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Abstract. Affine geometry deals with algebro-geometric questions of affine
varieties that are treated with methods coming from various areas of mathe-
matics like commutative and non-commutative algebra, algebraic, complex
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conference had several main topics. One of them was the famous Jacobian
problem, its connections with the Dixmier conjecture and possible algebraic
approaches and reductions. A second main theme were questions on Log
algebraic varieties, in particular log algebraic surfaces. Thirdly, results on
automorphisms of An played a major role, in particular the solution of the
Nagata problem, actions of algebraic groups on An, Hilbert’s 14th problem
and locally nilpotent derivations. More generally automorphism groups of
affine and non-affine varieties, especially in dimension 2 and 3 were treated,
and substantial progress on the cancelation problem and embedding problem
was presented.
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Introduction by the Organisers

Affine geometry deals with algebro-geometric questions of affine varieties. In the
last decades this area has developed into a systematic discipline with a sizeable in-
ternational group of researchers, and with methods coming from commutative and
non-commutative algebra, algebraic, complex analytic and differential geometry,
singularity theory and topology. The meeting was attended by 48 participants,
among them the most important senior researchers in this field and many promis-
ing young mathematicians.

Especially helpful were the programs for young researchers: the NSF Ober-
wolfach program, the EU grant and JAMS grant. They allowed to increase the
number of young participants considerably.
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The conference took place in a very lively atmosphere, made possible by the
excellent facilities of the institute. There were 24 talks with a considerable number
of lectures given by young researchers at the beginning of their careers. Moreover
there were 4 invited lectures that gave an overview over some of the most vivid
subfields of Affine Geometry. The program left plenty of time for cooperation and
discussion among the participants. We highlight the areas in which new results
were presented by the lecturers:

• Jacobian problem, especially its connections with the Dixmier conjecture
(Belov-Kanel and Kontsevich) and possible algebraic approaches and re-
ductions.

• Log algebraic varieties; in particular log algebraic surfaces.
• Automorphisms of An, in particular tame and wild automorphisms of A3,

Hilbert’s 14th problem and locally nilpotent derivations.
• Automorphism groups of affine and non-affine varieties, especially in di-

mension 2 and 3.
• Cancellation problem and embedding problem.

In the first 4 areas there were overview talks given by D. Wright, M. Miyanishi,
D. Daigle and Sh. Kaliman. Finally, in a problem session there were presented
a number of open questions and problems, which are listed in at the end of this
report.
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Abstracts

Describing T -varieties with polyhedral divisors

Klaus Altmann

(joint work with Jürgen Hausen)

We report results obtained together with Jürgen Hausen, cf. [AlHa]. According
to them, affine normal varieties X with torus action can be described by divisors
D on their Chow quotients Y . However, this requires the use of rather strange
coefficients for D – they are polyhedra. All coefficients have the same asymptotic
behavior – visible as the so-called tail cone of D. This language comprises that of
toric varieties as well as the theory of (good) C∗ actions.

To describe some details, let T be an affine torus over an algebraically closed
field K of characteristic 0. It gives rise to the mutually dual free abelian groups
M := HomalgGrp(T,K∗) and N := HomalgGrp(K∗, T ), and, via T = Spec K[M ], the
torus can be recovered from them. Denote by NQ := N ⊗Z Q the corresponding
vector space over Q.

Definition 1. If σ ⊆ NQ is a polyhedral cone, then denote by Pol(NQ, σ) the
Grothendieck group of the semigroup

Pol+(NQ, σ) := {∆ ⊆ NQ | ∆ = σ + [compact polytope]}

with respect to Minkowski addition. Moreover, tail(∆) := σ is called the tail cone
of the elements of Pol(NQ, σ).

Let Y be a normal and semiprojective (i.e. Y → Y0 is projective over an affine
Y0) K-variety. A Q-Cartier divisors on Y is called semiample if a multiple of it
becomes base point free.

Definition 2. An element D =
∑

i ∆i ⊗ Di ∈ Pol(NQ, σ) ⊗Z CaDiv(Y ) with
prime divisors Di is called a polyhedral divisor on (Y,N) with tail cone σ if ∆i ∈
Pol+(NQ, σ) and if the evaluations D(u) :=

∑
i min〈∆i, u〉Di are semiample for

u ∈ σ∨ ∩M and big for u ∈ intσ∨ ∩M . (Note that the membership u ∈ σ∨ :=
{u ∈MQ | 〈σ, u〉 ≥ 0} guarantees that min〈∆i, u〉 > −∞.)

The common tail cone σ of the coefficients ∆i will be denoted by tail(D). The
positivity assumptions imply that D(u) + D(u′) ≤ D(u + u′), hence OY (D) :=
⊕u∈σ∨∩MOY (D(u)) becomes a sheaf of rings. So, our polyhedral divisor D gives
rise to the affine scheme X := X(D) := Spec Γ(Y,O(D)) over Y0. The M -grading
of its regular functions translates into an action of the torus T on X , and tail(D)∨

becomes the cone generated by the weights.

Example 3. In [FlZa], Flenner and Zaidenberg use pairs of divisors (D+, D−)
with D+ + D− ≤ 0 on affine curves Y to describe hyperbolic C∗-surfaces. In our
language, these surfaces are given by N = Z, σ = {0}, and D = {1}⊗D+− [0, 1]⊗
(D+ +D−).
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Note that the modification X̃ := X̃(D) := SpecY O(D) of X(D) is a fibration over
Y with the toric variety TV(tail(D), N ) := Spec K[tail(D)∨ ∩M ] as general fiber.

X̃ //

��

X

��
Y // Y0

Special fibers over y ∈ Y can be reducible: Their components are in a one-to-one
correspondence with the vertices of ∆y :=

∑
Di∋y ∆i.

The configuration of T -orbits and their closures is directly encoded in the presen-

tation of X as a polyhedral divisor D. The orbits in X̃ correspond to pairs (y, F )
with y ∈ Y and faces F ≤ ∆y. Moreover, as is it is known from the toric case,
mutually inclusions among orbit closures correspond to opposite inclusions of the

corresponding faces. The orbit structure of X may be obtained from that of X̃ by

keeping track of when certain orbits from X̃ will be identified in X . This happens
in relation to the different contractions of Y provided by the semiample divisors
D(u).

Theorem 4 ([AlHa]). This construction of X is, in some sense, functorial and
induces (after some adjustments) an equivalence of categories.

Here, morphisms of affine varieties with torus action are induced by the fol-
lowing morphisms D → D′ of polyhedral divisors: Let D =

∑
i ∆i ⊗ Di and

D′ =
∑

j ∆′
j ⊗ D′

j be polyhedral divisors on (Y,N) and (Y ′, N ′) with tail cones

σ and σ′, respectively. If ψ : Y → Y ′ is such that none of the supports of the
D′

i contains ψ(Y ), and if F : N → N ′ is a linear map with F (σ) ⊆ σ′, then the
relation ∑

i

∆′
i ⊗ ψ∗(D′

i) =: ψ∗(D′) ≤ F∗(D) :=
∑

i

(
F (∆i) + σ′

)
⊗Di

inside Pol(N ′
Q, σ

′) ⊗Z CaDiv(Y ) gives rise to an equivariant (with respect to T =

N ⊗Z K∗ F⊗id
−→ N ′ ⊗Z K∗ = T ′) morphism X(D) → X(D′).

A special case of this construction is the open embeddings obtained by localization.
If f ∈ Γ(Y,O(D(u))) is a homogeneous, regular function of degree u ∈ M on
X = X(D), then the open, affine subset Xf := [f 6= 0] ⊆ X is provided by
the polyhedral divisor face(D, u) :=

∑
i face(∆i, u) ⊗ Di, restricted to Yf . Here,

face(∆, u) denotes the face of ∆ where the linear form u becomes minimal, and
Yf := Y \ supp

(
div(f) + D(u)

)
. This construction is very similar to the usage of

the polyhedral face relation in the theory of toric varieties and, eventually, leads
to a glueing procedure, cf. [AHS].

As an example, the Grassmannian Grass(2, n) with its (n − 1)-dimensional torus
action can be described as a divisor S =

∑
B SB ⊗DB on the moduli space M0,n

of stable rational curves with n marked points. Here, DB stands for the prime
divisor consisting of the two-component curves with a point distribution according
to the partition B. In this non-affine situation, the tail cone has been replaced by a
so-called tail fan (a coarsified version of the associated system of Weyl chambers),
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and the SB are no longer polyhedra, but polyhedral subdivisions of NQ. They
look like their common tail fan – only that the origin has been replaced by a line
segment whose direction depends on B, cf. [AlHe].

Returning to the case of an affine T -varietyX , one might consider ∆ :=
∑

i ∆i. Its
normal fan N (∆) is a subdivision of σ∨; in particular it is contained in MQ which
is an unusual place for a fan. Let Z := TV(N (∆),M ) be the corresponding toric
variety. It is projective over Z0 := TV(σ∨,M), and the polytopes ∆i correspond
to semiample divisors Ei on Z. Thus, D =

∑
iEi ⊗ Di becomes an element of

CaDivQ(Z) ⊗Z CaDivQ(Y ).

On the other hand, the u ∈ σ∨ ∩M may be interpreted as germs of curves u :
(K, 0) → Z0 or, after lifting them, as germs of curves u : (K, 0) → Z. This gives
rise to the quasi coherent sheaf U := ⊕u∈σ∨Mu∗OK.

Conjecture 5. The polyhedral divisor D induces an object KD of the derived
category Db(Y ×Z), and the sheaf OY (D) is obtained from U ∈ Db(Z) via Fourier-
Mukai transformation with kernel KD.
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Two dimensional quotients of Cn by reductive groups

Mariusz Koras

We sketch the idea of proof of the following theorem.

Theorem A. Let G be a reductive group acting on an affine space Cn.
If dim Cn//G = 2 then V = Cn//G is isomorphic to a quotient C2/Γ where Γ is
a finite group of automorphisms of C2.

The theorem was proved by R.V.Gurjar in case of linear action of G (it was
known as the Wall’s conjecture), [Gu1]. In [KR1] Koras and Russell proved the
theorem in case n = 3 and G = C∗. This was the key point in the proof of the
linearization theorem for actions of C∗ on C3.

It is well known that V is affine and normal. By [KPR] V is contractible. For
general C2 ⊂ C3 the quotient map π : C3 → V induces a dominant map C2 → V .
Therefore the Kodaira dimension κ(V ) equals −∞. It is proved in [Gu1] that the
singularities are quotient singularities. Such surfaces are classified in [KR2].
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Theorem 1,[KR2]. Let V be a contractible affine surface with only quotient sin-
gularities. Assume that the logarithmic Kodaira dimension κ(V ) = −∞. Then
κ(V − Sing V ) = −∞.

We have then two cases.

Case 1. V − Sing V is not affine ruled.
In this case by the fundamental theorem of Miyanishi and Tsunoda, [MT1],

V −Sing V contains an open subset U which has a structure of a Platonic fibration.
It is known also that (V − Sing V ) − U is a union of disjoint curves isomorphic
to C1. It is known that the topological Euler characteristic χ(U) = 0. Since
χ(V − Sing V ) ≤ 0 we obtain that V − Sing V = U . It is also known that U is
isomorphic to C2 − {0}/Γ. It follows easily that V ≃ C2/Γ in this case.

Case 2. V − Sing V is affine ruled.
In this case the structure of V is known, see e.g. [MS, KR2]. It follows that if

Sing V has only one point then V is isomorphic to C2/Za for a cyclic group Za.

Corollary. Under assumptions of Thm 1 if Sing V consists of at most one point
then V is isomorphic to C2/Γ where Γ is a finite group of automorphisms of C2. If
Sing V has more than one points then all singularities of V are cyclic singularities.
.

It follows that in order to prove the Thm A it suffices to prove the following.

Theorem 2,[Gu2]. With the notation of Thm A V has at most one singular point.

Idea of proof of Thm 2. At first we reduce this to the case G is connected. Let
G0 be the connected component of 1 in G. Suppose that Cn//G0 is isomorphic to
C2//Γ0. We have a finite map

C2//Γ0 = Cn//G0 → V.

It is known [M] that then V ≃ C2/Γ. (one can use also the thm 1). If now G is
semisimple then V ≃ C2. It was proved by Kempf [K], in case G acts linearly on
Cn. In the general case it follows quite easily from the theorem 1. For general
G we write G = P · T where P is a semisimple group and T is a torus contained
in the center of G. Let W = Cn//P . Since P has no non-trivial characters W
is UFD although it may be singular. We have V = W//T . The key point is the
following.

Proposition. Let q be a singular point in V . Let p : W → V denotes the quotient
map. If p−1(q) contains a divisor then it contains a fixed point of T and it is the
unique fixed point of T on W. If p−1(q) does not contain a divisor then the analytic
local ring of q in V is UFD and hence q is an E8 singularity.

Now the theorem 2 follows since E8 is not a cyclic singularity therefore, by the
corollary above, V has at most one singular point.
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Quasihomogeneous affine threefolds

Vladimir L. Popov

1 Below all algebraic varieties are taken over an algebraically closed field of
characteristic zero.

Definition 1. ([G]) An irreducible algebraic variety X is called quasihomogeneous
with respect to an algebraic group if there exists an algebraic group action on X
such that one of the orbits O is open in X and X \ O is a finite set of points.

In [G] it was proved that all pairwise nonisomorphic smooth affine algebraic
surfaces quasihomogeneous with respect to an algebraic group are given by the
following list:

A2, A1 × A1
∗, A1

∗ × A1
∗, P2 \ C, (P1 × P1) \ ∆,

where A1
∗ := A1 \ {0}, C is a nondegenerate conic, and ∆ is the diagonal. In

[P1] this classification was extended to all, not necessarily smooth, affine surfaces.
Namely, for n1, . . . , nr ∈ Z>0, let V(n1, . . . , nr) be the affine cone in An1+1× . . .×
Anr+1 over the image of morphism

P1 −→ Pn1 × . . .× Pnr , a 7→ vn1
(a) × . . .× vnr

(a),

where vd : P1 → Pd is the Veronese embedding. Then all singular affine surfaces
quasihomogeneous with respect to an algebraic group are precisely the surfaces

1Supported by Russian grants RFFI 05–01–00455, NX–9969.2006.1, and program
Contemporary Problems of Theoretical Mathematics of the Mathematics Branch of the Russian
Academy of Sciences.
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V(n1, . . . , nr) where ni > 1 for all i, and

V(n1, . . . , nr) ≃ V(m1, . . . ,ms) ⇔ Z>0n1 + . . .Z>0nr = Z>0m1 + . . .Z>0ms.

For normal affine surfaces, the classification of [P1] was recently reproved in
[FZ] using other arguments (by [P1, Prop. 3(d)], V(n1, . . . , nr) is normal if and
only if Z>0n1 + . . . + Z>0nr = Z>0d, where d is the greatest common divisor
of n1, . . . , nr). On the other hand, in [FZ] quasihomogeneity is understood in
a more general sense of [P2], [PV], where the condition of finiteness of X \ O
is dropped. Given these recent developments, the problem of classifying affine
threefolds quasihomogeneous with respect to an algebraic group in the sense of
[P2], [PV] becomes actual. For quasihomogeneity in the sense of Definition 1, such
a classification was obtained in [P4]. Given the actuality of the aforementioned
problem, below we reproduce this classification with some comments concerning
consequent developments.

First, introduce some special varieties. For n1, . . . , ns,m1, . . . ,ms ∈ Z>0, put
N =

∏s
i=1

(
ni+mi−1

mi

)
and consider the morphism

vm1,...,ms
n1,...,ns

: An1 × . . .× Ans −→ AN ,

(x1, . . . , xn1
, . . . , z1, . . . , zns

) 7→ (. . . , xi1
1 · · ·x

in1
n1

· · · zk1

1 · · · z
kns
ns , . . .),

i1 + · · · + in1
= m1, . . . , k1 + . . .+ kns

= ms.

Given a matrix A =



a11 . . . a1s

. . . . . . . . .
ar1 . . . ars


, where aij ∈ Z>0, put

Vn1,...,ns
(A) :=

(
va11,...,a1s

n1,...,ns
× . . .× var1,...,ars

n1,...,ns

)(
An1 × . . .× Ans

)

(one can show that Vn1,...,ns
(A) is closed).

Identify Pic
(
(P1 ×P1) \ ∆

)
with Z by an isomorphism ϕ. Let Xn be the total

space of the one-dimensional vector bundle over (P1 × P1) \ ∆ corresponding to
n ∈ Z, and let X∗

n be the complement of the zero section in Xn. One can show
that Xn ≃ X−n and X∗

n ≃ X∗
−n, so actually Xn and X∗

n do not depend on ϕ.

For a nondegenerate conic C in P2, the group Pic
(
P2 \ C

)
has order 2. Let

Y0 and Y1 be the total spaces of, respectively, the trivial and nontrivial one-
dimensional vector bundles over P2 \ C. Let Y∗

n be the complement of the zero
section in Yn.

Let T̃ , Õ, Ĩ, and D̃n be, respectively, the binary tetrahedral, octahedral, icosa-

hedral, and dihedral subgroup of order 4n in the group SL2. We put S3 = SL2/T̃ ,

S4 = SL2/Õ, S5 = SL2/Ĩ, and Wn = SL2/D̃n. One can show that Wn is a
quotient of X∗

2n by some involution.
Now the classification of affine threefolds quasihomogeneous with respect to an

algebraic group is given by the following two theorems.
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Theorem 2. (Classification of smooth threefolds) (i) Smooth affine threefolds
quasihomogeneous with respect to an algebraic group are precisely all the varieties
from the following list:

(1) Xn; (2) X∗
n; (3) Wn; (4) Y0; (5) Y∗

0 ; (6) Y∗
1 ; (7) S3; (8) S4; (9) S5;

(10) A3; (11) A2 × A1
∗; (12) A1 × A1

∗ × A1
∗; (13) A1

∗ × A1
∗ × A1

∗.

(ii) No two threefolds from different items in the above list are isomorphic to one
another.

Xn ≃ Xm ⇔ |n| = |m|; X∗
n ≃ X∗

m ⇔ |n| = |m|; Wn ≃ Wm ⇔ n = m.

Theorem 3. (Classification of singular threefolds) (i) Singular affine threefolds
quasihomogeneous with respect to an algebraic group are precisely all the varieties
V2,2(A) and V3(B), where and rk(A) = 1 and B has no entries equal to 1 . (ii)
V2,2(A) and V3(B) are not isomorphic to one another. V2,2(A) and V2,2(A′)
(respectively, V3(B) and V3(B′)) are isomorphic if and only if the additive semi-
group generated by the rows of A (respectively, B ) coincides with that generated
by the rows of A′ (respectively, B′ ).

