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Introduction by the Organisers

This workshop was the seventh of its kind held in Oberwolfach (after 1984, 1987,
1990, 1993, 1997 and 2002) and was attended by 52 participants from Europe and
North America, among them 20 young post- docs and graduate students. The
meeting comprised 25 talks of 50 minutes each, with a strong emphasis on recent
progress and new directions. We try to give a brief overview of the topics involved:

1) Real enumerative geometry and tropical geometry
Enumerative geometry is concerned with counting the number of solutions to

algebro-geometric problems. One very active topic is counting the number of
rational curves passing through prescribed points (and variations thereof). The
Welschinger invariants are the real analogue of Gromov-Witten invariants in com-
plex geometry. Calculating both the complex invariants and their real counter-
parts was related to tropical geometry by Grigory Mikhalkin in his celebrated
correspondence theorem. The talks of Erwan Brugallé, Ilia Itenberg and Jean-
Yves Welschinger were devoted to these problems. Frédéric Bihan reported about
improved fewnomial bounds, i.e. bounds on the number of solutions to sparse
polynomial systems that depend only on the number of monomials involved. Alex
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Degtyarev and Andrej Gabrielov gave talks on applications and generalisations of
Grothendieck’s dessins d’enfant.

2) Positivity and Sums of Squares
Representations of positive polynomials involving sums of squares of polynomi-

als provide certificates for positivity that are interesting both theoretically and for
numerical purposes. On the other hand, a classical result of Hilbert states that
not every positive polynomial in more than one variable is a sum of squares. A
constructive approach to this theorem was presented at the workshop by Bruce
Reznick. Recent developments in this field were presented by Salma Kuhlmann,
Vicky Powers, Marie-Françoise Roy, and Markus Schweighofer. The talk of Igor
Klep was concerned with positivity and sums of squares in a non-commutative
setting, relating such questions to a famous conjecture by Alain Connes about von
Neumann algebras.

3) Topology and singularities of real varieties
Much research in this area is concerned with finding topological properties that

characterise real algebraic sets or particular classes of varieties. Wojciech Kucharz
spoke about the question which homotopy types of maps between real varieties are
represented by algebraic morphisms. The talk of Benôıt Bertrand was devoted to
generalizations of Viro’s patchworking method for constructing real varieties with
a prescribed topology, and Nicolai Vorobjov reported on an effective version with
explicit bounds of a theorem due to Coste and van den Dries that bounds the
number of homotopy types of semialgebraic sets in terms of the complexity of the
polynomial description. Riccardo Ghiloni spoke about semialgebraic deformations
of real algebraic sets and presented a proof of the fact that every real algebraic
set is semialgebraically homeomorphic to an irreducible one. Johannes Huisman
addressed the problem of determining all rational real algebraic models of a topo-
logical surface, proving the uniqueness of such models for a large class of surfaces.
Frédéric Mangolte spoke about real singular Del Pezzo surfaces and threefolds fi-
bred by rational curves. Adam Parusiński reported on a complete classification of
blow-analytic equivalence classes of function germs in two variables.

Other topics included a talk by Daniel Schaub on the Pierce-Birkhoff conjec-
ture, which asks whether every piecewise polynomial function can be expressed as
a surpremum of infima of polynomials. José Fernando spoke about semialgebraic
analogues to classical results on rings of continuous functions and Andreas Fischer
about analytic approximation results in o-minimal structures. Jean-Philippe Mon-
nier presented a real version of the Riemann-Hurwitz inequality for the number of
fixed points of an automorphism of an algebraic curve, allowing for more precise
results in the real case that involve the number of connected components of the real
locus. Vladimir Kostov’s talk was concerned with the Schur-Szego composition for
polynomials in one variable, especially those that have only real roots. Krzysztof
Kurdyka spoke on trajectories of subriemmanian gradients of polynomials.

The schedule of the meeting left plenty of time for numerous discussions among
the participants. There was no official programme beyond the talks (except the
traditional hike on Wednesday afternoon) but many participants worked together
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in small groups in the seminar rooms until late in the evening. Several collabora-
tions were continued and some new ones were started.

