil-
ity to unprovability of an assertion by varying a threshold parameter [13, 16]. An-
other face of this phenomenon is the transition from slow-growing to fast-growing
computable functions [15, 18].

2. Phase transitions for Kruskal’s theorem

To fix the context let us define a finite tree to be finite partial order 〈B,≤B〉,
such that for every b ∈ B the set {b′ ∈ B : b′ ≤B b} is linearly (i.e. totally) ordered
trough ≤B and such that B contains a minimum, the root. For two given vertices
b, b′ ∈ B there exists an infimum, which we denote by b∧B b

′. (If we go from b and
b′ to the root the infimum is the first vertex where the path´s meet.) We say that
a tree B is embeddable into a tree B′ (this situation is denoted by B � B′) if there
exists an one to one mapping h : B → B′ such that h(b ∧B b

′) = h(b) ∧B′ h(b′) for
all b, b′ ∈ B.

Let us denote the number of nodes in a tree B with lhB. For a given function
F : IN → IN let FKT(F ) be the assertion: For every K ∈ IN exists an M ∈ IN,



3122 Oberwolfach Report 52/2006

such that for every finite sequence (Bi)
M
i=0 of finite trees satisfying (∀i ≤M)[lhBi ≤

K+F (i)] there exist indices i, j ≤M with i < j and Bi �Bj . For any F : IN→ IN
the assertion FKT (F ) is true but concerning unprovability the following result
holds.

Theorem 1 (Friedman, Matousek and Loebl).

(1) If F (i) = i then PA does not prove FKT(F ) (cf [11]).
(2) Let lhi denote the binary length of i. Let Fα(i) := α · lhi.

(a) If α ≤ 1
2 then PA proves FKT(Fα) (cf. [8]).

(b) If α ≥ 4 then PA does not prove FKT(Fα) (cf. [8]).

It is an immediate question to ask for the threshold function resp. the threshold
value for α. The surprising answer is as follows (cf. [13]).

Theorem 2. Let T (z) :=
∑∞

n=0 tn · zn be a power series such that T (z) = z ·
exp(

∑∞
i=1

T (zi)
i ). Let ρ be the radius of convergence of T . Then 1 > ρ > 0. Let

c := − 1
log2(ρ) .

(1) α ≤ c then PA does prove FKT(Fα)
(2) If α > c then PA does not prove FKT(Fα).

Things change drastically if we switch to (planar) binary trees. For a given
function F : IN → IN let FKTB(F ) be the assertion: For every K ∈ IN exists an
M ∈ IN, such that for every finite sequence (Bi)

M
i=0 of finite binary trees satisfying

(∀i ≤M)[lhBi ≤ K + F (i)] there exist indices i, j ≤M with i < j and Bi � Bj .
It is again an immediate question to ask for the threshold function resp. the

threshold value. The answer is as follows. [20].

Theorem 3. Let c := 1
2 .

(1) α ≤ c then PA does prove FKT(Fα)
(2) If α > c then PA does not prove FKT(Fα).

Surprisingly there is an extremely sharp phase transition from feasibility to
unfeasibility in case of (planar) binary trees. For a given function F : IN→ IN let
B(F )(K) be the least M ∈ IN, such that for every finite sequence (Bi)

M
i=0 of finite

binary trees satisfying (∀i ≤ M)[lhBi ≤ lhK + F (i)] there exist indices i, j ≤ M
with i < j and Bi � Bj .

Theorem 4. Let c := 1
2 .

(1) α < c then B(Fα) is bounded by a polynomial.
(2) α = c then B(Fα) is bounded by a polynomial time computable function,

but not by a polynomial.
(3) If α > c then B(Fα) eventually dominates every provably recursive function

of PA.