Remarks. 1. The equivalence Xn ≃ Xm ⇔ |n| = |m| was conjectured in
[P4, Section 1.7]. F. Bogomolov suggested that it can be proved considering
canonical classes. This is indeed so. Namely, by [P4, Theorem 9], we have
Xn = SL2(|n|)/H|n| (the notation is explained in [P4, Section 6.6]). Whence,
by [P3], Pic(Xn) ≃ Z (we identify these groups by a fixed isomorphism), and
the definitions of SL2(|n|) and H|n| imply that the weights of a maximal (one-
dimensional) torus of H|n| in the isotropy representation of SL2(|n|)/H|n| are 2,
−2, and |n|. Hence |n| is the module of canonical class KXn

of Xn.
2. In [P4, §2] an equivariant classification of singular affine algebraic varieties

of arbitrary dimension that are quasihomogeneous with respect to an algebraic
group is obtained: it is proved that such varieties are precisely singular S-varieties
X(λ1, . . . , λd) in the sense of [PV] such that Qλi = Qλj for all i, j (see [P4, Cor. 4
of Theorem 4]). This leads to the problem of classifying S-varieties up to (not
necessarily equivariant!) isomorphism. For the special case of HV -varieties in the
sense of [PV, §1], a conjectural answer is given by Conjecture 1 in [P5, Section 2].
This conjecture is still open. On the other hand, using computer, van der Kallen
found counterexamples to representation theoretic Conjecture 2 in [P5, Section 2]
that implies Conjecture 12 for instance, one obtains such a counterexample taking
G = SL5, λ = 5̟3 +̟4, and µ = 3̟1 + 5̟1.

3. The range of dimensions to which methods and results of [P4], [P1] can
be applied is not restricted by dimensions 6 3. For instance, in [KW] they were
used for obtaining a partial classification of affine fourfolds quasihomogeneous with
respect to an algebraic group.

2Using this opportunity fix the following misprints in [P5]: p. 193, l. 2−, replace OOσ by Oσ;
p. 195, l. 3, replace “is equivalent to” by “follows from”.
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Endomorphisms of Weil algebras

Alexei J. Belov-Kanel

Let F : Cn → Cn be a polynomial mapping. If this mapping is invertible, then
it is locally invertible. It follows that the Jacobian matrix of the mapping F is a
non-zero constant.

The well-known Jacobian Conjecture (JCn) says that the converse is also true.This
conjecture (posed by O.Keller) is still unsolved since 1934.

Let Wn be the Weil algebra of polynomial differential operators of n variables over
the complex number field. This Weil algebra can also more generally be defined
over any ring via generators x1, . . . , xn; ∂1, . . . , ∂n and relations [xi, xj ] = [∂i, ∂j ] =
0; [xi, ∂j ] = δij , where [x, y] denotes the commutator xy−yx and δij the Kronecker
delta.

The Dixmier conjecture (DCn) says that every endomorphism of Wn over a field
of characteristic zero is an automorphism. This conjecture is open since 1967.

It was well known that DCn implies JCn since a polynomial mapping with Ja-
cobian matrix equal to one induces a homomorphism of the ring of differential
operators. The implication JC2n → DCn was recently proved by Y.Tsuchimoto
and independently by A.J.Belov and M.L.Kontsevich. The main idea of the proof
is the following.
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In positive characteristic any Weil algebra is finitely dimensional over its center,
generated by xp

i , ∂
p
i . Moreover, one can define Poisson brackets on its center. Let

P,Q ∈ Z(Wn) mod p and P̂ , Q̂ denote their lifting to characteristic zero.
Then one can consider

{P,Q} =
[P̂ , Q̂]

p
mod p.

It is easy to see that these brackets are well-defined and determine a standard
symplectic structure. From this it is easy to realize that if we consider positive
characteristics, then the restriction of the endomorphism of the Weil algebra to its
center preserves Poisson brackets and hence its Jacobian is 1. one can conclude
that invertibility of this restriction implies invertibility of the whole endomorphism.

Instead of Poisson brackets Y.Tsuchimoto used another approach, based on p-
curvature. This new approach of studying polynomial automorphisms is based
on quantization. Let A be an associative commutative algebra endowed with
Poisson brackets. The Kontsevich quantization theorem says that there exists a
deformation ∗ of multiplication in A[[h]] such that x ∗ y ≡ xy mod h, and

(x ∗ y − y ∗ x)

h
≡ x, y mod h.

It is important to notice that we use deformation in arithmetical direction (prime
number plays role of the plank constant h).

The Weil algebra is a quantum space and it can be obtained as the quantization of
the polynomial ring via standard Poisson bracket. There is a Kontsevich conjec-
ture which says that the group of polynomial automorphisms of Cn is isomorphical
to the group of automorphisms of the Weil algebra which means equivariant prop-
erties of quantization.

In the proof of the equivalence between the Jacobian and Dixmier Conjectures the
homomorphism between these two groups is constructed.

Let ϕ : xi → Pi; ∂i → Qi be an endomorphism of Wn. Then ϕ sends xp
i →

P p
i = P̃i(x

p
1, . . . , x

p
n, ∂

p
1 , . . . , ∂

p
n); ∂p

i → Qp
i = Q̃i(x

p
1, . . . , x

p
n, ∂

p
1 , . . . , ∂

p
n), since ϕ

sends the center to the center and Z(Wn) is a set of polynomials of xp
i , ∂

p
i . The

degree of P̃i and Q̃i coincide with the degree of Pi and Qi respectively, and the
vector ({P̃i}; {Q̃i}) determines a polynomial symplectomorphism. The homomor-
phism of the group of automorphisms of the Weil algebra and the polynomial
symplectomorphisms can be obtained using infinitely large prime.

This is a monomorphism of Ind-schemes. If we suppose that this homomorphism
is also an epimorphism, then it is possible to prove that it is independent of the
use of the infinitely large prime and unique.
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A new proof on non-tameness of Nagata automorphism from a point
of view of Sarkisov Program

Takashi Kishimoto

This report is a résumé based on my article [9] and the talk at Oberwolfach Work-
shop (Affine Algebraic Geometry). In affine algebraic geometry, it is an important
problem to understand the structure of the group Gn := AutC (C[x1, · · · , xn]) on
polynomial rings in n variables over C. We shall, from now on, introduce three
sub-groups of Gn. An automorphism τ on C[x1, · · · , xn] is called affine (resp. de
Jonquiére) if τ(xi) =

∑n
j=1 aijxj + bi with aij , bi ∈ C and det (aij) 6= 0 (resp.

τ(xi) = aixi + fi(xi+1, · · · , xn) with ai 6= 0, fi ∈ C[xi+1, · · · , xn] (1 ≤ i < n)
and fn ∈ C). Let An (resp. Jn) be the sub-group of Gn consisting of all affine
transformations (resp. de Jonquiére transformations). We denote by Tn the sub-
group of Gn generated by An and Jn. An automorphism τ is said to be tame
if it is contained in Tn. For the case n = 2, it is classically well-known that all
automorphisms on the polynomial ring C[x1, x2] are tame, i.e., G2 = T2 (cf. [14],
[1], [13]). On the other hand, for higher-dimensional case n ≥ 3, we know very
little concerning the structure of Gn. In what follows, we shall especially pay
attention to the case n = 3, and write C[x, y, z] instead of the original notation
C[x1, x2, x3]. In order to indicate complexity of the group G3, let us consider the
following famous automorphism, so-called Nagata automorphism (cf. [15, p. 16]):

σ :





x 7→ x− 2y(xz + y2) − z(xz + y2)
2

y 7→ y + z(xz + y2)
z 7→ z.

Although the Nagata automorphism σ might seem to be simple, it had re-
mained unknown whether or not σ was tame for the past three decades. Although
the structure on G3 itself can not be analyzed in detail at the present time, I.P.
Shestakov and U.U. Umirbaev develop a technique to decide the tameness of a
given automorphism on C[x, y, z] by purely algebraic methods (cf. [16, 17]). As
a consequence, they have proved at last that σ is, indeed, not tame, i.e., σ 6∈ T3.
However, as mentioned just above, since their method is purely algebraic based on
the treatment of poisson algebra, it seems to be complicated and be lack of intrin-
sic geometry hiding in Nagata automorphism σ. One of the main purposes in this
report is to inform the utility of the technique from (Log) Minimal Model Program,
especially Sarkisov Program (cf. [2, 3], [12], [8]), for the decision of non-tameness
of σ, and the further detailed investigation of G3. Roughly speaking, Sarkisov
Program gives us a useful tool for the factorization of a given birational map be-
tween 3-dimensional Mori fiber spaces into certain kinds of simple birational maps,
so-called elementary links (see [2] for the definition of elementary links). But, in
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general, it is difficult to perform explicit factorizations into elementary links. This
difficulty mainly seems to result from the lack of classification of 3-dimensional
terminal divisorial contractions. (Nevertheless, there exist something remarkable
concerning the classification of 3-dimensional terminal divisorial contractions due
to Y. Kawamata, M. Kawakita and N. Tziolas and so on; see [7], [5, 6].) We
shall make use of an algorithm of Sarkisov Program for the investigation of the
Cremona transformation Φθ : P3 · · · → P3 induced by an automorphism θ ∈ G3

on C3. (Note that P3 is a special kind of 3-dimensional Mori fiber space, and Φθ

is birational.) The explicit Sarkisov factorization of Φθ itself is still difficult to
perform, meanwhile, it is possible, in principle, to determine the maximal center
(cf. [2, 3]) of the first elementary link appearing in the Sarkisov factorization of
Φθ once θ is given concretely. One of the main theorem asserts that, as far as we
are concerned with the (non-)tameness of a given θ, the investigation of a maximal
center of the first elementary link gives us a useful information. Namely, we prove
the following:

Theorem 1. Let θ be a tame automorphism on the affine 3-space C3, and Φθ

the Cremona transformation on P3 induced by θ in a natural way. Then, for any
Sarkisov factorization of Φθ, say:

Φθ = χ′
s ◦ · · · ◦ χ

′
1,

the maximal center of the maximal divisorial blow-up (cf. [2, 3], [12], [8]) appearing
in the first elementary link χ′

1 is either a point or a line on the hyperplane at
infinity.

In order to obtain Theorem 1, we need a mechanism of Sarkisov Program (cf.
[2]) and the result due to G. Freudenburg (cf. [4]). Once we obtained Theorem 1,
we can prove the following:

Theorem 2. (cf. [16, 17]) The Nagata automorphism is not tame.

In fact, the Nagata automorphism σ is naturally extended to the Cremona
transformation Φσ : P3 · · · → P3 as in the following fashion:

Φσ :





x 7→ xt4 − 2y(xz + y2)t2 − z(xz + y2)
2

y 7→
(
yt2 + z(xz + y2)

)
t2

z 7→ zt4

t 7→ t5,

where the hyperplane at infinity H∞ is defined by t = 0. Fortunately, in our
previous paper [8], we succeed in the explicit factorization of Φσ into eight ele-
mentary links by making use of Sarkisov Program. According to this, we see that
the first elementary link starts with a blow-up along a smooth conic on H∞ to
deduce that σ is not tame by Theorem 1. However, in consideration of Theorem
1, it is hopeful to give a proof on the non-tameness of σ, which depends only on
the investigation of a maximal center of the first link, for further applications. In
[9], we give a proof of Theorem 2 from this viewpoint in combination of Theorem
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1 and the technique due to A. Corti, which is one of the conclusions of, so-called,
Inversion of Adjunction due to Shokurov and Kollár (cf. [10]).

We shall define a certain class of non-tame automorphism on C3. For θ ∈ G3,
we put deg θ := deg θ(x) + deg θ(y) + deg θ(z). An automorphism θ is said to be
non-essential if at least one of deg (τ ◦θ) and deg (θ◦τ) is strictly smaller than deg θ
by making use of a suitable tame automorphism τ ∈ T3. If θ is not non-essential,
then we call it essential. Furthermore, if θ is essential and non-tame, then θ is said
to be essentially non-tame. Since G3 is generated by T3 and essentially non-tame
automorphisms, it is important to classify essentially non-tame ones, but it seems
that we know very little about them at present. For the further investigation
of essentially non-tame automorphisms on C3 and, so that, the group G3, it is
important to consider the following problem:

Problem. Is there a essentially non-tame automorphism θ on the affine 3-space
C3 such that the Sarkisov factorization of the Cremona transformation Φθ on P3

induced by θ starts with a (weighted) blow-up at a point on the hyperplane at
infinity ?
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Geometry of open algebraic surfaces

Masayoshi Miyanishi

The talk was to survey the entitled subject in affine algebraic geometry, but cov-
ered, for lack of time, only the fibrations as outlined below. The interested readers
are recommended to see the author’s monograph [10] and article [11]. One purpose
to review the developments is to seek the possible directions of generalizing the
surface theory to the higher-dimensional cases. To clarify the ideas, we assume
that the ground field is the complex field C.

A general philosophy is that an A1-fibration on an affine surface will play the
same role of a P1-fibration on a projective surface. We consider the A1-fibration
in a broader setting. A morphism f : X → Y is an F -fibration if f is surjective
and general fibers are isomorphic to a smooth algebraic variety F . If F is the
affine space An, f is an An-fibration. If F is A1

∗ := A1 − {one point}, then f is
an A1

∗-fibration. As for the local triviality of the fibrations in the sense of Zariski
topology, the following is the fundamental question due to Dolgachev-Weisfeiler.

Question 1. Let f : X → Y be an An-fibration. Assume that f is affine and
faithfully flat and all closed fibers are geometrically integral. Is f an An-bundle ?

The answer is affirmative in the case Y is normal and F = A1 by the results
of Kambayashi-Miyanishi [7] and Kambayashi-Wright [8]. The following result is
essentially due to Sathaye [12].

Theorem 2. Assume that F = A1 or A2 and that the generic fiber XK is iso-
morphic to A1

K or A2
K over the function field K of Y . In the case F = A2 we

assume that Y is a curve. Then there exists a dense open set U of Y such that
f−1(U) ∼= U × F .

For an A2-fibration, there are partial results by Kaliman-Zaidenberg [6] and
Kaliman [5].

Theorem 3. Let f : X → Y be a dominant morphism of a smooth quasi-projective
variety X to a smooth quasi-projective variety Y . Suppose that general fibers
f−1(Q) for Q ∈ Y are isomorphic to A2. Then there exists a Zariski open subset
U of Y such that f−1(U) ∼= U × A2.

Theorem 4. Let f be a polynomial in C[x, y, z] such that the associated morphism
f : A3 → A1 defined by P 7→ f(P ) has general fibers isomorphic to A2. Then
C[x, y, z] = C[f, g, h] with g, h ∈ C[x, y, z]. In particular, all the fibers of f are
isomorphic to A2.
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An open set U of X is called an An-cylinder or a cylinderlike open set if U ∼=
An × U0. In the case F = A1, an A1-fibration has a strong tie with a Ga-action.

Lemma 5. Let X = SpecA, Y = SpecA0 and let f : X → Y be an A1-fibration.
Then the generic fiber XK is isomorphic to A1

K iff there exists a Ga-action on X
such that A0 is contained in the ring of invariants in A.

The following result of Suzuki-Zaidenberg [13, 14] allows us to compute the
topological Euler number of an affine surface with an F -fibration. One can see the
special roles that A1 or A1

∗ will play.

Theorem 6. Let X be a smooth affine surface with a morphism f : X → C with
connected general fibers F , where C is a smooth curve. Let Fi (1 ≤ s ≤ ℓ) exhaust
all singular fibers. Then we have the equality of topological Euler numbers

e(X) = e(C) · e(F ) +

ℓ∑

i=1

(e(Fi) − e(F )).

Furthermore, e(Fi) ≥ e(F ) for all i. If the equality holds for some i, then F is A1

or A1
∗, and Fi is isomorphic to F for all i if taken with reduced structures.

Singularity on an affine normal variety with An-fibration is an interesting object
to study.

Theorem 7. Let X be a normal affine surface and let f : X → C be either an
A1-fibration or A1

∗-fibration, where C is a smooth curve. Then X has only cyclic
quotient singularity.

If V is a normal projective surface and f : V → B is a P1-fibration, V has only
rational singularity. A more general result is given by Flenner-Zaidenberg [3].

Theorem 8. Let V be an algebraic variety and let P ∈ V be an isolated Cohen-
Macaulay singularity. If there exists a Zariski open set U of V such that U is
covered by closed rational curves not passing through the point P . Then P is a
rational singularity.

There are some recent trials by Kishimoto [9] on singularities of affine 3-folds
which contain A1-cylinders. If there exists an A1-fibration (resp. A1

∗-fibration) on
a smooth algebraic surface X then κ(X) = −∞ (resp. κ(X) ≤ 1). Degenerate
fibers of an A1 (or A1

∗) fibration are very easy to describe.

Lemma 9. Let f : X → C be an A1-fibration or an A1
∗-fibration on a smooth

affine surface X and let f∗(Q) be a singular fiber of f . In the case of A1-fibration,
f∗(Q)red is a disjoint sum of the A1. In the case of A1

∗-fibration, f∗(Q) = Γ + ∆,
Γ is 0,mC or m1C1 + m2C2, where C ∼= A1

∗, C1
∼= C2

∼= A1 with (C1 · C2) = 1,
∆ ∩ Γ = ∅, and ∆red is a disjoint sum of the A1 if ∆ 6= 0.

The following results are due to Asanuma [1] and Asanuma-Bhatwadekar [2].

Theorem 10. If R is a regular local ring and let A be a finitely generated flat R-
algebra such that A⊗ κ(p) ∼= κ(p)[n] for every p ∈ SpecR, where κ(p) = Rp/pRp.

Then A is stably isomorphic to R[n], i.e., A⊗R R
m] ∼= R[n+m].
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Theorem 11. Let A be an affine domain over a 1-dimensional noetherian domain
R containing the field Q. Suppose that A is flat over R and A ⊗R κ(p) = κ(p)[2]

for every p ∈ SpecR. Then there exists ξ ∈ A such that A is an A1-fibration over
R[ξ].

There are many results where the fibrations are used in crucial ways. To wit,
we can list the following results.
(1) In the Abhyankar-Moh-Suzuki theorem, an embedded line V (f) in A2 defines
an A1-fibration f : A2 → A1 whose closed fibers are all geometrically integral, and
hence defines an A1-bundle. Similarly, any embedded line in an ML 0-surface with
the Picard number 0 is a fiber-component of an A1-fibration whose closed fibers
are all geometrically irreducible.
(2) In the proof by Gurjar-Miyanishi [4] of Lin-Zaidenberg theorem which asserts
that any irreducible contractible curve C is conjugate to a curve defined by xm = yn

with gcd(m,n) = 1, an A1
∗-fibration φ : A2 − {P} → P1 is used effectively to

determine the equation of C, when C has a singular point P and κ(A2 − C) = 1.
(3) An affine surface X is isomorphic to A2 iff X is factorial, Γ(X,OX)∗ = C∗ and
X has an A1-fibration f : X → C.
(4) A smooth affine surface X has κ(X) = −∞ iff X has an A1-fibration f : X →
C.
(5) In order to determine the equation of a generically rational polynomial (or
a field generator by Russell) f ∈ C[x, y] up to an automorphism of C[x, y], one
effective way is to consider the morphism f : A2 → A1 and look into degenerate
fibers. This method worked in the cases of polynomials of simple type or of quasi-
simple type.
(6) By Kaliman [5], we have the following characterization of A3.

Theorem 12. Let X = SpecA be an affine 3-fold. Then X ∼= A3 iff A∗ = C∗,
A is factorial, H3(X ; Z) = 0 and X contains a cylinderlike open set U × A2 such
that every irreducible component of X \ U ×A2 has at most isolated singularities.

(7) We often use Kawamata’s addition formula of log Kodaira dimensions.

