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ABSTRACT. Motivated both by industrial applications and the challenge of
new problems, one observes an increasing interest in the field of image and
surface processing over the last years. It has become clear that even though
the applications areas differ significantly the methodological overlap is enor-
mous. Even if contributions to the field come from almost any discipline in
mathematics, a major role is played by partial differential equations and in
particular by geometric and variational modeling. The aim of the workshop
was to gather a group of leading experts coming from mathematics, engineer-
ing and computer graphics to cover the main developments.
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Introduction by the Organisers

In the area of image and surface processing a real interplay between engineers,
computer scientists and mathematicians has been occuring over the last decade.
Even though the application areas differ significantly, the methodological overlap
is enormous. Contributions to the field come from almost any discipline of math-
ematics. A major role is played by partial differential equations and in particular
by geometric and variational modeling. We see increasing numbers of examples of
work in imaging and computer graphics which significantly improve the state of the
art techniques developed in traditional disciplines and in particular inspire novel
work in mathematics. Some of the many examples discussed during the workshop
include the global minimization of new functionals based on methods from dis-
crete optimization theory, the modeling and treatment of manifold topology based
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on projections, or subtle subdivision techniques to ensure curvature continuity in
surface modeling.

The intention of this workshop was to further stimulate the exchange of new
methodology and ideas. The workshop brought together mathematicians working
on the calculus of variations, on differential and discrete geometry, on partial
differential equations, and on numerical analysis with leading experts in computer
graphics, image processing and computer vision. In addition about ten junior
researchers joined the workshop in a lively interplay with more senior participants.

The role of geometry, analysis and numerical analysis for PDE-based image
and surface models is of central importance. Many of the models involve mini-
mizing geometric functionals of first (area) or second order (Willmore-functional).
The role of analysis is to predict the qualitative behaviour of solutions of the re-
sulting highly nonlinear partial differential equations. Lectures on thresholding
approaches, level set methods and max flow - min cut algorithms were dealing
with this topic. Numerical analysis plays a decisive role in the derivation and
construction of efficient and robust algorithms. For instance, efficient numerical
schemes for the restoration of destroyed or missing areas in images and the error
control for discretization of total variation functionals in imaging were addressed in
lectures during the workshop. A particular focus was on the solution of geometric
partial differential equations and the minimization of geometric functionals and
their discretization, which leads directly into extremely difficult analytic problems
and questions of convergence of the corresponding discrete schemes. Extensive
discussions occurred regargind the question of conversion of analytical and geo-
metric insights into fast and effective algorithms for challenging applications such
as the design of glass roofs, the extraction of motion fields from image sequences,
the similarity analysis of shapes or the topological persistent fairing of surfaces
from 3D scanning devices, and many others.

Aside from 20 main lectures, junior participants presented their own work in a
special two hour session through a series of short presentations:

Leah Bar (Minneapolis)

Restoration of Images with Piecewise Space-Variant Blur
Benjamin Berkels (Bonn)

Identification of grain boundary contours at atomic scale
Juan Cardelino (Barcelona)

Region based segmentation using the tree of Shapes

Milena Chermisi (Roma)

Level Set Method for systems of PDEs

Marc Droske (Berlin)

Higher-Order Feature-Preserving Regularization of Curves and Surfaces
Carsten Eilks (Freiburg)

The Cahn-Hilliard equation on moving parametric surfaces
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Matthew Elsey (Ann Arbor)

Fairing of Triangulated Surfaces Using Total Absolute Gaussian Curvature
Michael Fried (Erlangen)

Iterative Level Set Based Segmentation in Remote Sensing

Markus Grasmair (Innsbruck)

The taut string algorithm for total variation regularization

Lin He (Linz)

Solving the Chan-Vese Model by a Multiphase Level Set Algorithm Based on the
Topological Derivative

Claus Heine (Freiburg)

Finite Elements on Unfitted Meshes

Luca Lussardi (Palaiseau)

Free discontinuity functionals with linear growth and their approximation
Bernhard Mofner (Freiburg)

Solving the Stokes-equations with B-Splines

Paola Pozzi (Freiburg)

Anisotropic Mean Curvature Flow in Higher Codimension
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Abstracts

Fair triangulated surfaces from positional constraints at interactive
rates

MARC ALEXA
(joint work with Takeo Igarashi, Andrew Nealen, Olga Sorkine)

Several computer applications require the computation and manipulation of a fair
triangulated surface in fractions of a second. We achieve this interactive response
time for moderately sized meshes by modeling a non-linear problem as the iterative
solution of several linear systems with constant system matrices. These matrices
are factored in a pre-process and during interaction only few back-substitutions
are necessary.

Let the triangulation be defined by the edge graph {(¢,7)} = E and its embed-
ding by vertex positions v; € V. We assume FE is constant and want to derive
vertex positions V so that few constrained vertices are close to given locations
vi,i € C from a subset of vertices C, i.e. v; &~ v}, and the embedded geometry
is an (approximate) solution to the PDE ApH = 0, where Ap is the (discrete)
Laplace-Beltrami operator, and H = (k1 + k2)/2 is the mean curvature.

The graph Laplacian

(1) L=D-A

with D = diag(d;),d; = #{(i,j) € E} the matrix of vertex degrees and the ad-
jacency matrix A = {a;;},a;; = #{(i,j) € E}, is independent of the embedding
of the triangulation and fails to account for the metric of the surface. Taking the
metric of the surface into account leads to a similarly structured but differently
weighted Laplacian operator L., where the weights depend on cotangents of inte-
rior angles in the star of a vertex [1]. In contrast to the smooth case, L.v is the
integrated mean curvature around v and the pointwise scalar mean curvature in
vertex ¢ is given as H;n; = mi_chvi where n; is the unit normal and m; is the
measure assigned to the vertex [6] (e.g. the area of Voronoi cell in the embedded
triangulation).

We factor the PDE into two second order problems and solve them repeatedly
[3]. In the first step target mean curvatures H = {H;} are smoothed (i.e. L.H =10
plus boundary constraints). Then, disregarding positional constraints, solving
L.V = N, where N = {a;H;n;}, moves vertices into positions that satisfy the
curvature constraints. However, as L. depends on the embedding, each iteration
requires solving a new linear system, which we have found to be too slow in
practice.

Note that L = L. (up to a constant) if all edges have equal length (i.e. there is no
metric distortion). The main idea of our approach is, therefore, to generate edges
of approximately equal length in the triangulation. Starting from an arbitrary
general position of the vertices (i.e. at least a subset of the vertices admit the
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computation of curvatures and not all edge lengths are zero) we compute target
mean curvatures by solving

(2) argmin ¢ > [|L(H:) >+ Y | Hi — Hi|* ¢,

where H] is the scalar mean curvature at vertex ¢ (if available); and similarly
3) argmin ¢ Y [|L(ea)lI* + D llei = flf* ¢
€ . .
K2 2

for a smooth set {e; } of target average edge lengths per vertex, from the current set
of the average lengths e} of edges incident on vertex i. Note that the least squares
formulations above are an approximation to the projection onto low frequency
eigenvectors of L [4]. From these target scalar values we compute target mean
curvature vectors

and target edge vectors

(5) nij = (€ +€5)/2- (vi = v;)/[[vi = vj].

based on the current embedding (i.e. area measures m; and vertex normals n;
are computed from the current triangles). The vertex positions are updated by
solving

©  argin{ SILw) 8P+ 3 v vy -l 3 I il

v i (i,j)EB ieC
We have found that it is sufficient to only constrain a subset of edges B, i.e.
the edges incident to the constrained vertices, because setting the uniformly dis-
cretized Laplacian equal to vectors in normal direction automatically improves
inner fairness at all unconstrained vertices [2].

We have implemented this procedure by factorizing the sparse matrices in a
pre-process [5], and then at run-time repeatedly updating target curvatures, edge
lengths, and positions by back-substitution. We observed that the computation
converges rather quickly, in approximately 5 to 10 iterations, which requires frac-
tions of a second for triangulations of a several hundred vertices.
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Topological and variational properties of a model for reconstructing
three-dimensional images

(GIOVANNI BELLETTINI
(joint work with V. Beorchia and M. Paolini)

We have discussed a two-dimensional variational model for the reconstruction
of a smooth generic three-dimensional transparent scene E. Here the symbol FE
denotes a solid set in (—1,1) x Q with a finite number of disjoint smooth connected
components, where €2 is an open domain of IR? representing the screen. The model
may handle self-occlusions and could be considered as an improvement of the
2.1D sketch proposed by Nitzberg and Mumford [6], see also [7] and [2]. Roughly,
E is generic if its apparent contour Gg in the direction e; of the observer has
singularities which are stable under small perturbations of OF [9]. The planar
graph G is defined as the orthogonal projection on €2 of the critical curve

Mg :={z € OF : the tangent plane to OF at z contains IRe; } .

In order to introduce the variational model one needs an analysis of the appar-
ent contour of E. Hence, using the so-called Huffman labelling [3], we prelimi-
narly characterize those planar graphs that are apparent contours of some three-
dimensional generic scene. See also [10] and [4] for a description of this result and
for other applications, and [8], [5] for related problems. The labelling is based on
two functions. The first one is the function fg : @ — 2N, which jumps of two
units exactly on Gg, and counts the total number of layers of OF in front of a
point z in the screen 2. The second function dg : Gg — N counts the number of
layers of OF in front of the point z € Mg corresponding to the point z € Gg, =
not a singular point of Gg. The labelling then requires a number of compatibility
conditions between fg and dg.

Beside the above mentioned existence result, we also show that if £ and F' are
two three-dimensional scenes having the same apparent contour, then £ and F
must differ by a homeomorphism of (—1,1) x €, strictly increasing on each fiber
along e;.

