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Introduction by the Organisers

The workshop Normal Families and Complex Dynamics, organised by Phil Rippon
(Milton Keynes), Norbert Steinmetz (Dortmund) and Lawrence Zalcman (Ramat-
Gan) was held February 18th–February 24th, 2007.

Normal families and Nevanlinna theory. Almost half a century after it
first appeared, Hayman’s seminal work1 continues to exert a pervasive influence
on the study of the relation between properties enjoyed by meromorphic functions
on the complex plane and the normality of families of meromorphic functions on
plane domains.

If a, b ∈ C, a 6= 0, and f is a transcendental meromorphic function, then
f + a(f ′)n − b vanishes infinitely often for n ≥ 3. In his talk Mingliang Fang
proved that this remains true for n = 2, thus answering an old question of Ye. He
also showed that if f is a meromorphic function on C, which has all but finitely
many poles multiple and shares the distinct values 0, a, b (counting multiplicity)
with f ′, then f ≡ f ′ unless a and b are related in a very specific way. Jürgen
Grahl considers the condition ψ(z) ≡ fn(z) + af (k)(xz) − b 6= 0, where a, b ∈ C,

1Picard values of meromorphic functions and their derivatives, Ann. Math. 70 (1959), 9–42.
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a 6= 0, and 0 < |x| ≤ 1. It turns out that for a family F of holomorphic functions
on the unit disc D, this condition implies that F is normal at 0 if n ≥ 3 and
k ≥ 1. For meromorphic functions on C, this same condition implies that f is
constant for n ≥ k + 5. Shahar Nevo’s contribution focuses on results just beyond
the range of application of normal family techniques. For instance, the family F of
meromorphic functions on a plane domainD, all of whose zeros have multiplicity at
least k+1 and such that f (k)(z) 6= 1 for each f ∈ F and z ∈ D, is not normal; but
it is quasinormal of order 1. As a consequence, one can show that the derivative
of a transcendental meromorphic function which has at most finitely many simple
zeros takes on every nonzero value infinitely often.

Escaping sets. The complex dynamics talks focused on two main topics, one
being properties of the escaping set. The early work on the escaping set of a
general transcendental entire function was done by Eremenko, who established
the close connection between the escaping set and the Julia set. He asked two
questions that have provoked great interest: are all components of the escaping
set unbounded and, more strongly, are these components path connected to infinity?

Walter Bergweiler described a generalisation of Wiman-Valiron theory to a
meromorphic function with a direct tract. Using this, one can show that many
properties of the escaping set that are true for an entire function but false for a gen-
eral meromorphic function (for example, that this set has at least one unbounded
component) remain true for a meromorphic function with a direct tract. Dierk
Schleicher described an example of an entire function of bounded type (that is,
one in the Eremenko-Lyubich class) for which every path component of the escap-
ing set is bounded, thus showing that the answer to the strong form of Eremenko’s
question is ‘no’. However, for an entire function of bounded type and finite order
the escaping set is a disjoint union of curves, so in this case the answer is ‘yes’.
Lasse Rempe discussed an analog of Böttcher’s theorem (that two polynomials of
the same degree are conformally conjugate near infinity) for bounded type en-
tire functions. If two such functions are quasiconformally equivalent near infinity,
then they are quasiconformally conjugate on a set related to the escaping set, and
this explains why their Julia sets look similar near infinity. Boguslawa Karpińska
showed how coding trees can be used to describe the dynamics on the Julia set
of an entire function whose inverse function singularities are compactly contained
in an immediate basin of attraction, in particular discussing which points of the
Julia set are accessible from within the basin. Gwyneth Stallard spoke about suffi-
cient conditions for the escaping set of an entire function to be connected, giving
a number of topological conditions which guarantee that this is true. From these
conditions, and earlier work proving the absence of unbounded Fatou components,
it can be deduced that the answer to Eremenko’s question is ‘yes’ for many func-
tions of small growth.

Connectivity of Fatou components. The second main topic in the complex
dynamics part focused on connectivity properties of Fatou components.
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Phil Rippon gave conditions for a meromorphic function with a finite number
of poles to have a Baker wandering domain, and deduced that the eventual con-
nectivity of a wandering domain of such a function is either two or infinity, in
the case of a Baker wandering domain, and one otherwise. Patricia Domı́nguez
showed how to use quasi-conformal surgery to construct examples of various types
of functions (e.g. meromorphic functions and functions meromorphic outside small
sets) with doubly-connected wandering domains in various configurations. Marcus
Stiemer considered a class of generalized Blaschke products that can have zeros
outside the unit disc as well as inside, and showed how to construct examples
of functions in this class which have Fatou components of any given connectivity
number. Richard Stankewitz discussed the dynamics of polynomial semigroups
with bounded postcritical set and described some of their properties; for example,
if the Fatou set has two doubly connected components, then the Julia set contains
a Cantor family of quasicircles. Nuria Fagella discussed work on a generalization
of a result of Shishikura, showing that if a meromorphic function has a multiply
connected Fatou component which is of a certain type, then the function must
have a weakly repelling fixed point.

Hausdorff dimension and measure. Ludwik Jaksztas described work related
to the limiting behaviour of the Hausdorff dimension of certain quadratic Julia
sets near the parameter values 1/4 and −3/4. Jörn Peter extended a result of
McMullen by showing that for certain exponential functions with an attracting
fixed point there is a gauge function, related to the Schröder function of the fixed
point, with respect to which the Hausdorff measure of the Julia set is infinity.

Miscellanea. Dzmitry Dudko described a proof, due to Adam Epstein, of
the Fatou-Shishikura inequality. Lukas Geyer presented a survey on the type
problem, which consists in deciding whether a Riemann surface (X, f) spread over
the plane is hyperbolic or parabolic. He showed that (X, f) is type-stable if it has
uniformly separated singularities, but showed also that there exists a parabolic
type-stable surface (X, f) whose singularities are not uniformly separated. Aimo
Hinkkanen’s talk focussed on majorants of analytic functions, i.e. the question
whether or not conditions imposed on analytic functions on the boundary of their
domain of definition remain valid in the interior. A typical question is to ask
whether |f(z1) − f(z2)| ≤ µ(|z1 − z2|) with z1 ∈ ∂G fixed and z2 ∈ ∂G implies
|f(z1) − f(z2)| ≤ Cµ(|z1 − z2|) for z2 ∈ G, C some constant. Under reasonable
circumstances this was proved with C independent of µ. James Langley talked
about value distribution properties of functions in the classes S and B (functions
meromorphic in C having finitely many resp. a bounded set of singularities of f−1).
In particular he proved the conjectures of Mues for functions in B having finite
lower order, and Gol’dberg’s conjecture for functions in S, without any further
restriction. Oliver Roth proved existence of a Blaschke product with prescribed
sequence (zν) of critical points (satisfying the Blaschke condition); existence was
known before only in the case of finitely many points. Roth’s proof is based on
solvability of the elliptic boundary value problem ∆u = 4|h(z)|2e2u on D, u→ ∞
as z → ß∂D, with h the Blaschke procuct with zeros zν . Nikita Selinger gave an
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interesting description of Douady’s and Hubbard’s proof of Thurston’s theorem,
which characterizes when a postcritically finite branched cover of the Riemann
sphere is equivalent to a rational map.
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Abstracts

Dynamics of meromorphic functions with direct singularities

Walter Bergweiler

(joint work with P. J. Rippon and G. M. Stallard)

For a function f meromorphic in the plane the Fatou set F (f) is defined as the
set where the iterates fn of f are defined and form a normal family, and the Julia
set J(f) is its complement. The escaping set I(f) is defined as the set of all z ∈ C

for which fn(z) → ∞ as n→ ∞.
Eremenko [3] proved that if f is an entire transcendental function, then I(f) 6=

∅, ∂I(f) = J(f), I(f)∩J(f) 6= ∅ and I(f) has no bounded components. Eremenko
conjectured that in fact all components of I(f) are unbounded. This conjecture
is still open, but it is known that I(f) has at least one unbounded component [4].
Domı́nguez [2] proved that I(f) 6= ∅, ∂I(f) = J(f) and I(f)∩J(f) 6= ∅ also holds
for meromorphic functions f . However, I(f) need not have unbounded compo-
nents. In fact, for f(z) = 1

2 tan z the sets I(f) and J(f) are totally disconnected.
Here we show that some of the results for entire functions remain true for

meromorphic functions which have a direct singularity over infinity. These are, by
definition, the meromorphic functions f for which there exists R > 0 such that
f−1({z ∈ C : |z| > R} ∪ {∞}) contains a component D with the property that
f(z) 6= ∞ for all z ∈ D. We call such a component D a direct tract of f . (Actually
our results do not require that f is meromorphic outside the direct tract, but for
simplicity we restrict to functions meromorphic in the plane.)

Theorem 1. Let f be a meromorphic function with a direct singularity over in-
finity. Then I(f) has an unbounded component.

Theorem 2. Let f be a meromorphic function with a direct singularity over in-
finity. Then J(f) ∩ I(f) contains continua.

The proofs of the above results for entire functions use the Wiman-Valiron
theory or the maximum principle and thus do not carry over to meromorphic
functions with poles. Our main tools are results whose statements are similar to
those of the Wiman-Valiron theory, or of Macintyre’s theory of flat regions.

To describe these results, we note that for a non-constant subharmonic function
v : C → [0,∞) the function

B(r, v) := max
|z|=r

v(z)

is increasing, convex in log r and tends to ∞ as r tends to ∞. Hence

a(r, v) :=
dB(r, v)

d log r
= rB′(r, v)

exists except perhaps for a countable set of r-values, and a(r, v) is non-decreasing.
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Note that if f,D,R are as above, then the function v : C → [0,∞) defined by

(1) v(z) =






log
|f(z)|
R

if z ∈ D,

0 if z /∈ D,

is subharmonic. While for a nonconstant function v subharmonic in the plane we
only know that

lim
r→∞

B(r, v)

log r
> 0,

functions of the form (1) have faster growth.

Theorem 3. Let D be a direct tract of f and let v be defined by (1). Then

(2) lim
r→∞

B(r, v)

log r
= ∞

and

(3) lim
r→∞

a(r, v) = ∞.

Our main tool to study functions with a direct tract is the following result.
Here we denote the open disk of radius r around a point a ∈ C by D(a, r).

Theorem 4. Let D be a direct tract of f and let τ > 1
2 . Let v be defined by (1)

and let zr be a point satisfying |zr| = r and v(zr) = B(r, v). Then there exists
a set F ⊂ [1,∞) of finite logarithmic measure such that if r ∈ [1,∞) \ F , then
D(zr, r/a(r, v)

τ ) ⊂ D. Moreover,

(4) f(z) ∼
(
z

zr

)a(r,v)

f(zr) for z ∈ D

(
zr,

r

a(r, v)τ

)

as r → ∞, r /∈ F .

Since a(r, v) → ∞ as r → ∞ by Theorem 3 we see that (4) can also be written
in the form

(5) f(zre
h) ∼ ea(r,v)hf(zr) for |h| ≤ a(r, v)−τ ,

again as r → ∞, r /∈ F .
The asymptotic relations (4) and (5) are very similar to the main result of

Wiman-Valiron theory, except that the central index is replaced by a(r, v). How-
ever, the methods of Wiman and Valiron based on the Taylor series of f do not
apply. The main tools we use are a lower bound of the maximum modulus of a
subharmonic function due to Tsuji, Jensen’s formula for subharmonic functions,
and certain growth lemmas for real functions.

As in Wiman-Valiron theory, an important consequence of (4) or (5) is the fol-
lowing result, which can be deduced from them for example by Rouché’s theorem.



Normal Families and Complex Dynamics 495

Theorem 5. For each β > 1 there exists α > 0 such that if f , D, v, zr and F
are as in Theorem 4 and if r /∈ F is sufficiently large, then

{
z ∈ C :

|f(zr)|
β

≤ |z| ≤ β|f(zr)|
}

⊂ f

(
D

(
zr,

αr

a(r, v)

))
.

More precisely, log f is univalent in D(zr, αr/a(r, v)) and for γ > π the constant
α can be chosen such that log f (D(zr, αr/a(r, v))) contains the square

{z ∈ C : |Re z − log |f(zr)|| ≤ log β, |Im z − arg f(zr)| ≤ γ}
if r /∈ F is sufficiently large, where the branches of log and arg are chosen such
that Im(log f(zr)) = arg f(zr).

The Wiman-Valiron theory was the main tool in Eremenko’s proof [3] that
I(f) 6= ∅ if f is a transcendental entire function. Using Theorem 5 instead of the
Wiman-Valiron method in his argument we see that if f has a direct tract D, then
there exists z ∈ D such that fn(z) → ∞ as n→ ∞, with fn(z) ∈ D for all n. The
result that z can be chosen such that all fn(z) belong to the same tract seems to
be new even for entire functions.

With
M(r) := max

|z|=r,z∈D
|f(z)| = expB(r, v)

Eremenko’s argument yields that there exists z0 such that

(6) |fn+1(z0)| ∼M(|fn(z0)|)
as n → ∞. It follows from (2) that M(ρ) > ρ for large ρ, say ρ > ρ0 > R. Hence
Mn(ρ) → ∞ as n→ ∞ for ρ > ρ0. For such ρ we define

A(f,D, ρ) := {z ∈ D : fn(z) ∈ D and |fn(z)| ≥Mn(ρ) for all n ∈ N}.
In particular it follows that |fn(z)| → ∞ as n → ∞ for z ∈ A(f,D, ρ) so that
A(f,D, ρ) ⊂ I(f).

As in [1] the existence of points z0 satisfying (6) yields the following result.

Theorem 6. Let D be a direct tract of f . Then A(f,D, ρ) 6= ∅.
Combining the above reasoning with the methods of [4] we obtain the following

result which clearly implies Theorem 1.

Theorem 7. Let D be a direct tract of f . Then all components of A(f,D, ρ) are
unbounded.
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A problem concerning Newton’s method (problem session)

Walter Bergweiler

Let f be an entire transcendental function and let Nf (z) = z − f(z)/f ′(z) be the
associated Newton function. Suppose that N has an invariant Baker domain; that
is, there exists a domain U with N(U) ⊂ U where the iterates of N tend to ∞.

Question 1. Does there exists a positive constant K and a curve γ tending to ∞
such that |f(z)| ≤ |z|K for z ∈ γ?

Question 2. Is the order of f at least 1
2?

