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Introduction by the Organisers

The Oberwolfach meeting described here aimed at presenting the latest mathe-
matical results in the field of kinetic theory (both classical and quantum).

There were 50 participants, among which 15 young participants (PhD students,
post-docs or young assistant professors). Two of them (M.-P. Gualdani and R.
Strain) were invited within the program ”US Junior Oberwolfach Fellows” : they
are promising young researchers working in the US.

The program of the meeting was made in such a way that a lot of time remained
for people to meet informally and discuss about scientific issues. It also ensured
that almost everybody attended all (or most of) the scheduled talks .

The program was structured in the following way : three subtopics were de-
fined (relationships between micro/meso/macroscopic models ; kinetic theory for
complex particles : granular media, coagulation/fragmentation, chemotaxis and
sprays ; quantum mechanical kinetic theory). For each subtopic, there were a few
(2 or 3) longer talks (about 40 minutes) by senior participants. For those talks,
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a specific effort of clarity was asked to the speakers, and the subject had to be
rather broad.

Then, shorter talks of about 20 minutes were planned , on more specialized
issues. Finally, a special (much longer) talk in two parts was presented by one of the
participants (C. Villani), in order to describe in a very didactical way an emerging
link between kinetic theory, optimal transport, and Riemannian geometry.

Some participants did not give a talk within this program, but organized an
informal discussion around a poster, with an audience composed of specially in-
terested people.

Here is a brief description of each of the subtopics.

(1) Much attention has been given to the passage from microscopic to meso-
scopic models, and the latest breakthroughs in this subdomain have been
described. The talks by R. Esposito, F. Golse and P.-E. Jabin are rep-
resentative of this line of ideas. The question related to the Boltzmann
equation and its macroscopic limit have also been presented, like for ex-
ample in the works by A. Bobylev and H. S. Yu. This last talk is typical
of the new and brilliant ideas recently introduced by the Asiatic research
groups on kinetic equations.

(2) Many talks have been devoted to the study of kinetic equations for com-
plex particles, showing the interest of the mesoscopic description in many
models. The use of entropy methods in these new fields of application
has led to interesting and unexpected results, as shown in the talks by J.
Carrillo or K. Fellner.

(3) Finally, the asymptotics of quantum mechanical models has played a cen-
tral role in this meeting, and in particular the rigorous derivation of (sim-
plified) one-particle models from many-particle systems. A typical ex-
ample of this research line was presented in the talk of L. Erdös on the
derivation of the Gross-Pitaevskii equation for Bose-Einstein condensates.

We finally would like to emphasize the ideas and trends which have emerged
within the two or three last years and which have been present in this Oberwolfach
meeting : a new approach of the relations between the hydrodynamic and non
hydrodynamic part of the Boltzmann equation; explicit estimates for the spectrum
of the linearized Boltzmann equation when the kernel is singular; the treatment
of coagulation/fragmentation equations as infinite-dimensional reaction-diffusion
equations with the help of entropy methods; the use of the ideas of kinetic theory
in fields coming out from the industry rather than from theoretical physics (supply
chains, industrial sprays, etc.).
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Abstracts

The Spatially Inhomogeneous Aizenman-Bak model: Convergence to
Equilibrium and Fast-Reaction Limit

Klemens Fellner

(joint work with Jose A. Carrillo, Laurent Desvillettes)

The Aizenman-Bak model for reacting polymers is considered for spatially inho-
mogeneous situations in which polymers diffuse in space with a non-degenerate
size-dependent coefficient. Denoting f = f(t, x, y) the concentration of poly-
mers/clusters with length/size y ≥ 0 at time t ≥ 0 and point x ∈ Ω ⊂ Rd,
d ≥ 1, we consider

(1) ∂tf − a(y)△xf = Q(f, f) .

The polymers/clusters are confined in a smoothly bounded domain Ω (with nor-
malized volume |Ω| = 1) satisfying homogeneous Neumann boundary conditions.
We assume the diffusion coefficient a(y) to be non-degenerate in the sense that
there exist a∗, a∗ ∈ R+ such that

(2) 0 < a∗ ≤ a(y) ≤ a∗.

The reaction term Q(f, f) of (1) models chemical degradation – break-up or
fragmentation – and polymerization – coalescence or coagulation – of polymers or
clusters, respectively. More precisely, the full collision operator reads as

Q(f, f) = Q+
c (f, f) −Q−

c (f, f) +Q+
b (f, f) −Q−

b (f, f)

where we have

- Coalescence of clusters of size y′ ≤ y and y− y′ results into clusters of size
y:

Q+
c (f, f) :=

∫ y

0

f(t, x, y − y′)f(t, x, y′) dy′.

- Polymerization of clusters of size y with other clusters of size y′ produces
a loss in its concentration:

Q−
c (f, f) := 2f(t, x, y)

∫ ∞

0

f(t, x, y′) dy′.

- Break-up of clusters of size y′ larger than y contributes to create clusters
of size y:

Q+
b (f, f) := 2

∫ ∞

y

f(t, x, y′) dy′.

- Break-up of polymers of size y reduces its concentration:

Q−
b (f, f) := y f(t, x, y).
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This kind of models finds its application not only in polymers and cluster aggrega-
tion in aerosols [9, 10, 1, 2, 4] but also in cell physiology [7], population dynamics
[6] and astrophysics [8]. Here, fragmentation and coagulation kernels are all set
up to constants as in the original Aizenman-Bak model [1].

We demonstrate that the entropy-entropy dissipation method applies directly
in this inhomogeneous setting giving not only the necessary basic a priori esti-
mates to start the smoothness and size decay analysis in one dimension, but also
(for constant diffusion coefficient in any spatial dimension or for non-degenerate
diffusion in dimension one) the exponential convergence towards global equilibria

(3) f∞ = e
− y√

N∞ ,

uniquely determined due to the conservation of the total number of monomers

(4)

∫

Ω

∫ ∞

0

y f(t, x, y) dy dx =

∫

Ω

N(t, x) dx =

∫

Ω

N(t = 0, x) dx := N∞ > 0 .

Theorem 1 ([3]). Let Ω be (0, 1) with diffusion coefficients satisfying (2) or let
Ω ⊂ Rd, d ≥ 1 with a(y) = a > 0 being constant. Assume nonnegative initial data
f0 6= 0 such that (1 + y + ln f0)f0 ∈ L1((0, 1) × (0,∞)).

Then, the global weak solutions (see [5]) f(t, x, y) of (1) decay exponentially to
the global equilibrium state (3) with explicitly computable constants C1, C2 and
rate α, both in global relative entropy and in the L1

x,y sense :

(5) ‖f(t, ·, ·) − f∞‖L1
x,y

≤ C2 e
−α

2 t

for all t ≥ 0, where f∞ is defined by (3) and N∞ > 0 is determined by the
conservation of mass (4).

Up to our knowledge, this is the first result of explicit equilibration rates for
spatially inhomogeneous coagulation-fragmentation models.

We show further that solutions in the one dimensional case are immediately
smooth in time and space while in size distribution solutions are decaying faster
than any polynomial, i.e.

∫ ∞

0

(1 + y)q ‖f(t, ·, y) − f∞(y)‖L∞
x
dy ≤ C3 e

−α t ,

for all t ≥ t∗, t∗ > 0 and q ≥ 0, and explicitly computable constants C3, α > 0.
Secondly, in a work in progress, we consider the inhomogeneous Aizenman-Bak

model rescaled for fast reactions

∂tf
ε − a(y) ∂xxf

ε =
1

ε
Q(fε, fε) .

Letting formally ε → 0 we expect fε → f0 satisfying Q(f0, f0) = 0, i.e. fε →
e−y/

√
N0

, where the limiting density N0(t, x) satisfies a nonlinear non-degenerate
diffusion equation being the limit of the conservation law of the mass density :

∂tN
0 − ∂xx n(N0) = 0 ,

where n(N) denotes the function n(N) =
∫∞
0 a(z

√
N)ze−z dz.



Classical and Quantum Mechanical Models of Many-Particle Systems 3197

In making the limit rigorous, we exploit the entropy dissipation as well as the
properties of the limiting equation. So far, to prove convergence, we have to
assume a uniform lower and upper bound on the number density of the polymer
distribution.
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Optimal transport in non-smooth Riemannian geometry

Cédric Villani

This talk was concerned with connections between kinetic theory, optimal trans-
port, and Riemannian geometry. Back in 1999, in a joint work with Otto [3],
we had given heuristic arguments in favor of the following conjecture. Take a
smooth Riemannian manifold, and for any probability density on it, define the
H-functional, or (negative) entropy, with the usual Boltzmann–Shannon formula.
Then this functional is displacement convex, in the sense that it is convex along
geodesics of optimal transport, as soon as the Ricci curvature is nonnegative ev-
erywhere. This conjecture was rigorously proven by Cordero-Erausquin, McCann
and Schmuckenschläger in a very interesting paper ([1]). Then Sturm and von
Renesse ([4]) noticed that there is actually equivalence between that displacement
convexity property, and the nonnegativity of the Ricci curvature (there is a more
general statement: K-displacement convexity is equivalent to Ricci being bounded
below by K). This simple remark was of great conceptual importance because it
opened the door to a possible synthetic treatment of Ricci curvature bounds in
terms of optimal transport tools, that are very robust. In a joint work with John



3198 Oberwolfach Report 54/2006

Lott [2], we explored these connections in the setting of length spaces, defining
what it means for a measured length space to have Ricci curvature bounded below
by K, and showing that this concept is stable under measured Gromov-Hausdorff
convergence. There is another criterion saying that, in some sense, “dimension
is less than N and Ricci curvature is nonnegative”. Our generalized notions are
also strong enough to imply several famous inequalities such as generalized spec-
tral gap, Sobolev, logarithmic Sobolev, Bishop-Gromov, or a weak form of the
Bonnet-Myers theorem. For details cf. [2].
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Reaction–diffusion equations for gas mixtures in a host medium

Marzia Bisi

There exists an ample literature about the uneasy problem of a consistent quan-
titative description of chemically reacting rarefied flows starting from a kinetic
approach. By extending usual methods of kinetic theory, it is possible to write
down integro-differential Boltzmann-like equations for the evolution of the dis-
tribution functions for each participating species. In some recent papers on the
subject [1, 2], we assume that the rarefied reacting mixture is not an isolated sys-
tem, but it is diffusing in a much denser medium, considered as a fixed background,
whose evolution is not influenced by collisions with atoms/molecules, and that is
taken to be in local thermodynamic equilibrium, with prescribed density, mass ve-
locity, and temperature. First of all we have considered a mixture of four species,
undergoing a bimolecular reversible chemical reaction, and elastic collisions both
with field particles and between the species themselves. After deriving kinetic
equations for the distribution functions, we analyze the hydrodynamic limit in the
collision dominated regime. To this aim, as usual in kinetic theory, we analyze
the reactive Boltzmann equations in dimensionless form: the main effect of the
adimensionalization is the appearance of some ratios involving the different scales
that measure the relative importance of each operator during the evolution of the
mixture. Such ratios can be expressed in terms of a small parameter, typically a
proper Knudsen number, and the sought hydrodynamic closure can be achieved by
a suitable asymptotic procedure with respect to such parameter. We assume that
the elastic scattering with the background medium, much denser than the other
species, plays a crucial role, so that the linear elastic operators are taken as dom-
inant in driving the process. Reactive processes are assumed less frequent than
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elastic scattering, since reactions involve more complicated microscopic effects such
as change of chemical nature and mutual exchange of internal energy. A formal
asymptotic analysis of this system leads, at the macroscopic level, to a closed set of
reaction–diffusion equations for number densities of single species, with diffusion
coefficients depending on elastic collision frequencies and background temperature.
The passage from the kinetic level to the macroscopic equations may be proved in
a mathematically rigorous way in a special (linear) case in which the existence of
solutions to the kinetic equations is known [1].

The whole procedure may then be extended to more involved chemical frame-
works, including very important and common reactive processes, like reactions
of dissociation and recombination, one of the essential ingredients characterizing
diatomic gases in the air. According to the model proposed in [3], a diatomic
gas is described as a mixture of three interacting species: atoms, stable diatomic
molecules, and unstable molecules, the latter playing the role of a transition state.
Stable and unstable molecules are endowed with their own internal energies. Both
atoms and stable molecules undergo binary reversible elastic collisions with other
atoms, stable molecules and background particles, whereas unstable molecules are
not involved in elastic scattering, since they are characterized by a very small
mean lifetime and rapidly disappear through a (fast) chemical reaction. In this
model one assumes that two atoms can form a stable molecule passing through
the transition state, whose de-excitation occurs via an inelastic scattering pro-
cess. Conversely, both stable and unstable diatomic molecules may dissociate
into two atoms. All encounters fulfill conservation of mass, momentum, and in-
ternal (thermal plus chemical) energy. Reactive collisions are described in terms
of the so-called scattering kernel formulation of the Boltzmann equation, involv-
ing collision frequencies and transition probabilities. In the dimensionless kinetic
equations, chemical operators involving the unstable molecules are supposed sig-
nificantly faster than other chemical processes, consistently with the role played by
transition state molecules in the present physical model. At the macroscopic level
we get again a closed set of reaction-diffusion equations for the densities of the two
stable species [2], of course more complicated than the ones derived in [1], with
reactive contributions involving also rational functions of the densities themselves.
Analysis of other meaningful scalings, as well as some rigorous investigation, are
scheduled as future work.
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Asymptotic analysis of the strongly confined, nonlinear, Schrödinger
equation

François Castella

(joint work with N. Ben Abdallah and F. Méhats)

We consider a gas of quantum particles described by a nonlinear Schrödinger
equation. The gas is assumed confined both in the horizontal, x direction (x =
(x1, x2) ∈ R2) and in the vertical z direction (z ∈ R), the latter confinement
being much stronger than the former. In the idealized limit when the vertical
confinement becomes infinitely strong, the goal of this work is to find a reduced
dynamics for the electronic gas in the horizontal x plane, upon averaging out the
strong oscillations of the wave function induced by the confinement in z.

The key point is, we perform the averaging procedure upon observing that the
induced oscillations naturally occur in an almost-periodic fashion in time: this
allows us, amongst others, to average out the oscillations without dealing with any
small denominator difficulties. In this way we extend to the general case previous
studies that were restricted to the case of only one oscillation.

Let us come to some technical details.

Let Vc(z) and V (x) be two smooth, confining potentials, and F ∈ C∞(R,R)
be a given nonlinearity. Define the two Hamiltonians Hz = −∆z + Vc(z) and
Hx = −∆x + V (x), and consider the scaled nonlinear Schrödinger equation

i∂tψǫ(t, x, z) = Hxψǫ +
1

ǫ
Hzψǫ + F

(
|ψǫ|2

)
ψǫ,(1)

supplemented with a smooth initial datum. Here, ǫ is a small parameter measuring
the relative strength of the confinement in the z direction, and we wish to perform
the limit ǫ→ 0 in (1).

