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Introduction by the Organisers

The workshop Model Theory and Groups, organised by Andreas Baudisch (Berlin),
David Marker (Chicago), Katrin Tent (Bielefeld) and Frank Wagner (Lyon) was
held January 14th–20th, 2007. This meeting focused on interactions between clas-
sical model theoretic investigations of groups and their applications to geometric
group theory and vice versa. It was well attended with 55 scientists, both model
theorists as well as geometric group theorists, including 11 women and a relatively
large number of young researchers and students. Needless to say that participants
came from a broad geographical background.

For many years groups have played a central role in model theory, both in
applied model theory where one is focused on understanding algebraic structures
and, more surprisingly, in pure model theory where one is studying structures from
an abstract viewpoint.

At first, only the most basic tools from the general theory were needed in ap-
plications, but, over the last ten years, some of the most sophisticated ideas from
pure model theory have played an important role in applications, most notably
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Hrushovski’s proof of the Mordell-Lang Conjecture for function fields. The inves-
tigation of variations of Mordell-Lang like theorems in different situations played
an important role in a number of talks.

Geometric group theory and model theory have started interacting in the con-
text of free groups and surface groups as well as in the study of the asymptotic
behaviour of geometric properties on groups. This was a second main topic of the
conference which particularly profited from the fact that researchers from different
areas attended the meeting and presented their results.

At the core of model theoretic investigations of groups were the reports on
groups of finite Morley rank around the Cherlin-Zilber Conjecture which states
that every simple group of finite Morley rank is an algebraic group over an alge-
braically closed field. While originally attempts at proving this conjecture have
followed the lines for the classification of algebraic groups, more recent advances
have been made by adapting and generalising ideas from the classification of finite
simple groups, in particular the study of the 2-Sylow subgroup, which has allowed
a distinction into three cases: even characteristic, odd characteristic (including 0)
and degenerate (no involutions). The even case is solved, and important progress
has been made in the other cases. The recent construction of so-called bad fields,
i.e. fields of finite Morley rank with a distinguished multiplicative subgroup also
added new impetus to the search for new proofs not involving assumptions on the
non-existence of such fields.

The organisers asked Dugald Macpherson and Charles Steinhorn before the
conference to give a three-lecture tutorial on asymptotic classes and measurable
structures. This is a new development in model theory generalising results on
finite and pseudofinite fields. In addition, 27 participants were invited to report
on their research (18 long and 9 short talks).

Altogether it was a very successful workshop which inspired a number of new
cooperations and further projects. The reader may find here extended abstracts
of all talks (in the order in which the talks were given).
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Abstracts

Permutation groups of finite Morley rank

Alexandre V. Borovik

(joint work with Tuna Altınel, Jeff Burdges, Gregory Cherlin)

. . . a time to plant, and a time
to pluck up that which is planted.

Ecclesiastes 3:2

The aim of the talk is to use questions about permutation groups of finite Morley
rank as a testing ground of the power of recent classification results on simple
groups of finite Morley rank. Although the complete resolution of the Algebraic-
ity Conjecture:

every infinite simple group of finite Morley rank is an algebraic
group over an algebraically closed field,

is still elusive, we are now in position to prove results about groups of finite Morley
rank which for decades were deemed completely unaccessible.

The crucial result is the classification of groups of finite Morley rank and even
type.

Theorem 1: Even Type Theorem (Altınel, Borovik, Cherlin [1]) If a
simple group G of finite Morley rank contains an infinite elementary abelian 2-
group, then G is a simple algebraic group over an algebraically closed field of
characteristic 2.

The second result deals with the so-called degenerate case.

Theorem 2: Degenerate Type Theorem (Borovik, Burdges, Cherlin [2])
Let G be a group of finite Morley rank with a finite 2-Sylow subgroup S. Then

S ∩G◦ = 1.

We can now move, as promised, to permutation groups of finite Morley rank.
Let G be a group of finite Morley rank acting faithfully, transitively and defin-

ably on a set Ω. We say that G is definably imprimitive if it preserves a non-trivial
definable equivalence relation, and definably primitive otherwise. As usual, the
latter is equivalent to saying that the action is transitive and that, in addition, the
stabiliser of a point Gα, α ∈ Ω, is a maximal (among definable) subgroups in G.

Theorem 3: Bounds for Primitive Groups (Borovik, Cherlin [3]) There
exists a function f(n) such that for a definably primitive permutation group (G,Ω)
of finite Morley rank,

rkG 6 f(rkΩ).
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Surprisingly, the result was unknown even in the case of rational actions of
algebraic groups!

The bound |G| 6 n! for a finite permutation group on a set of n elements raises
a natural question: why, in the context of groups of finite Morley rank, bounds for
permutation groups present a problem? The following example shows why: they
do not exist without extra assumption about the nature of the action.

Indeed, let K be an algebraically closed field and

G = K ⊕ · · · ⊕K

be a direct sum of n copies of the additive group of K. Then the following is a
faithful action of G (of Zariski dimension n for arbitrary n) on the affine space A2

(of Zariski dimension 2):

(a1, . . . , an) :

(
x
y

)
7→

(
x

y + a1x+ · · · + anx
n

)

In this example, the action was intransitive. The next example is concerned with
transitive, but imprimitive action.

Again, let

A = K ⊕ · · · ⊕K

be a K-vector space of dimension n. Let T ≃ K∗ be a torus acting on A by
matrices

diag(t, t2, . . . , tn).

Let B be a hyperplane in A in “general position”. Then
⋂

t∈T

Bt = 0

and the right coset action of the natural semidirect product G = AT on Ω = G/B
is faithful and transitive; the dimension of G can be made arbitrary large while
the dimension of Ω is 2.

A few words about the proof of the Bounds for Primitive Groups. The key
idea is that a “very big” primitive permutation group G of a “small” set Ω has to
be generically n-transitive for some large n, that is, to have a generic orbit on Ωn.
Therefore the proof reduces to proving

Theorem 4: Bounds for degree of generic transitivity. There exists a
function g(n) such that for a definably primitive and generically k-transitive per-
mutation group (G,Ω) of finite Morley rank,

k 6 g(rkΩ).

With some effort, the proof can be reduced to the case when G is simple. Since
G is generically k-transitive, it induces the action of the full symmetric group
Symk on a generic k-tuple α1, . . . , αk of elements from Ω. Involutions from Symk

can be lifted to involutions in G, thus creating a non-trivial Sylow 2-subgroup in
G (quite a lot of now routine, but technical facts about groups of finite Morley
rank are used in the process). And here comes the crucial strike: using Even



Model Theory and Groups 89

Type Theorem and Degenerate Type Theorem, we can conclude that G contains
a non-trivial 2-torus, a divisible abelian 2-group (which means that G behaves,
in the sense of Sylow 2-theory, as a simple algebraic group over an algebraically
closed field of odd or zero characteristic). At this point, a crucial technical lemma
invokes the fact that 2-tori are “rigid”:

Lemma. If, in the context of Theorem 4, T is a 2-torus in G and d(T ) is its
definable closure (that is, the minimal definable subgroup containing T ), then

rk d(T )/O(d(T ) 6 rkΩ

where O(d(T )) is the maximal definable connected subgroup of d(T ) without in-
volutions.

And here we start playing a highly technical game typical for proofs in the
theory of groups of finite Morley rank and odd type: we show that “small” 2-
tori are incompatible with the presence in G of definable sections isomorphic to
“big” symmetric groups Symk, which gives us a bound on the degree of generic
k-transitivity.
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The Collapse to Infinity

Amador Martin-Pizarro

(joint work with Thomas Blossier)

In [2] Hrushovski disproved the trichotomy conjecture for strongly minimal sets
by developing an amalgamation method which turned out to be extremely useful
in order to obtain new structures with predescribed geometry, generally wilder
than the classical examples.

The amalgamation procedure can be described in the following way: the goal is
to construct a countable universal model starting from a given collection of finitely
generated structures. In this model there is a unique type (i.e. an orbit under
the group of automorphisms) of rank ω. The decisive part (called collapse) is to
modify this construction in order to algebraize types of finite rank. In order to do
so, a collection of representatives (or codes) of these types needs to be chosen and
one assigns a maximal length of an independence sequence of realizations to each
code. The structure obtained after amalgamating again has now finite rank. Note
that the prescribed maximal length must reflect any interaction between different
codes, since some realizations of one code may yield realizations for another. Using
this construction a field of finite rank in positive characteristic equipped with an
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additive definable proper infinite subgroup was obtained in [1], answering hence
negatively the long-standing question, whether or not fields of finite Morley rank
in positive characteristic were additively minimal. Note that they are additively
minimal in characteristic 0.

During my talk at Oberwolfach, I presented a joint work with T. Blossier,
in which a differentially closed field of Morley rank ω · 2 equipped with a distin-
guished additive subroup of rank ω was obtained by collapsing Poizat’s differential
red fields in characteristic 0. This is a generalization of the aforementioned col-
lapse construction, by replacing algebraic for finitely dimensional over the field of
constants. The proof strongly used results of A. Pillay and W.Y. Pong [3] on ranks
of differential groups.

Moreover, using the logarithmic derivative, one obtains fields equipped with a
proper divisible (which contains torsion however) multiplicative subgroup. This is
neverthless not a bad field (and it cannot be forced to be one) since the field of con-
stants remains definable even in the reduct with a predicate for the multiplicative
subgroup.
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Model Theory of the Free Group

Anand Pillay

We investigate some stability-theoretic properties of the (complete) theory Tfg of
nonabelian free groups, on the basis of Sela’s recent result that Tfg is stable, and
assuming some unpublished results of Bestvina and Feighn on “negligible” subsets
of finitely generated free groups. My results appear in [1].

Very roughly Bestvina and Feign define a subset X of a finitely generated non-
abelian free group F =< a1, .., an > to be negligible, if there is some N < ω such
that for all ǫ > 0 there is a cofinite subset X ′ of X such that for every word
w ∈ X ′ all but ǫ of w can be covered by N distinct pairs of proper subwords
w1, w

′
1, .., wN , w

′
N where w′

i = wi or its inverse. They prove that for any definable
subset X of F either X or its complement are negligible.

We deduce:

Proposition 1. A definable subset of a nonabelian finitely generated free group F
is nonnegligible iff it is generic in the sense of stable group theory (that is finitely
many left or right translates of X cover F ).
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As Sela pointed out to us, one also easily deduces from Bestvina-Feighn that the
only proper definable subgroups of free groups are cyclic, hence the only proper
definable subgroups of models G of Tfg are abelian. So the maximal abelian
subgroups of G are precisely the centralizers of nontrivial elements. Two such
centralizers are equal or disjoint. Also G is definably simple.

So G |= Tfg resembles a simple bad group of finite Morley rank, with the central-
izers playing the role of the Borels.

The main result is:

Proposition 2. Tfg is non CM -trivial.

The proof is like that for simple bad groups, but we use Proposition 1 in place of
Morley rank arguments as a computational tool.
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Type-definable Groups in ℵ0-stable Continuous Theories are Definable

Itäı Ben Yaacov

Definable sets, as well as more complex definable objects (e.g., groups) play
a central and essential role in classical model theory. A fundamental result (or
simply the definition) is that a definable set is indeed defined by a first order
formula, possibly with parameters.

Continuous first order logic (see [4, 1]) is an extension of classical first order
logic, obtained by replacing the two-element set of truth values {T, F} with the
compact interval [0, 1]. It allows to consider various classes of complete metric
structures as elementary classes and to study definability therein. However, some
things do become more complicated in continuous logic, and in particular the
classical notion of a definable set splits in two. First, it can be viewed as no more
than a definable function into the set {T, F} (or {0, 1}). As such, the correct
analogue is a definable function to [0, 1], which we call a definable predicate — it
is definable in the sense that its values are either given by a formula, or, at the
very worst, by the limit of a uniformly converging sequence of formulae. But when
thinking of definable objects, such as groups, there is an essential asymmetry
between what is inside (which interests us) and what is outside (about which
we could hardly care less, especially if the set is stably embedded). The same
asymmetry arises when we wish to quantify over a definable set. In that case the
notion of a definable predicate is inadequate and we are led to the following notion
of a definable set :

Definition. A closed subset X of a metric structure M is definable if any of the
following equivalent conditions holds:

(1) One can quantify overX . In other words, if ϕ(x, ȳ) is a definable predicate
then so is ψ(ȳ) = infx∈X ψ(x, ȳ).
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(2) The distance to X is a definable predicate.

