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Abstract. Random Schrödinger operators are a topic of common interest in
Mathematical Physics that connects to both Functional Analysis and Proba-
bility theory. It is believed in Physics that these operators possess a spectral
regime with localised states, which do not contribute to electrical transport,
and another regime with delocalised or electrically conducting states. While
the first regime is understood well in mathematical terms, it is a major chal-
lenge for analysts to shed light on the delocalised phase. It is only very re-
cently that some results have been obtained on electrical transport described
by random Schrödinger operators. The meeting gathered nearly all main
protagonists involved in recent advances in the theory of random Schrödinger
operators and provided a forum for intensive discussion.
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Introduction by the Organisers

This (half-size) workshop was attended by 25 participants. About fifty per cent
of the attendees could be considered as “non-senior” researchers, among them
also two PhD-students. The level of the workshop was high and nearly all main
protagonists of the field were present. The organisers feel that the special focus and
the familiar atmosphere of a small-size meeting found great appreciation among
the participants.

The programme of the workshop consisted of short talks, long talks and some
distinct series of lectures. The purpose of having such series – given by Michael

Aizenman, Abel Klein, Leonid Pastur and Claude-Alain Pillet – was to
underline important recent developments and stimulate new ideas.
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Random Schrödinger operators play an important rôle in our understanding of
electronic properties in disordered materials, such as random alloys, doped semi-
conductors or amorphous substances. It is well known from Physics that these
materials exhibit a metal-insulator transition in three or more space dimensions,
separating a conducting phase with a non-zero direct-current conductivity from
an insulating phase where the direct-current conductivity vanishes. Furthermore,
physicists argue that the conducting (resp. insulating) phase occurs, if the Fermi
energy of the system falls into a region corresponding to delocalised (resp. lo-
calised) states of the quantum-mechanical energy operator. It was Anderson’s
achievement in 1958 – rewarded by the 1977 Nobel Prize in Physics – to have
given the first heuristic evidence for the existence of both localised and delocalised
states for a discrete random Schrödinger operator in three or more space dimen-
sions. For these very reasons, random Schrödinger operators (both discrete and in
the continuum) have also attracted a great deal of attention in Mathematics over
the past decades with research taking place at the interface of Functional Analy-
sis and Probability theory. Yet, our mathematical understanding of the physical
picture is still unsatisfactory.

The workshop covered a broad selection of topics of current interest in the theory
of random Schrödinger operators. These include absolutely continuous spectrum
on tree graphs, Anderson localisation for two interacting particles in a random
environment, an extension of the fractional-moment method in the continuum,
persistence of Anderson localisation for models with decaying randomness, spectral
properties of random band matrices, localisation and control of Sobolev norms, an
extension of Minami’s estimate, linear response theory for random Schrödinger
operators and Mott’s law for the low-temperature behaviour of conductivities.
Despite a focus on truly multi-dimensional phenomena, there were also two talks on
recent interesting developments related to transport in one-dimensional systems.
In addition to the above, the topics of the lecture series, which are summarised
very briefly in the next paragraph, received particular attention.

In his lectures, Michael Aizenman gave an overview on facts and conjectures
which relate spectral types and level statistics for a variety of different models.
Particular attention was directed at tree graphs, in the context of which some
surprises were presented and elucidated. Abel Klein presented a concentration
inequality for functions of random variables. It is the main novel ingredient in a
Bourgain-Kenig-like multi-scale analysis to prove localisation at extremal energies
for alloy-type random Schrödinger operators with an arbitrary single-site distribu-
tion of the random coupling constants. Electrical conductivities and higher-order
density correlations in disordered materials stood in the centre of the lectures
delivered by Leonid Pastur. He reviewed a multitude of their characteristic
properties, which are expected or known in Physics, thus stimulating many differ-
ent directions for future mathematical research. Finally, Claude-Alain Pillet

presented an operator-algebraic formalism for a mathematical description of trans-
port in quasi-free fermionic systems.
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It is the organisers’ great pleasure to thank the Oberwolfach institute for pro-
viding such a stimulating atmosphere and excellent research infrastructure. Both
contributed to the overall success of the meeting.
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Abstracts

On the Level Statistics for Random Operators

Michael Aizenman

(joint work with Simone Warzel)

For operators with homogeneous disorder, it is generally expected that there is
a relation between the spectral characteristics of a random operator in the infi-
nite setup and the distribution of the energy gaps in its finite volume versions,
in corresponding energy ranges. Whereas pure point spectrum of the infinite op-
erator goes along with Poisson level statistics [14, 13], it is expected that purely
absolutely continuous spectrum would be associated with revel repulsion, spectral
rigidity, and gap distribution resembling the corresponding random matrix (RM)
ensemble. The RM conjecture echoes the broad numerical evidence and some the-
oretical arguments indicating that random-matrix gap statistics (GOE/GUE) are
of relevance in a wide range of situations [5, 11], including the spacing of zeros
of the Riemann zeta function [15]. One may add that also other statistics were
noted to appear in situations of interest [4, 12, 6, 7, 9] and the explicit RM form
of this conjecture is not universally embraced. At present the only examples of
random operators with extensive disorder, of homogeneous strength, which are
proven to exhibit ac spectrum are associated with trees [10, 1, 2, 8]. We have
therefore undertaken to analyse the gap statistics for that case. The result, which
is established under an auxiliary assumption (which for certain cases is proven
to be satisfied) is that on finite regular rooted trees the eigenstate point process
has Poissonian limit at all energies, even where the infinite regular tree exhibits
absolutely continuous (ac) spectrum [3]. Though at first site this may appear to
contradict the conjecture described above, we also find that this is not so – if its
statement is carefully interpreted. Upon inspection, one finds that the relevant
limit of finite trees is not the infinite homogenous tree graph from which they are
‘carved out’, but rather a single-ended canopy graph. For this tree graph, which
corresponds to a horoball as a subset of the regular tree, we prove that the random
Schrödinger operator has only pure-point spectrum at any strength of the disorder.
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Multi-Particle Anderson Localisation

Victor Chulaevsky

(joint work with Yuri M. Suhov)

We study spectral properties of a system of two quantum particles on an integer
lattice Z with a bounded short-range two-body interaction, in an external ran-
dom potential field x 7→ V (x, ω) with independent, identically distributed values.
The main result is that if the common probability density f of random variables
V (x, · ) is analytic in a strip around the real line and the amplitude constant g
is large enough (i.e. the system is at high disorder), then, with probability one,
the spectrum of the two-particle lattice Schrödinger operator H(ω) (bosonic or
fermionic) is pure point, and all eigen functions decay exponentially. The proof
given in this paper is based on a refinement of a multiscale analysis (MSA) scheme
proposed by von Dreifus and Klein [2], adapted to incorporate lattice systems with
interaction.
The model:

H(ω) =

2∑

j=1

(∆
(1)
j + g(V (xj ;ω)) + U(x1, x2)

Assumptions:
• {V (x;ω), x ∈ Z

1} is an i.i.d. random field with analytic probability density
function (PDF) pV (z):

|p̂V (t)| ≤ be−a|t|

• |g| ≫ 1; in particular, 1-particle AL holds
• The interaction potential U is of finite range d ≥ 0 and bounded; however, a
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hard core component can be allowed (then a minor modification is required)
• quantum statistics: any (Fermi or Bose).

The strategy of the proof of exponential localisation is as follows:
(1) We prove that density of states (DoS) for a given volume Λ ⊂ Z

2 is analytic
(in a strip around real line). This is a direct analog of the Wegner estimate for
interacting systems. We also prove that the DoS in a volume Λ′

L of linear size
2L conditioned by the potential in another volume Λ′′

L with dist(Λ′
L,Λ

′′
L) > 8L is

analytic, although potential samples in Λ′
L and in Λ′′

L are not independent at any
distance. Pairs of volumes at distance > 8L are called L-distant (L-D, for short).
(2) Results of (1) allow to prove that

P
{
dist(Σ(HΛ′

L
), E) < ǫ)

}
≤ C L2 ǫ.

and that

P
{
dist(Σ(HΛ′

L
),Σ(HΛ′′

L
) < ǫ)

}
≤ C L2 ǫ.

(3) Following the strategy of [2], we analyse pairs of volumes Λ′
k, Λ′′

k of sizes

Lk = Lαk

0 , α = 3/2, and show by induction in scale Lk that with sufficiently
high probability volumes of any size Lk feature an exponential decay of Green’s
functions (such volume are called non-singular, or NS). In addition,

P
{

both Λ′
Lk

and Λ′′
Lk

are singular
}
≤ L−2p

k , p > 1.

Compared to [2], the main technical difference of our model is that we have to
treat separately pairs Λ′,Λ′′ ⊂ Z

2 where, respectively, 0, 1, or 2 volumes among
Λ′, Λ′′ are subject to interaction.