It would be interesting to see whether a similar result holds for nonplanar trees
at the corresponding threshold point. There are some weak indications that things
will behave differently.
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3. Phase transitions for ε0

We code ordinals below ε0 in the following way: Let pi be the i-th prime for
i ≥ 1. Let N+ := IN \ {0} and let ⌈ 0 ⌉ := 1 und ⌈α ⌉ := p⌈α1 ⌉ · . . . · p⌈αn ⌉, if

α =NF ωα1 + . . .+ ωαn . Then the mapping ⌈ · ⌉ is a bijection between ε0 and N+

and we may induce an ordering which we denote with ≺ on N+ . It can easily be
seen that the induced ordering can be defined by a formula in the language of PA.

The scheme TI(≺, P ) can be written as follows:

TI(≺, P ) := (∀n ∈ N+)[(∀m ≺ nP (m))→ P (n))]→ ∀n ∈ N+P (n).

The ordinal ε0 is characteristic for an ordinal-theoretic phase transition for PA in
so far as PA proves the transfinite induction for every initial segment of ε0. More
explicitly, PA proves for every k ∈ N+ the assertion
∀m ≺ k[(∀n ≺ mP (n))→ P (m)]→ ∀m ≺ kP (m).

Via a compactness argument IN |= TI(≺, P ) yields for every function F : IN→
IN the truth of the following assertion FWO(F ):
(∀K)(∃M)(∀m1, . . . ,mn ∈ N+)

[

(∀i ≤ M) ⌈mi ⌉ ≤ K + F (i) → (∃i < M)mi ≺
mi+1

]

.

Theorem 5. (1) Let F (i) = 2i. Then PA does not prove FWO(F ) (cf. [10,
4]) .

(2) Let lhi1 := lhi and lhid+1 := lhlhid. If F (i) = 2lhi·lhid then PA does not
prove FWO(F ).

(3) Let log∗(i) := min{d : lhid ≤ 2}. If F (i) = 2lhi·log∗(i) then PA proves
FWO(F ).

¿From the viewpoint of analytic number theory the last phase transition result
refers to a multiplicative norm on ordinals. It is a natural question to investigate
phase transitions in the additive setting. To this end we define a norm N : ε0 → IN
as follows. N(0) := 0 and Nα := n+Nα1 + . . .+Nαn, if α =NF ωα1 + . . .+ωαn .
Via the natural isomorphis between ε0 and N+ the norm can be extended to N+.

As before a compactness argument applied to TI(≺, P ) yields for every function
F : IN→ IN the truth of the following assertion FWON(F ):
(∀K)(∃M)(∀m1, . . . ,mn ∈ N+)

[

(∀i ≤ M)Nmi ≤ K + F (i) → (∃i < M)mi ≺
mi+1

]

.

Theorem 6. (1) If F (i) = i then PA does not prove FWON(F ) (cf. [10, 4]).
(2) If F (i) = lhi · lhid then PA does not prove FWON(F ).
(3) If F (i) = lhi · log∗(i) then PA proves FWON(F ).

The optimal phase transition in this case has been obtained by Arai[1].
Remark: Sharp phase transition thresholds have been obtained in the meantime
for the hydra games, the Goodstein principle, the Paris Harrington principle, the
Kananmori McAloon principle, the Friedman-style Ramsey principle, and various
parameterized hierarchies of recursive functions (including the Grzegorczyk- and
extended Grzegorczyk hierarchy). (Several related results have been obtained over
the last years in joint work with the workshop coorganizers Bovykin and Carlucci,
and with Kojman, Lee and Omri.)
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Combinatorial Principles in Bounded Arithmetic.

Alan Woods

I∆0 is the axiom system similar to Peano Arithmetic, but with induction
hypotheses restricted to being ∆0 formulas, i.e., arithmetic formulas with only
bounded quantifiers . There is a long list of theorems of elementary number theory
for which no proof in I∆0 is known, and yet which are provable if one adds “new”
functions from the Grzegorczyk class E2. As such functions do not exceed polyno-
mial growth, these theorems are candidates for independence results not relying on
fast growing functions. Typically the theorems in question can in fact be proved in
I∆0 augmented by some suitable combinatorial “counting principle”, examples of
which include the Pigeonhole Principle and the Equipartition Principle. So these
principles may also turn out to be independent of I∆0.