The above questions are related to a question of Douady who had asked whether
f must have the asymptotic value 0 under the above hypotheses. This was shown
to be true under mild additional hypotheses [1] but turned out to be false in
general [2]. However, for the counterexample in [2] there exists a curve γ tending
to ∞ where |f(z)| = O

(
|z|1/3

)
as z → ∞, z ∈ γ. It seems possible to replace 1

3
by another constant here, but the question is, whether there is always a growth
restriction like this on a curve.

An affirmative answer to the first question would imply an affirmative answer
to the second one because of the classical cosπρ-theorem.
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Doubly connected wandering domains for meromorphic functions

Patricia Doḿınguez

(joint work with Guillermo Sienra)

Let f : X → X denote a meromorphic function, where X = C or Ĉ, and fn the n-
th iterate of f . We define the Fatou set F (f) as the set of those points z ∈ X such
that {fn}n∈N is meromorphic and forms a normal family in some neighborhood of
z. The complement of F (f) is called the Julia set J(f) of f . If U is a component
of F (f), fk(U) is contained in a unique component Uk of F (f), for each k 6= n.
When Uk 6= Un the component U is called wandering component. Otherwise U is
either pre-periodic or periodic.

We will deal in this talk with the following classes of maps.

R = {f : Ĉ → Ĉ| f is rational of degree at least two }.
E = {f : C → C| f is transcendental entire }.

M = {f : C → Ĉ| f is transcendental meromorphic with at least one
not omitted pole }.

K = {f : Ĉ \B → Ĉ| B 6= ∅, B is a compact countable set and f
non-constant meromorphic }.
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The set B is the closure of the isolated essential singularities of f , observe that
M ⊂ K. The class K has been introduced by Bolsch in [6, 7]. Independently,
broader generalizations have been given by Baker, Domı́nguez and Herring in [4],
[12]. The Fatou and the Julia set can be defined as above for functions in class
K. General properties of J(f) and F (f) are the same as for the other classes of
functions, but different proofs are needed.

Sullivan in [15] proved that wandering domains do not arise for functions in
class R (rational functions). The analogue of Sullivan’s result holds for the class
E of transcendental entire functions f such that the set of singularities of f−1 is
finite, we shall denote this set by S(f). Transcendental entire functions outside
the set S(f) can have wandering domains.

One of the problems of wandering domains concerns their connectivity. For the
class E wandering domains may be either simply connected or multiply connected
with infinite connectivity. Examples of these facts have been constructed by Baker
[2], Herman [11], Eremenko and Lyubich [9] and Devaney [8]. It has been an open
question whether the connectivity of a wandering domain for f ∈ E could be finite
but greater than one. Recently Kisaka and Shishikura in [13] gave the first example
of such a wandering domain. They used quasi-conformal surgery to construct a
function in class E with a wandering domain with connectivity two.

Baker, Kotus and Yinian in [3] solved the connectivity problem for functions
in class M. They constructed examples of bounded and unbounded wandering
domains either with finite or infinite connectivity by using results on complex
approximation.

The main task in this work is to give examples of wandering domains for func-
tions in class M without using results of complex approximation. The construction
is based on quasi-conformal surgery. In addition our construction gives examples
of wandering domains for functions in class K. The following theorem give us the
construction of a doubly connected wandering domain in class M and in class K.

Theorem A.

(1) There exists a function h ∈ M with a doubly connected wandering domain
in the Fatou set.

(2) There exists a function h in class M such that the Fatou set F (h) has
a doubly connected wandering domain U . Moreover, there is a simply
connected wandering domain V ⊂ F (h) which is surrounded by the inner
boundary of U .

(3) For every natural k there exists a function h in class M such that the Fatou
set F (h) has m-nested doubly connected wandering domains Wi, and a
simply connected wandering domain V ⊂ F (h) such that V is surrounded
by the inner boundary of Wi.

Observe that in Theorem A the case (3) contains the case (2) which contains
case (1). However, we display it in three cases in order to understand the surgery
construction. For the class K we have the following results.
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Theorem B. There exists a function h in class K such that the Fatou set F (h)
has a doubly connected wandering domain.

Theorem C. There exists a function h in class K such that the Fatou set F (h)
has a doubly connected wandering domain which is unbounded on one side.
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Refined Fatou-Shishikura Inequality

Dzmitry Dudko

Let f : P1 → P1 be a rational map with degree D > 1. The famous Fatou-
Shishikura inequality says that the number of non-repelling periodic points is less
or equal 2D − 2, the number of critical points. In this inequality any parabolic
periodic point is counted as ν times where ν is a multiplicity of parabolic point. In
1999 A. Epstein presented a new independent proof of Fatou-Shishikura inequality
which gives a slightly better result.
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For any parabolic periodic point z0 the first return to z0 can be expressed as

(1) z → p(z + zN+1 + αz2N+1) +O(z2N+2)

where N = νn, p is primitive n-root of unity and ν is a number of cycles of petals.
If Re β = Re(N+1

2 −α) ≤ 0 then in the new variant of the inequality the parabolic
periodic point z0 can be counted as ν + 1 instead of ν.

The idea of the proof is to consider the space of forms on Riemann sphere and
the linear map ∇f = I − f∗ on this space, where f∗ is pushforward. Assume that
f is not a Lattès example. Let M(P1) be the space of all meromorphic quadratic
differentials q on the Riemann sphere P1, and Q(P1) be subspace of all q ∈ M(P1)
with at worst simple poles. Denote by D(P1) the quotient M(P1)/Q(P1). Each
class [q] ∈ D(P1) depends only on non-simple poles of q. The pullback f∗ and
pushforward f∗ are well defined linear operators on these spaces, so ∇f = I − f∗
is also well defined.

Let D(f) = ker∇f |D(P1) ∈ D(P1) then it is possible to show that

D(f) ∼=
⊕

〈z〉⊂P1

D〈z〉(f),

where the subspace D〈z〉(f) consists of all [q] ∈ D(f) where all non-simple poles
of q are on periodic cycle 〈z〉. The dimension of D〈z〉(f) is one for attracting,
repelling or irrational indifferent periodic cycles, ν + 1 for parabolic, and 0 for
superattracting.

Let class [q] be from the subspace D(f). According to the Thurston Rigidity
principle ∇fq 6= 0 if q has only simple poles. And this fact follows from the
inequality

‖q‖ =

∫

P1

|q| =

∫

P1

f∗|q| <
∫

P1

|f∗q| = ‖f∗q‖ .

But if q is able to have poles with order more than one then it can happen that
∇fq = 0. But then the following inequality has to hold:

0 <

∫

P1

(f∗|q| − |f∗q|) = 2πRes(f : q),

whereRes(f : q) = 1
2π

∫
P1(f∗|q|−|q|) is the dynamical residue. From this inequality

follows that if [q] ∈ D(f) and Res(f : q) ≤ 0 then ∇fq 6= 0.

Let Db
〈z〉(f) = {[q] ∈ D(f)| Res(f : q) ≤ 0} and γ〈z〉 be the dimension of

Db
〈z〉(f). Then

γ〈z〉 =





0 if 〈z〉 is repelling or superattracting,
1 if 〈z〉 is attracting or irrational indifferent,
ν if 〈z〉 is parabolic and Reβ > 0,
ν + 1 if 〈z〉 is parabolic and Reβ ≤ 0

So it is possible to construct the space D(f) with dimension γf =
∑

〈z〉 γ〈z〉, in

such way that ∇f q 6= 0 if [q] ∈ D(f).
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Finally we can construct the injective linear map from D(f) to the space
Q(P1, A+)/Q(P1, A) where dimension Q(P1, A+)/Q(P1, A) is equal to the num-
ber of infinite tails of critical orbits of f . From the last statement follows the
refined Fatou-Shishikura inequality.
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Connectivity of Julia sets of transcendental meromorphic functions

Núria Fagella

(joint work with Xavier Jarque and and Jordi Taixés)

Shishikura in 1990 proved the following:

Theorem. If R is a rational map with disconnected Julia set, then R has at least
two weakly repelling fixed points (repelling or derivative = 1).

A corollary is that the Julia set of Newton’s method of any polynomial must be
connected. We partially generalize this theorem to transcendental meromorphic
functions by showing:

Theorem (F., Jarque, Táıxes). If f is a transcendental meromorphic function
and U is a multiply connected component of F(f) which is either an immediate
attracting or parabolic basin, or a Herman ring or a preperiodic component, then
f has at least one weakly repelling fixed point.

Put together with Bergweiler’s result on wandering domains, we have the following

Corollary. If f is an entire transcendental map and Nf is its Newton function,
then all connected components of F(Nf ) are simply connected, except maybe Baker
domains.

The tools for the proof are surgery, Fatou’s theorem on existence of weakly re-
pelling fixed points and a theorem of Xavier Buff on virtually repelling fixed points.
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Normal families and their applications to the uniqueness of entire
functions

Mingliang Fang

(joint work with Jianming Chang and Lawrence Zalcman)

1. Bloch’s Principle and value distribution

In [4], Hayman proved

Theorem A. Let f be a transcendental meromorphic function and a a nonzero
complex number. Then f ′ + afn assumes every complex value infinitely often for
each positive integer n ≥ 5.

The proof of Theorem A also shows that if f is meromorphic on the plane and
f ′ + afn (n ≥ 5) fails to assume some complex value b, then f must be constant.
On the other hand, Mues [5] showed that for n = 3 and 4 and each b 6= 0, there
exists a transcendental function f such that f ′ + afn 6= b.

Considering a similar problem, Ye [6] proved

Theorem B. Let f be a transcendental meromorphic function and a a nonzero
complex number. Then f +a(f ′)n assumes every complex value infinitely often for
each positive integer n ≥ 3.

Ye asked whether Theorem B remains valid for n = 2. (It clearly fails for n = 1,
as one sees by taking f(z) = e−z/a.) We give an affirmative answer to this question.

Theorem 1. Let f be a transcendental meromorphic function and a a nonzero
complex number. Then f + a(f ′)2 assumes every complex value infinitely often.

Note that the condition f + a(f ′)2 6= b for some b ∈ C does not imply that a
meromorphic function on C is constant. Indeed, for f(z) = z2 and a = −1/4, we
have f + a(f ′)2 ≡ 0.

According to Bloch’s Principle [1], for each theorem of Liouville-Picard type,
there is a corresponding criterion for the normality of families of meromorphic
functions on plane domains. The normality criterion corresponding to Theorem
A was established independently by J.K. Langley, S.Y. Li, and X.J. Li. In fact,
as follows from an argument due to X.C. Pang, the condition that f ′ + afn omit
some fixed value implies normality even in the cases n = 3 and 4, where there is
no corresponding Picard-type theorem. (Thus, the converse of Bloch’s Principle
fails in these cases.) See [7] for complete references and a discussion.

It is therefore natural to ask whether there exists a normality criterion cor-
responding to Theorem B and Theorem 1. It is easy to see that the answer is
negative. However, if we require an additional condition, we obtain a positive
result.
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Theorem 2. Let F be a family of meromorphic functions on the plane domain
D, let n ≥ 2 be a positive integer, and let a 6= 0 and b be complex numbers. If, for
each f ∈ F , all zeros of f are multiple and f +a(f ′)n 6= b on D, then F is normal
on D.

2. Normal families and uniqueness theorems for entire functions

Let f and g be two meromorphic functions in a domain D in C, and let a be a
complex number. If f(z) − a and g(z) − a have the same zeros with the same
multiplicity, then we say that f and g share the value a CM in D; if f(z) = a if
and only if g(z) = a, then we say that f and g share the value a IM in D.
Let S be a set of complex numbers. Set

E(S, f) =
⋃

a∈S

{z : f(z) − a = 0},

where a zero of multiplicity m is counted m times in the set.
Nevanlinna proved the following theorem.

Theorem C. Let aj (j = 1, 2, 3, 4) be four distinct finite complex numbers. Sup-
pose that f and g are two non-constant entire functions. If E(aj , f) = E(aj , g)
for j = 1, 2, 3, 4, then f ≡ g.

In 1976, Gross posed the following question.

Question A. Can one find a finite set S such that any two non-constant entire
functions f and g satisfying E(S, f) = E(S, g) must be identical? If such a set
exists, how large must it be?

In 1994, Yi proved that such a set exists.

Theorem D. There exists a finite set S containing 7 elements such that if f and
g are two non-constant entire functions and E(S, f) = E(S, g), then f ≡ g.

In 1977, Rubel and Yang proved

Theorem E. Let a, b be two distinct finite numbers, and let f be a non-constant
entire function. If E(a, f) = E(a, f ′), and E(b, f) = E(b, f ′), then f ≡ f ′.

We pose the following question.

Question B. Let S be such that if a non-constant entire function f and its
derivative f ′ satisfy E(S, f) = E(S, f ′), then f ≡ f ′. How large must S be?

In [3], using the theory of normal families, we study the uniqueness of entire
functions and obtain the following result.

Theorem F. There exists a set S with 3 elements such that if a non-constant
entire function f and its derivative f ′ satisfy E(S, f) = E(S, f ′), then f ≡ f ′. The
number 3 is best possible.

In 1986, Jank-Mues-Volkmann proved

Theorem G. Let f be a non-constant entire function, and let a be a nonzero
constant. If E(a, f) = E(a, f ′) and f ′′(z) = a whenever f ′(z) = a, then f ≡ f ′.
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We pose the following question.

Question C. Let b(6= a) be a nonzero finite complex number. If f ′′(z) = a
whenever f ′(z) = a is replaced by f ′′(z) = b whenever f ′(z) = b in Theorem G, is
it still true that f ≡ f ′?

In [3], we also proved

Theorem H. Let f be a non-constant entire function, k ≥ 2 a positive integer, and
let a, b be two constants such that b 6= 0. If f and f ′ share a CM, and f (k)(z) = b
whenever f ′(z) = b, then f(z) = decz + c−1

c a, where c, d are two nonzero constants

and ck−1 = 1.

In particular, f ≡ f ′ for k = 2.
Naturally, we ask that whether Theorem H is valid or not if f and f ′ share a

CM is replaced by f and f ′ share a IM ?
In [2], we have proved the following more general result.

Theorem 3. Let f be a nonconstant entire function; let a be a finite nonzero
complex number; and let k ≥ 2 be a positive integer. Suppose that f(z) = a =⇒
f ′(z) = a, and f ′(z) = a =⇒ f (k)(z) = a. Then either f(z) = Ceλz+a or f(z) =

Ceλz + a(λ−1)
λ , where C, λ are nonzero constants with λk−1 = 1.

Most recently, continuing our study of the uniqueness of entire functions by
using the theory of normal families, we have proved the following results.

