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Nicole Bäuerle (Karlsruhe)

Ralf Korn (Kaiserslautern)

February 18th – February 24th, 2007

Abstract. The workshop brought together leading experts from all over the
world to exchange and discuss the latest developments in mathematical fi-
nance and actuarial mathematics. Researchers from the industry had the
opportunity to circulate their problems among mathematicians. The partic-
ipants gained from a fruitful interaction between mathematical methods and
practitioner’s problems as well as from the interaction between finance and
actuarial mathematics.

Mathematics Subject Classification (2000): 91Bxx, 60Gxx.

Introduction by the Organisers

The workshop Recent Developments in Financial and Insurance Mathematics and
the Interplay with the Industry, organised by Søren Asmussen (Aarhus), Nicole
Bäuerle (Karlsruhe) and Ralf Korn (Kaiserslautern) was held February 18th–
February 24th, 2006. The participants came from all over the world, including
Hong Kong and the US. The workshop was attended by 25 mathematicians, most
of them were leading experts in mathematical finance and actuarial mathematics
and a few researchers from the industry.

In total, there were 21 talks distributed over five days with a long lunch break
between 12:30 and 16:00 which made it possible to discuss the latest results and
open problems posed in the morning sessions. The major themes of the talks had
been

• Optimization problems in finance and insurance
• Multidimensional modeling in finance and insurance
• Valuation of insurance products, credit risk and electricity markets
• Risk measures and distributions with heavy tails.
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We proceed with a brief overview of the four subjects above and a summary of
the principal results of those areas that were reported on in the workshop:
Optimization problems in finance and insurance: Quite a large number of the
talks investigated stochastic dynamic portfolio problems in finance as well as in
insurance. Tomas Björk who gave the first talk considered a general investment
problem where the local rate of return is unobservable. Using non-linear filtering
techniques and the martingale method he derived fairly explicit results. Thaleia
Zariphopoulou introduced a new way to quantify performance measurement in as-
set allocation. Motivated by the martingale optimality principle she showed how
optimal portfolios in this setup can be obtained by solving a fast diffusion equation
posed inversely in time. Ralf Korn gave a review on old and new results for worst-
case portfolio problems. He reported that he now found a HJB-system linking the
indifference approach to classical stochastic control theory. Martin Schweizer’s
talk was on utility indifference valuation of contingent claims H in an incomplete
market driven by two Brownian motions where the traded and non-traded assets
are stochastically correlated. He showed explicit formulas for the indifference value
of H in case of exponential utility. Xin Guo established a new theoretical connec-
tion between singular control of finite variation and optimal switching problems.
This approach provides a novel method for solving explicitly high-dimensional sin-
gular control problems. Jostein Paulsen considered two optimal dividend problems
with and without reinvestment (which could prevent from ruin) and where divi-
dend payments and reinvestment are subject to fixed and proportional cost. He
gave an explicit solution in case the expected discounted payout minus reinvest-
ment has to be maximized. Finally Mogens Steffensen studied optimal consump-
tion and insurance payment streams in a multistate Markovian framework seen
from the individuals’s perspective. He derived a general solution in case of power
utility maximization.
Multidimensional modeling in finance and insurance: It is obvious from the work-
shop that multidimensional (correlated) stochastic processes have become a very
important topic recently. In particular as far as Lévy processes are concerned.In
his talk, Filip Lindskog extended (under some conditions) the classical Cramér-
Wold results on projections and convergence of probability measures to measures
with a singularity. This result can also be applied to Lévy processes. Thomas
Mikosch showed how to combine functional regular variation with heavy-tailed
large deviations for partial sums. As an application he derived asymptotic re-
sults for ruin probabilities of a multivariate random walk with regularly varying
step sizes. Claudia Klüppelberg presented a multivariate model for operational risk
processes. She discussed in particular the influence of the Lévy copula on the
Value-at-risk of the summed process. Finally, Nicole Bäuerle showed how to char-
acterize dependence properties and comparison results for Lévy processes with the
help of the Lévy measure and the Lévy copula. Some applications in insurance
and finance were reported.
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Valuation of insurance products, credit risk and electricity markets: Several talks
demonstrated that the mixture between financial and actuarial aspects of prob-
lems still is increasing. Thomas Møller told the audience that a new market for
so-called mortality derivatives is now appearing due to the systematic risk in life
insurance portfolios. He showed how insurers can reduce their risk by trading
e.g. survivor swaps. Andrew Cairns discussed some new stochastic models for
mortality, in particular the Olivier-Smith model which borrows ideas from interest
rate modeling. Hailiang Yang investigated the valuation of insurance liabilities
of equity-indexed annuities and participating life insurance policies where the eq-
uity price process is given by a Markov regime switching model. Alfred Müller
reported on challenges in modeling electricity price processes and introduced a
three-factor model for the spot market price which captures seasonal effects. Uwe
Schmock presented a one-period model for dependent risks which generalizes both
the standard collective risk model and CreditRisk+ and where the portfolio loss
distribution can be computed with a numerically stable algorithm. Holger Kraft
introduced a unified framework for modeling credit risks with bankruptcy and
contagion and showed how to compute prices of derivatives in the setup.
Risk measures and distributions with heavy tails: It is clear from the workshop
that heavy tails still are an important topic as far as applications are concerned.
Christian Hipp explained in his talk how third order asymptotic expansions for
the tail probability of n-fold convolutions of claim sizes with regular varying tails
can be computed. He ended with some conjectures about Weibull type and Log-
normal type claim sizes. Jens Perch Nielsen talked about new approaches to
regression which can determine the full distribution and where errors can have
heavy tails. Hansjörg Furrer presented the evolution of the regulatory framework
from Solvency 0 to Solvency II and posed some open questions concerning the
risk measurement in a multi-period framework. Dirk Tasche investigated in his
talk how kernel estimation can be combined with importance sampling to obtain
efficient estimations of Value-at-risk contributions.

In addition to the excellent scientific program, there were two scheduled so-
cial activities: Due to the splendid weather, the traditional hike to St. Roman on
Wednesday afternoon was a true pleasure despite the muddy short-cut at the be-
ginning. On Thursday night there was a piano concert given by Mogens Steffensen
with a lot of entertaining Elton John songs.

For some of the participants this was their first trip to Oberwolfach and they
were very impressed by this experience. We, the organizers, would like to thank the
”Mathematisches Forschungsinstitut Oberwolfach” for providing such an excellent
environment and for the technical support. The participants encouraged the idea
of organizing a similar workshop in about three years.

Søren Asmussen
Nicole Bäuerle

Ralf Korn
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Abstracts

Optimal Investments under Partial Information

Tomas Björk

(joint work with Mark Davis and Camilla Landen)

We consider a filtered probability space (Ω,F , P,F). On this space we have a
Wiener process W , and we study a price process with dynamics

(1) dSt = αtStdt+ StσtdWt,

where α and σ are adapted with σt ≥ ǫ > 0. The short rate is assumed to be zero.
For any adapted self financing portfolio with weight u on the stock, and value X ,
the portfolio dynamics are

(2) dXt = utαtXtdt+ utXtσtdWt,

Now define the filtration G by Gt = FS
t . The problem is to maximize

(3) EP [U(XT )]

over the class of G-adapted portfolios. Thus we will have a partially observed
control problem. We solve this problem in two steps:

• We first consider the completely observable case, i.e. when Ft = FS
t . This

case is easily solved by the use of martingale methods.
• For the general case we project the dynamics of S onto the observable

filtration, thus reducing the problem to the completely observable case.

For the cases of power. log, and exponential utility, and without any assumption
of a Markovain structure, we manage to obtain surprisingly explicit expressions for
the optimal portfolio and the optimal wealth process. This extends earlier work
by Bäuerle and Rieder.

References

[1] N. Bäuerle, U. Rieder, Portfolio optimization with unobservable Markov-modulated drift

process, Journal of Applied Probability 42 (2005), 362-278.
[2] N. Bäuerle, U. Rieder, Portfolio optimization with jumps and unobservable intensity process,

To appear in Mathematical Finnce.

Bankruptcy, counterparty risk, and contagion

Holger Kraft

(joint work with Mogens Steffensen)

Pricing defaultable bonds and credit derivatives has been one of the important
topics in finance over the past decade. This development is fueled by a rapid growth
in the demand for credit derivatives leading to a $12.4 trillion market by the end of
2005 (as reported by the Bank for International Settlements (BIS)). Credit default
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swaps (CDS) and more recently collateralized debt obligations (CDO) have become
indispensable tools for the securitization of credit risks.1 Furthermore, current
developments in the automobile industry document the significance of so-called
contagion effects: On October 8, 2005 the auto parts maker Delphi Corp. filed
for Chapter 11 bankruptcy protection. On December 12, 2005 the rating agency
S&P cut GM’s corporate credit rating to B, five steps below investment grade. On
March 3, 2006 the auto parts maker Dana Corp. filed for bankruptcy protection
defaulting on $2.5 billion of debt. At the same time, it is argued that the market
for credit derivatives is dominated by too few banks, making it vulnerable to a
crisis if one of them fails to pay on contracts that insure creditors from companies
defaulting. This kind of risk is usually referred to as counterparty risk. The goal
of this paper is to offer a framework where all related pricing problems can be
addressed in a unified way.