The first, naive, idea, to perform the desired limit, lies in projecting (1) over
the eigenbasis of Hz, i.e. over the χp(z)’s solution to Hzχp(z) = Epχp(z) (the Ep’s
are the eigenenergies of Hz). Upon defining the projected quantities ψǫp(t, x) :=

〈ψǫ , χp〉 where 〈u , v〉 :=
∫
u v dz, and upon filtering out the time oscillations of

the ψǫp(t, x)’s through the introduction of φǫp(t, x) := exp(+itHz/ǫ)ψ
ǫ
p(t, x), it is

readily seen that the φǫp’s satisfy the following system of nonlinear, coupled PDE’s

i∂tφ
ǫ
p(t, x) =

Hxφ
ǫ
p +

∑

r≥0

φǫr × e−it
Er−Ep

ǫ

〈
F




∣∣∣∣∣∣

∑

q≥0

φǫq(t, x)χq(z)e
−itEqǫ

∣∣∣∣∣∣

2

 , χrχp

〉
.(2)

Passing to the limit directly in equation (2) causes two types of difficulties. On
the one hand, it leads to obvious small denominator difficulties. In the case when
F (u) = u for instance, it leads to the necessity of controlling terms of the form
1/(Eq − Es +Er − Ep) on the set Eq −Es +Er −Ep 6= 0, for large values of the
integers (r, s, q, p). This task is not to be completed in general (i.e. for a general
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confining Hamiltonian Hz). On the other hand, it also leads to controlling the
decay, as (r, s, q, p) go to infinity, of terms of the form 〈χqχr , χsχp〉, say, and the
analysis requires such terms be reasonably summable at infinity. In order obtain
such estimates, the natural orthogonality of the eigenfunctions χp turn out not to
be enough to obtain any reasonable decay estimate at infinity.

To overcome these difficulties, some authors restricted their study to the case
where the initial datum in (1) is of the form ψǫ(t = 0, x, z) = φǫ0(t = 0, x)χ0(z),
i.e. only the lower energy level is switched on at the initial time. In that case
indeed, it is possible to prove at once, using an energy estimate, that ψǫ remains
of the form ψǫ(t, x, z) = φǫ0(t, x)χ0(z) + small, i.e. ψǫ remains essentially on the
lower eigenstate as time evolves. Using this piece of information, it is readily seen
that the full system (2) roughly reduces to one single scalar equation on φǫ0(t, x),
and the latter is easily averaged out since the above mentioned two difficulties no
longer are present in that case.

In the present work, we wish to tackle the generic case where ψǫ switches on all
the eigenstates at the initial time, i.e. ψǫ(t = 0, x, z) =

∑
p≥0 φ

ǫ
p(t = 0, x)χp(z)

for genuinely non zero φǫp’s.
Our approach lies in observing that, without projecting (1) on the χp’s, the

filtered function φǫ(t, x, z) = exp(+itHz/ǫ)ψǫ(t, x, z) satisfies the PDE

i∂tφǫ(t, x, z) = Hxφǫ + e+itHzǫ F

(∣∣∣e−it
Hz
ǫ φǫ

∣∣∣
2
)
φǫ.(3)

Now the key observation is that, for any given φ lying in a reasonable Sobolev
space (say lying in the domain D(HN

x ) ∩D(HN
z ) for some large N), the mapping

τ ∈ R 7→ F (τ, φ) := e+iτHzF
(∣∣e−iτHzφ

∣∣2
)
φ(4)

is almost periodic in τ . This actually is our key Theorem. The rough idea be-
hind this Theorem is that the spectrum of Hz is discrete, hence the independent
frequencies (in τ) carried by exp(iτHz) are countable as well, a property that is
stable upon composition by nonlinear functions. Once this is proved, it is easily
deduced that the limit

Fav(φ) := lim
T→∞

1

T

∫ T

0

F (τ, φ) dτ(5)

exists (note that we have here overcome all the small denominator issues, as well
as the convergence issues mentioned before). This being settled, one can deduce
that φǫ goes to φ, the solution to

i∂tφ = Hxφ+ Fav(φ).(6)

Naturally, the function Fav may be explicitely computed. Upon (a posteriori)
projecting equation (6) onto the χp’s, one recovers the physically natural models.
In particular, one recovers the one mode analysis mentioned above.
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Infinite Time Aggregation for the Critical Patlak-Keller-Segel model

José Antonio Carrillo

(joint work with A. Blanchet, N. Masmoudi)

We analyze the two-dimensional parabolic-elliptic Patlak-Keller-Segel model in the
whole Euclidean space R2.






∂n

∂t
(x, t) = ∆n(x, t) − χ∇·(n(x, t)∇c(x, t)) x ∈ R2 , t > 0 ,

c(x, t) = − 1
2π

∫
R2 log |x− y|n(y, t) dy , x ∈ R2 , t > 0 ,

n(x, t = 0) = n0 ≥ 0 x ∈ R2 .

Under the hypotheses of integrable initial data with finite second moment and
entropy, we first show local in time existence for any mass of ”free-energy solu-
tions”, weak solutions with free energy estimates. Moreover, we characterize the
maximal time of existence in terms of the blow-up of the entropy. The main result
presented shows the global existence of free-energy solutions with initial data as
before for the critical mass 8 π/χ. Actually, we prove that solutions blow-up as a
delta dirac at the center of mass as t→ ∞ keeping constant their second moment
at any time. Furthermore, all moments larger than 2 blow-up as t→ ∞ if initially
bounded.

Generalization to non-linear models of Boltzmann-Maxwell
interactions

Irene M. Gamba

(joint work with Alexandre Bobylev, Carlo Cercignani; and with Sri Harsha
Tharkabhushanam )

We study long time dynamics to solutions of initial value problems to a rather gen-
eral multi-linear Boltzmann kinetic models of Maxwell type interactions that may
describe qualitatively different processes in applications, but have many features
in common. In particular we focus in the existence, uniqueness and asymptotics to
dynamical scaling (self-similar) solutions and connections to convergence theorems
for non-Gaussian states (see [4]).

We use a relationship of spectral properties of the generalized collisional model
problem in Fourier space to study qualitative properties of the solution of the origi-
nal initial value problem as well as the characterization of the domain of attraction
to self-similar states. We clarify the connection with contractive measures for the
probability measure solution of the kinetic problem and discuss the optimal decay
rates in the context of characteristic functions, i.e. Fourier transforms of probabil-
ity measures as introduced for the classical Boltzmann equation of Maxwell type
by [1] and the corresponding fourier metrics introduced by [7].
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Examples are models of Maxwell type in classical space homogeneous, elastic
or inelastic Boltzmann equation [2, 3, 5], and the elastic Boltzmann equation in
the presence of a thermostat [6], all with finite or infinite initial energy, as well
as Pareto distributions models in economy (see [10] )or more general Interacting
Stochastic Processes. This first part of the presentation is collaborative work with
A. Bobylev and C. Cercignani in [4]

We finally show an deterministic numerical implementation, developed in col-
laboration with Harsha Tharkabhushanam, that is based in Fast Fourier Transform
methods combined with Langrange multipliers moment constrains (see [8]) based
on modifications methods developed in [9] for the classical elastic conservative
Boltzmann equation of Maxwell type. Our numerically solver is benchmarked
with the dynamically scaled asymptotic limits in the case non-conservative energy
model given by the elastic Boltzmann equation in the presence of a thermostast,
for a specific model choice corresponding to a colored mixture problem with a given
coupling parameter. As it was shown in [6], there are explicit self-similar solutions
for finite (or infinity) energy, and this distribution measures are asymptotically
characterized by local singular local behavior at the origin, with a rational blow
up behavior in velocity space. On the other hand, for large energies these self-
similar distribution measures asymptotically develop power like tails in velocity
space. The theory developed in [4] shows these solutions are attractors to solu-
tions of the initial value problem under suitable distribution measures. We use the
knowledge of the spectral properties of the model to choose suitable initial states
with finite energy and time scales based on the associated eigenvalues, so the solu-
tion to the initial value problem numerically converges to the explicit self-similar
solution associated to this model.
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Particles approximation of singular Vlasov equations

Pierre-Emmanuel Jabin

(joint work with Maxime Hauray)

We prove the convergence in any time interval of a point-particle approximation
of the Vlasov equation by particles initially equally separated for a force in 1/|x|α,
with α ≤ 1. We introduce discrete versions of the L∞ norm and time averages of
the force field. The core of the proof is to show that these quantities are bounded
and that consequently the minimal distance between particles in the phase space
is bounded from below.

More precisely, we consider the evolution of N particles, centered at
(X1, . . . , XN) in Rd with velocities (V1, . . . , VN ) and interacting with a central
force F (x). The positions and velocities satisfy the following system of ODEs

(1) Ẋi = Vi, V̇i = E(Xi) =
∑

j 6=i

1

N
F (Xi −Xj),

where the initial conditions (X0
1 , V

0
1 , . . . , X

0
n, V

0
n ) are given. The prime example

for (1) consists in charged particles with charges αi and masses mi, in which case
F (x) = −x/|x|3 in dimension d = 3.

Assume that the particles are initially reasonnably well distributed in phase
space or in other words that the minimal rescaled distance between two particles

sup
i6=j

N1/6 |Xi(0) −Xj(0)| + |Vi(0) − Vj(0)|

is uniformly bounded in N and consider the case of a “not too singular force”

(2) |F (x)| ≤ C

|x|α , |∇F (x)| ≤ C

|x|1+α |∇2F (x)| ≤ C

|x|2+α , ∀x 6= 0.

We then obtain at the limit a kinetic equation

∂tf + v · ∇xf + E(x) · ∇vf = 0, t ∈ R+, x ∈ R
d, v ∈ R

d,

E(x) =

∫

Rd

ρ(t, y)F (x− y) dy, ρ(t, x) =

∫

v

f(t, x, v) dv,
(3)

where f is the one particle distribution and is the weak limit in measure of
1/N

∑
i δ(x−Xi) δ(v − Vi).
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Recent results on existence, uniqueness and asymptotic decay rates
for collisional kinetic models

Robert M. Strain

We discuss recent work proving exponential time decay rates to equilibrium for
Boltzmann equations such as the soft potentials, Landau’s equation and the lin-
earized Balescu-Lenard model. We also mention a proof of existence and unique-
ness of solutions near Maxwellian to the Vlasov-Maxwell-Boltzmann system in the
whole space. Some of these projects are joint work with Yan Guo.
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High field asymptotics for the Fermion Boltzmann equation

Naoufel Ben Abdallah

(joint work with Hédia Chaker and Christian Schmeiser)

The high field scaling of the Boltzmann equation is written herebelow,

∂tfε + v · ∇xfε +
1

ε
(E · ∇vfε −Q(fε)) = 0

with

Q(f)(v) =

∫

Rd

σ(v, v′) {f(v′)(1 − f(v))M(v) − f(v)(1 − f(v′))M(v′)} dv′ ,

where σ(v, v′) is the scattering cross section and M(v) denotes the Maxwellian
distribution

M(v) =
1

(2π)d/2
exp(−|v|2/2) .

The unknown fε(x, v, t) is the distribution of conduction electrons at time t in the
position-velocity phase space Rd×Rd. The electric field E(x, t) is assumed as given,
and the Knudsen number ε is a dimensionless parameter. The macroscopic limit
ε→ 0 with the above scaling of the electric field (balancing the scattering effects)
is called the high field limit. The scattering operator Q models the interaction
of electrons with the semiconductor crystal lattice. The factors (1 − f) causing
the quadratic nonlinearity are a semiclassical approximation of the Pauli exclusion
principle and of the fermionic nature of electrons.

In the formal limit as ε tends to zero is a nonlinear conservation law. Indeed,
we have under some positivity and regularity hypotheses on the cross section σ

Theorem 1. i) For every E ∈ Rd and n ∈ R+, there exists a unique function
F (n,E) ∈ L1(Rd) such that E · ∇vF (n,E) ∈ L1(Rd), 0 ≤ F (n,E) ≤ 1, and which
satisfies

(1) E · ∇vF (n,E) −Q(F (n,E)) = 0 ,

∫

Rd

F (n,E)(v)dv = n .

The limit as ε goes to zero is given by the mass conservation equation

∂tn+ ∇x · j(n) = 0.

where

j(n) =

∫
vF (n,E) dv.

In [2] the convergence is proven for smooth solutions of the limiting conservation
law by means of a Hilbert expansion. The aim of this talk is to report on a
new proof which shows the convergence of solutions towards the unique entropic
solution of the limiting conservation law, regardless of its regularity. The result
is however restricted to the case of constant electric fields. We shall therefore
skip the dependence w.r.t. E of F . Two entropy like inequalities are the main
mathematical tools :
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Theorem 2. Let for any fixed v, ϕ(,̇v) be the inverse function of the mapping
n 7→ F (n)(v) and let f = f(v) satisfy 0 ≤ f ≤ F (n∗) and denote

nf =

∫

Rd

ϕ(f(v), v)M(v)dv ≤ n∗.

Let χ be an increasing function such that χ′ ≥ α > 0 on [0, n∗]. Then there exists
a positive constant C = C(α, n∗) such that

(2) D(f) :=

∫

Rd

(Q(f) − E · ∇vf)χ(ϕ(f, v))dv ≤ −C
∫

Rd

(f − F (nf ))
2M(v) dv .

Theorem 3. i) [16] For any f, g ∈ L1(Rd × Rl) such that 0 ≤ f, g ≤ 1, we have

(3) −
∫

Rd

∫

Rd

(Q(f) −Q(g)) sgn(f − g)dvdx ≥ 0 .

Equality holds iff sgn(f − g) only depends on x.

ii) [3] Moreover, if

∫

Rd

(f − g)dv = 0, we have

(4) −
∫

Rd

∫

Rd

(Q(f) −Q(g)) sgn(f − g)dv ≥ C(g)

∫

Rd

|f − g|dv ,

where C(g) = σ0

∫

Rd

(1 − g)M dv.
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From Mechanics to Biology via fragmentation processes: a survey and
open problems

Juan Soler

The aim of this talk is to give an overview of the main models used to describe
fragmentation from the discrete level towards multiphase flow, with a special at-
tention to the fluid kinetic description. The idea is to explain the basic arguments
of our aproach to the kinetic description of particle fragmentation and then how
to deduce from first principles a fluid–kinetic interaction. We analyse how our
approach is connected with biological models and at the same time how the foun-
dations of this kind of problems in mechanics is far to be completely understood.
Finally, in the last part we introduce the multicelular growing system as well as
some macroscopic description induced by an hyperbolic limit.
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Spectral gap and coercivity estimates for linearized Boltzmann
collision operators without angular cutoff

Clément Mouhot

(joint work with Robert Strain)

We prove new constructive coercivity estimates for the Boltzmann collision op-
erator without cutoff, that is for long-range interactions. In particular we give a
generalized sufficient condition for the existence of a spectral gap which involves
both the growth behavior of the collision kernel at large relative velocities and
its singular behavior at grazing and frontal collisions. It provides in particular
existence of a spectral gap and estimates on it for interactions deriving from the
hard potentials φ(r) = r−(s−1), s ≥ 5 or the so-called moderately soft potentials
φ(r) = r−(s−1), 3 < s < 5, (without angular cutoff). In particular this paper
recovers (by constructive means), improves and extends previous results of [2].
We also obtain constructive coercivity estimates for the Landau collision operator
for the optimal coercivity norm pointed out in [3] and we formulate a conjecture
about a unified necessary and sufficient condition for the existence of a spectral
gap for Boltzmann and Landau linearized collision operators.