Theorem 4. Let f be a nonconstant entire function and let S = {a, b, c}, where
a, b and c are distinct complex numbers. If f satisfies E(S, f) = E(S, f ′), then
one of the following cases must occur:
(i) f = Cez;
(ii) f(z) = Ce−z + 2

3 (a+ b+ c) and (2a− b− c)(2b− c− a)(2c− a− b) = 0;

(iii) f(z) = Ce
−1±

√
3i

2
z + 3±

√
3i

6 (a+ b + c) and a2 + b2 + c2 − ab− bc− ca = 0,
where C is a nonzero constant.

Theorem 5. There exists a set S of three distinct complex values such that if
a nonconstant meromorphic function f , all but finitely many of whose poles are
multiple, satisfies E(S, f) = E(S, f ′), then f ≡ f ′.
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Type Problem for Riemann Surfaces

Lukas Geyer

(joint work with Sergei Merenkov)

A surface spread over the sphere is a pair (X, f), where X is a topological surface

and f → X → Ĉ a continuous, open and discrete map into the Riemann sphere.
According to a theorem of Stöılow, there exists a unique conformal structure on
X which makes f holomorphic. We will denote this Riemann surface by Xf .

From now on we will assume that X is open and simply connected. By the
Uniformization Theorem, Xf is conformally equivalent to either C or D. We say
that (X, f) is of parabolic or hyperbolic type, respectively. A natural question
is how topological and metric properties of f determine the type of Xf and the
value distribution properties of f . This is a very hard problem with no satisfactory
general theory to approach it. For a recent survey of results and open problems
see [1].

A continuous, open and discrete map f has a discrete set Cf of critical points,
i.e. points where the mapping is not locally injective. The image of a critical point

under f is a critical value. A point a ∈ Ĉ is called an asymptotic value of f , if
there exists a curve γ : [0, t0) → X such that

γ(t) → ∞ and ψ(γ(t)) → a as t→ t0.

A point a ∈ Ĉ is a singular value of f if a is a critical or an asymptotic value of ψ.
A surface spread over the sphere (X, f) is type-stable if the conformal type of

Xφ◦f is the same as that of Xf for any homeomorphism φ : Ĉ → Ĉ. Teichmüller
showed that (X, f) is type-stable if f has a finite set of singular values [2], using
the fact that the type is invariant under quasiconformal mappings.

Eremenko suggested in [1] that Teichmüller’s result extends to the wider class
of functions with uniformly separated singularities, in the following sense. The
Mazurkiewicz metric on X is defined as d(x, y) = inf diam f(K), where diam
denotes the spherical diameter, and the infimum is taken over all continua in
X containing x and y. If X denotes the completion of X with respect to the
Mazurkiewicz metric, then f extends continuously to X, and the points in Zf =

X \ X are the transcendental singularities of f . We say that f has uniformly
separated singularities if there exists r > 0 such that d(x, y) ≥ r for x, y ∈ Cf ∪Zf ,
x 6= y.

Theorem 1. If (X, f) has uniformly separated singularities, then (X, f) is type-
stable.

We prove this theorem by quasiconformally modifying f and φ ◦ f to have
finitely many singular values and the same topological behavior, thus reducing it
to Teichmüller’s theorem.

Eremenko also asked whether the converse of Theorem 1 holds for the case of
parabolic surfaces (X, f). We show that this is not the case.
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Theorem 2. There exists a parabolic type-stable surface (X, f) whose singularities
are not uniformly separated.

The example, a modification of a function with finitely many singular values,

is a meromorphic function f : C → Ĉ, symmetric with respect to the real line,
with real critical points, and no asymptotic values. This function has a sequence
of critical points cn such that d(c2k, c2k+1) → 0, i.e. singularities are not uniformly
separated. Type-stability follows from the existence of an infinite sequence of
nested annuli Ak → ∞, each of which is mapped conformally by f to a fixed

annulus A ⊂ Ĉ. Now if φ is any homeomorphism of the sphere, then φ(A) has a
fixed positive modulus, so the Ak form a nested sequence of annuli in Xφ◦f with
Ak → ∞ and constant moduli. By a theorem of Grötzsch this implies parabolicity
of the surface.
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Two problems concerning the differential polynomial P [f ] := fn + af (k)

Jürgen Grahl

The differential polynomial

P [f ] := fn + af (k) (∗)
plays an important role in several well-known Picard and Montel type theorems by
W. K. Hayman [2], D. Drasin [1], J. Langley [3], X. Pang [4] and L. Zalcman [5].
We discuss two further problems concerning this differential polynomial: We show
that at least in the case of analytic functions results similar to those mentioned
above also hold if in (∗) we introduce a dilatation in the argument of f (k). More
precisely, we have:

Theorem 1. Let F be a family of functions analytic in the unit disk D, n ≥ 3,
k ≥ 1, 0 < |x| ≤ 1 and a, b ∈ C, a 6= 0. Assume that

fn(z) + af (k)(xz) + b 6= 0

for all f ∈ F and all z ∈ D. Then F is normal in z = 0.

The questions whether (1) F is normal in the whole of D and whether (2) there
are similar results for families of meromorphic functions remain open. The main
tool in the proof of Theorem 1 is an extension of Nevanlinna theory which provides
a method to control the so-called initial value terms (like log |f(α)|) which appear
in the First and Second Fundamental Theorem. The same method can be used to
show the following result:
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Theorem 2. Let F be a family of functions analytic in D, n ≥ 3, k ≥ 1 and
0 < |x| ≤ 1. Assume that for each f ∈ F the zeros of f are of multiplicity ≥ k
and

fn(z)f (k)(xz) 6= 1

for all z ∈ D. Then F is normal in z = 0.

The Picard type theorem corresponding to Theorem 1 can be proved by ”clas-
sical” Nevanlinna theory, even for meromorphic functions. In fact, it is a special
case of the following generalization of Hayman’s result ([2], Theorem 8) which we
state in the terms of Nevanlinna theory.

Theorem 3. Let f and g be meromorphic functions in C such that f is non-
constant, g 6≡ 0 and

T (r, g) +N(r, g) ≤ c · T (r, f) + S(r, f)

for some c > 0. Let n > c+ 2 be an integer and ψ := fn + g. Then ψ 6≡ 0 and ψ
has a zero in C. If f is transcendental, then ψ has infinitely many zeros in C. In
the case of entire f , these results also hold for n > c+ 1.

Applying this result to g(z) := af (k)(xz) − b, we obtain

Corollary 1. Let f be a function meromorphic in C, k, n be positive integers and
a, b, x ∈ C such that n ≥ k + 5, 0 < |x| ≤ 1 and a 6= 0. If

ψ(z) := fn(z) + af (k)(xz) − b

has no zeros in C, then f is constant. If f is transcendental, then ψ has infinitely
many zeros in C. In the case of entire f , these results hold for all n ≥ 3 and
k ≥ 1.

In recent years, there has been a growing interest in problems concerning shared
values of differential polynomials and uniqueness of entire or meromorphic func-
tions. In this context, we study the question whether there hold any uniqueness
results for the case of two entire functions f and g such that P [f ] and P [g] share
a value b ∈ C CM (counting multiplicities). Our main result is the following.

Theorem 4. Let f and g be non-constant entire functions, a, b ∈ C \ {0} and let
n and k be positive integers satisfying n ≥ 11 and n ≥ k + 2. Assume that the
functions

P [f ] = fn + af (k) and P [g] = gn + ag(k)

share the value b CM. Then

P [f ] − b

P [g]− b
=
fn

gn
=
af (k) − b

ag(k) − b

or f = g and f (k) = g(k) ≡ b. If g = f ′, then f ≡ f ′ holds.

We do not know whether in the general case we can deduce that f ≡ g, not
even for k = 1. Anyhow, the following theorem shows that there does not exist a
”simple” counterexample (in the sense of f

g having order 1), at least if k = 1.
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Theorem 5. Let f and g be non-constant entire functions, a, b ∈ C \ {0} and let
n ≥ 2 be an integer. Assume that

P [f ] − b

P [g]− b
=
fn

gn
=
af ′ − b

ag′ − b

and that f and g share the value 0 CM. Then f
g is either constant or has order at

least 2.
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Majorisation of analytic functions

Aimo Hinkkanen

The earliest majorisation result for analytic functions is the maximum modulus
principle. In the simplest setting, for a function f analytic in G and continuous in
G for a bounded domain G in the complex plane C, it states that if |f(z)| ≤M for
all z ∈ ∂G, where M is a positive constant, then |f(z)| ≤ M for all z ∈ G. Note
that under these assumptions, it is clear that |f | is bounded inG, and we are merely
asking for the best upper bound. Many generalisations of the maximum modulus
principle have been obtained. Some are based on relaxing the assumptions by
allowing |f | to be at least hypothetically unbounded, perhaps in an unbounded
domain G, or in a bounded domain G with a set of potential singularities on the
boundary. In those cases one assumes that |f(z)| does not grow faster than at a
prescribed rate, possibly depending on the shape of the domain, as z approaches
infinity or one of the finite exceptional boundary points. This leads to Phragmén–
Lindelöf type of theorems.

Another type of generalisation is based on replacing the constant M by a func-
tion of distance, and considering more carefully how f can vary from one point to
another. This leads one to consider distances between function values at different
points. Such problems are more delicate. We wish to avoid the extra problems
arising from possible singularities on the boundary, so we consider this question
in the following setting.

Let G is a bounded domain, let f be analytic in G and continuous in G, and
let µ(t) be a non-negative non-decreasing function defined for t ≥ 0. Suppose that
z1 ∈ ∂G and that

(1) |f(z1) − f(z2)| ≤ µ(|z1 − z2|)
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for all z2 ∈ ∂G. One can ask whether we then have

(2) |f(z1) − f(z2)| ≤ Cµ(|z1 − z2|)

for all z2 ∈ G for some absolute constant C.
One may note that by a fairly simple application of the the maximum modulus

principle, the above result, if valid, implies that if (1) holds for all z1, z2 ∈ ∂G,
then (2) holds for all z1, z2 ∈ G.

Examples due to Smith and Stegenga [8] show that when we consider this
situation for only one fixed z1 ∈ ∂G, then the growth of the non-negative non-
decreasing function

µ1(t) = sup{|f(z1) − f(z2)| : z2 ∈ ∂G, |z1 − z2| ≤ t}

can be sufficiently irregular to prevent the validity of such a result in general.
Indeed, for any large a > 0 there exists a conformal mapping f of the unit disk
D = {z ∈ C : |z| < 1} onto a bounded domain, which can be taken to be the union
of three rectangles, such that for some t0 ∈ (0, 2) (close to 2 if a is large), we have
|f(z)−f(−1)| ≤ 1 whenever z ∈ ∂D and |z+1| ≤ t0, while |f(t0−1)−f(−1)| ≥ a.

The situation changes if we majorize the function µ1, effectively a kind of mod-
ulus of continuity of f , by a sufficiently regular function. In the particular case of
the unit disk, the situation also changes if we allow both z1 and z2 vary on ∂D,
for then the best µ1 becomes a subadditive function of t.

Thus we say that a non-negative non-decreasing function µ(t) defined for t ≥ 0
is a majorant if µ(2t) ≤ 2µ(t) for all t ≥ 0. We ask whether (1) for all z2 ∈ ∂G
implies (2) for all z2 ∈ G for an absolute constant C when µ is a majorant.

When considering Hölder continuity, we take µ(t) = tα, where 0 < α ≤ 1.
In this case, Hardy and Littlewood [2] obtained the desired conclusion for some
absolute constant C when G = D, and Walsh and Sewell [7] proved the same with
C = 1 when G is a Jordan domain. Gehring, Hayman and the speaker [1] extended
this result, with C = 1, to arbitrary domains. The speaker [3] generalised this,
with C = 1, to arbitrary domains when logµ(et) is a concave function of t for
real t.

For general majorants, it was proved that (1) implies (2) for some absolute
constant C by Tamrazov [9] and by Rubel, Shields, and Taylor [6] when G is
simply connected. In fact, Tamrazov [9] proved a more general result for domains
whose boundary is uniformly thick in a suitable sense, with C depending on this
thickness, and his result for simply connected domains is a special case of this.

A good representative of a doubly connected domain is the annulus G = {z ∈
C : 1/R < |z| < R} for some large R > 1. If we take z1 ∈ ∂G to be on the
inner component of ∂G, we may assume, for all practical purposes (when R is
very large), that z1 = 0 and f(0) = 0. If we now take µ(t) = max{1, t}, our
assumption (1) can be taken to be |f(z)| ≤ max{1, |z|} for all z ∈ ∂G. As usual,
write M(r, f) = max{|f(z)| : |z| = r}. Then M(1/R, f) ≤ 1 and M(R, f) ≤ R. If
we choose z2 = 1 ∈ G in (2), we see that we would like to show that |f(1)| ≤ C for
an absolute constant C. Hadamard’s three-circles theorem states that logM(r, f)



Normal Families and Complex Dynamics 509

is a convex function of log r, which implies that

log |f(1)| ≤ logM(1, f) ≤ 1

2
(logM(1/R, f) + logM(R, f)) ≤ 1

2
logR,

which does not remain bounded by an absolute constant. This shows that there is
still something to be proved here. Note that here the inner boundary component
of ∂G is “thin” when viewed from z2 = 1 ∈ G. This also exposes the fact that
potential theoretic methods, based on using properties of |f | alone (via the sub-
harmonic function log |f |), cannot yield the best result in all cases; the proofs in
all earlier papers including [9], [6], [1], [3] were based on such methods. It will be
necessary to find an effective way of using the argument of f , which has the spe-
cial property that if G is bounded by finitely many disjoint Jordan curves, as we
may assume by approximation (compare [4]), then arg f(z) changes by an integral
multiple of 2π when z traverses any component of ∂G.

The first person to exploit the fact that one can do better for analytic functions
than subharmonic functions by using the argument of f was Teichmüller, who in
1939 ([10], [11]) proved a sharp version of the three-circles theorem for annuli.
In 1987, the speaker [4] extended Teichmüller’s framework to multiply connected
domains, but was able to prove a definite result only for doubly connected domains,
obtaining C = 1.63 · 107 for them.

The speaker has recently proved the following result [5], which shows that (1)
implies (2) for an absolute constant C under all circumstances.

Theorem 1. If G is a bounded domain, if f is analytic in G and continuous in
G, if µ is a majorant, and if (1) holds for all z1, z2 ∈ ∂G, then (2) holds for all
z1, z2 ∈ G with C = 3456.

If (1) holds for a fixed z1 ∈ ∂G and for all z2 ∈ ∂G, then (2) holds for this z1
and for all z2 ∈ G with C = 3456.