There are a few related papers dealing with the aforementioned issues. Jar-
row and Turnbull (1995), Duffie and Singleton (1999a), and Lando (1994, 1998)
demonstrate how default risk of a single entity can be handled. Lando (1998) also
addresses the important question of default correlation: He puts forth a so-called
Cox process framework where default correlation between entities occurs, since
all default intensities of the entities depend on the same macroeconomic variables
modeled as diffusions. There is an ongoing debate in the literature whether this
kind of framework can produce enough default correlation. One of the reasons is
that conditioned on the history of macroeconomic variables, defaults occur inde-
pendently. Hence, there are no feedback effects from defaults of single firms on
other firms. To include this kind of contagion effect, there are two suggestions in
the literature: The first idea is to make the firm’s default intensities dependent
on past defaults of other firms in the economy. This idea goes back to Davis
and Lo (1999) and Jarrow and Yu (2001). Therefore, conditioned on the history
of the macroeconomic variables defaults are no longer independent. The second
idea makes use of copulas. Li (2000), Schönbucher and Schubert (2001), as well
as Rogge and Schönbucher (2003), among others, assume that conditioned on
the macroeconomic variables, defaults are distributed according to some copula
function. The first approach resembles the empirically observable fact that upon
default of one entity spreads jump upwards, whereas in the second approach one
of the key issues is to find a copula leading to the desired default correlation. In
an insightful paper, Yu (2005a) demonstrates that models of the Jarrow-Yu type
induce a certain copula and vice versa. Besides, a recursive procedure called “total
hazard construction” is presented that overcomes the deficiencies of the primary-
secondary approach by Jarrow and Yu (2001) and generalizes the construction of
default times by Lando (1998). Nevertheless, in his examples he mostly needs to
resort to Monte Carlo methods.

Building on these ideas by Jarrow and Yu, this paper provides a different view
of the problems addressed in the aforementioned papers. Instead of starting by
constructing default times, we demonstrate that a few relevant problems can be

1See, e.g., Longstaff (2006).
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modeled as Markov chains. This includes models for the pricing of basket credit
default swaps. Starting with the papers by Jarrow, Lando, and Turnbull (1997)
and Lando (1998), so far Markov chains are almost exclusively used to model
rating systems. The advantage of our approach is that it gives us access to many
useful results on Markov chains simplifying the task of pricing credit risky assets
significantly. By relating pricing problems with default risk to a system of partial
differential equations, which without default risk collapses into a Black-Scholes-
type equation, we demonstrate how these pricing problems are related to ordinary
pricing problems without default risk. This is one of our main contributions. At
the same time this paper provides a unified framework nesting various credit risk
models. One of the main advantages of our approach is that closed-form solutions
for several contingent claims exposed to various types of credit risk can easily
be obtained. In particular, we also derive pricing formulas for three building
blocks that are generalizations of contingent claims studied in Lando (1998).

Measuring risk concentration

Dirk Tasche

We consider the following stochastic credit portfolio loss model:

(1) L =

n
∑

i=1

Li.

L1, . . . , Ln ≥ 0 are random variables that represent the losses that a financial
institution suffers on its exposures to borrowers i = 1, . . . , n within a fixed time-
period, e.g. one year. The random variable L then expresses the portfolio-wide
loss. We denote by P[. . .] the real-world probability distribution that underlies
model (1). In other words, P[. . .] is calibrated in such a way that it reflects as
close as possible observed loss frequencies.

It is common practice for financial institutions to measure the risk inherent
in their portfolios in terms of economic capital (EC). As credit risk, for most
institutions, is considered to be most important, this is in particular relevant for
credit portfolios. EC is commonly understood as a capital buffer intended to
cover the losses of the lending financial institution with a high probability. This
interpretation makes appear very natural the definition

(2) EC = VaRP,α(L) − EP[L],

where the Value-at-Risk (VaR) is given as a high-level (e.g. α = 99.9%) quantile
of the portfolio-wide loss:

(3) VaRP,α(L) = min{ℓ : P[L ≤ ℓ] ≥ α}.

Hence, if a financial institutions holds EC according to (2) and charges the loans
granted with upfront fees adding up to EP[L], the probability that it will lose all
its EC is not higher than 1 − α.
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Active risk management involves more than just measuring portfolio-wide cap-
ital according to (2). Additionally, it is of interest to identify which parts of the
portfolio bind the largest portions of EC. The corresponding process of determin-
ing a risk-sensitive decomposition of EC is called capital allocation. While for the
expectation part EP[L] of EC on the right-hand side of (2) there is the natural
decomposition

(4) EP[L] =

n
∑

i=1

EP[Li],

there is no such obvious decomposition

(5) VaRP,α(L) =
n
∑

i=1

VaRP,α(Li |L)

for the VaR-part of EC into risk contributions. Interpreting risk sensitivity as
compatibility with portfolio optimization, [5] proved that the risk contributions
VaRP,α(Li |L) on the right-hand side of (5) should be defined as directional deriva-
tives, i.e.

(6) VaRP,α(Li |L) =
dVaRP,α(L + hLi)

d h

∣

∣

h=0
.

As VaR is a positively homogeneous risk measure, by Euler’s theorem, then (5)
holds. Additionally, it turns out [2, 5] that, under fairly general conditions on the
joint distribution of L and Li, the derivative (6) coincides with an expectation of
the loss related to borrower i conditional on the event of observing a portfolio-wide
loss equal to VaR.

(7)
dVaRP,α(L+ hLi)

d h

∣

∣

h=0
= EP[Li |L = VaRP,α(L)]

As an important application of the risk contribution concept (6), [6] proposed to
use it for measuring risk concentration and diversification, in the following sense:

Definition 1 Let L1, . . . , Ln be loss variables and let L =
∑n

i=1 Li. Then

DIP,α(L) =
VaRP,α(L) − EP[L]

∑n
i=1 VaRP,α(Li) − EP[L]

denotes the diversification index of portfolio L with respect to EC based on VaRP,α.
The fraction

DIP,α(Li |L) =
VaRP,α(Li |L) − EP[Li]

VaRP,α(Li) − EP[Li]

denotes the marginal diversification index of sub-portfolio Li with respect to EC
based on VaRP,α.

In general, DIP,α(L) assuming a value close to 1 will indicate that there is no sig-
nificant diversification in the portfolio. Similarly, a value close to 1 of DIP,α(Li |L)
will indicate that there is almost no diversification effect with credit i. As the de-
pendence – measured as degree of comonotonicity – in a portfolio is influenced
both by idiosyncratic and systematic risk, the diversification indices according to
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Definition 1 capture name diversification as well as sectoral diversification.

In general, no closed-form representations of VaRP,α(L) and the risk contribu-
tions VaRP,α(Li |L) are available. Therefore, often, these quantities can only be
inferred from Monte-Carlo samples. This means essentially to generate a sample

(8) (L(t), L
(t)
1 , . . . , L(t)

n ), t = 1, . . . , T,

and then to estimate the quantities under consideration on the basis of this sample.
How to do this is quite obvious for VaR, but is much less clear for the risk contribu-
tions VaRP,α(Li |L) as, in general, estimating derivatives of stochastic quantities
without closed-form representation is a subtle issue. If P[L = VaRP,α(L)] is posi-
tive, the conditional expectation on the right-hand side of (7) is given by

(9) EP[Li |L = VaRP,α(L)] =
EP[Li 1{L=VaRP,α(L)}]

P[L = VaRP,α(L)]
.

Even if P[L = VaRP,α(L)] is positive, its magnitude will usually be very small, such
as 1− α or less. [1] showed how to apply importance sampling in such a situation
in order to efficiently estimate EP[Li |L = VaRP,α(L)]. [3] and [4] applied similar
techniques to the problem of estimating contributions to Expected Shortfall.

However, a crucial condition for (7) to hold exactly is the existence of a den-
sity of the distribution of L. The probability P[L = VaRP,α(L)] then equals
zero, and consequently the right-hand side of (9) is undefined. In this situation,
the conditional expectation EP[Li |L = VaRP,α(L)] is still well-defined by the
Radon-Nikodym theorem, but its estimation from a sample like (8) requires more
elaborated non-parametric methods. We follow here [2] who applied kernel esti-
mation methods for VaR contributions when optimizing returns in a portfolio of
stocks. The kernel estimation procedures, however, have to be adapted to the rare-
event character of credit risk. Therefore, in [7] we modify the approach by [2] in a
way that can be described as a combination of kernel estimation and importance
sampling.

So far, the approach proposed in [7] is not yet fully satisfactory. In particular,
the following issues are open:

• Finding an efficient way of choosing an optimal or nearly optimal tilting
parameter for the exponential tilting procedure.

• Can the estimation performance be improved by using other kernel esti-
mators than the Nadaraya-Watson estimator?

• How to adapt efficiently the approach by [3] to shifting the distribution of
the systematic factors for estimating VaR contributions?

References
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A multifactor generalisation of the Olivier-Smith model for stochastic
mortality

Andrew Cairns

Recent years have seen the development of a number of models for the future devel-
opment of aggregate mortality rates. Amongst these the Olivier and Smith model
(Olivier and Jeffery, 2004, and Smith, 2005) was developed within the forward-rate
framework discussed by Cairns et al. (2006) and Miltersen and Persson (2005).
This model has a numbe of useful properties that make it a very good model for
use in the valuation of life insurance contracts that incorporate embedded options.