We cordially thank the Oberwolfach Institute and its staff for the splendid
atmosphere they provided and gratefully acknowledge the financial support for
young researchers.
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Abstracts

Algebraic and pseudoholomorphic patchworking

Benôıt Bertrand

The results presented here were obtained jointly with Erwan Brugallé and are
contained in [BB06] and [BB07] from which this note is adapted.

Viro’s patchworking was applied in the proof of a lot of meaningful results in
topology of real algebraic varieties. It is one of the most important method in this
field. We consider here the case of curves in CP 2 and in rational geometrically
ruled surfaces Σn.

Viro Method allows to construct an algebraic curve A out of simpler curves Ai

so that the topology of A can be deduced from the topology of the initial curves
Ai. Namely one gets a curve with Newton polytope ∆ out of curves whose Newton
polytopes are the 2-simplices of a subdivision σ of ∆, and one can see the curve
A as a gluing of the curves Ai. Moreover, if all the curves Ai are real, so is the
curve A (see [Vir84] and [Vir89]).

One of the hypotheses of the Viro Method is that σ should be convex (i.e. the
2-simplices of σ are the domains of linearity of a piecewise linear convex function).
In the original Patchworking Theorem, one also requires the curves Ai to be totally
nondegenerate. In particular, one can only glue nonsingular curves. E. Shustin
proved in [Shu98] that, under some numerical conditions depending on the types
and number of the singularities, it is possible to patchwork singular curves keeping
the singular points.

On the other hand, I. Itenberg and E. Shustin proved in [IS02] a pseudoholo-
morphic patchworking theorem: they showed that applying the Viro Patchworking
with any subdivision (non necessarily convex) and with reduced curves Ai with
arbitrary singularities, one can glue the Ai’s, keeping singular points, to obtain a
real pseudoholomorphic curve. More precisely, given some (maybe singular) curves
Ai whose Newton polygons are the 2-simplices of a subdivision of the quadran-
gle with vertices (0, 0), (k, 0), (k, l) and (l + nk, 0), Itenberg and Shustin gave a
way to construct a pseudoholomorphic curve C of bidegree (k, l) in the rational
geometrically ruled surface Σn, whose position with respect to the pencil of lines
can be deduced from the initial curves Ai. Isotopy types realizable by (algebraic
or pseudoholomorphic) curves obtained via a patchworking procedure are called
patchworked curves.

Pseudoholomorphic curves were introduced by M. Gromov in [Gro85] to study
symplectic 4-manifolds. A real pseudoholomorphic curve C on CP 2 or Σn is an
immersed Riemann surface which is a J-holomorphic curve in some tame almost
complex structure J such that the exceptional section (in Σn with n ≥ 1) is J-
holomorphic, conj(C) = C, and conj∗ ◦ Jp = −Jp ◦ conj∗ (where conj is the
standard complex conjugation and p is any point of C). It as been realized since
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then that real pseudoholomorphic curves share a lot of properties with real alge-
braic ones (see for example [OS02], [OS] and [FLTO02]). It is still unknown if there
exist nonsingular real pseudoholomorphic curves in CP 2 which are equivariantly
isotopic to no homologous real algebraic curves (this is the so called real symplec-
tic isotopy problem). However, S. Orekov gave an example of a nonsingular real
pseudoholomorphic curve in Σ4 which is not istopic to any real algebraic curve
of the same bidegree ([Ore]). Note that, not requiring the exceptional section in
Σn to be J-holomorphic, J-Y. Welschinger constructed in [Wel02] examples of real
pseudoholomorphic curves on Σn for n ≥ 2 which are not isotopic to any real
algebraic curve realizing the same homology class in H2(Σn; Z).