The class of definable sets in a continuous structure is far less well-behaved than
in classical logic. For example, the family of all definable subsets of Mn does not
form a Boolean algebra, as it is not always closed under complement or intersection.
Worse than that, it is not at all obvious whether non-trivial definable sets even
exist. Indeed, examples exist of theories which do not admit enough definable
sets, i.e., where there are distinct types which nonetheless agree on all definable
sets (such an example is the theory of real closed fields augmented by a predicate
P (x) = st(|x − a|) ∧ 1 where st(·) denotes the real standard part and a is some
infinite element). As all known examples of this pathology are unstable it make
sense to ask whether all stable continuous theories admit enough definable sets.

One of the beautiful aspects of stable group theory in classical logic is the proof
that there are also “enough definable groups”, namely, that every type-definable
group is the intersection of definable subgroups of a definable group. In the case
of an ℵ0-stable theory, chain conditions along with the previous general fact yield
that every type-definable group is definable. In continuous logic we can prove
adequate analogues of the chain conditions for sequences of definable (or type-
definable) groups for ℵ0-stable theories, but we do not know to prove enough
definable groups exist in stable theories.

The present result is rather a direct proof of the fact that in an ℵ0-stable theory
every type-definable group is definable, leaving open the question of the existence
of definable groups in general stable theories. We do it in several steps:

We first prove the result under the technical assumption of the invariance of the
metric under the group operation, using some technical results concerning metric
Morley ranks (i.e., Cantor-Bendixson ranks) from [2].

We next study type-definable groups in continuous theories, and in particular
in stable continuous theories. We prove that:

• If the connected component of a type-definable group in a stable theory is
definable then so is the entire group.

• A connected type-definable group in a stable theory admits an invariant
metric. Such a metric is partial, as it is only defined on the group.

Finally, we seek tools allowing us to extend a partial metric on a type-definable
set (or group) to a global one. If the set were definable this would not be a
problem, but this is precisely the assumption we are not allowed to make. Instead,
we generalise results from [3] allowing us to obtain metrics without recourse to
quantification. We prove:

Lemma. Let X be a type-definable set, d1 a (partial) metric on X. Then there is
a continuous function h : [0, 1] → [0, 1] and a global metric d2 which extends h◦d1.

In particular, if X = G is a group and d1 is invariant under the operation of G
then so is d2.

We may now conclude:

Theorem. A type-definable group in a continuous ℵ0-stable continuous theory is
definable.
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Proof. As it is enough to show the connected component of G is definable, we may
assume G is connected. It therefore admits an invariant definable metric. Up to a
modification, this partial definable metric extends to a global one, call it d1 (which
is invariant on G).

Any two (global) definable metrics are uniformly equivalent (by compactness)
and therefore interchangeable. Moreover, as the characterisation of definable sets
via quantification does not make direct use of the metric, it does not change if we
replace the “standard” metric d with the metric d1 (demoting d to the status of a
mere predicate symbol). We may now apply the first result and conclude. �

As a corollary we can now prove that in an ℵ0-stable continuous theory every
type-definable group (not only connected ones) admit an invariant metric, and
that any partial metric on such a group extends (without modification) to a global
one: indeed, these facts are known for definable groups in arbitrary continuous
theories.
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[1] Itäı Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, Model
theory for metric structures, Expanded lecture notes for a workshop given in March/April
2005, Isaac Newton Institute, University of Cambridge.
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A Trichotomy Theorem for 1-dimensional Types in Reducts of
o-minimal Fields

Assaf Hasson

(joint work with A. Onshuus, Y. Peterzil)

Let N be a structure definable in an o-minimal structure M (with a fixed
interpretation of N in M). A type p in the structure N is called one dimensional
if it contains an N -formula whose M-dimension is one. Notice that the notion of
dimension depends on the particular interpretation of N in M.

We prove the following:

Theorem 1. Assume that N is a definable structure in M, an o-minimal ex-
pansion of a field, and that p is a complete one-dimensional N -type over a model
N0 ≺ N . Then:

(1) p is trivial (with respect to aclN ).
Or, there exists an N -definable equivalence relation E with finite classes

such that one of the following holds:
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(2) p is linear, in which case either
(a) p/E is a generic type of a strongly minimal N -definable 1-dimensional

G, and the structure which N induces on G is locally modular. In
particular, p is strongly minimal. Or,

(b) there exists an extension p′ ⊇ p such that p′/E is a generic type in
an N -definable ordered group-interval I, and the structure which N
induces on I is a reduct of an ordered vector space over an ordered
division ring.

(3) p is rich: There exists an extension p′ ⊇ p such that p′/E is a generic type
in an N -definable real closed field R and the structure which N induces
on R is o-minimal.

It follows that a one-dimensional p can be stable only in Case (1), or in Case
(2)(a). Moreover, if p is nontrivial and stable then it is necessarily strongly mini-
mal. Indeed, the hardest part of the proof consists in showing:

Theorem 2. Let N be interpretable in an o-minimal structure M and one-
dimensional as such. If N is stable it is 1-based.

Note, of course, that the assumption that N is 1-dimensional is crucial, as is
witnessed by the structure (C,+, ·), which is naturally interpretable in the field of
real numbers.

The proof of the main result is obtained by combining this last theorem with:

Theorem 3 (Hasson-Onshuus). Let N be a 1-dimensional structure definable in
an o-minimal structure M. For any unstable X ⊆ N there exists N -definable
X0 ⊆ N and equivalence relation E with finite classes such that X0/E with all its
induced N -structure is o-minimal. In particular X0/E is linearly ordered.

We strongly believe that Theorem 1 should hold for 1-dimensional types in
structures definable (i.e. interpretable in the main sort) of an arbitrary o-minimal
theory (that is, one not necessarily expanding a field), but the proof is not yet
finished. Somewhat more challenging (though possibly not of great importance)
would be the generalisation to the case of 1-types of theories interpretable in
arbitrary o-minimal structures.

Theorem 2 is a “baby version” of a Zilber style trichotomy for minimal stable
types for theories interpretable in o-minimal fields. Combined with Theorem ??
it seems plausible that such a trichotomy, if true, could have interesting applica-
tions to generalisations of the work of Peterzil-Starchenko (see this volume) on
recovering local exponential functions.
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Witt Modules

Françoise Point

(joint work with Luc Bélair)

Model theory of Witt vectors in the language of difference valued fields has been
investigated by Luc Bélair, Angus Macintyre and Thomas Scanlon [1, 2]. Here, we
will consider this theory in the (less expressive) language of valued modules [3].

Let R be a field of characteristic p, then we denote by W [R] the Witt ring
over R and its field of fractions by W (R). The Frobenius endomorphism of R
(x → xp) induces a ring endomorphism of W [R]; it is called the Witt Frobenius.
If R is a perfect field of characteristic p, the corresponding Witt Frobenius is an
automorphism of W [R]. One can easily extend it to the field of fractions of W [R].
Note that the valuation of the image of an element by the Witt Frobenius is equal
to the valuation of this element.

More generally, we will consider any valued difference field (K, v, σ) where σ is
an isometry of K, namely that v(k) = v(kσ), k ∈ K. Let OK be the valuation
ring of K, K̄ its residue field, and (Γ,+,≤, 0, 1) its value group.

Let A be the skew polynomial ring K[t;σ], where the commutation law is given
by k.t = t.kσ with k ∈ K. If σ is not the identity on K, then this ring is non
commutative, it is an integral domain which is right Euclidean and left Euclidean
[4]. We may extend the valuation v on A as follows: v(

∑n
i=0 t

i.ai) = minn
i=0{v(ai)}

([4], chapter 9, p. 425). Let A0 := OK [t;σ] of A. It is an Ore domain ([4], chapter
2). Let I be the subset of elements of A0 consisting of the elements of valuation
0.

Definition 1. Let LA be the language of A-modules and let TA be the LA-theory
of right A-modules. Let T be the theory TA together with:

(1) ∀m ∃n (m = n.t), & ∀m (m.t = 0 → m = 0),
(2) ∀m ∃n (n.q(t) = m), where q(t) varies over the irreducible polynomials of

A with q(0) 6= 0.

Lemma 1. Let F be a field of characteristic p which is p-closed. Let K := W (F ),
σ be the Witt Frobenius and A := K[t;σ]. Then, the ring W [F ] viewed as an
A0-module where the action of t on W [F ] is the action of the Witt Frobenius σ, is
divisible with respect to I.

Proposition 2. Let F be a field of characteristic p which is p-closed; let A :=
W (F )[t;σ]. Then the theory T above is consistent, with model W (F ). It admits
positive quantifier elimination, namely any positive primitive formula is equivalent
to a finite conjunction of atomic formulas. Its completions are obtained by specify-
ing for which irreducible polynomials q(t) with q(0) 6= 0 whether ann(q(t)) 6= {0},
and each completion of T admits quantifier elimination.

For instance, if A := W (F̃p), then its theory of modules admits quantifier
elimination.
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Let M be an A-module and we will now suppose that we have a valuation map
w on our A-module taking its value in ∆∪{+∞}, where (∆,≤) is a totally ordered
set and +∞ an extra element strictly bigger than ∆. We also assume that we have
an action of the group Γ on the ordered set ∆, that we will denote by +, so that
Γ ⊆ Aut(∆,≤). Namely, for any δ ∈ ∆ and γ, γ1, γ2 ∈ Γ, then δ + γ ∈ ∆ and
(δ + γ1) + γ2 = δ + (γ1 + γ2). Moreover, this action respects the order: for any
δ1, δ2 ∈ ∆ and γ1, γ2 ∈ Γ, if ∆ |= δ1 ≤ δ2 and Γ |= γ1 ≤ γ2, then δ1 + γ1 ≤ δ2 + γ2.

From now on, we will assume that the two-sorted structure
((∆,≤), (Γ,+,−, 0,≤),+) satisfies the axioms above that we will denote by T∆.

Definition 2. Let Tw be the following theory of valued A-module (M,∆∪{∞}, w)
with M an A-module, w(0) = +∞ and w : M − {0} → ∆, satisfying in addition:

(1) M |= TA,
(2) ((∆,≤), (Γ,+,−, 0,≤),+) |= T∆, where Γ = v(A),
(3) ∀m1 ∈M∀m2 ∈M w(m1 +m2) ≥ min{w(m1), w(m2)}, w(0) = +∞,
(4) ∀m ∈M w(m.t) = w(m),
(5) ∀m ∈M w(m.λ) = w(m) + v(λ), for all λ ∈ K − {0}.

First, we will work in the setting of abelian structures, so we will introduce
another (less expressive) language.

Let M be a valued A-module. We will define in M a set of subgroups Vγ ,
γ ∈ v(A), with Vγ := {m ∈M : w(m) ≥ γ}. Such a language has been considered
by T. Rohwer in his thesis [6] when he investigated the additive theory of Laurent
series field Fp((t)).

On each of the predicates Vγ , with γ ∈ Γ, we say the following:

(1) ∀m (Vγ(m) ↔ Vγ(m.t)),
(2) ∀m1 ∀m2 (Vγ(m1) & Vγ(m2) → Vγ(m1 +m2)),
(3) ∀m (Vγ(m) → Vγ+v(λ)(m.λ)), for any λ ∈ K,
(4) ∀m (Vγ(m) → Vγ+v(q(t))(m.q(t))), where q(t) ∈ K[t, σ],
(5) ∀m ∈ Vγ ∃n ∈ Vγ n.q(t) = m for all q(t) ∈ I.

Let TV be the theory TA together with the above scheme of axioms (1) up to
(4). Let T ∗

V be the theory TV together with axiom scheme (5). Let K = W (F ),
where F is p-closed, then K is a model of T ∗

V .

Proposition 3. The theory T ∗
V admits quantifier elimination, up to index sen-

tences.

Now, we will consider the two-sorted theory of valued modules. We consider
two cases, either (∆,≤) is a densely totally ordered set, or Γ has a smallest strictly
positive element and we have the following condition on the action: ∆ satisfies the
following: ∀δ1∃δ2∀δ3 (δ2 > δ1 & ( δ3 > δ1 → (δ2 ≤ δ3 & δ2 = δ1 + 1)) (⋆).

Let Tdense be the theory T∆ together with the axioms stating that (∆,≤) is
dense and let Tdiscrete be the theory T∆ together with Γ is discretely ordered, ∆
has a smallest positive element and satisfies the axiom (∗) above.
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Proposition 4 ([5]). Suppose that (∆,≤) satisfies either Tdense or Tdiscrete. Then
the structure < (∆,≤), (Γ,+,−,≤, 0, 1),+ > admits quantifier elimination in the
sort ∆.