Theorem 13. Let f : X → Y be an F -fibration of smooth algebraic varieties with
dimF ≤ 1. Then κ(X) ≥ κ(F ) + κ(Y ).
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The special automorphism group of R[t]/(tm)[x1, . . . , xn] and coordinates
of a subring of R[t][x1, . . . , xn]

Stéphane Vénéreau

(joint work with Arno van den Essen and Stefan Maubach)

LetR be a commutative with unity ring andR[d] = R[x1, · · · , xd] a polynomial ring
in d indeterminates over R. A polynomial f = f(x1, · · · , xd) ∈ R[x1, · · · , xd] is
called a hyperplane (or a plane resp. line if d−1 = 2 resp. 1) if R[x1, · · · , xd]/(f) ≃
R[d−1] and it is called a variable if there exists an automorphism of R-algebra
α : R[x1, · · · , xd] → R[x1, · · · , xd] such that α(x1) = f . One sees easily that
variables are hyperplanes but the converse is one of the major problems in affine
algebraic geometry, it is often referred to as the Abhyankar-Sathaye Problem or
Conjecture. For d = 2 the problem is completely solved thanks to the Abhyankar-
Moh-Suzuki Theorem and its generalizations for some coefficients rings on one
hand and thanks to the construction of bad lines (lines that are not variables) for
the remaining rings on the other hand (see [2]). The idea is to introduce another
notion : residual variables. We say that a polynomial f ∈ R[d] is a residual vari-
able if its canonical image in k(℘)[d] is a variable for every prime ideal ℘ ∈ SpecR,
where k(℘) denotes the residue class field R℘/℘R℘. Variables are easily seen to
be residual variables and, again, the converse has to be studied. In case d = 2 it is
(almost) completely known for which rings residual variables are variables and for
which there are, say, bad residual variables (see [2]). From d = 3 and when the ring
R is of characteristic 0 (as well as all its residue class fields) both problems remain
unsolved. The question we ask here is: can one generalize the construction in [2]
of bad lines and bad residual variables (in the char. 0 case) to get bad hyperplanes
and bad residual variables? Unfortunately(?) the answer is no but this answer
has nevertheless some ”positive” consequences.



Affine Algebraic Geometry 25

The starting point of the construction of bad objects in [2] is the following
example: to simplify take R = F2[t2, t3] ⊂ F2[t], where F2 denotes the field with
two elements. We define the following automorphism γ of F2[t][x, y]:

{
γ(x) = x+ (y + tx)2 = x+ y2 + t2x2

γ(y) = y + tx.

Remark that γ(x) ∈ R[x, y], however an easy argument shows that it is not a
variable there but only over the larger ring F2[t]. One can also see that it is a
residual variable, whence a bad residual variable (note here that this is not a line,
examples of bad lines being more complicated).

We will study a slight modification of this example, which is nicer in some way
and has the same properties:

{
γ(x) = x− y2 + (y + t(x− y2))2 ≡ x mod t2F2[t][x, y]
γ(y) = y + t(x − y2) − tγ(x) ≡ y + ty2 mod t2F2[t][x, y].

To ease notations consider the canonical epimorphism

F2[t] → F2[t]/(t2)

a 7→ ā

as well as its extensions

F2[t][x, y] → F2[t]/(t2)[x, y], AutF2[t][x, y] → AutF2[t]/(t2)[x, y]

for which we use the same notation (f̄(x, y), γ̄, . . . ).
Then the fact that γ(x) is a bad residual variable of R[x, y] comes from the fol-
lowing:

γ̄ ∈ AutxF2[t]/(t2)[x, y] ∩ AutF2[t][x, y]

BUT γ̄ /∈ AutxF2[t][x, y]

where the index x in Autx stands for ” automorphisms preserving x”. Indeed,
every automorphism of F2[t][x, y] preserving x has degree one in y, none can there-
fore give γ̄(y) = y + ty2.

In view of generalizing such examples in higher dimensions one asks: for d ≥
3 can one do the same with, say, C instead of F2 or more generally with R a
reduced ring containing Q instead of F2? Replacing y by d − 1 indeterminates
y1, · · · , yd−1 =: Y we ask then:
Is there an automorphism γ̄ such that

γ̄ ∈ AutxR[t]/(t2)[x, Y ] ∩ AutR[t][x, Y ]

BUT γ̄ /∈ AutxR[t][x, Y ] ?

For this, there has to be some

α ∈ AutxR[t]/(t2)[x, Y ] \ AutxR[t][x, Y ].
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This alone is easy to find: define α ∈ AutxR[t]/(t2)[x, Y ] by α(y1) = y1 +
ty2

1 , α(y2,3,...) = y2,3,.... Then the jacobian determinant of α, j(α), is 1 + 2ty1
and

j(α) = 1 + 2ty1 /∈ R[t][x, Y ]
∗

= R∗ = R∗ ⊂ R[t]/(t2)[x, Y ]

where ∗ stands for the set of units. It follows that

α /∈ AutxR[t][x, Y ].

But if α ∈ AutR[t][x, Y ], as required in the question, then j(α) ∈ R[t][x, Y ]∗ =
R∗ ⊂ R[t]/(t2)[x, Y ]. So one may assume that j(α) = 1. The eventual generaliza-
tion of the construction of counter-examples depends now on the following

Question 1.

Is SAutR[t][Y ] −→ SAutR[t]/(tm)[Y ] surjective ?

Where SAut denote the group of automorphisms with jacobian determinant equal
to one.

Answer 1 (van den Essen, Maubach). YES

There is no more x since it can be considered as an element of R now.
We want to sketch the proof for m = 2 and Y = y1, y2:
take α ∈ SAutR[t]/(t2)[y1, y2]. Up to multiplying it by an automorphism of
R[y1, y2] which is clearly in the image, one may assume α ≡ Id mod t. The
condition j(α) = 1 implies that

{
α(y1) = y1 + t ∂P

∂y2

α(y2) = y2 − t ∂P
∂y1

for some P ∈ R[y1, y2]

we will denote α = αP . Remark that αPαQ = αP+Q. One may therefore assume

that P = ryi1
1 y

i2
2 , for some r ∈ R. But such a monomial decomposes as well:

yi1
1 y

i2
2 =

∑

q

rq(y1 + qy2)i1+i2 for some q, rq ∈ Q.

Whence one may assume P = r(y1 + qy2)d. Now we define a Locally Nilpotent
Derivation of R[t][y1, y2]: Dy1 = q, Dy2 = −1. One has D(rtd(y1 + qy2)d−1) = 0

hence rtd(y1 + qy2)d−1D is a LND too and ertd(y1+qy2)
d−1D is the desired auto-

morphism of R[t][y1, y2] since

{
ertd(y1+qy2)

d−1D(y1) ≡ y1 + rtd(y1 + qy2)d−1q mod (t2)

ertd(y1+qy2)
d−1D(y2) ≡ y2 − rtd(y1 + qy2)d−1 mod (t2)

and {
ertd(y1+qy2)d−1D(y1) = y1 + t ∂P

∂y2
= α(y1)

ertd(y1+qy2)d−1D(y2) = y2 − t ∂P
∂y1

= α(y2)

�
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Consequently there is no possible generalization of the construction of bad lines
and bad residual variables. We derive however from this result (Question and
Answer 1 above) some positive ones such as:

Theorem 2. Let R be a ring containing Q and m a positive integer. If f ∈
R[tm, tm+1, · · · , t2m−1][x1, · · · , xn] is a variable of R[t][x1, · · · , xn] then it is a
variable of R[tm, tm+1, · · · , t2m−1][x1, · · · , xn].
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Algebraic vector bundles over smooth real affine varieties

S. M. Bhatwadekar

Let X = SpecA be a smooth affine variety of dimension n ≥ 2 over a field k. It is
a well known fact that an algebraic vector bundle E over X of rank d corresponds
to a projective A-module P of rank d and E has a nowhere vanishing section if
and only if P splits off a free summand of rank 1 (i.e. P ≃ A ⊕ Q). A classical
result of Serre ([S]) says that a projective A-module P splits off a free summand
of rank one if the rank of P > n.

Now we suppose that P is a projective A-module of rank n = dimA. Let CH0(X)
denote the group of zero cycles of X modulo rational equivalence. We can asso-
ciate to P an element of CH0(X) viz. the top Chern class Cn(P ) of P . A result
of Mumford can be used to construct a smooth affine variety X = SpecA of di-
mension n ≥ 2 over the field C of complex numbers and a projective A-module P
of rank n such that Cn(P ) 6= 0. Since Cn(P ) = 0 is a necessary condition for P
to split off a free summand of rank 1, P can not have a free summand of rank 1.
In view of this, it is natural to ask :

Question 1. Does P have a free summand of rank 1 if Cn(P ) = 0 ?

M.P. Murthy settled the above question affirmatively for smooth affine varieties
over algebraically closed fields ([Mu], Theorem 3.8)) . However, as is shown by the
example of the tangent bundle of an even dimensional real sphere, Cn(P ) = 0 is
not always a sufficient condition to conclude that P ≃ A⊕Q, if the base field is not
algebraically closed. Incidentally, all the known examples of projective modules
exhibiting such a behaviour are algebraic vector bundles over even dimensional
real varieties. In view of these examples, it is of interest to explore whether one
can classify examples of projective modules over smooth real affine varieties which
have the property that the top Chern class of the projective module vanishes,
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but the projective module does not split off a free summand of rank one. More
precisely one can ask the following:

Question 2. Let X = SpecA be a smooth affine variety of dimension n ≥ 2 over
R (the field of real numbers) and P a projective A-module of rank n. Under what
further restrictions, does Cn(P ) = 0 imply that P ≃ A⊕Q ?

Recently the above question has been settled in complete generality in my joint
work with Mrinal Das and Satya Mandal ([BDM], Theorem 4.30). As a special
case of this result one can show:

Theorem 3. Let X be as above. Let KA = ∧n(ΩA/R) denote the canonical module
of A. Assume that the manifold X(R) of real points of X is connected. Let P be
a projective A-module of rank n such that its top Chern class Cn(P ) ∈ CH0(X)
is zero. Then P ≃ A⊕Q in the following cases:

(1) n is odd.
(2) X(R) is not compact.
(3) n is even, X(R) is compact and ∧n(P ) 6≃ KA.

Moreover, if n is even and X(R) is compact then there exists a projective A-module
P of rank n such that P ⊕ A ≃ An ⊕ KA (hence Cn(P ) = 0 and ∧n(P ) ≃ KA),
but P does not have a free summand of rank 1.

Note that the above theorem says that if dim(X) is odd then the only ob-
struction for an algebraic vector bundle of top rank over X to split off a trivial
subbundle of rank 1 is algebraic, namely the possible nonvanishing of its top Chern
class. However if dimX is even and X(R) is compact and connected, then, apart
from the possible nonvanishing of its top Chern class, the only other obstruction
for an algebraic vector bundle of top rank over X to split off a trivial subbundle
of rank 1 is purely topological viz. the associated topological vector bundle and
the manifold X(R) have the same orientation. Moreover, in this case, the theorem
assures us that indeed these obstructions genuinely exist. The above result leads
us to ask the following:

Question 4. Let X = SpecA be a smooth affine variety of odd dimension n ≥ 2
over a field k of characteristic 0. Let P be a projective A-module of rank n such
that Cn(P ) = 0 in CH0(X). Then, does there exist a projective A-module Q of
rank n− 1 such that P ≃ A⊕Q ?

References

[BDM ] S.M.Bhatwadekar, Mrinal Kanti Das and Satya Mandal,
Projective modules over smooth real affine varieties, Invent.Math.
166 (2006), 151-184.

[Mu] M.P.Murthy, Zero cycles and projective modules,
Ann.Math. 140 (1994), 405-434.

[S] J.P.Serre, Sur les modules projectifs,
Sem.Dubreil-Pisot 14 (1960-61).



Affine Algebraic Geometry 29

Two topics on the geometry of singular plane curves of type (d, ν)

Fumio Sakai

(joint work with Masahito Ohkouchi, Mohammad Saleem)

Let C be a plane curve of degree d. We call C a plane curve of type (d, ν) if the
maximal multiplicity of singular points on C is equal to ν. We observe two topics
on singular plane curves of type (d, ν).

1. Classification

A unibranched singularity is called a cusp. Rational cuspidal plane curves of
type (d, d−2) and (d, d−3) were classified around 1996–2000 by Flenner-Zaidenberg
[3, 4] (See also Fenske [2] and Sakai-Tono [12] for some cases). A cusp P can be
described by its multiplicity sequence mP = (m0,m1,m2, . . .). In order to describe
a multibranched singular point P on C, we introduce the notion of “the system of
the multiplicity sequences” of P .

Definition 1. Let P ∈ C be a multibranched singular point, having r local
branches γ1, . . . , γr. Let m(γi) = (mi0,mi1,mi2, . . .) denote the multiplicity se-
quences of the branches γi, respectively. We define the system of the multiplicity

sequences, which will be denoted by the same symbol mP (C), to be the com-
bination of m(γi) with brackets indicating the coincidence of the centers of the
infinitely near points of the branches γi. For instance, for the case in which r = 3,
we write it in the following form:

{(
m1,0

m2,0

m3,0

)
. . .

(
m1,ρ

m2,ρ

m3,ρ

) (
m1,ρ+1

m2,ρ+1

)
. . .

(
m1,ρ′

m2,ρ′

)
m1,ρ′+1,. . .,m1,s1

m2,ρ′+1,. . .,m2,s2

m3,ρ+1, . . . , m3,s3

}
.

We also use some simplifications.

Example 2. We examine our notations for ADE singularities.

P A2n−1 D2n−1 D2n E7

mP (C)
(
1
1

)
n

{(
2
1

)
2n−3

} {(
1

1

1

)(
1

1

)

n−2

} (
2
1

)(
1
1

)

Example 3. The hyperelliptic curve y2 =
∏2g+2

i=1 (x − ai) has one singularity P

on the line at infinity with mP =
(
g
g

)(
1
1

)
g
.

Using these notations, we can describe any kind of singularities of plane curves.
As for irreducible plane curves of type (d, d− 2), we have the following

Theorem 4 ([10, 11]). We can classify the singularities of irreducible plane curves
C of type (d, d − 2) with genus g ≥ 0. Furthermore, we can give the algorithm to
find a Cremona transformation which transforms C into a line (if g = 0), a smooth

cubic (if g = 1), or a hyperelliptic curve y2 =
∏2g+2

i=1 (x− ai) (if g ≥ 2).
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2. Gonality

In case the curve C has genus g ≥ 2, the gonality of C, denoted by G, is an
important birational invariant. By definition, G = min{deg(ϕ)}, among all non-

constant morphisms ϕ : C̃ → P2, where C̃ is the non-singular model of C. If C is
of type (d, ν), then via the projection from the singular point with multiplicity ν
to a line, one has the bound: G ≤ d− ν. Let us recall some known results.

(1) Brill-Noether upper bound: G ≤ (g + 3)/2,
(2) 1979 Namba [5]: G = d− 1, if C is non-singular,
(3) 1990 Coppens-Kato [1]: G = d−2, if C has only nodes and ordinary cusps

and if g ≥ d(d − 4)/4 − {1 (if d is even), 3/4 (if d is odd)}.

In [6], we obtained two criteria for the equality G = d−ν. But, it is not difficult
to construct examples with G < d − ν (See [6]). Recently, we also obtained two
criteria for the inequality G ≥ d− ν − q ([8]).

Definition 5. We define a quadratic function Q(x) = x(x− d) + d+ δ− ν, where
the δ is the well known invariant with which the genus g of C is given by the
formula: g = (d− 1)(d− 2)/2 − δ. We set q = Q([d/ν]).

Theorem 6. Let C be an irreducible plane curve of type (d, ν) with d/ν ≥ 2.

(i) If q ≤ 0, then G = d− ν.
(ii) If q ≥ 1, then G ≥ d− ν − q.

Definition 7. Let m1, . . . ,mn denote the multiplicities of all singular points of
C. We here include infinitely near singular points. We set η =

∑n
i=1(mi/ν)2. Let

νi denote the i-th largest multiplicity of points on C. We also define the secondary
invariant σ = (ν2/ν) + (ν3/ν) + (ν4/ν). Clearly, we have 3 ≥ σ ≥ 3/ν.

Definition 8. We define the following functions.

h(η, ν, q) =
η

2(1 + q/ν)
+

1 + q/ν

2
,

g(η, ν, q) =

√
η +

√
η − 4/ν + 2

2
−

2(q/ν)
√

η +
√

η − 4/ν − 2
,

f3(η, ν, q) =
3
√

η − (1 + 1/ν + q/ν)

2
,

f2(η, ν, q) = 2
√

η − (1 + 1/ν + q/ν).

For k = 2, 3, we set χk(η, ν, q) = max
{
h(η, ν, q),min

{
fk(η, ν, q), g(η, ν, q)

}}
.

Theorem 9. Let C be an irreducible singular plane curve of type (d, ν) such that
η ≥ 4/ν. Let q be a non-negative integer. We have G ≥ d− ν − q, either if

(i) d/ν > χ3(η, ν, q) and d/ν ≥ σ − q/ν, or if

(ii) d/ν > χ2(η, ν, q).
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Theorems 6, 9, are complementary. Combining them, we obtain positive values
B(d, ν), so that if g ≥ B(d, ν), then we have the equality G = d− ν. For small d,
ν, the values of B(d, ν) are given in the following table:

d 7 8 9 10 11 12 13 14 15 16 17 18
B(d, 2) 8 11 15 19 24 29 35 41 48 55 63 71
B(d, 3) 7 11 16 22 29 32 40 49 53 63 74 79
B(d, 4) 4 8 13 19 26 34 43 53 64 69 81 94

Note that B(d, 2) is optimal (See examples in [1]). For (d, ν) = (7, 3), the possible
pairs (g,G) (derived from Theorems 6, 9) are illustrated as follows. The black
circle means the existence of examples.

-

6

g

G

w
w w w w

w w w g
w w w w w w w w

7 12

4

Figure 1. (d, ν) = (7, 3)
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Singularities appearing on generic fibers

Stefan Schröer

Let S be a regular scheme over an algebraically closed field of characteristic p > 0,
endowed with a dominant morphism S → B. Then the generic fiber Sη is a regular,
but the geometric generic fiber Sη̄ might be singular. This happens, for example,

in quasielliptic surfaces, or for the addition map Hilb2(A) → A if A is an abelian
surface in characteristic two.

A natural question: What kind of singularities may appear on geometric generic
fibers? The following terminology is useful: Let X be a scheme of finite type over
some field F of characteristic p > 0. We say that X descends to a regular scheme
if X ≃ Y ⊗E F for some regular E-scheme Y , for some subfield E ⊂ F so that the
field extension is purely inseparable.

Throughout, we assume that X descends to a regular scheme. Then X is locally
of complete intersection. If x ∈ X is a point of codimension ≥ 2, the Zariski–
Nagata Theorem leads to the following result on local fundamental groups:

Theorem 1. πloc
1 (Osh

X,x) = 0.

The subscheme X ′ ⊂ X defined by the jacobian ideal J ⊂ OX satisfies some
strong conditions as well. Suppose that X ′ is discrete, and let d = dim(X).

Theorem 2. The Tjurina number h0(OX′) is divisible by p, the sheaf OX′ has
finite projective dimension, and the length formula l(O/J [p]) = pdl(O/J ) holds.

Finally, suppose that x ∈ X is a point of codimension one or two.

Theorem 3. The stalk of the tangent sheaf ΘX,x is free, and Ω1
X,x = OX,x ⊕M

contains an invertible direct summand.