In the surfaces RΣn, there is a natural pencil of lines L, and one can study
curves there up to fiberwise isotopy. Two curves C1 and C2 in RΣn are said to be
L-isotopic if there exists an isotopy φ(t, x) of RΣn mapping C1 to C2 such that for
any t ∈ [0; 1], for any p ∈ C1 and for any fiber F of RΣn, φ(t, F ) is a fiber of RΣn,
and the intersection multiplicity of C1 and F at p is the intersection multiplicity
of φ(t, C1) and φ(t, F ) at φ(t, p).

There are several examples of nonsingular real pseudoholomorphic curves in
RΣn which are L-isotopic to no homologous real algebraic curves (see for example
[OS02], [OS], [Bru]). However, as far as we know, none of those examples are
constructed with the pseudoholomorphic patchworking of Itenberg and Shustin,
and the question of the existence of a patchworked pseudoholomorphic curves
with any kind of non-algebraic behaviour was open.

In [BB06] we proved that in the case of curves of bidegree (3, 0) in Σn, the
patchworked pseudoholomorphic curve is always isotopic to a real algebraic one in
the same homology class.

On the other hand we constructed the first examples of patchworked real pseu-
doholomorphic curves in Σn whose position with respect to the pencil of lines
cannot be realised by any homologous real algebraic curve.

Theorem 1. For any d ≥ 3 there exists a smooth real pseudoholomorphic patch-
worked curve of bidegree (d, 0) in Σ2 which is not L-isotopic to any real algebraic
curve in Σ2 of the same bidegree.

To prove this theorem we patwork, for any d ≥ 3, a pseudoholomorphic curve in
Σ2 of bidegree (d, 0) which has, in particular, four points of maximal tangency with
respect to L. The nonalgebraicity follows from the fact that a given subresultant
would have too many roots if the curve were algebraic.
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[BB06] Benôıt Bertrand and Erwan Brugallé. A Viro Theorem without convexity hypothesis
for trigonal curves. IMRN, 2006:Article ID 87604, 2006.
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New Fewnomial Bounds

Frédéric Bihan

(joint work with Frank Sottile)

In this talk, we present results obtained with Frank Sottile in [5]. Consider
a polynomial system f1 = · · · = fn = 0 defined by n Laurent real polynomials
in n variables. We are interested in the number of complex or real solutions
with non-zero coordinates. Let W denotes the support of this system, that is, the
subset of Zn consisting of all the exponent vectors (a1, . . . , an) corresponding to the
monomials xa1

1 · · ·xan
n of the system. Kouchnirenko [6] showed that the number of

non-degenerate complex solutions to the system is at most the normalized volume
of the convex hull of W . This volume gives thus a bound on the number of real
solutions. However, the resulting bound appears to be far from being sharp for
systems having few monomials. For n = 1, this is a consequence of Descartes rule
of signs. In general, this is due to Khovanskii [7] who showed that if the cardinality
if W is n+k+1 (we can assume that k ≥ 0), then the number of positive solutions
to the system is at most

2(n+k

2 )(n+ 1)n+k

(Multiplying by 2n gives then a bound on the number of real solutions.) The first
concrete result showing that Khovanskii’s bound is likely overstated was due to
Li, Rojas, and Wang [9] who showed that two trinomials in two variables have at
most 5 positive solutions (and this is sharp). Such systems are particular cases
of systems with n = k = 2 (we can assume that both trinomials have a common
monomial), so that the Khovansky bound in this case is 5184. More recently,
upper bounds have been obtained for systems with k = 1, that is, when W forms
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what is called a circuit (see [1] and [2]). The main idea was to reduce the study
of such a system to that of particular univariate polynomial. In [5], we generalize
this for any k and obtain the following new fewnomial bounds.

Theorem. A system of n polynomials in n variables having a total of n+k+1
distinct monomials has fewer than

e2+3
4 2(k

2)nk

non-degenerate solutions in the positive orthant.