Definition 3. Let T ∗
w(discrete) (respectively T ∗

w(dense) be the following theory
of valued A-modules:

(1) Tw,
(2) (∆,≤) |= Tdiscrete (respectively (∆,≤) |= Tdense),
(3) Divisibility axioms: ∀u1 ∈M−{0} ∃u ∈M (u1 = u.q(t) & w(u) = w(u1)),

with q(t) ∈ I,
(4) Annihilator axioms: given γ ∈ ∆ and a finite number of elements

p0(t), p1(t), · · · , pn(t) of I, with deg(p0(t)) > deg(p1(t)) ≥ deg(p2(t)) · · · :

∀u1, · · · , ∀um∃u ∈M : (

n∧

i=1

w(ui) = γ)

→ (u.p0(t) = 0 &

m∧

i=1

w(u.pi(t)) = γ & w(u.pi(t) + ui) = γ).

Let K :=
∏ω

U W (F̃p), where U is a non-principal ultrafilter on the set of prime
numbers, then K is a model of T ∗

w(discrete).

Proposition 5. The two-sorted theory T ∗
w(discrete) (respectively T ∗

w(dense)), ad-
mits quantifier elimination.
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Asymptotic Classes and Measurable Structures I–III

Dugald Macpherson and Charles Steinhorn

The inspiration for the work discussed in this three-lecture tutorial is the theorem
of Chatzidakis, van den Dries, and Macintyre [1] which establishes the uniform as-
ymptotic behavior of definable sets in finite fields in terms of notions of dimension
and measure. This theorem suggests the definition of a 1-dimensional asymptotic
class of finite structures in a first order language L (see [6]). Essentially one re-
quires the same kind of asymptotic uniformities for definable sets in the structures
in the class. The second author’s student, R. Elwes [2], has extended this definition
to that of an N -dimensional asymptotic class (of finite structures).

An infinite ultraproduct of an N -dimensional asymptotic class has a supersimple
theory of SU-rank ≤ N . The dimension and measure on the class additionally yield
a corresponding (definable) measure on the definable sets in the ultraproduct,
as well as any elementarily equivalent structure. This suggests the notion of a
measurable supersimple theory.

Natural examples of asymptotic classes include: finite fields, carefully chosen
classes of envelopes of a smoothly approximable structure [2], finite cyclic groups,
and Paley graphs. In addition to measurable structures obtained from asymp-
totic classes, applying a result of Hrushovski provides other examples that arise
by taking the fixed point set of a generic automorphism of a strongly minimal set
satisfying suitable hypotheses (see [4] and [2]).

Another student of the second author, M. Ryten, has shown [7] that any family
of finite simple groups of fixed Lie type forms an asymptotic class, from which
it follows (by results of J. Wilson [9]) that any pseudofinite simple group is mea-
surable. It is reasonable to conjecture a converse to the latter, at least under
the hypothesis of pseudofiniteness. There are also the beginnings of a theory of
measurable groups of low dimension. For example, every 1-dimensional measur-
able group is finite-by-abelian-by-finite, and there is a corresponding statement
for 1-dimensional asymptotic classes of groups [6] (see also [3]).

Ryten proves his theorem by showing that any class of finite simple groups of
fixed Lie type is bi-interpretable, uniformly over parameters, either with the class
of finite fields or with a class of finite difference fields of the form

Cm,n,p := {(Fpkn+m ,Frobk) : k > 0},

where m,n, p are fixed. The asymptotic theory of Cm,n,p is shown to be inter-
pretable in ACFA, the theory of algebraically closed fields with a “generic” au-
tomorphism. Combining this with results of Hrushovski [5] on the nonstandard
Frobenius and some joint work with Tomašić [8], Ryten proves that Cm,n,p is a
1-dimensional asymptotic class.

The first two lectures in this tutorial introduce and survey results about asymptotic
classes and measurable structures; the third has Ryten’s thesis as its focus.
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Recovering a Local Exponential Map

Ya’acov Peterzil

(joint work with Sergei Starchenko)

Let 〈G,⊕〉 be an n-dimensional abelian Lie group definable in some o-minimal
expansion M of the field of real numbers. By basic Lie theory, there is an analytic
local isomorphism π between 〈Rn,+〉 and G, unique up to conjugation by an
element of Gl(n,R). We formulate sufficient conditions under which π can be
definably recovered (in some neighborhood of 0) in the structure M .

Let X ⊆ Rn be a semi-algebraic curve in the domain of π, and let Γ = π(X).

Theorem. Assume that Γ is definable in the structure M . Then either Γ is
contained in a finite union of cosets of M -definable 1-dimensioinal local subgroups
of G, or there is a linear subspace H of Rn of dimension at least 2 such that π|H
is locally definable in the structure M .

The motivation for this theorem, and the crucial elements of the proof come from
Hrushovski’s treatment of the Mordell-Lang conjecture [1]. Indeed, combining the
above result with a theorem of Pila and Wilkie [2] we obtain the following corollary,
with “Diaphontine flavor”: We denote by Torn(G) the subgroup of all elements of
G whose order divides n.

Theorem. Let G be a compact abelian Lie group, definable in an o-minimal ex-
pansion M of Ran. Let π : Rn → G be a partial local Lie isomorphism, as before.
Assume that Γ ⊆ G is a definable curve containing many torsion points in the
following sense: There exists an ǫ > 0 such that

lim
n→∞

|Γ ∩ Torn(G)|
nǫ

= ∞.
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Then:

(i) Γ contains a coset of an M -definable 1-dimensional local subgroup of G, OR
(ii) there exists a linear subspace H ⊆ Rn of dimension at least two, such that
π|H is locally definable in the structure 〈R;<,+, ·, 〈G,⊕〉,Γ〉.

Notice that if G above is a semi-abelian variety over the complex numbers, and
Γ is itself a semialgebraic curve containing many torsion points, (in the sense of
the theorem) then only option (i) is possible, because π is a transcendental map.

The idea of the proof of the last theorem is to pull back Γ, using π, into Rn

and then use the Pila-Wilkie result on the intersection of π−1(Γ) with Qn. The
fact that Γ has many n-torsion points implies that π−1(Γ) contains many rational
points of height n. This in turn implies, using Pila-Wilkie, that Γ contains a
semialgebraic curve. We can now apply our first theorem.
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Finitely Generated Simple Groups of Infinite Commutator Width

Alexey Muranov

The commutator width of a group G is the maximum of the commutator lengths of
elements of its derived subgroup [G,G], and the commutator length of an element
g ∈ [G,G] is the minimal number of commutators sufficient to express g as their
product.

In [7], Oystein Ore conjectured that the commutator width of every non-cyclic
finite simple group is 1. This question still remains open, though it was shown by
John Wilson in [8], using the classification of finite simple groups, that there exists
an upper bound (not found explicitly) on commutator widths of all finite simple
groups. It was pointed out by Martin Isaacs in [4] that no simple groups, finite or
infinite, were known at that time to have commutator width greater than 1.

Jean Barge and Étienne Ghys showed in [1] that there exist (infinitely gener-
ated) simple groups of surface diffeomorphisms for which the commutator width
is infinite. Other similar groups were studied in [3].

Finitely generated infinite simple groups of infinite commutator width, as well
as boundedly simple groups of large finite commutator width, are constructed in
[6] using methods of the small-cancellation theory.
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Groups of Finite Morley Rank with Solvable Local Subgroups

Eric Jaligot

(joint work with Adrien Deloro)

In the Classification of the Finite Simple Groups, the study of finite simple groups
whose proper subgroups are all solvable, the minimal simple groups, has been a
cornerstone in the whole process. The local analysis of these groups, done by J.
Thompson originally for the Odd Order Theorem, has been used to get a classifica-
tion in presence of involutions. This has then been slightly generalized, with only
very few additional groups, to a classification of nonsolvable finite groups in which
normalizers of nontrivial abelian subgroups are all solvable. This full classification
appeared in a series of papers starting with [Tho68]

The work presented here is an analog of this final transfer in the context of
groups of finite Morley rank. Indeed, a large body of results have been obtained
in the last few years concerning solvable and minimal connected simple groups of
finite Morley rank, i.e. connected simple groups of finite Morley rank in which
proper definable connected subgroups are all solvable. The present work can be
considered as a “collapse” on these two classes of the more general class of groups
of finite Morley rank naturally defined by mimicing the finite case. More precisely,
and as we prefer to work with connected groups throughout, we say that a group
of finite Morley rank is

• locally solvable if N(A) is solvable for any nontrivial definable abelian
subgroup A.

• locally◦ solvable if N(A) is solvable for any nontrivial definable connected
abelian subgroup A.

• locally solvable◦ if N◦(A) is solvable for any nontrivial definable abelian
subgroup A.

• locally◦ solvable◦ ifN◦(A) is solvable for any nontrivial definable connected
abelian subgroup A.
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These definitions should not astound with the more standard notion of groups
in which all finitely generated subgroups are solvable, even though this standard
notion corresponds in the finite Morley rank context to that of solvable groups,
and hence is just a special case of the classes of groups introduced here.

In this context, the local analysis takes a peculiar form relying on connectedness
and on the existence of a well behaved graduated unipotence theory, as developed
in Burdges’ thesis. Technically, the main property given by local solvability is a
uniqueness lemma.

Uniqueness Lemma. Let G be a locally◦ solvable◦ group of finite Morley rank,
q̃ = (q, r) a unipotence parameter with r > 0, and U a Sylow q̃-subgroup of G.
Assume that U1 is a nontrivial definable q̃-subgroup of U containing a nonempty
(possibly trivial) subset X of G such that dq(C

◦(X)) ≤ r. Then U is the unique
Sylow q̃-subgroup of G containing U1, and in particular N(U1) ≤ N(U).

This lemma has important consequences on intersections of Borel subgroups,
giving notably either their “almost disjointness” or their “fusion” in most inter-
esting situations. When such a dichotomy fails, the analysis of [Bur07] delineates
with precision intersections of such Borel subgroups. This analysis, originally done
in the minimal connected simple context, generalizes very naturally in the con-
text of locally◦ solvable◦ groups, with very similar conclusions except a very few
additional phenomena.

With this local analysis we continue an intensive study of the class of groups
considered, and we prove the following theorems in presence of involutions.

Mixed type theorem. Let G be a locally solvable◦ group of finite Morley rank
of mixed type. Then G◦ is solvable.

Even type theorem. Let G be a locally solvable◦ group of finite Morley rank
of even type. Then either G◦ is solvable or G ≃ PSL2(K) for some algebraically
closed field K of characteristic 2.

Both the mixed and the even type theorem are proved by the techniques used
in the context of simple groups, though it is much simpler with local solvability◦.

For groups of odd type the situation is much more complicated. In the mini-
mal connected simple situation, the algebraic case has first been partially studied
in the unpublished [Jal00]. Then the model-theoretic simplifying assumption of
nonappearance of so-called bad fields has been adopted to reduce the size of an
overambitious project at that time to manageable size. This gave a classification
in [CJ04], both in the algebraic case and in the nonalgebraic case, and with a
strong reduction of possibilities in the second case. This has later been reworked
in the thesis of the second author, under the supervision of the first, without the
simplifying assumption on fields occuring. This gave in [Del07a] and [Del07b],
using bounds obtained in [BCJ07], very similar conclusions in the general case.
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Odd type theorem (Algebraic case). Let G be a locally solvable◦ group of
finite Morley rank of odd type and Prüfer rank one. If i is a toral involution
such that C◦(i) < B for some Borel subgroup B, then G ≃ PSL2(K) for some
algebraically closed field K of characteristic different from 2.

Odd type theorem (Nonalgebraic case). Let G be a locally solvable◦ group
of finite Morley rank of odd type. If G◦ is nonalgebraic, then it is solvable or
centralizers◦ of toral involutions, which are conjugate, are Borel subgroups. Fur-
thermore in the second case, either the Prüfer rank is one and the Weyl group has
order one or two, or the Prüfer rank is two and the Weyl group has order three.

The full proof of these results is quite lengthy and involves large repetitions of
[BCJ07], [Del07a], and [Del07b] from the minimal connected simple case. Beyond
the need of a global and coherent rewriting of the proofs existing in this case, to
get the fullest expectable classification, the present work has the following other
important aspects.