Using all these criteria, we are able to determine which rational double points
descend to regular schemes. Hirokado obtained this already for odd primes. For
p = 2, the rational double points are An with n + 1 = 2e, and D0

n with n ≥ 4,
and E0

7 , E0
8 . Here we use notation of Artin, who gave the classification of rational

double points in positive characteristics.

References

[1] M. Artin: Coverings of the rational double points in characteristic p. In: W. Baily, T. Shioda
(eds.), Complex analysis and algebraic geometry, pp. 11–22. Iwanami Shoten, Tokyo, 1977.

[2] M. Hirokado: Deformations of rational double points and simple elliptic singularities in
characteristic p. Osaka J. Math. 41 (2004), 605–616.
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Survey of the Jacobian Conjecture

David Wright

1. The General Assertion

The renowned Jacobian Conjecture is stated below. It listed by Smale [20] as
Problem 16 in his list of 18 great unsolved mathematical problems for the 21st
century.

Conjecture 1.1 (Jacobian Conjecture (JC)). For any integer n ≥ 1 and polynomials
F1, . . . , Fn ∈ C[X1, . . . , Xn], the polynomial map F = (F1, . . . , Fn) : Cn → Cn is
an automorphism if the determinant |JF | of the Jacobian matrix JF = (DiFj) is
a nonzero constant.

Here and throughout this survey we write Di for ∂/∂Xi . We will continue to write
JF for the Jacobian matrix of a polynomial map F , and the determinant of this
matrix will be denoted by |JF |. A polynomial map satisfying the hypotheses of
the above conjecture will be called a Jacobian map. The Jacobian Conjecture in a
fixed dimension n will be denoted by JCn. Following standard notational practice
we write C[n] for C[X1, . . . , Xn].

2. Formulation and Early History

The conjecture was stated by O. H. Keller in 1939 [Ke]. Early proofs, all
eventually shown to be incorrect, were given by W. Engel [9], B. Segre [16], [17],
[18], and Gröbner [10]. Shafarevich asserted the conjecture as fact [19], mistakenly
believing it to be obvious. The 2-dimensional problem JC2 was discussed in detail
by Abhyankar in [2], where he proves that it suffices that for all Jacobian maps
(F1, F2) the curves Fi = 0 have only one (common) point at infinity; he then show
that in fact they have at most two such points. Moh [14] showed there are no
counterexamples to JC2 where the degrees of F1 and F2 are ≤ 100. The author
[23] showed that F = (F1, F2) is an automorphism if and only if JF ∈ GE2(C[2]),
GE2 being the subgroup of GL2 generated by elementary and diagonal matrices.

There are many other partial results for general n, some of which are: A Ja-
cobian map F is an automorphism if C[X ]/C[F ] is a birational extension, or an
integral extension (see [3]), or if C(X)/C(F ) is a Galois extension of fields [5], or
if F is injective, or if the total degree of each Fi is ≤ 2 [22] (see [3] for a short
proof of this due to S. Oda).

3. Stability Reductions

These are well-known reductions that can be made if we allow n to increase.

Theorem 1 (Cubic Homogeneous Reduction). The Jacobian Conjecture is true if
it holds for all polynomial maps F having the form F = X−H with H homogeneous
of degree 3.
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Remark 3.1. In the case where F = X −H with H homogeneous of degree d ≥ 2
we have |JF | ∈ C∗ ⇔ |JF | = 1 ⇔ JH is a nilpotent matrix ⇔ (JH)n = 0.

The reduction to the cubic homogeneous case was proved in [3] and by Jagžev in
[11]. The following reduction was proved by Drużkowsky in [8]:

Theorem 2 (Cubic Linear Reduction). The Jacobian Conjecture is true if it
holds for all polynomial maps F having the form F = X −H with H = L3 where
L = L1, . . . , Ln is a linear homogeneous map.

The following reduction is due to de Bondt and van den Essen [6]:

Theorem 3 (Symmetric Homogeneous Reduction). The Jacobian Conjecture is

true if it holds for all polynomial maps F having the form F = X−H with H = ▽P
homogeneous of degree 3.

The condition H = ▽P is equivalent to the condition JH is symmetric matrix.
In this situation P is called the potential function for H . This situation occurs
precisely when the Jacobian matrix of H is the Hessian matrix of P : JH =
HessP = (DiDjP ). If H is homogeneous of degree d, P can, of course, be taken
to be homogeneous of degree d+ 1.

4. Formal Inverse

If F has the form X − H with H having terms of degree ≥ 2, then F has a
”formal inverse” F−1 = G = (G1, . . . , Gn) where Gi ∈ C[[X1, . . . , Xn]]. Then JC
is just the assertion that if |JF | = 1 then G is a polynomial map. It is known
that the degree of the inverse of a polynomial map of degree d is bounded by dn−1

(Gabber (see [3]) and Rusek-Winiarski ([15]). This gives finitude to the process of
determining if F−1 is a polynomial. One might hope to do this using one of the
known formulas for the formal inverse.

Formulas for F−1 were given by Abhyankar-Gurjar in 1974 [1], Bass-Connell-
Wright in 1883 [3], and Zhao in 2004 and 2006 [25], [26]. We mention two resulting
formulas which apply to the symmetric situation. In this case it can easily be shown
that F−1 = X + ▽Q where Q ∈ C[[X1, . . . , Xn]], and thus our goal is to show Q
is a polynomial. The first is due to Zhao [26].

Theorem 4 (Laplacian Formula). With F = X − ▽P and F−1 = X + ▽Q as
above, we have Q = Q(1) +Q(2) +Q(3) + · · · where

Q(m) =
1

2mm!(m+ 1)!
△m(Pm+1)

Here △ is the familiar Laplacian operator
∑n

i=1D
2
i P .

The following combinatorial is due to the author [24]. (A similar formula was
announced in [13] without proof.)

Theorem 5 (Combinatorial Formula). With F = X −▽P and F−1 = X + ▽Q
as above, we have Q = Q(1) +Q(2) +Q(3) + · · · where

Q(m) =
∑

T∈Tm

1

|Aut T |
QT,P
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with QT,P being defined by

QT,P =
∑

ℓ:E(T )→{1,...,n}

∏

v∈V (T )

Dadj(v)P

The notation of the above is as follows: Tm is the set of isomorphism classes of free
(i.e., unrooted) trees with m vertices; for T such a tree, E(T ) and V (T ) denote
the sets of edges and vertices of T , respectively; for v ∈ V (T ), adj(v) denotes the
set of edges {e1, . . . , es} in T which contain v, and Dadj(v) = Dℓ(e1) · · ·Dℓ(es).

In [24] the author derives a number of consequences from the above formula,
including the solution for the homogeneous case (any degree) where (JH)3 = 0
and the cubic homogeneous case where (JH)4 = 0. Sharp bounds on the degree
of the inverse are obtained in these cases.

5. The Vanishing Conjecture

W. Zhao established the following criterion ([27]):

Theorem 6. These conditions are equivalent, for P ∈ C[X1, . . . , Xn]:

(1) HessP is nilpotent.
(2) △m(Pm) = 0 for m = 1, . . . , n.
(3) △m(Pm) = 0 for all m ≥ 1.

Then Zhao formulated:

Conjecture 5.1 (Vanishing Conjecture (VC)). For every homogeneous polynomial
P ∈ C[X1, . . . , Xn] of degree 4, △m(Pm) = 0 ∀m ≥ 1 =⇒ △m(Pm+1) = 0
∀m >> 0.

The following remarkable assertion, due to Zhao, follows from Theorems 3 and 4.

Theorem 7. VC ⇔ JC.

6. The Dixmier Conjecture

Suppose F is a Jacobian map. Define derivations ∆i, i = 1, . . . , n, on C[n] by

∆i(U) = |J(F1, . . . , Fi−1, U, Fi+1, . . . , Fn)|

for U ∈ C[n]. Then the ∆is commute and ∆i(Fj) = δij . Moreover, they are
locally nilpotent on C[F1, . . . , Fn]. It is not difficult to see that if each ∆i is
locally nilpotent on
C [n] then F is an automorphism.

This relates the JC to a problem about the Weyl algebra

An = C[X1, . . . , Xn, D1, . . . , Dn]

of differential operators on C[n]. It is defined by the relations [Xi, Xj] = [Di, Dj ] =
0, [Di, Xj ] = δij (where [A,B] = AB − BA). The conjecture below, for n = 1,
was made by Dixmier [7].

Conjecture 6.1 (Dixmier Conjecture (DC)). Every C-endomorphism of An is an
automorphism.
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Since An is know to be a simple ring, DC is equivalent to showing the surjectivity
of all C-endomorphisms.

A Jacobian map F induces an endomorphism ϕ of An sending Xi to Fi, Di

to ∆i by virtue of the fact that the defining relations for An are satisfied. If this
endomorphism is surjective, it is easy to conclude that F is an automorphism.
The proof is given in [3], where it is attributed to Kac and Vaserstein. Thus we
have DC =⇒ JC; in fact, DCn =⇒ JCn, where DCn is the Dixmier Conjecture
for a fixed n. A recent breakthrough proved by Tsuchimoto [21] and Belov-Kanel
and Kontsevich [4] asserts that:

Theorem 8. DC ⇔ JC.

More specifically, the proof establishes that JC2n =⇒ DCn.
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[16] Beniamino Segre, Corrispondenze di Möbius e trasformazioni cremoniane intere, Atti Ac-
cad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 91 (1956/1957), 3–19. MR MR0095175 (20 #1681)



Affine Algebraic Geometry 37

[17] , Forme differenziali e loro integrali. Vol. II. Omologia, coomologia, corrispon-
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Cancellation with 2-dimensional UFDs

Anthony J. Crachiola

(joint work with Leonid Makar-Limanov)

Let k denote a field of arbitrary characteristic. For a ring A, let A[n] denote the
polynomial ring in n indeterminates over A. We are motivated by the following

Cancellation Theorem. If A is a finitely generated domain over an algebraically
closed field k such that A[1] ∼= k[3], then A ∼= k[2].

This result is a special case of a theorem due to the combined work of Takao
Fujita, Masayoshi Miyanishi, and Tohru Sugie in zero characteristic and Peter
Russell in prime characteristic [8, 11, 14]. In their work, A[1] and k[3] are replaced
by A[n] and k[n+2], respectively, where n > 0.

Even for the special case we are considering, the only known proofs are the orig-
inal one and a recent proof of Rajendra Gurjar [9] which relies on the topological
methods of Mumford and Ramanujam [12, 13]. Our intention is to present purely
algebraic techniques which yield a self-contained proof of the Cancellation The-
orem as well as other similar results. We also hope that the algebraic approach
will be easier to use in the case of higher dimensions (in which the problem is
open). To obtain these cancellation results we first prove a statement on the AK
invariant.
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The AK invariant, defined below, has already helped to recover and generalize
other similar cancellation results. In [4] we generalize the following cancellation
theorem of Shreeram Abhyankar, Paul Eakin, and William Heinzer [1]: If A and B
are finitely generated domains with transcendence degree 1 over an algebraically
closed field k such that A[n] ∼= B[n], then A ∼= B. Connections to the Cancellation
Problem not withstanding, the AK invariant seems to be a useful tool in its own
right for studying rings.

Suppose δ : A→ A[1] is a homomorphism, where A is a commutative ring with
identity. We write δ = δt : A → A[t] if we wish to emphasize an indeterminate t.
We call δ an exponential map on A if

(i) ε0δt is the identity on A, where ε0 : A[t] → A is evaluation at t = 0, and
(ii) δsδt = δs+t, where δs is extended to a homomorphism A[t] → A[s, t] by

δs(t) = t.

Define Aδ = {a ∈ A | δ(a) = a}, a subring of A called the ring of δ-invariants. Let
EXP(A) denote the set of all exponential maps on A. We define the AK invariant,
or ring of absolute constants of A as

AK(A) =
⋂

δ∈EXP(A)

Aδ.

Any isomorphism ϕ : A → B of rings restricts to an isomorphism ϕ : AK(A) →
AK(B). Indeed, if δ ∈ EXP(A) then ϕδϕ−1 ∈ EXP(B). Remark that AK(A) = A
if and only if the only exponential map on A is the standard inclusion δ(a) = a
for all a ∈ A.

The main result is

Theorem 1. Let A be a domain which is either finitely generated as a ring or
finitely generated over a field k. If AK(A) = A then AK(A[x]) = A.

The following two corollaries follow quickly from the main result.

Corollary 2. Let A be a domain which is finitely generated over an algebraically
closed field k. If A[1] ∼= k[3] then A ∼= k[2].

Corollary 3. Let A and B be finitely generated 2-dimensional UFDs over an
algebraically closed field k. Suppose A∗ = k∗ where ∗ denotes the set of units. If
A[1] ∼= B[1] then A ∼= B.

The second corollary is false without the hypothesis of unique factorization.
The first counterexample (over the complex numbers) is due to Wlodzimierz
Danielewski [6]. In [3] the AK invariant is used to demonstrate that Danielewski’s
surfaces provide a counterexample over any field of any characteristic, not nec-
essarily algebraically closed. We are hopeful that the assumption on the units
of A can be removed in the second corollary. However, we cannot increase the
dimension. Counterexamples of 3-dimensional UFDs were recently discovered by
David Finston and Stefan Maubach [7]. For a proof of the main theorem and first
corollary, see [5].
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Algebraic curves on C2 with χ = 0

Maciej Borodzik

(joint work with Henryk Żo la̧dek)

The problem, we deal with, consists of classifying all plane curves in C2 of
Euler characteristic zero. By purely topological reasons, any such curve C has to
be rational and may have at most two places at infinity. Actually, there are two
possibilities

(A) C is a rational curve with one place at infinity (i.e. a polynomial curve)
with one finite self–intersection. The index of intersection of the two
branches at the self–intersection point can be larger than 1. This case
is dealt with in [BZ1]

(B) C is an embedding of C∗ into C2 (an annulus) with one or two places at
infinity. We refer to [BZ2] for more details.

In this report we describe mostly curves from the case B. Curves we are dealing
with are allowed to have more singular points but cuspidal. The classification prob-
lem is a generalisation of Zaidenberg–Lin theorem (if χ(C) = 1, C is topologically
a line).
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The way to attack this problem is to find several complementary conditions
that a rational curve of degree d has to satisfy so that it does not have any finite
self–intersection; a typical rational curve has 1

2 (d−1)(d−2) double points. Special
curves have all these double points hidden either at infinity or at finite singular
points. The number of double points hidden at the given singularity is the δ-
invariant of the singular point. We have a well–known formula

(0.1)
∑

2δi = (d− 1)(d− 2),

where the sum is taken over all singular points of a rational curve, and δi is the
number of double points at the ith singular point.

We introduce another invariant, called the external codimension ext ν of a singu-
lar point, which can be calculated in terms of the blow–up diagram of the singular-
ity. For a cuspidal singularity of multiplicity m we can prove that 2δ ≤ m(ext ν −
m+2), whereas for a singular point with two branches 2δ ≤ m(ext ν−m+3). The
invariant ext ν and the above inequalities resemble the M invariant of Orevkov [Or]
and the Zaidenberg–Orevkov inequality [ZO], however our inequality is slightly
stronger.

In order to have a control over the external codimensions of all singular points
of a given curve, we consider a space Curv = Curva,b,c,d of curves of the form

(0.2)

{
x(t) = ta + α1t

a−1 + · · · + αa+bt
−b

y(t) = tc + β1t
c−1 + · · · + βc+dt

−d.

The space Curv is of course Ca+b+c+d. There is a group of transformations of C2

preserving the space Curva,b,c,d. The dimension g of this group depends heavily
on actual values of a, b, c and d. The dimension counting argument suggests that
the following inequality should be true

(0.3)
∑

ext νi ≤ a+ b+ c+ d− g,

where the sum is taken over all singular points and the contribution from singu-
larities at infinity should be suitably adjusted. The inequality (0.3), altough very
natural, is a conjecture. We were able to prove only a weakened version of that
inequality. Therefore our result is still incomplete in a sense. We have classified
all curves of type (A) and (B) satisfying the inequality (0.3). All cases known to
us satisfy this inequality.

The last but not least condition comes from bounding the sum of multiplicities
of finite singular points. If a singular point has a multiplicity mi, then ẋ has the
order at least mi − 1. Hence

(0.4)
∑

(mi − 1) ≤ a+ b.

Putting together (0.1),(0.3) and (0.4) we obtain the set of conditions for a curve.
Now straightforward, but complicated calculations allow to exhibit all curves that
satisfy these inequalities. In fact we obtain a list of 21 cases of curves of type
(A) (including 16 series and 5 exceptional cases) and 23 cases of curves of type
(B) (including one continuous family, 18 discrete series and 4 exceptional cases).
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Curves of type (B) contain 7 series and 2 exceptional cases of smooth embeddings
of C∗ into C2.
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Embeddings of a family of Danielewski hypersurfaces

Pierre-Marie Poloni

(joint work with Lucy Moser-Jauslin)

In this talk, we are interested by general questions about equivalence and stable
equivalence of polynomials in C[x, y, z]. We explaine how new kinds of phenomena
follow from the study of the embeddings of some hypersurfaces, called Danielewski
hypersurfaces, in C3. Our main results can be resumed in the following examples.

Theorem. Let Qk be, for all integer k ≥ 1, the polynomial of C[x, y, z] defined
by Qk = x2y − z2 − x(1 − z2)k. Then, the following statements hold:

(1) For all c ∈ C, V (Qk +c) ∼= V (Qk′ +c) and they are smooth and irreducible
surfaces;

(2) Qk 6∼ Qk′ if k 6= k′ (see definition below);
(3) Qk and Qk′ are stably (and analytically) equivalent for all k, k′ ≥ 1.

1. Context

We start by given a few definitions and well-known results.

Definition. Two polynomials P and Q of C[x1, . . . , xn] are said to be equivalent
if there exists a polynomial automorphism φ of Cn such that φ∗(P ) = Q. We
denote P ∼ Q.

We should remark that if two polynomials P and Q are equivalent, then the
zero sets of P − c and Q− c are isomorphic as algebraic varieties.
This remark is very useful when we want to prove that two given polynomials are
not equivalent. It was, in fact, until now the only method one can find in the
literature to distinguish equivalence classes of polynomials. Therefore, we can ask
if the converse is true. When P is a coordinate, there are some cases in which the
converse is true. By coordinate we mean a polynomial of C[x1, . . . , xn] equivalent
to x1.
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For n = 2, the famous theorem of Abhyankar, Moh and Suzuki asserts that if a
polynomial P ∈ C[x1, x2] has at least one of these fibers isomorphic to C, then it
is a coordinate.

For n = 3, S. Kaliman proved that if the general fibers of a polynomial in 3
variables are isomorphic to C2, then this polynomial is a coordinate.

The case n > 3 is still open. S. Vénéreau gave an explicit example of a polyno-
mial v = y+x2z+xy(yu+ z2) ∈ C[x, y, z, u] such that V (v− c) ∼= C3 for all c ∈ C

but for which it is unknown if v is or not a coordinate. Nevertheless G. Freuden-
burg showed that, when viewed as a polynomial in 5 variables, this polynomial v
becomes equivalent to x. We say that such a v is a stable coordinate. This leads
to the following natural questions which were posed in [2].

Definition. Two polynomials P,Q ∈ C[x1, . . . , xn] are stably equivalent if ∃
m ∈ N with P ∼ Q in C[x1, . . . , xn+m].