We discuss here a generalisation of the Olivier and Smith model. Dynamics of
the model in its published form are driven by a sequence of univariate gamma ran-
dom variables. We demonstrate that the model in this form does not adequately
match historical data. We discuss a generalisation of the model that uses multi-
variate Gamma random variables as drivers. This approach potentially gives us
much greater control over the term structure of volatility of spot survival proba-
bilities and over the correlation term structure. We introduce a possible approach
for simulation of multivariate gamma random variables that facilitates

Forward survival probabilities

We define the risk-neutral forward survival probability that an individual aged
x at time 0, survives until time T conditional on the individual being alive at time
t (0 ≤ t < T ) and conditional on information about underlying mortality rates up
until time s, to be: pQ(s, t, T, x). s might be any date greater than or equal to 0,
and might be before or after s and before or after T .

The Olivier and Smith model proposes that

pQ(t+ 1, t, T, x) = pQ(t, t, T, x)g(t+1,T,x)G(t+1)

where G(1), G(2), . . . is a sequence of i.i.d. Gamma(α, α) random variables, and
the g(t + 1, T, x) are a set of Mt-measurable normalising constants that ensure
that EQ[p(t+ 1, t, T, x)|Mt] = pQ(t, t, T, x).

We consider a generalisation of this model

pQ(t+ 1, t, T, x) = pQ(t, t, T, x)g(t+1,T,x)G(t+1,T,x)
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where the G(t + 1, T, x) ∼ Gamma(α(t + 1, T, x), α(t + 1, T, x)) are dependent
Gamma random variables. Positive mortality rates require that the pQ(t+1, t, T, x)
are strictly decreasing functions of T . This translates into a requirement that

G(t+ 1, T + 1, x) > φ(t+ 1, T, x)G(t+ 1, T, x)

for all T > t, for some Mt measurable constants φ(t+ 1, T, x).
In Cairns (2007) we discuss necessary conditions that must be satisfied by the

joint distribution of the G(t + 1, T, x). However, a more detailed specification
of the joint distribution remains an open problem. A partial solution has been
proposed by A. Müller (personal communication), but a more flexible formulation
is still sought.
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Efficient and Numerically Stable Aggregation of Dependent Risks

Uwe Schmock

(joint work with Richard Warnung)

We presented an actuarial one-period model for dependent risks. It extends the
well-known collective risk model for portfolio losses used in actuarial science (cf. [7,
Chap. 3]). It also generalizes CreditRisk+, a credit risk model developed by Credit
Suisse First Boston [2]. The presented model is suitable for the aggregation of cer-
tain dependent risks, which may be insurance, credit or operational risks. The
guiding principle for the model extensions are analytic tractability and the possi-
bility to calculate the portfolio loss distribution with an efficient and numerically
stable algorithm without any Monte Carlo simulation.

Basically, the portfolio loss distribution is a compound Poisson distribution,
where the claim size distribution is a mixture distribution consisting of the indi-
vidual idiosyncratic random losses and the cumulative random losses caused by
the K risk factors. For every risk factor, the losses come in clusters of random size,
the losses themselves are again mixture distributions of individual losses, whose
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sizes are random multiples of a basic loss unit. If the cluster sizes are distributed
according to a logarithmic, Poisson or negative binomial distribution, then the
distribution of the cumulative losses due to the risk factors can be calculated in a
numerically stable and efficient way using the Panjer algorithm. Here numerical
stability refers to the provable fact that during the Panjer recursion for the above-
mentioned cluster size distributions, only numbers of the same sign are added,
hence cancellation does not occur. The final aggregation is done with the Panjer
algorithm for the compound Poisson distribution. Therefore, for K risk factors,
K + 1 numerically stable Panjer recursions are sufficient.

For the extended (truncated) negative binomial distribution, the Panjer recur-
sion is numerically unstable due to cancellations, as can be shown by examples.
However, when α ∈ (−1, 0), meaning that the support is N, a modified algorithm,
involving the stable Panjer recursion for the usual negative binomial distribution
followed by a weighted convolution, is numerically stable (however, the number of
operations is doubled), see [3].

The original CreditRisk+ aggregation algorithm (corresponding to deterministic
individual losses and logarithmically distributed cluster sizes) was reported to have
numerical instabilities, cf. [4]. A modification proposed by G. Giese [4], for which
Haaf, Reiß and Schoenmakers [6] proved the numerical stability, is a special case
of the algorithm outlined above. We want to emphasis that our extension to
random individual losses allows to model even dependent credit rating transition
risk (which manifests itself as market risk as long as no default happens).

Our above algorithm allows to calculate quantiles and expected shortfall explic-
itly without any Monte Carlo simulation. For logarithmically distributed cluster
sizes, the risk contributions can be calculated, too, adapting a lemma by Tasche
[9, Section 3.4]. For certain coherent risk measures considered by Cherny and
Madan [1], we can calculate tight upper and lower bounds numerically (without
any Monte Carlo simulation).

More details can be found in [8], an application to operational risk and a com-
parison to the fast Fourier transform method is given in [10].

References

[1] A. S. Cherny and D.B. Madan, Coherent measurement of factor risks, preprint, available
at http://mech.math.msu.su/~cherny/papers.html, 2006.

[2] Credit Suisse First Boston, CreditRisk+: a credit risk management framework, available at
http://www.csfb.com/creditrisk , 1997.

[3] S. Gerhold, U. Schmock, and R. Warnung, A note on stable recurrences, in preparation,

2007.
[4] G. Giese, Enhancing CreditRisk+, Risk 16 (2003), no. 4, 73–77.
[5] M. Gundlach and F. Lehrbass (eds.), CreditRisk+ in the Banking Industry, Springer-Verlag,

Berlin, Heidelberg, 2003.
[6] H. Haaf, O. Reiß, and J. Schoenmakers, Numerically stable computation of CreditRisk+, In

Gundlach and Lehrbass [5], pp. 69–77.
[7] R. Kaas, M. Goovaerts, J. Dhaene, and M. Denuit, Modern Actuarial Risk Theory, Kluwer

Academic Publishers, Boston, 2003.

http://mech.math.msu.su/~cherny/papers.html
http://www.csfb.com/creditrisk


Recent Developments in Financial and Insurance Mathematics 563

[8] U. Schmock, Modelling dependent credit risks with extensions of CreditRisk+ and applica-
tion to operational risk, lecture notes, available at
http://www.fam.tuwien.ac.at/∼schmock/notes/ExtentionsCreditRiskPlus.pdf, 2006.

[9] D. Tasche, Capital allocation with CreditRisk+, In Gundlach and Lehrbass [5], pp. 25–43.
[10] G. Temnov and R. Warnung, Operational risk in practice – comparison of methods of loss

aggregation, submitted, Dec. 2006.

On systematic mortality risk and risk-minimization with survivor
swaps

Thomas Møller

(joint work with Mikkel Dahl, Martin Melchior)

A new market for so-called mortality derivatives is now appearing with survivor
swaps (also called mortality swaps), longevity bonds and other specialized solu-
tions. The development of these new financial instruments is triggered by the in-
creased focus on the systematic mortality risk inherent in life insurance contracts,
and their main focus is thus to allow the life insurance companies to hedge their
systematic mortality risk. At the same time this new class of financial contracts
is interesting from an investor’s point of view since they increase the possibility
for an investor to diversify the investment portfolio. The systematic mortality risk
stems from the uncertainty related to the future development of the mortality in-
tensities. Mathematically this uncertainty is described by modeling the underlying
mortality intensities via stochastic processes.

We study a model with two mortality intensities and two underlying random
processes, where the first mortality intensity represents the mortality of the in-
surance portfolio, and the second intensity represents the mortality of a popula-
tion. We allow the two mortality intensities to be driven by the same underlying
processes, where one process is taken to represent the general uncertainty and
the other represents a more specific uncertainty for the given insurance portfolio.
The model is inspired by the one proposed in [2] and [3] and uses the so-called
CIR-processes known from the financial literature for the modeling of mortality
intensities.

We consider different financial markets, which contain a zero coupon bond and
possibly one or more survivor swaps, and study the possibilities of hedging in
these markets. In all the markets we have more sources of risk (financial risk and
mortality risks) than financial assets, so we apply theory from incomplete markets.
More precisely, we use the criterion of risk-minimization introduced by [1] for
contingent claims and extended to payment processes by [4] to determine risk-
minimizing strategies. The strategies illustrate how the combined insurance and
financial risk can be hedged partly with bonds and survivor swaps. This extends
the work of [3]. The strategies are evaluated numerically.

http://www.fam.tuwien.ac.at/~schmock/notes/ExtentionsCreditRiskPlus.pdf
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Decisions and Design in Life and Pension Insurance

Mogens Steffensen

(joint work with Holger Kraft)

Personal financial decision making plays an important role in modern finance. De-
cision problems about consumption and insurance are modelled in a continuous-
time multi-state Markovian framework. The optimal solution is derived and stud-
ied. The model, the problem, and its solution are exemplified by two special cases:
In one model the individual takes optimal positions against the risk of dying; in
another model the individual takes optimal positions against the risk of losing
income as a consequence of disability or unemployment. The solution leads to a
discussion on optimal design of life insurance contracts.