Here is a precise statement of the main theorem concerning Boltzmann’s singu-
lar collision operators. Consider the collision operator

Q(f, f) =

∫

RN×SN−1

[
f(v′) f(v′∗) − f(v) f(v∗)

]
B(|v − v∗|, cos θ) dv∗ dσ

where

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ, σ ∈ S

N−1

and cos θ = (v′∗ − v′) · (v∗ − v)/|v∗ − v|2.
The collision kernels B is of the form

(1) B(|v − v∗|, cos θ) = |v − v∗|γ b(cos θ), γ ∈ (−N,+∞)

with

(2) b(cos θ) ∼θ∼0 b
∗(θ) (sin θ/2)−(N−1)−α , α ∈ [0, 2),

where b∗(θ) is non-negative, bounded and non-zero near θ ∼ 0. When α ≥ 0 the
angular singularity is not integrable, the operator is said to be non-cutoff.

Then denote by

µ = µ(v) := (2π)−N/2e−|v|2/2

the normalized unique equilibrium with mass 1, momentum 0 and temperature 1,
and consider fluctuations around this equilibrium of the form

f = µ+ µ1/2 g

which results the following linearized collision operator (note the sign convention):

L(g) = −µ−1/2
[
Q(µ, µ1/2g) +Q(µ1/2g, µ)

]
.
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L (acting in the velocity space) is an unbounded symmetric operator on L2,
such that its Dirichlet form satisfies

D(g) := 〈Lg, g〉 ≥ 0.

Then we prove the following result:

Let B be a collision kernel satisfying (1,2). Then

• For any ε > 0 there is a constant CB,ε, constructive from our proof and
depending on B and ε, such that the Dirichlet form D of the linearized
Boltzmann collision operator associated to B satisfies

D(g) ≥ CB,ε
∥∥[g − Pg] (1 + |v|2)(γ+α−ε)/4∥∥2

L2(RN )
.

• There is a constant CB,0 (obtained by non-constructive means in our
proof) such that

D(g) ≥ CB,0
∥∥[g − Pg] (1 + |v|2)(γ+α)/4

∥∥2

L2(RN )
.

In this statement,

Pg =
(
a+ b · v + c|v|2

)
µ1/2

(with a, c ∈ R and b ∈ RN ) is the L2 orthogonal projection onto the space of the
so-called “collisional invariants”

Span
{
µ1/2, v1µ

1/2, . . . , vNµ
1/2, |v|2µ1/2

}
.
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Kinetic approach to long time behavior of linearized fast diffusion
equations

Maŕıa J. Cáceres

(joint work with Giuseppe Toscani)

In this talk we study the long time behavior of certain linearized versions of the
Cauchy problem for the fast diffusion equation posed on the whole space RN

(1)
∂v

∂τ
= ∆vm, y ∈ R

N , τ > 0,
N

N + 2
< m < 1,

(2) v(y, 0) = v0(y).
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The long time asymptotics for equation (1) is described by the family of self similar
source type Barenblatt–Pattle solutions

(3) BC(y, τ) = τ−
1

m+1

(
C +

1 −m

2m
|y|2τ− 2

m+1

) 1
1−m

,

where the constant C must be chosen in order to match the initial mass.
Recent results on the subject allow to assert that the rate of convergence is

sensitive to the choice of the initial datum, and it is believed that the values of its
moments play an important role. This phenomenon was first established by J.L.
Vázquez in [7] for porous medium equations. In this talk we study the convergence
towards the self–similar solution of certain linearized versions of the fast diffusion
equation showing that their rate of convergence can be related to the number of
moments of the initial datum that are equal to the moments of the self–similar
solution at a fixed time. As a consequence, we find an improved rate of convergence
to self–similarity in terms of a Fourier based distance between two solutions.

Among others, we shall consider the linear version of the fast diffusion equation
(1),

(4)
∂v(y, τ)

∂τ
= div

(
mBC(y, τ)m−1∇v(y, τ)

)
, y ∈ R

N , τ > 0,

(5) v(y, 0) = v0(y),

where BC(y, τ) is a Barenblatt solution suitably shifted in time. The rate of
convergence to equilibrium for this equation will be studied in terms of the number
of moments initially equal to those of the Barenblatt solution.

This linearized fast diffusion equation was deeply investigated in [4] by Denzler
and McCann, who were able to analyze its spectrum extracting sharp rates of
asymptotic convergence to the Barenblatt profile. Our result recovers this rate of
convergence by different methods.

The convergence rates of the linearized equations will be here derived in terms
of a Fourier based metric which has been proven very useful in finding rates of
convergence towards equilibrium in kinetic theory of rarefied gases (see [5],[2] and
[6]). These Fourier-based metrics ds, for any s > 0, are defined as

(6) ds(f, g) = sup
ξ∈RN

|f̂(ξ) − ĝ(ξ)|
|ξ|s

for any pair of probability measures in Ps(RN ), where Ps(RN ) is the set of prob-

ability measures with bounded s-moment and as usual, f̂ is the Fourier transform
of the density f(x).

The study of the convergence in terms of the distance (6) can be obtained
through the analysis of its evolution. To this aim, the first tentative relies in
the direct study of the evolution in time of the Fourier based distance using the
linearized equation in Fourier transform. But, in view of its definition, the study
of this evolution is a overcomplicated matter, due to the presence of a variable



Classical and Quantum Mechanical Models of Many-Particle Systems 3213

diffusion coefficient. To overcome this problem, instead of working on the Fokker–
Planck equation directly, we will introduce a nonlinear kinetic model of Maxwell
type [1] for which the recovering of the rate of decay in terms of the Fourier based
distance is immediate.

Our main results [3] deal with the rate of decay to zero of solutions to different
linearizations of the fast diffusion equation (1) in terms of the d2+δ distance, where
δ = δ(m) is given in terms of the exponent m of the fast diffusion.
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[3] M. J. Cáceres, G. Toscani, Kinetic approach to long time behavior of linearized fast diffusion
equations, preprint 2006.

[4] J. Denzler and R.J. McCann, Fast diffusion to self-similarity: complete spectrum, long time
asymptotics, and numerology, Arch. Rational Mech. Anal. 175 (2005), 301–342.

[5] E. Gabetta, G. Toscani, B. Wennberg, Metrics for probability distributions and the trend to
equilibrium for solutions of the Boltzmann equation, J. Stat. Phys., 81 (1995), 901-934.

[6] L. Pareschi, G. Toscani, Self-similarity and power-like tails in nonconservative kinetic mod-
els J. Statist. Phys. 124 (2-4) (2006), 747-779.

[7] J. L. Vázquez, Asymptotic behaviour and propagation properties of the one-dimensional
flow of gas in a porous medium, Trans. Amer. Math. Soc. 277 (1983), no. 2, 507–527.

A microscopic model of viscous friction

Silvia Caprino

(joint work with G. Cavallaro, C. Marchioro, M. Pulvirenti)

We consider a convex body moving horizontally and immersed in an infinitely
extended fluid. We assume the fluid to be obtained in the mean field limit from a
system of free particles, elastically interacting with the body. Calling V0 and V∞
the initial and limiting velocity of the body, we prove that the time-asymptotic
trend of its velocity V (t) is the following:

(1) |V (t) − V∞| ≈ Ct−(d+2)

provided that the difference |V0 − V∞| is small enough, being d the dimension of
the space and C a constant depending uniquely on the properties of the fluid and
the shape of the body. In [1] we study the case in which a constant force is acting
on the body, while in [2] various situation are discussed, without any external force
(in which case V∞ = 0), or with a x-depending force.

The power law approach to the limiting velocity is unexpected, as it is usually
assumed to be exponential, by phenomenological considerations. We prove that
it is due to the long memory of the dynamical system, which retains successive
collisions between a gas particle and the body, even after a very long time. Indeed,
as it can be easily seen, assuming that the body hits only once any particle, then
the behavior of its velocity would be the expected one, that is exponential in time.
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The periodic Lorenz gas in the Boltzmann-Grad limit

François Golse

(joint work with J. Bourgain, B. Wennberg, E. Caglioti)

In the Euclidean plane R2, call Zr the set of points whose distance to integer
points (i.e. Z2) is larger than r (0 < r < 1/2). For x ∈ Zr and |v| = 1, call τr(x, v)
the exit time from x in the direction v ∈ S1, i.e.

τr(x, v) = inf{t > 0 |x+ tv ∈ ∂Zr}.
Call φr(t) = Prob{τr(x, v) > t/r} for uniformly distributed (x, v).
Then,

(1) ∃ 0 < C < C′ such that C
t < φr(t) <

C′

t , ∀ 0 < r < 1/2, ∀ t > 1.

(2) In some Cesaro’ sense: φr(t) → φ(t) as r → 0+ and φ(t) ∼ 1
π2t as t→ ∞.

(3) The Boltzmann-Grad limit for a gas of particles undergoing elastic colli-
sions with the boundary of Zr (with particle-particle collision neglected)
cannot be described by a linear Boltzmann equation in the single particle
phase space R2 × S1.

(4) A model in some extended phase space R2×S1×(−1, 1)×(1,+∞) involving
the impact parameter at the next collision and the time to the next collision
is proposed, assuming some hypothesis on the dynamics that should be
checkable numerically.

Hidden L2 stability of scalar conservation laws

Yann Brenier

First order systems of conservation laws read:

∂tu+

d∑

i=1

∂xi(Qi(u)) = 0,

where u = u(t, x) ∈ Rm depends on t ≥ 0, x ∈ Rd and the Qi are given smooth
functions. The system is called hyperbolic when, for each τ ∈ Rd and each U ∈
Rm, the m × m matrix

∑
i=1,d τiQ

′
i(U) can be put in diagonal form with real

eigenvalues. There is no general theory to solve globally in time the initial value
problem for such systems of PDEs (cf. [10] for a general introduction to the
field). Only two extreme cases are well understood. First, in one space dimension
(d = 1), for a large class of systems, existence and uniqueness of global weak
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entropy solutions hold true for initial conditions of sufficiently small total variation
[1]. Next, in the case of scalar conservation laws, i.e. whenm = 1, there is a unique
entropy (or Kruzhkov) solution for each given initial condition in L∞ [13]. In both
cases, solutions are Lp stable with respect to their initial conditions if and only
if p = 1. This is a major obstruction to the construction of a unified theory of
general multidimensional systems of hyperbolic conservation laws. Indeed, simple
multidimensional linear systems, such as the wave equation (written as a first
order system) or the Maxwell equations, are not well posed in any Lp but for
p = 2 [7]. However, as explained below, there is a hidden L2 stability behind any
multidimensional scalar conservation law. Indeed, we exhibit for each of them a
master equation well posed in L2. Our approach is based on a combination of
level-set, kinetic and transport-collapse approximations, in the spirit of previous
works by Giga, Miyakawa, Osher, Tsai and the author [3, 4, 5, 6, 11, 12, 15].

A master equation for multid scalar conservation laws

Consider, for simplicity, an initial condition u0(x) valued in [0, 1] and denote by
u(t, x) the corresponding Kruzhkov solution.
Introduce Y0(x, a) = a − u0(x), for all a ∈ [0, 1], or, more generally, any function
Y0(x, a) such that ∂aY0 ≥ 0, and 1{Y0(x, a) ≤ 0} = 1{a ≥ u0(x)}, almost every-
where in (x, a), in the spirit of level set methods [12, 15].
Let us now solve the following subdifferential equation:

0 ∈ ∂tY +
d∑

i=1

Q′
i(a)∂xiY + ∂K[Y ], Y = Y (t, x, a),

with initial condition Y0. Here ∂K denotes the subdifferential [8] of the convex
functional defined by K[Y ] = 0 whenever ∂aY ≥ 0 and K[Y ] = +∞ otherwise.
This equation turns out to be a master equation for both the Kruzhkov [13] and
the Lions-Perthame-Tadmor kinetic formulation [14]. Indeed, we show (using the
transport-collapse method [3, 4, 5, 12]) that the Kruzhkov solution can be recov-
ered, in level set style, by:

u(t, x) =

∫ 1

0

1{Y (t, x, a) ≤ 0}da

and the corresponding indicator function

1{a ≥ u(t, x)} = 1{Y (t, x, a) ≤ 0}
is nothing but the solution of the kinetic formulation [14]. The master equation is
very simple: its operator is indeed maximal monotone in L2 [8]. For all p ∈ [1,+∞],
the solutions Y are Lp stable with respect to their initial conditions Y0 and enjoy
the regularity properties:

||∂xY (t)||Lp ≤ ||∂xY0||Lp ,

||∂tY (t)||Lp ≤ ||Q′||L∞ ||∂xY0||Lp .
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Related works

This work (http://arxiv.org/pdf/math.AP/0609761, to appear in ARMA) follows
[6] (where some models of pressureless fluids, made of sticky strings or sticky
particles got reformulated in L2, in a similar way). Let us quote recent related
works by Bolley, B., Loeper [2] and by Carrillo, Di Francesco, Lattanzio [9]. In
both cases, stability in Monge-Kantorovich distances are established or used for
one-dimensional scalar conservation laws.
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Boltzmann Equation and Generalized Burnett Equations

Alexander V. Bobylev

In order to regularize the Burnett equations we use the approach described briefly
in [1], i.e. “changes of coordinates”. The first successful attempt to do this led to
a version of hyperbolic Burnett equations published in [1]. These equations are,
however, more complicated than original Burnett equations and do not have the
standard form of equations of hydrodynamics. We present below another version of
stable Burnett equations which is much more convenient for applications. Details
of derivation of the Generalized Burnett Equations (GBEs) and all necessary proofs
can be found in [2].

GBEs are equations for auxiliary variables for which we keep the initial nota-
tions ρ(x, t) (density), u(x, t) (bulk velocity) and T (x, t) (absolute temperature).
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The true hydrodynamical variables (ρtr, utr, T tr) are expressed through (ρ, u, T )
by equalities

(1) ρtr = ρ, utr = u, T tr = T − ε2

ρ
div

S

ρ
,

where

(2) S = a(T ) ▽ log ρ+ b(T )▽ logT.

The functions a and b are expressed through Burnett coefficients A, B, C [1] and
two parameters θ1,2 (a reason for such notation is clarified below):

a(T ) =
2

3
[−TA(T ) + θ1g(T )],

b(T ) =
2

3
T [C(T ) −A(T )] + θ2g(T ),(3)

g =
T

3
(5A+ 2B − 4C).

Thus, the only “unusual” variable is T (x, t) which does not coincide with true
absolute temperature. Equations for (ρ, u, T ) have the standard form of equations
of hydrodynamics

ρt + div ρu = 0, ρD0uα +
∂p

∂xα
+ ε

∂

∂xβ
Παβ = 0,

3

2
ρD0T + pdivu+ ε(Παβ

∂uα
∂xβ

+ divQ) = 0, p = ρT , D0 = ∂t + u∂x(4)

with the new fluxes Π and Q given by equalities

Παβ = πNSαβ + επBαβ − εδαβdiv
S

ρ
,

Qα = qNSα + εqBα +
ε

ρ
{3Sβ

∂uα
∂xβ

+ (
3

2
a+ b)

∂

∂xα
divu+

+(divu)[(a′T − 2a)
∂

∂xα
log ρ+ (b′T − 2b)

∂

∂xα
logT ]},(5)

where primes denote differentiation with respect to T . The first two terms in both
equalities are usual Navier-Stokes and Burnett fluxes discussed in detail in previous
sections. Eqs.(4) can be obviously written in the form of standard conservation
laws with Π and Q instead of π and q respectively. Note, however, that

(6) Παα = −3εdiv
S

ρ
6= 0.