• It provides an entirely uniform version of the uniqueness lemma, giving
dichotomies on intersections of Borel subgroups independant of the char-
acteristics involved, contrarily to the previous versions which have unfor-
tunately always appeared in specific contexts only: [Jal00, Lemme 2.14]
for the original form, in any characteristic but unpublished, [CJ04, Propo-
sition 3.11 and Lemma 3.12] in absence of bad fields, [Bur07, Lemma 2.1]
in positive characteristic, and [Del07a, §3.2] in characteristic 0.

• It provides the new reduction to [BCJ07] needed for the bound on the
Prüfer rank, and which did not follow from the existing theory.

• More interestingly, it gives a simplification, or rather a standardization of
the proofs with a global form of the concentration argument discovered in
[Del07a].

• It leaves aside any simplicity assumption, the concentration argument of
[Del07a] being adapted to the local◦ solvable◦ context.

• Last but not least, it provides an intensive study of the new configurations
appearing in the locally◦ and nonlocally solvable◦ case, pushing them even-
tually to a point where they won’t create serious damages to the above
classification.
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Ax-Schanuel Conditions in Positive Characteristic and Formal Maps

Piotr Kowalski

The following theorem was proved by Ax in [1]:

Theorem 1. Let (K, ∂) be a differential field of characteristic 0 and C its field of
constants. For any x1, . . . , xn ∈ K∗ and y1, . . . , yn ∈ K, if we have

(∗) ∂x1

x1
= ∂y1, . . . ,

∂xn

xn
= ∂yn

and dimQ(∂y1, . . . , ∂yn), then trdegC(x̄, ȳ) ≥ n+ 1.

If C = C, the differential equation in the statement of the above theorem may be
regarded as the differential equation of the analytic homomorphism

exp : Gn
a(C) → Gn

m(C).

For a commutative algebraic group A we have a differential homomorphism

l∂A : A(K) → T0A(K)

called logarithmic derivative. For algebraic groups A,B and any analytic homo-
morphism φ : A(C) → B(C), we may consider the differential equation of φ:

(∗∗) φ′(l∂A(x)) = l∂B(y).

Then (∗) is the special case of (∗∗), if we take φ = exp. In the case of an arbitrary
field if we want to stay with this interpretation we need to replace the notion of
an analytic homomorphism with the notion of a formal isomorphism.
Ax in [2] and Kirby in his Ph.D. thesis [4] extended Theorem 1 to the case of
the formal isomorphism exp : Gn

a → A where A is an n-dimensional semi-abelian
variety. Bertrand [3] extended it further to the case of the formal exponential map
into a commutative algebraic group with no Ga quotient. The same statement
was also known for the case of a formal automorphism of the multiplicative group
given by rising to an irrational power.
I have proved a theorem (Theorem 2 below) which deals with an arbitrary formal
isomorphism, which should be “far” from being algebraic. It includes all the
known cases as well as some new cases in characteristic 0, but more importantly it
extends the result to the positive characteristic case. It is phrased in the language
of Hasse-Schmidt derivations, since the statement would be meaningless in terms
of ordinary derivations (a differential field is algebraic over its constants if the
characteristic is greater than 0).
Let D = (Di)i<ω be a Hasse Schmidt derivation on a field K and let C be its
field of absolute constants. For A, a commutative algebraic group over C, we have
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a pro-unipotent group UA being an inverse limit of all arc spaces of A at 0. We
again have a homomorphism definable in (K,D):

lDA : A(K) → UA(K).

Any formal isomorphism φ : A → B induces an isomorphism Uφ : UA → UB and
we can consider a Hasse-Schmidt differential equation of φ:

(∗ ∗ ∗) Uφ(lDA(x)) = lDB(y).

Since in the characteristic 0 case, any derivation gives a unique Hasse-Schmidt
derivation, the equation (∗∗) is a special case of (∗ ∗ ∗).
We say that a formal isomorphism between algebraic groups is nowhere algebraic,
if it is not algebraic after the composition with any non-trivial algebraic homo-
morphism.
The afore mentioned theorem is the following:

Theorem 2. Let A,B be commutative algebraic groups over C and φ : A → B
a formal isomorphism which is nowhere algebraic. Assume (a, b) ∈ A(K) ×B(K)
satisfies (∗ ∗ ∗) for φ and trdegC(a, b) ≤ n. Then, there is a proper algebraic
subgroup B0 < B defined over C and c ∈ B(C) such that b ∈ B0(K) + c.

The conclusion in Theorem 2 is not symmetric, since the notion of nowhere alge-
braic is not symmetric. However, the most common case is when both φ and φ−1

are nowhere algebraic and then we clearly get a symmetric statement.
There are some open problems which should be considered.

(1) Can one get in the conclusion of Theorem 2 a subgroup of A as well? I
could not find any counterexamples.

(2) In characteristic 0, Theorem 1 implies “weak CIT” [5]. Can Theorem 2
(for a formal map between the multiplicative group and an ordinary elliptic
curve) be used for a proof of “weak CITp” [6]?

(3) What is the right equivalent of dimQ to rephrase Theorem 2 in a more
Schanuel-style form as in Theorem 1? In the case of a formal map from
(2) above, dimFp

may be used, but one probably needs an appropriate
stronger notion.

(4) Generalize Theorem 1F of Ax from [2] to our context.
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Isomorphism of Complete Local Noetherian Rings and Strong
Approximation

Lou van den Dries

About a year ago Angus Macintyre raised the following question. Let A and B be
complete local noetherian rings with maximal ideals m and n such that the rings
A/mn and B/nn are isomorphic for every natural number n. Does it follow that
the rings A and B are isomorphic?

I showed that the answer is yes if the residue field is algebraic over its prime
field. The proof uses a strong approximation theorem of Pfister and Popescu [4],
or rather a variant of it obtainable by a method due to Denef and Lipshitz [2].

Ofer Gabber gave a negative answer to Macintyre’s question in the general case,
by examples in equicharacteristic 0 with residue field of transcendence degree 1
over Q, and examples in equicharacteristic p > 0 with residue field of infinite
transcendence degree over Fp.

These examples are not integral domains, and it seems that the problem remains
open in that case. Cutkosky mentioned to me that [1] yields a positive answer when
A and B are reduced, equicharacteristic, equidimensional formal germs of isolated
singularities.
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Recovering Fields from Galois Groups

Jochen Königsmann

1. Introduction

If two fields K and K ′ are isomorphic then so are their absolute Galois groups
GK := Gal(Ksep/K) and GK′ . The converse holds, if K and K ′ are global fields
(Neukirch, Ikeda, Uchida 70’s) or fields finitely generated over Q (Pop [P]).

In general, the converse does not hold: to any field K there is a field K ′ with
GK

∼= GK′ , but K 6∼= K ′. E.g., if charK = 0, take K ′ := K((Γ)), the field of
formal Laurent series

∑
γ∈Γ aγt

γ with coefficients aγ ∈ K and with well-ordered

support {γ ∈ Γ | aγ 6= 0}, where Γ is any divisible ordered abelian group with
♯Γ > ♯K.
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However, replacing GK by GK(t)/K , the absolute Galois group of the rational
function field K(t) over K, does the trick:

Main Theorem. Assume that K and K ′ are perfect fields and that K allows
finite extensions of degree > 2 and prime to charK. Then for any function field
F ′/K ′ one has

K(t)/K ∼= F ′/K ′ ⇐⇒ GK(t)/K
∼= GF ′/K′ .

In particular,

K ∼= K ′ ⇐⇒ GK(t)/K
∼= GK′(t)/K′ .

Here a function field F ′/K ′ is any finitely generated field extension F ′ of K ′ of
transcendence degree ≥ 1 in which K ′ is relatively algebraically closed.

We conjecture that the theorem remains true when K(t) is replaced by any
function field F in one variable over K:

Main Conjecture (K and K ′ as in the Main Theorem). Let F/K be a function
field in one variable and let F ′/K ′ be any function field. Then the canoncial map

Isom(F/K,F ′/K ′) → Isom(GF/K , GF ′/K′)/Inn(GF ′)

is bijective.

Here an isomorphism φ : F/K → F ′/K ′ is a field isomorphism F → F ′ inducing
via restriction an isomorphism K → K ′, and an isomorphism ψ : GF/K → GF ′/K′

is an isomorphism GF → GF ′ of profinite groups inducing via the canonical re-
striction epimorphisms prF/K : GF → Gal(FKsep/F ) ∼= GK and prF ′/K′ an
isomorphism GK → GK′ .

The conjecture is proved if K and K ′ are finitely generated over Q (Pop [P])
or if K = K ′ is a sub-p-adic field (Mochizuki [Mo]). Except for F = K(t), the
conjecture is still open even if K is finitely generated over Q (e.g. K = Q), but
K ′ is arbitrary. This case could be settled by proving either of the two following
conjectures:

Conjecture. A field K is finitely generated over Q iff charK = 0, cd(GK(
√−1)) <

∞ and for any finite extension L/K and for any smooth projective curve C over
L, the set C(L) of L-rational points on C is finite.

Conjecture. If K is finitely generated over Q and if K ′ is a field with GK′
∼= GK ,

then K ′ has a henselian valuation with residue field K and divisible value group.

Note that the second of these conjectures would also imply the birational Section
Conjecture in Grothendieck’s anabelian geometry (cf. [K2]).

The Main Conjecture becomes false if any of the assumptions on K and K ′ are
violated.
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2. Galois code for rational points

Any Galois characterization of function fields begins with a Galois code for
rational points, i.e. a group theoretic characterization of decomposition subgroups.
We achieve this in the setting of the Main Conjecture using our general Galois
code for henselian valued fields. This code is roughly (and slightly incorrectly)
summarized in the following three principles (for any field E):

I: Non-trivial abelian normal subgroups of GE are inertias.
II: If a Sylow-extension of E is henselian, then so is E.
I + II = III: E is henselian iff some Sylow subgroup of GE has a non-

trivial normal abelian subgroup.

For the precise statments see Theorem 1 in [K1] or Theorem 5.4.3 in [EP].
¿From this one obtains the

Key Lemma (for simplicity we assume K is non-henselian of charK = 0). Let
F/K be as in the Main conjecture, so F = K(C) is a function field of a smooth
projective K-curve C. Then the map

φ : C(K) →






conjugacy classes of
maximal subgroups D ≤ GF

with D ∼= Ẑ XIGK and prF/K(D) = GK






P 7→ [DP ]

is a bijection. Here DP is a decomposition subgroup of GF w.r.t. (the valuation
vP on F corresponding to) P .

Note that the fixed field of DP is a henselization of (F, vP ).
If K is henselian or charK 6= 0 we also have a group theoretic description of

the elements in imφ. This is, however, much more involved.
As a consequence one gets a Galois code for

C(Ksep) =
⋃

L/K

C(L)

(together with the GK-action) with L ranging over all finite separable extensions of
K, and hence a Galois code for Div(F/Ksep) and Div0(F/Ksep) as GK-modules.

3. Encoding + and · via elliptic curves

To prove the Main Theorem we let F = K(t) and we use the Galois code from
the Key Lemma for the points in P1(K). We fix any three of them and call them 0,
1 and ∞. Now we consider certain elliptic curves E/K for which the function field
F ′ := K(E) is a quadratic extension of F ramified at exaclty 4 points in P1(K)
(always including ∞). These function fields F ′ are seen by GF/K , because GF/K

recognizes ramification. Now one has to establish a Galois code for the principal
divisors of F ′/K in order to obtain a Galois code for ⊕E via

(E ,⊕E) ∼= Div0(F ′)/{principal divisors}.



Model Theory and Groups 109

A suitable choice of such E ’s then gives +K and ·K (from the addition formulas
for ⊕E).

4. Applications

As a model theoretic variation of the Main Theorem (same assumptions on K
and K ′) one gets

Theorem. K and GK(t)/K are biinterpretable.
In particular,

K ≡ K ′ ⇐⇒ GK(t)/K ≡ GK′(t)/K′

K is decidable ⇐⇒ GK(t)/K is decidable

Here one considers K in the 1-st order language of fields, and GK(t)/K in an
adaptation of the 1-st order language for profinite groups introduced by Cherlin,
van den Dries and Macintyre (cf. [C]).

As a consequence one obtains (via the Haar measure on GF ) a measure for
definable sets in K.