We are now in the position of identifying the domain of the functional F de-
scribing the model: Dom(F) consists of the triplets (f,d,u), where f and d have
the qualitative properties described above, and u (the function supposed to recon-
struct the given gray level g € L>°(Q)) is smooth out of the wvisible part {d = 0}
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of the jump J; of f. The functional F takes essentially the form

F(fodyu) = #(ver(Jp)) + / (1+ [wl?) ds

Je\ver(Jy)
+/ |Vul? d:c+/ lu — g|? du,
Q\{d=0} Q

where # counts the set ver(Jy) of the singular points of J¢,  is the curvature of
Jf, p € (1,2), and f and d must satisfy all compatibility conditions devised by
the previous topological analysis. The exponent p = 2 is not allowed, since the
curvature of the canonical cusp is not square-integrable. Note that u is smooth
along the invisible contour {d > 0} of J;. Finally, given g, in order to recon-
struct a corresponding reasonable three-dimensional scene, first we minimize JF
among all admissible triplets and produce one minimizing triplet. Then we find
the corresponding generic scene using the topological theorems.

Note that identifying the domain of the relaxed functional F of F could be
useful toward understanding whether a given finite union of arcs is contained in
the visible part of the apparent contour of some three-dimensional scene.

We conclude by mentioning that the problem of classifying three-dimensional
isotopic surfaces via a complete set of elementary moves on the corresponding
apparent contours can be handled with a computer program, and is under inves-
tigation.

The above results have been obtained in collaboration with Valentina Beorchia
(Univ. Trieste, Italy) and Maurizio Paolini (Universita Cattolica Brescia, Italy),
see [1].
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Movie Denoising by Average of Warped Lines
MARCELO BERTALMIO
(joint work with Vicent Caselles, Alvaro Pardo)

Image denoising is one of the most studied problems in the image processing com-
munity. Within the area of image sequence denoising we can distinguish different
cases regarding the source material, the specific type of noise and its application.
In our case the motivation to study this problem is the restoration of old films.
Nevertheless, the ideas here presented can be adapted to other types of image
sequences: biological (3D), ultrasound, infrared, compressed (with coding noise),
etc.

Before going into details of image sequence denoising we are going to discuss
three key issues. First, it is important to consider the different types of noise that
can be present in the image sequence. Noise in image sequences can be produced
during acquisition by the sensor, due to errors during its transmission, by coding
noise, etc. Therefore, the current research is addressed to develop methods that
can deal with different types of noise.

The second issue is the degradation of the original content of the sequence: we
must respect as much as possible the original content of the sequence (details,
texture, motion, etc) without introducing artifacts during the denoising process.
In addition to the unpleasant visual distortions that can affect the original content,
the degradation of the original content may also affect further processing steps as:
segmentation, motion estimation, compression, etc.

Finally, the last issue is the computational complexity of the method and its
number of parameters. Due to the enormous amount of data present in image
sequences the proposed schemes must be automatic, without a large number of
parameters, and computationally lightweight. Although it is not necessary to
have a real time method, the method must provide results in a reasonable time in
order to allow an interactive process with the user.

Although we can apply existing static image denoising methods to the case of
image sequences® (intra-frame methods), we can do better by including temporal
information (inter-frame methods) (see [1]). This temporal information is crucial
since our perception is very sensitive to temporal distortions like edge displace-
ment: the disregard of temporal information may lead to temporal inconsisten-
cies in the result. Filters which take into account the 3D image support can be
classified into motion adaptive filters and motion compensated filters [1]. Motion
adaptive filters take into account the dynamic character of the sequence but do not
compute the optical flow. They are based on averaging pixels of different frames
trying to avoid the blurring effect where motion occurs, they are the temporal
counterpart of edge preserving spatial filters in that temporal edges are related
to motion. Examples include different types of adaptive median filters and order
statistic filters [2, 3] or recursive filters [4, 5] (see [1]). Motion compensated filters

IFor now on, we will concentrate in temporal sequences leaving out 3D images. However,
several of the comments and ideas here presented can be applied to the latter case.
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are based on the assumption that the variation of the pixel gray level over a mo-
tion trajectory is mainly due to noise and, thus, averaging these values should give
a good estimate of the true pixel value; they produce high quality results. The
motion compensated spatio-temporal LMMSE was proposed by [6] and studied in
[7] (these filters are an extension of spatial LMMSE filters introduced in [8, 9]). A
related method which implicitly compensates for motion by performing 1-D signal
estimation along a set of hypothesized motion directions was proposed in [10]. In
[11] the authors introduced an Adaptive Weighted Algorithm (AWA) which can
be interpreted as a motion compensated neighborhood filter. We refer to [1] for a
more detailed account of these methods.

Unfortunately, motion estimation is an ill-posed problem (that needs extra con-
ditions in order to be solved) and its estimation is not straight forward in the case
of noisy sequences. To overcome the problem of motion estimation, Buades et.
al., based on their previous work [12], presented a method (the NLM method)
for image sequence denoising that does not need motion estimation [13]. Starting
from the idea that averaging several independent realizations of the same random
variable reduces noise, they present a method for image denoising that considers a
weighted average of similar samples. Similar samples (pixels) are found comparing
their neighborhoods: two pixels with similar neighborhoods are said to be similar.
This approach can be rooted to the pioneering work of Efros-Leung [14]. The
main feature of these methods is that they may look for similar neighborhoods all
over the image (or sequence)?. In this way they find many similar samples for the
denoising procedure. For a detailed review of neighboring filters and PDE-based
methods we refer the reader to [12]. In [15] the authors extend their work on Field
of Experts [16] in order to deal with grain noise in archival film. They develop a
model of grain noise that is used as a prior in the Field of Experts framework.

The main purpose of this talk is to propose an efficient method for denoising
digital image sequences without using motion estimation. The main idea behind
our proposal is similar to the one used in [13] and [17]. For each pixel we look for a
set of similar samples to be used in the filtering step: we estimate the nearby points
on the level surface passing trough it, we consider them as realizations of the same
random variable and we take an average of them. For that purpose, we present
an efficient method to find similar samples via warping lines in spatio-temporal
neighborhoods. Our main concerns are: the computational cost of our algorithm,
its unsupervised nature, its capabilities to automatically deal with different kinds
of noise (even if the method is based on the assumption of additive white noise) and
its possibilities to respect the visual details on the image sequence. As we will see,
the proposed method obtains good denoising results with smaller computational
complexity than the methods proposed in [13, 17].
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Fast Image Inpainting
FOLKMAR BORNEMANN
(joint work with Tom Mérz)

Nontexture image inpainting is the task of restoring a digital image u% SO\
Dy, — [0,1] for a destroyed, or consciously marked, subregion Dj of the image
domain €}, by continuing the geometric information given by the isophotes. The
result is a restored image up : 2 — [0,1]. (In reminiscence of a discretization,
pixelized domains and quantities will be denoted by a subscript h. Quantization
of gray levels will be neglected.)
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Techniques of nonlinear partial differential equations have successfully been
applied to this problem. The equations and algorithms are essentially based on
one of the following paradigms:

e variational models (starting with the seminal work [3])
e phenomenological models (starting with the seminal work [1])

However, the resulting algorithms are based on iteration, mostly in the form of a
(pseudo-) time embedding, or on dynamical programming and do not have, so far,
a complexity that is optimal in the number of pixels to be inpainted.

Our work [2] shows that pdes can enter the problem in yet another fashion:
By analyzing a discrete algorithm in the limit of infinite spatial resolution. This
analysis allows to understand and correct the defects of the algorithm. Starting
with a non-iterative method due to Telea [4], which has optimal complexity, we
succeeded in keeping the optimal complexity while improving dramatically upon
the quality of the method.

(a) geometric setting of the discrete algorithm (b) geometric setting of the high-resolution limit

FIGURE 1. The geometric idea of the inpainting algorithm.

Telea’s method orders the pixels of the inpainting domain D;, by increasing
distance Ty (z) to the boundary 0Dy (“onion peel”, see Fig. 1),

Dh:{xl,...,xN}

and takes weights over neighborhoods B:h(xk) = Bep \ {zk,...,zn} of already
inpainted pixels:

0
uh|Qh\Dh = Up,

Z wh(k, y) un(y)

yGB:h(mk)

Z wh(2k, Y) ’

yEBsh (ack)

up(xg) =
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Telea suggests to use the weight function

ViTh(z) - (z —y)|

l —yl?
We can prove that in the high resolution (h — 0) and vanishing viscosity (e — 0)
limit, Telea’s algorithm results in the hyperbolic boundary value problem

fi(x) - Vu(z) =0 on D\ 3, ulop = u°|sp,

where 7i(z) = VT'(x) denotes the vector field normal to the level lines of the dis-
tance map T'(z) to the boundary dD. Further, ¥ denotes the Euclidean skeleton of
the inpainting domain D, that is, the locus where the characteristics of 77 intersect
the first time. This limit equation perfectly explains the behavior of the algorithm
as shown in Fig. 2(b).

-

(a) inpainting domain: 228 x 108 px2 (b) Telea’s method, € = 6 px (c) our method, p = 100, € = 6 px

wp(z,y) =

FIGURE 2. The skeleton: X\ Yirans red, Xirans green, 0D blue.

If, instead, for a given normalized vector field ¢(z), we take the weight function

oe) =\t o (5 @) o)),

we get the limit boundary value problem
Ge(z) - Vu(x) =0 on D\ X, ulop = u’|op.

Here, c,(x) is a normalized, effective vector field that satisfies

(), fi(x) - &(x) > 0,
#lggo Ge(z) =  —c(=), fi(x) - élz) <0,
fi(x), fi(z) L &(x).

Thus, except for the singular case of tangency (with respect to the level lines of
the distance map), the effective vector field ¢, (x) aligns itself parallel to the given
vector field ¢(z). For a correctly chosen ¢(x), the improvement resulting in the
algorithm is clearly visible in Fig. 2(c).

The necessity of the exceptional case can be understood from an analysis of the
well-posedness of the limit boundary value problem. Moreover, this analysis shows
that there is a certain part Yians of the skeleton, which we call the transparent
part, that unconditionally allows for the continuation of geometric information.
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Only at the remaining nontransparent parts of the skeleton there is the possibility
of jumps in the gray level for badly chosen vector fields ¢(x).

We suggest to choose é(x) as the coherence direction, that is, the vector field
that gives

éx) - Vu(y) =0,  y€ By(z),

in the sense of least squares. For a real color image, Fig. 3 illustrates the behavior
of the resulting algorithm in comparison to Telea’s method.

(a) destroyed image (241 x 159px2) (b) Telea’s method (0.08sec) (c) our method (0.4 sec)

FI1GURE 3. Image inpainting: Telea’s vs. our method.