In fact, the paper [5] contains better bounds, but which are more difficult to
state. Like the Khovansky bound, our bound also works for systems with real
exponent vectors. In the case n = k = 2, we obtain the new upper bound of
15. A construction based on a sharpness result of [2] shows that our bound is
nearly asymptotically optimal for k fixed and n → +∞, see [3]. The proof of our
new fewnomial upper bound goes as follows. We generalize the reduction step
which was done for k = 1 by reducing the study of the original system to that of
a special k by k system called Gale dual system. Precisely, we show a bijection
between the positive solutions to the original system to the solutions to the Gale
system which are contained in a certain polyhedron. We use then what is called
the Khovansky-Rolle theorem, see [8], toric tricks and a bit of combinatorics of
polytopes. Other bounds have also been been obtained recently and which concern
a fewnomial hypersurface of the positive orthant. Namely, bounds for the number
of compact connected components [5], for the number of (possibly non compact)
connected components [3], and finally for the total sum of the Betti numbers [4].
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Floor decompositions of tropical curves

Erwan Brugallé

(joint work with Grigory Mikhalkin)

1. Enumerative invariants of projective spaces

Let n ≥ 2, d ≥ 1 and g ≥ 0 be some integers and c = (c0, . . . , cn−2) ∈
(
N∪{0}

)n

such that
∑n−2

i=0 (n− 1 − i)ci = (n+ 1)d+ (n− 3)(1 − g). Moreover, throughout
the text we assume that g = 0 if n ≥ 3. Consider ω a generic configuration of
ci linear spaces of CPn of dimension i with i varying from 0 to n−2, and consider
the set C of algebraic irreducible curves of degree d and genus g in CPn passing
through all elements of ω The set C is finite, and if n, d, g and c are fixed, then the
cardinal of C does not depend on ω. Let us define Nn,g

c (d) = ♯C. If n = 2 (resp.

n ≥ 3), then we will simply write N2,g(d) (resp. Nn
c (d)) instead of N2,g

(3d−1+g)(d)

(resp. Nn,0
c (d)). The numbers Nn,0

c (d) were first computed by Kontsevich, and
Caporaso and Harris gave in an algorithm to compute the numbers N2,g(d).

When all the elements of ω are real, then one can consider the set

RC = {real algebraic curves in C}
Now the cardinal of RC depends on ω. However, Welschinger proved that counting
curves in RC with respect to some sign, one obtain an invariant when c1 = . . . =
cn−2 = 0. We denote by Wn(d) this invariant. Welschinger invariants of RP 2

were first computed by Itenberg, Kharlamov and Shustin.
Computations of Itenberg, Kharlamov and Shustin are based on a previous

paper by Mikhalkin, where he gave, in particular, an algorithm to compute the
numbers ♯C and ♯RC for some special configurations of points in the plane.

In this talk, we present a generalisation to dimension 3 of this algorithm, and we
exhibit new formulas for the numbers N3

c (d) and W 3(d) in terms of floor diagrams.
The main tool in the proof of our results is tropical geometry, thanks to Mikhalkin’s
Correspondence Theorems.

Notation. Given D a finite oriented graph, we denote the set of vertices (resp.
edges) of D by D0 (resp. D1). We also denote by D∞

0 the set of sinks, and by D∞
1

the set of edges adjacent to a sink. Finally we put D0 = D0 \ D∞
0 .

Given v ∈ D0, we denote by A(v) the set of edges adjacent to v, and we define
the function ǫv : A(v) → {±1} by ǫv(e) = 1 if v is the origin of e, and ǫv(e) = −1
otherwise.

By convention, we define N1,0(1) = W 1(1) = 1 and N1,0(d) = W 1(d) = 0 if
d ≥ 2.

2. Floor diagrams

Definition 1. A floor diagram of degree d and of genus g is a triple (D, w0, w1)
where D is a connected finite oriented graph of genus g with no oriented cycle,
and where wi : Di → N are two functions satisfying the following conditions
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i.
∑

v∈D0
w0(v) = d,

ii. ∀v ∈ D0,
∑

e∈A(v) ǫ(e)w1(e) = w0(v),

iii. ∀e ∈ D∞
1 , w1(e) = 1.