The hope is to use this model theoretic variant of the Main Theorem to show
decidability of the perfect hull of Fp((t)) and undecidability for C(x). It may also
prove useful for Hilbert’s 10th problem over Q.
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Pseudo-finite Dimensional Representations of sl2(k)

Angus Macintyre

(joint work with Sonia L’Innocente)

In a very original paper Herzog [1] undertook the analysis of the theory of all
finite-dimensional modules over the Lie algebra sl2(k) over an algebraically closed
field k of characteristic 0. Model-theoretically, there is one such theory for each k,
but there are no essential differences between them, beyond the minor expressive
power of extra constants as k increases. For algorithmic purposes one will naturally
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restrict to the case of countable k where the Lie algebra can always be given
computably.

One passes to the formalism of modules over the universal enveloping algebra
U which is an Ore domain. The main novelty of Herzog’s work is to produce (not

very explicitly) a von Neumann regular ring U
′

which is an epimorphic extension
of U , and which encodes the behaviour of p.p definable maps on finite dimensional
U -modules.

The pseudo-finite dimensional modules are the models of the theory of finite-
dimensional modules. It turns out that they form an axiomatizable class of U

′

-
modules. But since U

′

is not given computably by Herzog, it remains a problem
to decide if the theory of finite-dimensional modules is decidable.

Our work, still in progress, seeks to present U
′

computably. This involves
an ”unwinding” of Herzog’s proof (which is already very subtle and ingenious).
He makes essential (and surprising) use of the fraction field of U , which is not
pseudo-finite dimensional. We effectivize this part, and then use it systematically
in the unwinding. Our main contribution, going beyond Herzog, is to see that
the phenomenon of uniform boundedness which he establishes is, in almost all
cases, an instance of a much deeper phenomenon connected to Siegel’s Theorem in
diophantine geometry. For most idempotents in U

′

one can decide if they are trivial
assuming the decision problem for curves. For the remainder (which constitute
a computable set) the corresponding decision problem comes down to problems
about genus zero plane curves. There have been a number of serious errors in
the literature about these. It seems to us that we can use recent corrections to
these to show decidability of the theory of finite-dimensional modules, assuming
the decision problem for curves.
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Model Theory of Universal Covering Spaces

Misha Gavrilovich

We tried to argue that the notion of a path (up to homotopy) on a complex alge-
braic variety is essentially algebraic, and can be characterised by its basic algebraic
properties; we did so via an attempt to define a natural, discrete language to con-
sider the universal covering space of a complex algebraic variety, and prove that
the corresponding discrete, algebraic structure on the space could be characterised
by certain simple properties, reflecting certain analytic properties of the covering
space, but also this language is essentially equivalent to the natural language de-
scribing the notion of a path (up to homotopy) on an algebraic variety. Both the
proof of the characterisation and the equivalence of the languages describing the
universal covering space and paths, require some understanding of geometry and
arithmetics of the underlying algebraic variety X . Indeed, full results are only
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known for X being the multiplicative group of a field, and were obtained by Zil-
ber [1]; for X an elliptic curve only partial results are known [3]. In these cases,
the universal covering space is essentially either the complex exponential map or
the Weierstrass map. Indeed, the study of the complex exponential map was the
motivation of Zilber [1, 2]; he formulated his result as that simple algebraic prop-
erties charactercise uniquely the exponential map as a map from an abelian group
on the multiplicative group of a field. For elliptic curves, the characterisation is
not unique but rather it admits finitely many variants corresponding to different
embeddings of the curve into the field of complex numbers. This charactercisation
is in fact a categoricity result in infinitary Lω1ω-logic.

However, in the talk I tried to bring attention to the following remark. Many
basic facts used in the proof are either of the form that certain topological property
of algebraic objects is actually algebraic (a complex algebraic morphism between
varieties being a topological unramified covering; a Zariski connected component
is a connected component in complex topology), or that the only obstructions
to the existence of an algebraic object are of topological, homotopy nature: for
a complex algebraic variety, its finite topological unramified covering carries a
structure of an algebraic variety, unique up to a translation. There is another
example which I did not have time to talk about and which relates to the arithmetic
issues appearing in the proof. It is Kummer theory which is used to prove the
existence of a prime model; roughly, it gives some conditions for the existence
of Galois automorphisms of certain field extensions; I wanted to say that these
conditions can also be interpreted using the language of homotopy theory.
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Asymptotic Cones of Nilpotent Groups

Guennady Noskov

According to Gromov’s metaphor, the asymptotic cone of a metric space X
captures the intuitive notion of looking at X from infinitely far away. Informally
we take a “limit” of sequence of spaces 1

nX with metric scaled by n ∈ N. The
idea of asymptotic cone were first used by Gromov in [5], where he constructed
limit spaces of Cayley graphs of finitely generated groups in order to prove that
groups with polynomial growth are virtually nilpotent. Van den Dries and Wilkie
in [4] gave a precise definition of the notion inspired by ideas of mathematical logic
and nonstandard analysis. An extensive treatment of asymptotic cones is given
by Gromov in [6]. There is an astounding interplay between the properties of the
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space and that of its asymptotic cone. For example, a group is virtually nilpotent
if and only if all its asymptotic cones are locally compact [Drutu,Gromov].

In the talk we address the following questions: How far away is a metric space
X from its asymptotic cone CX? When X is within a finite Hausdorff distance
from CX?

The questions turn out to be nontrivial already in the simplest case of abelian
groups with an invariant metric. The following result can be interpreted as a
finiteness of a Hausdorff distance between Znand CZn.

Theorem 1. (D. Burago [3], Abels-Margulis [1]). For any proper coarsely geodesic
length function |·| on Zn, n ≥ 1, there exists a constant C such that

|x| − C ≤ lim
n→∞

|nx|
n

≤ |x|, ∀x ∈ Zn.

Indeed, the function limn→∞
|nx|

n on Zn extends homogeneously to Qn and then
continuously to Rn.The space Rn with a resulting stable norm ‖·‖ is the asymptotic
cone CZn and the result shows the finiteness of Hausdorff dH(Zn, CZn), where Zn

is considered with the length function |·| and Rn is considered with the stable
norm.

The next interesting case to look is that of finitely generated nilpotent groups.
P.Pansu in [9] gave a detailed description of the geometry of the asymptotic cone
of a finitely generated nilpotent group Γ: it is a graded nilpotent Lie group G∞
with a certain leftinvariant metric d∞. While G∞ depends only on Γ, the metric
d∞ depends on the choice of a norm on Γ which may be for example a word norm
associated to a generating system. In any case d∞ is a Carnot-Caratheodory-
Finsler (=subfinslerian) metric associated to a leftinvariant subbundle of TG∞.

There exist two finitely generated nilpotent groups Γ1,Γ2 (in every dimension
≥ 7) which have isomorphic graded Lie algebras g1, g2, but different Betti num-
bers b2 (Y.Benoist, exposition in [10]). It follows that their asymptotic cones
Lie (g1) , Lie (g2) are isomorphic as Lie groups. Nevertheless Γ1,Γ2 are even not
quasi-isometric because they have distinct Betti numbers [10]. If both Γ1 and
Γ2 were finite distance from Lie (g1) , Lie (g2) respectively, then since Lie (g1) ≃
Lie (g2) they would be quasi-isometric, contradicting the previous claim. It follows
that at least one of the groups Γ1,Γ2 is infinite distance away from its asymptotic
cone. The evident reason for this phenomenon is that Γ1,Γ2 are not graded.

The main result of our work is

Theorem 2. Let Γ be a finitely generated torsionfree 2-step nilpotent group with
a horizontal word metric d and let (G∞, d∞) be the corresponding asymptotic cone.
Then |d−d∞| is bounded. In particular, the asymptotic cone of Γ is within a finite
Hausdorff distance from Γ.

The theorem is also proven in the case of 3-dimensional Heisenberg group by
S.Krat [7, 8]. The debt we owe to the papers [11, 2] can not be overestimated. In
particular the consideration of ”R-word metrics” is essential in the proof. These
are Lie theoretic analogs of word metrics in abstract groups. Namely we consider a
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precompact generating set A in the Lie algebra g of a Lie group G. We prove that
then A is an R-generating set for G in the following sense: for each g ∈ G there
is a curve from 1 to g, which is a finite concatenation of finite pieces of translated
1-parameter subgroups eta, a ∈ A. Infimizing the naturally defined length of such
a curve, we obtain the R-word length of g.

In the course of the proof we obtain also the following result, which is of inde-
pendent interest:

Theorem 3. Any R-word metric on any real Lie group is of Carnot-Caratheodory-
Finsler type.
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On the Dynamics of Automorphisms of Free Groups

Gilbert Levitt

(joint work with Martin Lustig)

Let G be a finitely generated group. Let α be an automorphism of G, and g ∈ G.
What can be said about the sequence αn(g) as n→ +∞?

• The element g may be periodic (there is q ≥ 1 such that αq(g) = g). In this
case, one may ask what can be said about the period (the smallest q) in a given
G, or for a given α.

• If g is not periodic, then αn(g) becomes long. One may ask how it grows.
• Does the sequence αn(g) have a limit (in a suitable sense)? Or rather: does

α have a power β such that all sequences βn(g) have a limit?
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It turns out that the last question has a positive answer in a non-abelian free
group Fp, and a negative answer in an abelian group Zp, but the talk focused on
growth.

In the case of Zp, it is easy to see that αn(g) always grows like ndλn for some
d ∈ N and λ ≥ 1. The same result is true in the case of Fp, but one needs the
train tracks of Bestvina-Feighn-Handel in order to control cancellation.

When an automorphism α of Fp is induced by a homeomorphism ϕ of a compact
surface Σ, it follows from Nielsen-Thurston theory that the growth of αn(g) (or
rather of its conjugacy class) is always linear or exponential (linear growth comes
from Dehn twists, exponential growth from pseudo-Anosov components).

An automorphism such that a 7→ a, b 7→ ba, c 7→ cb, d 7→ dc is not induced by
such a ϕ, because αn(c) grows quadratically and αn(d) grows cubically. Adding
generators, one sees that there is an automorphism α of Fp and elements gi (1 ≤
i ≤ p − 1) such that αn(gi) grows like ni. In general, we prove that, given an
automorphism of Fp, the number of different growth types (d, λ) is at most p− 1.

One may ask whether there may exist p− 1 different exponential growth types
λn

i . If one first considers automorphisms induced by homeomorphisms of sur-
faces, one is led to ask how many pseudo-Anosov components there may be in
the Nielsen-Thurston reduction of a given homeomorphism of a compact surface
Σ with fundamental group Fp. It turns out that the answer is not p− 1 (because
there is no pseudo-Anosov homeomorphism on a thrice-punctured sphere), but the

integral part of 3p−2
4 . This maximal value is achieved by a homeomorphism whose

pseudo-Anosov components are carried by once-punctured tori and four-punctured
spheres.

We prove that, given any automorphism of Fp, the number of exponential

growth types is at most 3p−2
4 .

Jets and Prolongations

Thomas Scanlon

(joint work with Rahim Moosa)

In joint work with Rahim Moosa, we develop a general theory of jet and pro-
longation spaces for D-schemes, generalizing the construction of jet spaces for
differential and difference varieties of finite dimension of Pillay-Ziegler.
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Univers ℵ1-catégoriques. Un prérequis à la communication de
Monsieur Martin Hils

Bruno Poizat

L’article [1] introduit les univers, et pose dix problèmes à leur propos.

1. Quelques définitions

• Univers d’une structureM (de langage L) = l’ensemble des parties de Mn,
pour chaque n ∈ ω, qui sont définissables avec paramètres dans M . Les
relations de L sont considérées comme un système générateur de l’univers.

• Transformation de la structure M , de langage L, en la structure M ′, de
langage L′ = une bijection entre M et M ′ qui, pour chaque n, échange les
parties définissables de Mn et celles de M ′n.

Exemples. (1) Un isomorphisme entre deux structures de même lan-
gage.

(2) Une permutation de M définissable.

• Structures semblables (dans des langages peut-être différents) = ont des
extensions élémentaires transformables l’une en l’autre.

Remarque. La notion d’extension élémentaire ne dépend pas du langage choisi
pour engendrer le petit univers. La similitude, comme la transformabilité, sont en
fait des propriétés des univers.

Exemple. Deux structures élémentairement équivalentes. Mais, attention ! :
deux univers semblables ne sont pas nécessairement engendrés par des structures
élémentairement équivalentes.

Théorème. La similitude est une relation d’équivalence.