Open Problem. In fact, there are two choices in Telea’s algorithm that can be made
without changing its complexity: The weight function w(x,y), which we actually
have changed, and the order by distance, which we have not changed so far. We
conjecture that by changing the order we will be able to address the singular case
of tangency. First experiments indicate that a modified distance function T'(x)
subject to a generalized Eikonal equation F'(z)||VT (z)|| = 1, T'|sp = 0, might do
the job.
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Regularization with Singular Energies: Error Estimation and
Numerical Analysis

MARTIN BURGER
(joint work with Elena Resmerita and Lin He)

Regularization with singular energies (being nonsmooth and not strictly convex)
has become a standard tool in image processing and inverse problems over the
last years. Famous examples are total variation methods (cf. [7]) and wavelet
regularization in Besov scales, which is equivalent to wavelet shrinkage techniques
(cf. [4, 5]). The transition from classical smooth regularization energies to singular
ones offers enormous potential as we show in this talk. E.g. one can preserve or
enhance certain structures such as sparsity with respect to some wavelet basis or
sharp edges in total variation.

On the other hand, singular energies create an enormous challenge with respect
to the analysis and discretization of the methods, many standard concepts such as
norm convergence and norm estimation fail. As a useful tool for error estimation,
so-called generalized Bregman distances have been introduced recently (cf. [2]). For
a convex functional J : X — RU{+o0} (on a Banach space X) and a subgradient
p € 0J(u) a generalized Bregman distance is defined via

(1) D (v, u) = J(v) = J(u) = (p,v — u).

For a variational problem of the form
A 9 .
(2) o [ Au = fII" + J (u) — min,

it is remarkably easy to derive error estimates between the minimizer u) and the
solution 4 of At = g, if 4 satisfies an additional smoothness condition of the form
q € 9J(4) NR(A*). The error estimate for the Bregman distance (cf. [2]) is of the
form

(3) Df(ux @) = O™+ Allf = gll).

Such an error estimate holds in the case of a multivalued subgradient 0J (%), which
is indeed typical for singular energies, for any subgradient satisfying the smooth-
ness condition. More difficult seems the interpretation of such error estimates in
special cases. However, it can be shown (also using multivaluedness of subgra-
dients) that the Bregman distances yield indeed information about particularly
interesting features, e.g. sparsity measures for wavelet shrinkage and difference of
edges for total variation methods. Extensions of the approach to other schemes
such as scale space or inverse scale space methods are possible (cf. [3]).

As an example of numerical schemes we consider the discretization of the ROF-
model for total variation denoising respectively cartoon extraction (cf. [7])

(4) é /Q(U - f)2 + |U|TV —  min

2 u€BV(Q)



156 Oberwolfach Report 3/2007

by piecewise constant functions. It is well-known in this case (cf. [6] that direct
discretizations of the variational problem do not converge in multiple spatial di-
mensions. We therefore propose a mixed discretization using piecewise constant
functions for the primal and suitable elements for the dual variable (the subgra-
dient respectively an associated vector field). This leads to a mixed discretization
with a simple primal equation and a dual variational inequality (cf. [1]). Numerical
analysis for such a scheme can again be carried out in terms of Bregman distances.
This also provides information about certain finite difference schemes, which can
be interpreted as versions of the mixed discretization on Cartesian grids.
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5

Some properties of the minimizers of the Total Variation.
Application to surface evolution problems.

ANTONIN CHAMBOLLE

We have considered in this talk the celebrated “Rudin-Osher-Fatemi” image re-
construction problem, mathematically set as follows:

(1) nhin)\/Q|Du| + %/Q(u(:c)ff(x))Q da.

Here u — [, |Dul is the total variation of u and f € L*(Q) represents the grey
level of a noisy image, while the solution w of (1) is the denoised version; A > 0
is a parameter which controls how much regularization is wanted and depends on
the noise level. The total variation of a function is usually defined by duality:

/ |Du| := sup{/udivd)d:c cp e CHOGRY), o(x)| <1 V:CEQ}
Q Q

and the space of u € L'(Q) with [, [Du| < +oc is denoted by BV (Q) (the func-
tions with bounded variation in ).

The idea of using the total variation to regularize the inverse problem of finding
u from the noisy observation f has been proposed first in this setting by Rudin,
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Osher, and Fatemi in the early 90’s, and corresponds to the fact that one wishes to
take into account the spatial regularity of images, but also allow for the presence
of sharp edges between different objects (which a more classical regularizing term
like [, |Vul? would smear out).

This talk was about some applications of the following quite elementary result,
which is proved in [8, 3] (see also [6]) and stated here as in [7].

Lemma 1. Let u solve (1). For any ¢ € R, consider the minimal surface problem
2 in A\P(E, t— d
@) min AP(E.9) + [ (= f(a) da

(whose solution is defined in the class of finite-perimeter sets, hence, up to a
Lebesgue-negligible set). Then, {uy > t} (respectively, {ux > t}) is the minimal
(resp., maximal) solution of (2). In particular, for all ¢ but a countable set, the
solution of this problem is unique.

Here, P(E, Q) := fQ |Dxg| is the perimeter of the set E in  (that is, roughly
speaking, not counting 0E N ON). The proof of this lemma is based on the co-area
formula which shows that

)\/Q|Du|+%/ﬂ(uf)Qd:CN/<)\P({u>t},ﬂ)+/{u>t}(tf)d:c) dt

and on the following comparison result for solutions of (2) which is proved in [3,
Lemma 4]:

Lemma 2. Let f,g € L'(Q2) and E and F be respectively minimizers of

min P(E,Q) — / f(x)dz and min P(F,) — / g(z)dx.
E E F F
Then, if f < g a.e., |E\ F| =0 (in other words, E C F' up to a negligible set).

(The proof of this lemma is simple, it just relies on the inequality P(A U B, Q) +
P(ANB,Q) < P(A,Q)+ P(B,) and is easily generalized to other situations such
as Dirichlet boundary conditions, anisotropic and/or nonlocal perimeters, ..., see
the proof in [3]).

In [7], in collaboration with V. Caselles and M. Novaga, we use this principle
to deduce that if f in (1) is itself a BV function, with a jump set Jy (rectifiable,
of codimension 1), then the BV function u solving (1) can only jump on a subset
of Jf:

Theorem 1. Let f € BV ()N L>(2). Then, for all A > 0,
(3) Juy € Jf
(up to a set of zero HN~'-measure, the Hausdorff measure of codimension 1).

The proof of this result relies on standard regularity theory for the solutions
of (2), as well as elliptic comparison results which show that solutions of (2) for
different values of ¢ can not “touch” too many times, at least where f does not
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jump. Since the jump J,, of u is precisely where different level sets {u > t} intersect
(for at least two different values of t), the Theorem follows.

It also follows similar properties for the gradient flow of the total variation: if
u(t, x) solves

ou

— D

8t+alg u[30 t>0
u(0) = f in Q

with f € L*, then t > s = Jy4) C Jyu,)- This is a causality result: the flow
cannot create edges where they were not already present at previous times (if the
initial data is not itself BV, it does not say anything about the localization of the
jumps at t = 0T).

Let us mention that in a recent preprint, W. K. Allard also derived from the
same principle some regularity results for the solutions of (1)[1].

In the remaining part of the talk, other consequences of Lemma 1 were discussed,
in particular from a numerical point of view. In particular, we have shown how
(in the discrete setting) discrete variants of (1) are very efficiently solved, by a
fast parametric max flow algorithm, by solving successive problems of type (2)
and exploiting the monotonicity in Lemma 2. One shows that by performing J
computations of a maximal flow over a suitable graph, one can solve the problem
“exactly” up to a precision (max f —min f)-277. This is a study in collaboration
with Jérome Darbon, and relies on previous studies of Gallo, Grigoriadis and
Tarjan [12], Hochbaum [13], Boykov and Kolmogorov [4], Darbon and Sigelle [10,
11], see also [9]. Applications to surface evolution by crystalline curvature motion,
following the algorithm of [2] and in the spirit of [5], were shown, in 2D and 3D.
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Topological persistence
DaviD COHEN-STEINER
(joint work with Herbert Edelsbrunner and John Harer)

Topological persistence, introduced by H. Edelsbrunner, D. Letscher and
A. Zomorodian in 2000, is a way to distinguish “signal” from “noise” in a real
function f defined over a topological space. The idea of persistence is to analyse
the evolution of the topology of the sub-level-sets f~1(—oc,z] as the threshold
x increases. It turns out that this evolution can be encoded as a set of inter-
vals, called persistence intervals. Each such interval represents the “life-span” of a
topological event in the evolution of the sub-level-sets of f. As we will see, short
intervals are usually induced by noise, whereas long ones witness the presence of
a signal. An appealing aspect of topological persistence is that persistence inter-
vals can be computed using a very simple and elegant algorithm in the case of
piecewise-linear functions.

A key property of topological persistence is its stability against perturbations:
when f is corrupted by a small amount of noise, its persistence intervals cannot
change by much [1]. This property has several geometric consequences, depending
on the function considered. It leads for example to a provable method for estimat-
ing the topology of an object from a cloud of sample points. It also yields new
approximation results for the length of curves and for the total mean curvature of
closed surfaces [2].
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A variational model for optical flow and its relaxation
SERGIO CONTI
(joint work with Martin Rumpf)

In low level image processing, the accurate computation of object motion in scenes
is a long standing problem, which has been addressed extensively. We consider an
image sequence given via a grey-value map

u:[0,T]xQ—=R; () ut,x)

on a space-time domain D := [0, T] x Q, where Q is a bounded Lipschitz domain in
R? for d = 1,2, 3. If image points move according to a velocity field v : D +— R,
and gray values u(t, z(t)) are constant along motion trajectories z(t), one obtains
the transport equation

(1) 0= %u(t,x(t)) = Juu(t, ) + Vau(t, z(t)) - v(t, z(t)),

as a constraint equation for the unknown velocity field v, the so-called brightness-
constancy constraint. This condition gives us pointwise one constraint for d un-
knowns velocity components. Indeed, only the component of the velocity orthog-
onal to gray-value structures can be computed from Equation (1), which leads to
an illposed problem known as the aperture problem. In the case that variations
of the velocity field are on a spatial scale larger than the one for variations of the
intensity field this can be solved via the so-called structure tensor approach.