Stable coordinate conjecture. If a polynomial in C[x1, . . . , xn] is stably
equivalent to x1, then it is a coordinate.
Stable equivalence problem. If two polynomials in C[x1, . . . , xn] are stably
equivalent, are they equivalent?

The conjecture is true for n ≥ 3 and is open for n > 3. The problem was solved
affirmatively in the case n = 2 by L. Makar-Limanov, P. van Rossum, V. Shpilrain
and Y.-T. Yu. The result given at the first part of the talk give counter-examples
for n = 3.

2. Danielewski hypersurfaces

The polynomials Qk defined previously came from the study of so called Danielew-
ski hypersurfaces. That means hypersurfaces of C3 defined by an equation of the
form xny = Q(x, z) with deg(Q(0, z)) ≥ 2. Surfaces of this kind were first studied
by Danielewski when he used it to construct counter-examples to the cancellation
problem.

In this talk, we give the complete classification of equivalence classes of polyno-
mials of the form Pr = x2y− z2 − xr(z2), where r is a polynomial in one variable.

Theorem 1. Pr ∼ Ps ⇔ ∃ a ∈ C∗ with s = ar.

Theorem 2. The three following conditions are equivalent;

(1) Pr and Ps are stably (algebraically) equivalent;
(2) either r(0) = s(0) = 0 or r(0)s(0) 6= 0;
(3) Pr and Ps are equivalent by a holomorphic automorphism of C3.

We proved the theorem 1 by using Makar-Limanov’s techniques. Indeed, since
the Makar-Limanov invariant of Danielewski surfaces with n = 2 is non trivial
and is equal to C[x], we can show that an automorphism which sends Pr to Ps

must have a certain form. Then, it suffices to check all the automorphisms of this
particular form. We also prove theorem 2 on an example.
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Finally, we give a result obtained in the same way in collaboration with A.
Dubouloz.

Theorem. Let θ : C∗ × V −→ V be defined by

θ(a;x, y, z) = (ax, a−2(1 − ax)((1 + x)y + z2 − 1), z).

θ is a C∗-action on the smooth surface V = V (x2y− (1−x)(z2 − 1)) which can be
extended holomorphically but not algebraically to a C∗-action on C3. Moreover,
for every a 6= 1, θ(a; .) does not extend to an (algebraic) automorphism of C3.
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Actions of algebraic groups on affine algebraic varieties

Shulim Kaliman

Suppose that G is an algebraic group andX is a smooth complex affine algebraic
variety. Two algebraic G-actions Φ1 and Φ2 on X are equivalent if Φ2 = α ◦ Φ1 ◦
α−1 for some α ∈ AutX . The topic of this talk is recent developments in the
following classification problem: for G-actions on X with given properties describe
all equivalence classes. Starting with results of Gutwirth, Rentchler, and others in
1960’s on classification of C∗-actions and C+-actions on C2 we go to the Koras-
Russell Linearization Theorem that states that every C∗-action on C3 is equivalent
to a linear one. We discuss the idea of the proof including the introduction of the
Makar-Limanov invariant. One of the central steps was strengthened recently by
Koras and Russell as follows

Let S be a normal contractible surface of κ̄(S) = −∞ with quotient singularities
only. Then κ̄(Sreg) = −∞.

In turn this fact is crucial in the coming Gurjar’s result:
For every reductive group G acting on a contractible smooth affine algebraic

variety X that admits a dominant morphism from a Euclidean space Cn so that
X//G is two-dimensional this quotient is isomorphic to the quotient of C2 with
respect to a linear action of a finite group.

Another consequence of the Linearization theorem is Popov’s paper (based also
on his previous result with Kraft) that proves that

Every action of a connected reductive group on C3 is linearizable, i.e. it is
equivalent to a representation.

For higher-dimensional tori we have the following generalization of the old
Bialynicki-Birula theorem (Demushkin, Berchtold, and Hausen)
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Let X be a toric variety of dimension n with a canonical action Φ of torus
T = (C∗)n. Then any other effective action of T on X is equivalent to Φ and,
furthermore, any effective action of (C∗)n−1 on X is equivalent to the action of
an (n− 1)-dimensional subtorus of T generated by Φ.

Contrary to the situation on C2 there are non-triangular C+-actions on C3

(Bass) and not all free C+-actions on C4 are translations (Winkelmann). However
we have the following (Kaliman)

Let Φ be a C+-action on a smooth factorial three-dimensional X with H2(X) =
H3(X) = 0. Suppose that the action is free and S = X//Φ is smooth. Then Φ
is a translation, i.e. X is isomorphic to S × C and the action is generated by a
translation on the second factor.

Since C3//C+ ≃ C2 for any nontrivial C+-action (Miyanishi) we have
A free C+-action on C3 is equaivalent to a translation.
In fact the smoothness assumption can be dropped in some cases (Kaliman,

Saveliev):
Let Φ be a C+-action on a smooth three-dimensional contractible X. Then the

quotient X//Φ is a smooth contractible surface.
Since smooth contractible surfaces are rational (Gurjar, Shastri) we have
A smooth contractible threefold X with a nontrivial C+-action is rational.
This is a partial answer to the Van de Ven conjecture in dimension 3 which

states that smooth contractible affine algebraic varieties are rational. (For smooth
contractible affine threefolds with a nontrivial C∗-action rationality is proven by
Gurjar, Shastri, and Pradeep).
On a normal affine surface S Flenner and Zaidenberg studied Dolgachev-Pinkhman-
Demazure (DPD) presentation and the question about its uniqueness which is
equivalent to the following fact:

Given an effective C∗-action Φ on S any other effective C∗-action is equivalent
either to Φ or to Φ−1. In particular, there are at most two equivalence classes.

They established that except for Gizatullin (i.e. quasi-homogeneous) surfaces
this fact holds. Then Russell noticed that besides C2 (that has infinite number
of such equivalence classes) there are other smooth affine surfaces with more than
two equivalence classes. Namely they are Danilov-Gizatullin surfaces (i.e. the
complements to ample sections in Hirzebruch surfaces). However in the coming
paper of Flenner, Kaliman, and Zaidenberg the uniquness of the DPD presentation
will be shown for the rest of Gizatullin surfaces except for those whose standard
zigzag has exactly one vertex of weight less than −2 (in which case the answer is
still under investigation).

There are non-linearizable actions of connected reductive groups different from
tori on C4 (Schwarz). Actually for any such a group there exists such an action
on some Cn, n ≥ 4 (Knop). Non-linearizable actions of finite groups on C4 were
found by Jauslin-Moser, Masuda, and Petrie. Later new ideas were brought by
Asanuma who showed that there is a non-linearizable R∗-action on R5. Apply-
ing his method Derksen and Kutzschebauch discovered a non-linearizable analytic
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C∗-action on C4. In conclusion we discuss Asanuma’s fourfolds that provide po-
tential counterexamples to the Linearization and Cancellation Conjectures, and
also a potential example of an exotic algebraic structure that is not exotic analytic
structure.

Open algebraic surfaces with logarithmic Kodaira dimension zero

Hideo Kojima

Open algebraic surfaces with logarithmic Kodaira dimension zero have been
studied by several authors. Irrational open algebraic surfaces with κ = 0 were
classified by Iitaka and Sakai. In [6], Zhang classified the Iitaka surfaces which are
almost minimal open rational surfaces with κ = 0 and pg > 0 (for the definitions,
see [5, Chapter 2]). Log Enriques surfaces (normal projective rational surfaces with
only quotient singular points and with numerically trivial canonical divisors) were
studied by Blache, Kudryavtsev, Oguiso and Zhang. The author [4] established a
classification theory of smooth affine surfaces with κ = 0 in any characteristic and
gave a classification of the strongly minimal smooth affine surfaces with κ = 0.

In this article, we consider smooth open rational surfaces with κ = pg = 0 and
with non-contractible boundaries at infinity.

Let S be a smooth open rational surface with κ(S) = pg(S) = 0 and (X,B)
an SNC-completion of S (i.e., X is a smooth projective surface and B is a simple
normal crossing divisor on X such that S ∼= X−B). Let C+KW = (C+KW )+ +
(C + KW )− be the Zariski decomposition of C + KW , where (C + KW )+ is the
nef part of C + KW . Since κ(S) = 0 and the pair (W,C) is almost minimal,
(C + KW )+ is numerically equivalent to zero and C# := C − (C + KW )− is an
effective Q-divisor. Let I be the smallest positive integer such that IC# is an
integral divisor. Since W is a rational surface, we have

Pn(W − C) =

{
1, if I|n
0, if otherwise.

By using [1, Theorem C], we obtain the following lemma.

Lemma 1.With the same notation and assumptions as above, assume further that
⌊C#⌋ 6= 0, where ⌊C#⌋ is the integral part of C#. Then I ∈ {2, 3, 4, 6}.

Now, set C′ := C−⌊C#⌋. Then there exists a birational morphism µ : W → V
such that (V,D′) (D′ := µ∗(C′)) is an almost minimal model of the pair (W,C′).
Set D := µ∗(C).
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Lemma 2.With the same notation as above, the following assertions (1) ∼ (4)
hold true.

(1) D := µ∗(C) is a simple normal crossing divisor.
(2) Pn(V −D) = Pn(X−B) for any integer n ≥ 1. In particular, κ(V −D) =

κ(X −B) = 0.
(3) D# = µ∗(C#). Moreover, ⌊C#⌋ 6= 0 ⇐⇒ ⌊D#⌋ 6= 0.
(4) (V,D) and (V,D − ⌊D#⌋) are almost minimal.

We call the pair (V,D) a strongly minimal model of the pair (X,B) (or the
surface S).

Recently, the author classified the strongly minimal models (V,D) in the case
where ⌊C#⌋ 6= 0 (⇐⇒ ⌊D#⌋ 6= 0), though we cannot reproduce the classification
here for lack of space. In the following theorem, we give the classification in the
case I = 6.

Theorem 1. With the same notation and assumptions as above, assume further
that I = 6 and ⌊D#⌋ 6= 0. Then the pair (V,D) is Fujita’s Y {2, 3, 6}.

Here we recall Fujita’s Y {2, 3, 6} (cf. [2, §8]). Let V0 = P1×P1. Let ℓ1, ℓ2 and ℓ3
be three distinct irreducible curves with ℓi ∼ ℓ, where ℓ is a fiber of a fixed ruling
on V0, and let ℓ1, ℓ2, and ℓ3 be three distinct curves with ℓi ∼M0, where M0 is a
minimal section. Put P1 := ℓ1 ∩ ℓ2, P2 := ℓ2 ∩ ℓ3, P3 := ℓ3 ∩ ℓ1 and P4 := ℓ1 ∩ ℓ3.
Let µ0 : V1 → V0 be the blowin-up with centers P1, . . . , P4. Put Ei := µ−1

0 (Pi),

1 ≤ i ≤ 3. Let µ1 : V2 → V1 be the blowing-up with centers Q1 := E1 ∩ µ′
0(ℓ2),

Q2 := E2 ∩ µ′
0(ℓ2) and Q3 := E3 ∩ µ′

0(ℓ3). Put V := V2 and

D := µ′
1(E1 + E2 + E3 + µ′

0(

3∑

i=1

(ℓi + ℓi))).

The pair (V,D) (or V −D) is called Fujita’s Y {2, 3, 6}.
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Exotic embeddings of smooth affine varieties

Zbigniew Jelonek

We find examples of exotic embeddings of smooth affine varieties into Cn in large
codimensions. We show also examples of affine smooth, rational algebraic varieties
X , for which there are algebraically exotic embeddings Φ : X → X × Cl, which
are holomorphically trivial. Using this we construct an infinite family {C 2p+3} (p
is a prime number) of complex manifolds, such that every C2p+3 has at least two
different algebraic (quasi-affine) structures. We show also that there is a natural
connection between Abhyankar-Sathaye Conjecture and the famous Quillen-Suslin
Theorem.
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Infinite automorphisms groups of algebraic manifolds

De-Qi Zhang

Consider the question of Gizatullin-Harbourne-McMullen (see [8] page 409 and
[10] §12), where Aut∗(X) := Im(Aut(X) → Aut(Pic(X))):

Question 1. Let X be a smooth projective (complex) rational surface. If Aut∗(X)
is infinite, is there then a birational morphism ϕ of X to a surface Y having an
anti-pluricanonical curve and an infinite subgroup G ⊂ Aut∗(Y ) such that G lifts
via ϕ to X?

The result below answers Question 1 in the case of null entropy.

Theorem 2. (see [15]). Let X be a smooth projective rational surface and G ≤
Aut(X) an infinite subgroup of null entropy. Then we have:

(1) There is a G-equivariant smooth blowdown X → Y such that K2
Y ≥ 0 and

hence Y has an anti-pluricanonical curve.
(2) Suppose further that Im(G→ Aut(Pic(X))) is also an infinite group. Then

the Y in (1) can be so chosen that −KY is nef of self intersection zero and
Y has an anti 1-canonical curve.

The result below is applicable when G ≥ Z × Z.

Theorem 3. (see [15]). Let X be a smooth projective surface and G ≤ Aut(X) a
subgroup. Assume that there is a sequence of groups

H E A E G

satisfying the following three conditions: (1) Im(H → Aut(NS(X))) is finite; (2)
A/H is infinite and abelian; and (3) |G/A| = ∞.
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Then G contains a subgroup S of null entropy and infinite order.
In particular, when X is rational, there is an S-equivariant smooth blowdown
X → Y such that Y has an anti-pluricanonical curve.

Remark. Conditions like the ones in Theorems 2 and 3 are probably necessary.
See [1, Theorem 3.2]. The blowdown process X → Y to the minimal pair (Y, S)
in Theorems 2 and 3 is necessary, as observed by [8].

Let σ : Aut(X) → Aut(NSQ(X)) be the natural homomorphism.
Note that the T itself in (2) below is also finite when X is a rational or K3

surface (see Sterk [13] Lemma 2.1, and Torelli theorem).

Theorem 4. (see [15]). Let X be a smooth projective surface and G ≤ Aut(X) a
subgroup of positive entropy. Then G satisfies either:

(1) G contains the non-abelian free group Z ∗ Z; or
(2) There is a B E G such that |G/B| ≤ 2 and B = 〈hm〉 ⋉ T

(semi-direct product) with hm positive entropy and σ(T ) finite.

See [12] Theorems 2.1 or 1.3 for groups of null entropy and [11] Theorem 1.1 for
K3 groups (and more generally for hyperkähler manifolds), where the cyclic-ness
of B/T in our result here is replaced by abelian-ness.

Next we show that the dynamics of automorphisms on all projective complex
manifolds (of dimension 3, or of any dimension but assuming the Good Minimal
Model Program or Mori’s Program) are canonically built up from the dynamics
on just three types of manifolds: Complex Tori, weak Calabi-Yau Manifolds X
(i.e., κ(X) = 0 = q(X)), and Rationally Connected Manifolds. For the update on
dynamics, see the survey [6], and [2], [5], [10].

A pair (X, g) is rigidly parabolic if g|X is parabolic (i.e., g|X is of null entropy
and ord(g|X) = ∞) and if every pair (Y, g) (dominated by (X, g)) is with g|Y
parabolic. A pair (X, g) is of primitively positive entropy if g|X is of positive
entropy and if every pair (Y, g) (of lower dimension and dominated by (X, g)) is
with g|Y parabolic.

Theorem 5. (see [16]). Let X be a smooth projective complex manifold of dimX ≥
2, and with g ∈ Aut(X). Then we have:

(1) Suppose that (X, g) is either rigidly parabolic or of primitively positive
entropy. Then the Kodaira dimension κ(X) ≤ 0.

(2) Suppose that dimX = 3 and g is of positive entropy. Then κ(X) ≤ 0,
unless d1(g−1) = d1(g) = d2(g) = eh(g) and it is a Salem number. Here
di(g) are dynamical degrees and h(g) is the entropy.
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Theorem 6. (see [16]). Let X be a smooth projective complex manifold of dimX ≥
1, and g ∈ Aut(X). Suppose that the pair (X, g) is either rigidly parabolic or of
primitively positive entropy. Then we have:

(1) The albanese map albX : X → Alb(X) is a g-equivariant surjective mor-
phism with connected fibres.

(2) The irregularity q(X) satisfies q(X) ≤ dimX.
(3) q(X) = dimX holds if and only if X is g-equivariantly birational to an

abelian variety (i.e., a projective torus).
(4) albX : X → Alb(X) is a smooth morphism if q(X) < dimX.

In view of Theorem 5 we have only to treat the dynamics on those X with
κ(X) = 0 or −∞. This is done in [16]. As an illustrations, we have the simple
3-dimensional formulations of them as in (7) ∼ (9) below.

Corollary 7. (see [16]). Let X ′ be a smooth projective complex threefold, with
g ∈ Aut(X ′). Assume that the Kodaira dimension κ(X ′) = 0, irregularity q(X ′) >
0, and the pair (X ′, g) is either rigidly parabolic or of primitively positive entropy.

Then there are a g-equivariant birational morphism X ′ → X, a pair (X̃, g) of a

torus X̃ and g ∈ Aut(X̃), and a g-equivariant etale Galois cover X̃ → X. In
particular, X is a Q-torus.

Theorem 8. (see [16]). Let X ′ be a smooth projective complex threefold, with
g ∈ Aut(X ′). Assume κ(X ′) = −∞, and (X ′, g) is either rigidly parabolic or of
primitively positive entropy. Then there is a g-equivariant birational morphism
X → X ′ with X smooth projective, such that:

(1) If q(X) = 0 then X is rationally connected.
(2) Suppose that q(X) ≥ 1 and the pair (X, g) is of primitively positive en-

tropy. Then q(X) = 1 and the albanese map albX : X → Alb(X) is a
smooth morphism with every fibre F a smooth projective rational surface
of Picard number rank Pic(F ) ≥ 11.

Corollary 9. (see [16]). Let X ′ be a smooth projective complex threefold. Suppose
that g ∈ Aut(X ′) is of positive entropy. Then there is a pair (X, g) birationally
equivariant to (X ′, g), such that one of the cases below occurs.

(1) There are a 3-torus X̃ and a g-equivariant etale Galois cover X̃ → X.
(2) X is a weak Calabi-Yau threefold.
(3) X is a rationally connected threefold.
(4) d1(g−1|X) = d1(g|X) = d2(g|X) = eh(g|X) and it is a Salem number.

The following confirms the conjecture of Guedj [7] page 7 for automorphisms
on 3-dimensional projective manifolds.

Theorem 10. Let X be a smooth projective complex threefold admitting a coho-
mologically hyperbolic automorphism g in the sense of [7] p.3. Then either X is a
weak Calabi-Yau threefold, or X is rationally connected, or there is a g-equivariant
birational morphism X → T onto a Q-torus. In particular, the Kodaira dimension
κ(X) ≤ 0.
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Algorithmic problems in polynomial algebras

Vladimir Shpilrain

In this talk, we show how two ideas from combinatorial group theory, namely,
the “peak reduction” method and the “small cancellation” technique can be used
in the context of polynomial algebras.

The “peak reduction” method is a powerful combinatorial technique with ap-
plications in many different areas of mathematics as well as theoretical computer
science. It was introduced by Whitehead (see [6] or [1]), a famous topologist and
group theorist, who used it to solve an important algorithmic problem concerning
automorphisms of a free group. Since then, this method was used to solve nu-
merous problems in group theory, topology, combinatorics, and probably in some
other areas as well.