Démonstration. Il faut voir que c’est transitif ; M , de langage L, est semblable
à M ′ de langage L′, et à M” de langage L” ; on peut trouver une extension
élémentaire N ′ de M dont l’univers est celui d’une extension élémentaire de M ′,
et une extension élémentaire N” de M dont l’univers est celui d’une extension
élémentaire de M” ; N ′ et N” ont une extension élémentaire commune N dans
le langage L ; dans le langage L′, N est extension élémentaire de M ′, et dans le
langage L”, N est extension élémentaire de M”. �

• Univers mince = engendré par un ensemble fini de relations = engendré
par une seule.

Théorème. Si U est engendré par une relation r satisfaisant un énoncé ϕ(r), il
en est de même pour chacun de ses semblables.

Démonstration. Soient U ′ semblable à U , et U” extension élémentaire commune.
On trouve dans U” une relation r′, provenant de U ′, qui permet de définir r, et
toutes les relations de U” (avec des paramètres dans U”), si bien que r′ engendre U ′

(avec des paramètres dans U ′ !). Dans U”, on trouve des paramètres permettant
d’interdéfinir avec r′ une relation satisfaisant ϕ ; on en trouve aussi dans U ′. �
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Remarque. Si U ′ est oméga-saturé (une fois un langage générateur fini fixé), on
peut lui trouver une génératrice élémentairement équivalente à r.

2. Le problème de la classification des univers

• Classification des structures : décrire à isomorphisme près, quand c’est
possible, toutes les structures élémentairement équivalentes à une structure
donnée.

• Classification des univers : décrire à transformation près, quand c’est
possible, toutes les structures semblables à une structure donnée.

Ces problèmes sont liés, mais non équivalents ; tout d’abord parce que des
univers semblables ne sont pas nécessairement engendrés par des structures élé-
mentairement équivalentes (question d’omniprésence de la génératrice) ; et ensuite
parce que deux relations élémentairement équivalentes non isomorphes peuvent
avoir des univers semblables (question du caractère classifiant de la génératrice).

Théorème. Un univers mince est oméga-catégorique si et seulement si c’est
l’univers d’une structure de langage fini oméga-catégorique.

Démonstration. Quand on fixe un langage générateur fini, il n’y a qu’une famille
dénombrable de types ; en conséquence la structure est oméga-saturée, et isomor-
phe à chacune de ses extensions élémentaires dénombrables. �

Remarque. Il existe des univers oméga-catégoriques dénombrablement engendrés
qui interprètent des relations non oméga-catégoriques.

Théorème. Si un univers mince est catégorique en un cardinal non dénombrable,
il est catégorique en tout cardinal non dénombrable (et chacune de ses relations
génératrices est indénombrablement catégorique).

Démonstration. Grâce à la construction d’Ehrenfeucht, l’univers est oméga-stable ;
on voit ensuite que tous ses semblables en un certain cardinal non dénombrable sont
saturés, une fois un langage générateur fini fixé ; d’après le Théorème de Morley,
cela se produit en tout cardinal non dénombrable. Si r engendre U et U ′ est sem-
blable à U et oméga-saturé, U ′ est engendré par une relation r′ élémentairement
équivalente à r. �

Rappelons le Théorème de Baldwin et Lachlan, connu au Qazaqstan sous le
nom de Théorème de Mustafin et Taimanov : Si une structure (de langage fini ou
dénombrable) est indénombrablement catégorique, mais pas oméga-catégorique,
ses équivalentes élémentaires dénombrables sont : M0,M1, . . .Mn, . . .Mω, où M0

est le modèle premier, Mn est le modèle de dimension n sur le modèle premier, et
Mω est le modèle saturé.

Est-il valable pour les univers minces ?

Dans ce cas, il y a au moins deux (il n’est pas sûr qu’il y en ait trois !) semblables
dénombrables, dont le saturé ; les non-saturés sont les univers du modèle premier
d’une relation génératrice du saturé ; ils forment une famille finie ou dénombrable.
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Il n’est pas clair qu’il y en ait une infinité, car pourquoi Mn et Mn+m ne sont-
elles pas transformables l’une en l’autre ? Il n’est pas clair non plus qu’ils soient
totalement ordonnés par plongement élémentaire.

Martin Hils va présenter (voir l’exposé suivant) un contre-exemple où ils forment
une châıne de type Z.
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Semifree Actions of Free Groups

Martin Hils

We give an example of a thin universe which is ℵ1-categorical and where the count-
able universes similar to it are ordered (with respect to elementary embeddability)
like (Z ∪ {∞}, <). In fact, we show in [1] that this the case for the universe of a
free Fk-action, Fk being the free group on k generators (1 < k < ω). Thus, the
Baldwin-Lachlan theorem does not hold for universes. This answers negatively a
question raised in [2] (see also Poizat’s contribution in this volume).

It is shown in [2] that there is an example of a two-dimensional thin universe hav-
ing exactly 2 similar non-transformable countable universes. In the corresponding
structure, both dimensions are given by minimal types with a trivial pregeometry.
The study of the universe of a free G-action grew out of the attempt to find a
similar example which is uncountably categorical or even strongly minimal. Since
a free group action is the prototype of a trivial strongly minimal theory, it seemed
to be very natural to look at these universes.

In what follows, to simplify the exposition, we assume that G is a finitely
presented infinite group.

Definition. • Let (G,Xi, ϕi) be infinite G-actions (i = 1, 2), where ϕi :
G → Sym(Xi). A bijection F : X1 → X2 is called a transformation if
F (ϕ1(g)) ∼ ϕ2(g) ∀g ∈ G (i.e. coincide almost everywhere; note that it is
sufficient to check this on a set of generators of G).

• An infinite G-action (G,X,ϕ) is semifree if after adding a finite number
of regular G-orbits it can be transformed into a free G-action.

• G is called classifying if the following holds: whenever the free G-action
with n regular orbits is transformable into the free G-action withm regular
orbits (where m,n ∈ N), then m = n.

• G is called ubiquitous if every semifree G-action can be transformed into
a free G-action.

The following basic result shows that the above notions are a perfect translation
of their analogues for universes, and so the classification problem for the universe
of a free G-action can be phrased in group-theoretical terms:
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Fact. The category of semifree G-actions (up to transformations as defined above)
is in 1:1 correspondence with the category of universes similar to a free G-action
(up to transformations of universes).

There are some rather general results concerning the classification problem.
Recall that for a (finitely generated) goup G, the number of ends is defined to be
the number of ends of its Cayley graph with respect to some finite set of generators
(this is welldefined).

Proposition. (1) If the number of ends of G is 1, then G is classifying and
ubiquitous.

(2) Every amenable group is classifying.
(3) Every abelian group is classifying and ubiquitous.

Theorem (Classification of semifree actions of free groups).
Let 1 < k < ω. Then, the countable semifree Fk-actions form a chain of the

form (Z ∪ {∞}, <). In particular, Fk is classifying but not ubiquitous.

Sketch of proof. One first shows that for every m,n ∈ N, with m > 0, the Fk-
action with m regular and n trivial orbits is semifree.

Then, looking at the growth of the borders of finite (connected) sets in the
Cayley graphs of the respective actions, it is not hard to see that the integer m−
n(k − 1) is an invariant up to transformation. Moreover, an explicit construction
of a transformation between too Fk-actions of this kind having the same invariant
can be given.

Finally, one shows that every countable semifree Fk-action whose universe is
not ω-saturated can be transformed to one of the above form. �

Note that Fω is not classifying. Indeed, all countable semifree Fω-actions are
transformable. So the corresponding universe is totally categorical (and has non-
ω-categorical reducts).

Open questions.

(1) Is there a finitely presented (or at least a finitely generated) group which
is not classifying?

(2) Is every finitely presented amenable group ubiquitous?
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Mild K-manifolds

Sergei Starchenko

(joint work with Ya’acov Peterzil)

We fix an o-minimal expansion R of a real closed field R and denote by K its
algebraic closure R(

√
−1). By definable we will always mean definable in R.

We refer to [1, 2, 3] for basic definitions and properties of K-holomorphic func-
tions.

A K-manifold is a definable set M , equipped with a finite cover of definable
sets M =

⋃
i Ui, each of which is in definable bijection with an open subset of Kn

such that the transition maps are K-holomorphic maps between open subsets of
Kn. K-holomorphic maps between K-manifolds are defined using the charts of
the manifold.

A K-analytic subset of a K-manifold M is a definable set A ⊆ M , such that
at every point z ∈ M , the set A is given, locally near z, as the zero set of some
K-holomorphic function.

LetM be aK-manifold. We will denote by A(M) the first order structure whose
universe is M and basic relations are K-analytic subsets of Cartesian powers of
M .

Definition. A K-manifold M is called mild if the structure A(M) admits a
quantifier elimination.

Example. If M is a compact complex manifold then M , considered as a C-manifold
definable in the structure Ran, is mild.

The above example generalizes to the non-standard setting.

Theorem 1. If M is a definably compact K-manifold then M is mild.

The following theorem is a generalization of Zilber’s observation to mild mani-
folds.

Theorem 2. If M is a mild K-manifold then the structure A(M) has finite Morley
rank, and it is a Zariski structure.

Our next theorem is one of the main sources of mild manifolds.

Theorem 3. Let M be a mild K-manifold and A ⊆M a K-analytic subset of M .
Then the set reg(A) of smooth points of A is a mild K-manifold.

As in the case of compact complex manifolds we also have a strong version of
Zilber’s trichotomy.

Theorem 4. Let M be a mild K-manifold such that the structure A(M) is strongly
minimal. If A(M) is not locally modular then M is K-biholomorphic with an
algebraic curve.
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On Analogies between Algebraic Groups and Groups of Finite Morley
Rank

Tuna Altınel

(joint work with Jeffrey Burdges)

Linear algebraic groups and infinite groups of finite Morley rank have many anal-
ogous properties. This is what is emphasized in the strongest possible way by
the central problem in the analysis of groups of finite Morley rank, namely the
Cherlin-Zilber algebraicity conjecture which states that an infinite simple group of
finite Morley rank is a linear algebraic group over an algebraically closed field. In
the last fifteen years an increasing number of affirmative answers have been given
to special cases of this conjecture. Nevertheless major portions of the problem
remain open and counterexamples are not unexpected.

In recent years, results which elucidate strong analogies between algebraic
groups and groups of finite Morley rank without proving specific isomorphism
theorems have reappeared in the area. Such theorems are reminiscent of the early
work of Daniel Lascar and Bruno Poizat later developed by Frank Wagner, and
the most important examples are in [4], [6], [1] and [2].

An interesting common point of the main theorems in these four papers is
that they permit the introduction of an abstract notion of Weyl group which
corresponds in the algebraic category to the usual Weyl group. More precisely,
there are several possible definitions, and especially [6] and [2] provide keys to the
relationships among these possibilites. In this context the centralizers of tori are
of importance. The following is known for all connected linear algebraic groups:

Fact 1 ([5, Theorem 22.3]). Let G be a connected linear algebraic group and S be
a torus in G. Then CG(S) is connected.

In my talk, I first gave a detailed history of related results on groups of finite
Morley rank. Then I stated and sketched the proof of the following weak analogue
of Fact 1.

Theorem 2. Let G be a connected group of finite Morley such that if A is a non-
trivial definable solvable subgroup of G then N◦

G(A) is solvable. If T is a decent
torus in G then CG(T ) is connected.

A decent torus in a group of finite Morley rank is a definable, divisible, abelian
subgroup which is the definable hull of its torsion [3]. Any group of finite Morley
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rank which contains a nontrivial copy of the Prüfer p-group for some prime p
contains a nontrivial decent torus, namely the definable hull of this divisible abelian
p-subgroup.

In the ongoing work with Jeffrey Burdges, we have obtained various applications
of this theorem. One of them is motivated by the following well-known theorem
about connected linear algebraic groups:

Fact 3 ([5, Theorem 22.2]). Let G be a connected linear algebraic group and B a
Borel subgroup of G. Then the union of all conjugates of B is G.

I exposed in Oberwolfach the following weak analogue again restricted to severe
minimal conditions:

Theorem 4. Let G be a connected group of finite Morley rank such that if A is
a non-trivial definable solvable subgroup of G then N◦

G(A) is solvable. Then every
element of G belongs to a Borel subgroup.

In the minimal context described by the hypotheses of the above theorems, one
is also able to prove results about the Weyl groups in groups of finite Morley rank.
Moreover, this same context allows sufficient generality for analyzing minimal
simple groups of finite Morley rank together with the action of a definable group
of automorphisms. I stated in my talk some of the results which we have obtained
in these rich directions. Since they are more technical and in the process of being
improved, I do not give precise statements.