The proof of Theorem 1 is based on noting that by approximation, we may
assume that G is bounded by finitely many disjoint analytic Jordan curves, and,
by Runge’s theorem, that f is rational with only one pole (ignoring multiplicities)
at a preassigned point in each component of C\G. Then one combines local results
based on the use of logarithmic capacity, already articulated in [9] and [4], with
consideration of the level sets of suitable rational functions.
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Estimation of derivative of the Hausdorff dimension of Julia set for
quadratic family

Ludwik Jaksztas

We consider quadratic family of polynomials fc(z) = z2 + c, and its Julia set
J(fc). Let d(c) denotes Hausdorff dimension of J(fc). We discuss behaviour of
d(c) as a function of the parameter. In fact we are interested in real parameter
c ∈ (−3/4, 1/4).

David Ruelle in [4] proved, that d(c) is real analytic in each hyperbolic compo-
nent of the Mandelbrot set. So, d(c) is also analytic on the interval (−3/4, 1/4)
which is included in the main cardioid.

We investigate behaviour d(c) close to the ends of (−3/4, 1/4). In [1] Bodart
and Zinsmeister proved, that d(c) is continuous from the left side at 1/4. d(c) is
also continuous from the right at −3/4. We present two Theorems:

Theorem 1. [3] There exist c0 < 1/4 and K > 1 such that for all c ∈ (c0, 1/4),

1

K

(1

4
− c

)d( 1
4
)− 3

2 ≤ d′(c) ≤ K
(1

4
− c

)d( 1
4
)− 3

2

.

Because d(1/4) < 1, 295 see [2], exponent is negative, so d′(c) tends to infinity
when c tends to 1/4 from the left side.

Theorem 2. If d(−3/4) < 4/3, then there exist c0 and K > 1 such that for all
c ∈ (−3/4, c0),

−K
(3

4
+ c

) 3
2
d(− 3

4
)−2

≤ d′(c) ≤ − 1

K

(3

4
+ c

) 3
2
d(− 3

4
)−2

.

Assumption d(−3/4) < 4/3 seems to be reasonable, because numerical experi-
ments give us d(−3/4) ≈ 1, 23. Under this assumption, exponent also is negative
in this case, so d′(c) tends to minus infinity.

In the proofs of both Theorems is used formula, which follows from theory
of thermodynamical formalism. Let K(fc) denotes the filled Julia set, and Φc :
C \ D → C \ Kc be the Riemann map, which conjugates the action of z2 to fc.



Normal Families and Complex Dynamics 511

Φc has homeomorphic extension to ∂D, so we get conjugation z2 on ∂D to fc on
J(fc). Let µc denote fc-invariant measure on J(fc) of maximal dimension, and
µ̃c = (Φc)∗(µc). We have (see [3])

d′(c) = − d(c)∫
∂D

log |2Φc|dµ̃c

∫

∂D

∂

∂c
(log |2Φc|)dµ̃c.

When the measure is normalized, integral in denominator is equal to the Lyapunov
exponent. The main problem is how to estimate the second integral, and it’s
necessary to show that the main contribution comes from set, which corresponds
to the neighbourhood of attracting fixed point (which becomes parabolic point for
c = 1/4 or c = −3/4).
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Coding trees and boundaries of attracting basins for some entire maps

Boguslawa Karpińska

(joint work with Krzysztof Barański)

Let f be an entire transcendental map such that Sing(f−1) is contained in a
compact subset of the immediate basin B(z0) of an attracting fixed point z0 ∈ C

(this assumption implies that f ∈ B). It follows from [3] that B(z0) is simply
connected. Moreover B(z0) is the only Fatou component and the Julia set J(f) is
equal to the boundary of B(z0).

We study the topological and combinatorial structure of J(f) and properties
of the Riemann mapping onto B(z0). In this area much work was done for the
exponential family (see e.g. [2], [1]). We use the technique of geometric coding
trees of preimages of points from B(z0). A geometric coding tree in an invariant
domain U is obtained by connecting a point from U to its first preimages by some
curves in U and taking their pull-backs by the branches of f−n, n > 0.

For every point in J(f) one can define its itinerary (similarily as for the ex-
ponentials in [2]) in the following way. Let T 1, T 2, .. be connected components of
f−1(C\D), where D is a topological disc containing Sing(f−1), and let T r

s (s ∈ Z)
be fundamental domains in a tract T r. Then the itinerary of a point z ∈ J(f) is a
pair of sequences (s0, s1, ..), (r0, r1, ..) such that fn(z) ∈ T rn

sn
for every n ≥ 0. We

show that a given itinerary is actually realizable by the trajectory of some point if
and only if the corresponding branch of a coding tree does not converge to infinity.
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As the next result we prove that if the codes of the tracts rn are bounded and
codes of the fundamental domains sn grow slightly slower than the iterates of
Eλ(z) = λ exp(z) (for some λ and x) then the corresponding branch converges to
a point from J(f). In this case the Julia set contains a point with this itinerary,
accessible from B(z0). Moreover if the sequence rn is bounded and sn grows not
faster than the iterates of an exponential function then the corresponding branch
does not tend to infinity. On the other hand, if the codes are growing sufficiently
fast then the branch tends to infinity and the itinerary is not realizable.

We prove also that the pull-back of a coding tree under the Riemann map has
all branches convergent. This implies that there exists at most one point in the
Julia set of a given itinerary which is accessible from B(z0).
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Some value distribution properties of the class S

James Langley

1. Introduction

Let the function f be transcendental and meromorphic in the plane. A key role
in complex dynamics [1] is played by the singular values of the inverse function
f−1, which are the critical and asymptotic values of f . In particular the class S,
consisting of those f for which f−1 has finitely many singular values, has been
studied extensively in iteration theory [1, 5]. Also important is the class B, for
which infinity is not a limit point of singular values.

Moreover, the class S has played an important role in value distribution the-
ory [8]. Collingwood [4] showed that every Nevanlinna deficient value a of f must
be in the closure of the singular values: in particular if f ∈ S then a must itself
be a singular value. This result was subsequently extended by Teichmüller [18],
who proved that the main inequality of Nevanlinna theory becomes an asymptotic
equality for f in class S . More recently, an important result of Bergweiler and
Eremenko [3] shows that if a meromorphic function f has finite order and finitely
many critical values then f has finitely many asymptotic values and so is in class
S. This was used in [3] to prove a long-standing conjecture of Hayman [8], and
subsequently has found extensive applications such as [11].
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Sharp lower bounds for the growth of a transcendental meromorphic function
f ∈ S follow at once from results in [10]. Define

L(f) = lim inf
r→∞

T (r, f)

(log r)2
,

where T (r, f) is the Nevanlinna characteristic [8], and let q(z, w) denote the chordal
metric on the Riemann sphere.

Theorem 1. There exists a positive absolute constant c0 with the following prop-
erty. Let {a1, . . . , aN} be a finite set of distinct elements of the extended complex
plane and set

α = sup{t > 0 : ∃a ∈ C ∪ {∞} such that q(a, aj) > t for j = 1, . . . , N}.
Let f be a function transcendental and meromorphic in the plane such that all but
finitely many critical points of f lie over {a1, . . . , aN}. Then

(1) exp

( −1

4L(f)

)
≥ c0αmin{q(aj , aj′) : j 6= j′}.

If the function f has only three singular values then a Möbius map may be
applied sending these to 0, 1,∞, and by Nevanlinna’s first fundamental theorem
this does not change L(f). Theorem 1 then shows that L(f) ≥ d0 > 0 in this case,

for an absolute constant d0, and the sharp value d0 =
√

3/2π has been proved by
Eremenko [6].

Examples constructed in [10] using modified elliptic functions show that (1) is
sharp. It should be noted further that functions in class S may grow arbitrarily
fast [14]. On the other hand functions in class B may grow arbitrarily slowly
subject to being transcendental: to see this take f = 1/g, where g is an entire
function of small growth with strongly separated zeros.

2. The conjectures of Mues and Gol’dberg

The next results consider deficiencies of derivatives of functions in the classes
S and B. It was conjectured by Mues [15] that every transcendental meromorphic
function f satisfies, for every positive integer n,

(2)
∑

a∈C

δ(a, f (n)) ≤ 1,

in contrast to the usual upper bound 2 for the sum of deficiencies of f itself over
all values [8]. This conjecture is known to be true when all poles of f are simple
[7], and in the general case the best upper bound known for the left-hand side of
(2) appears to be (2n+ 2)/(2n+ 1) [9, 19].

The following two theorems were proved in [12], and show that the Mues conjec-
ture is true for functions in B of finite lower order, and that for f ∈ S of arbitrary
growth the conjecture holds at least for the first derivative.

Theorem 2 ([12]). Let f be transcendental and meromorphic of finite lower order
in the plane such that f ∈ B. Let n be a positive integer. Then δ(b, f (n)) = 0 for
every b ∈ C \ {0}.



514 Oberwolfach Report 9/2007

Theorem 3 ([12]). Let f be transcendental and meromorphic in the plane such
that f ∈ S. Then δ(b, f ′) = 0 for every b ∈ C \ {0}.

Finally we turn to the zeros of the second derivative. Pólya showed [8, p.63] that
if f is meromorphic with at least two distinct poles then the kth derivative of f has
at least one zero, for all sufficiently large k. In the same spirit it was conjectured
by Gol’dberg that the frequency of distinct poles of f is already controlled by the
frequency of zeros of f ′′. Again this is known to be true if all poles of f are simple
[7]. Moreover, if f has finite order and f ′′ has finitely many zeros then f has
finitely many poles [11], a sharp result which makes essential use of the connection
between critical and asymptotic values established in [3]. The following result was
proved in [13].

Theorem 4. Let f ∈ S be transcendental and meromorphic in the plane such that
f ′′/f ′ is non-constant and has finite order. Then

log+M(r, f ′/f ′′) = log+ (max{|f ′(z)/f ′′(z)| : |z| = r}) = o(T (r, f ′′/f ′))

as r → ∞ in a set of logarithmic density 1.

Of course if f is transcendental and f ′′/f ′ is constant then f has the simple
form f(z) = eAz+B + C with A,B,C constants and in particular has no poles. It
follows from Theorem 4 that if f ∈ S has finite order then

N(r, f) ≤ N(r, 1/f ′′) + o(T (r, f))

holds as r → ∞ in a set of logarithmic density 1, which is the inequality conjectured
by Gol’dberg [11].

A key role in the proof of these results is played by the following lemma, which
has extensive applications in complex dynamics and value distribution [1, 2, 17].

Lemma 1 ([5, 17]). Let f be transcendental and meromorphic in the plane such
that f ∈ B. Then there exist L > 0 and M > 0 such that

∣∣∣∣
z0f

′(z0)

f(z0)

∣∣∣∣ ≥ C log+

∣∣∣∣
f(z0)

M

∣∣∣∣ for |z0| > L,

where C is a positive absolute constant, in particular independent of f, L and M .
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X-universal functions (problem session)

Raymond Mortini

Problem 1. Let Ω be a domain in C and let X denote either the Fréchet space
H(Ω) of all holomorphic functions on Ω or the unit ball B = {f ∈ H(Ω) :
supz∈Ω |f(z)| ≤ 1}. A function f ∈ X is called X-universal for the sequence
(φn) of holomorphic self-maps of Ω if the ”orbit“ O(f) = {f ◦ φn : n ∈ N} is
locally uniformly dense in X .
In the case where (φn) is a sequence of automorphisms, necessary and sufficient
conditions are known for the existence of X-universal functions (see [2, 4, 3]). In
the case of the unit disk, it is shown in [1] that if (φn) is a sequence of selfmaps of D

with |φn(0)| → 1, then a necessary and sufficient for the existence of a B-universal

function for the sequence (φn) is that lim sup
|φ′n(0)|

1 − |φn(0)|2 = 1. For a detailed

exposition see [5]. Our question is: Give necessary and sufficient conditions on a
sequence of selfmaps (φn) of an arbitrary domain for the existence of X-universal
functions for (φn). In particular, does an annulus admit X-universal functions?

Problem 2. In order to switch from B-universal functions to H(Ω)-universal func-
tions, an answer to the following question, interesting in its own, would be useful:
Let Ω ⊆ C be a domain. Under which conditions H∞(Ω) is locally uniformly dense
in H(Ω)?
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Picard-Hayman Behavior of Derivatives of Functions with Multiple
Zeros

S. Nevo

(joint work with X.C. Pang and L. Zalcman)

Quasinormality (P. Montel, 1922). A family F of functions meromorphic on
a domain D is called quasinormal on D if every sequence {fn}∞n=1 in F has a

subsequence {fnk
}∞k=1 such that fnk

χ⇒ f onD\E, where E ⊂ D satisfies E
(1)
D = ∅.

If E can always be taken to satisfy |E| ≤ ν, then F is said to be quasinormal of
order ν. For example, the family {nz : n ∈ N} is quasinormal of order 1 in C.

The following Theorem 1 and Theorem 2 are the main results.

Theorem 1. Let F be a family of meromorphic functions on the plane domain
D, all of whose zeros have multiplicity at least k+1. If there exists a holomorphic
function ϕ univalent on D such that f (k)(z) 6= ϕ′(z) for all f ∈ F and z ∈ D,
then F is quasinormal of order 1 on D.

Theorem 1 is sharp. The family
{
fα(z) =

(z − α/(k + 1))k+1

k!(z − α)
: α 6= 0

}

is quasinormal of order 1 but not normal. Also the order of multiplicity k + 1
cannot be reduced. For example, in the case k = 2, the family {n cos2 z : n ∈ N}
in the domain D = {z : −1 < Im z < 1} \ ⋃

m∈Z
B

(
π
4 +mπ

2 ,
π
8

)
is quasinormal of

order ∞.
Theorem 1 improves a theorem from [3], which is the same but with the addi-

tional condition that the family F is quasinormal.
A consequence of Theorem 1 is

Theorem 2. The derivative of a transcendental meromorphic function on C all
but at most finitely many of whose zeros are multiple takes on every nonzero com-
plex value infinitely often.
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History. In 1959, Hayman proved the following seminal result, which has come
to be known as Hayman’s Alternative.

Theorem A. [Hayman’s Alternative] Let f be a transcendental meromorphic func-
tion on the complex plane C. Then either

(i) f assumes each value a ∈ C infinitely often, or
(ii) f (k) assumes each value b ∈ C \ {0} infinitely often for k = 1, 2, . . . .

Theorem B. Let f be a meromorphic function on C. If f(z) 6= 0 and f (k)(z) 6= 1
for some fixed positive integer k and all z ∈ C, then f is constant.

Our point of departure was

Theorem C. [2] Let F be a family of meromorphic functions on a plane domain
D. Suppose that for each f ∈ F , f(z) 6= 0 and f (k)(z) 6= 1 for some fixed positive
integer k and all z ∈ D. Then F is a normal family on D.