In general, this method is used to find some kind of canonical form of a given
object P under the action of a given group (or a semigroup) T of transformations.
The principal idea behind this method is rather simple: one chooses the complexity
of an object P one way or another, and declares a canonical form of P an object
P ′ whose complexity is minimal among all objects t(P ), t ∈ T . To actually find a
“canonical model” P ′ of a given object P , one tries to arrange a sequence of suf-
ficiently simple transformations so that the complexity of an object decreases at
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every step. To prove that such an arrangement is possible, one uses “peak reduc-
tion”; that means, if in some sequence of simple transformations the complexity
goes up (or remains unchanged) before eventually going down, then there must be
a pair of subsequent simple transformations in the sequence (a “peak”) such that
one of them increases the maximum degree (or leaves it unchanged), and then the
other one decreases it. Then one tries to prove that such a peak can always be
reduced.

In the context of polynomial algebras, objects are polynomials; their complexity
is their degree; the group of transformations is the group of polynomial automor-
phisms; simple transformations are elementary and linear automorphisms. (An
elementary automorphism is one that changes just one variable.)

Below are two sample results obtained by using the “peak reduction” method.
Here K[x, y] is the algebra of two-variable polynomials over a field K.

Theorem 1. [7] Let K be a field of characteristic 0, and p = p(x, y) ∈ K[x, y].
If deg(p) cannot be decreased by a single elementary or linear automorphism of
K[x, y], then it cannot be decreased by any automorphism of K[x, y].

Theorem 2. [3] Let p = p(x, y) ∈ K[x, y]. If the maximum of degx(p) and degy(p)
cannot be decreased by a single elementary or linear automorphism of K[x, y], then
it cannot be decreased by any automorphism of K[x, y].

Comparing these two results shows that the “complexity” of an input polyno-
mial may be chosen in different ways. In this particular situation, both choices
are viable, but choosing the maximum of degx(p) and degy(p), as opposed to just
deg(p), yields an easier proof. The lesson here therefore is that choices of both
the set T of “basic” transformations and the “complexity” of inputs may have
significant impact on the feasibility of a relevant “peak reduction”.

Now we are going to touch upon another ideas from combinatorial group theory,
the “small cancellation” technique. These ideas were introduced by Nielsen early
in the 20th century, and taken further by Greendlinger in the 1960s. For an
exposition of the foundations of this theory as well as for numerous applications in
group theory, we refer to [1]. Here we give a brief exposition of the principal idea
of the small cancellation theory. Suppose we have a “reduced” set S of elements
of a free group (the precise meaning of “reduced” is not important to us here).
Then the length of any nontrivial element in the subgroup generated by S cannot
be smaller than 1/2 of the minimum length of elements in S. This was proved
by Nielsen. Later, Greendlinger established a similar fact for elements from the
normal closure of S, under more stringent conditions on S.

To apply a similar idea in the polynomial algebra situation, we use the following
standard “glossary”: a free group corresponds to a polynomial algebra, elements
of a free group correspond to polynomials, the length of a free group element
corresponds to the degree of a polynomial, subgroups of a free group correspond
to subalgebras of a polynomial algebra.

The following analog of Nielsen’s result in the polynomial algebra situation is a
consequence of a recent result of Shestakov and Umirbaev [4]. Let p = p(x, y) and
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q = q(x, y) be a pair of polynomials in K[x, y], reduced in the following sense: no
transformation of the form (p, q) → (p, q+c·pk), c ∈ K, or (p, q) → (p+c·qk, q), can
reduce the maximum degree of the pair (p, q). Let furthermore the polynomials
p and q be algebraically independent. Then any nontrivial polynomial in the
subalgebra K[p, q] of the algebra K[x, y] has the degree higher than 1/2 of the
minimum of the degrees of p and q.

Shestakov and Umirbaev themselves used this degree estimate to solve a well-
known problem due to Nagata by showing that a particular automorphism of
K[x, y, z] (suggested by Nagata) is not tame [5]. It has turned out to be use-
ful in other situations as well; in particular, this degree estimate was used in
[2] in proving that two stably equivalent polynomials in K[x, y] are necessarily
equivalent. It appears, however, that there is no reasonable way to generalize
Shestakov-Umirbaev’s degree estimate to subalgebras generated by more than two
polynomials; this is explained in [2].
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Locally nilpotent derivations and Hilbert’s 14th Problem

Daniel Daigle

In Hilbert’s famous list of 23 mathematical problems, the 14th item is:

H14. Let k be a field and R = k[n]. If K is a field such that k ⊆ K ⊆ Frac(R),
is K ∩R finitely generated as a k-algebra?

Here, k[n] denotes a polynomial ring in n variables over k and Frac(R) is the field
of fractions of R. The talk is a survey of this problem, with a particular viewpoint.
We begin by stating five special cases of H14 and explaining the relations between
them.

The first three special cases are concerned with group actions and invariants.
Suppose that k is an algebraically closed field and R = k[n].

H14-GA. If G is an algebraic group acting algebraically on An = SpecR, is the
ring of invariants RG finitely generated as a k-algebra?



Affine Algebraic Geometry 53

Here it should be noted that Frac(RG)∩R = RG, so H14-GA is indeed a special
case of H14. We state two special cases of H14-GA. The first one is:

H14-LinGA. If G is an algebraic group acting algebraically on An = SpecR by
linear automorphisms, is RG finitely generated as a k-algebra?

This problem was Hilbert’s motivation for proposing H14 and, for that reason,
is sometimes referred to as the Original 14th Problem. The second special case of
H14-GA which we consider is:

H14-ConnGA. If G is a connected algebraic group acting algebraically on An =
SpecR, is RG finitely generated as a k-algebra?

However we note that H14-ConnGA and H14-GA are equivalent: if G0 is the
connected component of G containing the identity element then one can show that

RG is finitely generated over k ⇔ RG0 is finitely generated over k.

We consider two other special cases of H14, related to derivations and their
rings of constants (or kernels). Let R = k[n] where k is a field of characteristic
zero.

H14-Der. If D : R → R is a k-derivation, is kerD finitely generated as a k-
algebra?

Here, kerD = {f ∈ R | D(f) = 0}. As Frac(kerD) ∩ R = kerD, H14-Der is a
special case of H14. An even more special case is:

H14-LND. If D : R → R is a locally nilpotent derivation, is kerD finitely
generated as a k-algebra?

Here, one should recall that a derivationD : R → R is locally nilpotent if for each
f ∈ R there exists N > 0 such that DN (f) = 0. It is well-known that each locally
nilpotent derivation D : R → R determines an algebraic action of Ga = (k,+) on
An satisfying RGa = kerD, and that all Ga-actions on An are obtained in this way.
Thus H14-LND can also be viewed as the special case G = Ga of H14-ConnGA.

Moreover, H14-ConnGA is a special case of H14-Der. Indeed, it follows from
Nowicki [7] that if G is a connected algebraic group acting algebraically on An =
SpecR, then RG is the kernel of some k-derivation of R. So we have the following
hierarchy of special cases of H14:
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Next we describe the current status of H14, H14-Der and H14-LND. Unfortu-
nately there is no time to discuss the cases related to group actions.

Zariski’s Theorem (cf. [8]). Let A be a normal affine domain over a field k and
let K be a field such that k ⊆ K ⊆ FracA. If trdeg(K/k) ≤ 2, then K ∩ A is
finitely generated as a k-algebra.

The case trdeg(K/k) = 3 of H14 remained completely open until Kuroda found
several counterexamples in 2005–2006. In particular [6] implies: Let k be a field
of characteristic zero and e ≥ 3 an integer. Then there exists a field K such
that k ⊂ K ⊂ k(X,Y, Z), [k(X,Y, Z) : K] = e and K ∩ k[X,Y, Z] is not finitely
generated. Then it easily follows:

Corollary. Let k be a field of characteristic zero, 3 ≤ d ≤ n integers, R = k[n].
Then there exists a field K such that k ⊂ K ⊂ Frac(R), trdeg(K/k) = d and
K ∩R is not finitely generated as a k-algebra.

This and Zariski’s Theorem settle H14, in the sense that for each pair (n, d)
of integers we know whether or not there exists a counterexample to H14 with
R = k[n] and trdeg(K/k) = d.

Next, consider the status of H14-Der. Let R = k[n] where chark = 0. ¿From
Zariski’s Theorem and the elementary fact that the kernel of a derivation is alge-
braically closed, one immediately obtains:

Corollary. If R = k[n] with n ≤ 3, then the kernel of any k-derivation D : R → R
is a finitely generated k-algebra.

In 2005, Kuroda [5] showed that there exists a k-derivation of k[4] whose kernel
is not finitely generated. So H14-Der is settled. (Note however that Kuroda’s
derivation is not locally nilpotent.)

The status of H14-LND can be summarized by saying that the problem

(i) has a positive answer when n ≤ 3,
(ii) has a negative answer when n ≥ 5,

(iii) is open when n = 4, but there are partial results.
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For (i), see the last corollary, above. To explain (ii) and (iii), we need the following
notions. Let R = k[X1, . . . , Xn] = k[n] and recall that a k-derivation D : R → R
is triangular if DXi ∈ k[X1, . . . , Xi−1] holds for all i. It is easy to see that

If D : R → R is triangular then it is locally nilpotent and moreover
kerD contains a variable of R,

where by a variable of R we mean an element f ∈ R for which there exist f2, . . . , fn

satisfying R = k[f, f2, . . . , fn]. Freudenburg and this author gave the following
example in [2]: Let R = k[a, b, x, y, z] = k[5] and define a k-derivation D : R → R
by

D = a2 ∂

∂x
+ (ax+ b)

∂

∂y
+ y

∂

∂z
.

Then kerD is not finitely generated as a k-algebra. In this exampleD is triangular,
hence locally nilpotent, which explains (ii). Regarding (iii), Freudenburg and this
author gave the following results in [4] and [3]:

(1) The kernel of any triangular derivation of k[4] is finitely generated.
(2) Given m ∈ N, there exists a triangular derivation of k[4] whose kernel

cannot be generated by fewer than m elements.

In unpublished work, Bhatwadekar improved statement (1) as follows: Let D be
a locally nilpotent derivation of k[4] whose kernel contains a variable. Then kerD
is finitely generated. It is still not known whether there exists a locally nilpotent
derivation of k[4] whose kernel is not finitely generated.

The talk concluded with a result from [1] pertaining to the problem of classifying
the locally nilpotent derivations of k[3].
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Questions on Plane Polynomial Curves

Avinash Sathaye

Assume k to be a ground field of characteristic zero. By a plane polynomial curve
we mean a plane curve parametrized by polynomials P (t), Q(t) in one variable t
over k. They will be assumed monic for convenience. The resulting coordinate
ring k[P (t), Q(t)] will be denoted by A. The set of t-degrees of non zero members
of A will be denoted by Γ(A) and called the degree semigroup of the curve C : x =
P (t), Y = Q(t).
Most of the results below are either published in my joint work with Jon Stenerson
[1] or sketched here. References not explicitely mentioned here are located in the
same paper. It is well known that Γ(A) is planar, which means it is generated by
a sequence of positive integers δ0, · · · , δh satisfying three defining properties:

(1) Set di = GCD(δ0, · · · , δi−1) for i = 1, · · · , h + 1. Set ni = di/di−1 for
i = 1, · · · , h. Then dh+1 = 1 and ni > 1 for 2 ≤ i ≤ h.

(2) δini is in the semigroup generated by δ0, · · · , δi−1.
(3) Set qi = δi−1ni−1 − δi. Then qi > 0 for all i ≥ 2.

Abhyankar-Moh theory developed for the Epimorphism Theorem established these
properties for the degree semigroups of any plane curve with one place at infinity.
(The degree of a non zero element in the coordinate ring of such a “one place
curve” is defined as the negative of its order at the place at infinity.) My old proof
of the converse is given in [1].
Let us call a planar semigroup “polynomial” if it arises from a plane polynomial
curve. I had conjectured that the semigroup with δ generator sequence 6, 22, 17 is
not polynomial. This was recently established by three Japanese mathematicians
M. Fujimoto, M. Suzuki and K. Yokoyama.[2], using extensive computer calcula-
tions. They also found a smaller example that I had missed, namely, 6, 21, 4 and
established it also as non polynomial.
While this is satisfactory, we need a more conceptual proof (rather than this “Si-
mon says” proof by computer). I outlined a procedure for this new example 6, 21, 4
by establishing two reductions:
Let P,Q,R denote the polynomials in k[t] such that degt(P ) = 6, degt(Q) = 21
and degt(R) = 4. What we need to arrange is that for some polynomial φ(X,Y )
we get φ(P,Q) = R. Moreover, we may assume that φ(P,Q) is simply of the
form Q2− (P 7 + lower degree monomials in P . First, we show that P,R are both
polynomial expressions in a quadratic polynomial, which we may assume to be
t2 without loss of generality. Thus P = P1(t2), R = R1(t2), where P1(X), Q1(X)
have degrees 3, 2. Then it can be further argued that the polynomial Q must
be of the form tH(t2), for some H(X) ∈ k[X ] of degree 10. We simply how to
arrange that t2H(t2)2 −G(P (t2)) has degree at most 4. This can be rewritten as
XQ1(X)2 = G(P1(X))+aX2+bX+c where 0 6= a, b, c ∈ k. As a consequence, the
calculations become much simpler and humanly doable. This reduction process
due to the composite nature of the ring generated by the polynomials of degree
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4, 6 might prove to be a useful ingradient for further determination of polynomial
planar semigroups.
A basic question which naturally arises in the semigroup constructions is to esti-
mate the minimum possible degree of Pm − Qn when the expression is not zero.
Naturally, this is of interest when at least the top degrees cancel, i.e. the numbers
n,m are proportional to the degrees of monic polynomials P,Q respectively. In
our paper [1] we had formulated and established the result that the drop in the
degree is at most k− 1 where k is the total number of distinct roots of P,Q in the
algebraic closure of k. We had also established the optimality of this lower bound
when the degrees of P,Q are mutually coprime.
Indeed, this question has been of intense interest in Number Theory, especially for
the case m = 3, n = 2. Our main theorem was already proved by Davenport (1965)
and Mason (1984). The question of establishing the optimality of the estimate is
recently carried out for the same case m = 2, n = 3 by Stothers (1991) and Zannier
(1995-96). These already involve deep results in Algebraic Geometry. However,
the active work only appears in journals in Number Theory (See Acta Arithmatica
for Zannier’s work). Perhaps, the algebraists need to find a simple algebraic proof
of such a simple algebraic statement!

I presented one recent application of this estimate to a questions raised by Peter
Russell. He was interested in determining pairs of embedded lines in the plane
which intersect in exactly two points. It is easy to presume that one line is simply
given by y = 0 and the other is given by parametrization x = P (t), y = Q(t)
where P,Q are monic of degrees n,m respectively and n < m. Thus, by the
Embedded Line Theorem of Abhyankar-Moh-Suzuki, there exists a polynomial
H(X) of degree d = m/n such that Q − H(P ) becomes a polynomial whose t-
degree divides n. Using this fact, we can even assume that P is an approximate
d-th root of Q. Then the estimate gives degt(Q−P d) ≥ m−(n+2)+1 = m−n−1.
It is also less than m − n by the approximate root assumption. Thus, we deduce
that it is exactly m−n−1. Since this is not in the semigroup generated by m,n, we
deduce that it must divide n. Simple calculations lead to the conclusion that either
we have the trivial case of n = 1 or we have an embedding with n = 2,m = 4.

In general, we can deduce a result like degt(P ) ≤ r where r is the number of
distinct roots of Q in the algebraic closure.
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Commuting derivations on UFDs

Stefan Maubach

(joint work with H. Derksen and A. van den Essen)

Consider the following conjecture:

Commuting derivations conjecture (CD(n)): If D1, . . . , Dn−1 are n − 1
commuting derivations on C[n] which are linearly independent over C[n], then
the intersection of their kernel (C[n])D1,...,Dn = C[f ] where f is a coordinate.

CD(3) is true (see [2]), and has some nice consequences, but there is no recent
hope of any progress for proving CD(n) if n ≥ 4.

In this talk, I will prove the following theorem:

Theorem: Let A be a ufd over C with trdegC Q(A) = n+ 1(≥ 1), A∗ = C∗, and
let D1, . . . , Dn be commuting locally nilpotent derivations (linearly independent
over A). Now AD1,...,Dn = C[f ] for some f ∈ A\C, and

(1) If D1 mod (f −α), . . . , Dn mod (f −α) are independent over A/(f −α),
then A/(f − α) ∼= C[n]. There are only finitely many α ∈ C for which D1

mod (f − α), . . . , Dn mod (f − α) are dependent over A/(f − α).
(2) In the case that D1 mod (f − α), . . . , Dn mod (f − α) are independent

over A/(f − α) for each α ∈ C, then A = k[s1, . . . , sn, f ], a polynomial
ring in n+ 1 variables.

I will elaborate on some of the lemma’s which one uses for this theorem (which
are interesting in their own right) and discuss some questions arising from these
lemma’s and the theorem. As a remark, it is possible to generalize the theorem,
which essentially is a theorem about (Ga)n-actions, to free unipotent actions, but
the techniques are different.

The work is joint with H. Derksen and A. van den Essen , and the preprint [1]
can be found on my website.
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Andersén-Lempert-theory for automorphisms of affine space -
generalizations and applications

Frank Kutzschebauch

(joint work with Shulim Kaliman)

1. Introduction

The main theorem of Andersén-Lempert-theory (due to Forstneric and Rosay)
allows to construct holomorphic automorphisms of Cn with prescribed behavior
on compact polynomially convex subsets in the following sense:

Theorem 1. Let Ω be an open set in Cn (n ≥ 2) and let Φ : [0, 1] × Ω be a
map of class C2 such that for every t ∈ [0, 1] the map Φt : Ω → Cn is injective
and holomorphic. Assume that each domain Φt(Ω) is Runge in Cn and does not
intersect X. If Φ0 can be approximated on Ω by holomorphic automorphisms of
Cn fixing X, then for every t ∈ [0, 1] the map Φt can be approximated on Ω by
holomorphic automorphisms of Cn fixing X.

Striking applications of this theorem are:

(A) For all 0 < k < n there are proper holomorphic embeddings of ϕ : Ck →֒
Cn so that for no holomorphic automorphisms α of Cn the embedding α ◦ ϕ is
standard. (Forstneric, Globevnik, Rosay, Rudin) Observe the difference to the
algebraic situation, where we have

Conjecture 2 (Abhyankar-Sathaye). Every polynomial embedding φ : Cn−1 →֒
Cn of Cn−1 into Cn is rectifiable.

(B) These embeddings lead to non-linearizable holomorphic group actions on affine
spaces for all compact Lie groups. (Derksen, Kutzschebauch)

(C) Recall that every Stein manifold of dimension n > 1 admits a proper holomor-
phic embedding in CN with N =

[
3n
2

]
+ 1, and this N is the smallest possible by

the examples of Forster. The corresponding embedding theorem with N replaced
by N ′ =

[
3n+1

2

]
+ 1 was proved by Eliashberg and Gromov. For even values of

n ∈ N we have N = N ′ and hence their result is the best possible; for odd values
of n the optimal result was obtained by Schürmann, also for Stein spaces with
bounded embedding dimension. Using A-L theory one can prove the embedding
theorem with interpolation on discrete sequences (Forstneric, Prezelj, Ivarsson,
Kutzschebauch)

Theorem 3. Let X be a Stein manifold of dimension n > 1, and let {aj}j∈N ⊂ X
and {bj}j∈N ⊂ Cm be discrete sequences without repetitions. If m ≥ N =

[
3n
2

]
+ 1

then there exists a proper holomorphic embedding f : X →֒ Cm satisfying

(1.1) f(aj) = bj (j = 1, 2, . . .).