We propose here a variational formulation which jointly segments the velocity
and the intensity field, within a total variation framework as proposed for image
denoising by Rudin, Osher and Fatemi [5]. Let us emphasize that in applications
the reliable motion field extraction significantly benefits from a proper segmenta-
tion and vice versa. Precisely, given noisy data wug : [0,T] x Q — R, we propose to
determine u and v by minimizing the functional

(2) Eolu,v, D] = / [lu—uol® + |Vo| + |Vu| + [(1,v) - Vu|] dz.
D

Here and below, we write V = (9, V) for the space-time gradient. This gen-
eralizes previous work by Aubert and Kornprobst [2] and Aubert, Deriche and
Kornprobst [1], who considered a similar variational problem in the velocity field
v alone, assuming the intensity u given. They already recognized that the last
term is ill-defined in the presence of joint jumps in u and v, and proposed to re-
place Ey with its relaxation in v (at constant u). In the numerical computations
in [1] the problem was eliminated assuming the intensity field u to be Lipschitz
continuous.

We propose instead to consider Ey as a joint functional of u and v, which
should be determined simultaneously. We present an analysis of the relaxation of
the functional Ey given in (2), including an explicit solution for the cell problem
in one spatial dimension; numerical investigations are in progress. The key obser-
vation is that Fy is not lower semicontinuous with respect to the relevant topology
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u=0
v=v*t

FiGURE 1. For relatively high velocities straight interfaces are
unstable in the functional Fy defined in (2), and spurious fine-
scale oscillations are spontaneously formed, both in the velocity
and in the intensity fields. This means that Ey prefers the pattern
on the right over the one on the left. The relaxed functional E*
does not suffer from this problem.

(weak convergence in BV'). This can be best understood with a simple example,
in which the data ug contain a single jump moving with constant velocity £, such
as, e.g., Up = X{z<et}, and the velocity field takes two constant values vt and v~
on the two sides of the interface. Then for some range of values of the parame-
ters v, v~ and ¢, minimizing sequences for Ey spontaneously develop fine-scale
oscillations, as illustrated in Figure 1. The scale of the oscillations is arbitrarily
small in the continuum model, and would be set by the grid size in numerical
computations. This difficulty can be solved by resorting to a relaxed formulation.
Indeed, by replacing the functional by its lower semicontinuous envelope one ob-
tains a problem where such oscillations are absent from the kinematics, but their
energy is correctly accounted for in the functional; in the case at hand the relaxed
formulation corresponds to attributing to the straight interface an energy which
is smaller than that of all corresponding oscillatory interfaces.

Determining the relaxation of a functional corresponds to taking a lower semi-
continuous envelope with respect to a topology under which the functional is co-
ercive, which in this case is the weak BV topology. By the compact embedding of
BV N L* into L? the fidelity term is continuous and we can focus on the reduced
functional

3) Elu,v, D] = /D (Vo] + [Vul + [(1,v) - Vul] do

defined over the space X = {(u,v) € WHH(D,R¥™1) : [Juf g + [[v]|L=~ < k} where
k > 0 is a real parameter. By general results by Fonseca and Miiller [3, 4], its
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relaxation has the form
J Ul 1Val (1,0 Vul dot [ Ko v an
E*lu,v,D] =< P I
if u,v € BV |lu|lpe + ||v||L> <k,
00 otherwise.

Here we treat (u,v) as a vectorial BV function in defining the trace. This means,
we denote by v the normal to the rectifiable set J(, ,,; given the orientation of the
normal, ut and vT are defined as the traces on the side v points to.

The surface energy K depends on the normal v to the jump set and on the
traces u*, v+, and is defined by a cell problem on the cube

Qu=Ax:|z-v|<1/2,|z-v] <1/2,i=1,2...d},
where (v, v1,...v4) form an orthonormal basis of R¥T!. Precisely,
Kt vt u™, v, v) =inf {Eu,v,Q,] : (u,v) € A}

where A is the set of functions which are 1-periodic in the directions v; and agree
with u*, v* on the two sides of ), normal to v, in the sense of traces. We obtain
the following characterization of K.

Theorem 2. Ifd = 1, and |[ut —u~| < 2, the optimal energy is given by the
following.
Ifv-(1,v7) and v - (1,v") have different sign, then
Kb v um,07,v) = [[u]| + |[v]].
If they have the same sign, then
ot = = ) — i +
K(u™, v u",v ,u)—yrglé&w(u ),

where
() = ([ + [PID(vF] + v = v ) + [l (jvF - wb |+ (v = v ) - w7)).

In the latter case, the interface is one-dimensional if and only if the minimum is
attained by v € {0,v}; in turn, this is equivalent to

(I[u]l + [f]Dlr2| = %I[ull |[ll-
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Level Set Methods for 3D Reconstruction from Multiple Views
DANIEL CREMERS

(joint work with Kalin Kolev, Thomas Brox, Hailin Jin, Anthony Yezzi, and
Stefano Soatto)

The reconstruction of three-dimensional objects from a collection of calibrated
two-dimensional images of a scene is one of the fundamental problems in computer
vision. Mathematically it is a highly ill-posed problem, much information is lost
in the projections from 3D to 2D. As a consequence, there generally exists an
entire family of 3D objects which are consistent with a given set of 2D images.
Additional regularity assumptions need to be imposed in order to allow for unique
solutions.
The reconstruction can be solved by minimizing cost functionals of the form

E(S) = E’reconst'ruction (S) +a E’regula'rity (S)

over the space of closed regular surfaces S C IR, where E,cconstruction Mea-
sures the consistency of the surface S with the given set of 2D projections, while
Eregularity imposes regularity (for example smoothness) of the surface, weighted
by a parameter @ > 0. Minimization can be done in a variational framework.
The resulting 3D shape optimization problem can be solved using the level set
method, i.e. the surface S(¢) at time ¢ is represented implicitly as the zero-level
of an embedding function ¢ : IR* x [0,7] — IR:

S(t) = {z € R’ | ¢(x,t) = 0}

and is propagated by evolving ¢ according to an appropriate partial differential
equation — see the example in Figure 1.

Over the last years, numerous level set methods for multiview reconstruction
have been proposed. Typically the respective data terms are based on stereo point
correspondence computed between pairs or sets of images [1], or — alternatively —
on the direct estimation of a consistent model of the surface intensity [2]. Stereo in-
formation is typically captured by estimating the normalized cross correlation over
local patches thereby factoring out the object’s intensity from the estimation prob-
lem. In contrast, the simultaneous estimation of the surface shape and intensity
typically leads to more challenging infinite-dimensional optimization problems.

OO ® 0|0

Sample input images Reconstruction by energy minimization

FIGURE 1. 3D reconstruction from multiple views by local opti-
mization of a respective cost functional [4].
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A collection of input images Reconstruction result

FIGURE 2. Joint estimation of 3D shape and illumination [3].

In my presentation, I will introduce the problem of multiview reconstruction, I
will review a number of classical approaches and present some recent developments.
In particular, I will show that one can model the physical image formation process
by simultaneously estimating both the object shape, the object albedo and the
incident illumination which gives rise to shading effects and cast shadows — see
the example in Figure 2. Moreover, I will present probabilistic formulations of the
reconstruction problem which aim at computing the most likely partioning of the
volume given all observed images — see the example in Figure 3.

FIGURE 3. Probabilistic formulation of 3D Reconstruction [5].
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Finite elements on evolving surfaces
CHARLIE ELLIOTT

1. INTRODUCTION

Partial differential equations on evolving surfaces occur in many applications.
For example, traditionally they arise naturally in fluid dynamics and materials
science and more recently in the mathematics of images. In this talk we describe
a mathematical approach to the formulation and approximation of transport and
diffusion of a material quantity on an evolving surface in R**! (n=1,2). We have
in mind a surface which not only evolves in the normal direction so as to define
the surface evolution but also has a tangential velocity associated with the motion
of material points in the surface which advects material quantities such as heat or
mass. For our purposes here we assume that the surface evolution is prescribed.
This is joint work with G. Dziuk, [8, 9, 10, 11].

1.1. The advection diffusion equation. Conservation of a scalar with a diffu-
sive flux on an evolving hypersurface I'(¢) leads to the diffusion equation

(1) ’L'b-‘ruvl“"U—VF'(DQVFU):O

on I'(t). Here u denotes the covariant or advective surface material derivative, v
is the velocity of the surface and Vr is the tangential surface gradient. If OI'(¢) is
empty then the equation does not need a boundary condition. Otherwise we can
impose Dirichlet or Neumann boundary conditions on 9T'(¢).

1.2. Applications. Such a problem arises, for example, when modeling the trans-
port of an insoluble surfactant on the interface between two fluids, [18, 14]. Here
one views the velocity of the surface as being the fluid velocity and hence the sur-
factant is transported by advection via the tangential fluid velocity (and hence the
tangential surface velocity) as well by diffusion within the surface. The evolution
of the surface itself in the normal direction is then given by the normal component
of the fluid velocity.

Diffusion induced grain boundary motion, [5, 12, 17, 6], has the feature of
coupling forced mean curvature flow for the motion of a grain boundary with a
diffusion equation for a concentration of mass in the grain boundary. In this case
there is no material tangential velocity of the grain boundary so it is sufficient to
consider the surface velocity as being in the normal direction.

Another example is pattern formation on the surfaces of growing organisms
modelled by reaction diffusion equations, [16]. Possible applications in image pro-
cessing are suggested by the article [15].

2. EVOLVING SURFACE FINITE ELEMENT METHOD (ESFEM)

The finite element approximation is based on the variational form

d
(2) — up + / DoVru-Vrp = / uQp
dt Jr) r(t) r(t)
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where ¢ is an arbitrary test function defined on the surface I'(¢) for all ¢. This
provides the basis of our evolving surface finite element method (ESFEM) which
is applicable to arbitrary evolving n—dimensional hypersurfaces in R"*! (curves
in R?) with or without boundary. Indeed this is the extension of the method of
Dziuk [7] for the Laplace-Beltrami equation on a stationary surface. The principal
idea is to use a polyhedral approximation of I" based on a triangulated surface. It
follows that a quite natural local piecewise linear parameterisation of the surface
is employed rather than a global one. The finite element space is then the space
of continuous piecewise linear functions on the triangulated surface whose nodal
basis functions enjoy the remarkable property

¢; = 0.