Observation. In many instances, the condition that a function have no zeros can
be replaced by a weaker condition that the zeros of the function be of large enough
multiplicity.

In the case k = 1, Theorem 2 extends a result of Wang and Fang, [4], which is the
same as Theorem 2, but the multiplicity of the zeros needs to be at least 3. It also
extends a result of Bergweiler and Eremenko, [1], which is the same as Theorem 2
but for functions of finite order. (We proved Theorem 2 for meromorphic functions
of order 0 < ρ ≤ ∞.) Bergweiler and Eremenko also gave an example that their
result is not true for functions of infinite order.

An Intermediate Result. The following weaker version of Theorem 2 follows
almost immediately from Theorem 1.

Theorem 2’. Let f be a transcendental meromorphic function on C, all of whose
zeros are multiple. Then f ′ assumes every nonzero complex value.

Proof. Suppose not, so that (say) f ′(z) 6= 1 for z ∈ C. By Theorem A and the above
result of Bergweiler and Eremenko, f has infinite order and hence has unbounded
spherical derivative. Choose zn → ∞ so that f#(zn) → ∞, zn

zn−1
→ ∞, and

consider the family F = {fn} on C, where fn(z) = f(znz)/zn. Then f ′
n(z) =

f ′(znz) 6= 1, so by Theorem 1, F is quasinormal of order 1 on C. On the other
hand,

f#
n (1) =

|f ′
n(1)|

1 + |fn(1)|2 =
|f ′(zn)|

1 + |f(zn)/zn|2
≥ f#(zn)
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for |zn| ≥ 1. Thus f#
n (1) → ∞; so by Marty’s Theorem, no subsequence of {fn}

can be normal at z = 1. We also have

f#
n

(
zn−1

z1

)
=

|f ′(zn−1)|2

1 + |f(zn−1)|2
|zn|2

≥ f#(zn−1) → ∞.

Thus sup|z|≤ε f
#
n (z) → ∞ for each ε > 0, so that no subsequence of {fn} can be

normal at z = 0. The existence of two points of non-normality for any subsequence
of {fn} contradicts the assertion that F is quasinormal of order 1 and establishes
the theorem. �

Structure of the Proof of Theorem 1. Let {fn}∞1 be a sequence of F .
Case I : Each a ∈ D has δa > 0, such that fn has at most a single (multiple) zero
for large enough n.

In this case {fn} is quasinormal inD, and if a1 is a point of of nonnormality, then
the limit function f of some subsequence of {fn} satisfies f (k−1) = ϕ(z) − ϕ(a1).
So by the univalence of ϕ, a1 is the unique point of nonnormality.

It is shown that the nature of {fn} near a1 is, roughly speaking, that of {fα},
fα(z) =

(z− α
k+1

)k+1

k!(z−α) , α→ 0, near z = 0.

Case II : For some a ∈ D no such δa exists. This case cannot occur!
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Hausdorff measure of Julia sets of exponential functions

Jörn Peter

We consider the exponential family {fλ}λ∈C\{0}, consisting of all functions fλ(z) =
λez. For a continuous and nondecreasing ’gauge function’ h : [0, a) → R≥0 (where
a is any positive real number) with h(0) = 0 and a subset A of the complex plane,
let

Hh(A) := lim
δ→0

inf

{ ∞∑

i=1

h(diam Ai) :

∞⋃

i=1

Ai ⊃ A, diam Ai < δ

}
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denote the Hausdorff measure of the set A with respect to the gauge function h.
Let J(fλ) denote the Julia set of the function fλ, i.e.

J(fλ) =

{
z ∈ C : {fn

λ }n∈N

does not form a normal family
in any neighborhood of z

}
.

Here (and in the following), fn is the n-th iterate of a function f , i.e.

f0(z) = z and fn(z) = f(fn−1(z)) for all n ∈ N.

McMullen [1] showed that dimH(J(fλ))=2 for every λ, where dimH denotes the
Hausdorff dimension. He also remarked that the Hausdorff measure with respect
to the gauge function

h(t) = t2logk

(
1

t

)

is ∞, for any k ∈ N. However, if the function fλ is hyperbolic (i.e. fλ has an
attracting periodic cycle), then the Julia set of fλ has zero Lebesgue measure.

We have found other functions for which this statement is still true, at least in
the classical case where 0 < λ < 1

e . For such a λ, let βλ be the unique real repelling
fixed point of fλ. Then there exists a unique analytic function Sλ : C → C such
that

fλ ◦ Sλ = Sλ ◦ βλ, Sλ(0) = βλ, S
′
λ(0) = 1.

Define Φλ := (Sλ|R)−1. After these preparations, we can now state our theorem:

Theorem 1. Let λ, βλ,Φλ be as above and let γλ be such that βγλ

λ > 2. Then the

Hausdorff measure of J(fλ) with respect to the gauge function hλ(t) = t2Φλ(1
t )

γλ

is ∞.

It is easy to see that McMullen’s remark follows from this theorem in the case
that 0 < λ < 1/e. The proof mainly follows the ideas of McMullen. He uses
Frostman’s Lemma for the proof, which we slightly generalize for our purposes:

Lemma 1. Let µ be a mass distribution on C, 0 < a, c <∞, F ⊂ C µ-measurable,
h : [0, a) → R≥0 with h(0) = 0. If

(1) lim sup
r→0

µ(Br(x))

h(r)
< c for all x ∈ F,

then Hh(F ) ≥ µ(f)
c .

The construction of a suitable mass distribution µ and a suitable subset F of
J(fλ) such that (1) is true for all positive c and h(t) = t2Φλ(1

t )
γλ is the same as

the one used by McMullen.
The mass distribution µ is defined by using the method of nested intersections:

For k ∈ N, let Ek = {F 1
k , ..., F

nk

k } be a collection of disjoint, compact, connected
subsets of C with positive Lebesgue measure such that the following conditions
are satisfied, where ’meas’ denotes two-dimensional Lebesgue measure:

(1) There exists a decreasing sequence (dk) −→
k→∞

0 with maxi diam F i
k ≤ dk
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(2) For every k ∈ N, there exists ∆k > 0 such that

dens(Ek+1, F ) =
meas(Ek+1 ∩ F )

meas(F )
≥ ∆k

(where F ∈ Ek and Ek+1 =
⋃nk+1

i=1 F i
k+1)

(3) Every F ∈ Ek+1 is contained in some F ′ ∈ Ek.

Then µ is defined on Ek first by

µ(F ) =
meas(F )∑n1

i=1 meas(F i
1)

for F ∈ E1

and

µ(F ) =
meas(F )∑nk

i=1
Fi∩F l

k−1
6=∅

meas(Fi)
· µ(F l

k−1) for k ≥ 2, F ∈ Ek, F ⊂ F l
k−1

and is then extended by a well-known limit process. If we define E :=
∞⋂

i=1

Ei, then

µ is supported on E and µ(E) = 1.
With the above terminology, McMullen showed that the Hausdorff dimension

of J(fλ) is 2 by using the following proposition:

lim sup
k→∞

∑k
i=1 |log ∆i|
|log dk|

≥ 2 − dimHE.

We modify the proposition so that it fits for our purposes:

Lemma 2. Let a > 0, g : (0, a) → R≥0 be a decreasing, continuous function with

lim
k→∞

g(dk) ·
k∏

i=1

∆i = ∞.

Let h(r) = r2 · g(r). Then Hh(E) = ∞.

For the proof of our theorem, we work with the same sets Ek as McMullen did,
but we slightly improve his estimates for ∆k and dk.

References

[1] C. McMullen, Julia sets of entire functions, Trans. amer. math. Soc. 300 (1987), 329-342



Normal Families and Complex Dynamics 521

Rigidity of escaping dynamics of entire functions

Lasse Rempe

1. Introduction

In the following, f : C → C will be a nonconstant, nonlinear entire function (that
is, a holomorphic self-map of the complex plane). We are interested in studying
the escaping set,

I(f) := {z ∈ C : lim
n→∞

fn(z) = ∞}.
If f is a polynomial, then I(f) is a completely invariant component of the

Fatou set of f (the basin of infinity). A classical theorem of Böttcher implies
that any two polynomials of the same degree are conformally conjugate near ∞.
This conjugacy gives rise to “external rays” (also called “dynamic rays”), first
introduced by Douady and Hubbard in their celebrated study of the Mandelbrot
set [1]. These rays have formed the backbone of the successful dynamical study
of polynomials; in particularly they are the basis of the famous “Yoccoz puzzle”
(compare [6]).

We are interested in the case where f is a transcendental entire function. In
this situation, the escaping set (which made its first appearance, albeit implicitly,
in Fatou’s original study of transcendental dynamics [4]) is never open, and always
intersects the Julia set [2]. (In fact, in the cases we will be considering, we always
have I(f) ⊂ J(f).)

We ask whether there is an analog of Böttcher’s theorem for the behavior of
(certain) entire functions near infinity. At first glance, this may seem like a strange
question: we might e.g. be comparing a function whose Julia set is the whole sphere
with one that has an attracting cycle, and hence has points arbitrarily close to
infinity which will be attracted to this cycle under iteration. However, under the
right formulation of our question, there is a (rather general) positive answer.

An analog of Böttcher’s theorem. To formulate our theorem, let us introduce
the Eremenko-Lyubich class

B := {f transcendental, entire : sing(f−1) is bounded}
(where sing(f−1) is the set of all critical and asymptotic values of f).

Let us also say that two functions f, g ∈ B are quasiconformally equivalent near
infinity if there are quasiconformal maps φ, ψ : C → C such that

(1) ψ(f(z)) = g(φ(z))

whenever |f(z)| and |g(z)| are large enough. When (1) holds on all of C, the maps
are simply called quasiconformally equivalent. (Quasiconformal equivalence classes
are the natural complex parameter spaces of entire functions [3].)

Theorem 1 ([7], 2006). Let f, g ∈ B be quasiconformally equivalent near infinity.
Then there exists a quasiconformal map ϑ : C → C such that ϑ ◦ f = g ◦ ϑ on

AR := {z : |fn(z)| ≥ R for all n ≥ 1}
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Figure 1. Three Julia sets of different entire functions: the first
is z 7→ 2(exp(z)−1), the second one is z 7→ (z+1) exp(z)−1; our
results imply that these are quasiconformally conjugate on their
Julia sets. The third picture shows a subset of the Julia set of
a function of the form z 7→ λ sinh(z) on which this function is
quasiconformally conjugate to the previous two.

Furthermore, ϑ has zero dilatation on {z ∈ AR : |fn(z)| → ∞}.

Thus, even though the structure of the escaping set can change dramatically
within class B (see [9] or Schleicher’s abstract in this report), it will stay constant
within any given parameter space. This is all the more surprising as other prop-
erties — the Hausdorff dimension of the escaping set, and the order of growth, for
example — do change within such parameter spaces.

The theorem also explains why some function-theoretically very diverse func-
tions turn out to have very similar Julia sets; compare Figure 1.

We should also note that the above theorem does not hold for general entire
functions (outside class B). Indeed, the map z 7→ z − 1 + exp(z) has a Baker
domain (i.e., an invariant Fatou component contained in I(f)) containing a left
half-plane, while z 7→ z + 1 + exp(z) has no Baker domains at all.

Conjugacy on the escaping set. In the polynomial case, the conjugacy pro-
vided by Böttcher’s theorem can be continued analytically to a conjugacy between
between the entire basins of infinity, provided that no critical value of either poly-
nomial escapes itself. This is not true in the transcendental setting: e.g. two
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elements of the exponential family z 7→ exp(z) + κ will, in general, not be con-
jugate on their escaping sets, even if the singular values do not escape (compare
[8]). However, if both functions are hyperbolic — that is, the postsingular set

P(f) =
⋃

j≥0

fn(sing(f−1))

is compact and contained in the Fatou set — the situation is different.

Theorem 2 ([7], 2006). Suppose that f, g ∈ B are hyperbolic and quasiconformally
conjugate near infinity. Then f |I(f) is topologically conjugate to g|I(f).

Rigidity and density of hyperbolicity. It turns out that the conjugacy con-
structed in Theorem 1 is “essentially unique”. This has several important conse-
quences, which have applications in current joint work with Sebastian van Strien.
This work aims to transfer recent results of Kozlovski, Shen and van Strien [5]
on density of hyperbolicity for real polynomials to the case of real transcendental
maps.

Let us denote by SR the set of all real entire transcendental functions for which
sing(f−1) is finite and contained in R. For functions of this type, we have the
following rigidity result.

Theorem 3 (R., van Strien, 2005). Suppose that f, g ∈ SR are topologically con-
jugate. Then f and g are quasiconformally conjugate.

Results of this type can usually be used to establish density of hyperbolicity
in real parameter spaces when coupled with theorems on the absence of invariant
line fields on the Julia set. Work to establish the absence of such line fields for
functions in SR is still ongoing, but some important progress has already been
made. For example, we can prove the following.

Theorem 4 (R., van Strien, 2006). Suppose that f ∈ SR is bounded on the real
axis. Then there exists a hyperbolic function g ∈ SR arbitrarily close to f and
quasiconformally equivalent to f .

This theorem applies, in particular, to the real cosine family of maps z 7→
a cos(z) + b sin(z) with (a, b) ∈ R2 \ {(0, 0)}.
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Multiply connected wandering domains of meromorphic functions

Phil Rippon

(joint work with Gwyneth Stallard)

Let f : C → Ĉ be a transcendental meromorphic function and denote by fn, n =
0, 1, 2, . . . , the nth iterate of f . The Fatou set F (f) is defined to be the set of
points z ∈ C such that (fn)n∈N is well-defined, meromorphic and forms a normal
family in some neighborhood of z. The complement of F (f) is called the Julia set
J(f).

The set F (f) is completely invariant, so for any component U of F (f) there
exists, for each n = 0, 1, 2, . . . , a component of F (f), which we call Un, such that
fn(U) ⊂ Un. If, for some p ≥ 1, we have Up = U0 = U , then we say that U is
a periodic component of period p, assuming p to be minimal. There are then five
possible types of periodic components; see [5]. If Un is not eventually periodic,
then we say that U is a wandering component of F (f), or a wandering domain.

We use the name Baker wandering domain to denote a wandering component
U of F (f) such that, for n large enough, Un is a bounded multiply connected
component of F (f) which surrounds 0, and Un → ∞ as n → ∞. An example of
this phenomenon with f an entire function was first given by Baker in [1].