(D) The embedding problem for open Riemann surfaces into C2 got recent progress
by work of Fornæss Wold:
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Theorem 4. Any finitely connected subset of C and any finitely connected subset
of any torus (no punctures) can be properly holomorphically embedded into C2

(E) the same holds with interpolation on a discrete subset (Fornæss Wold, Løw,
Kutzschebauch)

(F) Some open problems in complex dynamics were solved by Fornæss Wold and
Peters, the most striking is:

There is a Fatou-Bieberbach domain in C2 such that the Hausdorff measure of
its boundary near every point is equal to 4.

2. Generalizations

The main algebraic result behind the main theorem of Andersén-Lempert-
theory is the following observation:

Each polynomial vector field on Cn (n ≥ 2) is a finite sum of completely integrable
polynomial vector fields

where a holomorphic vector field on a complex manifold is completely (or globally)
integrable if its phase flow generates a holomorphic C+-action on this manifold.

The first generalization of the Andersén-Lempert theory was made by Varolin
who extended it from Euclidean spaces to a wider class of algebraic complex man-
ifolds. He realized also that instead of presenting algebraic vector fields as a finite
sum of integrable algebraic fields one can use Lie combinations of those fields. This
leads to the following.

Definition 5. A complex manifold X has the density property if in the compact-
open topology the Lie algebra Liehol(X) generated by globally integrable holomor-
phic vector fields on X is dense in the Lie algebra VFhol(X) of all holomorphic
vector fields on X . An affine algebraic manifold has the algebraic density property
if the Lie algebra Liealg(X) generated by globally integrable algebraic vector fields
on it coincides with the Lie algebra VFalg(X) of all algebraic vector fields on it
(clearly the algebraic density property implies the density property).

Varolin and Toth established the density property for some manifolds including
semisimple complex Lie groups and some homogenous spaces of semisimple Lie
groups. They made a conjecture related to our main motivation How to detect
Cn among affine algebraic varieties / Stein manifolds)?

Conjecture 6 (Varolin-Toth). If X is a Stein manifold with the density property
and X is diffeomorphic to R2n, then X is biholomorphic to Cn.

In this connection we would also like to mention the following

Question. (Zaidenberg) Is there a complex affine algebraic variety biholomorphic
to Cn but not isomorphic to Cn?

Important consequences of the density property are
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(1) [Varolin] (Fatou-Bieberbach maps of the first kind) For each point x ∈ Xp

there is an injective but not surjective holomorphic map f : Cn+1 → Xp with
f(0) = x. In particular all Eisenman measures on Xp vanish identically.

(2) [Varolin] (Fatou-Bieberbach maps of the second kind) For each point x ∈ Xp

there is an injective but not surjective holomorphic map f : Xp → Xp with
f(x) = x.

(3) [Varolin] The holomorphic automorphism group of X acts k-transitively on X
for all k ∈ N.

(4) [Kaliman, Kutzschebauch] Density implies Gromov’s spray

Theorem 7. Any Stein manifold X with the density property admits a spray.

3. New Examples

The authors gave two classes of new examples of manifolds with the density
property described in the following two theorems

Theorem 8. Let G be a linear algebraic group whose connected component is
different from a torus or C+. Then G has the algebraic density property.

Theorem 9. Let p ∈ C[x1, x2, ...., xn] be a polynomial (a holomorphic function)
with smooth reduced zero fibre, i.e., the partial derivatives pi = ∂p/∂xi of p have
no common zeros on the zero fiber of p. Then the hypersurface

Xp := {(x̄, u, v) ∈ Cn+2 : uv = p(x̄), x̄ = (x1, x2, . . . , xn)}

has the algebraic density property (density property).

Extremely interesting are the examples:

H1 = {P1(x, y, z, u, v) = uv − [(xz + 1)3 − (yz + 1)2 − z]/z = 0} ⊂ C5

and
H2 = {P2(x, y, z, t, u, v) = uv − (x+ x2y + z2 + t3) = 0} ⊂ C6.

Remark. The hypersurfaces H1 and H2 are either counterexamples to one of the
conjectures of Abhyankar-Sathaye resp. Varolin-Toth or they give a positive an-
swer to Zaidenbergs question.

4. Holomorphic automorphisms with control on non-compact sets

The following theorem of the authors solves a problem posed by Forstneric:

Theorem 10. Let X be a closed algebraic subset of Cn of codimension at least
2 such that the Zariski tangent space TxX has dimension at most n − 1 for any
point x ∈ X. Then the geometric structure of vector fields vanishing on X has the
algebraic density property.

It implies the following generalization of the main theorem of Andersén-Lempert
theory, giving control on compact sets and at the same time on algebraic subvari-
eties of codimension at least 2.
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Theorem 11. Let X be an algebraic subvariety of Cn of codimension at least 2
and Ω be an open set in Cn (n ≥ 2). Let Φ : [0, 1] × Ω be a map of class C2 such
that for every t ∈ [0, 1] the map Φt : Ω → Cn is injective and holomorphic. Assume
that each domain Φt(Ω) is Runge in Cn and does not intersect X. If Φ0 can be
approximated on Ω by holomorphic automorphisms of Cn fixing X, then for every
t ∈ [0, 1] the map Φt can be approximated on Ω by holomorphic automorphisms of
Cn fixing X.

As an application we have a stronger version of a result of Buzzard and Hubbard
answering a question by Siu.

Corollary 12. Any point z in the complement of an algebraic subset X of Cn of
codimension at least 2 has a neighborhood U in Cn \X which is biholomorphic to
Cn (such U is called a Fatou-Bieberbach domain).
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Finite subgroups of the plane Cremona group

Igor V. Dolgachev

(joint work with Vassily A. Iskovskikh)

The Cremona group Crk(n) over a field k is the group of birational automorphisms
of the projective space Pn

k , or, equivalently, the group of k-automorphisms of the
field k(x1, x2, . . . , xn) of rational functions in n independent variables. The group
Crk(1) is the group of automorphisms of the projective line, and hence it is isomor-
phic to the projective linear group PGLk(2). Already in the case n = 2 the group
Crk(2) is not well understood in spite of extensive classical literature (e.g. [2], [3])
on the subject as well as some modern research and expositions of classical results
(e.g. [1]). Very little is known about the Cremona groups in higher-dimensional
spaces.

In the talk I discuss the classical problem of classification of finite subgroups of
the plane Cremona group Cr(2) over the field of complex numbers. The classifi-
cation of finite subgroups of PGLC(2) is well-known and goes back to F. Klein. It
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consists of cyclic dihedral, tetrahedral, octahedral and icosahedral groups. Groups
of the same type and order constitute a unique conjugacy class in PGLC(2). The
goal is to find a similar classification in the two-dimensional case.

The story of this problem begins in 1894. G. Castelnuovo, as an application of
his theory of adjoint linear systems, proved that any element of finite order in Cr(2)
leaves invariant either a net of lines, or a pencil of lines, or a linear system of cubic
curves with n ≤ 8 base points. A similar result was claimed earlier by S. Kantor in
his memoir which was awarded a prize by the Accademia delle Scienze di Napoli
in 1883. However his arguments, as was pointed out by Castelnuovo, required
justifications. Kantor went much further and announced a similar theorem for
arbitrary finite subgroups of Cr(2) [5]. He proceeded to classify possible groups in
each case (projective groups, groups of de Jonquiérs type, and groups of type Mn).
A much clearer exposition of his results can be found in a paper of A. Wiman [6].
Unfortunately, Kantor’s classification, even with some correction made by Wiman,
is incomplete for two main reasons. First, only maximal groups were considered
and even some of them were missed. Second, although Kantor was aware of the
problem of conjugacy of subgroups, he did not attempt to fully investigate this
problem.

The goal of our work with V. Iskovskikh work is to complete Kantor’s clas-
sification. We use a modern approach to the problem initiated in the works of
Yu. Manin and V. Iskovskikh, a survey of their results can be found in [4]. It
makes a clear understanding of the conjugacy problem via the concept of a ratio-
nal G-surface. This is meant to be a pair (S,G) which consists of a nonsingular
projective rational surface S over a field k and a finite group G acting on it by
biregular automorphisms (the geometric case) or, acting on S ⊗k K ∼= P2

K by the
Galois action (the arithmetic case). A birational G-equivariant k-map S− → P2

k

realizes G as a finite subgroup of Crk(2) (geometric case) or a finite subgroup of
CrK(2) (arithmetic case). In the geometric case, two birational isomorphic G-
surfaces define conjugate subgroups of Crk(2), and conversely a conjugacy class of
a finite subgroup G of Crk(2) can be realized as a birational isomorphism class of
G-surfaces. In this way classification of conjugacy classes of subgroups of Crk(2)
becomes equivalent to the birational classification of G-surfaces. A G-equivariant
analog of the theory of minimal models of surfaces allows one to concentrate on
the study of minimal G-surfaces, i.e. surfaces which cannot be G-equivariantly
birationally and regularly mapped to another G-surface. Minimal G-surfaces turn
out to be G-isomorphic either to P2

k, or a conic bundle, or Del Pezzo surface of
degree d = 9 − n ≤ 6. This leads to groups of projective transformations, or
groups of de Jonquiéres type, or groups of type Mn, respectively. To complete the
classification one requires

• to classify all finite groups G which may occur in a minimal G-pair (S,G);
• to determine when two minimal G-surfaces are birationally isomorphic.

To solve the first part of the problem one has to compute the full automorphism
group of a conic bundle surface or a Del Pezzo surface (in the latter case this was
essentially accomplished by Kantor and Wiman), then make a list of all finite
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subgroups which act minimally on the surface (this did not come up in the works
of Kantor and Wiman). The second part is less straightforward. For this we use
the ideas from Mori’s theory to decompose a birational map of rational G-surfaces
into elementary links. This theory was successfully applied in the arithmetic case
(see [4]) and we borrow these results with obvious modifications adjusted to the
geometric case. Here we use the analogy between k-rational points in the arith-
metic case (fixed points of the Galois action) and fixed points of the G-action. As
an important implication of the classification of elementary G-links is the rigidity
property of groups of type Mn with n ≥ 6: birationally isomorphic minimal Del
Pezzo surface (S,G) of degree d ≤ 3 are biregularly isomorphic. This saves much
of the painful analysis of possible conjugacy for a lot of groups.

The large amount of group-theoretical computations needed for the classifica-
tion of finite subgroups of groups of automorphisms of conic bundles and Del Pezzo
surfaces makes us to be aware of some possible gaps in our final classification. This
seems to be a destiny of enormous classification problems. We hope that our hard
work will be useful for the future faultless classification of conjugacy classes of
Cr(2).
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PROBLEMSESSION

Shreeram S. Abhyankar

Let f = X +X2Y and k be a field of char k = 0.

Show that there does not exist g, h in k[X,Y, Z] such that the Jacobian of f, g, h
relative to X,Y, Z equals a non zero constant.
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Tatiana Bandmann

Two polynomials p(x, y), q(x, y) ∈ Z[x, y] define the map f : A2(F) → A2(F),
where

f(x, y) = (p(x, y), q(x, y))

and the field F may be C, Q or Fq for prime q. We assume that p(0, 0) = q(0, 0) = 0.
We are interested in the following

Property P (F): There exists a periodic for f point aF ∈ A2(F) such that aF 6=
(0, 0).

Question 1
Assume that f is dominant and has Property P (Fq) for all q. Does it have a
periodic point rational over Q?

Question 2
Find all the pairs of polynomials p, q ∈ Z[x, y] such that the corresponding map
has Property P (Fq) for all q.

Example

p(x, y) = −x(y − 2)(x2 + y2 − 2y)

q(x, y) = x2(y − 2)(x2 + y2 − 2y)

Properties:
1. f(0, 0) = (0, 0).
2. The orbit {f (n)(x, y)}n ∈ N is Zariski dense for a generic point (x, y).
3. For any prime q the map has periodic point rational over Fq.

Alexei Belov-Kanel

Question 1. Is the authomorphism group of the Weil-algebra Wn over C isomor-
phic to the group of polynomial symplectomorphisms of C2n?

Since the situation is unclear in view to the Jacobian Conjecture, one can ask a
similar question for semigroups of endomorphisms and polynomial symplectomor-
phisms. (The problem is due to M.Kontsevich).

Tame authomorphism groups are isomorphical. The isomorphism of the autho-
morphism groups in the case n = 1 was established by L.Makar-Limanov.

The previous problem can be deduced from the following (hypothetical) fact: Let
M be a holonomic Wn module. One can define its reduction modulo suffitiently
large prime, in particular, infinitely large.
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After reduction we shall have the annihilator in the center. This annihilator
defines an algebraic variety (a subvariety of the spectrum Z(Wn)).

Question 2. a) Is it Lagrangian?
b) Can any Lagrangian variety be obtained in such a way?

Note that the graph of the symplectomorphism is Lagrangian and the correspond-
ing holonomical module gives us a corresponding endomorphism of the Weil alge-
bra. We can prove that only for Wn if n = 1. (This problem was also formulated
by M.Kontsevich.)

The construction of homomorphism between authomorphisms groups is based on
infinitely large primes. If we go back and forward using different ultrafilters, we
get elements of Aut(Aut(Wn)) and Aut(Sumpl).

Hence it is interesting to describe these groups. Let n > 1.

Question 3. Is it true that these groups are generated by conjugations and au-
thomorphisms of the ground field?

A similar question can be asked for subgroups Aut(Aut(Wn)) and Aut(Sumpl) –
authomorphisms of Aut(Wn) and Sumpl(Cn) as ind-schemes.

Also it is interesting to consider Aut(Aut(k[x1, . . . , xn]) in set theoretical sense
and as ind-schemes.

Daniel Daigle

Define a sequence {Hn}∞n=0 of homogeneous polynomials in C[X,Y, Z] by H0 =
Y , H1 = X and for n ≥ 1:

Hn+1 =
ran +H3

n

Hn−1
where r = X3 +XY Z − Y 3 and an = degHn.

This sequence appeared in Section 4.2 of Freudenburg’s paper [3] with the same
notation, and the proof that the Hn are indeed polynomials can be found there.
Note that H2 = XZ−Y 2, H3 = X5 +2X3Y Z−2X2Y 3 +X2Z3−2XY 2Z2 +Y 4Z
and {degHn}

∞
n=1 = {1, 2, 5, 13, 34, 89, . . .} (every other term in the Fibonacci

sequence).

For each n ∈ N, let Un (resp. Vn) be the hypersurface in A3 defined by the
equation Hn = 1 (resp. XY = Zan + 1). I claim that (a) for each n ∈ N there
is an isomorphism Un

∼= Vn of algebraic surfaces, and that (b) if n ≥ 3 then no
algebraic automorphism of A3 maps one hypersurface onto the other; in other
words, Un is (when n ≥ 3) a nonstandard embedding of the Danielewski surface
XY = Zan + 1. Because I tend to believe that these embeddings are nonstandard
in a very strong sense, I find it interesting to ask:
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Question: When n ≥ 3, does there exist a holomorphic automor-
phism of C3 which maps Un onto Vn? What about real diffeomor-
phisms, or even homeomorphisms?

Proof of claims (a) and (b). One can prove that the C-algebra C[X,Y, Z]/(Hn−1)
is generated by the three elements α = π(Hn−1), β = π(Hn+1) and γ = π(r),
where

π : C[X,Y, Z] → C[X,Y, Z]/(Hn − 1)

is the canonical epimorphism. As αβ = γan + 1, this proves the claim (a) that
the surfaces Un and Vn are isomorphic. As to claim (b), one argues as follows:
suppose that there exists an algebraic automorphism of A3 which maps Un onto
Vn. Then it is not hard to see that for every λ ∈ C (including λ = 0), the surface
Hn = λ is isomorphic to the surface XY = Zan + µ for some µ ∈ C; in particular,
the surface Hn = λ is normal for every λ; since Hn = 0 is not normal when n ≥ 3,
(b) is proved. �

We now make some remarks which help to understand the context.

Ubiquity of {Hn}∞

n=1
. This sequence was discovered and rediscovered by sev-

eral authors. We have already mentioned Freudenburg’s paper [3]; there it is
shown that for each n, C[Hn, Hn+1] is the kernel of a locally nilpotent deriva-
tion of C[X,Y, Z]. The sequence {Hn}∞n=1 also appeared in unpublished work of
Gizatullin, in relation with automorphisms of C[X,Y, Z]. Now consider the curve
V (Hn) ⊂ P2 whose equation is Hn = 0. Then V (H3) is Yoshihara’s rational quin-
tic [6]. More generally, all V (Hn) are “Kashiwara curves”: in [4], they correspond
to the case where the divisor Γ is a linear chain. The V (Hn) are also “Orevkov
curves”: in [5] Orevkov defines curves Cj ⊂ P2 where j > 0 is either odd or a
multiple of 4, and uses these to show that a certain inequality (involving degree of
a rational curve and highest multiplicity of a singular point) is best possible; the
V (Hn) correspond exactly to the Cj with j odd, i.e., to the Orevkov curves whose
complements have logarithmic Kodaira dimension −∞. In my joint work [2] with
Peter Russell, the curves V (Hn) appear in the basic affine rulings of P2.

One can also show that, up to automorphism of P2, the V (Hn) are precisely
the curves C ⊂ P2 whose complement P2 \ C is completable by a rational zigzag,
or equivalently, whose complement P2 \ C has trivial Makar-Limanov invariant.

All this shows that {Hn}∞n=1 is indeed a remarkable sequence of polynomials!

Finally I want to point out that the fact that the surface “Hn = 1” is iso-
morphic to a surface “XY = nonconstant polynomial in Z” is a special case of
a general phenomenon: whenever f ∈ C[X,Y, Z] is an irreducible polynomial
which is annihilated by two locally nilpotent derivations D1 6= 0 6= D2 such that
kerD1 6= kerD2, the last theorem in my talk—which is the main theorem of [1]—
implies that, for general λ ∈ C, the surface f = λ is isomorphic to a surface “XY =
nonconstant polynomial in Z”.
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R. V. Gurjar

Let X be a smooth projective, rational surface/C and C ⊂ X a smooth irreducible
curve. Show that π1(X − C) is finite.

D.-Q. Zhang and I have verified this (Math. Annalen, 306 (1996), p. 15-30)
when the log Kodaira dimension κ(X − C) ≤ 1.

If this question has an affirmative answer then we get a striking consequence.

Corollary. Let X be a smooth projective, rational surface/C and let f : X → P1

be a genus g fibration. Then f has atmost one multiple fiber.

Recall that a scheme-theoretic fiber ΣaiCi of f is called a multiple fiber if
gcd (a1, a2, . . .) > 1.

This Corollary has been directly verified by D.-Q. Zhang and myself when
g ≤ 12, except for g = 7, 11. It is also true for infinitely many higher values
g = 14, 17, 18, 20, · · · .