The implementation is thus rather similar to that for solving the diffusion equation
on flat stationary domains. For example, the backward Euler time discretization
leads to the ESFEM scheme

1
= (ME™THa™ T — M@E™)a™) + ST =0

o

where M(t) and S(t) are the time dependent surface mass and stiffness matrices
and a™ is the vector of nodal values at time ¢™. Here, 7 denotes the time step

size.

3. LEVEL SET OR IMPLICIT SURFACE APPROACH

We also define an Eulerian level set method for parabolic partial differential
equations on an evolving hypersurface I'(t) contained in a domain 2 C R™*!. The
method is based on formulating the partial differential equations on all level set
surfaces of a prescribed time dependent function ® whose zero level set is I'(¢).
Eulerian surface gradients are formulated by using a projection of the gradient in
R"*! onto the level surfaces of ®. These Eulerian surface gradients are used to
define weak forms of surface elliptic operators and so generate weak formulations
of surface elliptic and parabolic equations. The resulting equation is then solved in
one dimension higher but can be solved on a mesh which is unaligned to the level
sets of ®. We consider both second order and fourth order elliptic operators with
natural second order splittings. The finite element method is applied to the weak
form of the split system of second order equations using piece-wise linear elements
on a fixed grid yielding an Eulerian ESFEM. The computation of the mass and
element stiffness matrices are simple and straightforward.

3.1. Eulerian conservation and diffusion. Let ® : Q07 — R be a prescribed
non-degenerate level set function. Let @Q : Q7 — R™t! be a given flux. Then the
Eulerian conservation law we consider is

d
3) L uve| = - / (Q + [Voluv) - vor
dt Jgr R
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for each sub-domain R of 2 where vgr is the outward unit normal to OR. In
particular we consider a flux of the form

Q= |V®[ge
where gs : Qr — R is a flux satisfying
(4) g v =0.
It follows by an implicit surface Leibniz formula that
d
(5) — [ ulVP| = / (b +uVe -v) |V f/ uv - V|V
dt Jr R OR

and by Eulerian integration by parts and (4) that

(6) / qo - Var|VO| = / Vo - qa|VO|.
OR R
It follows that
/ IV®|(i+uVe-v+ Ve -qp)=0
R

for every sub-domain R which implies the partial differential equation

(7) U+ uVe v+ Ve - qe =0 in Q.
Taking g to be the diffusive flux

(8) go = —AVau

leads to the diffusion equation

(9) i+ uVe-v— Ve (AVeu) =0.

Here A > 0 is a symmetric mobility tensor with the property that it maps the
tangent space 7 = {vt € R*"*! : v . vt = 0} into itself, so that

Avt v=0vteT.

Observe that (9) is a linear degenerate parabolic equation because Py has a
zero eigenvalue in the normal direction v. Another form of this PDE, less suitable
for numerical purposes than (9) is given as

ou
ov
The variational form of (9) is obtained in the following way. For each level

surface of ® we multiply equation (9) by a test function 7 and use the coarea
formula to yield

u +V + Vo - (uvg) —VHeu— Ve - (AV<I>’LL) =0.

(10) / (t+uVe -v—Vo - (AVeu))nVe| = 0.
Q
Observe that the Leibniz formula, gives

d
—/un|V<I>|:/(u+uV‘p-v)n|V<I>|+/u7'7|V<I>|—/ unu - vaq|Ve|
dt Jo Q Q o0
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and integration by parts because of AVgeu -v = 0 gives
/ AVau - Ven|VO| = —/ NVe - (AVeu) |VP| +/ AVau - voan|VP|.
Q Q a0

In order to proceed we need a boundary condition for u on 0. It is natural to
impose the zero flux condition

(11) IVO|(AVgu + uv) - vaq = 0 on 0€.
Finally we obtain
d
(12) L +/ AVt - V| V| = / | VD).
dt Jo Q Q

3.2. Finite Element Approximation.

3.2.1. Semi-discrete Approzimation. Our Eulerian ESFEM is based on the the
weak form of the diffusion equation. We use fixed in time finite element functions
so that now the test functions now will satisfy 7 =v - V.

We assume that the domain €2 is triangulated by an admissible triangulation
T = UTeTh T which consists of simplices T'. The discrete space then is

S, ={U € C°(Q)|U|r is a linear polynomial, T € Ty, }.
The discrete space is generated by the nodal basis functions x;, ¢ =1,..., N,

Sp = span{x1,..., XN}

It is possible to generalize the method to higher order finite elements.

Definition 3.1 (Semi-discretization in Space). Find U(-,t) € Sp, such that
d

(1) _/ Un|V<I>|+/AV¢U-V¢n|VcI>|:/Uv-Vn|V<I>| W € Sh.
dt Jo Q Q

Using the Leibniz formula it is easily seen that an equivalent formulation is:
(2) / Un|Vo| +/ UnVgs - v|VP| —|—/ AVaU -Von|VO| =0 Vne S.
Q Q Q

Setting
N
U('? t) = Z Qj (t)Xj ('7 t)

we find that
d N
T / > axm Vel
Q55

N N
+/AZO<]'V<I>X]"V<I>TI|VCI’| :/Z%xw'WIV@I
Q

j=1 j=1
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forall n € S}, and taking n = xx, Kk =1,..., N we obtain

3)

d
7 M(t)a) +St)a =C(t)a

where M(t) is the evolving mass matrix

M®M=LMMW%

C is a transport matrix

C(t)ij/QXj’lJ-VXk|VCI)|,

and S(¢) is the evolving stiffness matrix

S(t)jk :/AV<1>XjV<I>Xk|V@|~
Q

Since the mass matrix M (%) is uniformly positive definite on [0, 7] and the other
matrices are bounded, we get existence and uniqueness of the semi-discrete finite
element solution.

Remark 3.2. A significant feature of our approach is the fact that the matrices
M(t), C(t) and S(t) depend only on the evaluation of the gradient of the level
set function ® and the velocity field v. The method does not require a numerical
evaluation of the curvature.
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New models and algorithms for image processing
SELIM ESEDOGLU

e Shape priors in curve evolution based segmentation: A considerable
number of signatures for shape comparisons that are invariant under certain trans-
formations have been proposed and utilized in previous work on computer vision;
see e.g. references in [10]. An interesting problem is to identify signatures that
are particularly convenient to incorporate into region based segmentation models
and their level set based implementations. In joint work with Frederick Park, we
propose one such invariant shape signature that emerged in conversations with
Eitan Tadmor. It is based on the Radon transform of sets, and is invariant under
rotations and translations.

Main Idea: For a shape represented by the set ¥ C R?, compute the following
function:

(1) Ax(p) := Area ({(T, 0) : (Rly)(1,60) < u})

where R denotes the Radon transform. This shape prior can be regarded as the
natural analogue of an important joint invariant of polygonal curves. Namely, the
histogram (and hence the cumulative distribution function) of pairwise distances
between the vertices of a polygonal curve is invariant under solid motions, and
has been shown in [3, 2] to determine the placement of the vertices uniquely up
to Euclidean motions, except for a negligible set of shapes. For convex shapes,
our proposed signature (1) can be seen as a continuum analogue of the cumulative
distribution function of pairwise distances between boundary points; indeed, for a
given p, it measures, in the (7,6)-space, the “amount” of line segments of length
less than p that can be drawn between the boundary points of the convex shape.

We use (1) as a shape prior in region based segmentation models such as the
piecewise constant Mumford-Shah model [12]. In terms of a level set function ¢(z)
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representing the set X, so that ¥ = {z : ¢(z) > 0}), the proposed signature (1)
can be expressed as follows:

- //H(u - R(H(¢))) dr do

where H () is the Heaviside function: H(§) = 1if £ > 0, and H(§) = 0 otherwise.
This somewhat clumsy way of expressing (1) facilitates the computations below.

Given also a reference shape represented by a set  C R? and a corresponding
level set function t(x) so that Q@ = {x : ¥(x) > 0}, we can incorporate the
following term in our segmentation models to encourage the model to look for
shapes resembling €:

S(¢) : /(A{¢>0}( ) — A{w>o}(ﬂ))2 dp

(- oty

(2)

Gradient descent for (2) with respect to the level set function ¢ can now be com-
puted in the standard Way One gets:
(3) o1(2,1) = [VOIR"{ Ayzo(R(H(9))) — Auzo(R(H(®)) }

Here, R* is the adjoint of the Radon transform (i.e. the back projection operator).
Equation (3) is a particularly clean expression that can be easily incorporated into
conventional segmentation models:

e New Directions in Diffusion Generated Motion: The original diffusion
generated motion algorithm was proposed by Merriman, Bence, and Osher (MBO)
in [11]. It approximates the motion by mean curvature of the boundary 0% of a set
Y. C RV at discrete times nét by alternating the convolution of 1x by a radially
symmetric kernel and thresholding the result at %

Recently in [7, 6], together with S. Ruuth and R. Tsai we worked on extending
theshold dynamics to a number of high order interfacial motions, in which the
normal velocity of the interface can depend on derivatives of its curvature, and
explored applications to image processing tasks that require these motions, such
as image inpainting [1, 5] and disocclusion. We were motivated by recent results of
Grzibovskis and Heintz [8], who proposed an MBO style algorithm for generating
a fourth order evolution known as Willmore flow. This is gradient descent for the
energy

(4) EX)= | K?do

o%
where K denotes the mean curvature of the surface 9%, and do denotes the surface
area element.

A serious drawback of MBO style algorithms has always been their threshold-
ing step. Thresholding leads to a binary representation of the interface on the
computational grid. With such a representation, it is impossible to interpolate
and locate the interface at subgrid resolution. Hence, accurate computations with
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these algorithms have until now required the use of adaptive grid refinement and
approximate FFT on non-uniform grids as developed by Ruuth in [13].