If f is a transcendental entire function and U is a multiply connected component
of F (f), then U is a Baker wandering domain; see [2]. This need not be the case
for meromorphic functions, even those with finitely many poles; see [7]. There
are also examples of meromorphic functions with multiply connected wandering
domains that are not Baker wandering domains. For example, in [4] Baker, Kotus
and Lü used techniques from approximation theory to construct a meromorphic
function with a k connected bounded wandering domain, where k ∈ {2, 3, . . .},
which is not a Baker wandering domain. This example has infinitely many poles.

For any meromorphic function f we let sing (f−1) denote the set of inverse
function singularities of f , which consists of the critical values and finite asymptotic
values of f . Using a sufficient condition for Baker wandering domains given in [11]
we obtain the following result.
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Theorem 1. Let f be meromorphic and have a finite number of poles, and let U
be a multiply connected wandering domain of f .

(a) The component U is a Baker wandering domain if and only if infinitely
many of the components Un, n = 0, 1, 2, . . . , are multiply connected.

(b) If

sing(f−1) ∩
⋃

n≥1

Un = ∅,

then Un is multiply connected for n = 0, 1, 2, . . . , so U is a Baker wander-
ing domain.

Theorem 1(a) is related to a result of Qiu and Wu [10], which gives a sufficient
condition for a meromorphic function to have infinitely many weakly repelling
fixed points. Note that Theorem 1(a) is false without the hypothesis that f has
finitely many poles; see the finitely connected example of Baker, Kotus and Lü [4]
mentioned earlier. Here we give an infinitely connected example of this type, based
on an earlier example of an entire function with a bounded wandering domain due
to Bergweiler.

Example 1. If ǫ > 0 is small enough, then the function

f(z) = 2 + 2z − 2ez +
ǫ

ez − ea
,

has a wandering domain U such that each component Un, n = 0, 1, 2, . . . , is
bounded and infinitely connected, but U is not a Baker wandering domain.

Our second example shows that there exists a meromorphic function f , with
just one pole, which has a multiply connected wandering domain U such that,
for n ≥ 1, the components Un are simply connected. This is based on an earlier
example of an entire function with a bounded wandering domain due to Devaney.
Thus in Theorem 1(a) it is not sufficient to assume that U alone is a multiply
connected wandering domain in order to deduce that U is a Baker wandering
domain.

Example 2. If λ and a are chosen so that λ sin a = 2π and 1 + λ cos a = 0, and
ǫ > 0 is small enough, then the function

f(z) = z +
ǫ

z
+ λ sin(z + a),

has a bounded doubly connected wandering domain U such that each component
Un, n = 1, 2, . . . , is bounded and simply connected.

Next we discuss some general connectivity properties of Fatou components of
transcendental meromorphic functions. For a domain U in C, the connectivity c(U)

is the number of components of ∂U in the extended complex plane Ĉ; note that
if U is unbounded, then we include ∞ in ∂U . Following Kisaka and Shishikura
[9], we define the eventual connectivity of a component U of F (f) to be c provided
that c(Un) = c for all large values of n. Kisaka and Shishikura [9] showed that if
f is entire and U is a multiply connected component of F (f), and hence a Baker
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wandering domain, then the eventual connectivity of U exists and is either 2
or ∞. Moreover, they constructed the first example of an entire function f with
a Baker wandering domain with eventual connectivity 2, thus answering an old
question; see [5]. Earlier, Baker [3] constructed an example with infinite eventual
connectivity.

Using Theorem 1(a), the Riemann-Hurwitz formula and results of Bolsch [6] and
Herring [8], we obtain the following generalisation of the above result of Kisaka
and Shishikura to meromorphic functions with a finite number of poles.

Theorem 2. Let f be a meromorphic function with a finite number of poles, and
let U be a wandering domain of f .

(a) If U is not a Baker wandering domain, then the eventual connectivity of
U is 1.

(b) If U is a Baker wandering domain, then the eventual connectivity of U is
either 2 or ∞.

In the example of Baker, Kotus and Lü mentioned earlier (which has infinitely
many poles) it can be shown that the wandering domains constructed have eventual
connectivity k, where k ∈ {2, 3, . . .}. Thus Theorem 2(a) is false without the
assumption that f has a finite number of poles. By modifying the construction
of Baker, Kotus and Lü, we can obtain a meromorphic function f with a Baker
wandering domain whose eventual connectivity is k. Thus Theorem 2(b) is also
false without the assumption that f has a finite number of poles.

Finally we give examples to show that if U is a wandering domain of a mero-
morphic function f with a finite number of poles, then c(Un) is not necessarily
monotonic decreasing (as would be the case if all the components Un are bounded).
These examples are obtained by starting with Example 2 and modifying it in a
suitable left half-plane using techniques from approximation theory.

References

[1] I.N. Baker, An entire function which has wandering domains, J. Austral. Math. Soc. Ser.
A, 22 (1976), 173–176.

[2] I.N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math.
Soc., 49 (1984), 563–576.

[3] I.N. Baker, Some entire functions with multiply connected wandering domains, Ergodic
Theory Dynam. Systems, 5 (1985), 163–169.
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Critical points of inner functions, nonlinear partial differential
equations, and an extension of Liouville’s theorem

Oliver Roth

(joint work with Daniela Kraus)

Theorem 1. Let {zj} ⊆ D be a Blaschke sequence. Then there exists a Blaschke
product with critical points {zj} (counted with multiplicity) and no others.

In case of finitely many critical points z1, . . . , zn ∈ D the Blaschke product con-
structed in Theorem 1 is finite and of degree n+ 1. This follows from the proof of
Theorem 1 and [4, Corollary 1.10]. The finite case in Theorem 1 has earlier been
obtained by Heins [3, Theorem 29.1], Wang & Peng [11], Bousch [2] and Zakeri
[12] using topological methods, and Stephenson [10, Theorem 21.1] using Circle
Packing. Theorem 1 appears to be the first result of its kind for infinitely many
critical points. A partial converse of Theorem 1 has been obtained by Heins [3],
who showed that for any nonconstant holomorphic function f : D → D the critical
points of f contained in any horocycle satisfy the Blaschke condition.

Sketch of proof. In a first step we define the Blaschke product

h(z) :=

∞∏

j=1

−zj

|zj|
z − zj

1 − zj z

and show that the nonlinear elliptic Gaussian curvature equation

(1) ∆u = 4 |h(z)|2 e2u in D , lim
z→ξ

u(z) = +∞ for every ξ ∈ ∂D

has a solution u ∈ C2(D; R). It follows from the results of [4] that eu(z) |dz| is then
a complete conformal Riemannian metric in D with curvature −4 |h(z)|2, so this
step is closely related to the Berger-Nirenberg problem in differential geometry. In
a second step we establish an extension of Liouville’s theorem [5] to show that

u(z) = log

( |f ′(z)|
1 − |f(z)|2

1

|h(z)|

)

for some holomorphic function f : D → D. Since u(z) is finite everywhere, the
function f has the critical points {zj} (counted with multiplicity) and no others.
Now classical theorems from complex analysis (Fatou’s theorem and Privalov’s
theorem) guarantee that f is an inner function, so a certain Frostman shift of f is
a Blaschke product with critical points {zj} and no others. �
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Building holomorphic maps with the help of the Liouville equation (i.e. (1) for
h ≡ 1) is an old idea and can be traced back at least to the work of Schwarz [9],
Poincaré [8], Picard [6, 7] and Bieberbach [1]. The main new aspect of the present
work is to show that the same method can also be applied in situations when
branch points occur even though branching complicates the treatment consider-
ably. Roughly speaking, this is accomplished by replacing Liouville’s equation by
the Gaussian curvature equation (1) with the critical points encoded as the zeros
of the holomorphic function h(z).
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Local boundary behaviour of analytic maps and the hyperbolic metric
(problem session)

Oliver Roth

Theorem 1 (see [3]). Let Γ be an open subarc of the unit circle ∂D and let
f : D → D be a holomorphic function. Then the following conditions are equivalent.

(a) For every ξ ∈ Γ : lim
z→ξ

|f ′(z)|
1 − |f(z)|2 = +∞ .

(b) For every ξ ∈ Γ : lim inf
z→ξ

(
1 − |z|2

) |f ′(z)|
1 − |f(z)|2 > 0 .

(c) For every ξ ∈ Γ : lim
z→ξ

(
1 − |z|2

) |f ′(z)|
1 − |f(z)|2 = 1 .
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(d) For every ξ ∈ Γ : lim
z→ξ

|f(z)| = 1 .

(e) f has a holomorphic extension across the arc Γ with f(Γ) ⊂ ∂D.

The statement (c) ⇐⇒ (d) for the global case Γ = ∂D has been obtained earlier
by Heins [2] using a different method. Thus Theorem 1 is a (sharper) localised
version of Heins’ result. One is inclined to ask whether some of the implications
of Theorem 1 are still valid when the arc Γ shrinks to a point.

Problem 1. Suppose

lim
z→1

(
1 − |z|2

) |f ′(z)|
1 − |f(z)|2 = 1 .

What can be said about the boundary behaviour of f at z = 1 ?

Going back to Theorem 1 we note that the implication (a) =⇒ (c) is contained in

Lemma (Boundary Ahlfors Lemma [3]). Let Γ be an open subarc of the unit circle
∂D and let λ(z) |dz| be a regular conformal pseudo-metric on the unit disk D with
curvature bounded below by −4. If

(A) lim
z→ξ

λ(z) = +∞

for every point ξ ∈ Γ, then

(B) lim inf
z→ξ

λ(z)

λD(z)
≥ 1

for every ξ ∈ Γ. Here λD(z) = 1/(1 − |z|2) denotes the hyperbolic metric in D. In
particular,

(C) lim
z→ξ

dλ(0, z) = +∞

for every point ξ ∈ Γ, where dλ denotes the distance function associated to λ(z) |dz|.

The Lemma contains the Ahlfors Lemma [1] as a special case (Γ = ∂D). The
implication (C) =⇒ (B) (for conformal metrics) is contained in the work of Yau
[5] and Bland [4]. In fact (see [3]), the conditions (A), (B) and (C) are equivalent
in much more generality, i.e.

Corollary 1. Let Ω ⊆ C be a domain, let Γ be an open free C2-subarc of ∂Ω,
let λ(z) |dz| be a regular conformal metric on Ω with κλ ≥ −4 and let dλ be the
associated distance function. Then the following are equivalent:

(a) λ(z) |dz| is locally complete near Γ, i.e. dλ(z, z0) → ∞ as z → ξ for every
ξ ∈ Γ for some (and then every) z0 ∈ Ω.

(b) lim
z→ξ

λ(z) = +∞ for every ξ ∈ Γ.

Problem 2. What are the minimal regularity conditions on the boundary set Γ
such that the two conditions (a) and (b) in Corollary 1 are still equivalent ?
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Dynamic Rays for Entire Functions of Bounded Type

Dierk Schleicher

(joint work with Günter Rottenfußer, Johannes Rückert, and Lasse Rempe)

The study of the escaping set for polynomials has been one of the key ingredients
in the successful study of polynomial dynamics. Polynomials (of degree d ≥ 2)
have superattracting fixed points at ∞, and it is well known that I is conformally
equivalent to C\D (if the Julia set is connected; if not, the necessary modifications
are also well-understood). The set I consists naturally of dynamic rays. Many of
the deepest results about the structure of polynomial Julia sets rely on the landing
properties of dynamic rays at points of the Julia set. Since rays and their landing
properties have been so successful in the study of polynomial dynamics, it has been
a major motivation for our recent work to extend these ideas to transcendental
entire functions. The study is very different, though, because the superattracting
fixed point at ∞ is replaced by an essential singularity.

There has been substantial interest in the set I(f) for quite a while. Fatou [7]
observed that for certain entire functions, I(f) contains curves to infinity and
asked whether this property was true in greater generality. Eremenko [5] showed
that for every entire function f , the set I(f) is non-empty and unbounded, and
he conjectured that every connected component (or even every path component)
of I(f) was unbounded; he also proved that the Julia set of f has the property

that J(f) = ∂I(f) and, if f was of bounded type, that J(f) = I(f). Devaney
and coauthors showed that I(f) contains curves for all maps in the exponential
family z 7→ λ exp(z) [2] and for a number of entire transcendental functions [4];
for exponential maps with the special dynamical property that the singular value
converges to an attracting fixed point, they even proved that every path compo-
nent of I(f) is a curve to ∞. The same was shown for all exponential maps, even
when the Julia set is the entire complex plane, in [14, 8]; these results provide a
classification of all escaping points in terms of dynamic rays. This was extended to
the cosine family z 7→ aez + be−z in [12], and to entire functions of bounded type
and finite order, subject to the dynamical condition that all singular and critical
values converge to a single attracting fixed point, by Baranski [1]. Rempe [9] has



Normal Families and Complex Dynamics 531

shown some kind of stability of the set I(f) within every parameter space of tran-
scendental functions (see also his report in this volume). The first transcendental
map where the Julia set is C, every dynamcic ray lands and every point in the
Julia set is the landing point of some dynamic rays, is the case of cosine maps
z 7→ aez + be−z with both critical orbits strictly preperiodic [13].

Figure 1. The tract of a bounded type entire function for
which every path component of the escaping set is bounded, as
constructed in [11]. The curves Ci and C′

i are geodesics of T ; their
images are semi-circles Ri, R

′
i in H.

Our first main result is the following.

Theorem 1 (Bounded Path Components). There is an entire function f of
bounded type where every path component of I(f) is bounded.

This result disproves the strong version of Eremenko’s conjecture (that every
path component of I(f) is unbounded) even for bounded type entire functions. The
proof consists of several steps: following Eremenko and Lyubich [6], we employ
logarithmic coordinates. In logarithmic coordinates, every bounded type entire
function has countably many tracts Ti ⊂ C with conformal isomorphisms Fi : Ti →
H (where H denotes the right half plane), and every escaping point of f gives rise
to an orbit of escaping points of the Fi within

⋃
i Ti.

We first give sufficient conditions on the tracts Ti so that the set of orbits that
stay within

⋃
Ti have all their path components bounded; then we show that such

tracts actually exist within H. Finally we construct bounded type entire functions
which give rise to such tracts. We also sketch how to construct a hyperbolic entire
function of bounded type where all path components of I(f) are single points.

Our second main result is positive, proving Eremenko’s conjecture in many
cases.

Theorem 2 (Dynamic Rays Exist). Every entire function f of bounded type and
finite order has the property that I(f) is the disjoint union of curves to ∞ (dynamic
rays). The same is true for finite compositions of entire functions of bounded type
and finite order.
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In fact, we give more general conditions on the shape of the tracts (“bounded
wiggling”) which imply the conclusion of the theorem, and we show that entire
functions of bounded type and finite order satisfy these conditions.
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On Thurston’s Characterization Theorem

Nikita Selinger

Thurston’s characterization theorem reduces the question of whether a postcrit-
ically finite branched self-cover of S2 is equivalent to a rational map to a purely
topological criterion. We follow the work of Douady and Hubbard [1] to see the
connection between this question and holomorphic dynamics.