Let (D, w0, w1) be a floor diagram of degree d and genus g, n = 2 or 3 and

c = (c0, . . . , cn−2) ∈
(
N ∪ {0}

)n
such that

∑n−2
i=0 (n − 1 − i)ci = (n + 1)d + (n −

3)(1 − g). Put Ec = {1, . . . ,
∑n−2

i=0 ci} and let m : Ec → D a map injective on
m−1(D1). We define the dimension of l ∈ Ec as the integer dim(l) such that
cdim(l)−1 < l ≤ cdim(l) (with the convention that c−1 = 0), the rank of v ∈ D0

as the integer rk(v) = dim(max{l | m(l) = v}), and the freedom of e ∈ D1

as the integer fr(e) = n − 1 − ∑l∈m−1(e)(n − 1 − dim(l)). For e ∈ D1, we

denote by ∂0e the set of its adjacent vertices in D0. Finally, we define Ec,m =
m−1(D1) ∪v∈D0 max{l |m(l) = v}.

Definition 2. A map Π which associate to any e ∈ D1 a subset of ∂0e of cardinal
fr(e) is called a reconstruction map for m if for any v ∈ D0 one has

(n− 2)


♯m−1(v) − rk(v) + ♯fr−1(0) ∩ A(v) +

∑

e∈fr−1(1)∩A(v)

(1 − ♯Π(E) ∩ {v})




= nw0(v) + n− 4

Definition 3. The quadruplet (D, w0, w1,m) is called an n-dimensional marked
floor diagram of type c if the following conditions hold

i. m|Ec,m
: Ec,m → D is an increasing map,

ii. if dim(l) = 0 and m(l) ∈ D0, then m−1(m(l)) = {l},
iii. there exists a reconstruction map for m.

Remark 4. For an n-dimensional marked floor diagram, the reconstruction map
is unique.

Two n-marked floor diagrams of type c, (D, w0, w1,m) and (D′, w′
0, w

′
1,m

′),
are said to be isomorphic if there exists a homeomorphism of oriented graphs
φ : D → D′ such that wi = w′

i ◦ φ and m = m′ ◦ φ. We call without distinction
a marked floor diagram either an isomorphism class of marked floor diagrams, or
one of its representative.

To each marked floor diagram D of type c, we associate now a complex multi-
plicity µC

c (D) defined by

µC

c (D) =
∏

v∈D0

[
Nn−1,0(w0(v))w0(v)rk(v)

] ∏

e∈D1


w1(e)1+♯m−1(e)

∏

v′∈Π(e)

w0(v′)


 .

If g = 0 and ci = 0 for i ≥ 1 then we also associate a real multiplicity µR(D) to D
defined by

µR(D) =
∏

v∈D0

Wn−1(w0(v)) if w1(D1) ∩ 2N = ∅ and µR(D) = 0 otherwise.
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Note that for n = 2, both real and complex multiplicities take a very simple
form: one has fr(e) = 0 for any e ∈ D1 and w0(v) = 1 for any v ∈ D0, so
µC

c (D) is the square of the product of the weight of all edges of D, and µR(D) =
µC

c (D) mod 2.

3. Main results

Theorem 5. For (n, g) = (2, g) or (n, g) = (3, 0), the number Nn,g
c (d) is equal to

the sum of the complex multiplicity of all n-dimensional marked floor diagrams of
degree d, genus g, and type c.

Theorem 6. For n = 2 or n = 3, the Welschinger invariant Wn(d) is equal to
(−1)nǫ(d) times the sum of the real multiplicity of all n-dimensional marked floor
diagram of degree d, genus 0, and type (c0, 0, . . . , 0).

As said in the introduction, Theorems 5 and 6 are obtained via tropical geom-
etry. Let us state the main ingredient in our tropical computations. Take n, d, g
and c as in section 1, and take elements of ω to be linear tropical subspaces of Rn.