It can be shown that, under very general assumptions on intermolecular poten-
tial, there exists a non-empty region on the plane of parameters (θ1, θ2), where
Eqs.(4) are stable. Exact necessary and sufficient conditions of stability can be
found in [2]. The reason for the notation (3) becomes clear if we consider the
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matrix of third derivatives for Eqs.(4). Then we obtain (the continuity equation
is omitted):

ut =
ε2

ρ2
g[

2θ1
3ρ

△ (▽ρ) +
θ2
T

△ (▽T )] + ...,

Tt =
2ε2

3ρ2
gθ3 △ divu+ ..., θ3 = 1 − (θ1 + θ2).(7)

Therefore we denote the generalized Burnett equations (4) , (5) (in the notation
of Eqs. (1)-(3)) by a symbol GBEs (θ1, θ2, θ3), having in mind that only two of
three parameters {θi, i = 1, 2, 3} are independent. It follows from Eqs.(7) that
GBEs (θ1, θ2, θ3) are well-posed (hyperbolic) if θ2θ3 ≥ 0 Conditions of stability
depend, generally speaking, on the sign of g(T ) [2]. The usual approximation
(exact for Maxwell molecules) leads to estimate

(8) g(T ) ≈ 37

12
µ2(T ).

Hence, for practical applications we can assume that g(T ) > 0 for all T > 0. Then
the simplest region of stability of GBEs (θ1, θ2, θ3) is given by inequalities

(9) θ1,2,3 ≥ 0, θ1 + θ2 + θ3 = 1.

Thus, we can choose any two of three real numbers (generally speaking, they
can be also functions of T ), satisfying the conditions (9) and obtain the above
described stable GBEs (θ1, θ2, θ3). It is easy to verify that new fluxes (5) con-
tain, roughly speaking, the same tensor and vector terms as the original Burnett
fluxes (with other coefficients). Hence, GBEs (θ1, θ2, θ3) are not more complicated
than the original equations. Moreover they can be simpler, in particular, in the
following three cases: GBEs (1, 0, 0), GBEs (0, 1, 0), GBEs (0, 0, 1) (note that the
stability conditions (9) are satisfied). In other words, we can reduce a number
of third derivatives. It is clear that the problem of boundary conditions should
be considered separately for each of the three cases. We hope to return to this
problem in another paper.

We also mention that the original Burnett equations can be understood as a
particular case of GBEs (θ1, θ2, θ3) with parameters

(10) θ1 =
TA(T )

g(T )
, θ2 =

2T [C(T )−A(T )]

3g(T )
, θ3 = 1 − (θ1 + θ2),

which lie (for typical molecular models) in the unstable region of the plane (θ1, θ2).
A specific choice of parameters can be different for different problems. For example,
it is known that Navier-Stokes equations give the correct (in the Hilbert class)
answer for 1d stationary heat transfer problems in the case of Maxwell molecules.
This property can be preserved if we choose θ1,2 in Eqs.(3) in such a way that
a = b. It can be done without violation of conditions (9).
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Thus, the whole class of stable GBEs (θ1, θ2, θ3) seems to be a natural replace-
ment for the classical (unstable) Burnett equations, though the problem of optimal
choice of parameters for specific cases and the problem of corresponding boundary
conditions need further investigation.
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Brownian approximation and DSMC for the non-cutoff Kac equation

Bernt Wennberg

(joint work with Mattias Sundén)

We consider the Kac equation with a thermostatted force field,

∂tf(v, t) + ∂v ((1 − ζ(t)v)f(v, t)) = Q(f, f)(v, t) ,

where

Q(g, g)(v) =

∫

R

∫ π

−π
(g(v′)g(v′∗) − g(v)g(v∗)) b(θ) dθ dv∗ ,

ζ(t) =

∫

R

vf(v, t) dv .

This equation can be derived from a markovian jump-process on the sphere SN−1:

• Between the jumps, a point v(t) evolves according to the equation

d

dt
vj(t) = E

(
1 −

∑
vk∑
v2
k

vj

)
.

• At random time intervals, v(t) makes a jump according to

(v1, ...., vj , ..., vk, ..., vn) 7→
(v1, ..., vj cos θ − vk sin θ, ..., vj sin θ + vk cos θ, ..., vn) ,

1 ≤ j, k ≤ n, θ ∈] − π, π] .

These jumps occur independently with an exponential rate proportional
to

n−1b(θ)dθ .

Kac [4] constructed this model and used it to derive the Kac equation. The
version with a thermostatted force field was derived in [7, 6] for the case of a
constant collision rate, b(θ) = 1/2π. The non-cutoff case is treated in [1].

The equation has interesting non-equilibrium stationary states, which can be
computed almost explicitly, or computed very accurately using finite diffence meth-
ods to approximate the Fourier transform of the equation.
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However, the usual Monte Carlo methods are less efficient in the case of a
non-cutoff kernel,

∫ π
−π b(θ) d θ = ∞, when the real jump frequency is infinite.

It has been demonstrated [2, 3] that carrying out a simulations starting from the
n-dimensional jumpprocess described above, but with truncated kernel,
b̃ǫ = min(b(θ), b(ǫ), gives a good approximation if ǫ is very small. In this, non-e-
quilibrium situation, the method does not give good results unless ǫ is very small.

The jump process can be described using a stochastic differential equation
driven by a random Poisson measure:

v(t) = v(0) +

∫ t

0

E

(
e − e · v(s)

|v(s)|2 v(s)

)
ds

+
∑

1≤j<k≤N

∫ t

0

∫ π

−π
Aj,k(θj,k)v(s−)N(ds, dθj,k) .

Here Aj,k(θ) is the n× n-matrix that performs the jumps, e = (1, 1, ...., 1) ∈ Rn,
and N(ds, dθ) is a Poisson random measure with intensity measure n−1b(θ)dθ dt.

We show how this stochastic differential equation may be simulated efficiently
by replacing N(ds, dθ) by a truncated measure Ñǫ(ds, dθ) with intensity measure

n−1b̃ǫ(θ)dθ dt, and adding a Brownian term to compensate for the truncated part.
The terms that are added to the right hand side are

∫ t

0

rW (v(s)) ds +

∫ t

0

σ(v(s))dW (s) ,

where σ(v(s)) is the matrix that projects the standard Wiener process W (t) onto
the sphere SN−1, scaled to give the correct variance, and where
rW (v(s)) is a drift term that must be added to compensate for the curvature

of the sphere.
One can show that the generator to the truncated process without a Brownian

term converges with a rate ǫ2−α, and that the convergence rate is ǫ3−α when the
Brownian term is added. When α is close to 2, the improvement is significant.

The complete result is presented in [5].
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The BGK model with external confining potential: Existence,
long-time behaviour and time-periodic Maxwellian equilibria

Roberta Bosi

(joint work with Maŕıa J. Cáceres)

We study global-in-time existence, stability and long-time behaviour for the in-
homogeneous nonlinear Bhatnagar-Gross-Krook (BGK) model of the kinetic gas
theory (cf. [2]), with an external potential Φ:

∂tf + v · ∇xf −∇xΦ · ∇vf = M [f ] − f

with (t, x, v) ∈ (0,+∞) × RN × RN , M [f ] = ρ(t,x)

(2πT (t,x))N/2
exp

(
− |v−u(t,x)|2

2T (t,x)

)
, and

(ρ, ρu, ρ|u|2 + ρTN) =
∫

RN
(1, v, |v|2) f dv.

The external potential Φ = Φ(x) satisfies the assumptions

Φ(x) ≥ 0, Φ ∈ C2(RN ), exp(−Φ(x)) ∈ L1(RN ),

|x||∇Φ(x)| ≤ c1(1 + Φ(x)), |∇Φ(x)|(1 + |v|σ) ≤ c2(1 + |v|2 + 2Φ(x)),

for some σ ∈ (0, 1] and c1, c2 ∈ (0,+∞).
The introduction of Φ has the aim of confining the particles for a long time and
to generate non trivial steady states with finite mass and energy.
For an initial data f0 ≥ 0 with bounded mass, entropy and total energy we prove
existence of L1 mild solutions by compactness arguments and multipliers tech-
niques. We follow the approach of Perthame [4]. The main point here is the
control of some high moments of f in terms of the lower ones (also with some
time-independent bounds).
As time goes to infinity we then show the relaxation of the system to a Maxwellian
distribution. This behaviour has previously been demonstrated in the case of
bounded domains with thermalizing boundary conditions (cf. [3]).
Applying the compactness method of the existence part, as tn → +∞ we get
convergence in C([0, τ ];L1(R2N )) of f(t + tn, x, v) to a Maxwellian steady state
m(t, x, v), with the same mass as f0 and bounded energy and entropy.

Of particular interest is the case with isotropic harmonic potential Φ(x) =
|x|2/2, in which Boltzmann himself found infinitely-many time-periodic Maxwellian
equilibria, without leaving any interpretation of them (cf. [2]).
This behaviour is peculiar to the whole-space problem and it is shared with a full
class of kinetic equations

∂tf + v · ∇xf − x · ∇vf = C(f)

with C(f) a collision operator of Boltzmann-type (e.g. Boltzmann, BGK, ...).
The multistability of all these systems can be studied in terms of the (Lyapunov)
relative entropy functional H [f, g] =

∫
f log(f/g)dxdv and in the L1−norm.
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In order to identify the limit, we operate a classification of the family F(|x|2/2) of
Maxwellian solutions with the same mass, energy and angular momentum as f0,
since the latter are the conserved quantities of the system. In this family there is
a stationary (i.e. time-independent) Maxwellian fs, which realizes the minimum
for the entropy and therefore it results the most probable equilibrium state for
the system. However, the presence of the other elements of F(|x|2/2) does not
guarantee that the system relaxes to fs. Actually, we find a necessary condition
on the moments of f0 in order to expect Lyapunov-convergence to fs(x, v) =

(2π)−N exp(− |x|2+|v|2
2 ).

More precisely, H [f(t), fs] → 0 as t→ +∞ only if
∫

RN

ρ0|x|2dx = N,

∫

RN

ρ0u0 · xdx = 0,

∫

RN

ρ0u0 · Idx = 0,

∫

RN

ρ0(I · x)dx = 0.

where ρ0, u0 are the density and the mean velocity of f0, I is the unit vector in
RN , and we consider the normalization (1, 0, N) for mass, angular momentum and
total energy. Moreover, the previous condition holds for all times and prevents the
time-oscillation of the related moments of the distribution solution f(t, x, v).
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A thin spray model with collisions: existence and uniqueness of local
smooth solutions

Julien Mathiaud

Sprays are made of particles in an underlying gas. A coupling of the droplets and
the gas was first proposed by Williams ([11]), Papanicolaou and Caflisch ([3])...
The aim of this talk is a mathematical study of thin sprays with collisions. This
means that we consider a gas in which collisions between droplets must be taken
into account contrary to the volume fraction occupied by the particles. Our study
is based on a gas-particle system used at the CEA ([2]).

The gas is generally described through Navier-Stokes or Euler equations. Here,
the Euler representation is chosen because the gas evolves at high Reynolds num-
ber. The density ρg, the velocity ug and the internal energy eg characterize the
behavior of the gas; the gas is considered to be perfect for mathematical purposes.

The particles are described via a particle density function f which obeys to
a Vlasov-Boltzmann equation. Here the parameters of the p.d.f. are the time
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t, the position x, the velocity v and the internal energy e. The collision kernel
corresponds to hard spheres.

We write down the full system of equations:

∂tρg + ∇x · (ρgug) = 0 ,(1)

∂tug + (ug · ∇x)ug +
∇xp

ρg
= − 1

ρg

∫∫

v,e

mpFfdvde ,(2)

∂teg + ug · ∇xeg +
p

ρg
∇x · ug =

1

ρg

∫∫

v,e

(mpF · (ug − v) −mpφ) fdvde(3)

∂tf + v · ∇xf + ∇v · (fF ) + ∂e(fφ) = Q(f, f) ,(4)

F = Dp(ug − v) ,(5)

φ =
4πr

mp
λNu(Tg − Tp) ,(6)

p = (γ − 1)ρgeg,(7)

Tg =
eg
Cvg

,(8)

Tp =
e

Cvp
.(9)

The coupling between the two phases is made through the drag force (in the
momentum equation) and thermal exchanges (in the energy equation).

From a mathematical viewpoint, some results exist for both Boltzmann equa-
tion and Euler equations. Concerning the Boltzmann equation, there exists global
renormalized solutions (a la Di Perna-Lions: [4]), perturbative solutions near
Maxwellians ([10], [6]) or vacuum ([7]). On the Euler equations, only local smooth
solutions are known ([8]) in all dimensions whereas for long time, only the 1D Glim
solutions exist up to now ([9]).

Mathematical results have already been proved for sprays. For instance, Domelevo
and Roquejoffre have shown the existence and uniqueness of regular solutions for
non collisionnal thin sprays ([5]), considering the viscous Burgers equation for the
gas. Recently Baranger and Desvillettes proved the existence and uniqueness of
C1 solutions for an Euler-Vlasov system ([1]), locally in time.

We prove here the existence and uniqueness of smooth solutions using Sobolev
spaces for the system presented above as it was done in [6]. The present work
is the next step towards thick sprays, where the volume fraction occupied by the
particles is explicitly appearing in the equations. As far as we know, it is also the
first work which deals with the energies of the two phases.
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The Boltzmann equation in a slab

Shih-Hsien Yu

In this talk we present a probability representation for the initial boundary con-
dition with a diffuse boundary condition. With law of large numbers and central
limit theorem we are able to show the rate of convergence of a free transport equa-
tion with diffuse boundary condition. As application of this rate of convergence,
one can show the existence of stationary boundary layer for the boundary layer in
a slab.