Let us call an orientation preserving branched covering f → S2 → S2 to be
postcritically finite if all critical points have finite orbits, i.e. they are periodic or
preperiodic. Denote by Ωf the set of all critical points of f . Then the postcritical
set is defined as: Pf =

⋃
n>0 f

n(Ωf ). Two postcritically finite maps f → S2 → S2

and g → S2 → S2 are Thurston-equivalent if there are two homeomorphisms
h1, h2 → S2 → S2 with g = h1 ◦ f ◦ h−1

2 , h1(Pf ) = h2(Pf ) = Pg, h1|Pf
=

h2|Pf
, and h1 and h2 are isotopic relative to Pf . We omit the precise definition
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for “hyperbolic” orbifolds (see [1]): all postcritically finite branched covers have
hyperbolic orbifolds, except for a few explicitly understood cases.

Thurston’s theorem gives a purely topological way to determine whether a
branched cover is equivalent to a rational function on the Riemann sphere. To
state it we need to give a definition of a Thurston obstruction. A simple closed
curve in S2 \Pf is essential if both connected components of its complement con-
tain at least two points of Pf . The map f is a covering on S2 \ Pf hence the
preimage of any simple closed curve in S2 \Pf is a number of simple closed curves.
A multicurve is a set of disjoint essential curves; a multicurve Γ is f -stable if every
essential connected component of the preimage of Γ is homotopic to a curve in
Γ. For every f -stable multicurve Γ = {γ1, γ2, . . . , γs} we can construct the corre-
sponding Thurston linear transformation (or the Thurston matrix) fΓ → RΓ → RΓ

as follows: let γi,j,α be the components of f−1(γj) homotopic to γi in S2\Pf . Then
set

fΓ(γj) =
∑

i,α

1

di,j,α
γi,

where di,j,α = deg fγi,j,α
→ γi,j,α → γj . Denote by λ(Γ, f) the largest real eigen-

value of fΓ. A Thurston obstruction is a multicurve Γ such that λ(Γ, f) ≥ 1.
Now we are ready to formulate

Theorem 1 (Thurston’s characterization theorem [1]). Every postcritically finite
orientation preserving branched cover f → S2 → S2 with hyperbolic orbifold is
either Thurston-equivalent to a rational map g (which is necessarily unique up to
conjugation by a Möbius transform), or f has a Thurston obstruction.

The key idea of the proof is to define an analytic self-mapping σ of the Te-
ichmüller space Tf modelled on (S2, Pf ). A point τ ∈ Tf can be represented as a

homeomorphism h → S2 → Ĉ where two such homeomorphisms h1, h2 represent
the same point in Tf if there exists a Möbius transformation m such that h1 ◦m
and h2 are isotopic relative Pf . Having this representation of Tf in mind we can
define the mapping σ as follows: let τ be a point in Tf represented by h. By pulling

back the standard complex structure σ0 from Ĉ first by h and then by f we get
an almost complex structure σ1 = f∗h∗(σ0) on S2. By the Measurable Riemann
Mapping theorem there exists a homeomorphism h1 such that σ1 = h∗1(σ0). Set
σ(τ) = τ1 where τ1 is represented by h1.

One can see now the correspondence between rational functions equivalent to
f and the fixed points of σ. Define g = h−1

1 ◦ f ◦h. Then g preserves the standard

complex structure on Ĉ hence g is rational. Comparing this with the definition of
Thurston equivalence we see that if h and h1 correspond to the same point in Tf

then f is equivalent to g. On the other hand, if f is equivalent to some rational
function g then the point which corresponds to both h1 and h2 from the definition
of Thurston equivalence is fixed under the action of σ.

We know that the cotangent space to Tf at a point τ represented by h is

isomorphic to the space Q(h(Pf )) of meromorphic quadratic differentials on Ĉ

which are holomorphic in Ĉ \ h(Pf ) and have at most simple poles in Pf . The
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norm |q| =
∫
|q(x + iy)|dxdy on Q(h(Pf ) can be used to define a metric on Tf .

The coderivative of σ equals f∗ → Q(h1(Pf )) → Q(h(Pf )) where f∗ denotes push-
forward by f :

f∗q(z) =
∑

w∈f−1(z)

(f−1)∗(w).

It is immediate to see that ||f∗|| ≤ 1. For f with hyperbolic orbifold it also
follows that ||(f∗)2|| < 1, i.e. d(τ1, τ2) < d(σ2(τ1), σ

2(τ2)) because the Teichmüller
space is path connected. That already yields the uniqueness part of the theorem.
Unfortunately, this is not enough to conclude that there exists a fixed point of σ
because Tf is not compact.

The further investigation is based on the study of conformal annuli in Ĉ\h(Pf ).
Every sufficiently short curve on a hyperbolic Riemann surface is surrounded by
an annulus of big modulus. We can also denote by m(τ) the maximal modulus of a

conformal annulus in Ĉ\h(Pf) which is homotopic to an essential curve. This will
clearly define a continuous function on Tf . Here is the place where the definition of
Thurston obstruction comes in. If we have a number of annuli (A1, A2, . . . , As) ho-
motopic to the respective components of an f -stable multicurve Γ = (γ1, γ2, . . . , γs)
then the vector of moduli M(h) = ( mod h(A1), mod h(A2), . . . , mod h(As))
changes by the action of σ approximately as predicted by fΓ M(h1) = fΓ(M(h))
provided the moduli are large enough.

Suppose there exists a fixed point τ of σ. If Γ is a Thurston obstruction then
starting from a point τ1 in Tf with large enough M(h) we will always have anuli

with large moduli on Ĉ \ h(Pf ), in particular larger than m(τ). Hence σn(τ1) can
not tend to τ . This contradicts the fact that σ is weakly contracting. On the
other hand, if λ(Γ, f) < 1 for all Γ then m(σn(τ)) is bounded for any τ which
means that the sequence rests in a part of Tf where we can uniformly estimate the
convergence rate. In this case we get a fixed point of σ.

In [2] the analogous statement for topological exponential maps was proven.

Theorem 2 (Postsingularly Finite Exponential Maps [2]). A postsingularly finite
topological exponential map f is either Thurston equivalent to a holomorphic expo-
nential map (necessarily unique up to conformal conjugation), or f has a Thurston
obstruction.

Here, a topological exponential map is simply an orientation preserving univer-
sal cover f → S2 \ {∞} → S2 \ {∞, 0}. It has a unique singular value, the omitted
value 0, and the latter is never periodic. A postsingularly finite exponential maps
is thus one where the singular orbit is strictly preperiodic. It is easy to show that
for entire maps, rational or transcendental, a Thurston obstruction would have to
be of a particularly simple kind known as “Levy cycle”.

The approach used in [2] is different from the original one of [1]. The theorems
on decomposition and limiting models of quadratic differentials proven there give
hope to get a new proof of the original Thurston’s theorem which would be easier
to generalise.
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Our principal goal is to generalise the statement of Thurston’s theorem to larger
classes of postsingularly finite entire and meromorphic functions.
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Escaping points of entire functions of small growth

Gwyneth Stallard

(joint work with Phil Rippon)

Let f be a transcendental entire function and denote by fn, n ∈ N, the nth iterate
of f . The Fatou set, F (f), is defined to be the set of points, z ∈ C, such that
(fn)n∈N forms a normal family in some neighbourhood of z. The complement,
J(f), of F (f) is called the Julia set of f .

The escaping set

I(f) = {z : fn(z) → ∞ as n→ ∞}
was first studied for a general transcendental entire function f by Eremenko [6].

He proved that I(f) 6= ∅, J(f) = ∂I(f), I(f)∩J(f) 6= ∅ and I(f) has no bounded
components.

Eremenko conjectured that it may be possible to show that I(f) has no bounded
components, a problem that still remains open. In [8] we proved the following re-
sult which shows that Eremenko’s conjecture is true whenever F (f) has a multiply
connected component.

Theorem 1. Let f be a transcendental entire function and suppose that F (f) has
a multiply connected component U . Then U ⊂ I(f) and I(f) is connected and
unbounded.

Here we prove the following result which generalises Theorem 1. We show that
I(f) is connected whenever there is a ‘hole’ in I(f).

Theorem 2. Let f be a transcendental entire function and suppose that there
exists a bounded domain U with ∂U ⊂ I(f) and U ∩ J(f) 6= ∅. Then
(a) γn = ∂fn(U) is in I(f), γn → ∞ and γn surrounds 0 for sufficiently large n;
(b) I(f) is connected and unbounded.

We will show later that there are functions that satisfy the hypotheses of The-
orem 2 but do not have any multiply connected Fatou components.
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We proved Theorem 1 by considering the following subset of I(f), which was
introduced by Bergweiler and Hinkkanen in [4]:

A(f) = {z : there exists L ∈ N such that |fn(z)| > M(R, fn−L), for n > L}.
Here,

M(r, f) = max
|z|=r

|f(z)|

and R can be taken to be any value such that R > minz∈J(f) |z|. A key part of
the proof was to show that A(f) is equivalent to the set

B(f) = {z : there exists L ∈ N such that fn+L(z) /∈ f̃n(D), for n ∈ N},
where D is any open disc meeting J(f) and Ũ denotes the union of U and its
bounded complementary components.

In practice, identifying which points belong to B(f) will involve studying sets
of the form

BD(f) = {z : fn(z) /∈ f̃n(D), for n ∈ N},
where D is an open disc meeting J(f). We prove several results concerning the
structure of such sets. Our main result is the following.

Theorem 3. Let f be a transcendental entire function, let D be an open disc
meeting J(f) and suppose that there exists a bounded domain U with ∂U ⊂ BD(f)
and U ∩ J(f) 6= ∅. Then
(a) γn = fn(∂U) → ∞ and, for sufficiently large n, γn is in BD(f) and γn

surrounds 0;
(b) BD(f), B(f) and I(f) are all connected.

We show that there are several conditions that are equivalent to the hypotheses
of Theorem 3. This enables us to prove the following result.

Theorem 4. Let f be a transcendental entire function and let D be an open disc
meeting J(f). Suppose that there exist simple closed Jordan curves γn such that

γn surrounds fn(D)

and
f(γn) surrounds the bounded component of γc

n+1.

Then there exists a bounded domain U with ∂U ⊂ BD(f) and U ∩J(f) 6= ∅. Thus
both B(f) and I(f) are connected.

There are two different classes of functions that we are aware of that satisfy the
hypotheses of Theorem 4. Firstly, any entire function with a multiply connected
component of the Fatou set will satisfy these hypotheses. Secondly, many functions
of order less than 1/2 have been shown to satisfy conditions which are stronger
than the hypotheses of Theorem 4. These functions were originally studied in
connection with a different conjecture (first raised by Baker [2] and described in
detail in the survey article [7]) — namely that if f is a function of order at most
1/2, minimal type, then F (f) has no unbounded component. In particular, it has
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been shown that the hypotheses of Theorem 4 are satisfied by functions of order
less than 1/2 whose growth is sufficiently regular and by functions of order zero
for which there exists ǫ ∈ (0, 1) such that

log logM(r, f) <
(log r)1/2

(log log r)ǫ
,

for large values of r.
There are many functions which satisfy the above growth condition and which

do not have multiply connected components of the Fatou set. For example, Berg-
weiler and Eremenko showed in [3] that there are transcendental entire functions of
arbitrarily small growth for which the Julia set is the whole plane. Also Baker [1]
and Boyd [5] independently proved that there are transcendental entire functions
of arbitrarily small growth for which every component of the Fatou set is simply
connected. Further, every point in the Fatou set tends to zero under iteration.

We end with the following result. This gives a criterion related to the escaping
set which is sufficient to ensure that a function has no unbounded Fatou compo-
nents.

Theorem 5. Let f be a transcendental entire function, let D be an open disc
meeting J(f) and suppose that there exists a bounded domain U with ∂U ⊂ BD(f)
and U ∩ J(f) 6= ∅. Then F (f) has no unbounded component.

Together with Theorem 4, this gives the following result.

Theorem 6. Let f be a transcendental entire function and let D be an open disc
meeting J(f). Suppose that there exist simple closed Jordan curves γn such that

γn surrounds fn(D)

and

f(γn) surrounds the bounded component of γc
n+1.

Then F (f) has no unbounded component.
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Complex Dynamics of Rational Semigroups

Rich L. Stankewitz

(joint work with Hiroki Sumi)

We discuss the dynamics of rational semigroups as an extension of rational iter-
ation theory. Research on the dynamics of rational semigroups was initiated by
A. Hinkkanen and G.J. Martin in [1]. A rational semigroup is a semigroup

generated by non-constant rational maps on the Riemann sphere Ĉ with the semi-
group operation being the composition of maps. We denote by 〈hλ : λ ∈ Λ〉 the
rational semigroup generated by the family of maps {hλ : λ ∈ Λ}. In this paper
we assume each map of a rational semigroup is of degree two or more.

Definition 1. Let G be a rational semigroup. We set

F (G) = {z ∈ Ĉ|G is normal in a neighborhood of z} and J(G) = Ĉ \ F (G).

We call F (G) the Fatou set of G and J(G) the Julia set of G. We also employ
the familiar iteration notation F (〈g〉) = F (g) = Fg and J(〈g〉) = J(g) = Jg.

In contrast to iteration dynamics, F (G) is only guaranteed to be forward in-
variant under each element of G (and thus J(G) is backward invariant under each
element of G). In fact, J(G) is the smallest closed backward invariant set con-
taining 3 or more points. However, if we wish to require that the Julia set of the
semigroup G be completely invariant under each element of G, we would use the
following.

1. Completely invariant Julia sets

Definition 2. For a rational semigroup G we define the completely invariant

Julia set of G, called E(G), to be the smallest closed subset of Ĉ containing three
or more points which is completely invariant under each element of G. We then

define the completely invariant set of normality by W (G) = Ĉ \ E(G).

It follows readily that J(G) ⊂ E(G), but what else can be said about these two
sets?

Theorem 1. [3] For a rational semigroup G the set W (G) can have only 0, 1, 2,
or infinitely many components.

Here are the few known types of E(G) along with a conjecture.

Example 3. (trivial case) If Jf = Jg, then E(〈f, g〉) = Jf = Jg = J(〈f, g〉).
Example 4. Let a ∈ C, |a| > 1 and G = 〈z2, z2/a〉. One can easily show J(G) =

{z : 1 ≤ |z| ≤ |a|} while E(G) = Ĉ. Note that Int(J(G)) 6= ∅, yet J(G) 6= Ĉ.