Theorem 7. Let HC be a hypercube containing all vertices of all elements of ω.
Then HC contains all the vertices of any tropical curve of degree d and genus g
in Rn passing through elements of ω.

Zariski k-plets via dessins d’enfants

Alex Degtyarev

We apply the techniques of Grothendieck’s dessins d’enfants, which has already
proved useful in the study of real trigonal curves (joint work with I. Itenberg and
V. Kharlamov), to the study of singular complex plane curves. As a first appli-
cation, we construct asymptotically large collections of non-equivalent irreducible
curves sharing the same set of singularities.

For the purpose of this paper, by a type of a singular point we mean its PL-
homeomorphism class, and by an equisingular deformation (of plane curves) we
mean a PL-equisingular deformation.

The definition below was suggested by E. Artal. For the sake of simplicity, we
confine ourselves to the case of irreducible curves.

Definition 1. A collection C1, . . . , Ck of irreducible (complex) plane curves is
said to form a Zariski k-plet if all curves Ci have the same degree and the same
combinatorial set of singularities but no two curves Ci, Cj , i 6= j, can be connected
by an equisingular deformation.

Historically, the first example of Zariski pairs was found by O. Zariski, who
constructed two distinct families of irreducible six cuspidal sextics. Later, more
examples were found by E. Artal. A. Degtyarev, C. Eyrol, M. Oka, H. Tokunaga,
M. Uludağ, and others. In most examples known, there are just a few (usually,
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two) families of curves sharing the same set of singularities, and the curves are dis-
tinguished by the fundamental group of the complement or even by the Alexander
polynomial (which is an easily computable invariant of the fundamental group).

The principal result of this talk is the following theorem.

Theorem 2. For each integer m ≥ 8, there is a set of singularities shared by

N(m) =
1

k

(
2k − 2

k − 1

)(
k

[k/2]

)(
[k/2]

ǫ

)

pairwise not deformation equivalent irreducible plane curves Ci ⊂ P2 of degree m,
where k = [(m+ 2)/3] and ǫ = 3k −m ∈ {0, 1, 2}. The fundamental groups of all
curves Ci are abelian: one has π1(P2 r Ci) = Zm.

Remark 3. It is easy to see that asymptotically the count N(m) given by the
theorem grows faster than am for any a < 2.

Remark 4. The set of singularities that is actually constructed below consists of
two points, one point of type A5k−2 and one point of ‘transversal’ intersection of
(k−1) ‘blocks’: ǫ cusps A2, one block of type E12 (in Arnol′d’s notation), [k/2]−ǫ
blocks of type J2,1, and [(k − 3)/2] blocks of type J2,0.

Remark 5. In fact, the notion of Zariski pair/k-plet changes from paper to paper.
Often, the condition that the curves Ci are not deformation equivalent is replaced
by the stronger requirement that the pairs (P2, Ci) (or even spaces P2 rCi) should
not be homeomorphic. At present, I do not know whether this stronger require-
ment holds for all/some of the curves given by the theorem.

The proof of the main theorem is based on the study of curves of degree m
with a singular point O of multiplicity (m − 3). (Note that curves of degree m
with a singular point of multiplicity ≥ (m− 2) can easily be classified; they never
form Zariski pairs.) Blowing O up converts such a curve C to a curve in the
Hirzebruch surface Σ1, and after a series of elementary transformations one arrives
at a trigonal curve B in a certain Hirzebruch surface Σk; one can assume that B
does not intersect the exceptional section of the surfaces and has no triple points.
The deformation type of B (decorated with a number of distinguished points/fibers
recording the converse transformation) determines that of C. Thus, essentially the
problem reduces to the deformation classification of trigonal curves.