Finally, we show that the above mentioned extensions of Wegner estimate to
interacting particle systems, combined with detailed analysis of pairs of singular
volumes, imply exponential decay of Green’s functions of operator H with proba-
bility one. A fairly general result of [2], [4] shows then that, with probability one,
all generalised eigenfunctions of H decay exponentially at infinity.
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Hyperbolicity, Fractal Dimension, and Quantum Dynamics for the
Fibonacci Hamiltonian

David Damanik

(joint work with Mark Embree, Anton Gorodetski, Serguei Tcheremchantsev)

We consider the Fibonacci Hamiltonian, which is the discrete one-dimensional
Schrödinger operator

[Hu](n) = u(n+ 1) + u(n− 1) + λχ[1−φ−1,1)(nφ
−1+ θ mod 1)u(n)

in ℓ2(Z), where λ > 0 is the coupling constant, φ =
√

5+1
2 , θ ∈ [0, 1) is the phase,

and describe several results obtained in [2] for this operator family.
It follows by minimality of irrational rotations and strong convergence of opera-

tors that the spectrum of H is independent of the phase. That is, for every λ > 0,
there is a compact subset Σλ of R such that Σλ = σ(H) for every θ ∈ [0, 1). Sütő
showed in 1989 that the Lebesgue measure of the spectrum is zero [3],

Leb(Σλ) = 0 for every λ > 0.

It is therefore natural to study the dimension of this set. Recall that for S ⊆ R

bounded and infinite, the following two dimensions are of interest. For α ∈ [0, 1],
let

hα(S) = lim
δ→0

inf
δ−covers

∑

m≥1

|Im|α

and then define the Hausdorff dimension of S by

dimH(S) = inf{α : hα(S) <∞} = sup{α : hα(S) = ∞}.
The lower box counting dimension of S is given by

dim−
B(S) = lim inf

ε→0

logNS(ε)

log 1
ε

,

where NS(ε) = #{j ∈ Z : [jε, (j + 1)ε) ∩ S 6= ∅}. The upper box counting
dimension, dim+

B(S), is defined with a lim sup in place of the lim inf. When the
lower and upper box counting dimensions coincide, we say that the box counting
dimension exists and denote it by dimB(S).

Our first result is the following.

Theorem 1. Suppose that λ ≥ 16. Then, the box counting dimension of Σλ exists
and obeys dimB(Σλ) = dimH(Σλ).

The key to this result is the hyperbolicity of the so-called trace map as estab-
lished by Casdagli [1] in 1986.

In order to describe the large coupling asymptotics of the dimension of the
spectrum, let us introduce the function

f(x) =
1

x
[(2 − 3x) log 2 + (1 − x) log(1 − x) − (2x− 1) log(2x− 1)

−(2 − 3x) log(2 − 3x)]
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on (1
2 ,

2
3 ). f takes its maximum at a unique point x∗ ∈ (1

2 ,
2
3 ). Write f∗ = f(x∗) =

maxx∈( 1
2
, 2
3
) f(x). Numerics show that x∗ ≈ 0.5395 and f∗ ≈ 0.88137. Moreover,

let
Su(λ) = 2λ+ 22

and

Sl(λ) =
1

2

(
(λ − 4) +

√
(λ− 4)2 − 12

)
.

Theorem 2. (a) Suppose λ > 4. Then, we have

dim−
B(Σλ) ≥ f∗

logSu(λ)
.

(b) Suppose λ ≥ 8. Then, we have

dimH(Σλ) ≤ f∗

logSl(λ)
.

As an immediate consequence, we obtain the following exact asymptotic result.
We write dim for either dimH or dimB, which is justified by Theorem 1.

Corollary 1. We have

lim
λ→∞

dim(Σλ) · logλ = f∗.

Next, we present an application of the dimensional lower bound to the rate
of wave packet propagation in this model. The time-averaged moments of the
position operator are given by

〈|X |pδ0
〉(T ) =

2

T

∫ ∞

0

e−2t/T
∑

n∈Z

|n|p|〈e−itHδ0, δn〉|2 dt.

To describe their power-law behavior, let

β−
δ0

(p) = lim inf
T→∞

log〈|X |pδ0
〉(T )

p logT

and

β+
δ0

(p) = lim sup
T→∞

log〈|X |pδ0
〉(T )

p logT
.

Both functions β±
δ0

(p) are nondecreasing in p and hence the following limits exist,

α±
u = lim

p→∞
β±

δ0
(p).

Thus, the exponents α±
u correspond to the rate of propagation of the fastest (poly-

nomially small) part of the wave packet.

Theorem 3. For every λ > 0 and every θ ∈ [0, 1), we have that

α±
u ≥ dim±

B(Σλ).

Consequently, for λ > 4 and every θ, we have

α±
u ≥ f∗

logSl(λ)
.
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An Evolution Equation as the WKB-Correction in Long-Time
Asymptotics of Schrödinger Dynamics

Serguei Denissov

The purpose of the talk is to discuss a recent development of the scattering theory
for multidimensional Schödinger operators. There is a hope to build suitable tools
to eventually treat the cases when the potential V (x) is random and decays slowly.
For instance, an interesting case is V (x) = Vand(x)〈x〉−γ , where Vand(x) is an
Anderson potential. The case γ > 1/2 was treated in earlier papers by J. Bourgain
and the author. Going below the critical value 1/2 is interesting since one might
expect that the spectrum remains a.c. at least for high dimension (recall that for
1-dim case the spectrum is pure point almost surely for any γ < 1/2).

Current paper deals with a three-dimensional non-random model in which the
potential V (x) satisfies the following conditions:

|V (x)| < C〈x〉−γ , |Vr(x)| < C〈x〉−γ−1, |Vrr(x)| < C〈x〉−2γ−1

where Vr denotes the radial derivative. We prove existence of modified wave-
operators and present nontrivial WKB-correction to the long-time Schrödinger
dynamics. This correction is described by a certain evolution equation which
generalizes earlier results (e.g. [1, 2]).

Acknowledgement: author’s participation in the workshop was supported by
Wisconsin Alumni Research Foundation (WARF).
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Persistence of Anderson Localization in Schrödinger Operators with
Decaying Random Potentials

Alex Figotin

(joint work with François Germinet, Abel Klein, Peter Müller)

We consider Schrödinger operators with a negative and decaying random poten-
tial. Our goal is to study the discrete spectrum created by this potential below
zero, and to show that a persistence of Anderson localization, and even dynamical
localization, occurs. We first prove that if the envelope decays faster than |x|−2

at infinity, then the operator possesses infinitely many eigenvalues below zero. For
envelopes decaying as |x|−α at infinity, we then determine the number of bound
states below a given energy E < 0, asymptotically as α ↓ 0. To show that bound
states located at the bottom of the spectrum are related to the phenomenon of
Anderson localization that occurs for the corresponding homogeneous model, we
prove: (1) that these states are exponentially localized with a localization length
that is uniform in the decay rate α and that (2) dynamical localization holds
uniformly in α.

Details can be found in [9].
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A Variant of an Estimate by Minami

Gian Michele Graf

(joint work with Alessio Vaghi)

We consider the Anderson model in the form

(1) H = K + V

acting on ℓ2(Zd), where V = {Vx}x∈Zd consists of independent, identically dis-
tributed real random variables, whose common density ρ is bounded. The opera-
tor K = K∗ describes short-range hopping of a particle moving on the lattice Z

d.
It may be the discrete Laplacian or, more generally, have matrix elements which
need not be real or, equivalently, symmetric:

(2) K(x, y) 6= K(y, x) ,

as it is e.g. the case in presence of a magnetic field.
Let G(z) = (H − z)−1 be the resolvent and ImG(z) = (G(z) −G∗(z))/2i. We

observe that in view of (2) (ImG(z))(x, y) 6= Im(G(z;x, y)), unless x = y. The
estimate is

(3) E det
(
(ImG(z))(xi, xj)

)n
i,j=1

≤ πn‖ρ‖n
∞ ,

for any points x1, . . . , xn ∈ Z
d and for Im z > 0. It also holds for the Hamiltonian

HΛ on ℓ2(Λ) obtained by truncating H to Λ and for x1, . . . , xn ∈ Λ.
The estimate was established in [3] and independently in [1] with a different

proof. For n = 1 it is due to [2], where its relation to Wegner’s bound was pointed
out; for n = 2 and in the case of equality in (2) it was established by Minami for
the purpose of proving Poisson distribution of eigenvalues of HΛ in the localization
regime. More precisely, the eigenvalue statistics near an energy E ∈ R is described
by the point process

ξ(Λ;E)(dx) =

|Λ|∑

j=1

δ|Λ|(Ej−E)(dx) ,

where Ej are the eigenvalues of HΛ. In the expression |Λ|(Ej−E) they are rescaled
by the volume |Λ|, so as to allow for a limiting distribution as Λ grows large. For
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E in the localization regime Minami showed that ξ(Λ;E) converges in law weakly
to the Poisson point process ξ(E) of intensity n(E)dx,

ξ(Λ;E)(dx)
law−−→
w

ξ(E)(dx) , (Λ ↑ Z
d) ,

where n is the density of states.
A consequence of (3) derived in [1] is about the number of eigenvalues contained

in an interval I:

P(#{Ej ∈ I} ≥ n) ≤ πn

n!
(‖ρ‖∞|I||Λ|)n .