To devise highly accurate versions of diffusion generated motion on uniform
grids, in joint work with S. Ruuth and R. Tsai, we propose replacing the thresh-
olding step that appears in these algorithms. Our proposal is to represent the
interface using the signed distance function. The immediate advantage is that
dgx.(x) is Lipschitz continuous, and allows for interpolation to locate the inter-
face with subgrid accuracy on a uniform grid. Moreover, there are already highly
accurate and very efficient algorithms for computing the distance function. The
essential question now becomes whether interesting motions can be generated by
alternating the construction of the signed distance function, and its convolution
with a kernel (or, more generally, making it the initial condition of a linear para-
bolic PDE). To that end we carried out the following preliminary analysis.

Let the signed distance function to the boundary 93 be denoted d(z,y), so that
d > 0in X, and d < 0 outside. Assume that the curve 0¥ is tangent to the x-axis
at the origin with outer normal pointing in the (0,—1) direction, and that 0% is
given by the graph of a function f(x). We have obtained the following expansion
for d(z,y) near the origin, in terms of the geometry of the curve 9%:

1 1
(5) d(z,y)=y+ iK:cQ + 6(K’:c3 — 3K%2%y)
L
24

Using (5), we found the following expansion for the convolution of d with the
Gauss kernel:

o (K7 = 3K%)2t - 12K Ky +12K5%2%) + o(r).

1
(6) (Gy xd)(0,y) =y + Kt — K2ty + E(Kﬂ + K*)t* + o(t?).

Using (6), we can now design algorithms that alternate construction of the signed
distance function and its convolution with kernels. A very simple example is
motion by mean curvature, which can be obtained by alternating convolution
with the Gaussian kernel with redistancing (see [4, 9] for related work); this can
be seen by concentrating on the two lowest order in ¢ terms of the expansion (6).

Of course, that motion by mean curvature results form the algorithm above is
not surprising: after all, convolution with the Gauss kernel is equivalent to the
solution of the heat equation, and Laplacian of the signed distance function gives
mean curvature of the level sets. However, we can use expansions (5) and (6) to
design more interesting algorithms; an example is:

Distance function based, diffusion generated Willmore flow: By manipu-
lating expansion (6), the following algorithm is seen to approximate the Willmore
flow of 9% C R? at the discrete times ndt:

(1) Given dgsn (), form the following function:

1 3
p(I) = (2G\/§ - Gg\/ﬁ) * dsn + §(G6t% * dyn — dgn) .
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(2) Reconstruct the distance function to the zero level set of p(z) by solving:
ug(z,t) = sign(p(z)) (1 — [Vu|) with u(z,0) = p(z)
for large enough time T, and set dgsnt1 = u(z,T).

We expect this algorithm to have excellent stability properties so that large time
steps can be taken.
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On convolution-thresholding schemes for the Willmore and the
generalised curvature flows
and on homothetic geometric flows.

ALEXEI HEINTZ
(joint work with Richards Grzhibovskis, Tobias Gebéck)

Willmore flow is a surface I' moving by normal velocity equal to
(1) W =-[AH +2H (H* - K)],
where H, K and AH are values of the mean curvature, the Gauss curvature and

the Laplace-Beltrami operator of the mean curvature of I'. By generalised mean
curvature flow we mean a surface moving by normal velocity g(H) where F is a
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monotone function. We observe that the expression (AH +2H (H2 - K)) is the
Euler operator of the Willmore functional fr H2dS.

The problem of singularity formation in Willmore and curvature flows is dis-
cussed. We have found several new families of self-similar or homothetic solutions
that either form a singularity in finite time starting from a smoooth initial surface
or start from an initially singular surface that later transforms to a smooth sur-
face. These particular solutions are used as a benchmark for our general numerical
methods and are interesting for the theory of Willmore and curvature flows.

We describe a general convolution-thresholding approach to approximation of
the Willmore flow and the generalised curvature flows.

Consider a bounded domain C in R? with a smooth boundary dC. The main
ingredient of our variant of the convolution-thresholding method is the connection
between local geometric properties of JC and a new asymptotic expansion of the
convolution

(2) M (r) = (xc * ppsa) (r) v € R?,
in points r at the distance of order O(t) from 9C for t — 0.
Here xc is the characteristic function of C, pia (r) = p <|r|2 /t20‘) / (t*)?. The

function p : (0,00) — [0,00) is smooth, has compact support (or exponentially
decreasing) and is normalized by [ ps p1dr = 1.

N denotes later the external unit normal to C at p. The asymptotics of M (r)
for t — 0 is investigated in the point rg = p + Nvt. Here v € R and it has the
sense of the normal velocity of the constructed geometric flow.

Suppose 9C is smooth, p € OC and v € R, then the convolution (2) has the
following asymptotic expansion with respect to ¢ — 0 at the point ro = p + Nut

1 7N
M (ro) = 5 +t1/4TSH +

+9/4 [<82Niv + N5 (AH +2H (H2 = K))] + O(#"/4)
3)

where H, K and AH are values of the mean curvature, the Gauss curvature and
the Laplace-Beltrami operator of the mean curvature of C' in the point p and
N; = [ r'p (r?) dr . We choose a linear combination of two convolutions as above
with different weights p so that its zero level set moves as the Willmore flow of the
suface C. It leads to a convolution-thresholding approximation for the Willmore
flow. Taking scaling t!/? instead of t'/* gives similar asymptotics as t — 0 for
M but with velocity v in the lower order term with mean curvature H. This
scaling lets us approximate generalised curvature flows with velocity v = g(H)
with monotone increasing function g(H).

The consistency of the method is justified for Willmore flows when the evolving
surface is smooth. Numerical experiments show that the method performs well
even in the case of non-smooth initial data. For generalised curvature flows the
convergence of the method to viscosity solutions of the level set equations is proved
for surfaces without boundaries and for the case with right angle condition in a
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FIGURE 1. The Willmore evolutions of a non-convex surface and
of a pyramid.

N NS

F1GURE 2. Two smooth cylindrical surfaces that evolve self-
similarly by the Willmore flow and develope an angle in finite
time.

smooth domain. It corresponds to the Neumann boundary conditions for the level
set equations.
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Isometry and Biometry
RoN KIMMEL
(joint work with Alexander M. Bronstein and Michael M. Bronstein)

We focus on the problem of matching isometric manifolds by embedding their
intrinsic geometric structures into simple (and less simple) domains. One obvious
example goes back to expression invariant face recognition. In the talk we empha-
size some theoretical problems and technical challenges, as well as recent advances
like the generalized multidimensional scaling that we developed and use to embed
for example one facial surface into another.

Generalized multidimensional scaling (GMDS) is an extension of traditional
metric MDS, in which the target space is non-Euclidean. Particularly important
setting of the problem is the isometric embedding problem, when one wishes to
represent the intrinsic metric structure of one surface using the intrinsic geometry
of another surface.

We developed an efficient theoretical and numerical framework for the solu-
tion of the GMDS problem. Using GMDS, many fundamental problems pattern
analysis can be solved. First, GMDS allows to establish intrinsic geometric cor-
respondence between two similar objects, e.g. two near-isometric deformations
of the same object. Secondly, the average (or the maximum) metric distortion,
referred to as ”stress”, serves as a measure of shape dissimilarity. Particularly, us-
ing GMDS it is possible to compute the Gromov-Hausdorff distance between two
surfaces or the partial embedding distance, which allows for partial matching of
surfaces. Finally, “local stress” obtained as a byproduct of the GMDS procedure
allows to find local differences between two shapes.

We explore the use of the GMDS framework in applications such as 3D face
recognition, expression-invariant texture for animated 3D facial surfaces, expres-
sion exaggeration, and face morphing.

Facial expressions, for example, can be modeled as isometries of the facial sur-
face and Generalized MDS can then be used to establishing correspondence be-
tween two frames as an isometric embedding of one surface into another. This
correspondence allows to map a single texture image in an expression-invariant
manner to the frames of a 3D video of a face, creating a ”virtual makeup” effect.
Other applications include morphing between different faces, expression exagger-
ation and interpolation.

For further details see:
www.cs.technion.ac.il/~mbron
www.cs.technion.ac.il/~bron
www.cs.technion.ac.il/~ron
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Mean curvature of varifolds: locality and applications
SIMON MASNOU
(joint work with Gian Paolo Leonardi)

Varifolds were introduced by Almgren [2] and Allard [1] to generalize rectifiable
manifolds in a way that allows multiplicity, ensures compactness and authorizes
a generalized notion of mean curvature that is well posed even when singularities
occur (see [11] for an exhaustive survey of the theory of varifolds). We recall that,
given M a H"-rectifiable subset of IR"** and # a locally H"-integrable function
on M representing a multiplicity function, the associated n-rectifiable varifold
V = v(M, 0) has a first variation in U open subset of IR"** that satisfies for every

X € CL(U,R™F)
SV(X) = / divay XOdH"
M
where divy; X is the tangential divergence of X with respect to M. We are in-

terested in those situations where the total variation ||[6V| of dV is absolutely
continuous with respect to p := 0H"™ L M and the generalized mean curvature

oV ||(B;
He) — (t 19V 1B (2)
r=0  pu(Br(z))
is in LP(u), with v the generalized normal given by the Riesz representation the-
orem. In other words, we assume that for every X € CL(U,R"*%),

Jv(x)

5V(X):f/ H-X0dH" and /|H|p9dH”<+oo
M M

The motivation for this work comes from the study of the p-Willmore functional
/ o [H[POdH™, which appears in a large variety of problems in geometry, elasticity,
biology, phase transitions and image processing. Concerning the specific case
of image processing, the p-Willmore functional appears in the 2.1-D sketch of
Mumford and Nitzberg [8, 5, 6, 4] and in the so-called inpainting problem [3, 7] in
connection with the study of the relaxation of the functional

Vu
Vu|(1 + |div P)dx
[ v+ Ze)

A common issue raised in all these applications is the problem of the lower semi-
continuity of the Willmore functional for integral varifolds, i.e. rectifiable varifolds
with integer-valued multiplicity. As formulated by R. Schétzle [10], the problem
is the following : take a converging sequence of integral n-currents T, — T such
that the associated integral varifolds V7, have bounded mean curvature in L” and
converge to a limit varifold V.. Then it is well known that

e ey < Y 08 [ 1
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where [, px are the weights of the rectifiable varifolds Voo, V7, and H,_, H,,
the associated mean curvatures. But it is not always clear whether

[ Hpr lw (ury < Timinf |y o ) -

This inequality is actually true as soon as the locality of the mean curvature holds,
ie. H,, = H,_, pr-almost everywhere. However the locality is far from being a
trivial problem due to the variational definition of the generalized mean curvature
of varifolds. This problem can be formulated in the following form: let 1 and us
be two integral n-varifolds such that H,, € L”(u1) and H,, € LP(us). Is it true
that for pi-a.e.  in [0*™(p1) > 0] N [0*™(p2) > 0] it holds

H,,(z) = Hy,(2)
The state of the art for this problem is the following:

e Locality has been proved by L. Ambrosio and the author in [3] for any
dimension n > 2, codimension k = 1 and integrability of the mean curva-
ture p > n, p > 2. The proof is based on a crucial quadratic decay of the
tilt-excess due to R. Schétzle [9]

e A much more general result due to R. Schétzle appears in [10]. The locality
now holds in any dimension n > 2, any codimension, under the only
assumption that the mean curvature is at least in L?(u) and the varifold
is C%-rectifiable, i.e. [0*"(u) > 0] can be covered by a countable union of
C? n-submanifolds of R"**. In particular, it is proved that if H € L?(u)
then the C2-rectifiability is equivalent to the quadratic decay of the height-
excess and the tilt-excess.