Third order expansions for compound distributions and for ruin
probabilities with claims having regularly varying tails

Christian Hipp

Consider compound sums S = X1 + ... + XN with independent claim sizes Xi

which have a distribution with regularly varying tails with index γ, i.e.

P{Xi > s} = F (s) = L(s)s−γ

where L(s) is slowly varying, and F (s) admits a smooth density f(s). Assume
that the claim number N is independent of the claim sizes Xi, i = 1, 2, ... and has
a distribution belonging to the Panjer class. It is well known that the numerical
computation of the total claims distribution G(s) = P{S ≤ s} is time consuming
because of the fat tail of the claim size distribution. This is true for both methods
of computation: the integro-differential equation as well as Panjer’s method with
discretized claim sizes. For G(s) we have several suggestions for approximation
which are theoretically valid for large s : the first order asymptotic formula of
Embrechts and Veraverbeke a1(s) in [3] and the second order asymptotic formula
of Baltrunas a2(s) from [2]. Further work on approximations of compound dis-
tributions in the heavy tailed case can be found in Grübel [4],Mikosch [5], and
Willekens [6].
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We derive a third order approximation a3(s) for G(s). Approximations for com-
pound distributions lead to similar approximations for ruin probabilities in the
classical Lundberg model. Under the net profit condition c > λµ we can use the
Pollaczek-Khintchine formula

ψ(s) =

∞
∑

n=1

pn(1 − p)H∗n(s,∞),

where p = λµ/c and H is the ladder height distribution with density

h(x) =
1

µ
F (x), x > 0.

We investigate the performance of all these approximations for the special case
of Pareto claim sizes, for compound distributions as well as for ruin probabilities.
For numerical calculations we discretize the distribution F (s) to obtain arithmetic
distributions F1 and F2 which are upper and lower bounds for F. If ∆ > 0 is a
step size then the point probabilities fi(k∆) for Fi are given by

f1(k∆) =

∫ (k+1)∆

k∆

f(x)dx, k = 0, 1, 2, ...

f2(k∆) =

∫ k∆

(k−1)∆

f(x)dx, k = 1, 2, ...

are upper and lower bounds for F (s) in the sense that for all s ≥ 0

F 1(s) ≤ F (s) ≤ F 2(s).

The correspondig approximations for G(s) are upper and lower bounds:

G1(s) ≤ G(s) ≤ G2(s),

where for i = 1, 2

Gi(s) =

∞
∑

n=0

P{N = n}F ∗n
i (s), s ≥ 0.

For the computation of the point probabilities gi(k∆) of Gi(s) we use Panjer’s
recursion:

g1(0) =

∞
∑

n=0

P{N = n}f1(0)n

g1((k + 1)∆) =

k+1
∑

j=1

(

a+ b
j

k + 1

)

f1(j∆)g1((k + 1 − j)∆)

(1 − af1(0))
, k = 0, 1, 2, ...

and

g2(0) = P{N = 0}

g2((k + 1)∆) =

k+1
∑

j=1

(

a+ b
j

k + 1

)

f2(k∆)g2((k + 1 − j)∆), k = 0, 1, 2, ...

We need two different recursions because of f1{0} > 0.
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The first order approximation is classical: G(s) = a1(s) + o(F (s)), with

a1(s) = E[N ]F (s).

Our numerical computation reproduce the result of Abate et al. [1] that the first
order asymptotic formula may underestimate G(s), i.e. the asymptotic formula is
of little use in the range of finite s which are of interest in real world applications.
Next, we consider the second order expansions for G(s) developed by Baltrunas
(see [2], p. 132, Theorem 5.1.(iii)):

G(s) = a2(s) + o(f(s)),

where

(1) a2(s) = a1(s) + E[N(N − 1)]µf(s).

Also this approximation is not satisfactory.
We prove the following third order approximation for G(s) :

G(s) = a3(s) + o(f ′(s)),

where

(2) a3(s) = a2(s) +

(

E[N(N − 1)]µ2 −
1

2
E[N(N − 1)(N − 2)]µ2

)

f ′(s),

and µ2 is the second moment of Xi. Our numerical comparisons show that the
third order approximation reduces the error in the first and second approximation
in such a way that it can be recommended for practical applications.
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Investment performance measurement under forward criteria

Thaleia Zariphopoulou

(joint work with Marek Musiela)

Traditionally, how well an investor does is assessed through expected utility crite-
ria, typically formulated via a deterministic concave function of terminal wealth.
A key element of this approach is the a priori specification of risk preferences at
a fixed future time. As a result, optimal behavior is directly influenced by the
horizon choice, a fact that not only limits the applicability of such criteria but also
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poses potential inconsistency problems in valuation and hedging across different
maturities.

A new approach is proposed that alleviates the horizon dependence and main-
tains natural optimality properties. Specifically, one seeks for a process defined at
all times, is a supermartingale at arbitrary controls and becomes a martingale at
an optimum. Its martingality property is a natural consequence of the desire to
maintain the current state, if an optimum has been achieved. The supermartingal-
ity property, on the other hand, expresses deviation from such a state and, thus,
decreasing future expected performance. In contrast to the existing framework,
however, the forward performance datum is determined today and not a (possibly
remote) future time.

Several difficulties are encountered due to the fact that the associated stochastic
optimization problems are posed “inversely in time” and, thus, existing techniques
in portfolio choice have limited use, if any. A construction approach is proposed
that applicable for a large class of models and produces a rich family of forward
solutions. The method is based on two novel ingredients, namely, a stochastic
time change (subordination) and the compilation of appropriately chosen differ-
ential and stochastic input. The differential input is determined by the investor’s
dynamic preferences while the stochastic input follows exclusively the changes in
the market.

The initial datum is taken to be a concave function of wealth. The model
is incomplete, non-Markovian and may include many securities. The approach
is general enough so that it allows for measuring investment performance with
regards to a benchmark as well as for cases in which the investor has different
views about upcoming market behavior, or faces trading constraints.

Besides producing the forward solutions, the proposed method provides a direct
way for closed form construction of the associated optimal allocations. Despite the
non-Markovian nature of the model, optimal allocations turn out to be stochas-
tic feedback functionals of current wealth. The stochastic time change is a key
element for this local dependence. The optimal policies have also very pleasing
form. Specifically, they consist of two funds that are, respectively, proportional
to (benchmarked) wealth and the subordinated (benchmarked) risk tolerance pro-
cess. The proportionality coefficients are processes depending only on the market
parameters. This two-fund separation result holds for arbitrary initial data and
provides a rather universal, and at the same time, intuitive structure of the optimal
strategies. It is worth mentioning that in traditional expected utility models, the
form of optimal portfolios is rather opaque and only implicitly deduced through
martingale representation theorems in the dual domain.

Important role in the analysis plays the risk tolerance process. It is defined
as the local risk tolerance function with its space and time arguments evaluated,
respectively, at benchmarked wealth and at the time-subordinator process. The
former function satisfies a fast-diffusion type differential constraint while its recip-
rocal, the investor’s local risk aversion, solves a porous medium equation. These
properties also enable us to construct a system of stochastic differential equations
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that is satisfied by the pair of wealth and risk tolerance processes, at the opti-
mum. This autonomous system also comes as a surprise given the non-Markovian
character of the model.

Dependence Properties and Comparison Results for Lévy Processes

Nicole Bäuerle

(joint work with Anja Blatter, Alfred Müller)

Whereas dependence properties and comparison results for random vectors are
by now very well established, there still is need for research as far as stochastic
processes are concerned. In this talk we investigate dependence properties and
comparison results for multidimensional Lévy processes. The talk is based on [1].

1. Dependence Properties of Lévy Processes

Let X = (X(t))t≥0 be a d-dimensional Lévy-process, i.e. a stochastically con-
tinuous process with independent and stationary increments. From the Lévy-
Itô-decomposition we know that the distribution of a Lévy process is uniquely
determined by a characteristic triplet (A, ν, γ), where A is a covariance matrix of
a Brownian motion, γ is a drift parameter and ν is the Lévy-measure determining
the frequency and size of jumps. Since the continuous part and the jump part
of a Lévy process are independent ([6][Theorem 19.2]) it suffices to consider the
dependence structure of the continuous and the discontinuous part of Lévy pro-
cesses separately. In the following we will focus on the dependence structure of the
jump part of a Lévy process only since the Brownian part is easy to handle. We
will consider the following notions of positive dependence which have been defined
for random vectors: association, positive orthant dependence (POD) and positive
supermodular dependence (PSMD). The last concept is in particular interesting for
applications. These dependence concepts can now easily be extended to stochastic
processes in the following way: The R

d-valued stochastic process X = (X(t))t≥0 is
said to be associated (POD, PSMD) if and only if (X(t1), . . . , X(tn)) is associated
(POD, PSMD) for all 0 ≤ t1 < t2 < . . . < tn and all n ∈ N. Note that in the case
of Lévy processes this is equivalent to X(t) being associated (POD, PSMD) for all
t ≥ 0. Here we obtain the following result:

Theorem 1. Let X be a d-dimensional Lévy process with Lévy measure ν.

a) X is associated if and only if ν is concentrated on

R
d
++,−− = {x ∈ R

d | xi ≥ 0∀i or xi ≤ 0∀i}

b) The following statements are equivalent:
(i) X is associated.
(ii) X is POD.
(iii) X is PSMD.