The proof of (3) relies on Krein’s formula, as did the above mentioned works

in the cases n = 1, 2. Let Ĝ(z) be the resolvent of the Hamiltonian (1) in which
Vxi

(i = 1, . . . , n) have been set to zero; let A be the n × n matrix defined by

−(A−1)ij = Ĝ(z;xi, xj). Then the dependence of G(z;xi, xj) on vi ≡ Vxi
is

explicit:
(
G(z;xi, xj)

)n
i,j=1

=
(
Im[diag(v1, . . . , vn) −A]−1

)
.

Further ingredients of the proof, which proceeds by induction, are the Schur com-
plement formula and the inequality (related to Hadamard’s) applying to positive
n× n matrices C:

detC ≤ cnn · det Ĉ ,

where the r.h.s. refers to the (n− 1, 1)-block decomposition

C =

(
Ĉ c
cT cnn

)
.

The proof given in [1] is by means of a representation of the l.h.s. of (3) in terms
of a Gaussian integral.
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Estimates for Spectral Moments of Random Schrödinger Operators

Peter D. Hislop

(joint work with Jean Bellissard, Jean-Michel Combes, Frédéric Klopp, Olivier
Lenoble, Peter Müller)

The moments of spectral densities and covariant observables are important in the
theory of transport for random quantum systems. The first moment of the spec-
tral density describes the density of states measure (DOS) and the second moment
of the velocity operator describes the current-current correlation measure. This
talk summarizes recent progress on the existence and regularity of these moments.
The basic one-particle Hamiltonian describes a charged particle interacting with
a disordered environment. The Hamiltonian has the form Hω = H0 + Vω act-
ing on L2(Rd) or ℓ2(Zd), for the continuum or lattice models, respectively. The
background operator H0 = L+ V0 is a deterministic, periodic Schrödinger opera-
tor, where L is the nonnegative Laplacian for the continuum case, of the discrete
Laplacian for the lattice case. In the continuum case, we assume that H0 satisfies
the classical unique continuation principle (UCP). The random potential Vω is
Anderson-type having the form

(1) Vω(x) =
∑

j∈Zd

ωju(x− j).

For X = R
d, the single-site potential u ≥ 0 and u ∈ L∞

0 (Rd), and for Z
d, we have

u(j − k) = δjk. The random variables {ωj | j ∈ Z
d} form a real-valued, bounded

process on Z
d. The most common example is the case when the random vari-

ables are independent and identically distributed (iid) with a common probability
measure µ0 with a density h0 ∈ L∞

0 (R).
The spectral density operator ρω(E) is defined as the boundary-value of the

imaginary part of the resolvent:

(2) ρω(E) = lim
ǫ→0

ℑ(Hω − E − iǫ)−1.

On the lattice, the N th moment of the spectral density is defined by

(3) KN (E1, . . . , EN ) ≡ IE{〈0|ρω(E1)A1 · · · ρN (EN )AN |0〉},
with a similar expression for operators on the continuum. These moments de-
fine Radon measures on R

N , and arise in the transport theory of the quan-
tum system described by the one-particle Hamiltonian Hω. Among the families
{Aj} of covariant observables, a special role is played by the velocity operator
Vj = (−i/2)[Hω, Xj ].

First Moment: The Density of States
The DOS measure for lattice operators is defined by (3) with N = 1 and A = I,

so that

(4) dµ(E) = IE{〈0|ρω(E)|0〉} dE.
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When it exists, the density of the measure µ, n(E), is defined by the expectation
of the matrix element on the right in (4). If the random variables are iid with a
probability density h0 ∈ L∞

0 (R), Wegner [15] proved n(E) exist almost surely and
is a bounded function. For additional information about the DOS measure µ for
lattice models, we refer to [2]. Much less is known about this nonnegative measure
for continuum models. The DOS measure is related to the integrated density of
states (IDS) which is the distribution function of the DOS measure ν(λ),

(5) N(E) =

∫ E

−∞
dν(λ).

The DOS and the IDS can be defined by a Pastur-Shubin formula that expresses
these objects as the thermodynamic limit of objects defined for the system in a
finite volume. Let Λ ⊂ R

d or Λ ⊂ Z
d be a cube. We define a finite-volume

Hamiltonian HΛ ≡ Hω|Λ, with periodic boundary conditions. We then have

(6) N(E) = lim
Λ→X

1

|Λ| #{λj(Λ) ≤ E},

where λj(Λ) are the eigenvalues of HΛ, and X = R
d or X = Z

d. The IDS is known
to exists almost surely and is a monotone increasing function. One basic question
is: Does the positive measure ν have a density? When the operator Hω is ergodic,
the IDS exists almost surely. We assume the existence in the general case treated
in the first theorem. We define the Levy concentration for the process {ωj} as
follows. For any j ∈ Z

d, the conditional probability measure µj is defined, for any
measurable K ⊂ R, by

(7) µj(K) ≡ IP{ωj ∈ K | (ωl)l 6=j}.
We then define

(8) s(ǫ) ≡ sup
j∈Zd

IE{sup
E∈R

µj([E,E + ǫ])}.

Notice that in the iid case, if the probability measure µ0 is Hölder continuous with
exponent 0 < α ≤ 1, then s(ǫ) ∼ ǫα, as ǫ→ 0.

Theorem 1. [5] For X = R
d, and for all intervals I ⊂ R, there is a finite constant

CI > 0 so that for all E ∈ I and ǫ > 0 small, we have

(9) 0 ≤ N(E + ǫ) −N(E) ≤ CIs(ǫ).

As a corollary, we note that if the process is iid with a density h0, as above, then
the IDS is uniformly, locally Lipschitz continuous. In this case, the DOS exists as
a locally bounded function. This theorem follows from a Wegner estimate of the
form:

(10) IE{TrEΛ([E,E + ǫ])} ≤ CEs(ǫ)|Λ|.
Wegner estimates such as (10) play an important role in some approaches to An-
derson localization. There have been several recent results on the Hölder continuity
of the IDS using bounds on the spectral shift function, see, for example, [4, 10, 11].
When the potential Vω is a Gaussian process on R

d, the Lipschitz continuity of
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the IDS was proved in [12]. See also [14] for addition situations for which the
continuity of the IDS has been studied. We remark that similar results are known
for Landau Hamiltonians perturbed by Anderson-type random potentials.

The proof of this theorem requires a refined spectral averaging theorem and a
quantitative UCP. A basic spectral averaging bound, see [3], states that if Hλ =
H0 + λB2, where B2 ≥ 0 is a bounded operator, then for any compactly support
density g0, there exists a finite constant C0 > 0 so that

(11) sup
ǫ>0

∥∥∥∥
∫

dλ g0(λ) B(H0 + λB2 − E − iǫ)−1B

∥∥∥∥ ≤ C0‖g0‖∞.

The quantitative UCP was proven in [4]. It basically states that if W ≥ 0 is a
nonnegative periodic function and if EΛ

0 (·) is the spectral family for the periodic
Schrödinger operator H0 restricted to a cube Λ compatible with the periodicity,
then for any interval I ∈ R, there is constant CI > 0, independent of Λ, so that

(12) EΛ
0 (I)WEΛ

0 (I) ≥ C0E
Λ
0 (I).

Lower bounds on the DOS n(E) are important in Minami’s proof [13] that the
energy level statistics are Poissonian in the strong localization regime. Although
discussed in [15], it is only recently that a proof is given for the lattice model by the
author and P. Müller. The result for continuum models is work in progress. On the
lattice, the spectrum of the discrete Laplacian L is [−2d, 2d], and we assume that
the random variables are iid with a density h0 > c0 > 0 on its support [W−,W+].

Theorem 2. [9] For each δ > 0, there is a finite positive constant Cδ > 0 such
that n(E) ≥ Cδ > 0 for Lebesgue almost every E ∈ [−2d, 2d] + [W− + δ,W+ − δ].

Second Moment: Current-Current Correlation Measure
Among the second moments, the second moment of the velocity operator ∇jHω

= (−i/2)[Hω, Xj ] is important in the theory of conductivity. The current-current
correlation measure can be defined, in analogy with the DOS formula (6), as

(13) dmij(E,E
′) ≡ IE{〈0|∇iHωEHω

(dE)∇jHωEHω
(dE′)|0〉},

where EHω
(·) is the spectral family for Hω and i, j = 1, . . . , d. We define the

positive current-current correlation measure as dm =
∑d

i=1 dmii. It is known
that this measure exists and can be obtained through a Pastur-Shubin formula
expressing it as a thermodynamic limit (see [8] and references therein). One of
the open problems is to determine if this measure has a density m(E,E′). Partial
progress was recently made for energies outside of the diagonal E = E′. It is
expected that in the strong localization regime, the density m(E,E′) vanishes as
E → E′, and in the transport regime, the density is bounded from below by a
positive constant when E → E′. For the lattice model with a disorder parameter
λ in from of the potential, we have the following result.