The main difficulty for proving the locality at = € [6*™(u1) > 0] N [6*™(ug) > 0] is
to control the parts of the varifolds u1, po that do not contribute in density to the
multiplicity at x but may contribute to the mean curvature. Now the quadratic
decay of the tilt-excess provides a local control on the whole varifold and not only
on the parts with no contribution to the multiplicity. This let us think that, if we
could avoid using a strong decay of the tilt-excess, then the assumption H € L2(u)
could be weakened and the locality could hold assuming only that H € L!(11). We
were actually able to prove the following results, which are optimal for 1-varifolds
but only partial for n-varifolds, n > 1:
(1) The locality holds for integral 1-varifolds in any codimension assuming
only that H € L!;
(2) For n > 1, any codimension, the following partial proposition is true: if
V =v(M,0) is an integral n-varifold in U C R™** such that

(i)  Hy € L'Y(uv),
(il) M=NUS, S C?—submanifold of R***,
(#4t) 6 is piecewise constant on S,

then Hy and the classical mean curvature Hg coincide py-almost every-
where on S.
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The result for 1-varifolds, which is optimal, is based on the fact that H € L!
is enough to ensure strong phenomena of compensation of the mean curvature
within sufficiently many balls. The partial result for n-varifolds follows from the
isoperimetric inequality and a control of the derivative of uy (N N B,.) with respect
to r.

REFERENCES

[1] W.K. Allard, On the first variation of a varifold, Annals of Math., 95 (1972), 417-491.

[2] F.J. Almgren, The theory of varifolds, Mimeographed notes, Princeton (1965).

[3] L. Ambrosio and S. Masnou, A direct variational approach to a problem arising in image
reconstruction, Interfaces and Free Boundaries, 5, no 1 (2003), 63-81.

[4] G. Bellettini, V. Beorchia and M. Paolini, Topological and variational properties of a model
for the reconstruction of three-dimensional transparent images with self-occlusions (2006),
submitted.

[5] G. Bellettini, G. Dal Maso and M. Paolini, Semicontinuity and relazation properties of a
curvature depending functional in 2D, Ann. Scuola Norm. Sup. Pisa, Cl. Sci (4),20 (1993),
247-299.

[6] G. Bellettini and L Mugnai, A varifolds representation of the relazed elastica functional, J.
Convex Analysis (2007), to appear.

[7] S. Masnou, Disocclusion: a variational approach using level lines, IEEE Trans. Image Proc.,
11 (2002), 68-76.

[8] M. Nitzberg and D. Mumford, The 2.1-D sketch, Proc. of the Third Int. Conf. on Comp.
Vision, Osaka (1990).

[9] R. Schéitzle, Quadratic titl-excess decay and strong mazimum principle for varifolds, Ann.
Scuola Norm. Sup. Pisa, Cl. Sci (5), Vol. III (2004), 171-231.

[10] R. Schétzle, Lower semicontinuity of the Willmore functional for currents (2004), submit-
ted.

[11] L. Simon, Lectures on geometric measure theory, Proc. Centre for Math. Analysis, Austral.
Nat. Univ., Camberra (1983).

A software code to manipulate apparent contours
MAURIZIO PAOLINI
(joint work with G. Bellettini, V. Beorchia and F. Pasquarelli)

Given a projection from a smooth compact surface ¥ embedded in R? onto
R?, the corresponding apparent contour C' is the set in R? where the projection
is not regular (at some preimage). Please note that since we require ¥ to be
embedded, it will also be orientable; we do not require X to be connected. If ¥
is generic, its apparent contour consists in a collection of smooth oriented arcs
(corresponding to folds of ¥) connecting a set of crossings and cusps. Each arc
of the apparent contour can be augmented with a depth information (Huffman
labelling [3]), which simply states how many layers of the surface lie ahead of the
fold (Figure 1). With this labelling there is a unique way to recover the shape (up
to a vertical deformation) of the originating surface ¥ [2].

More general isotopic deformations of ¥ will produce deformations in the ap-
parent contour that undergo topological changes, as shown in Figure 1, where the
torus on the left is slightly twisted in its upper-left part. The possible topology
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FIGURE 1. Apparent contour of a torus before and after a deformation.

changes can be enumerated as a finite number of rules; two examples of such rules
is presented in Figure 2. The complete set of rules can be found e.g. in [1].

f+2
d,+1 4y
N1
CN1
f+2 f+2 f — f+2 f
f+2
f+2
+2 lys2 dy
d
d=dmjn (N f d 1
f+2

f= fmin

FIGURE 2. Rules nl and cnl: disocclusion of a fold and removal
of a swallowtail.

Applicability of each rule also depends on the orientation of the arcs involved
and the local values of the depth function; checking by hand whether a rule can be
applied or not, and producing the correct result can be tedious and error prone,
hence the idea of developing a software code that automates such process.

The resulting software is named appcontour and is hosted on SourceForge
(www.sourceforge.net). It relies on an internal representation of an apparent con-
tour based on a description of the boundary of each region (connected component
of the complement of the contour) in terms of the involved arcs and is capable
of various manipulations, which includes listing the rules that can be applied and
computing the result of the rule application. Some information on the originating
surface such as the Euler characteristic and the number of connected components
is also computed by the software.

A description of an apparent contour can be given in a more convenient way in a
Morse-theory fashion by imagining a horizontal line traversing the contour from top
to bottom and listing for all critical positions of the line the type and order of the
intersections (possible types are: transversal crossing, local mazimum/minimum,
cross point).

Presentation of a resulting apparent contour is given in the form of a region
description; a graphical 2D display can be obtained with an utility (showcontour)
that produces a decent picture by smoothing up a polygonal that roughly repre-
sents the structure of the contour.

The source code of the software is available, and contributions are welcome, par-
ticularly for a graphical user interface, which is as yet missing; future development
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can include extension of the code to treat apparent contours that are not com-
ing from projections of embedded surfaces, such as nonoriented immersed surfaces
(e.g. klein bottle and Boy surface) or even generic 2D manifolds with a smooth
map in R2.

The above results have been obtained in collaboration with Giovanni Bellettini
(Univ. Roma Tor Vergata, Italy) Valentina Beorchia (Univ. Trieste, Italy) and
Franco Pasquarelli (Universita Cattolica Brescia, Italy).
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Surface Parametrization - Guided by Curvature
KONRAD POLTHIER
(joint work with Felix Kélberer and Matthias Nieser)

We introduce an algorithm for the automatic computation of a global parameter-
ization on arbitrary simplicial 2-manifolds whose parameter lines are guided by a
given frame field, for example, by principal curvature frames. The parameter lines
are globally continuous and allow a remeshing of the surface into quadrilaterals.

The algorithm converts a given frame field into a single vector field on a
branched covering of the 2-manifold and generates an integrable vector field by a
Hodge decomposition on the covering space. Except an optional smoothing and
alignment of the initial frame field, the algorithm is fully automatic and generates
high quality quadrilateral meshes.

The algorithm [1] extends earlier work by [6] and has contact to the approaches
of [3, 4, 5, 7]
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Automatically generated quadrilateral meshes from given irregular triangle meshes.
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Discrete Differential Geometry for Architecture
HELMUT POTTMANN
(joint work with A. Bobenko, Y. Liu, J. Wallner, W. Wang)

Freeform shapes in architecture is an area of great engineering challenges and novel
design ideas. Obviously the design process, which involves shape, feasible segmen-
tation into discrete parts, functionality, materials, statics and cost at every stage
benefits from a complete knowledge of the complex interrelations between geome-
try requirements and available degrees of freedom. Only recently researchers have
become interested in the geometric basics of single- and multi-layer architectural
freeform structures based on polyhedral surfaces.

The talk reports on recent progress in this emerging field of research, which is
situated at the meeting point of discrete differential geometry, modeling, geom-
etry processing and architectural design. The mathematical topics include mesh
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parallelism, discrete Gauss images, a discrete curvature theory and results on es-
pecially useful meshes such as discretizations of principal curvature lines, edge
offset meshes and discrete surfaces with constant mean or Gaussian curvature.
The results can be formulated within relative differential geometry and in this
way provide additional flexibility for the desired applications.
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Analysis of Subdivision Surfaces near Extraordinary Vertices
ULRICH REIF

Due to their simple and efficient algorithmic structure, subdivision surfaces have
become the standard primitive for the generation of smooth surfaces of arbitrary
topological genus in computer graphics applications. By contrast, the mathe-
matical analysis of the underlying algorithms is nontrivial and still poses some
challenging questions.