These notions of dependence can also be characterized by Lévy copulas, a con-
cept which has been introduced recently by [4] and further refined by [5].
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Theorem 2. Let X be a d-dimensional Lévy process with Lévy copula F . X is as-

sociated (POD, PSMD) if and only if F (u) = 0 for u ∈
(

R
d
++,−−

)c

∩
∏d

i=1 RanUi.

However, note that there are other important concepts of dependence like mul-
tivariate total positivity of order 2 (MTP2) or conditionally increasing in sequence
(CIS) which cannot be characterized by the Lévy copula.

2. Comparison Results for Lévy Processes

We will consider the supermodular ≤sm and the concordance order ≤c here.
Analogously to the previous section these orderings can be extended to stochastic
processes. Comparison results for semimartingales can be found in [2]. Among
others we obtain the following results

Theorem 3. For Lévy processes X, X̃ with Lévy measures ν, ν̃, the following
conditions are equivalent:

(i) X ≤sm X̃.
(ii) ν ≤sm ν̃, i.e.

∫

fdν ≤
∫

fdν̃ for all supermodular f ∈ B0 where B0 :=
{

f : R
d → R | f is measurable and bounded and lim supx→0

f(x)
‖x‖2 <∞

}

.

Theorem 4. Let d = 2. For Lévy processes X, X̃ with Lévy measures ν, ν̃ and
Lévy copulas F , F̃ the following conditions are equivalent:

(i) X ≤c X̃.

(ii) X ≤sm X̃.

(iii) ν and ν̃ have the same marginal tail integrals and F ≤ F̃ .

3. Applications in Finance and Insurance

3.1. Ruin Time Points. Suppose the Lévy process X = (X1(t), . . . , Xd(t))t≥0

represents the evolution of d risk reserve processes of different business lines. De-
note by

τj := inf{t ≥ 0 |Xj(t) ≤ 0}

the ruin time of risk reserve j = 1, . . . , d. If X is an R
d-valued Lévy process and

X is associated (or POD or PSMD) then the ruin time points τ = (τ1, . . . , τd) are
associated (and thus also POD and PSMD). Analogously we obtain a comparison

result: Let X and X̃ be two R
d-valued Lévy processes. If X ≤sm X̃ then the ruin

time points are ordered:

τ = (τ1, . . . , τd) ≤sm τ̃ = (τ̃1, . . . , τ̃d).

Now define by X+
t :=

∑d
i=1Xi(t) the sum of these processes. Obviously the law

of X+ depends on the Lévy copula. By ψX+ we denote its probability of ruin

ψX+(u) = P

(

inf
t≥0

X+
t < 0 | X+

0 = u

)

.
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Suppose we have two portfolios of risk processes X and X̃ which are both R
d-

valued Lévy processes. If X ≤sm X̃ then for all u > 0:
∫ ∞

u

ψX+(s)ds ≤

∫ ∞

u

ψX̃+(s)ds

and thus also the adjustment coefficients are ordered whenever they exist, which
extends results in [3].

3.2. Stock and Option Prices. Let X be an R
d-valued Lévy process and let

the price processes of d assets satisfy the following stochastic differential equation

dSi(t) = Si(t−)
[

µi(t)dt+ σi(t−)dXi(t)
]

Si(0) = 1

where µi(t), σi(t) are bounded deterministic càdlàg functions. Further we assume
for all i = 1, . . . , d that σi(t)

(

Xi(t)−Xi(t−)
)

≥ −1 for all t ≥ 0. This assumption
guarantees that the stock prices stay positive. Now it can be shown that if the
Lévy process X is associated (or POD or PSMD), then the price processes are
associated (and thus also POD and PSMD). This result can be used to obtain
bounds on option prices for options whose pay-offs depend on more than one stock
price. For example take a contingent claim with pay-off H = h(S1(T ), S2(T )). Its
price is given by π(H) = B−1

T EQ[h(S1(T ), S2(T ))] whereQ is an adequately chosen
pricing measure. If h is a supermodular function and S1 and S2 are associated
under Q, then

π(H) ≥ π(H⊥)

where π(H⊥) is the price of the same option with independent price processes.

Typical functions h which are supermodular are h(x, y) =
(

min(x, y) −K
)+

and

h(x, y) =
(

x+ y −K
)+
.
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Regular variation, large deviations and ruin

Thomas Mikosch

(joint work with Henrik Hult, Filip Lindskog, Gennady Samorodnitsky)

First we extend classical results by A.V. Nagaev (1969) on large deviations for
sums of iid regularly rvarying andom variables to partial sum processes of iid
regularly varying vectors. The results are stated in terms of a heavy-tailed large
deviation principle on the space of càdlàg functions. The main result is analogous
to Mogulski’s theorem, i.e., it can be understood as a large deviation extension
of Donsker’s functional CLT. We illustrate how these results can be applied to
functionals of the partial sum process, including ruin probabilities for multivariate
random walks and long strange segments. These results make precise the idea of
heavy-tailed large deviation heuristics: in an asymptotic sense, only the largest
step contributes to the extremal behavior of a multivariate random walk.
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Modelling Dependence of Lévy Processes

Claudia Klüppelberg

Besides market risk and credit risk, the risk of losses resulting from inadequate
or failed internal processes, people and systems, or external events, called opera-
tional risk has become a main focus of financial risk management. Simultaneous
modelling of operational risks occurring in different event type/business line cells
poses a great challenge for operational risk quantification. Financial risk is typ-
ically modelled by a high quantile, the so-called Value-at-Risk. Because of the
similarities of operational risk severities to insurance claims, high quantile approx-
imations for the single cell operational risk can be derived easily (cf. [2]).

To model the dependence structure of operational loss events we invoke in [3, 4]
the concept of Lévy copulas. In particular, we derive approximations of similar
quality and simplicity for multivariate operational VAR.

Lévy copulas have been suggested in [5] and separate the marginal Lévy pro-
cesses from their dependence structure. For a spectrally positive Lévy process in
R

d, a Lévy copula is a measure on R
d
+ with Lebesgue marginals. As standardisa-

tion of the marginals is rather arbitrary, other concepts are possible. To sharpen
the understanding of Lévy measures a standardisation to a Lévy measure instead
of Lebesgue measure seems favourable.

In [1] it was suggested to standardise the marginal processes to 1-stable Lévy
processes. Any Lévy process can then be represented by its marginal standardisa-
tions and the Lévy copula representing the dependence structure. This new Lévy
copula is then itself the Lévy measure of a Lévy process with 1-stable marginals.
Relationships to arbitrary stable processes are obvious. The concept of spectral



572 Oberwolfach Report 10/2007

measure for regularly varying Lévy processes can also be embedded into this con-
cept.
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tional risk with Lévy copulas. Preprint, Munich University of Technology. Available at
www.ma.tum.de/stat/

[5] R. Cont and P. Tankov, (2004) Financial Modelling With Jump Processes. Chapman &
Hall/CRC, Boca Raton.

Extreme value regression in practise, also when data are
underreported, truncated or censored

Jens Perch Nielsen

This is summary of a longer paper. We only present the introduction and the
new set of estimators. Asymptotic theory, the simulation study and the empirical
study is left out of this summary that has to be at most eight pages long. Let
(X1, Y1), . . . , (Xn, Yn) be n independent identically distributed set of variables.
We wish to estimate various functionals of the conditional distribution of Y1 given
X1. We are in particular concerned about functionals emphasizing the importance
of extreme high values of the dependent variable. We do not mind to be guided
by some complexity reducing structure or prior knowledge on a useful paramet-
ric model. However, we do wish a nonparametric estimator to be available for
our final judgement. In our case study below we apply the complexity reducing
multiplicative structure:

Yi = g(Xi)εi,

where the residuals ε1, . . . , εn are independent identically distributed variables
and we use the modified Champerknown distribution, see Buch-Larsen, Nielsen,
Guillen, Bolance (2005), as our paramatric guidence.