Theorem 3. [1] If random variables in the Anderson-type random potential have
a probability density h0 that admits an analytic continuation to a strip of width
r > 0 in the complex plane, then there is a constant a0 > 0, depending on ri and
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d, so that for all |λ| > 0 large enough, the current-current correlation measure has
a density m(E,E′) that is real analytic in {(E,E′) ∈ R

2 | |E − E′| > a0|λ|−1}.
The proof of this theorem uses the random walk expansion of the Green’s function
as utilized in [7], for example, for proofs of regularity of the DOS under similar
conditions.

Higher-Order Correlations
In [1], higher-order correlation measures for covariant observables were studied.

Higher-order moments appear, for example, in the study of the time-evolution
of powers of the position operator. The main result for lattice models is the
following. Suppose we have iid random variables with a probability density having
a continuation to a strip about the real axis. Then, for strong disorder, and any
family of N -covariant operators Aj , the moment KN(E1, . . . , EN ), defined in (3),
defines a Radon measure that has a real analytic density away from a |λ|-dependent
neighborhood of the coincident planes Ej = Ek, j 6= k. The behavior near and at
the coincident planes is an open problem.
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[4] J. M. Combes, P. D. Hislop, F. Klopp, Hólder continuity of the integrated density of states
for some random Schrödinger operators at all energies, IMRN 2003, no. 4, 179-209.

[5] J. M. Combes, P. D. Hislop, F. Klopp, An optimal Wegner estimate and its application
to the integrated density of states for random Schrödinger operator, to appear in Duke
Mathematics Journal.

[6] J. M. Combes, P. D. Hislop, S. Nakamura, The Lp-theory of the spectral shift function, the
Wegner estimate, and the integrated density of states for some random operators, Commun.
Math. Phys. 218, 113–130 (2001).

[7] Constantinescu, J. Fröhlich, T. Spencer, Analyticity of the density of states and replica
method for random Schrödinger operators on a lattice, J. Statist. Phys. 34, 571–596 (1984).

[8] P. D. Hislop, O. Lenoble, Basic properties of the current-current correlation measure for
random Schrödinger operators, J. Math. Phys. 47, 112106–11228 (2006).

[9] P. D. Hislop, P. Müller, Lower bounds on the density of states for random Schrödinger
operators, preprint.

[10] D. Hundertmark, R. Killip, S. Nakamura, P. Stollmann, I. Veselic, Bounds on the spectral
shift function and the density of states, Commun. Math. Phys. 262, 489–503 (2006).

[11] D. Hundertmark, B. Simon, A diamagnetic inequality for semigroup differences, J. Reine

Angew. Math. 571, 107–130 (2001).
[12] T. Hupfer, H. Leschke, P. Müller, S. Warzel, The absolute continuity of the integrated density

of states for magnetic Schrödinger operators with certain unbounded random potentials,
Commun. Math. Phys. 221, 229–254 (2001).

[13] N. Minami, Local Fluctuation of the Spectrum of a Multidimensional Anderson Tight Bind-
ing Model, Commun. Math. Phys. 177, 709-725, (1996).
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Linear Response Theory for General Ergodic Magnetic Schrödinger
Operators

Yang Kang

(joint work with Abel Klein)

Let H(t) ≥ 1 be a time-dependent self-adjoint operator on a Hilbert space H
with quadratic form domain Q(H(t)). If Q(H(t)) is independent of t, along with
other suitable conditions, we construct a unitary propagator that solves weakly
the corresponding time-dependent Schrödinger equation. Using this extension of
Yosida’s Theorem, we justify the linear response theory for an ergodic magnetic
Schrödinger operator defined as a quadratic form, and derive a Kubo formula for
the electric conductivity.
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Concentration Inequalities and the Universal Occurrence of Anderson
Localization

Abel Klein

(joint work with François Germinet)

The Anderson Hamiltonian is the random Schrödinger operator

(1) Hω := −∆ + Vω on L2(Rd),

with

(2) Vω(x) :=
∑

ζ∈Zd

ωζ u(x− ζ),

where

• The single-site potential u is a nonnegative bounded measurable function
on R

d with compact support, uniformly bounded away from zero in a
neighborhood of the origin.
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• ω = {ωζ}ζ∈Zd is a family of independent, identically distributed random
variables with common probability distribution µ, such that

– µ is non-degenerate with compact support ⊂ [0,∞[.
– 0 ∈ suppµ.

Without loss of generality we may just assume

(3) {0, 1} ∈ suppµ ⊂ [0, 1].

The Anderson Hamiltonian Hω is an R
d-ergodic family of random self-adjoint

operators. It follows from standard results that there exists fixed subsets of R so
that the spectrum of Hω, as well as the pure point, absolutely continuous, and
singular continuous components, are equal to these fixed sets with probability one.
It follows from our assumptions on u and µ that σ(Hω) = [0,+∞[ with probability
one.

We prove that the Anderson Hamiltonian with single-site probability distribu-
tion µ as in (3), but otherwise arbitrary, always exhibits Anderson and dynamical
localization at the bottom of the spectrum.

We use χx to denote the characteristic function of the cube of side 1 centered

at 0. We write 〈x〉 =

√
1 + |x|2.

Theorem 1. Let Hω be the Anderson Hamiltonian on L2(Rd) with single-site
probability distribution µ as in (3), but otherwise arbitrary. Then there exists
E0 > 0 such that v exhibits Anderson localization as well as dynamical localization
in the energy interval [0, E0]. More precisely, we prove

• (Anderson localization) There exists m > 0 such that, with probability one
the operator Hω has pure point spectrum in [0, E0] with eigenvalues of
finite multiplicity and exponentially localized eigenfunctions with rate of
decay m, i.e., if φ is an eigenfunction of Hω with eigenvalue E ∈ [0, E0]
we have

(4) ‖χxφ‖ ≤ Cω,φ e
−m|x|, for all x ∈ R

d.

• (Dynamical localization) For all s < 3
8d− we have

(5) E

{
sup
t∈R

∥∥∥〈x〉
m
2 e−itHωχ[0,E0](Hω)χ0

∥∥∥
2s
m

2

}
<∞ for all m ≥ 1.

The theorem is proved by using the Bourgain-Kenig multiscale analysis [2] with
the following concentration estimate for function of independent random variables.

The (Levy) concentration function of a probability measure µ on R is the func-
tion on [0,∞] defined by

(6) Qµ(s) := max
x∈R

µ {[x, x+ s]} .

Given a random variable X with probability distribution µX , we define its con-
centration function by

(7) QX(s) := QµX
(s).
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If µ is as in (3), we have

(8) 0 < Qµ(s) < 1 for all s ∈]0, 1[, Qµ(s) = 1 for all s ≥ 1.

Write t = (t1, . . . , tn) ∈ R
n and let {ej := {δji}i=1,...,n}j=1,...,n denote the stan-

dard basis in R
n.

Theorem 2. There exists a universal constant Υ <∞ with the following property:
For all random variables X with probability distribution µ as in (3), and all random
variables Y = F (X1, X2, . . . , Xn), where n ≥ 3, {Xi}i=1,...,n are independent

copies of X, and F is a real-valued Borel function on [0, 1]n for which there exist
constants 0 < a ≤ b <∞ such that

(9) at ≤ F (t + tej) − F (t) ≤ bt

for all t ≥ 0, t, t + tej ∈ [0, 1] , j = 1, 2, . . . , n, we have

(10) QY (s) ≤ Υ

(1 −QX (γn,a,bs))
2

(logn)2√
n

,

where

(11) γn,a,b =
3

a

(
2nb

a
+ 2

) log n

2

.

To prove this theorem, we prove explicit bounds on the maximal probability of
antichains in multisets. Given k ∈ N, let Mk := {0, 1, 2 . . . , k}, a poset with the

usual order. Let p = (p0, p1, . . . , pk) ∈ (0, 1)k+1 with
∑k

j=0 pj = 1, and consider

the positively weighted poset (Mk,p), a probability space. We set

(12) p+ := max
j=0,1,...,k

pj; p− := min
j=0,1,...,k

pj.

Given n ∈ N, consider the multiset M = Mk,n := {0, 1, 2 . . . , k}n
. Elements

of M will be denoted by x = (x1, x2, . . . , xn). Given x,y ∈ M, we let x ≤ y if
and only if xs ≤ ys for all s = 1, 2, . . . , n. This makes the multiset M a poset,
the direct product of n copies of the poset Mk. (Note Mk = Mk,1.) (M,P) is a
probability space with the product measure P, the weight of x is is

(13) px = P(x) =

n∏

s=1

pxs

The function r(x) :=
∑n

s=1 xs ∈ [0, kn] is a a rank function on M. We consider
the level sets Lr := {x ∈ M; r(x) = r} for r ∈ [0, kn], and set Wr = P(Lr), the
weighted r-th Whitney number. (See [1, 3].)