The joint work with Burdges which I exposed in Oberwolfach on 19 january
2007 is part of an improving process of which one main final objective would be to
prove the above results at the right level of generality. We are currently working
towards achieving this objective.
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Groups of Finite Quantifier-free Rank

Abderezak Ould Houcine

In a preceding work [1], we have studied existentially closed (abbreviated e.c.)
CSA-groups. This was motivated by a question of Poizat whenever an e.c. CSA-
group is a bad group and by the fact that a bad group of Morley rank 3 is a
CSA-group. We showed in [3] that these groups are not superstable. This is due
to the existence of a lot of quantifier-free types.

One defines a quantifier-free rank (abbreviated QF-rank), by analogy with the
Morley rank restricted to quantifier-free formulas (abbreviated QF-formulas).

Definition. Let M be a model and let X ⊆ M be a QF-definable set. We define
QF (X) = RC(X)M∗ , where M∗ is an ℵ0-saturated elementary extension of M
and RC(X)M∗ is the Cantor rank of X in M∗ relatively to the boolean algebra
of QF-definable subsets. We define QF (M) = QF (x = x).

It follows that a subgroup of a group of finite Morley rank has a finite QF-rank.
So in any tentative of construction of groups of finite Morley rank from classes of
finitely generated groups, it is necessary to take finitely generated groups of finite
QF-rank.

As linear groups are subgroups of groups of finite Morley rank, they have a
finite QF-rank and this gives a model-theoretic context in which we can study
them.

We discuss here some results about groups of finite QF-rank [2]. First we have
the following important tool.

Theorem 1. Let M be a model of ordinal QF-rank. Let φ(x̄) and ψ(x̄, ȳ) be a
QF-formulas. Then there exists a finite sequence āij ∈ φ(M), such that the set

{b̄ ∈ M | QF (φ(x̄) ∧ ψ(x̄, b̄)) = QF (φ)},

is QF-definable in M by

i=n∨

i=1

(

j=m∧

j=1

ψ(āij , ȳ)). �

As in the context of groups of finite Morley rank one introduces: stabilizer
relatively to the action of G on the set of QF-1-types, QF-generic sets, QF-
connectedness and so on ...

Some results are generalizable but by using methods which are different from
those in the finite Morley rank case. For instance, for any QF-1-type p, stab(p) is
QF-definable and if X is a QF-generic set then a finite number of translates of X
cover G. As an application we have:

Theorem 2. Let M be a nonabelian model of the universal theory of free groups.
Then M is QF-connected, M is e.c. in M ∗ Z, and every QF-definable proper
subgroup of M is abelian. �

Here M ∗ Z denotes the free product of M and Z. The fact that M is QF-
connected and M is e.c. in M∗ Z can be deduced from [4, 5].

In that context the following questions are open.
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Question 3. If M is a nonabelian model of the universal theory of free groups,
is M � M∗ Z ?

Question 4. If M is a nonabelian model of the universal theory of free groups
such that M � M∗ Z, is any proper definable subgroup of M abelian ?

The answer to the question 3 is positive when M is finitely generated and this
was pointed out to me by Sela. The answer to the question 4 is positive if M is a
nonabelian free group and this was anounced by Bestvina and Feighn.

In dealing with finitely generated groups of finite QF-rank the following question
arises naturally.

Question 5. Is there any alternative for groups of finite QF-rank which looks like
the Tits alternative?

First one looks at locally (solvable-by-finite) groups.

Theorem 6.
• A locally (solvable-by-finite) group of finite QF-rank is either locally finite or

has a nontrivial normal abelian subgroup.
• A locally solvable group of finite QF-rank is solvable. �

It follows that the solvable radical R(G) is solvable (which is in fact definable by
equations), and if G is locally (solvable-by-finite) then G/R(G) is locally finite. We
have also that if H ≤ G is a QF-definable subgroup then NG(H) is QF-definable.
This generalizes known properties of linear groups.

Under additional hypotheses one can get an alternative. Recall that a group is
called locally graded if every nontrivial finitely generated subgroup has a proper
subgroup of finite index. For instance locally residually finite groups are locally
graded as well as linear groups.

Theorem 7. Let G be a locally graded group of finite QF-rank. Then either G is
solvable-by-finite or there is an elementary extension G � K such that K contains
a free semigroup. �

In the context of p-groups we have.

Theorem 8. A p-group of finite QF-rank is either nilpotent-by-finite or has a
series G0 EG1 ≤ G, where G1 is QF-definable, G0 is equationally-definable in G1,
and G1/G0 is a nonabelian CSA-group. In particular a bad p-group interprets a
CSA bad p-group. �

Question 9. Is there a CSA p-group of finite QF-rank ?

As noticed above the study of groups of finite QF-rank was motivated by the
understanding of subgroups of groups of finite Morley rank and to get several
information in order to use an amalgamation method.

One looks initially at Fräıssé limits of classes of finitely generated groups having
the amalgmation property. Let K be a countable class of finitely generated groups
having the hereditary property (abbriviated HP) and the amalgamation property
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(abbriviated AP). Since one can amalgamate over the trivial group, K has the
joint embedding property and by Fräıssé’s theorem, K has an ultrahomogenous

Fräıssé limit which will be denoted by K̂.

Definition. Le K be a class of groups.
(1) K is said to be closed under free products if whenever A,B ∈ K, A ∗B ∈ K.
(2) K is said to be closed under HNN-extensions if whenever A ∈ K such that

A contains two isomorphic finitely generated subgroups A1, A2 then the HNN-
extension A∗ = 〈A, t|At

1 = A2〉 is also in K.

Theorem 10. Let K be a countable class of finitely generated groups having HP
and AP.

(1) Suppose that K satisfies: if A,B ∈ K then A ∗B |= Th∀(K̂). Then K̂ is not
superstable.

(2) If K is closed under free products, then K̂ is simple and not superstable.

(3) If K is closed under HNN-extensions, then K̂ is simple and unstable. �

We notice that every e.c. group is the Fräıssé limit of its age.
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Topological Dynamics and Model Theory

Ludomir Newelski

Assume G is a group definable in a sufficiently saturated first-order structure
M . C denotes a monster model.

The investigation of combinatorial properties of coverings of groups by count-
ably many type-definable sets hinted that there should be a notion of a “large”
subset of a group, generalizing that of a generic subset, present in the stable con-
text [1]. Consequently, in [2] I proposed a notion of a weak generic set and type
(in a group).

Namely, we say that a set U ⊆ G is (left) generic if some finitely many left
translates of U cover G. We say that U is weak generic if for some non-generic
V ⊆ G we have that U ∪V is generic. The notion of a weak generic type is defined
accordingly. Unlike generic types, complete weak generic types always exist.

This notion was subsequently used to show some combinatorial properties of
countable coverings of groups by type-definable sets. Eventually it turned out
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however that the proper set-up for these considerations is that provided by topo-
logical dynamics. In fact, topological dynamics puts in proper perspective also
some classical results on generic types in stability theory.

Topological dynamics deals with actions of a group G on a compact space X ,
by homeomorphisms. In this case, X is called a G-flow. A closed invariant subset
Y of X is called a subflow of X . Of particular interest are minimal subflows (with
respect to inclusion), whose elements are called almost periodic.

In the model theoretic context the natural G-flow to consider is the space of
types SG(M) of elements of G(C) over M , on which G acts by left translation. It
turns out that the set of weak generic types in SG(M) is the topological closure
of the set of almost periodic types.

A new ingredient added in the model-theoretic context to topological dynamical
investigations is a comparison of G-flows SG(N) for various elementary extensions
N of M . This involves some extension properties of weak generic and almost
periodic types.

I have constructed an example, where there is a weak generic type that is not
almost periodic, and also an example, where a weak generic type that is not almost
periodic has an extension (over a larger model) to an almost periodic type. This
example is obtained by expanding the additive group of rationals by some “semi-
generic” predicates, and the resulting structure has simple theory of SU -rank 1.

Still no example is known, where the theory is simple and weak generic types
differ from forking-generic types. (In a simple theory, every weak generic type is
a forking-generic type.)

Maybe the most intriguing notion in topological dynamic is the Ellis semigroup.
This is just the closure (in the topology of pointwise convergence) of the set of
homeomorphisms of a G-flow X , induced by elements of G, and the semi-group op-
eration is the composition of functions. It turns out that this semi-group contains
a “characteristic” subgroup related (conjecture) to the group G/G00. I managed
to interpret the Ellis semigroup model-theoretically. These results appear in [3].

Also, the whole new set-up may be extended to generalize forking.
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Division Points on Subvarieties of Isotrivial Semiabelian Varieties

Rahim Moosa

(joint work with Dragos Ghioca)

In its most general form, the Mordell-Lang theorem in characteristic 0 was
proved by McQuillan [5] and states that if G is a semiabelian variety over C,
Λ ≤ G(C) is a finite rank subgroup, and X ⊂ G is an irreducible subvariety whose
intersection with Λ is Zariski dense, then X is a translate of an algebraic subgroup
of G. (Recall that a subgroup is said to be of finite rank if it is contained in
the divisible hull of a finitely generated subgroup.) This fails when C is replaced
by a field of positive characteristic. In [1], Abramovich and Voloch formulate
and conjecture a function-field version of the Mordell-Lang statement in positive
characteristic. The conjecture is proved, using model-theoretic techniques, by
Hrushovski:

Theorem 1 (Mordell-Lang [3]). Suppose L is an algebraically closed field of char-
acteristic p > 0, G is a semiabelian variety defined over L, X ⊂ G is an irreducible
subvariety defined over L, and Λ ≤ G(L) is a subgroup of the prime-to-p divisible
hull of a finitely generated subgroup of G(L). If X(L) ∩ Λ is Zariski dense in X,
then X is special. That is, X = g + h−1(X0) where g ∈ G(L), h : G′ → G0 is
a surjective homomorphism from an algebraic subgroup G′ of G to a semiabelian
variety G0 defined over Falg

p , and X0 is a subvariety of G0 also defined over Falg
p .

Besides the necessary modification of the conclusion from “translate of algebraic
subgroup” to “special” (note that translates of algebraic subgroups are special),
this theorem differs from the characteristic 0 version in that it only applies to
subgroups of the prime-to-p divisible hull of a finitely generated group. Indeed,
the more general statement is not accessible by the methods of [3] and remains
open:

Conjecture 2 (Full Mordell-Lang). Suppose Λ ≤ G(L) is a finite rank subgroup
and X ⊂ G is an irreducible subvariety. If X(L) ∩ Λ is Zariski dense in X, then
X is special.

Here is a summary of what we accomplish in [2]:
I. We reduce Conjecture 2 to the case of Λ ≤ G(Kper) where K is a finitely

generated field and Kper := {a ∈ Kalg | apn ∈ K for some n ∈ N} is the perfect
closure of K. This is done by combining model theoretic methods of Scanlon [8]
with an idea of Rössler’s [7]. As a consequence, using a result of Kim’s [4], we
resolve the curve case of Conjecture 2.

II. We resolve Conjecture 2 for semiabelian varieties defined over finite fields.
Besides (I), we make use of a uniform description, obtained by Scanlon and the
second author [6], of sets of the form X(L) ∩ Γ where Γ is a finitely generated
subgroup of G(L) that is invariant under the Frobenius endomorphism of G.

Rahim Moosa was supported by an NSERC grant and a Waterloo start-up grant
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III. Still in the isotrivial case, we extend the results of [6] to give an explicit
description of sets of the form X(L)∩Γdiv where Γ is a finitely generated subgroup
of G(L) that is invariant under the Frobenius endomorphism of G and Γdiv := {g ∈
G(L) | ng ∈ Γ for some n ∈ Z} is the divisible hull of Γ. See Theorem 3.20 of the
paper for a precise statement.
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Cotorsion Groups and Modules

Philipp Rothmaler

Consider the following problem (for the terminology refer to [3]). Given any ring
R and a class of left R-modules, X , what does it mean for R−Mod, the category
of left R-modules, that every pp sort ϕ/ψ that does not open up in (a member
of) X satisfies the descending chain condition for pp formulas in R−Mod (dcc,
henceforth)?

For short, this property of the ring R will be denoted by co-X -dcc. Typically,
X will be axiomatized by pp implications, hence by the shutting of pp pairs (i.e. X
will be an axiomatizable class closed under product). Then one may reformulate
the problem within the left Ziegler spectrum, RZg, of R, for then the intersection
of X with RZg is a typical closed set of RZg and co-X -dcc is the same as co-
(RZg ∩ X )-dcc.