Also, we do not observe (X1, Y1), . . . , (Xn, Yn) directly, but only (X1, Y1 ∧
C1), . . . , (Xn, Yn∧Cn), where (C1, . . . , Cn) are independent indetically distributed
right censoring times. Also, our data are truncated to the left such that a pair
(X,Y ) is only observed when Y is above some threshold value T , where T is the
time of left truncation. Had Y been below this T , we would not observe anything
about the pair (X,Y ); not even that it had been truncated. Let (T1, . . . , Tn) be
these truncation times. One prominent example where this statistical problem
arises is in commercial insurance. The censoring applies when there is some upper
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limit on the insurance policy. Either as part of the actual contract or as a con-
sequence of poor data collection where only the actual expense of the company
is recorded disregarding amounts paid by the reinsurance company. Typically, an
insurance company holds an excess of loss contract where the reinsurance com-
pany covers amounts above some threshold value exactly corresponding the right
censoring mechanism described above. Left truncation exactly corresponds to the
widely used deductibles. A loss below the deductible value is covered by the in-
dividual policy holder without even noticing the insurance company. Even in the
simple one-dimensional case without any censoring or truncation our estimation
problem is non-trivial and has given rise to an enormous amount of theory on the
extreme value behaviour of distributions and its estimation. The so called EVT-
theory, see Embrecht, Mikosch and Klüppelberg (1999) for a prominent textbook
on this. However, most of this literature is based on the asymptotic behaviour
of maximal values of stochastic variables arguing for the existence of a limit dis-
tribution - generalised pareto - to which all extreme values distributions can be
approximated. In practise most EVT-methods are based on personal judgement;
much like when a bandwidth is chosen by eye-ball in nonparametric smoothing
problems. Automatised versions of EVT exist but have never convinced praction-
ers and are not used very often. Also, there are surprisingly few simulation studies
spelling out the actual benefits of EVT methods. This lead Bolance, Guillen and
Nielsen (2003) and Buch-Larsen, Bolance, Guillen and Nielsen (2005) to view this
this one-dimensional problem as a standard estimation problem attempting to
improve estimation considering the classical trade off between variance and bias
present in all problems of statistical inference. The extreme tail was accounted
for by transformation methods inspired by the pioneering paper in the field of
Ruppert, Marron and Wand (1991). In the working paper version of the first of
these two papers, Bolance, Guillen and Nielsen (1999), a simulation study was
carried out where it was shown that classical EVT models did not work very well
for any of the distributions considered in the study and we have concluded that we
do not use classical EVT methods for business decisions. Buch-Kromann, Guillen,
Linton and Nielsen (2007) extended the approach of Buch-Larsen et al. (2005) to a
multivariate setting, where the loss distribution is allowed to depend on covariates.
This lead to various methods of multivariate density estimation and its adjustment
guided by structured models. The widely available methodology of regression is
not appropriate for this type of problems where we need a full model specification
and not just mean functions or quantiles. In this paper we extend the approach
of Buch-Kromann et al. (2007) to the more complicated setting where truncation
and right censoring is present. From a theoretical point of view we have extend
the methodology of Buch-Kromann et al. (2007) to a filtered data setting of this
paper. Filtered data is short for data that might have been truncated or censored.
We use counting process theory for this task and have to go through some theo-
retical steps that have recently been throdden within the field of nonparametric
smoothing based on filtered data. Nielsen, Tanggaard and Jones (2007) notes that
nonparametric smoothing of densities can be generalised in such a way that it in a
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filtered data context corresponds to local polynomial hazard estimation weighted
with the classical Kaplan-Meier estimator. Without filtering this local constant
estimator simply collapses to the standard kernel density estimator. Nielsen et
al. (2007) also notice that they do not recommend this estimator in general for
filtered data. The reason is what they call exposure robustness indicating that an-
other weighting, the so called natural weighting combined with a smooth version of
the Kaplan-Meier, works just as well as standard kernel density estimation when
there is no filtering or when filtering is happening in a smooth an unsurprising
way. However, when lack of robustness is present in the exposure pattern, the
method with natural weighting and a smoothed Kaplan-Meier outperformances
the other method enormously. Therefore, Nielsen et al. (2007) suggested always
to use the latter approach since there was no pain, only gain. We generalise this
latter approach to the multivariate setting. First we define a smoothed conditional
Kaplan-Meier as a simple functional of the multivariate kernel hazard estimator of
Nielsen and Linton (1995). Then we define our nonparemetric conditional density
estimator as a weighted version of this very same local constant multivariate ker-
nel hazard estimator, where the weight is the smoothed conditional Kaplan-Meier.
Once a conditional density estimaor is available we can approximate this density
to our complexity reducing structure. Finally we follow Buch-Kromann et. al
(2007) and apply this structured density to guide a bias correcting leading to our
final smooth nonparametric density estimator.
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Connecting Singular and Switching Controls, with Applications

Xin Guo

(joint work with Pascal Tomecek)

In [5], we establish a new theoretical connection between singular controls of finite
variation and a class of switching controls. This correspondence provides a novel
methodology for solving explicitly high-dimensional singular control problems, and
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links singular controls and Dynkin games through sequential optimal stopping
problems.

Built on this correspondence, we analyze in [6] a class of singular control prob-
lems from (ir)reversible investment for which value functions are not necessarily
smooth. Necessary and sufficient conditions for the well-known smooth fit princi-
ple, along with the regularity of the value functions, are given. Explicit solutions
for the optimal policy and for the value functions are provided. In particular, when
the payoff functions satisfy the usual Inada conditions, the boundaries between ac-
tion and no-action regions are smooth and strictly monotonic as postulated and
exploited in the existing literature ([4, 3, 7, 1, 9, 10, 2, 8]). Illustrative examples
for both smooth and non-smooth cases are discussed, to highlight the pitfall of
solving singular control problems with a priori smoothness assumptions.
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Electricity Markets: A Challenge for Financial Mathematics

Alfred Müller

(joint work with Markus Burger, Bernhard Klar, Gero Schindlmayr)

Contracts between electric utilities typically offer a substantial amount of flexi-
bility in the form of complex embedded options. Demand for such optionalities
arises naturally from the unpredictability of power consumption and from the op-
tionalities inherent in power plants. In the past, there rarely was the necessity to
precisely evaluate the value of these optional parts, because electricity was not a
commodity which could easily be traded, and because supply of electric power was
assured by utility companies under regulatory control. In fact, most counterparts
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did not use the flexibility of the delivery contracts in a market-orientated way. In
recent years, these matters have changed dramatically. In many countries electric
power markets have been liberalized and exchanges and online trading platforms
for electricity contracts have been founded. Market participants now take advan-
tage of the optionality in their contracts by optimizing against market prices and
looking for arbitrage opportunities. Therefore, it has become an important task
for utilities to develop new pricing models for the contracts they buy and sell and
to quantify and manage the involved risks. This leads to new challenges for finan-
cial mathematics, as the stochastic dynamics of electricity prices are quite different
from all other markets, which is mainly due to the non-storability of electricity.

In this talk we suggest a simulation model for spot market prices capturing the
following stylized facts observed in the market:

• seasonal patterns of daily, weekly and yearly periodicities,
• extreme price spikes,
• mean reversion,
• price dependent volatilities,
• long-term non-stationarity.

The model is a three-factor model, where one factor describes the load pro-
cess, whereas the second factor is a stationary process, describing the short-term
mean-reverting behavior of the prices, and the third term describes the long-term
non-stationary behavior as observed from futures prices. Moreover, the model
takes into account for the nonlinear relation between load and price, and for the
seasonality in the availability of power plants. For a detailed description of the
model we refer to [1].

In the second part of the talk we suggest a simple heuristic for pricing swing
options, based on a dynamic programming algorithm for a simplified model. By
comparing this heuristic with explicitly computable upper and lower bounds, it
is shown that this simple heuristic is a surprisingly good approximation of the
optimal strategy. And the end of the talk we address several open problems. In
particular it would be desirable to include the following features in a more realistic
model:

• non-Gaussian dependence modelling of the risk factors, allowing for mod-
elling tail dependence,

• modelling stochastic volatility of the risk factors (GARCH processes are
not realistic, as the lead to infinite prices for many options!),

• better modelling of futures prices,
• explicit solutions for the exercising strategies and the prices of swing op-

tions and other complex derivatives.

Other important open problems concern the possibilities for hedging (e.g. with
weather derivatives) and the question about the correct pricing measure, as the
market is highly incomplete, and therefore there are many equivalent martingale
measures, and it is not clear, which of these to choose as the right one for pricing
derivatives.
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Risk-based solvency requirements

Hansjörg Furrer

A number of recent initiatives such as the preparation for Solvency II have led to an
increase in the extent to which insurance companies manage their risk and capital.
The aim of this talk is to give an overview of the current risk modeling initiatives
in the context of prudential supervision. To begin with, the characteristics of
Europe’s first life and non-life solvency margin rules are discussed. These rules go
back to the 1970s, and were established in 1973 under the First Non-Life Directive
(73/239/EEC) and in 1979 under the first Life Directive (79/267/EEC). These
two directives marked the first steps towards the establishment of the free market
in insurance within the European Community. The rules for the calculation of
the solvency margin requirements stem from the works of Campagne [5], and
are based on simple ratios that are calculated as percentages of risk exposure
measures such as technical provisions, premiums or claims. Their focus is mainly
on insurance risks, though for with-profit (participating) business a factor of 4%
based on technical provisions takes account of the investment risk. Campagne’s life
approach is based on some simplifying assumptions on the distribution function of
the loss ratio, where the loss ratio is defined as the loss L in a year divided by the
technical provisions R. The loss ratios were assumed to be iid for different years
and companies, and distributed according to a Pearson-Type IV distribution. The
Pearson-Type IV probability density function is as follows:

(1) f(x) = k

(

1 +
(x− λ

a

)2
)−m

exp
{

−ν artan
(x− λ

a

)

}

, x ∈ R,

where m, ν, a and λ are real-valued parameters and k = k(m, ν, a) is a nor-
malizing constant that depends on m, ν and a. Observe that when ν = 0, the
Pearson-Type IV distribution is a version of Student’s t-distribution. The min-
imum solvency margin MSM was defined as the Value-at-Risk of the loss ratio
distribution at the 95% level. For the data that was used this led to a necessary
minimum solvency margin of 4% of the technical reserves.