However, Int(E(G)) 6= ∅ implies E(G) = Ĉ (see [2]).
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Theorem 2. [2] For a rational semigroup G which contains two polynomials f

and g, Jf 6= Jg implies E(G) = Ĉ.

Example 5. Set f(z) = 2z − 1

z
and g(z) = 2z − 4

z
. Then Jf and Jg are Cantor

subsets of [−1, 1] and [−2, 2] respectively and E(〈f, g〉) = R.

Example 6. For f(z) =
3z + 5z2

1 + 3z + 4z2
and g(z) = 2z2 − 1, it follows that Jf 6=

[−1, 1] = Jg, but E(〈f, g〉) = [−1, 1].

Conjecture 1. [4] If G is a rational semigroup which contains two maps f and
g such that Jf 6= Jg and E(G) is not the whole Riemann sphere, then E(G) is
Möbius equivalent to a line segment or a circle.

2. Nearly Abelian polynomial semigroups.

Theorem 3. [1] Let F be a family of polynomials of degree at least 2, and
suppose that there is a set J such that Jg = J for all g ∈ F . Then G = 〈F〉 is a
nearly abelian semigroup.

Note that under the hypotheses of Theorem 3 we have Jh = J(G) for each
generator h ∈ F . It is, however, not the case that Jh = J(G) for just one h ∈ G
necessarily implies that G is nearly abelian.

Example 7. Let f(z) = z2 − 2, g(z) = 4z2 − 2 and G = 〈f, g〉. It follows that
J(G) = [−2, 2] = Jf , yet Jf 6= Jg.

Conjecture 2. [4] Let G be a polynomial semigroup such that Jh = J(G) for
some h ∈ G where J(G) is not a line segment. Then Jf = Jg for all f, g ∈ G (and
hence G is nearly abelian by Theorem 3).

3. Dynamics of postcritically bounded polynomial semigroups.

The planar postcritical set of a polynomial semigroup G is defined by
P ∗(G) =

⋃
g∈G{all critical values of g} \ {∞}. Let G be the set of all polyno-

mial semigroups G such that P ∗(G) is bounded in C. Unlike in iteration, we may
have G ∈ G, yet still have J(G) disconnected. We now state a few results regarding
such semigroups G ∈ G.

Theorem 4. [5] Let G ∈ G. Suppose that A is a doubly connected component of
F (G) and B satisfies one of the following conditions:

• B is a doubly connected component of F (G) other than A,
• B is the connected component of F (G) with ∞ ∈ B,
• B = {z ∈ C|{g(z)}g∈G is bded in C}.

Then, ∂A∩∂B = ∅ and A and B are separated by a Cantor family of quasicircles
(with uniform dilatation) all which lie in J(G).

In the following theorems Jmin(G) denotes the unique component of J(G) which
meets {z ∈ C|{g(z)}g∈G is bded in C}.
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Theorem 5. [5] Let H ∈ G and let G = 〈H,h1, . . . , hn〉 be a polynomial semigroup
generated by H and h1, . . . , hn. Suppose

(1) G ∈ G and J(G) is disconnected,
(2) J(hj) ∩ Jmin(G) = ∅ for each j = 1, . . . ,m, and
(3) H is semi-hyperbolic.

Then, G is semi-hyperbolic.

This theorem would not hold if we were to replace both instances of the word
semi-hyperbolic with the word hyperbolic, but we do have the following.

Theorem 6. [5] Let H ∈ G and let G = 〈H,h1, . . . , hn〉 be a polynomial semigroup
generated by H and h1, . . . , hn. Suppose

(1) G ∈ G and J(G) is disconnected,
(2) J(hj) ∩ Jmin(G) = ∅ for each j = 1, . . . ,m,
(3) H is hyperbolic, and
(4) For each j = 1, . . . ,m, the critical values of hj do not meet Jmin(G).

Then, G is hyperbolic.

For the proof of Theorems 4, 5, and 6, we use and develop many ideas from [6].
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Remark on Nevanlinna’s Four-Point-Theorem (problem session)

Norbert Steinmetz

This problem session talk was given to remind the present audience-and possibly
a wider one-of an old problem dating back to R. Nevanlinna’s famous

Four-Point-Theorem ([6]). Suppose that meromorphic functions f and g assume
each of the values a1, a2, a3, a4 at the same points and with the same multiplicities
(phrased “f and g share a1, a2, a3, a4 CM”). Then f and g have two common
Picard values, a4 = ∞, say, and a2 = 1

2 (a1 + a3), and satisfy (f − a2)(g − a2) =
(a2 − a1)(a3 − a2). The most simple example is given by a1 = −1, a2 = 0, a3 = 1,
a4 = ∞, f(z) = ez, g(z) = e−z.

The novelty and importance of this 1926 paper stems from the new and powerful
methods rather than the fact that meromorphic instead of entire functions of finite
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order were considered (as was done by Pólya a few years before). Nevanlinna
probably believed that the additional hypothesis “CM” was redundant. He wrote:

Es wäre nun interessant zu wissen, ob dieses Ergebnis auch dann
besteht, wenn die Multiplizitäten der betreffenden Stellen nicht
berücksichtigt werden. Einige [...] Ergebnisse sprechen vielleicht
für die Vermutung [...]

In 1979 G. Gundersen [1] gave an explicit counterexample to this conjecture;
quite different counterexamples were found (and characterised) by M. Reinders
[7] and the author [10] (the shared values are (0, 1,∞,− 1

8 ), (0, 1,∞,−1) and

(0, 1,∞, 3
√
−1) with 3

√
−1 6= −1, respectively). On the other hand Gundersen

proved in two steps [1, 2] that the additional hypothesis “CM” may be dropped
for two of the values. So it remains the

Question. Do there exist different meromorphic functions f and g sharing four
values, exactly one of them by “CM”? And if so, for which values does this happen?

Actually there has been no real progress since Gundersen’s 1983 paper (if we
ignore those papers which make additional and sometimes artificial assumptions).
Any serious result in this direction obtained in recent years, see [3, 4, 9, 11, 12, 13],
may be found in E. Rudolph’s thesis [8]-unfortunately unpublished. These results
rely on the auxiliary function

ψ =
f ′g′(f − g)2

∏3
ν=1(f − aν)(g − aν)

which carries the whole information and was introduced by E. Mues in the early
1980’s, but published only in 1989, see [5]. The properties of ψ and its factors

ψ1 =
f ′(f − g)

∏3
ν=1(f − aν)

and ψ2 =
g′(f − g)

∏3
ν=1(g − aν)

may be stated as follows:

Theorem. If meromorphic functions f and g share the values a1, a2, a3 and a4 =
∞, then ψ is entire, “small” and “almost” zero-free (to be understood in the sense
of Nevanlinna theory). Moreover, if a4 = ∞ is shared CM, then also ψ1 and ψ2

are entire and “almost” zero-free (but not necessarily “small”). Finally, if the
spherical derivatives f# and g# are bounded, then ψ is a non-zero constant, and
(assuming ψ ≡ 1) ψ1 = eQ, ψ2 = e−Q with degQ ≤ 2 hold.

The hypothesis f#+g# ≤ C may always be achieved by applying the re-scaling
technique, see L. Zalcman [14], simultaneously to both functions. Since all known
counterexamples to Nevanlinna’s conjecture have bounded spherical derivatives (at
least in their most simple form), we may pose two problems-and give presumptive
answers.

Problem 1. Determine all solutions (a1, a2, a3, f, g) of the equation ψ = 1. They
are presumably known, see [1, 6, 7, 10].
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Problem 2. Determine all solutions of the systems {ψ1 = ez, ψ2 = e−z} and

{ψ1 = ez2

, ψ2 = e−z2}, respectively. Up to Möbius transforms-replace f and g
with T ◦ f(az + b) and T ◦ g(az + b), respectively-, the solution of the first system
is presumably given by (−1, 0, 1, e−z, ez), while it seems unlikely that the second
system has any solution.
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Generalized Blaschke products with Fatou components
of arbitrary connectivity number

Marcus Stiemer

In this presentation, rational maps of the form

(1) f(z) = eiα

2p∏

j=0

z − aj

1 − ajz
, aj ∈ C \ ∂D, α ∈ [0, 2π), p ∈ N

are considered. In contrast to classical Blaschke products, they are allowed to
have zeros outside the unit disk D. All these maps fix the unit circle ∂D. Having
one more zero in D than poles, ∂D is covered once by f(∂D), as follows by the
argument principle. If no critical point lies on ∂D, f is an orientation preserving
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diffeomorphism of the unit circle. Otherwise, f is still a homeomorphism of ∂D,
if and only if all critical points on ∂D are of even multiplicity. In any case the
total number of critical points on ∂D is even (counting multiplicities), since f is

symmetric to the unit circle, i.e. f(1/z̄) = 1/f(z) for z in C. All rational maps
whose restriction to ∂D is an orientation preserving homeomorphism of the unit
circle are of the form described above.

The Fatou sets of rational homeomorphisms of the unit circle can be classified
depending on the rotation number µ(f) = limn→∞(2πn)−1hn(0) (mod 1), where
hn denotes the nth iterate of h, and h is an arbitrary lift of f to the real line, i.e.
f(eit) = eih(t), t ∈ R (see [4]):

• If µ(f) is irrational, then either ∂D is entirely contained in the Julia set
of f , or ∂D is contained in an Arnol’d-Herman ring symmetric about ∂D.

• If µ(f) is rational (say kµ(f) ∈ N with a minimal k ∈ N), then there is
a finite number m ∈ N of fixed points of fk on ∂D. These fixed points
divide ∂D in m arcs, which are contained entirely in an invariant Böttcher,
Schröder of Leau domain except of one or both of the end points.

For the subsequent construction of rational maps with multiply connected Fatou
components of a desired connectivity number, the following lemma will be essential
to control the critical points of the given mapping (see [5]):

Lemma 1. If f is of the form (1), then there exist at least two (or one multiple)
critical points ζ1, ζ2 = 1/ζ̄1 such that both of them are contained in the Julia set
of f , or |fn(ζj)| → 1 for n→ ∞ (j = 1, 2).

Now we turn to multiply connected Fatou components: A first example of a
rational map possessing a three-fold or four-fold connected Fatou component was
presented by A. Beardon [2, p. 263]. About the same time, the existence of
rational maps possessing a Siegel disk which has a preimage of an arbitrary given
finite connectivity was established implicitly in [1] by use of quasiconformal surgery
methods.

Define for c > 1, 0 < ρ < c − 1, ν ∈ N, η ∈ N and α ∈ R the mappings
fc,ρ,ν,η,α(z) = eiαfc,ρ,ν,η(z) with

(2) fc,ρ,ν,η(z) = z1+η

(
z − c

1 − cz

)η (
(z − c)ν − ρν

(1/z − c)ν − ρν

)η (
(1/z − c)ν + ρν

(z − c)ν + ρν

)
.

In the sequel we will write f instead of fc,ρ,ν,η,α. The Böttcher domain about
z = 0 will be denoted A0(f). Since the unit circle is invariant, ∂D ∩ A0(f) = ∅.
This implies A0(f) ⊂ D for all parameter values. Since all considered maps are
symmetric to ∂D, z = ∞ is also a super-attracting fixed point with Böttcher

domain A∞(f) = 1/A0(f). The maps f possess ν + 1 zeros of order η in Ĉ \D at
c and c+ ρe2πik/ν , k = 0, . . . , ν− 1. These zeros do not lie in A0(f) ⊂ D. Further,
there are simple poles of f outside D in c + ρe2πik/ν+πi/ν , k = 0, . . . , ν − 1. The
exponent 1 + η in the first factor in (2) is chosen such that f has one more zero
in D than outside and hence is of the form (1). For such functions, the following
theorem holds:
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Figure 1. The Fatou sets of the mappings fc,ρ,ν,η,α contain components of connectiv-
ity ν +1: On the left hand side, a Fatou set containing 12-fold connected components
(c = 1.5, ρ = 0.175, ν = 11, η = 1, α = 0) is presented. On the right hand side
a close-up view on the area [0.9,2.1]+i[-1.05,1.05] containing the multiply connected
preimage of the immediate basin of attraction of 0 is given. The black circle on the
left hand side represents the unit circle.

Theorem 1. For all c > 1, ν ∈ N, η ∈ N, α ∈ R and ρ > 0 sufficiently small the
mappings fc,ρ,ν,η,α possess Fatou components with connectivity number ν + 1.

One of the Fatou components described in Theorem 1 contains the ν+1 (possibly
multiple) zeros c and c+ρe2πik/ν , k = 0, . . . , ν−1. The ν holes are situated about
the poles c + ρe2πik/ν+πi/ν , k = 0, . . . , ν − 1 (compare Fig. 1). The idea of the
proof of Theorem 1 is as follows: We will show that for sufficiently small values
of ρ the circle {z ∈ C : |z − c| = 2ρ} together with the spokes {z ∈ C : z =
c + te2πik/ν , 0 ≤ t ≤ 2ρ}, k = 0, . . . , ν − 1, is mapped inside a neighborhood
Uǫ(0) = {z ∈ C : |z| < ǫ} of the origin that is invariant under f = fc,ρ,ν,η,α.From
the invariance of Uǫ(0), it follows that the sequence of iterates is normal in Uǫ(0),
and hence, we have Uǫ(0) ⊂ A0(f). From A0(f) ⊂ D, we deduce that the zeros
c+ρe2πik/ν , k = 0, . . . , ν−1, do not lie in A0(f) and are consequently all contained
in the same preimage of A0(f). This preimage possesses at least ν holes about
the poles c+ ρe2πik/ν+πi/ν , k = 0, . . . , ν − 1. The final step is to show that A0(f)
is simply connected. This is done by counting critical points and by assuring that
A0(f) contains no other critical points than the origin itself.

In the examples presented above, multiply connected preimages of a simply con-
nected Böttcher domain have been considered. Replacing in (2) z2 (choose η = 1,
for simplicity) by z(z− d)/(1− dz), 0 < d < 1, leads to multiply connected preim-
ages of simply connected Schröder domains as long as the origin is an attracting
fixed point and of a Siegel disk when 0 becomes indifferent and, e.g. α = (

√
5−1)π.

Further, replacing z2 in (2) (again η = 1) by (z2 − d)/(1 − dz2), 0 < d < 1, and



Normal Families and Complex Dynamics 545

choosing α = 0 leads to a family of rational mappings that contains functions with
multiply connected preimages of simply connected Schröder or Leau domains.
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