Note, co-X -dcc does not mean that every point outside X in the Ziegler spec-
trum is totally transcendental, but just that the particular sort in M eq that defines
the neighborhood is totally transcendental. However, the property in question in-
dicates that, somehow, R−Mod is controlled by X and totally transcendental
pieces.

Clearly, one can always pass to such an axiomatizable X by passing to the
model class of the theory of the original class — without affecting the co-X -dcc.
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E.g., starting from the class ♭ of all flat left R-modules, which may or may not be
axiomatizable, the models of the theory of ♭, which we call pseudoflat, form such
an axiomatizable class X , while co-♭-dcc and co-X -dcc are the same in that case.
It is this case that will eventually lead to cotorsion modules. But first note that
the co-♭-dcc takes place in two extreme types of ring: when X = ♭ is everything
(that is, R is von Neumann regular) and when the totally transcendental part is
everything (that is, when R is left pure-semisimple). The co-♭-dcc may be thought
of as to combine these two types of building block.

The ring Z of integers is of neither type, and in fact, it does not have co-♭-
dcc. Indeed, flat=torsionfree here, and the torsionfree points form a closed set
in ZZg (consisting of Q and the p-adics). Its complement consists of the finite
indecomposables and the Prüfer groups. Considering

⊕
i Z/2iZ, it is easy to see

that, although it shuts in the torsionfree groups, the sort 2x = 0/x = 0 does not
have the dcc.

An observation going back to the original work of Ziegler [5] is that pp pairs
with the dcc do not open up in cokernels of pure-injective envelopes. We prove
the converse, which yields the first answer to the problem.

Theorem 1. Given a class of left R-modules, X , axiomatized by pp implications,
R−Mod has the co-X -dcc if and only if all cokernels of pure-injective envelopes
are in X .

In the particular case mentioned, we obtain

Corollary 2. R−Mod has the co-♭-dcc if and only if all cokernels of pure-injective
envelopes are pseudoflat.

A very useful concept is that of pure-injective module [3]. But it has one defect,
it is not closed under extension. Cotorsion modules constitute a generalization of
pure-injective modules that make up for this defect. A cotorsion module is a
module C for which every short-exact sequence 0 → C → M → F → 0 with
F flat splits [4]. Since every short exact sequence ending in a flat is pure, every
pure-injective is indeed cotorsion.

Due to the proof of Enochs’ Flat Cover Conjecture [1], which is equivalent to
the existence of cotorsion envelopes [4], there has recently been a growing interest
in cotorsion modules. One of our main concerns is to understand the difference
between cotorsion and pure-injective. So it is natural to ask how strong a condition
on the ring it is that there be none. Xu proved that every cotorsion left R-module
is pure-injective if and only if cokernels of pure-injective envelopes are flat [4]. This
brings us back to the co-♭-dcc.

Corollary 3. If every cotorsion left R-module is pure-injective then every left
R-module has the co-flat-dcc. If R is right coherent, the converse is also true.

(The second half follows from the well-known fact that pseudoflat=flat if and
only if R is right coherent.)
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As a consequence, there are cotorsion groups that are not pure-injective. Two
questions spring to mind.

Questions. Are there non-coherent rings over which every cotorsion module is
pure-injective? What interesting properties of the ring are equivalent to the condi-
tion that all cokernels of pure-injective envelopes be pseudoflat?

This is joint work with Ivo Herzog, OSU Lima, [2].
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Definable Relations in the Real Field with a Subgroup of the Unit
Circle

Oleg Belegradek

(joint work with Boris Zilber)

In 2003 Boris Zilber [1] showed that the structure (R,U), the ordered field of reals
R augmented by the binary predicate for the group of complex roots of unity
U, is ‘tame’: every definable relation in the stucture is a Boolean combination of
existentially definable relations. (Here complex numbers are identified with pairs
of real numbers in a usual way.) The proof used the so called Lang property of
the group U, a known deep number-theoretic result, which, roughly speaking, says
that any polynomial relation between elements of U is equivalent to a positive
Boolean combination of monomial relations with coefficients in U.

He suggested to obtain a similar result for U replaced with an infinite cyclic
group Γ of the unit circle S. The motivation for the question came from the
realization that the quotient-space S/Γ is interesting for mathematical physics:
it is related to the quantum torus, an important in noncommutative geometry
quantum space based on a certain noncommutative C∗-algebra. There is a hope
that understanding of model-theoretic properties of the structure induced on S/Γ
from (R,Γ) can help in the study of the quantum torus.

The conjectured result about infinite cyclic subgroups of S seemed plausible
because they satisfy the Lang property like U does; in fact, any finite rank subgroup
of C∗ is known to have the Lang property. (An abelian group Γ is of finite rank iff
Γ has a finitely generated subgroup G such that Γ/G is a torsion group.) However,
the proof in [1] uses that U is divisible and so is easy to treat. Still, in this talk we
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show that the result of [1] can be generalized to arbitrary finite rank subgroups Γ
of S; for the proof see [2]. We don’t know whether the assumption Γ ≤ S cannot
be dropped, even though we heavily use it in the proof.

In [3] A. Günaydın and L. van den Dries, among other things, obtained a similar
result for the field of reals with a multiplicative group of finite rank. Note, however,
that they considered the real field augmented by a subgroup of R∗ but not of C∗

as we do, which makes essential difference: it is more difficult to treat the binary
predicate than the unary one.

Here is our main result.

Theorem 1. Let Γ be a finite rank subgroup of S. The definable relations in the
structure (R, <,+, ·, 0, 1,Γ) are exactly the Boolean combinations of relations of
the form

(⋆) ∃x1y1 . . . xnyn (P (x1, y1, . . . , xn, yn,v) ∧
n∧

i=1

(xi, yi) ∈ Γ),

where P is a semi-algebraic relation on R.

In fact, besides the assumption Γ ≤ S, the proof uses only the properties (i)–(iii)
of Γ from the proposition below.

Proposition 2. Let Γ be a finite rank subgroup of C∗. Then

(i) Γ is at most countable;
(ii) Γ modulo the nth powers is finite, for each n > 0,
(iii) for every algebraic set V ⊆ Cn the trace V ∩ Γn is definable in the group

Γ by a positive quantifier-free formula with parameters.

Here (i) is almost obvious, (ii) is an exercise in abelian group theory, and (iii)
is a consequence of the following result [4]:

Fact 3. Let ∆ be a finite rank subgroup of (C∗)n. Then for every algebraic set
V ⊆ Cn the trace V ∩∆ is a finite union of cosets of subgroups of the form H ∩∆,
where H is a subgroup of (C∗)n defined by finitely many equations of the form
Xm1

1 . . .Xmn
n = 1 with mi ∈ Z.

Fact 3 is a special case of a powerful result of diophantine geometry about
traces of subvarieties of a semi-abelian variety on finite rank subgroups (proven in
the 90s by efforts of many number-theorists, and now known as the generalized
Mordell-Lang conjecture). Following A. Pillay, we call (iii) the Lang property.

The group Γ is not assumed to be divisible, but we are able to overcome this
by using a much weaker property (ii).

Here is a more precise version of the main result.

Theorem 4. Let Γ be an infinite subgroup of S with the properties (i)–(iii), and
Γre, im = {a, b : (a, b) ∈ Γ}. Let M be the expansion of the structure

M0 = (R, <,+, ·, 0, 1,Γ, c)c∈Γre, im

by all relations of the form (⋆) with P defined over Γre, im. Then M admits quan-
tifier elimination.
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We find a complete axiom system for the theory of M and show that it admits
quantifier elimination.

For every polynomial f(X) over Z fix a positive quantifier-free formula θf (X)
in the language {·,−1 , 1, g}g∈Γ such that for any tuple z in Γ

C |= f(z) = 0 ↔ θf (z);

such θf can be chosen by the Lang property (iii).
For a real closed field R, let C be the algebraic closure of R identified with R2,

and S the unit circle in C. For Z ⊆ C, put Zre{x ∈ R : ∃y (x, y) ∈ Z}. Consider
the class of all structures N in the language of M such that:

(1) N satisfies all the quantifier-free sentences that hold in M .

(2) The reduct of N to the language of ordered rings is a real closed field.

(3) The set Γ(N) is a subgroup of S elementarily equivalent to Γ.

(4) Γ(N) is dense in S.

(5) For any polynomial f(X,Y1, . . . , Yn, Z1, . . . , Zm) over Z with degXf > 0,
and any c ∈ Rm the set

{a ∈ R : f(a, b, c) 6= 0 for all b ∈ Γ(N)n
re}

is dense in R.

(6) for every polynomial f(X) over Z, and every tuple z in Γ(N)

C |= f(z) = 0 ↔ θf (z).

The structure M is a member of the class. Indeed, clearly, M satisfies (1–3)
and (6). It is well-known that any infinite subgroup is dense in S; so (4). Any
interval in R is uncountable, but Γ is countable and so for any finite subset A of
R there are only countably many elements algebraic over Γre ∪A; so (5).

Let N be a member of the class. For g = (a, b) ∈ Γ, let gN = (aN , bN ). It is
easily seen that g 7→ gN is a pure embedding of the group Γ into the group Γ(N);
we denote ΓN = {gN : g ∈ Γ}.

It is easily seen that the class is first order axiomatizable; let T be its theory.

Theorem 5. The theory T is complete and admits quantifier elimination.

Quantifier elimination for T implies Theorem 4, and, due to (1), completeness
of T . We prove quantifier elimination by proving submodel completeness of T ,
which follows from the proposition below. For a model N of T denote by N0 its
reduct to the language of the structure M0; clearly, any elementary map in N0 is
an elementary map in N .

Proposition 6. Let N and N ′ be (2ℵ0)+-saturated models of T . Then there exists
a back-and-forth system S from N0 to N ′

0 such that any finite partial isomorphism
from N to N ′ extends to a member of S.

The construction of S (and the proof that it does work) is rather complicated.
Let S0 be the set of all partial maps β from R to R′ which are elementary over
Γre, im and such that there exist
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• a finite subset A of R algebraically independent over Γ(N) in C, and a
group H of cardinality at most 2ℵ0 with ΓN ≤ H ≤ Γ(N) such that H
has a divisible torsion-free complement in Γ(N), and

• A′ and H ′ for N ′ with similar properties,

for which dom(β) = A ∪Hre, β(A) = A′, and β(Hre) = H ′
re. Then we define S as

{β̄ : β ∈ S0}, where β̄ is the unique elementary map extending β to aclR(dom(β)).
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Superrosy Groups and Fields with NIP and FSG

Krzysztof Krupiński

(joint work with Clifton Ealy and Anand Pillay)

The general goal is to apply some methods from stable groups (e.g. forking calcu-
lus) to show structural results about groups which are not necessarily stable but
in which we still have a notion of independence relation satisfying some minimal
list of nice properties (like transitivity or the existence of independent extensions).
Such groups are called rosy groups. Having such an independence relation, wlog
we can replace it by the coarsest relation, which is called thorn-independence.

We concentrate on structural results about superrosy groups with small thorn
U-rank (the rank defined by means of thorn independence relation in the same
way as Lascar U-rank is defined by means of forking independence), additionally
assuming NIP (non independence property) and FSG (finitely satisfiable generics).
In particular, our results and conjectures generalize some results about superstable
groups and definably connected, definably compact groups definable in o-minimal
structures.

Theorem 1. Each goup with NIP, FSG and of thorn U-rank 1 is abelian-by-finite.

Conjecture 2. Each group with NIP, having hereditarily FSG and of thorn U-
rank 2 is solvable-by-finite.

We also consider a weaker conjecture.

Conjecture 3. Each group with NIP, having hereditarily FSG, of thorn U-rank
2 and such that G = G00 is solvable.

We have proved the following partial result concerning Conjecture 3.
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Proposition 4. Suppose G has NIP, hereditarily FSG, is of thorn U-rank 2 and
G = G00. Then either G is solvable or there are nontrivial elements a, b ∈ G such
that C(a) is finite and C(b) is infinite. More precisely, assume G is not solvable.
Then Z(G) is finite. So replacing G by G/Z(G), we can assume that Z(G) is
trivial. Then G has infinitely many involutions and all involutions have thorn U-
rank at most 1; so every involution has infinite centralizer. Moreover, there are
involutions i, j such that C(ij) is finite and thorn U-rank of ij is 2.

Finally we have the following theorem.

Theorem 5. Each superrosy field K with NIP and such that (K,+) has FSG is
algebraically closed.

Reporter: Martin Hils
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