A subset A ⊂ M is called an antichain if it consists of incomparable elements,
i.e., x,y ∈ A and x ≤ y imply x = y. We define

(14) S(M,P) := max {P {A} ; A ⊂ M antichain} .
For fixed k and p, Engel [3, Theorem 7.2.1] gave an asymptotic estimate for

S(Mk,n,P):

(15) lim
n→∞

σ
√

2πnS(Mk,n,P) = 1.
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We derive explicit estimates on S(Mk,n,P), the constants depending on k and
p. We prove:

Theorem 3. Suppose

(16)
n

logn
> 4kmax

{
1

p−
,

p+

(1 − p+)
2

}
.

Then

S(Mk,n,P) ≤ C min

{
1√
knp−

,
k√

n(1 − p+)

}

+
C

np−
min

{
k log n,

logn

kp−

}
+

2√
knp− logn

.(17)

In particular, we have two useful bounds:

Corollary 1. For all n such that np− ≥ 4k logn,

(18) S(Mk,n,P) ≤ C

(
1√
nkp−

+
k logn

(kp−)2n

)
,

and for all n such that n(kp−)2 ≥ 4k logn,

(19) S(Mk,n,P) ≤ C
k√
n

(
1√

(1 − p+)
+

logn√
np−

)
+

2√
knp− logn

.
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Renormalization of Certain Exponential Matrix Cocycles

Frédéric Klopp

(joint work with Alexander Fedotov)

We consider the family of Schrödinger equations with a sparse potential

−ψ′′(t) + α
∑

l≥0

δ ( tφ(l) − t ) ψ(t) = Eψ(t), t ≥ 0,(1)

tφ(l) = l(l− 1)/2 + lφ1 + φ2 for l ∈ N

and with Dirichlet boundary condition at zero. Here, λ is a positive coupling
constant, and 0 < φ1, φ2 ≤ 1 are parameters indexing the equations of the family.
The analysis of the solutions of (1) can be reduced to the analysis of an ergodic
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matrix cocycle that we describe now. Pick l ∈ Z. On the interval tφ(l − 1) < t <
tφ(l), any solution of (1) has the form

ψ(t) = a+
l e

i
√

E t + a−l e
−i

√
E t

where a±l are constant coefficients. The jump conditions at tφ(l) imply the follow-

ing relations between the coefficients (a±l+1) and (a±l ):

~ψl+1(x) = M(T l
ω(x), A) ~ψl(x), ~ψl =

(
a+

l

a−l

)
, l ≥ 0,

where x = (x1, x2) is a point on T
2, the two dimensional torus which is identified

to [0, 1]2,

x1 =

( √
E

π
φ1

)
mod 1, x2 =

( √
E

π
φ2 +

1

4

)
mod 1,

Tω is the skew shift on the torus,

Tω

(
x1

x2

)
=

(
x1 + ω
x2 + x1

)

where the frequency ω given by

ω =

( √
E

π

)
mod 1, 0 < ω ≤ 1,

and M is the unimodular matrix

(2) M(x,A) =

(
A B e (−x2)

B e (x2) A∗

)
, e(z)

def
= e2πiz

where the constants A and B are defined by

A = 1 − i
α

2
√
E
, B ≥ 0, B2 = |A|2 − 1.

We see that the analysis of the spectrum (1) is reduced to the analysis of the
matrix cocycle

(3) M(T l
ω(x), A) . . . M(Tω(x), A)M(x,A).

When ω is irrational, the skew shift and, so, the cocycle itself is ergodic. We give
a constructive description of the set L of all the values of the ergodic parameter
x, for which the Lyapunov exponent

γ = lim
N→+∞

1

N
log ‖M(T l(x), A) . . . M(T (x), A)M(x,A)‖

exists. For L = 0, 1, 2 . . . , define

ωL+1 =
1

ωL
( mod 1), ω0 = ω.

and

λL+1 = λ
1

ωL

L , λ0 = |A|
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Furthermore, for a given x = (x1, x2) ∈ [0, 1]2, let

SL+1 =
SL

ωL
( mod 1), S0 = x1 − ω − 1/2 − 1

π
argA.

One has

Theorem 1. Let λLωL → ∞. For x as above, the Lyapunov exponent exists if and
only if, there exists a sequence sequence {cL}∞L=1 of positive numbers that tends to

zero such that, for all L ∈ Z, for all m = 1, 2 . . .
[

1
ωL

]
,one has

|SL − 1 +mωL| ≥ ωLe
− cL

ω0ω1...ωL−1 , if L even

and

|SL −mωL| ≥ ωLe
−cL log λL , if L odd .

Moreover, when the Lyapunov exits, it is equal to logλ

The proof of this characterization relies upon a monodromization method deve-
loped for skew-shift cocycles [5], which happens to be exact in the special case of
the above cocycle. This method should also lead to a description of the self-similar
structure of the solutions to (1), in particular, in the case when the Lyapunov
exponent does not exist.

We now shortly describe the monodromization (see also [1, 2, 3]). The analysis
of the cocycles (3) is equivalent to the analysis of the equation

(4) Ψ(Tω0
x) = M(x)Ψ(x)

for a matrix valued function Ψ defined on R × T. We now define a monodromy
matrix for this equation. On the cylinder R × T, the skew shift Tω0

and the
translation S1 : (x1, x2) 7→ (x1 + 1, x2) commute. So, (4) is invariant with respect
to the transformation Ψ 7→ Ψ ◦S1. Let Ψ be a fundamental matrix solution to (4)

(i.e., detΨ(x) 6= 0 for all x ∈ R). Clearly, any other solution to (4), say Ψ̃, can be
represented in the form

Ψ̃(x) = Ψ(x)P (x),

where P is a matrix-valued function satisfying P ◦ Tω0
= P .

Now, assume that detΨ(x) ≡ 1. The last two observations imply

Ψ(S1(x)) = Ψ(x)M̃ t(x), ∀x ∈ R × T,

where t denotes the transposition, and M̃ : R × T → SL(2, ) satisfies

M̃ ◦ Tω0
= M̃.

We call the matrix function M̃ the monodromy matrix associated to the funda-
mental solution Ψ.
The main result of our monodromization method is
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Theorem 2. There exists a quadratic change of variable in R
2, say Rω0

, depending

only on the parameter ω0, such that, if one sets M1 = M̃ ◦ R−1
ω0

and, for n0 ∈ N

and x0 = x ∈ T
2, one defines

n1 = [x0
1 + ω0n0] and x1 = Rω0

(x0) mod T
2,

then,

(5) M0(T
n0−1
ω0

(x0)) · · · M0(Tω0
(x0))M0(x

0)

= Ψ
(
(T n0

ω0
x0
)

mod T
2 )σM−1

1 (T−n1

ω1
(x1)) · · ·M−1

1 (T−1
ω1

(x1))σΨ−1(x0)

and

(6) M−1
0 (T−n0

ω0
(x0)) · · · M−1

0 (T−1
ω0

(x0))

= Ψ( (T−n0

ω0
(x0)) mod T

2 )σM1(T
n1−1
ω1

(x1)) · · · M1(Tω1
(x1))M1(x

1)σΨ−1(x0),

where σ =

(
0 i
−i 0

)
.

Let us now underline two important facts. First, in this theorem, we do not make
use of the special structure of M given in (2); it holds for any skew-shift cocycle
of unimodular matrices. The reduction is quite similar to and was inspired by the
one done in [4] for exponential sums.
Second, the main gain provided by Theorem 2 is that, as in general ω1 is smaller
than 1, the number of terms in the products on the right hand sides of (5) and (6)
contain much less terms than those in the left hand sides. One can iterate the
procedure and thus further reduce the number of terms.

Clearly, this method can only be effective if one is able to compute Ψ and M1.
In the case when M is given by (2), this can be done exactly and one gets

Theorem 3. Consider the cocycle (3). There exists a fundamental matrix solution
to (4) (that is explicitly computable) such that the renormalized monodromy matrix
(i.e. the one defined in Theorem 2) is

M1(x) = M(x,A1), A1 = A
1
ω .

Again, this exact renormalization is very similar to the renormalization found for
quadratic exponential sums in [4].
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Low-Frequency Conductivities and Correlation Functions in
Disordered Systems

Leonid Pastur

We present a short review of physical and mathematical facts on the Kubo con-
ductivity and binary (density-density and current-current) correlators of the ideal
Fermi gas in external random field. An emphasis is made on the low-frequency
conductivity and binary correlators for close energies. We discuss, in particular,
asymptotically exact results for one-dimensional disordered systems for high and
low Fermi energies, stressing their universal form. We also present a method that
allows us to find the asymptotic form of various characteristics of disordered sys-
tems for any dimension in the strong localization regime, i.e., when either the
random potential is big or the energy is close to a spectrum edge. The method
is based on the hypothesis that the relevant realizations of the random potential
in the strong localization regime have the form of deep random wells that are
uniformly and chaotically distributed in space with a sufficiently small density.
Assuming this and using the density expansion, we show first that the density
of wells coincides in leading order with the density of states. Thus the density
of states is in fact the small parameter of the theory in the strong localization
regime. Then we derive the Mott formula for the low frequency conductivity and
the asymptotic formulas for certain two-point correlators when the difference of
the respective energies is small.