Whenm is a functionm(n) of n, let PHPm
n (f) denote a sentence in the language

of arithmetic, augmented by an “extra” function symbol f , expressing that for all
n, f does not map {1, . . . ,m} one-to-one into {1, . . . , n}. PHPm

n (∆0) will denote
the axiom schema asserting this principle for those functions f which are definable
by ∆0 formulas.

Open Problem 1. Does I∆0 ⊢ PHPn+1
n (∆0), or even I∆0 ⊢ PHPn2

n (∆0)?

The obvious way to try to show I∆0 ⊢ PHPn+1
n (∆0), a problem which inci-

dently goes back to Macintyre [4], is to start “let f be a function ... ”. This does
not work, because Ajtai [1] proved that

I∆0(f) 6⊢ PHPn+1
n (f).

In fact he proved more, namely that the natural propositional tautologies PHPn+1
n

expressing the pigeonhole principle for n+ 1 objects, do not have constant depth
LK proofs of size bounded by some fixed polynomial in n. The connection is
that à proof of PHPm

n (f) in I∆0(f) would translate into a very uniform family
of polynomial size proofs of the corresponding tautalogies PHPm

n in propositional
calculus. The constant quantifier depth in the single predicate calculus proof,
translates into constant depth (of alternation of connectives) in the propositional
proofs. In [3] and [7] it was shown that constant depth proofs of PHPn+1

n require
roughly exponential size, dramatically strengthening Ajtai’s theorem.

Notice also, that we get stonger theorems if we state provability results in
terms of weak axiom systems such as I∆0(f), and unprovability results in terms
of propositional proofs of the appropriate size and constant depth.

The weak pigeonhole principle PHP 2n
n (f) is of particular interest because it is

known that from I∆0 enhanced by the addition of PHP 2n
n (f) for ∆0 definable

functions f , the existence of quadratic nonresidues for all odd primes [4], the
existence of arbitrarily large prime numbers [6], and Lagrange’s theorem on sums
of four squares [2] can all be proved, but no proofs for these using only I∆0 have
been found [4], [8].

Open Problem 2. Does I∆0(f)⊢PHP 2n
n (f), or even I∆0(f)⊢PHPn2

n (f)?
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Reformulated in terms of propositional proofs, the analogous problem is:

Open Problem 3. Do PHP2n
n and PHPn2

n have polynomial size, constant depth
LK proofs?

It is known ([9] or [5]) that if E2 cardinality functions |{n ≤ x : θ(n,y)}| count-
ing the elements n ≤ x satisfying certain ∆0 formulas θ(n,y) (with parameters y)
together with their recursive definitions, are added to I∆0, and if these functions
are allowed to be used in induction hypotheses, then it becomes possible to prove
each instance of PHPn+1

n (∆0). It is of some interest to know whether “natural”
instances of θ suffice for consequences of I∆0 + PHP (∆0) such as the existence
of arbitrarily large primes. Let π(x) denote the number of primes less than or
equal to x and let I∆0(π) denote I∆0 augmented by π together with its natural
recursive definition. Twenty five years ago, I conjectured in [9] that:

Conjecture 4. I∆0(π) ⊢ There exist arbitrarily large prime numbers.

The best result I know in this direction appears in a recent paper by Cornaros
and myself [10]. Recall that Bertrand’s Postulate (a theorem of Chebyshev) asserts
that for every n ≥ 1 there is some prime p satisfying n < p ≤ 2n. Define ξ(x, y, e)
to be the number of primes less than or equal to x for which the integer part [y/p e]
is odd. Let I∆0(ξ) be I∆0 augmented by ξ and its obvious recursive definition.

Theorem 1. I∆0(ξ) ⊢ Bertrand’s Postulate .