During the process with the third directives, the Council discussed the possibil-
ity to review the provisions concerning the solvency margins. In April 1994, the
Insurance Committee agreed to ask the European supervisory authorities (now
CEIOPS) to establish a working group to look into solvency issues in a broad
sense. Helmut Müller from the Bundesaufsichtsamt für das Versicherungswesen
(BAV) chaired that group. The report that the working group presented in 1997
is known as the “Müller Report”, see [11]. It was considered in the Müller Report
that the current solvency margin requirements had proved satisfactory. However,
the Müller Report pointed out some specific cases of deficiencies that could have
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been avoided by more accurate solvency margin regimes. These deficiencies relate
to investment and asset-liability mismatches, inadequate reinsurance etc. The
preparatory work included in the Müller Report and a Commissions report essen-
tially led to the proposal for a new life and non-life solvency margin Directive.
The two Directives, known as Solvency I, focus on improving the existing rules for
the calculation of the solvency margin requirement.

Solvency II is the continuation of the work already initiated in Solvency I.
Whereas Solvency I aimed at revising and updating the then-current EU solvency
regime, Solvency II has a much wider scope. It contains a fundamental and wide-
ranging review of the current regime in the light of the current developments in
insurance, risk management, financial reporting etc. One of the key objectives of
Solvency II is the establishment of a solvency system that is matched to the true
risks of an insurance undertaking. The Solvency II project is divided into three
distinct phases. The first phase lasted from 2001 to 2003, and was designated
to do the preparatory work. In particular, it consisted of gathering knowledge in
relation to the general form of a solvency system. The second phase stretches from
2003 to 2007. It is more technical and is devoted to details such as the valuation
of assets and liabilities and the determination of risk capital. Finally, the third
phase is the implementing phase. This also includes the implementation in the
national laws.

The different solvency assessment frameworks and proposals in the context of
Solvency II have in common that their target capital requirements are based on
four main risk categories: market risk, insurance risk, credit risk, and operational
risk. Most of these main risk categories can be further subdivided into sub-risks.
For example, insurance risk can be subdivided into u/w risk, mortality risk, sick-
ness risk, surrender or lapse risk, and expense risk. Once the risk categories have
been fixed, the procedure for the determination of the solvency requirement is as
follows:

• quantify each risk category (subcategory) and equip it with a certain target
capital requirement. The quantification is done by means of risk measures
in connection with (simplifying) distibutional assumptions. Using Value-
at-Risk as risk measure and the normal distribution as the first order
approximation of the true distribution, this implies that the target capital
requirement equals the standard deviation times a factor k, e.g. k = 2.33
or k = 2.58 depending on the level of confidence.

• combine the individual target capital requirements for each risk category
to a single target capital, thereby taking the dependency structure into ac-
count. Most often, the dependency structure for the various risk categories
is expressed via their (linear) correlations.

• compare the target capital requirement with the available solvency capital.

During spring 2003, the Federal Office of Private Insurance (FOPI) initiated the
Swiss Solvency Test (SST) project. The SST approach is based on principles rather
than on fixed rules. The assets and liabilities will be valued marked-to-market.
The standard approach for calculating the target capital requirement is based on
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a variance-covariance type model. In addition to that, a number of plausible ad-
verse scenarios must be evaluated and their impact on the available capital be
determined. These scenario impacts must then be used to determine the ultimate
distribution of the change in the available solvency capital over one year. The SST
risk measure is the Tail-Value-at-Risk at the 99% confidence level. Contrary to
the various European initiatives, operational risk must not be quantified within
the SST. FOPI believes that simplified capital models such as the above described
SST standard approach are not suited to assess the capital requirements for large
companies, re-insurers, insurance groups and financial conglomerates. Also, the
standard models are not designed to take into account the non-linearities emanting
from embedded options and financial guarantees. Therefore, the FOPI sent out
a letter to all Swiss life insurance companies asking them to abstain from sim-
plified economic capital models such as variance-covariance type models. Rather,
companies should develop and use internal models.

The presentation concludes with some remarks on multi-period risk measures.
That final part is motivated by a decree of the Belgian supervising authority
CBFA who requires Belgian life insurance companies to provide one, five, and
ten year Value-at-Risks and Tail-Value-at-Risks, see [6], Article 21. It is shown
that measuring risk over a multi-period time horizon is fundamentally different
from measuring risk over a single period. The concept of time-consistent dynamic
convex risk measures is introduced, and it is shown that Tail-Value-at-Risk is not
time-consistent in the multi-period case. The material presented in this last part
of the presentation is taken from [1], [7], [8], and [9].
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Optimal dividend (and reinvestment) policies when payments are
subject to both fixed and proportional costs

Jostein Paulsen

The classical problem of maximizing the expected discounted value of dividends
paid out from a diffusion income process is addressed. The income process without
payments is given as

dYt = µ(Yt)dt+ σ(Yt)dWt.

Standing assumptions are

A1. |µ(y)| + |σ(y)| ≤ K(1 + y) for all y ≥ 0 and some K > 0.
A2. µ and σ are continuously differentiable and the derivatives µ′ and σ′ are

Lipschitz continuous for all y ≥ 0.
A3. σ2(y) > 0 for all y ≥ 0.
A4. µ′(y) ≤ r for all y ≥ 0. Here r is the discount factor.

Let

Lg(y) =
1

2
σ2(y)g′′(y) + µ(y)g′(y) − rg(y).

First the most common situation where business ends when the process hits zero
is studied. Whenever dividends are paid a fixed cost d0 pluss a proportional cost
d1 are incurred. This gives rise to a so called impulse control, and was studied
in [1] when the income process is a Brownian motion. When there is no fixed
costs connected with dividend payments we have a singular control problem, and
this was solved in [2]. According to this paper we should look for a solution of
LV (y) = 0, y > 0 and a y∗ that satisfy

V (0) = 0, V ′(y∗) =
1

1 + d1
and V ′′(y∗) = 0.

On y > y∗ set

V ∗(y) = V ∗(y∗) +
y − y∗

1 + d1
.

Optimal solution is singular control at y∗, and V is the value function.
If there is no solution then there is no optimal control, but the value function

is the limit of singular controls at barrier ȳ for increasing ȳ.

Our problem is somewhat more complicated, but we are led to the following
equations
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E1: LV (y) = 0, 0 < y < y∗,

V (0) = 0,

V (y) = V (y∗) + y−y∗

1+d1
, y > y∗

E2: V (y∗) = V (y∗ − δ∗) + δ∗−d0

1+d1
, δ∗ ∈ (0, y∗)

V ′(y∗) = 1
1+d1

,

V ′(y∗ − δ∗) = 1
1+d1

.

E3: V (y∗) = y∗−d0

1+d1
,

V ′(y∗) = 1
1+d1

.

The result is then:

Theorem 1

a) If E1+E2 has a solution for unknown V , y∗ and δ∗, this solution is unique
and the optimal strategy is to pay δ∗ in dividends whenever Yt− = y∗ and
continue. The value function is V (y).

b) If this is not the case, but instead, E1+E3 has a solution for unknown
V and y∗, the optimal solution is to pay everything in dividends when
Yt− = y∗ and go bankrupt. The value function is again V (y).

c) In all other cases there do not exist an optimal policy, but the value func-
tion is the limit of optimal value functions for given barriers ȳ for increasing
ȳ.

Assume that instead of bankruptcy when hitting zero it is possible to reinvest
money, but with every reinvestment there is a fixed cost c0 and a proportional
cost c1. The goal is to maximize expected value of discounted dividends minus
reinvestments. Again if c0 = d0 = 0 the problem was solved in [2]. According to
them we should look for a solution of LV (y) = 0, y > 0 and a y∗ that satisfy

V ′(0) =
1

1 − c1
, V ′(y∗) =

1

1 + d1
and V ′′(y∗) = 0.

On y > y∗ set

V ∗(y) = V ∗(y∗) +
y − y∗

1 + d1
.

Optimal solution is singular control at 0 and y∗, and V is the value function.
If there is no solution then there is no optimal control, but the value function

is the limit of singular controls at barrier 0 and ȳ for increasing ȳ.

Again the problem is somewhat more complicated when there are fixed costs,
but we get the following result.
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Theorem 2 Consider the following equations for unknown V , y∗, γ∗ ∈ (0, y∗)
and δ∗ ∈ (0, y∗),

LV (y) = 0, 0 < y < y∗,

V (γ∗) = V (0) + γ∗+c0

1−c1
,

V ′(γ∗) = 1
1−c1

,

V (y∗) = V (y∗ − δ∗) + δ∗−d0

1+d1
,

V ′(y∗ − δ∗) = 1
1+d1

,

V ′(y∗) = 1
1+d1

,

V (y) = V (y∗) + y−y∗

1+d1
, y > y∗.

a) If this has a solution this solution is unique and the optimal solution is to
pay γ∗ whenever Yt− = 0 and to pay δ∗ whenever Yt− = y∗. The value
function is V (y).

b) If this has no solution there is no optimal policy, but the value function is
the limit of optimal value functions for given barriers ȳ for increasing ȳ.