MultiConfiguration Time Dependent Hartree Fock equations and
analysis

Norbert Mauser

(joint work with C. Bardos, I. Catto, A. Gottlieb, S. Trabelsi)

The MultiConfiguration Time Dependent Hartree Fock system is a natural ex-
tension of the Hartree Fock equation, based on an approximation of the ”exact”
antisymmetrized many body (# = N) wavefunction by a linear combination of
Slater determinants of ”one particle orbitals” (# = K). We present the resulting

time dependent equations, that forms a system for
(
K
N

)
ODEs for the coefficients

and K PDEs for the orbitals, together with the first results for unique existence
we obtained in the case of Coulomb interactions.
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Hamiltonian Systems and Liouville Equations with Discontinuous
Hamiltonians: Computational High Frequency Waves in

Heterogeneous Media

Shi Jin

(joint work with Xin Wen, Xiaomei Liao, K. Novak, Xu Yang, Dongsheng Yin)

We introduce Eulerian methods that are efficient in computing high frequency
waves through heterogeneous media. The method is based on the classical Liouville
equation in phase space, with discontinuous Hamiltonians (or singular coefficients)
due to the barriers or material interfaces. We provide physically relevant interface
conditions consistent with the correct transmissions and reflections, and then build
the interface conditions into the numerical fluxes. This method allows the resolu-
tion of high frequency waves without numerically resolving the small wave lengths,
and capture the correct transmissions and reflections at the interface. Moreover,
we extend the method to include diffraction, and quantum barriers. Applications
to semiclassical limit of linear Schrodinger equation, geometrical optics, elastic
waves, and semiconductor device modeling, will be discussed.
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Bose-Einstein condensates: a quantum BGK model

Anne Nouri

The experiments realizing Bose-Einstein condensates in atomic vapors (Ander-
son, 1995; Bradley, 1995; Davies, 1995) ten years ago have renewed interest in
the theory of dilute quantum gases at low temperature. Generalizing a work by
Bose on photons (Bose, 1924), Einstein proved that a non-interacting Bose gas
at sufficiently low temperature undergoes a phase transition (Einstein, 1924). A
finite proportion of the particles falls into the ground state of zero momentum, to
minimize the physical entropy. For a physical background of Bose-Einstein con-
densation, we refer to Chapman, 1970; Josserand, 2001; Lacaze, 2001.
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So far, mathematical works in quantum kinetic theory have essentially focused
on the time evolution of the distribution function of bosons satisfying the kinetic
equation introduced by L.W. Nordheim (1928), then by Uehling and Uhlenbeck
(1933). Results on the derivation of this equation from the interaction of a large
system of bosons in a weak coupling regime are given in Benedetto (2005). The
difficulty for solving this equation comes from the fact that the conservations of
mass, momentum and energy, and the physical entropy decrease, allow bounded
measure solutions. Such solutions are even expected to describe Bose-Einstein
condensation. It is then difficult to give a sense to the collision term containing
cubic terms in the distribution function. Mild solutions to the Uehling-Uhlenbeck
quantum equation are given by Lu (2000) in a space homogeneous, isotropic in mo-
mentum space, for a collision kernel with cut-off. Then distributional solutions for
hard spheres are derived (Lu, 2004). The definition of such solutions is made pos-
sible by a Carleman representation (Carleman, 1957) and the space homogeneous
isotropic assumption. Existence results and long time behaviour are also derived by
Escobedo et al (2003) for space homogeneous and isotropic solutions, with a trun-
cation assumption on the physical kernel. The same equation, linearized around a
power like steady state is studied in Escobedo (2004). A coupling between conden-
sates and non-condensates at very low temperature is studied in Nouri (2005) in
an isotropic frame. Numerical methods for dealing with Bose-Einstein condensa-
tion are developed in Bao (2004). In the specific case of photons, their interactions
with massive bosons or fermions are usually considered. The Boltzmann-Compton
model is studied in Escobedo (2001) for a simplified physical collision kernel in a
spatially homogeneous isotropic frame. A local existence theorem for the Cauchy
problem of the same model, with the physical kernel, is derived in Chane-Yook
(2004). Global existence results and numerical simulations showing the formation
of condensates are given in Ferrari (2006).
In this talk, we address the problem of interaction between condensates and non-
condensates. For a BGK quantum kinetic model, we derive an existence theorem
in a space-dependent stationary frame, where condensates and non-condensates
are clearly distinguished.

1. The model and the existence theorem.

Similarly to the classical kinetic theory (Cercignani, 1988), a BGK type model
can be introduced in the quantum case (Khalatnikov, 1965). In the stationary
case in the slab, it is the following relaxation model,

p1
∂F

∂x
= P̃N,P,E(F ) − F, x ∈ [−η

2
,
η

2
], p ∈ IR3,(1)

where P̃N,P,E(F ) is the Bose-Einstein distribution function having the same mo-
menta (N,P,E) as F (Escobedo, 2003). It displays the right physical properties,
i.e. the conservation of mass, momentum and energy, together with the decrease
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of the entropy. Planckian diffuse reflexion boundary conditions are considered, i.e.

F (−η
2
, p) = P−(p)

∫

p′1<0

| p′1 | F (−η
2
, p′)dp′, p1 > 0,

F (
η

2
, p) = P+(p)

∫

p′1>0

p′1F (
η

2
, p′)dp′, p1 < 0.

Here, P−(p) = 1

eu−p
2+v−−1

and P+(p) = 1

eu+p
2+v+−−1

are given Planckian distri-

bution functions, chosen so that
∫

p1>0

p1P−(p)dp =

∫

p1<0

| p1 | P+(p)dp = 1.

Moreover, F is required to have a fixed total outflow (e.g. equal to one),
∫

p1<0

| p1 | F (−η
2
, p)dp+

∫

p1>0

p1F (
η

2
, p)dp = 1.

The model is further simplified by considering F (x, p) such that

P (x) :=

∫
pF (x, p)dp = 0, x ∈ [−η

2
,
η

2
].

The property P1 ≡ 0 is justified by the integration of (1) with respect to p1, and
the boundary conditions. The property Pi ≡ 0, 2 ≤ i ≤ 3 is justified by integration
of (1) w.r.t. (p2, p3).
We take the zero point energy of the condensate into account by moving the Dirac
part in the Planckian distribution function from p = 0 to p = ±( 1

n , 0, 0), and

denote it by P 1
n .

Theorem 1. For some n0 and any n > n0, and for η small enough, there is a
distribution function F ∈ M([− η

2 ,
η
2 ] × IR3) solution to

p1
∂F

∂x
= P 1

n − F, x ∈ [−η
2
,
η

2
], p ∈ IR3,

F (−η
2
, p) = P−(p)

∫

p′1<0

| p′1 | F (−η
2
, p′)dp′, p1 > 0,

F (
η

2
, p) = P+(p)

∫

p′1>0

p′1F (
η

2
, p′)dp′, p1 < 0,

∫

p1<0

| p1 | F (−η
2
, p)dp+

∫

p1>0

p1F (
η

2
, p)dp = 1.
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Rigorous drift-diffusion asymptotics of a quantum transport equation
in the high-field case

Chiara Manzini

(joint work with Giovanni Frosali)

We propose an asymptotic analysis of a linear Wigner-BGK equation in the d-
dimensional case. This equation models time evolution of an open quantum system
with d degrees of freedom: it is governed by transport, by the action of an external
potential, and by the interaction with the environment, which is described via a
relaxation term. We consider the case in which the effects of the potential and
of the environment are comparable. Thus, the equation is appropriately rescaled
with a small parameter ǫ. It reads,

ǫ

(
∂w

∂t
+ v · ∇xw

)
= Θ[V ]w − ν (w − weq) , t > 0 , w(t = 0) = w0 ,(1)

with the unknown w = w(x, v, t), (x, v) ∈ R2d, the strong external potential V =
V (x) and the operator Θ[V ] defined by

(Θ[V ]w)(x, v, t) =
i

(2π)d

∫

Rd

∫

Rd

δV (x, η)w(x, v′, t) ei(v−v
′)·η dv′ dη ,

δV (x, η) :=
1

~

[
V

(
x+

~η

2m

)
− V

(
x− ~η

2m

)]
, (x, η) ∈ R

6, t > 0 .

The function weq = weq(x, v, t) describes the local thermal equilibrium state at
the temperature 1/kβ

weq(x, v, t)= n(x, t)F (v)

(
1 + ~

2β
2

24

(
− 1

m
∆V + β

d∑

r,s=1

vrvs
∂2V

∂xrxs

))

with the position density n = n[w](x, t) :=
∫
w(x, v, t) dv. This is the O(~2)-

correction to the classical Maxwellian F = F (v) := (βm/2π)d/2e−βmv
2/2 [4]. The

parameter ν is the inverse relaxation-time.
We apply to the equation (1) the modified Chapman-Enskog expansion up to the
first order in ǫ [2]. It consists in writing the Wigner unknown w as the sum of a
component which solves the problem (1) with ǫ = 0, precisely n[w](x, t)M(x, v)
with

(2) M(x, v) = νF−1

{
FF (η)

ν − iδV (x, η)

(
1 − β~2

24m2

d∑

r,s=1

ηrηs
∂2V (x)

∂xsxs

)}

(F ia the Fourier transform from v to η), and its orthogonal component ψ. The
latter addendum is expanded in terms of ǫ and, by disregarding terms of order ǫ2

and using projection operators, approximated problems are introduced for both
the components. The equation for n is the continuity equation corrected by terms
of order ǫ, namely, the pressure terms (classical and quantum), the high-field
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drift and pressure terms, that appear by solving the equation for the orthogonal
component ψ. It looks like

∂n

∂t
− 1

νm
∇· (n∇V ) − ǫ

νβm
∇·∇n− ǫβ~2

12νm2
∇·∇· (n∇⊗∇V )(3)

− ǫ

ν3m2
[∇· (n(∇⊗∇)V∇V ) + ∇·∇· (n∇V ⊗∇V )] = 0 .

The second line is in agreement with the derivation performed in the semi-classical
case [1, 3]. The advantage of such procedure is that it allows to treat simultane-
ously the initial layer problem, by introducing time-evolution equations for the
behaviour of the components nM and ψ for times close to 0. By the analysis of
the regularity and the behaviour with respect to time of the different components
and of the expansion terms, we can prove rigorously with which accuracy with
respect to ǫ the Wigner function w is approximated. We remark that establishing
such estimate requires to study well-posedness of Eq. (3), which is a singularly
perturbed parabolic PDE with non-homogeneous coefficients, and in particular,
to obtain regularity estimates for its solution, uniform with respect to ǫ.
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Functional inequalities and applications to large time asymptotics of
solutions to nonlinear diffusion equations

Jean Dolbeault

(joint work with Ivan Gentil, Arnaud Guillin and Feng-Yu Wang)

The goal is to obtain new estimates of entropy - entropy production type using
various techniques of capacity - measure theory. As a consequence, we obtain
rates of convergence in the large time regime for solutions to nonlinear diffusion
equations.

Let µ and ν be respectively a Borel probability measure and a positive Borel
measure on a Riemannian manifold (M, g), which are not necessarily absolutely
continuous with respect to the volume measure. Typical examples are M = Rd

and M = Td. Assume for simplicity that q ∈ (1/2, 1), although some of our results
can be extended to other values of q, see [2]. We shall say that (µ, ν) satisfies a Lq-
Poincaré inequality with constant CP if for all non-negative functions f ∈ C1(M)
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one has

(1)
[
Varµ(f

q)
]1/q

:=

[∫
f2q dµ−

(∫
f q dµ

)2
]1/q

≤ CP

∫
|∇f |2 dν .

According to Röckner and Wang, [4], we shall also say that (µ, ν) satisfies a
weak Poincaré inequality if there exists a non-negative non increasing function
on (0,+∞)∋s 7→ βWP(s) such that, for any bounded function f ∈ C1(M),

∀ s > 0 , Varµ(f) ≤ βWP(s)

∫
|∇f |2 dν + s

[
Oscµ(f)

]2
.

Here we define the oscillation of a bounded function f by Oscµ(f) := supessµf −
infessµf . If µ is absolutely continuous with respect to the volume measure and f

is continuous, we can therefore define such a quantity as (supf̃ − inf f̃) where f̃ is
the restriction of f to the support of µ.

Given measurable sets A and Ω such that A ⊂ Ω ⊂M , the capacity Capν(A,Ω)

is defined as Capν(A,Ω) := inf
{ ∫

|∇f |2 dν : f ∈ C1(M), IA ≤ f ≤ IΩ
}
. Define

the quantity

βP := sup

{
∑

k∈Z

[
µ(Ωk)

]1/(1−q)
[
Capν(Ωk,Ωk+1)

]q/(1−q)

}(1−q)/q

where the supremum is taken over all Ω ⊂ M with µ(Ω) ≤ 1/2 and all sequences
(Ωk)k∈Z

such that for all k ∈ Z, Ωk ⊂ Ωk+1 ⊂ Ω.

Theorem 1. With the above notations, (µ, ν) satisfies a Lq-Poincaré inequality

with a finite positive constant CP if and only if βP is finite.

Let us introduce the following property: There exists a non-negative non in-

creasing function γ on (0, 1/2) such that for every measurable subsets A, B of M
with A ⊂ B and µ(B) ≤ 1/2,

(2) Capν(A,B) ≥ µ(A)

γ(µ(A))
.

The next result is due to Barthe, Cattiaux and Roberto, see [1], up to the adap-
tation to non absolutely continuous measures.

Theorem 2. Assume that (µ, ν) satisfies a weak Poincaré inequality for some non-
negative non increasing function βWP(s). Then Property (2) holds with γ(s) :=
4 βWP(s/4). Reciprocally, if Property (2) holds for some function γ, then (µ, ν)
satisfies a weak Poincaré inequality with associated function βWP(s) = κP γ(s)/ 2,

κP = (11 + 5
√

5).

The proof uses the fact that for all a ∈ R,

Varµ(f
q) ≤

∫
(f q − aq)2 dµ ≤

∫
|f − a|2q dµ ,
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and as an interesting special case, this inequality holds for a = m(f), a median
of f with respect to µ. We recall that m(f) is a median of f if and only if
µ({f ≥ m}) ≥ 1/2 and µ({f ≤ m}) ≥ 1/2.

Using the criterion of Theorem 2, we can make the link with Lq-Poincaré in-
equalities using Theorem 2.3.6 of [3].

Theorem 3. If (µ, ν) satisfies the Lq-Poincaré inequality, then it also satisfies
a weak Poincaré inequality with βWP(s) = k βP s

1−1/q. Reciprocally, if (µ, ν)
satisfies a weak Poincaré inequality with function βWP, then it satisfies a Lq-
Poincaré inequality with βP ≤ κP ( 4

1−q )(1−q)/q ‖βWP(·/4)‖
Lq/(1−q)(0,1/2)

.

On M = R, to a probability measure µ and a positive measure ν with density ρν
with respect to Lebesgue’s measure, if mµ is a median of µ, we associate the
functions

R(x) := µ([x,+∞)) , L(x) := µ((−∞, x]) ,

r(x) :=

∫ x

mµ

1

ρν
dx , ℓ(x) :=

∫ mµ

x

1

ρν
dx .

Theorem 4. With the above notations, (µ, ν) satisfies a Lq-Poincaré inequality if
∫ ∞

mµ

|Rr |q/(1−q) dµ <∞ and

∫ mµ

−∞
|L ℓ |q/(1−q) dµ <∞ .

To extend such a result to more general spaces, we can use tensorization prop-
erties of the Lq-Poincaré inequalities. If for any i ∈ {1, · · · , n}, µi is a proba-
bility measure and (µi, µi) satisfies a Lq-Poincaré inequality with constant CPi,
then (⊗ni=1µi, ⊗ni=1µi) satisfies a Lq-Poincaré inequality on Mn with constant

n1/q−1max1≤i≤n CPi.

As an application of Lq-Poincaré inequalities, consider a function ψ ∈ C1(Rd)
such that Zψ :=

∫
e−ψdx < +∞ and define the probability measure

dµψ :=
e−ψ dx

Zψ
.