Transport in Quasi-Free Fermionic Systems

Claude-Alain Pillet

(joint work with Walter Aschbacher, Vojkan Jakšić, Yan Pautrat)

Equilibrium statistical mechanics is a beautiful piece of knowledge sitting on firmly
established conceptual foundations and leaning on a highly developed mathemati-
cal framework. In principle, it allows to understand thermodynamic properties of
matter and radiation at thermal equilibrium. In contrast, the status of nonequi-
librium statistical mechanics is far from being satisfactory both at the conceptual
level and regarding its mathematical structure. Even basic issues like linear re-
sponse theory near equilibrium are still outside the scope of currently available
analytic techniques.

Ideas inspired by the mathematical theory of turbulence have recently shed a
new light on the mathematical structure of nonequilibrium statistical mechanics
(see the nice exposition by D. Ruelle in [1]). In particular the emerging con-
cept of natural nonequilibrium state provides a basis for a mathematical analysis
of nonequilibrium phenomena and transport properties. Two mathematical ap-
proaches to the construction of nonequilibrium steady states (NESS) of quantum
systems have been proposed. The first one by Ruelle [2] is based on the scatter-
ing theory of C∗-dynamical systems. The second one, developed in [4], associates
NESS to spectral resonances of a new type of “Liouvilleans” which generate the
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dynamics in a GNS representation of the system. These two approaches are partic-
ularly well adapted to the study of open quantum systems, i.e., spatially confined
systems in contact with extended ideal reservoirs (see [5] for a review). Mod-
els of this kind are commonly used in physics to describe transport processes in
mesoscopic electronic devices.

In order to make contact between the new NESS approach and more formal
techniques routinely used by solid-state physicists we have investigated the sim-
plest possible class of open quantum systems: free Fermi gasses or, in the language
of solid state physics, independent electrons models [6]. Our result shows that,
for such systems, Ruelle’s scattering approach is equivalent to the well known
Landauer-Büttiker formalism (see e.g. [3]). More precisely, expectation values of
thermal and electric currents in the NESS coincide with steady currents computed
from the Landauer-Büttiker formula. I will also discuss linear response theory
based on this result.
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Spectral Statistics and Localization of Eigenfunctions in Random
Band Matrices

Jeffrey Schenker

Consider an N ×N random band matrix XW ;N with distribution

e−
W
2

Tr X2
W ;N dXW ;N

with dXW ;N the Lebesgue measure on the vector space of N×N matrices of band
width W . Thus

XW ;N =
1√
W




d1,1 a1,2 · · · a1,W

a∗2,1 d2,2
. . .

...
. . .

. . .

aW,1
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .




︸ ︷︷ ︸
N×N

,

with di and ai,j independent families of i.i.d. real and complex Gaussian variables,
respectively. (More generally we might take di and ai,j to be i.i.d. families with a
suitably nice distribution.)

As shown in [1] the density of states of XW ;N converges to the semi-circle law
as W and N tend jointly to infinity, provided W/N → 0 or 1. That is, if W (N) is
any diverging sequence with W (N)/N → 0 or 1 then

lim
N→∞

1

N
E
(
Tr f(XW (N);N)

)
=

1

2π

∫ 2

−2

f(t)
√

4 − t2dt.

This describes the asymptotic density of states, however, because the convergence
is in the weak sense, we have very little information about the density of states
at finite N . For instance, an interesting open question, whose solution would be
useful, is to find a good constant C in the bound

E
(
Tr f(XW (N);N )

)
≤ C

∫ b

a

f(t)dt

for functions f supported in an interval (a, b). Exploiting the diagonal terms, as in
the Wegner estimate for random Schrödinger operators [7], one obtains this bound

with C ∝
√
W . However, it seems to the author the bound should hold with C of

order one.
Now, fix an energy λ ∈ R and consider the scaled and shifted eigenvalue process

(1) {λ̃j}N
j=1 = {N(λj − λ)}N

j=1,

with λj the (random) eigenvalues of XW ;N . With W fixed equal to one, the matrix

is diagonal, {λj} = {dj,j}, and {λ̃j} converges in distribution (as N → ∞) to a
Poisson process. Conversely, with W = N the matrix XW ;N is sampled from the
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Gaussian Unitary Ensemble and the scaled, shifted eigenvalue process converges
in distribution to an explicit determinantal point process as shown by Dyson [3].
Based on numerical evidence [2] and a saddle point analysis of a sigma model
approximation [4] it is believed these two extremes characterize the behavior in
each of the regimes W 2/N ∼ 0 and W 2/N ∼ ∞.

Part of this picture can be confirmed by rigorous analysis. What I have obtained
is the following theorem

Theorem 1. There exists ν > 0 such that if W = W (N) is any sequence with
W ν/N → 0 then the scaled, centered eigenvalue process converges in distribution
to a Poisson process.

Of course, the value of ν given by the proof is larger than 2 (larger than 5,
in fact), so it remains an open question to establish Poisson statistics in the full
regime W 2/N ∼ 0.

The nature of eigenvalue statistics is expected to be related to localization
properties of the eigenfunctions – Poisson statistics corresponding to localized
eigenfunctions and GUE statistics corresponding to extended eigenfunctions. This
is borne out in the extreme cases mentioned above: for W = 1 each eigenfunction
is completely localized on a single basis vector while for W = N , as is well known,
the eigen-basis is uniformly distributed ortho-normal frame, so each eigenfunction
is typically roughly uniformly distributed over the basis vectors. (To quantify this,
one could compute the entropy

∑
j |ψj |2 ln |ψj |2 of an eigenfunction.)

One must be a little careful with this heuristic, however, since it is certainly
possible to concoct random matrices with arbitrary statistics and arbitrary local-
ization properties of the eigenfunctions. Nonetheless, the above result is consis-
tent with the picture as it stems from a localization result for eigenfunctions of
the matrices XN ;W , which is most conveniently stated in terms of the resolvent
(XN ;W −λ)−1, a well defined (though unbounded) random matrix for λ ∈ (−2, 2).
To state the result, let ei denote the standard basis vectors ei(j) = δi,j .

Theorem 2. Given s ∈ (0, 1), there are As <∞ and µs > 0 such that

E
(
|
〈
ei, (XN ;W − λ)−1ej

〉
|s
)

≤ AsW
s/2e−µs

|i−j|

W5 .

One expects based on [2, 4] this result should hold with W 2 in place of W 5 in
the denominator in the exponent. That remains an open problem, however, as the
proof gives W 5.

The first theorem follows from the second by an adaptation of an argument of
Minami [6]. The proof of the second theorem is based on the Kunz-Souillard proof
of localization [5] in 1D systems adapted to a block matrix setting.
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Transfer Matrix Methods for Discrete Random Schrödinger Operators

Hermann Schulz-Baldes

(joint work with Christian Sadel)

We give an overview over recently developed complements to the transfer matrix
techniques for one-dimensional and quasi-one-dimensional random Schrödinger op-
erators (random Jacobi matrices). For the strictly one-dimensional case, this con-
cerns in particular the perturbative calculation of the Lyapunov exponents at
anomalies and the band edges, which involves the use of a certain Fokker-Planck
operator on the space of modified Pruefer phases. For the quasi-one-dimensional
situation, particular focus is on a Sturm-Liouville type oscillation theorem for Ja-
cobi matrices with matrix entries, namely self-adjoint block tridiagonal matrices
with positive definite blocks on the off-diagonals. This gives a new rotation num-
ber calculation for the eigenvalues. The three universality classes of time reversal
invariance are dealt with by implementing the corresponding symmetries. Using
this theorem one obtains a new formula for the integrated density of states which
can be calculated perturbatively in the coupling constant of the randomness with
an optimal control on the error terms.
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Mott Law for a Random Walk in a Random Medium

Dominique Spehner

(joint work with Alessandra Faggionato, Hermann Schulz-Baldes)

We consider a random walk on the support of an ergodic stationary simple point
process on R

d, d ≥ 2, which satisfies a mixing condition with respect to transla-
tions. Furthermore the point process is furnished with independent random energy
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marks in the interval [−1, 1]. The transition rates of the random walk decay ex-
ponentially in the jump distances and depend on the energies through a factor of
the Boltzmann-type. This is an effective classical model for the phonon-induced
hopping of electrons in disordered solids within the regime of Anderson localiza-
tion. We show that the random walk converges to a Brownian motion after the
usual rescaling in time and position. Moreover, the low-temperature behavior of
the (logarithm of the) diffusion constant D is given up to a multiplicative con-
stant by Mott’s law for the variable range hopping conductivity at zero frequency
of disordered solids. A lower bound on D has been proven in [1]. It involves
estimates for the supercritical regime of an associated site percolation problem.
More recently, an upper bound with roughly the same low-temperature behavior
has been established in [2].
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Absolutely Continuous Spectrum on some Tree Graphs

Wolfgang Spitzer

(joint work with Richard Froese, David Hasler)

We study here the Anderson model on trees, T , i.e., connected graphs without
loops, and we are primarily interested in tracing its absolutely continuous (ac)
spectrum. It was Abel Klein [7] who first proved ac spectrum on the Bethe tree.
Recently and by different methods, Aizenman, Sims, and Warzel [1] also proved
(the existence of) ac spectrum in a yet slightly more general situation.