Numerical examples are given to illustrate the theorems.
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Cramér-Wold theorems for measures with a singularity

Filip Lindskog

(joint work with Jan Boman)

The well known Cramér-Wold theorem says that a probability measure on Rd

is uniquely determined by the values it gives to halfspaces. A natural question
is under which conditions this result can be extended to measures that are not
necessarily non-negative and that may have infinite mass near the origin. This
question is closely related to injectivity properties of the Radon transform. By
using the close relation to Radon transforms it can be shown that Cramér-Wold
theorem holds for more general measures that either dacay fast enough at infinity
or have supports restricted to a proper cone. Moreover, without such an addi-
tional assumption the values the measure gives to halfspaces need not determine
the measure. Similar results for convergence of sequences of measures can be
formulated.
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A consequence of the extended Cramér-Wold theorem is a characterization of
regular variation for a random vector in terms of regular variation for linear com-
binations of the components of the vector.

Worst-Case Optimal Portfolios: Basics and Recent Work

Ralf Korn

(joint work with Olaf Menkens, Mogens Steffensen, Paul Wilmott)

The worst-case approach to portfolio optimization is a generalization of the clas-
sical stochastic control method of continuous-time portfolio optimization (such as
developed by Merton in [5]). Its main intention is to explicitly capture the influ-
ence of possible crashes on the investment decision of an investor. We will present
two variants of this new optimization method, one based on an indifference argu-
ment (as in [1],[2],[4]) and one that makes use of a system of inequalities and a
complementarity condition which we call an HJB-System (see [3]).

For presenting the indifference approach, we look at a financial market where a
bond with price given by

(1) dP0 (t) = P0 (t) rdt, P0 (0) = 1

and a stock with price

(2) dP1 (t) = P1 (t) (bdt+ σdW (t)) , P1 (0) = p1

with b > r can be traded at each time instant t ∈ [0, T ]. However, we assume that
at most one crash can happen during this time, i.e. the stock price at the crash
time τ jumps down by a factor k ∈ [0, k∗] with k∗ < 1. Thus, we have

(3) P1 (τ) = (1 − k)P1 (τ−) .

We further assume that we have no probabilistic information on the distributions
of the height and the time of the crash. If now the investor follows a portfolio
process π (.) then his corresponding wealth process Xπ (.) satisfies

(4) Xπ (τ) = Xπ (τ−) (1 − π (τ−) k)

which leads to a final wealth of

(5) Xπ (T ) = X̃π (T ) (1 − π (τ−) k)

with X̃π (t) denoting the wealth process in the usual crash-free setting.

In this setting, the aim of the investor is to solve the following worst-case portfolio
problem:

(6) sup
π(.)∈A(x)

inf
0≤t≤T,0≤k≤k∗

E (ln (Xπ (T ))) .

To solve this problem, note that equation (5) yields a separation between the

effects of investment (as given by X̃π (.)) and of the crash (represented by the
factor (1 − π (τ−) k)). Considerably high values of the portfolio process lead to
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a high final wealth if no crash occurs but to big losses if a crash occurs. To
balance these two effects, the indifference approach introduced in [4] for the choice
of the log-utility function U (x) determines that portfolio process π̂ (.) such that
the investor is indifferent between the worst possible crash of height k∗ happening
now and no crash happening at all in [0, T ]. Indeed, it is shown in [4] that this
portfolio is the optimal one in the above worst-case sense:

Theorem 5. Indifference approach with log utility
There exists a portfolio process π̂ (.) such that the corresponding expected log-utility
after an immediate crash equals the expected log-utility given no crash occurs at
all. It is given as the unique solution π̂ (.) ∈ [0, 1/k∗) of the differential equation

(7) π′ (t) =
1

k∗
(1 − π (t) k∗)

(

π (t) (b− r) −
1

2

(

π (t)
2
σ2 +

(

b− r

σ

)2
))

,

(8) π (T ) = 0.

Further, this strategy yields the highest worst-case bound for our problem (6).
In particular, this bound is active at each future time point (uniformly optimal
balancing). After the crash has happened the optimal strategy is given by

(9) π (t) ≡ π∗ :=
b− r

σ2
.

The indifference approach can be generalized to yield similar theorems for the
cases of (see [2],[1],[4])

• the possibility of multiple crashes,
• the presence of insurance risk (in the case of the exponential utility func-

tion),
• changing market coefficients after a crash.

However, for utility functions different from the log-utility one the indifference
approach only yields the optimal portfolio process in the class of deterministic
portfolios, a class which is much smaller than expected. To overcome this prob-
lem, a new approach that is much closer to classical stochastic control theory is
developed in [3]. It is based on considering the usual partial differential operator
occurring in the HJB-Equation of stochastic control only over a set of portfolio
processes where the market can do the investor no harm (i.e. where the investor’s
situation (with respect to the above worst-case criterion) is not worse after a crash
than before). This together with an inequality comparing the investor’s value
function before and after a crash and a complementarity condition form a system
of inequalities and an equality (which we call an HJB-System) for which a classi-
cal verification result is given in [3]. Its presentation is beyond the s cope of this
abstract.
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Open problems for future research are:

• including a consumption process in the worst-case portfolio problem,
• the valuation of options in our crash model,
• generalization of the HJB-System approach,
• applying the worst-case approach to other areas of controlled systems with

possibilities of catastrophes.
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Valuation of equity linked insurance products under regime switching
models

Hailiang Yang

Nowadays, insurance business is changing; the changes are mainly due to the de-
velopment of modern finance and mathematical finance, in particular the rapid
growth of derivatives market. There are many products which exhibit option-
embedded features sold by the insurance companies, and such kinds of insur-
ance products, including variable annuities, participating life insurance contracts,
equity-index annuities (EIAs) or equity-linked annuities (ELAs), guarantee an-
nuity options (GAOs) and segregated funds, etc., become very popular recently.
Earlier work on exploring the interplay between the option pricing theory and life
insurance products can be dated back to Boyle and Schwartz (1977) and Brennan
and Schwartz (1976, 1979). These works investigate the use of modern option
pricing theory and its techniques for the valuation of equity-linked products and
life insurance policies with a guarantee on asset value.

In this research, we shall consider the valuation of participating life insurance
products and EIAs under regime switching models. For the EIA case, we use
a Markovian regime switching Black-Scholes model to model the equity index
dynamic, Esscher transform will be used to determine the martingale measure.
The market is incomplete due to the jumps, but the Esscher transform still gives
us a unique martingale measure. For some simple point to point designs, we can
obtain closed form expression for the price of EIA. When we introduce mortality
risk in the model, the problem becomes more complex, the price of the product
can not be in the Black-Scholes no-arbitrage sense, it is a kind of risk measure.

In the participating life insurance product case, we use a generalized jump-
diffusion model with a Markov-switching compensator. We suppose that the jump
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component is specified by the class of Markov-modulated kernel-biased completely
random measures. The class of kernel-biased completely random measures is a
wide class of jump-type processes. It has a very nice representation form, which
is a generalized kernel-based mixture of Poisson random measures (or, in general,
random measures). This provides a great deal of flexibility in modeling different
types of finite and infinite jump activities compared with some existing models in
the literature. We also provide additional flexibility to incorporate the impact of
structural changes in macro-economic conditions and business cycles on the val-
uation of participating policies by introducing a continuous-time hidden Markov
chain. For valuing participating products under the generalized jump-diffusion
model, we shall the Esscher transform again to determine an equivalent martin-
gale measure under the incomplete market setting. We consider various special
cases of the Markov-modulated kernel-biased completely random measure for the
jump component, namely, the Markov-modulated generalized Gamma (MGG) pro-
cess, the scale-distorted version of the MGG process and the power-distorted ver-
sion of the MGG process. The MGG process encompasses the Markov-modulated
weighted Gamma (MWG) process and the Markov-modulated inverse Gaussian
(MIG) process as special cases. We shall compare the fair values of the option
embedded in the participating products implied by our generalized jump-diffusion
models with those obtained from other existing models in the literature via sim-
ulation experiments and highlight some features of the qualitative behaviors of
the fair values that can be obtained from different parametric specifications of our
model. This research is based on papers with my coauthors, see Siu, Lau and
Yang (2006) and Boyle, Tan and Yang (2007).
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Stochastic correlation in exponential utility indifference valuation

Martin Schweizer

(joint work with Christoph Frei)

We study the exponential utility indifference valuation of a contingent claim H in
an incomplete market driven by two Brownian motions. The claim depends on an
untraded asset which is stochastically correlated with the traded asset available
for hedging. We use rigorous martingale arguments to provide upper and lower
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bounds, in terms of bounds on the correlation, for the dynamic value process V
of the exponential utility maximization with the claim H as random endowment.
This yields an explicit formula for the indifference value at any time, even with
a fairly general stochastic correlation. Earlier results by Musiela/Zariphopoulou,
Monoyios and Tehranchi, obtained in situations with constant correlation, are
recovered and extended. The key to explaining why all this works is a new result
which shows that the dynamic value process under a local martingale measure is
monotonic in the correlation between traded and untraded asset.
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588 Oberwolfach Report 10/2007

Participants

Prof. Dr. Soren Asmussen

Department of Mathematical Sciences
University of Aarhus
Building 530
Ny Munkegade
DK-8000 Aarhus C

Prof. Dr. Nicole Bäuerle
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