Let us briefly review some basic principles for an analytic approach. The rep-
resentation of subdivision surfaces as an infinite union of spline rings,

x=[J x", x":Q-R, Q:=[0,2\[0,1)*x {1,...,n},
mENg
is quite different from the algorithmic point of view, where they are considered as
the limit of a sequence of finer and finer polygonal meshes. In the case of linear
stationary subdivision, the spline rings are given by

x™ = BA™P,

where B is a column vector of basis functions, P is a column vector of control
points, and A is the subdivision matrix. Using the eigen-decomposition A =
VAV~!, we define the eigenfunctions and -coefficients by F := BV and Q :=
V1P, respectively, to obtain the expansion

L
X" = A" feaq.
=0

Convergence of the scheme is guaranteed if the dominant eigenvalue is A\g = 1.
Schemes with a double subdominant eigenvalue A := A\; = )2, generate C'-surfaces
if the characteristic map

VU= [fl,fg] : Q — R2

is regular and injective. All schemes currently is use satisfy to this condition.
However, subdivision surfaces do not live up to the high demands encountered,
for instance, in industrial car body design. In order to understand the sources
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of shape artifacts, the limit behavior of curvature has to be analyzed. Standard
tools, like principal curvatures and directions are not suitable since in case of an
umbillic limit point, the principal directions do not converge, even if the surface
is perfectly smooth. The Weingarten map W, which relates the differential of the
Gauss map and the parametrization via

—Dn = WDx

is also not useful since its representation depends on the basis of the tangent
space, which is typically given by the partial derivatives of x, and these vectors
are discontinuous for subdivision surfaces. We suggest to employ the embedded
Weingarten map E, which is defined by

[—Dn] _ {Dx] E,
0 n
and can easily be computed with the help of the pseudo inverse Dx* of Dx and
the second fundamental form,
E = Dx' IT (Dx™)".
Besides the trivial eigenvalue 0 corresponding to the normal direction, we have
I‘Z‘E = R;I;, 1€ {1,2},
where x; are the principal curvatures to the principal directions r;. Compared

with the relatively complicated integrability conditions for the fundamental forms
(Mainardi-Codazzi and Gauss), the integrability conditions for E simply read

nSEtJr = ntEj.

Moreover, F is a geometric invariant of the surface, and is ideally suited for cur-
vature analysis of subdivision surfaces. The asymptotic expansion of E™ is

m m |[E¢ 0
E™ = (u/X?) +0(p)?,
0 O
where p := A3 = --- = A\, is the subsub-dominant eigenvalue of A, and E° can be

easily computed from the characteristic map and the second fundamental form of
the central surface

-
%= fiqy + f2d2 + Y _(qe,0) fo.
£=3
A necessary and sufficient condition for a scheme to generate C?-surfaces is u = 2,
and that the limit matrix F°¢ is constant. The latter property is equivalent to

fe € span{fZ, fifo, 2}, £=3,...,7

A first algorithm satisfying this extremely restrictive functional condition was
given in [4], but it did not become popular due to a severe lack of flexibility.
Recently, Peters and Karciauskas [1] pioneered the idea of guided subdivision,
which is the first instance of a C?-algorithm combining ease of use and high surface
quality. Inspired by their ideas, we propose a new framework for the construction of
a broad class of C%-schemes: Denote the space of C?-spline rings of bi-degree d with
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values in R® by C3(£2, R*), and choose a concentric tessellation map ¥ € C’(%(Q7 R?),
which is regular and injective, and joins C? with AW for a given value A € (0,1).
Then the scheme proceeds in four linear steps:

(1) Reparametrization. Given a spline ring x = BP € C3,(Q,R?), let
r:=R[x]=x00!

denote the reparametrization of x over the set I' := x(02).
(2) FEuxtension. Define an extension

e:=FE[r], e:\I' - R’®

of r with the property that r and e join C? and that r € P4 implies e € Py,
where P; denotes the space of all bivariate polynomials of total degree d.
For instance, extension operators can be derived from minimizing standard
fourth order fairness functionals.

(3) Turn back. The function r, is turned back to a spline ring by

t:=T[e]=eo V.

(4) Projection. Finally, the spline ring t is projected onto the given spline
space,
p = Plt] € O3, (AR,
for instance by minimizing a standard distance functional.

Together, we obtain the subdivision scheme
SIx] == PIT[E[RIx]].
By construction, the corresponding subdivision matrix A has eigenvalues
LA A2 A2 N2

and it defines a C? scheme if and only if all remaining eigenvalues are less than
A2 in modulus. The minimal possible value of d is d = 3 so that the spline rings
have to be at least bi-sextic.
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Adaptive Markov Models with Information-Theoretic Methods for
Image Analysis

Ross WHITAKER
(joint work with Suyash Awate, Tolga Tasdizen)

1. INTRODUCTION

Low-level problems in image processing, such as denoising, reconstruction, and
segmentation typically require some kind of model of image structure. Thus, the
modeling of images in a general, yet tractable manner remains an important area
of research. Most image processing algorithms make strong geometric or statistical
assumptions about the properties of the signal and/or noise. Therefore, they lack
the generality to be easily applied to new applications or diverse image collections.
This talk presents an adaptive Markov model of images that allows algorithms
to automatically learn the local statistical dependencies of image neighborhoods.
Probability densities for neighborhoods are estimated nonparametrically, through
a kernel-based strategy, and thus, image statistics are captured through large sets
of examples of image neighborhoods. We use this strategy to create adaptive algo-
rithms for low-level image processing. We enforce optimality criteria based on fun-
damental information-theoretic concepts that capture the functional dependence,
information content, and uncertainty in the data. This talk presents examples of
the application of this strategy to denoising, reconstruction, and segmentation.

2. RANDOM-FIELD IMAGE MODEL

The proposed methodology develops from the model of an image as a random
field. A random field [12] is a family of random variables X (Q2; T'), for some index
set T', where, for each fixed T = ¢, the random variable X (£2;¢) is defined on the
sample space €. If we let T be a set of points defined on a discrete Cartesian
grid and fix 2 = w, we have a realization of the random field called the digital
image, X (w,T). In this case {t}+cr is the set of pixels in the image. For two-
dimensional images ¢ is a two-vector. If we fix T' =t and let w vary then X (¢) is
a random variable on the sample space. We denote a specific realization X (w;t)
(the intensity at pixel t), as a deterministic function z(t).

If we associate with T' a family of pixel neighborhoods N = {N;}cr such that
N; CT,t¢ N, and u € Ny if and only if t € N, then N is called a neighborhood
system for the set T'. Points in N; are called neighbors of t. We define a random
vector Y (t) = {X(t)}+en, corresponding to the set of intensities at the neighbors
of pixel £. We also define a random vector Z(t) = (X (¢),Y (¢)) to denote image
regions, i.e. pixels combined with their neighborhoods. The proposed formulation
assumes a stationary ergodic process (in practice this assumption can be relaxed
somewhat)
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3. PROCESSING WITH DENSITY FUNCTIONS

The proposed strategy is to model the probability density functions associated
with the neighborhood, which are the joint distribution P(z) and the conditional
distribution P(Z|y), and use these models to either denoise or classify pixels in
images.

For denoising, we propose an entropy scale-space that is a gradient descent of
the joint entropy

hZ) == log P(Z(t))dt
teT
where T is the image domain.

The probabilities associated with these neighborhoods are formed from im-
age examples—that is, set of randomly selected neighborhoods from around the
image—and a kernel-based estimation, also called Parzen windowing. Thus, we
have

il

1
| > Gulzi—z,0)
tj€A;
where G, is an isotropic Gaussian kernel with standard deviation o. For the
entropy this gives

1
h(Z)z—Zlog A Z Gn(zi — z,0) |,

ti€A;

where z; is the neighborhood at the i pixel location, and A; is a set of image
samples choose to model the density for that point.

The proposed algorithm uses a gradient descent of the joint entropy with respect
to x;. We express the update descent in terms of a dummy evolution parameter,
7, which gives

ox;  Oh(Z) 1 Gn(2zi — 2, Vn)

- ~— T — T;
or Ox; |T|o2 et Y tnea, Gnlzi — 2, ‘I/n)( i)

If we choose discrete updates with a time step |T'|o2, then we have the following
iterative procedure for each pixel

n+1 o
Ly f E Wi, L j

J

where the sum over j covers the random selection of samples and w; ;s are formed
by Gaussian kernels and Y Wi = 1. Thus, each pixel update is formed by a
weighted some of other pixel values whose neighborhoods are similar to the pixel
being updated. We call this algorithm UINTA [11, 2]. Replacing pixel values with
weighted averages of pixels with similar neighborhoods has also been proposed
[8, 7], in the algorithm NL-means, which performs only one update with a fairly
large averaging window. This analysis shows that NL-means a special case, a
single iteration, of the iterative, entropy reducing procedure defined by UINTA.
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An important practical aspect of the algorithm is the selection of ¢. For this
application we propose o that maximizes the likelihood of each sample, using a
cross validation strategy—which also minimizes entropy. Thus sigma is driven
by the information content of the image, and is updated each iteration, as the
randomness in the image is reduced.

More details on this method and extensive experimental results are presented
in a series of papers [11, 2, 13]. These results show that the algorithm is quite
effective compared to state-of-the-art methods based on PDEs and wavelet shrink-
age. These results also show that iterative approach with an automatic selection
of o generally outperforms the one-shot strategy of NL-means, which requires a
much larger ¢ in order to be effective at all.

4. OTHER APPLICATIONS

The proposed strategy, of modeling probability densities of image neighbor-
hoods with sets of neighborhoods samples has other applications. For instance,
if we include a noise model, or likelihood, we can use the joint neighborhood
density as a prior, and perform an optimal, a-posteriori estimation that properly
weights the input data and the neighborhood densities. This has been shown to
be effective, for instance, in denoising MRI data of the human head [5].

This strategy also has applications in image segmentation. For instance, in
MRI tissue classification, the intensities of MRI images are generally not sufficient
to make reliable decisions about tissue type, especially at the interface between
different tissue types. Thus, several authors propose the use of Markov random
fields, to explicitly bias solutions toward smoother tissue boundaries. Nonpara-
metric neighborhood models, combined with an entropy reduction scheme for each
tissue type, have been shown to be more effective for reducing classification error
[4, 1]. The strategy of reducing in-class neighborhood entropy is also effective for
texture classification [3].
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