In our first paper [4], we constructed deterministic potentials on the Bethe tree
that yield ac spectrum using a geometric approach where hyperbolic contractions
are the essential tool to control the Green’s function. The same idea was also
successful [5] for the Anderson model which we sketch here. We want to point out
that the proof below is simpler and more direct than our original proof and works
much better for large values of the connectivity of the graph (see [6]).

In order to define the Anderson model let us start with the Laplacian ∆ defined
by (∆f)(x) =

∑
〈x,y〉 f(y); 〈x, y〉 means that x and y are nearest neighbours. The

potential V is random in the sense that {V (x)}x∈T are iid random variables with
common probability distribution (measure) ν, which, for simplicity, has compact
support I. The Anderson model under consideration here is H = ∆ + V .

Our first example concerns the Bethe tree where the number of forward neigh-
bours is constant, say K. In this case, the spectrum of the Laplacian is equal to
[−2

√
K, 2

√
K] and purely ac. The following is our main result.
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Theorem: For any 0 < E < 2
√
K there exists an interval I around 0 such that

for all probability distributions ν with support in I, the spectrum of H is purely ac
in [−E,E] with probability one.

Sketch of Proof: For simplicity we set K = 2. Our main task is to bound a
certain moment, Mn(ρ), of the Green’s probability function ρ (see below) from
which one can conclude by a separate argument that the spectrum is ac. As usual,
for x ∈ T , the Green’s function G(x, λ) = (H − λ)−1(x, x). Since H is random,
this kernel is a random variable. By ρ we denote the probability distribution of
G(x, λ) induced by ν. I.e., for A ⊆ H, ρ(A) = prob

(
G(x, λ) ∈ A

)
. In the Bethe

tree we have translation invariance so that ρ is independent of x ∈ T but, of
course, depends on λ which we suppress.

For λ ∈ (−2
√

2, 2
√

2) we have that (∆ − λ)−1(x, x) = zλ = −λ
4 + i

4

√
8 − λ2.

Note that for real λ, zλ is in the upper half plane H iff λ is in the above interval.
This is our reference point for ρ. To measure distances in H we use the function

cd(z) = |z−zλ|2
Im(z) , z ∈ H. Then we define the moments,

(1) Mn(ρ) =

∫

H

cdn(z) dρ(z) , n ≥ 1 .

In order that everything is well-defined we should add some positive imaginary
part iǫ to λ but our estimates below will be uniform in ǫ. We will continue with
n = 1 but n > 1 is needed to show that the spectrum is pure ac.

The simplicity of the Anderson model on the tree is based upon the recurrence
relation for ρ; in fact, this relation only holds for the truncated Green’s probability
distribution but we will not make this distinction here. To this end we introduce
the function φ : H

2 × H × I → H, φ(z1, z2, λ, q) = − 1
z1+z2+λ−q . Then, ρ =

φ∗
(
ρ× ρ× ν× ν

)
, where φ∗ is the pull-back operation (see below). This is utilized

to rewrite the first moment,

M1(ρ) =

∫

H

cd(z) dρ(z)

=

∫

H2×I

cd
(
φ(z1, z2, λ, q)

)
dρ(z1)dρ(z2)dν(q)

=

∫

H2×I

cd
(
φ(z1, z2, λ, q)

)

1
2cd(z1) + 1

2cd(z2)︸ ︷︷ ︸
µ2(z1,z2,λ,q)

(
1
2cd(z1) + 1

2cd(z2)
)
dρ(z1)dρ(z2)dν(q) .

A simple convexity argument shows that µ2(z1, z2, λ, 0) ≤ 1 with equality iff z1 =
z2 = zλ. So in that sense φ is a contraction. Let us assume for a moment that
µ2(z1, z2, λ, q) ≤ 1−µ0 < 1 for z1, z2 near the boundary of H

2 with some constant
µ0 and q in some small interval I around 0. Then for some fixed (hyperbolic)
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compact ball around (zλ, zλ) in H
2,

M1(ρ) =

∫

B×I

µ2(z1, z2, λ, q)
(

1
2cd(z1) + 1

2cd(z2)
)
dρ(z1)dρ(z2)dν(q)

+

∫

(H2\B)×I

µ2(z1, z2, λ, q)
(

1
2cd(z1) + 1

2cd(z2)
)
dρ(z1)dρ(z2)dν(q)

≤ C + (1 − µ0)

∫

(H2\B)×I

(
1
2cd(z1) + 1

2cd(z2)
)
dρ(z1)dρ(z2)dν(q)

≤ C + (1 − µ0)

∫

H2×I

(
1
2cd(z1) + 1

2cd(z2)
)
dρ(z1)dρ(z2)dν(q)

= C + (1 − µ0)M1(ρ) ,

where C is some finite constant. Consequently, M1(ρ) < C/µ0. Our assumption
that µ2(z1, z2, λ, q) ≤ 1− µ0 < 1 is not true (there are exceptional points even for
q = 0). But if we apply once more the recurrence relation to the variables z1 and
z2 (so that we have then three variables z1, z2, z3 to integrate over) we can define
an analogous function µ3 that is strictly less than 1 near the boundary (and small
q), and the above argument goes through. 2

Remarks:

(1) By a slight extension we cannot only bound the moment Mn(ρ) for any
n ≥ 1 but we can also show that ρ(z) decays exponentially fast to 0 as z
approaches the boundary of H.

(2) The function µ2, respectively µ3, is a rational function that can be ana-
lyzed numerically to plot a phase-diagram for the region where µ3 < 1 and
thereby locate ac spectrum as a function of the spectral parameter λ and
the strength of the disorder.

It is interesting to study trees where the connectivity is not constant, in partic-
ular hybrids of the binary Bethe tree with the one-dimensional lattice where we
have complete localization. So let us consider a radially symmetric tree and let
κ = (κn)n ∈ {1, 2}N be a binary sequence that determines the number of forward
neighbours at any vertex in the n-th sphere. If κ 6= 1 then this sequence κn deter-
mines a unique sequence kn, n ≥ 0 (of binary branching points) so that κkn

= 2
and the sequence ℓn = kn+1 − kn − 1 for all n ≥ 0. The standard one-dimensional
half-line corresponds to setting κn = 1, and the usual binary tree is given by
κn = 2, kn = n, ℓn = 0.

Breuer [2] proved that if ℓn = eγn (a so-called sparse tree) for some constant γ >
0, then the Anderson model has no ac spectrum a.s. for any non-zero disorder like
in the one-dimensional case. This is not surprising since already the Laplacian [3]
has purely singular spectrum, a fact which is surprising to us. We have analyzed
the case when ℓn = 1 and proved pure ac spectrum for

√
2 − 1 ≤ |λ| ≤

√
2 + 1

and small disorder. We believe that all constant sequences ℓ should also have pure
ac spectrum on the spectral set of the free Laplacian. However, we do not know
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whether there exists an increasing sequence ℓ for which there is still ac spectrum
in the Anderson model.

The reason why there is no ac spectrum even for the free Laplacian on sparse
trees is that by radial symmetry we are effectively in a situation of a sparse poten-
tial in dimension one. We can break this symmetry by inserting one extra vertex
on each top branch of the binary Bethe tree. In this case, already the function
µ2 ≤ 1 − µ0 < 1 (this constitutes the hard part of the whole analysis) and thus
one [6] proves ac spectrum for the Anderson model on such a tree as outlined
above.

Acknowledgement: We thank Hajo Leschke for comments.

References

[1] M. Aizenman, R. Sims and S. Warzel, Stability of the Absolutely Continuous Spectrum
of Random Schrödinger Operators on Tree Graphs, Prob. Theor. Rel. Fields 136 (2006),
363–394.

[2] J. Breuer, Localization for the Anderson model on trees with finite dimensions,
math.SP/0609474.

[3] J. Breuer, Singular continuous spectrum for the Laplacian on certain sparse trees,
math.SP/0604552.

[4] R. Froese, D. Hasler and W. Spitzer, Transfer matrices, hyperbolic geometry and absolutely
continuous spectrum for some discrete Schrödinger operators on graphs, J. Func. Anal. 230

(2006), 184–221.
[5] R. Froese, D. Hasler and W. Spitzer, Absolutely Continuous Spectrum for the Anderson

Model on a Tree: A Geometric Proof of Klein’s Theorem, Commun. Math. Phys. 269

(2007), 239–257.
[6] F. Halasan, Ph.D. thesis, University of British Columbia, in preparation.
[7] A. Klein, Extended States in the Anderson Model on the Bethe Lattice, Advances in Math.