Let L be the symmetric operator on L2
µψ (Rd) given by Lf := ∆f −∇ψ · ∇f and

consider for m > 1 the nonlinear partial differential equation

∂u

∂t
= Lum

for t ≥ 0, x ∈ Rd, corresponding to a non-negative initial condition u(0, x) = u0(x)
for any x ∈ Rd. Such an equation is known as the weighted porous media equation.

A simple computation shows that

d

dt
Varµψ (u) = − 8m

(m+ 1)2

∫
|∇um+1

2 |2 dµψ .

If (µψ, µψ) satisfies a Lq-Poincaré inequality, then Varµψ (u) decays with an alge-
braic rate and one can prove that such a rate of decay is actually equivalent to the
fact that (µψ, µψ) satisfies a Lq-Poincaré inequality.
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Our results also apply to Lq-logarithmic Sobolev inequalities

Entµ
(
f2q
)1/q ≤ CLS

∫
|∇f |2 dµ ,

where Entµ(g) :=
∫
g log

(
g/
∫
g dµ

)
dµ. See [2] for further details.
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Some progress in the Kinetic Theory

Yan Guo

In this talk, some progress in the kinetic theory is discussed. For the Boltzmann
theory, It is well-known that the first-order term in the diffusive expansion of the
Boltzmann equation leads to the celebrated incompressible Navier-Stokes-Fourier
system in fluid dynamics. Recently, the PDE for the higher-order terms have been
derived in such a diffusive expansion, and the validity of such an expansion up
to any finite order has been proven. Mathematically, a new energy method is
developed to uniformly control the remainder. This work opens new research line
to understand the correction to the Navier-Stokes theory. See [1].

A galaxy can be modeled by the Vlasov-Poisson system, in which stars only
interact with gravitational potential they create collectively. There are two im-
portant types of galaxy models: the polytropes and the King model. Over the past
eight years, Rein and the author have developed a successful variational method
to prove stability of the polytropes. Unfortunately, such a method fails to treat
the important King model, which is almost a canonical model widely used in as-
trophysical literature. Recently, Rein and the author were able to prove stability
of the King model among certain symmetric perturbations, via a completely new
approach. This first step opens a new line of research towards the study of King
model. See [2].
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Derivation of the time dependent Gross-Pitaevskii equation for the
dynamics of the Bose-Einstein condensate

László Erdős

(joint work with Benjamin Schlein and Horng-Tzer Yau)

The time dependent Gross-Pitaevskii equation describes the dynamics of initially
trapped Bose-Einstein condensates. In this talk we presented a rigorous proof of
this fact starting from a many-body bosonic Schrödinger equation with a short
scale repulsive interaction in the dilute limit. Our proof shows the persistence of
an explicit short scale correlation structure in the condensate.
The Hamiltonian of N interacting bosonic particles in R3 is given by

(1) Htrap
N =

N∑

i=1

[
− ∆xi + U(xi)

]
+
∑

i<j

V (xi − xj)

where U is a trapping potential (with U(x) → ∞ as |x| → ∞) and V is a repulsive
interaction (V ≥ 0).
We use the scaling

V (x) → VN (x) := N2V (Nx)

that was first used for the derivation of the stationary Gross-Pitaevskii equation by
[3], where it was proven that the ground state energy per particle is asymptotically
given by the minimizer of the Gross-Pitaevskii functional:

lim
N→∞

1

N
inf Spec Htrap

N = min{EGP (ϕ) : ‖ϕ‖ = 1}

with

EGP (ϕ) =

∫ (
|∇ϕ|2 + U |ϕ|2 + 4πa0|ϕ|4

)

Here the coefficient a0 is the scattering length of the unscaled potential V and note
that the scattering length of the rescaled interaction potential VN is a = a0/N .
The emergence of the scattering length is due to a specific short scale correlation
structure present in the ground state ψN of any interacting bosonic Hamiltonian.
This short scale structure is characterized by a factor

(2)
∏

i<j

f(N(xi − xj))

where f is the zero energy scattering solution to (−∆ + 1
2V )f = 0 with the

boundary condition f(x) → 1 as |x| → ∞.
Morover, it was proven by Lieb and Seiringer [4] that the ground state ψN of the

trapped Hamiltonian Htrap
N exhibits complete Bose-Einstein condensation, that is,

the one particle density matrix,

γ
(1)
N := Tr2,3,...N |ψN 〉〈ψN |,

(computed by taking the partial trace for all but one variable) satisfies

lim
N→∞

γ
(1)
N = |ϕGP 〉〈ϕGP |



Classical and Quantum Mechanical Models of Many-Particle Systems 3235

where ϕGP is the minimizer of EGP (ϕ).
Our main theorem is the derivation of a dynamical version of the Gross-Pitaevskii
theory. The initial state is assumed to be the ground state ψN of the trapped
Hamiltonian (1) with interaction potential scaled as VN (x) := N2V (Nx). Then
we instantenously remove the trap and observe the evolution of ψN , i.e. we solve
the Schrödinger equation

i∂tψN,t = HNψN,t

with a Hamiltonian without a trap,

HN =
N∑

i=1

−∆xi +
∑

i<j

VN (xi − xj),

and with initial data ψN,0 = ψN . Let γ
(1)
N,t be the one particle marginal density of

the time evolved wavefunction ψN,t. Then we have the following theorem:

Theorem 1. For any fixed time t ∈ R, ψN,t exhibits complete Bose-Einstein
condensation, that is

(3) γ
(1)
N,t → |ϕt〉〈ϕt| as N → ∞,

where ϕt solves the Gross-Pitaevskii equation

(4) i∂tϕt = −∆ϕt + 8πa0|ϕt|2ϕt
with initial data ϕt=0 = ϕGP. The convergence in (3) is in weak convergence of

trace class operators, i.e. in the sense that Tr K (γ
(1)
N,t − |ϕt〉〈ϕt|) → 0 for any

compact operator K on L2(R3).

We can also prove propagation of chaos, i.e. that higher order correlation
functions factorize in the limit:

γ
(k)
N,t → |ϕt〉〈ϕt|⊗k

for any fixed k, where the k-point correlation function is defined as

γ
(k)
N,t = Trk+1,k+2,...N |ψN,t〉〈ψN,t|

The same theorem holds for a product initial data, ψN,0 = ⊗N1 ϕ with ϕ ∈
H1(R3), despite that the corresponding energy is given by a somewhat different
functional:

lim
N→∞

1

N
〈⊗N1 ϕ,HN ⊗N1 ϕ〉 = min

‖ϕ‖=1

∫ (
|∇ϕ|2 + U |ϕ|2 +

b0
2
|ϕ|4

)

where b0 :=
∫
V and note that b0 > 8πa0. Thus our theorem shows that the GP

energy functional does not predict the correct coupling constant in the evolution
equation for a product initial data. This apparent controversy is resolved by
realizing that the convergence in the theorem is only in (weak) trace sense and
not in energy sense. The product initial state lacks the characteristic short scale
structure (2) related to the emergence of the scattering length, but in a very short
time scale this structure is dynamically formed to reduce the local energy in the
regime where any two particles are at a distance 1/N from each other. The excess
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energy is presumable disperses into intermediate modes on lengthscales 1
N ≪ ℓ≪ 1

that do not influence the dynamics of the condensate.
The proof of the main theorem can be found in [1, 2].
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An Application of Landau Zener Formula: Resolvent Estimate for
Matrix-Valued Schrödinger Operator

Clotilde Fermanian Kammerer

(joint work with Vidian Rousse)

Landau-Zener formula describes quantitatively the energy transfer which may oc-
cur when there is band’s crossings. We present here a joint work with V. Rousse
where these formula play a crucial role.

We consider the matrix-valued Schrödinger operator acting in L2(Rd,C2),

P (ε) = −ε
2

2
∆ Id +M(x)

where 0 < ε≪ 1, M ∈ C∞(Rd,C2,2) is self-adjoint and long-range. We write

M(x) = p0(x) Id +

(
p1(x) p2(x) + ip3(x)

p2(x) − ip3(x) −p1(x)

)
,

p = (p1, p2, p3), pj∈ C∞(Rd)

We aim at estimating the resolvent R(z, ε) = (P (ε) − z)−1 on the weighted L2-
space L2,s(Rd,C2) consisting of functions f such that x 7→< x >s f(x) is in
L2(Rd,C2), s > 1

2 .
In the scalar case, if p = 0, one considers the Hamiltonian trajectories ρs = (xs, ξs)
associated with |ξ|2/2 + p0(x). An energy λ > λ∞ is said to be non-trapping if all
the trajectories of energy λ (i.e. such that λ = |ξs|2/2+p0(xs) ∀s) goes to infinity
when s goes to ±∞. Then there is an equivalence between the fact that the energy
λ0 is non trapping and the existence in a neighbourhood of λ0 of estimations of
the form

(1) ‖R(λ± i0, ε)‖L2,s→L2,−s ≤
Cs
ε
.
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The proof of N. Burq (see [1]) uses the invariance of semi-classical measure of
solutions of a Schrödinger equation along ρs.
In the matrix-valued case, when the eigenvalues v±(x) = p0(x) ± |p(x)| of M are
of constant multiplicity 1, i.e. when p does not vanish. T. Jecko has adapted the
arguments of N. Burq to this framework: If the energy λ is non trapping for both
Hamiltonian trajectories ρ±s of |ξ|2/2+ v±(x), then (1) holds. The key argument
is that a semi-classical measure of a solution of a Schrödinger equation with such a
matrix-valued potential decouples on both modes and each part is invariant along
the associated Hamiltonian curves (see [4]).
Let us consider now the matrix valued case with crossings (joint work with V.
Rousse). Suppose d ∈ {1, 2, 3} and that Rank (dp(x)) = d on the crossing points,
i.e. where p(x) = 0. One can still define continuous Hamiltonian trajectories
passing through crossing points which have non zero momentum ([2]). We call
generalized trajectories the curves consisting of branches of classical trajectories
with either a switch or not at each crossing time (C0, smooth by piece).

One can prove (see [3]) that if λ0 ≥ λ∞ := Max
(

Sup
{x; p(x)=0}

p0(x), , ‖M∞‖
)

is non

trapping for the generalized trajectories of energy λ0, then, there exist ε0 > 0, and
a neighbourhood I of λ0 such that (1) holds for λ ∈ I and ε ∈]0, ε0[.
Indeed, the decoupling and propagation of semi-classical measures still hold outside
the crossing points. Besides, at crossing points with non zero momentum, there
is energy transfer between the modes quantified by the so-called Landau-Zener
formula (see [2]).
A refined version of this result gives under more restrictive assumptions on M
Strichartz estimates for the propagator and global existence of solutions of the
non linear semi-classical Schrödinger equation

{
ε
i ∂tψ

ε + P (ε)ψε + εβ |ψε|2ψε = 0,
ψεt=0 = ψε0,

where |ψε| stands for the norm of ψε(t, x) in C2. For ψε0 ∈ H1
ε , the solution

ψε belongs to C0
(
R, H1

ε (R
d,C2)

)
∩ Lploc

(
R,W 1,q

ε (Rd,C2)
)

with (p, q) satisfying
1/p+ d/q = d/2, p > 2. We emphasize that this result applies in particular when
M(x) is equal to a constant matrix outside a ball.
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[3] C. Fermanian Kammerer, V. Rousse: Resolvent Estimates and Matrix-Valued Schrödinger
Operator with Eigenvalue Crossings. Application to Strichartz Estimates, preprint.

[4] T. Jecko: Non-trapping condition for semiclassical Schrödinger operators with matrix-valued
potentials. Math. Phys. Electronic Journal, No. 2, vol. 11, (2005).



3238 Oberwolfach Report 54/2006

Critical Droplet Minimizers

Rossana Marra

We are interested in the study of the form of the minimizers for a class of non
local functionals, which are Liapunov functionals for kinetic models in presence of
phase transition. We start by studying a similar non local functional of the form

(1) F(m) =

∫

Ω

[∫

Ω

1

4
[m(x) −m(y)]2|J(x − y)dy + f(m) − f(mβ)

]
dx

where

(2) f(m) = −1

2
m2 +

1

β
s(m); s(m) =

1 −m

2
log

1 −m

2
+

1 +m

2
log

1 +m

2
.

J(r) is smooth, of range θ and monotone. The functionm(x), with values in [−1, 1],
has a meaning of magnetization for a system of spins. For temperature T = β−1

lesser than a critical value Tc f(m) has two symmetric minima ±mβ ,mβ > 0,
corresponding to two “phases” of the system: The minimum at −mβ represents a
phase with negative magnetization, while the minimum at +mβ represents phase
with positive magnetization.

Since the total amount of magnetization is conserved, we are interesting in
minimizing F under the constraint

(3)
1

|Ω|

∫

Ω

m(x)dx = n

for some fixed number n.
The central problem under discussion here is this:

•What do the minimizers of F under the constraint (3) look like?

The minimizers are typically droplets whose size is determined by the total
mass in the system. We exactly determine the critical mass for droplet formation.
We prove the following Theorems for the minimal free energy function fL(n)

(4) fL(n) = inf

{
F(m) :

1

Ld

∫

Ω

m(x)dx = n

}
.

Theorem 1. For all K > 0,

(5) lim
L→∞

fL
|Γ0|

(
−mβ +KL−d/(d+1)

)
= inf

0≤η≤1
S
(
η1−1/d +D(K)(1 − η)2

)

where

D(K) = C
(
−mβ +KL−d/(d+1)

)
=

2

dχS

(σd
d

)−1/d
(
K

2

)(d+1)/d

and S = 23/2/3.
Furthermore, let K⋆ be defined by

(6) K⋆ = 2

(
d+ 1

2

)d/2 (σd
d

)1/(d+1)
(
χS

2

)d/(d+1)

.
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Then for all K < K⋆, and all L sufficiently large, the infimum in (5) is a minimum
attained uniquely at η = 0, while for all K > K⋆, and all L sufficiently large, the
infimum in (5) is a minimum attained uniquely at η = ηc where ηc ≥ η⋆.

Theorem 2. For all K < K⋆ and L sufficiently large, when

−mβ ≤ n ≤ −mβ +KL−d/(d+1) ,

the unique minimizer for (4) is the uniform order parameter field m(x) = n.
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Kinetic Limit for Wave Propagation in a Random Medium

Jani Lukkarinen

(joint work with Herbert Spohn)

In this talk we consider discrete wave-equations with a random index of refraction
and in the kinetic scaling limit. Based on the results in [1, 2], we discuss how the
appropriately defined lattice Wigner transform converges to a positive measure
whose time-evolution satisfies a linear Boltzmann equation. This property holds
for quite general initial conditions and discrete scalar wave equations. In particu-
lar, this allows solving also the time-evolution of the energy-density in the kinetic
scaling limit. The proof is based on the methods developed in [3, 4], which needed
to be adapted to study more general dispersion relations, and to accommodate
perturbations with additional momentum dependence and matrix-structure.