This theorem is a step in the direction of the conjecture, because π(x) can be
defined, and its recursive definition proved, in I∆0(ξ).
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Upper and lower bounds for proving Herbrand consistency in weak

arithmetics

Konrad Zdanowski

(joint work with Zofia Adamowicz)

We consider the family of arithmetics of the form I∆0 + Ωi, where I∆0 is
the induction restricted to bounded formulas only and Ωi is the axiom stating
that the function ωi is total. Let |x| = plog(x + 1)q. We define ω1(0) = 0 and

ω1(x) = 2(|x|−1)2, for x > 0. Similarly, ωi+1(0) = 0 and ωi+1(x) = 2ωi(|x|−1), for
x > 0. For other basic notions we refer to [HP93].

One of the main methods of showing that one set of axioms, say T , is strictly
stonger than the other one, say S ⊆ T , is to show that T ⊢ ConS . However, as
was shown by Wilkie and Paris in [WP87] this method does not work for bounded
arithmetic theories if we use the usual Hilbert style provability predicate. Indeed,
they proved that even the strong arithmetic I∆0 + exp does not prove the Hilbert
style consistency of Robinons’s arithmetic Q, that is I∆0 + exp does not prove
that there is no Hilbert prove of 0 6= 0 from Q. Thus, if we hope to differentiate
various bounded arithmetics we should use some other provability notions, like
tableux or Herbrand provability. Indeed, for these notions it is usually easier to
show that a given theory is consistent since the Herbrand proofs are of bigger size
than Hilbert ones. Only when we know that the iterated exponentiation function
is total we can prove the equivalence of these notions of provability.

For some time it was even unknown whether the second Gödel incompleteness
theorem holds for arithmetics I∆0 + Ω1 and Herbrand style provability predicate.
Adamowicz and Zbierski in [AZ01] proved the second incompleteness theorem for
I∆0 + Ωi, for i ≥ 2 and Herbrand notion of consistency and later Adamowicz
in [A01] proved this result for I∆0 + Ω1. Lately, Ko lodziejczyk showed in [K06]
a strengthening of these results. He proved that there is a finite fragment S of
I∆0 +Ω1 such that no theory I∆0 +Ωi proves Herbrand consistency of S. Thus, if
one wants to differentiate bounded arithmetics by means of provability of Herbrand
consistency one should consider Herbrand proofs restricted to some cuts of a given
model of a bounded arithmetic. So, let HCons(T, I) be an arithmetical statement
saying that for any set Λ of terms of depths in I from the skolemization of the
theory T there is a boolean valuation p on pairs of terms from Λ such that p makes
all axioms from T true.

The following theorem is known.

Theorem 1. I∆0 + Ωi proves its Herbrand consistency restricted to the terms of
depth not greater than logi+3 that is I∆0 + Ωi ⊢ HCons(I∆0 + Ωi, logi+3).

The proof of theorem 1 relies on the fact that terms of the skolemized I∆0 + Ωi

of depths in logi+3 denotes only the elements from the logarithm of a given model
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M |= I∆0 +Ωi. Thus, one can use the truth definition for ∆0 formulas to interpret
all these terms in M and to obtain a suitable boolean valuation.

On the other hand we have the following theorem.

Theorem 2 (AZ06). Let T = I∆0 +Ωi. Then, for any ε > 0, T does not prove its

Herbrand consistency restricted to terms of depth not greater than (1 + ε) logi+2

that is T 6⊢ HCons(T, (1 + ε) logi+2).

It is tempting to close the gap by proving, at least for some i ≥ 1, either that

(1) I∆0 + Ωi ⊢ HCons(I∆0 + Ωi, logi+2)

or

(2) I∆0 + Ωi 6⊢ HCons(I∆0 + Ωi, A logi+3), for some A ∈ N.

Indeed both conjectures would have interesting consequences for bounded arith-
metics. If (1) holds then I∆0 +Ωi+1 would not be Π1–conservative over I∆0 +Ωi.

On the other hand, if (2) holds this would mean that we cannot mimic the proof

of theorem 1 for the cut A logi+3. We could conclude that there is no ∆0–truth
definition which uses only Ωi function and has properties provable in I∆0 + Ωi.
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