133 (1998) 163–184.

Localization near Fluctuation Boundaries via the Fractional Moment
Method

Peter Stollmann

(joint work with Anne Boutet de Monvel, Serguei Naboko, Günter Stolz)

We report on work that can be accessed as eprint mparc 05-324 and will appear
in J. Anal. Math. Building on ideas of the recent adaptation [1] of the Aizenman-
Molchanov [2] or Fractional Moment method, we present a version of the FMM
that can be applied in situations under fairly general conditions as far as the
geometry is concerned.

Therefore, we can treat models without the covering condition, like surface
models and models with displacement.

Here are some details: On R
d we often consider the supremum norm |x| :=

maxi=1,...,d|xi| and write

Λr(x) :=
{
y ∈ R

d : |x− y| < r

2

}



702 Oberwolfach Report 12/2007

for the d-dimensional cube with side length r centered at x. For an open set
G ⊂ R

d we denote the restriction of the Schrödinger operator H to L2(G) with
Dirichlet boundary conditions by HG. In our results we assume d ≤ 3 and rely
upon the following assumptions, which guarantee self-adjointness and lower semi-
boundedness of the operators in question:

(A1) The background potential V0 ∈ L2
loc,unif(R

d) is real-valued, H0 := −∆+V0.

(A2) The set I ⊂ R
d, where the random impurities are located, is uniformly

discrete, i.e., inf{|α− β| : α 6= β ∈ I} =: rI > 0.
(A3) The random couplings ηα, α ∈ I, are independent random variables sup-

ported in [0, ηmax] for some ηmax > 0 and with absolutely continuous
distribution of bounded density ρα with a uniform bound supα ‖ρα‖∞ =:
Mρ <∞.
The single site potentials Uα, α ∈ I satisfy

cUχΛrU
(α) ≤ Uα ≤ CUχΛRU

(α)

for all α with cU , CU , rU , RU > 0 independent of α.

Vω(x) =
∑

α∈I
ηα(ω)Uα(x)

and

H := H(ω) := H0 + Vω in L2(Rd).

The most important condition expresses the fact that the ground state energy
comes from those realizations of the potential that vanish on large sets:

(A4) Denote E0 := inf σ(H0) ≤ inf σ(H(ω)) and let

HF := H0 + ηmax

∑

α∈I
Uα,

the subscript F standing for full coupling.
Assume that E0 is a fluctuation boundary in the sense that
(i) EF := inf σ(HF ) > E0, and
(ii) There is m ∈ (0, 2) and L∗ such that for md := 42 · d, all L ≥ L∗ and

x ∈ Z
d

P
(
σ(HΛL(x)(ω) ∩ [E0, E0 + L−m] 6= ∅

)
≤ L−md .

By χx we denote the characteristic function of the unit cube centered at x.
In the following it is understood that χx(HG − E − iε)−1χy = 0 if Λ1(x) ∩ G or
Λ1(y) ∩G have measure zero.

Our main result is

Theorem 1. Let d ≤ 3 and assume (A1)-(A4). Then there exist δ > 0, 0 < s < 1,
µ > 0 and C < ∞ such that for I := [E0, E0 + δ], all open sets G ⊂ R

d and
x, y ∈ R

d,

(1) sup
E∈I, ε>0

E(‖χx(HG − E − iε)−1χy‖s) ≤ C e−µ|x−y|.
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Exponential decay of fractional moments of the resolvent as described by (1)
implies spectral and dynamical localization in the following sense:

Theorem 2. Let d ≤ 3, assume (A1)-(A4) and let I be given as in Theorem 1.
Then:

(a) For all open sets G ⊂ R
d the spectrum of HG in I is almost surely pure

point with exponentially decaying eigenfunctions.
(b) There are µ > 0 and C <∞ such that for all x, y ∈ R

d and open G ⊂ R
d,

(2) E
(
sup‖χxg(H

G)PI(H
G)χy‖

)
≤ Ce−µ|x−y|.

where the supremum is taken over all Borel measurable functions g which satisfy
|g| ≤ 1 pointwise and PI(H

G) is the spectral projection for HG onto I.

Dynamical localization should be considered as the special case g(λ) = eitλ in
(b), with the supremum taken over t ∈ R.

The proof of Theorem 1 is done by a self-contained presentation of a new version
of the continuum fractional moment method. While we use many of the same
ideas as [1], due to the lack of a covering condition we can not rely any more
on the concept of “averaging over local environments”, heavily exploited in [1].
It is interesting to note that, in some sense, we instead use a global averaging
procedure. Technically, this actually leads to some simplifications compared to
the method in [1], as repeated commutator arguments can be replaced by simpler
iterated resolvent identities. We also mention that exponential decay in (1) will
follow from smallness of the fractional moments at a suitable initial length scale
(the localization length) via an abstract contraction property.

As technical tools we need Combes-Thomas bounds (in operator norm as well
as in Hilbert-Schmidt norm) and a weak-L1-type bound for the boundary values
of resolvents of maximally dissipative operators, which is based on results from [5]
and was also central to the argument in [1].

As applications we mention surface models, in a form a little more general than
what had been studied in [4] and models including displacements that are more
general than those treated in [3, 6].
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Localization and Control of Sobolev Norms

Wei-Min Wang

The purpose of this talk is to manifest the close relationship between Anderson
Localization (A. L.) and control of Sobolev norms for Schrödinger equations.

I. Linear time-independent Schrödinger equations.
We consider the Schrödinger equations:

(1) i
∂

∂t
ψ = (−∆ + V )ψ,

where V (x, t) = V (x), on L2(Td), the periodic Schrödinger or on L2(Rd) when
V → ∞ as x → ∞, e.g., V = x2, the quantum harmonic oscillator. We also
consider the above equation on ℓ2(Zd) when V is a family of random variables.

The L2 norms of solutions to (1) are conserved. Therefore the first non-trivial
norms to study are the Sobolev norms Hs, s = 1, 2, .... In general there are
no conservation laws for Sobolev norms. For the linear Schrödinger (both time
independent and dependent), there is the a priori bound that the Hs norm cannot
grow faster than ts as t→ ∞. In order to get better bounds, one usually needs to
study the details of the solutions.

Since the RHS of (1) is independent of time, this reduces to the study of dynam-
ical localization properties of eigenfunctions in the Fourier space when we consider
(1) on L2. When V is periodic, assume moreover V is analytic, boundedness of
Hs norms follows from exponential localization properties of the eigenfunctions
with respect to the exponentials. When V = x2, boundedness of Hs norms follows
from the fact that all the solutions to (1) are periodic in time. When V is large
and random and under appropriate conditions on the probability distribution, we
have dynamical localization for (1) in Z

d. The first 2 cases are the analogues of
A. L. in the Fourier space.

As is well known, (1) is a 0th order approximation to a real quantum sys-
tem, which consists of many particles. A first order approximation is a nonlinear
Schrödinger, e.g.,

(2) i
∂

∂t
ψ = (−∆ + V )ψ + |ψ|2pψ, p ∈ N

+,

where the nonlinear term models the particle-particle interactions. The L2 norms
are conserved. But what about the Hs norms? We note that here contrary to the
linear case, there is no a priori bound on Hs as t→ ∞.

Assume the nonlinearity is small and the linear Schrödinger operator has pure
point spectrum. Linearizing (2) and using eigenfunction decomposition lead nat-
urally to study time dependent Schrödinger equations. So I first mention results
on time dependent Schrödinger equations.
II. Linear time-dependent Schrödinger equations.



Transport in Multi-Dimensional Random Schrödinger Operators 705

Aside from motivations coming from nonlinear equations, time dependent Schrö-
dinger equations occur naturally in physics, where the time-dependence models ra-
diation. The control of Hs norm is essentially about the stability of bound states
under radiation.

In [1], we prove that the one dimensional quantum harmonic oscillator is sta-

ble under nonresonant time quasi-periodic perturbations of the form: e−x2∑ν
k=1

cos(ωkt + θk), where ω = {ωk} belongs to a subset of Diophantine frequencies of
positive measure. In [2], we prove that the bound states of periodic Schrödinger
operator are stable under resonant perturbations. The motivations for both prob-
lems come from nonlinear Schrödinger.

III. Nonlinear Schrödinger equations.
For the tempered nonlinear random Schrödinger equation:

(3) iq̇j = vjqj + ǫ(qj−1 + qj+1) + λjqj |qj |2

where |λj | < ǫ(|j| + 1)−τ , τ > 0, we prove in [3] that the H1 norm cannot grow
faster then tκ, κ > 0, as t→ ∞. Finally we remark that for the standard nonlinear
random Schrödinger, i.e., λj = δ, δ ≪ 1, ∀j, time quasi-periodic solutions were
constructed in [4].
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