More explicitly, we study the Hamiltonian system

d

dt
qy(t) = vy(t),

(1 +
√
ε ξy)

−2 d

dt
vy(t) = −

∑

y′∈Z3

α(y − y′)qy′(t)(1)

with y ∈ Z3 and qy(t), vy(t) ∈ R. The “mass” of the atom at site y is (1+
√
ε ξy)

−2,
where (ξy)y∈Z3 is a family of independent, identically distributed random variables.
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Their common distribution is independent of ε, has zero mean and is supported
on the interval [−ξ̄, ξ̄]. Expectation with respect to ξ is denoted by E, and we
assume ε < ξ̄−2 so that 1 +

√
ε ξy > 0 with probability one.

The coefficients α(y) are the elastic couplings between atoms, and we require
them to be exponentially decreasing and lead to stable harmonic interactions. Let
α̂(k) =

∑
y∈Z3 e−i2πk·yα(y). Then α̂ : T3 → R is the discrete Fourier-transform

of α, where T3 = R3/Z3 denotes the 3-torus with unit side length. Mechanical
stability demands α̂ ≥ 0, so that the dispersion relation

ω(k) =
√
α̂(k)(2)

is a positive function ω : T3 → R. (The name stems from the fact that, if ε = 0,
Eqs. (1) admit plane wave solutions with wave vector k ∈ T3 and frequency ω(k).)

We solve the differential equations (1) as a Cauchy problem with initial data
q(0), v(0). The time-evolution (1) conserves the energy

E(q, v) =
1

2

(∑

y∈Z3

(1 +
√
ε ξy)

−2v2
y +

∑

y,y′∈Z3

α(y − y′)qyqy′
)
,(3)

which we assume to be finite, E(q(0), v(0)) < ∞. Since ω(k) > 0, this implies
that q(0), v(0) ∈ ℓ2(Z

3,R). For any realization of ξ, the generator of the time-
evolution (1) is a bounded operator on ℓ2(Z

3,R2), and thus the Cauchy problem
has a unique, norm-continuous solution in ℓ2(Z

3,R2).
We then switch to new variables such that the energy (3) turns into a flat

ℓ2-norm. Let Ω denote the bounded operator on ℓ2(Z
3,C) defined via

(Ωφ)y =
∑

y′∈Z3

ω̃y−y′φy′ ,(4)

where ω̃ is the inverse Fourier-transform of the function ω. Since q(t), v(t) ∈
ℓ2(Z

3,R), we can introduce the vector ψ(t) ∈ ℓ2(Z
3,C2) through

ψ(t)σ,y =
1

2

(
(Ωq(t))y + iσ(1 +

√
ε ξy)

−1v(t)y
)
,(5)

where σ = ±1 and y ∈ Z3. Let also ℓ2 = ℓ2(Z
3,C), and H = ℓ2(Z

3,C2) = ℓ2 ⊕ ℓ2.
If we regard ξ as a multiplication operator on ℓ2, i.e., if we define (ξψ)y = ξyψy,

then ψ(t) satisfies the differential equation

d

dt
ψ(t) = −iHεψ(t), with Hε = H0 +

√
εV,(6)

where

H0 =

(
Ω 0
0 −Ω

)
, V =

1

2

(
Ωξ + ξΩ −Ωξ + ξΩ
Ωξ − ξΩ −Ωξ − ξΩ

)
.(7)

Since Hε is a self-adjoint operator on H, the solution to (6) generates a unitary
group on H, and, with initial conditions ψε, the solution to (6) is given by

ψ(t) = e−itHεψε.(8)
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Unitarity is equivalent to energy conservation, since for all t

‖ψ(t)‖2 = E(q(t), p(t)).(9)

By inspection, ψ(t)∗−,y = ψ(t)+,y for all y and t due to q(t), v(t) ∈ R. Thus we can

identify the energy density at time t and site y with 2|ψ(t)+,y|2.
To study the time-evolution of the energy density, we resort to the lattice Wigner

transform of a state ψ ∈ ℓ2. Given a scale ε > 0, we define the Wigner transform
W ε[ψ] as the tempered distribution

〈J,W ε[ψ]〉 =
∑

y′,y∈Z3

ψ∗
y′ψy

∫

T3

dk ei2πk·(y′−y)J
(
ε
y′ + y

2
, k
)∗
.(10)

where x ∈ R3, k ∈ T3, and J is a Schwartz function. Similarly to the usual Wigner
transform of L2-functions, the “marginals” of W ε satisfy:

∫

T3

dkW ε[ψ](x, k) =
∑

y∈Z3

δ(x − εy)|ψy|2,
∫

R3

dxW ε[ψ](x, k) = |ψ̂(k)|2.(11)

We refer to [5] for an exhaustive discussion about Wigner transforms and harmonic
lattice systems in general.

We assume that the dispersion relation ω satisfies:

(DR1) ω2 is real-analytic and ω(−k) = ω(k).
(DR2) mink ω(k) > 0.
(DR3, dispersivity) ω is a Morse function: it has only isolated critical points,
which are non-degenerate (the Hessian is invertible at every critical point).
(DR4, suppression of crossings) The periodic extension of ω to R3 is not a con-
stant on any affine hyperplane.

The main content of [2] is to prove that the final condition, (DR4), implies sufficient
curvature of level sets of ω so that the so called crossing integrals containing three
resolvent factors can be neglected in the kinetic limit.

We then study a limit where ε→ 0+ via some arbitrary sequence of values. For
each ε, we assume that initial conditions ψε ∈ H are independent of ξ, and that
the sequence (ψε)ε has the following properties:

(IC1, bounded) sup
ε

‖ψε‖ <∞.

(IC2, tight) lim
R→∞

lim sup
ε→0

∑

|y|>R/ε
|ψεy|2 = 0.

(IC3, convergent) The limit limε→0〈J,W ε[ψε+]〉 exists for all J ∈ S(R3 × T3).

Theorem 1. Assume ω and ψε satisfy the above conditions, and let ψ(t) denote
the random vector determined by (8). Then for all t ≥ 0, there is a positive Radon
measure µt such that for any J ∈ S(R3 × T3),

(12) lim
ε→0

E[〈J,W ε[ψ(t/ε)+]〉] =

∫

R3×T3

µt(dxdk)J(x, k)∗.
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In addition, µt satisfies a linear Boltzmann equation, in the sense that if W denotes
the formal density of µ, i.e., µt(dxdk) = W (x, k, t)dxdk, then

∂tW (x, k, t) +
∇ω(k)

2π
· ∇xW (x, k, t)

= E[ξ20 ] 2π ω(k)2
∫

T3

dk′δ(ω(k) − ω(k′)) (W (x, k′, t) −W (x, k, t)) .(13)

More precisely, Eq. (13) should be understood as a generator of a semi-group
on bounded positive Radon measures. After solving (13), we can find the time-
evolution of the kinetic limit of the energy density by integrating out the k-variable:
E(x, t) =

∫
T3 dkW (x, k, t).
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On the derivation of kinetic equations from macroscopic quantum
mechanics

Raffaele Esposito

We consider a system of N = ǫ−3 quantum particles interacting via a two body po-
tential in the weak coupling limit. We give an diagramatic expansion of the evolved
j-particles Wigner functions for the full system and show that when N → ∞ and
the size of the potential is

√
ǫ and the initial state satisfies a suitable molecular

chaos assumption, the expansion converges term by term to a factorized limiting
sequence satisfying the Classical Boltzmann Hierarchy with a cross section com-
puted according to the Fermi Golden Rule. Therefore the 1-particle distribution
solves the Classical Boltzmann equation. The proof is achieved by a detailed analy-
sis of the oscillating terms in the different kind of graphs. An important (technical)
restriction is the assumption that the interaction potential has vanishing average.
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Derivation of nonlinear Convection-Diffusion Equations from BGK
Models

Christian Schmeiser

(joint work with J. Dolbeault, P. Markowich, D. Oelz)

We consider the scaled kinetic equation

ε2 ∂tf + ε [v · ∇xf −∇xV (x) · ∇vf ] = Q(f) ,(1)

Q(f) := Gf − f , Gf := γ
(1

2
|v|2 − µ̄(ρf (x, t))

)
,(2)

where the distribution function f = f(x, v, t) depends on position x ∈ R3, velocity
v ∈ R3, and time t > 0. The collision model is a simple relaxation kernel towards
a generalized local Gibbs state Gf . The chemical potential µ̄(ρf ) is determined
implicitly by the condition

∫
R3 Gf dv = ρf :=

∫
R3 f dv, or equivalently

(3) ρ =

∫

R3

γ

(
1

2
|v|2 − µ̄(ρ)

)
dv .

We are interested in the diffusion limit ε → 0 which corresponds to a large time
scale and a high collision frequency limit. In [1] we prove that in the limit ε→ 0,
the distribution function f is a local Gibbs state: f = Gf , whose density is subject
to a nonlinear diffusion equation

∂tρ = ∇x · (∇x ν(ρ) + ρ∇xV ) with ν′(ρ) = ρµ̄′(ρ) .

The main modelling ingredient is the energy dependent equilibrium profile γ(E) ≥
0, which is assumed to be nonincreasing. The given external potential V (x) is
assumed to be ‘confining’. An appropriate definition of this property depends
on the profile γ. For the detailed assumptions, an exact formulation of the limit
theorem, and the proof, see [1].
The most notable applications include:

(1) Fast diffusion: γ(E) = E−k with k > 5/2, giving ν(ρ) = cρ(k−5/2)/(k−3/2),
(2) Linear diffusion: γ(E) = e−E , giving ν(ρ) = ρ,
(3) Slow diffusion: γ(E) = (E0 − E)k+ with k > 0, giving

ν(ρ) = cρ(k+5/2)/(k+3/2).

The assumptions of the limit theorem also allow for Fermi-Dirac and Bose-Einstein
equilibrium distributions.
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Rigorous analysis of a model of spray in quasi-static condition

Valeria Ricci

(joint work with Laurent Desvillettes, François Golse)

We present a rigorous derivation of Brinkman’s force for a quasi-static system
consisting of a cloud of spherical particles with different instantaneous velocities
immersed in a Stokes (or steady Navier-Stokes) fluid in a smooth, bounded domain
Ω ⊂ R3. Equations similar to the ones we derive are sometimes used for describing
the fluid phase in models of sprays or suspensions. The quasi-static assumption
allows us to consider the solid particles as having fixed positions.

More precisely, we consider a system of N spheres Bxk,ε, of radius ε and center
xk, with instantaneous velocities vk,, k = 1, . . . , N , sourrounded by an incompress-
ible fluid with density ρ = 1, kinematic viscosity ν and velocity field uε, described

in the domain Ωε = Ω \⋃Nk=1Bxk,ε by the equations
{
A(uε) + ∇pε = g,

∇ · uε = 0,
on Ωε(1)

with no-slip boundary conditions
{
u|∂Bxk,ε = vk, for k = 1, .., N,

u|∂Ω = 0.
(2)

In (1), we consider A(u) = −△u (Stokes fluid) or A(u) = u∇u− ν△u (steady
Navier-Stokes fluid), pε is the pressure and g is the density of external force per
unit of mass in the Navier–Stokes case or its ratio to the kinematic viscosity in
the Stokes case.

By means of homogenization methods, following the lines in ([2]) and ([3])
(where the authors considered periodic distributions of spheres all with the same
velocities resp. for the Stokes and Navier-Stokes equations and for the Laplace
equation) but simplifying the computations by using solenoidal correctors for the
velocity field and therefore avoiding explicit estimates of the pressure, we show
that, when g ∈ (L2(Ω))3, ε = 1

N , inf1≤k 6=l≤N |xk − xl| > 2ε1/3,

inf1≤k≤N dist(xk, ∂Ω) > ε1/3, and the empirical measure associated to the spheres,

FN (x, v) = 1
N

∑N
k=1 δxk,vk(x, v), is such that supN≥1

∫∫
Ω×R3

1
2 |v|2FNdxdv < ∞,

and ρN =
∫

R3 FN dv ⇀ ρ ∈ C(Ω̄), jN =
∫

R3 FN v dv ⇀ j ∈ C(Ω̄) (weakly in the
sense of measures), the natural extension ūε of uε to Ω, defined by ūε(x) = uε(x)
if x ∈ Ωε, ūε(x) = vk if x ∈ Bxk,ε, converges in (L2(Ω))3, when N → ∞ , to the
solution U of 




A(U) + ∇Π = g + 6 π (j − ρU),
∇ · U = 0,
U |∂Ω = 0

(3)
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Some explicit expressions of the Fourier transformed Boltzmann
equation

Sergej Rjasanow

(joint work with Ralf Kirsch)

The spatially homogeneous Boltzmann equation reads

ft(t, v) = Q(f, f)(t, v) for t > 0 , v ∈ R
3 ,(1)

where the unknown distribution density function f depends on time t ≥ 0 and
velocity v ∈ R3. The collision operator is given by

Q(f, g)(v) =

∫

R3

∫

S2

B(v, w, e)
(
f(v′)g(w′) − f(v)g(w)

)
de dw ,

where S2 denotes the unit sphere and

v′ =
1

2

(
v + w + |v − w| e

)
, w′ =

1

2

(
v + w − |v − w| e

)
.

The so-called collision kernel B describes the microscopic details of the particle
interaction and is generally assumed to be of the form

B(v, w, e) = bλ(µ) |v − w|λ , µ =
(v − w, e)

|v − w| , −3 < λ ≤ 1 ,(2)

where (·, ·) denotes the scalar product in R3. In general, the angular part bλ
contains a non-integrable singularity at µ = 1. In practical applications, the so-
called VHS model for hard potentials is frequently considered, i.e. the function bλ
is assumed to be constant:

(3) B(v, w, e) = Cλ |v − w|λ , 0 ≤ λ ≤ 1 .

1. Fourier transformed Boltzmann equation

We will denote by ϕ any test function in the Schwartz space S of infinitely
smooth and rapidly decreasing functions on R3. The Fourier transform of ϕ is
denoted by

ϕ̂(ξ) = Fv→ξ(ϕ)(ξ) =

∫

R3

ϕ(v) ei(v, ξ) dv .
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The first important step in use of the Fourier transform for the Boltzmann equa-
tion was made by Bobylev in [1], where he found that in the case of Maxwellian
molecules (λ = 0 in (2)), the Fourier transform of the equation acquires the form

(4) f̂t(ξ) =

∫

S2

b0(µ)

(
f̂
(ξ + |ξ|e

2

)
f̂
(ξ − |ξ|e

2

)
− f̂(ξ) f̂ (0)

)
de ,

noting that here µ = (ξ, e)/|ξ|. This remarkable result could be used to find
exact solutions of the equation (1). We recall that the convolution of a tempered
distribution Φ with a test function ϕ ∈ S is again a tempered distribution and
that the following well-known identity holds

̂(Φ ∗ ϕ)(ξ) = Φ̂(ξ) ϕ̂(ξ) .

For z ∈ R3, we demand that (1) is fulfilled in the sense of tempered distributions,
i.e.

(5) ∀ϕ ∈ S :
(
ft, ϕ(z − ·)

)
=
(
Q(f, f), ϕ(z − ·)

)
.