Shulim Kaliman

Let X be a smooth affine contractible threefold (over complex numbers) e-
quipped with a nontrivial C+-action on it. Suppose that π : X → S = X//C+ is
the quotient morphism. It is known that S is a smooth contractible surface that
contains a closed curve Γ for which π−1(S \ Γ) is isomorphic to (S \ Γ) × C over
S \ Γ. Furthermore, if Γ is chosen minimal possible then each of its irreducible
components is a polynomial curve.

The problem is to classify all such curves Γ which may be a crucial step in
classification of nontrivial C+-actions on C3.
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More specific questions are: (1) is each irreducible component of Γ contractible?
smooth? Is Γ itself contractible (provided it is connected)?

The motivation for such questions is the following: for S = C2 the only known
examples of Γ are (a) the finite union of parallel lines (in a suitable coordinate
system) or (b) a pair of lines meeting transversally at one point. Case (b) is quite
nontrivial; it was first found by Freudenburg and then it was studied extensively
by Daigle and Russell.

In the case when the Kodaira logarithmic dimension of S is 1 the answer to
the problem is positive [1] and furthermore Γ coincides with the only line in S
(discovered by Gurjar and Miyanishi) which is also the only polynomial curve in
S.

For S of general type the existence polynomial curves in S is unknown but a
theorem of Zaidenberg forbids the existence of contractible curves in S.
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Hanspeter Kraft and Peter Russell

In the joint paper [1] which is still “under construction” we prove the following
result.

Proposition 1. Let k be an algebraically closed field of infinite transcendence
degree over the prime field. Let p : S → X and q : T → X be two morphisms where
S, T and X are k-varieties. Assume that for all x ∈ X the two (schematic) fibers
Sx := p−1(x) and Tx := q−1(x) are isomorphic. Then there is a dominant étale
morphism φ : U → X and an isomorphism S ×X U ∼= T ×X U over U :

S //

��

S ×X U //

��

T ×X U //

��

T

��
X U

φoo U
φ // X

Remark. Under the assumptions of the proposition assume in addition that an
algebraic group G acts on S and T such that p and q are both equivariant with
respect to the trivial action on X and that the isomorphisms proposition holds
G-equivariantly, i.e., there is an étale morphism U → X and a G-equivariant
isomorphism S ×X U ≃ T ×X U over U .

In the proof we use in an essential way the assumption about the ground field,
namely that k has infinite transcendence degree over its prime field. So our problem
is the following:

Problem 2. Show that the proposition above holds over any algebraically closed
field k, or give counter examples over Fp or Q.
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Ignacio Luengo

In the theory of normal surface singularities and their topological/analytical in-
variants, one of the fundamental questions is what kind of analytic invariants of an
analytic complex normal surface singularity can be determined from the topology
(i.e. from the link) of the singularity. To have a chance to answer these type of
questions, one has to assume two types of restrictions: a topological one – e.g.
that the link is a rational homology sphere – and an analytic one – e.g. that the
singularity is P–Gorenstein. For such class of singularities several conjectures were
presented and discussed in Oberwolfach 2003 Singularities workshop: the so called
“Seiberg-Witten invariant conjecture”(of Nicolaescu and Némethi), the “Univer-
sal abelian cover conjecture” (of Neumann and Wahl) and the “Geometric genus
conjecture” of Némethi.

In [6] we found counter-examples to these conjectures using hypersurface su-
perisolated singularities. This class of singularities “contains” in a canonical way
the theory of complex projective plane curves. They were introduced in by Luengo
in order to show that the µ-constant stratum, in general, is not smooth.

The Seiberg-Witten Conjecture of Nicolaescu and Némethi is a generalization
of the “Casson invariant conjecture” of Neumann and Wahl [10].

If the link of a normal surface singularity (X, 0) is a rational homology sphere
then the geometric genus pg of (X, 0) has an “optimal” topological upper bound.
Namely,

(SWC) pg ≤ sw(M) − (K2 + s)/8.

Moreover, if (X, 0) is a Q-Gorenstein singularity then in (SWC) the equality holds.

Here, sw(M) is the Seiberg-Witten invariant of the link M of (X, 0) associated
with its canonical spinc structure, K is the canonical cycle associated with a fixed
resolution graph G of (X, 0), and s is the number of vertices of G (see [9] for more
details).

A hypersurface singularity f : (C3, 0) → (C, 0), f = fd + fd+1 + · · · (where fj

is homogeneous of degree j) is called superisolated if the projective plane curve
C := {fd = 0} ⊂ P2 is reduced with isolated singularities {pi}ν

i=1, and these points
are not situated on the projective curve {fd+1 = 0}. The link of f is a rational
homology sphere if the curve C is rational and cuspidal (i.e. if all the germs (C, pi)
are locally irreducible).

In [6] some superisolated singularities with ν = #Sing(C) ≥ 2 which do not
satisfy (SWC) were showed. Moreover, in all the counterexamples pg > sw(M)−
(K2 + s)/8 (contrary to the inequality predicted by the general conjecture !). On



Affine Algebraic Geometry 71

the other hand, even after an intense search of the existing cases, the authors were
not able to find any counterexample with ν = 1.

To understand the relationship between (SWC) and the pair (P2, C), (C be-
ing the rational cuspidal curve which is the tangent cone of the corresponding
superisolated surface singularity) leads the authors of [3, 4, 5] to the classification
problem of the rational cuspidal projective plane curves. That is, to determine, for
a given d, whether there exists a projective plane curve of degree d having a fixed
number of unibranch singularities of given topological type. One of the integers
which help in the classification problem is the logarithmic Kodaira dimension κ̄
of open surface P2 \ C. The classification of curves with κ̄(P2 \ C) < 2 has been
recently finished by Miyanishi and Sugie [7], Tsunoda [14]. and Tono [12].

This remarkable problem of classification is not only important for its own sake,
but it is also connected with crucial properties, problems and conjectures in the
theory of open surfaces, and in the classical algebraic geometry:

• Coolidge and Nagata problem, see [1, 8]. It predicts that every rational
cuspidal curve can be transformed by a Cremona transformation into a line, (it is
verified in all known cases).

• Orevkov’s conjecture [11] which formulates an inequality involving the
degree d and numerical invariants of local singularities. In a different formulation,
this is equivalent with the positivity of the virtual dimension of the space of curves
with fixed degree and certain local type of singularities which can be geometrically
realized.

• Rigidity conjecture of Flenner and Zaidenberg, [2]. Fix one of ‘minimal
logarithmic compactifications’ (V,D) of P2 \ C, that is V is a smooth projective
surface with a normal crossing divisor D, such that P2 \C = V \D, and (V,D) is
minimal with these properties. The sheaf of the logarithmic tangent vectors ΘV 〈D〉
controls the deformation theory of the pair (V,D), The rigidity conjecture asserts
that every Q-acyclic affine surfaces P2 \ C with logarithmic Kodaira dimension
κ̄(P2 \ C) = 2 is rigid and has unobstructed deformations. That is,

h1(ΘV 〈D〉) = 0 and h2(ΘV 〈D〉) = 0.

In fact, the Euler characteristic χ(ΘV 〈D〉) = h2(ΘV 〈D〉)−h1(ΘV 〈D〉) must vanish
because h0(ΘV 〈D〉) = 0. Note that the open surface P2 \ C is Q-acyclic if and
only if C is a rational cuspidal curve.

The aim of the propose talk is to present some of these conjectures and related
problems, and to complete them with some results and new conjectures from the
recent work of the authors in [3].

1. Using results by Tono is proved that χ(ΘV 〈D〉) ≥ 0 and

Theorem 1 Let C be an irreducible, cuspidal, rational projective plane curve
with κ̄(P2 − C) = 2. The following conditions are equivalent:

(i) χ(ΘV 〈D〉) = 0,
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(ii) Orevkov’s conjecture is true.
(iii) χ(ΘV 〈D〉) ≤ 0.

In such a case, the curve C can be transformed by a Cremona transformation of
P2 into a straight line (i.e., the Coolidge-Nagata problem has a positive answer).

2. Author’s ‘compatibility property’ is a sequence of inequalities, conjecturally
satisfied by the degree and local invariants of the singularities of a rational cuspidal
curve.

Consider a collection (C, pi)
ν
i=1 of locally irreducible plane curve singularities,

let ∆i(t) be the characteristic polynomial of the monodromy action associated
with (C, pi), and ∆(t) :=

∏
i ∆i(t), with deg ∆(t) = 2

∑
δ(C, pi). Then ∆(t) can

be written as 1 + (t− 1)δ + (t− 1)2Q(t) for some polynomial Q(t). Let cl be the
coefficient of t(d−3−l)d in Q(t) for any l = 0, . . . , d− 3.

Conjecture CP Let (C, pi)
ν
i=1 be a collection of local plane curve singularities,

all of them locally irreducible, such that 2δ = (d − 1)(d − 2) for some integer d.
If (C, pi)

ν
i=1 can be realized as the local singularities of a degree d (automatically

rational and cuspidal) projective plane curve then

cl ≤ (l + 1)(l + 2)/2 for all l = 0, . . . , d− 3.

The main result of [3] is:

Theorem 2 If κ̄(P2 \ C) is ≤ 1, then Conjecture CP is true (in fact with
nl = 0). Moreover, (SWC) holds for the corresponding superisolated singularity.
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L. Makar-Limanov

Consider the subgroup of automorphisms of C[x, y, z] which is generated by
tame automorphisms and exponential automorphisms (automorphisms which are
exponents of locally nilpotent derivations). Call this subgroup the subgroup of
generalized tame automorphisms. A. Joseph conjectured many years ago that any
automorphism of C[x, y, z] is tame in this sense. E. g. the Nagata automorphism
is in this group.

Potential counterexample: Let ∆ = x2y + z2. Consider the following automor-
phism of C[x, y, z].

γ(x) = x, γ(y) = y − 2xyz − ∆2 + 2(3z2∆ + 3xz∆2 + x2∆3), γ(z) = z + x∆.

Is this automorphism generalized tame? The automorphism γ is a composition
of two exponential automorphisms of C(x, y, z). So it is similar to the Nagata
automorphism which is a composition of two tame automorphisms of C(x, y, z).

Stefan Maubach

Commuting derivations conjecture (CD(n)): Let D1, . . . , Dn−1 be pair-
wise commuting locally nilpotent derivations on C[n], which are linearly indepen-
dent over C[n]. Then the common kernel, (C[n])D1,...,Dn−1 , equals C[f ] where f is
a coordinate.

The common kernel is always of the form C[f ], the point is that it should be a
coordinate. The conjecture is open for n ≥ 4.

Generalized coordinates: The idea is to generalize the concept of “stable
coordinate” to more general rings.

Let g ∈ C[n]/I where I = (f1, f2, . . . , fm) is an ideal. Take some G ∈ C[n] such
that G+ I = g. We define g as a generalized coordinate if

f1Y1 + f2Y2 + . . .+ fmYm +G ∈ C[n][Y1, . . . , Ym]

is a stable coordinate.
Conjecture: The definition of “generalized coordinate” coincides with “stable
coordinate” in case C[n]/I ∼= C[p] for some p (i.e. on a polynomial ring, generalized
coordinates are stable coordinates).
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Masayoshi Miyanishi

The Equivariant Jacobian Conjecture is stated as follows:

Let X be a normal affine variety defined over C with an effective algebraic action
of an algebraic group G and let ϕ : X → X be an unramified endomorphism which
commutes with the G-action. Then ϕ is a finite morphism.

If the topological Euler number of X is 1, we may ask if ϕ is an automorphism.
The Equivariant Jacobian Conjecture is reduced to the following two conjectures.

(1) Let Y = X//G be the algebraic quotient and let ψ : Y → Y be the induced
endomorphism. Then ψ is a finite morphism.

(2) Suppose ψ is a finite morphism. Then ϕ is a finite morphism.

The second conjecture is related to the following problem.

Equivariant Ax Problem. Suppose ψ is an automorphism without assuming that
ϕ is unramified. Is ϕ an automorphism ?

To consider these conjectures, it is necessary to answer the following question.

Let ϕ and ψ be as above. Is ψ unramified?

The answer is yes if G is a connected reductive algebraic group or if G = Ga, X
is factorial and dimX = 2. The case G = Ga follows if the answer to the following
question is affirmative.

Let B be a factorial affine domain defined over C, δ a locally nilpotent derivation
on B and A = Ker δ. Let M be a maximal ideal of B and let m = M ∩A. Then

δ extends to (not necessarily locally nilpotent) derivations δM and δ̂M of BM and

B̂M respectively. It is known that Ker δM = Am. Is Ker δ̂M equal to Âm ?

The answer is yes if δ(B) ∩A 6⊂ m.
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Vladimir Popov

Below all algebraic varieties are taken over an algebraically closed field k of
characteristic zero.

1. Birationally nonequivalent linear actions

Let G be a reductive algebraic group. In 1992 P. Katsylo published the following

Conjecture 1. ([Ka]) Let V and W be finite dimensional algebraic G-modules
with trivial stabilizers of points in general position. Then the following properties
are equivalent:

(i) dimV = dimW ;

(ii) there exists a G-equivariant birational map V
≃

99K W .

In [Ka] Conjecture 1 was proved for G = SL2, PSL2, and the symmetric groups
Sn, n 6 4. However E. Tevelev observed (unpublished) that Conjecture 1 fails for
one-dimensional spaces andG = Z/n, n 6= 2, 3, 4, 6; the same observation was inde-
pendently made in [RY]. In 2000 new counterexamples to Conjecture 1 have been
found in [RY], where a birational classification of finite dimensional G-modules for
diagonalizable G has been obtained. Being sceptical about Conjecture 1, in 1993
I suggested to consider W = V ∗, the dual module of V :

Problem 2. Are there a connected semisimple group G and a finite dimensional
algebraic G-module V with trivial stabilizers of points in general position such
that V and V ∗ are not birationally G-isomorphic?

This problem was communicated to some people, see, e.g., [RV]. So far it is still
open.

It is well known that, if G is connected, then V ∗ is V “twisted” by an auto-
morphism of G. This naturally leads to the following generalization. Let H be an
algebraic group acting on an algebraic variety X ,

H ×X → X, (h, x) 7→ h · x.

Let σ : H → H , h 7→ σh, be an automorphism of H . Consider the following new
action of H on X :

H ×X → X, (h, x) 7→ σh · x.

Then the new H-variety appearing in this way is denoted by σX and called X
“twisted” by σ. Problem 2 can be now generalized as follows:

Problem 3. Are there a connected semisimple group G, a finite dimensional
algebraic G-module V with trivial stabilizers of points in general position, and an
automorphism σ of G such that V and σV are not birationally G-isomorphic?

Note that if in Problem 3 one replaces V by a G-variety X , then the answer is
positive (see [RV] where this is proved for G = PGLn).
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It is clear that one should consider only outer automorphisms σ in Problem 3.
Also, it is easily seen that if H is special in the sense of J.-P. Serre, [S], then X
and σX are always birationally G-isomorphic, cf. [RV]. In particular, answering
Problems 2 and 3 for simple G, one should consider only

SLn/µd where d 6= 1, and the groups of types Dl (l is odd in Problem 2), E6.

In particular, we have the following special

Problem 4. Let G = SLd/µd. Let V be the d-th symmetric power of kd endowed
with the natural action of G. Let σ be the automorphism of G induced by the
automorphism g 7→ (gT)−1 of SLd. Are V and σV birationally G-isomorphic?

Note that for d > 3 in Problem 4, stabilizers of points in general position in V
are trivial, [P].

2. Cayley degrees of simple algebraic groups

Let G be a connected reductive algebraic group and let LieG be its Lie algebra.
Consider the action of G on LieG via the adjoint representation and on G by
conjugation.

Definition 5. ([LPR1]) G is called Cayley group if G and LieG are birationally
G-isomorphic.

All simple Cayley groups have been classified in [LPR1, Theorem 1.31]: they
are precisely the groups from the list

SLn, n 6 3; SOn, n 6= 2, 4; Sp2n; PGLn.

For everyG, by [LPR1, Prop. 10.5] there always exists a dominantG-equivariant
rational map G 99K LieG. So the following number is well defined:

Definition 6. ([LPR1]) The Cayley degree Cay(G) of G is the minimum of degrees
of dominant rational G-equivariant maps G 99K LieG.

So G is Cayley if and only if Cay(G) = 1. In general, Cay(G) “measures” how
far G is from being Cayley.

Problem 7. ([LPR1]) Find the Cayley degrees of connected simple algebraic
groups.

In [LPR1], [LPR2]) it is proved that

Cay(SLn) 6 n− 2, for n > 3; Cay(SLn/µd) 6 n/d;

Cay(Spinn) =

{
2 for n > 6,

1 for n 6 5;

Cay(G2) = 2; Cay(G2 × G2
m) = 1.

In particular, this implies that Cay(SL4) = 2 and 2 6 Cay(SL5) 6 3.

Problem 8. Find Cay(SL5).
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At the moment no examples of groups whose Cayley degree is bigger than 2 are
known.

Problem 9. Is there G such that Cay(G) > 2? Is there a simple such G?

More generally,

Problem 10. Given a d ∈ N, is there G such that Cay(G) > d? Is there a simple
such G?

3. Singularities of two-dimensional quotients

Using a result of [KR], it was recently proved in [G2] that if a complex reductive
algebraic group G acts algebraically on Cn and the categorical quotient Cn//G is
two-dimensional, then Cn//G is isomorphic to C2/Γ, where Γ is a finite group
acting algebraically on C2. This theorem can be considered as a generalization of
C. T. C. Wall’s conjecture for the linear action of G on Cn proved in [G1].

This result, discussed in Koras’ talk at this Workshop, prompted the following
question.

Problem 11. (M. Miyanishi) What are the groups Γ occuring in the above situ-
ation?

I conjecture that the following holds.

Conjecture 12. If G is connected, then Γ is cyclic.

Note that it was conjectured in [P1] and proved in [Ke] that if in the above
situation the group G is connected semisimple and the action of G on Cn is linear,
then Γ is trivial.
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David Wright

Conjecture: Let R be a UFD(even a principle ideal domain or discrete valu-
ation ring) and let GA2(R) = AutR(R[n]). Show that all elements of GA2(R) are
stably tame.

Describe the group GA2(R) (generators, relations) for R a principle ideal do-
main (e.g. R = k[t], k field).

In regard to the second problem, it was shown in [1] that, whenR is a polynomial
group over a field k, GA2(R) has an amalgamated free product structure Af2(k)∗B

H . However the group H is not well-understood.

References

[1] David Wright, The amalgamated free product structure of GL2(k[X1, · · · , Xn]) and the weak
Jacobian theorem for two variables, J. Pure Appl. Algebra 12 (1978), no. 3, 235–251.
MR MR501951 (80a:20049)

Stéphane Vénéreau

A Problem of M. Zaidenberg

Shortly expressed, the question raised by M. Zaidenberg is the following:

p(x1, · · · , xm) + q(y1, · · · , yn) is a variable =⇒ p or q is a variable?

Where p ∈ R[x1, · · · , xm] and q ∈ R[y1, · · · , yn], R is a commutative with unity
ring and x1, · · · , xm and y1, · · · , yn are disjoint sets of indeterminates. The sum
p + q is seen as a polynomial in R[x1, · · · , xm, y1, · · · , yn] and one says that a
polynomial f ∈ R[z1, · · · , zl] is a variable if there exists an automorphism of R-
algebra α : R[z1, · · · , zl] → R[z1, · · · , zl] such that α(z1) = f .

Reporter: Nagat Karroum
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