After some manipulations we obtain that the transformed Boltzmann equation
reads (cf. [2])

(6) f̂t(t, ξ) =

∫

R3

f̂
(
t,
ξ + η

2

)
f̂
(
t,
ξ − η

2

)
Tλ(ξ, η) dη ,

where Tλ is given by

Tλ(ξ, η) =(7)

2λ−1

8π3

∫

R3

|y|λei(y, η)
∫

S2

bλ(µ)
(
e−i(|y|e, ξ)+ei(|y|e, ξ)−e−i(y, ξ)−ei(y, ξ)

)
dyde ,

which is independent of the test function ϕ and contains the information about
the particle interaction. Recall that y = (v − w)/2 and, therefore, the infinitely
smooth term in brackets is sufficient to cancel out the singularities in the collision
kernel.

2. Examples

For the VHS model (3) the kernel (7) simplifies to

Tλ(ξ, η) = −Cλ
2λ

π
Γ(λ+ 1) sin

(πλ
2

)
×(8)

(∣∣|ξ| − |η|
∣∣−λ−1 −

∣∣|ξ| + |η|
∣∣−λ−1

|ξ| |η| − (λ+ 1)
( 1

|ξ − η|λ+3
+

1

|ξ + η|λ+3

))
.

For Hard spheres model (λ = 1) we get

T1(ξ, η) = −C1
4

π

(
2

∣∣ |ξ|2 − |η|2
∣∣2 −

(
1

|ξ − η|4
+

1

|ξ + η|4

))
.
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The kernel T0 cannot be obtained by simply letting λ → 0 in (8). Instead, we
obtain

T0(ξ, η) = 2C0

(
1

|η| |ξ|
(
δ(|ξ| − |η|) − δ(|ξ| + |η|)

)
− 16π

(
δ(ξ − η) + δ(ξ + η)

))

The expression (8) can be used also for soft potentials, i.e. for λ < 0. Thus, letting
λ→ −1 we obtain

T−1(ξ, η) = − 2

π
C−1

( 1

|ξ − η|2 +
1

|ξ + η|2 +
log
∣∣|ξ| − |η|

∣∣− log
∣∣|ξ| + |η|

∣∣
|ξ| |η|

)

and, finally, for λ→ −2

T−2(ξ, η) = −1

8
C−2

( 2

min(|ξ|, |η|) +
1

|ξ − η| +
1

|ξ + η|
)
.

3. Conclusions

Since the operator in (6) contains only one three-dimensional integral, even the
most straightforward approximation method will lead to a numerical scheme with
competitive efficiency.
Moreover, the kernel Tλ in (7) is explicitly known for the practically relevant
λ ∈ (−3, 1] but the singularities appearing in the kernel are quite strong.
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On the blowing up of solutions to quantum hydrodynamic models on
bounded domains

Maria Pia Gualdani

(joint work with Irene M. Gamba, Ping Zhang)

The evolution of a quantum fluid in a first approximation can be described by a
dispersive perturbation associated to the Hamilton-Jacobi system for compressible
fluid dynamics, sometimes referred as a dispersive perturbation of the Eikonal
equation for the evolution of amplitude and phase velocity of quantum wave guides.
This system consists in the continuity equation for the particle density ρ and for
the momentum ρu

ρt + div(ρu) = 0, t > 0, x ∈ Ω ⊆ R
d,(1)

(ρu)t + div(ρu ⊗ u) + ∇P (ρ) =
ε2

2
ρ∇
(

∆
√
ρ

√
ρ

)
,(2)

where P (ρ) > 0 describes a pressure function, due to the boundary or to mean
field effects, and ε denotes the scaled Planck constant.
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Formally equations (1), (2) can be derived through the Madelung’s transform [7]
from the nonlinear Schrödinger equation

iεψt = −ε
2

2
∆ψ + h(|ψ|2)ψ, x ∈ R

d,(3)

for the wave function ψ(x, t), where h is an integrable function such that h′(ρ) =
P ′(ρ)
ρ .

We show the blow-up in finite time for solutions to the multi-dimensional quantum
hydrodynamic model (1), (2) in bounded domains. The proof is based on a-
priori estimates for the energy functional for a new observable constructed with
an auxiliary function, and it is shown that under suitable assumptions on the initial
and boundary data the solution blows up after a finite time. Our method is in
essence inspired in the original argument of R. Glassey [3], where he proved finite
time blow up of smooth solutions to the focusing nonlinear Schrödinger equation
(3) with large initial data. Since we are dealing with a boundary value problem
the weight function a(x), which defines the new observable I(t) =

∫
Ω a(x)ρ(x, t) dx

should be chosen differently from the Cauchy-problem case. It will turn out that
the function a(x) must be a concave function with zero value on a part of the
boundary and its form will depend on the domain and of course on the boundary
conditions of the problem.

References
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Adiabatic approximation for quantum systems responding to laser
pulses

Caroline Lasser

The response of atoms or molecules to laser pulses is described by time-dependent
Schrödinger equations of the form

(1) i∂tψ = (H0 + µ̂ F (t) sin(ωt))ψ, ψ(t0) = ψ0.

Typically, the envelope function F (t) of the pulse’s electric field varies slowly on
the time-scale set by the oscillation frequency ω ≫ 1 of the laser. This separation
of time-scales suggests the following point of view, which has been taken by several
chemists and physicists, e. g. [1, 2, 3, 6]: The purely time-periodic system with
frozen constant field envelope is the unperturbed problem, which is adiabatically
perturbed by the slow variation of the envelope function F (t). The talk explained,
how for N -level systems, H0, µ̂ ∈ CN×N , the description of the unperturbed situ-
ation in terms of Floquet states shines through in an adiabatic approximation of
the Schrödinger equation (1). Moreover, an outline for a mathematically rigorous
proof of this approximation was presented [4], which crucially uses ideas of Panati,
Spohn, and Teufel for proving effective dynamics of Bloch electrons [5].
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Adiabatic Description of Piezoelectricity

Christof Sparber

(joint work with Gianluca Panati, Stefan Teufel)

In the year 1880 the brothers Jacques and Pierre Curie discovered that some crys-
talline solids (like quartz, tourmaline, topaz, . . . ) exhibit a relevant macroscopic
property: if the sample is strained along a particular axis (called the piezoelectric
axis) a macroscopic polarization at the edges of the sample appears.
Even though first technological applications already appeared only a few years
later, a microscopic understanding of the phenomenon waited many decades after
the appearance of quantum mechanics. Up to the mid seventies, it was common



3250 Oberwolfach Report 54/2006

lore that the macroscopic (relative) polarization ∆P = Pfin − Pin (i.e. the polar-
ization in the final state with respect to the initial state of the sample) was due
to the fact that, by deforming the crystal, the fundamental unit cell acquires a
non-vanishing electric dipole moment with respect to the unperturbed state. As
pointed out by Martin in 1974 [2], the previous approach was intrinsically incor-
rect, since the total polarization should take into account not only the sum of the
dipole moments of the unit cells, but also the transfer of charge between unit cells.
While in the ionic contribution ∆Pion the transfer of charge is negligible, it cannot
be neglected as far as the electronic contribution ∆Pel is concerned.1 It has thus
been suggested by Resta [3] to shift the attention from the charge distribution
(i.e. the electric dipole moment) to the current, cf. the review papers [4, 5] and
references given therein. In other words one considers

∆Pel =

∫ Tfin

Tin

dt Ṗ(t),

where Ṗ(t), called the piezoelectric current, is the real quantity. Within this
framework, Resta used linear response theory in order to conveniently re-express
∆Pel in terms of the Bloch functions [3, 4].
Elaborating on Resta’s result, King-Smith and Vanderbilt [1] were able to relate
the relative polarization to the Berry connection, through the formula

(1) ∆Pel =
1

(2π)d

M∑

m=0

∫

T∗

dk
(
Am(k, T ) −Am(k, 0)

)
,

where the sum runs over all the occupied Bloch bands, d is the space dimension,
T∗ denotes the first Brillouin zone, and Am(k, t) is the Berry connection for the
mth Bloch band at time t ∈ R, i.e.

(2) Am(k, t) = i 〈ϕm(k, t),∇kϕm(k, t)〉L2(Y ) .

Here ϕm is the mth eigenfunction of Bloch’s spectral problem (the electronic struc-
ture problem). Thereby the deformation is supposed to take place during the
time-interval I = [0, T ]. The advantage of formula (1) is twofold: it depends only
on the occupied bands, and it relates the macroscopic polarization to a geometric
quantity, which, as discussed later, does not depend on the particular gauge, i.e.

the choice of the phase of the Bloch functions.
In my talk at Oberwolfach I reported on a joint paper with the above authors [6]
where we were able to provide a rigorous formula for ∆Pel, which is even more
general than (1), by exploiting the fact that the deformation of the crystal is an
adiabatic phenomenon, i.e. it is extremely slow when measured on the atomic time-
scale. To this end we first give a precise mathematical meaning to the Piezocurrent
based on some limiting procedure which allows us to define a bulk property for
particles, independent of the precise shape of the crystal. We then mainly rely on
(a somewhat generalized) version of the so-called super-adiabatic approximation

1 Thereby one clearly assumes that an approximate splitting ∆P = ∆Pion + ∆Pel is
justified.
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for time-dependent quantum systems in order to derive a result which is valid up
to any orders in the small perturbation parameter ε ≪ 1. A connection between
the macroscopic current and the underlying geometry of the Bloch bundle is drawn
and in particular the role of space-reflection symmetry is discussed. Moreover we
provide an alternative derivation of (1) relying on the semiclassical dynamics of a
state which is essentially concentrated on a single isolated Bloch band.
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Traffic-like models for supply chains

Pierre Degond

(joint work with D. Armbruster, C. Ringhofer)

Traffic flow type models for supply chains model the flow of items through the
chain as conservation laws for an item density ρ, depending on time and a stage
variable x. So, stage x = 0 denotes the raw material, and stage x = 1 denotes
the finished product and the interval [0, 1] models the intermediate stages of the
production process, and plays the role of the ’road’ in traffic flow theory. Traffic
models have been used to model supply chains in [1, 2, 10, 4, 7] and, more recently
to optimize them in [6, 8].
In the work [3] we have developed a traffic flow type model for a chain of suppliers
with a given capacity and throughput time. It is of the form

(1) ∂tρ(x, t) + ∂xF (x, t) = 0, F (x, t) = min{µ(x), V (x)ρ}
Here x denotes a continuous supplier index, i.e. the stage of the process. ρ(x, t)
denotes the density of parts in the supply chain. So, to compute the number of
parts - the Work in Progress (or WIP) Wab(t) in a certain subset of processors,
corresponding to an interval (a, b) at a given time t, we have to compute Wab(t) =∫ b
a
ρ(x, t) dx. As long as the processors run below capacity, the movement of parts

is given by the velocity V . So dx
V (x) is proportional to the throughput time of the

processor occupying the infinitesimal interval dx. The processors are assumed to
have a finite capacity, meaning that they cannot process more that µ(x)dt parts
in any infinitesimal time interval dt. So the variables in (1) have units of parts /
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stage for ρ, parts /time for µ, and stage / time for V . We prescribe an, in general
time dependent, influx of the form

(2) F (0, t) = λ(t)

for the conservation law (1).
Equation (1) is derived rigourously in [3] from a discrete recursion for the times
each part arrives at each processor, and a limiting process for the number of
parts and the number of processors M → ∞. However, this recursion relation is
completely deterministic, and the supply chain is therefore assumed to work like
an automaton.
In [5] we also discuss the inclusion of a random behavior of the processors, i.e.
random breakdowns and random repair times, into the model. We model the
breakdown of processors by setting the capacity µ(x) to zero. Thus, the model
we consider consists of the equation (1), where µ = µ(x, t) is a time dependent
random variable. To be more precise we assume µ(x, t) to be piecewise constant
in space and of the form

(3) µ(x, t) =

M−1∑

m=0

µm(t)χ[γm,γm+1)(x)

where 0 = γ0 < .. < γM = 1 denotes a partition of the stage interval [0, 1],
corresponding to M processors, and the functions µm(t), m = 0, ..,M − 1 take
on values of either µm(t) = 0 or µm = cm, where cm denotes the capacity of the
processor, in case it is running. For simplicity, we assume that the on / off switches
are exponentially distributed in time. That is we assume mean up and down times
τupm and τdownm , and generate the random signal µm(t) by the following algorithm:

• Assuming that at time t processor m has just switched from the off
state to the on state, choose ∆tmup and ∆tmdown randomly from the dis-

tributions dP [∆tmup = s] = 1
τupm

exp(− s
τupm

)ds and dP [∆tmdown = s] =
1

τdownm
exp(− s

τdownm
)ds.

• Set µm(s) = cm for t < s < t + ∆tmup and µm(s) = 0 for t + ∆tmup < s <
t+ ∆tmup + ∆tmdown.

• At t = t+ ∆tmup + ∆tmdown the processor is turned on again and we repeat
the above process.

This way we generate M random time dependent signals which produce the ran-
dom capacity µ(x, t) according to (3). For each realization of this process we solve
one realization of the conservation law (1), modeling so the random breakdown of
elements in the chain.
Note that the conservation law (1) exhibits, despite of its simple form, a rather
interesting feature. Since the flux function F is uniformly bounded from above by
µ(x, t), it will necessarily become discontinuous if the flux coming from the left
exceeds this value. This can be the case if µ(x, t) is discontinuous in the stage
variable x, which will certainly happen if µ(x, t) is generated randomly by the
algorithm above. Since mass has to be conserved, the discontinuity in the fluxes
has to be compensated by δ− functions in the density ρ.
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The aim of this work is to derive an evolution equation for the expectation 〈ρ(x, t)〉
of the density ρ given by the stochastic process above. This provides us with a
rather inexpensive way to estimate the behavior of long supply chains, with ran-
dom breakdowns of individual processors, by solving directly one rather simple
conservation law for the expectation. The main result of the present paper is,
that the expectation 〈ρ(x, t)〉 satisfies an initial boundary value problem for a
conservation law of the form

(a) ∂t〈ρ(x, t)〉+ ∂xFE(τ̄ , C, V, 〈ρ〉) = 0, FE(τ̄ , C, V, 〈ρ〉) = τ̄C[1− exp(−V 〈ρ〉
C

)] ,

(b) FE |x=0 = λ(t), 〈ρ(x, 0)〉 = 0

where the piecewise constant functions τ̄ and C are given by

τ̄ (x) =

M−1∑

m=0

χ[γm,γm+1)(x)
τupm

τupm + τdownm

, C(x) =

M−1∑

m=0

χ[γm,γm+1)(x)cm .

The result is derived in a limiting regime for large time scales and many parts and
processors. So, it holds when the behavior of the chain, given by the stochastic
version of (1), is considered on a time scale where a large number of parts arrive
and the on / off switches of the processors happen very frequently. Similar models
have been used on a heuristical basis, in the context of clearing functions, in [9, 11].
Our result basically states two facts.

• For a large number of parts the function min{µ, V ρ} is, under the expecta-

tion, replaced by the function µ[1−exp(−V ρ
µ )] which has the same limiting

behavior for large and small densities (the limits ρ→ 0 and ρ→ ∞).
• The effect of the random on / off switches can be incorporated into the

model by replacing µ by the on- capacity c and multiplying the whole flux
function by the average time τup

τup+τdown the processor is on.
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