A trigonal curve B can be described by its functional j-invariant j : P1 → P1.
The j-invariant has three special values, 0, 1, and ∞; typically, the value j = ∞
corresponds to the singular fibers of B (in particular, its singular points), and the
values j = 0 and 1 correspond to the fibers of B admitting complex multiplication.
Generically, the pull-backs of 0 and 1 consist, respectively, of double and triple
ramification points. Points of smaller multiplicity correspond to the singular fibers
of B of types Ã∗∗

0 , Ã∗
1, and Ã∗

2.
In the special case when B is maximally singular, its j-invariant has no critical

values other than 0, 1, or ∞ and its topology and, hence, analytic structure is
uniquely described by its classical dessin d’enfants, which is defined as the plane
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graph Γj = j−1[0, 1] ⊂ P1 whose vertices are marked according to whether they

project to 0 or 1. Assuming, further, that B has no singular fibers of type Ã∗
1,

one can disregard the vertices projecting to 0.
All vertices of the resulting graph Γj have valency at most 3, 1- and 2-valent

vertices corresponding to the singular fibers of B of type Ã∗∗
0 and Ã∗

2, respectively.

All other singular fibers of B are of type Ãp; they are in a one-to-one correspon-
dence with the p-gonal faces of Γj . Conversely, any graph Γj ⊂ P2 with at most
3-valent vertices gives rise to a trigonal curve.

Proof of the theorem. All curves are constructed from trigonal curves in Σk having
one singular fiber of type Ã∗∗

0 , one singular fiber of type Ã5k−2, and k singular

fibers of type Ã∗
0. Any such trigonal curve is obtained from a graph Γ ⊂ P1

constructed as follows: one starts with a binary tree with (k − 1) vertices, marks
its root by adding an edge and a 1-valent vertex (in particular, this procedure
rules out the possible symmetries of the graph), and completes the valency of each
remaining vertex to three by attaching k ‘leaves’, each leaf consisting of a loop
connected to the rest of the graph by an edge.

The number of such graphs (hence, the number of trigonal curves) is Catalan’s
number

C(k − 1) =
1

k

(
2k − 2

k − 1

)
.

Note that all singular fibers of the resulting curves are different, i.e., no pair of
singular fibers can be interchanged by a deformation. Now, in order to obtain a
plane curve, one needs to perform (k − 1) elementary transformations, convert-
ing Σk to Σ1, and blow down the exceptional section of Σ1. The elementary
transformations are chosen as follows:

(1) the only type Ã∗∗
0 singular fiber contracts to a singular point of type E6;

(2) [k/2] of the k type Ã∗
0 singular fibers contract to singular points of type A2

or D5 (depending on whether the blow-up center is chosen on the curve);
(3) [(k − 3)/2] generic fibers contract to singular points of type D4.

The extra counts

(
k

[k/2]

)
and

(
[k/2]

ǫ

)

in the statement of the theorem are due, respectively, to the choice of [k/2] of the
k singular fibers to be contracted and the choice of ǫ of them to be contracted
to A2 instead of D5.

The fundamental groups of the resulting plane curves can easily be controlled.
Essentially, they are all abelian due to the existence of type Ã∗∗

0 singular fibers. �
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Rings of semialgebraic functions

José F. Fernando

(joint work with J.M. Gamboa)

The study of rings of continuous functions is a difficult matter which has de-
served a lot of attention from specialists in analysis, topology and algebra. The
history of this theory is long and rich and its main development goes back to the
50’s and 60’s of XX century. This subject contributed in an important way to the
appearance and evolution of well-known tools in Mathematics like the Stone–Cěch
compactification, the theory of nets and filters, the spectrum and the maximal
spectrum of a commutative ring, . . . We refer the reader to [GH1], [GJ], [K1], [K2]
and [M] for more details. See also the surveys [Ve1] and [Ve2].

Later in the 80’s, after the birth and development of Real Algebraic Geometry,
most results concerning rings of continuous functions were reviewed and studied
from a different view-point which involves the use of some tools proper of this
theory. We refer the reader to [ChD1], [ChD2], [S1], [S2], [Tr1] and [Tr2].

In this work, we study the main properties of rings of a smaller class of contin-
uous functions, namely (continuous) semialgebraic functions over a semialgebraic
subset of Rn, continuing some previous work of the second author and Ruiz which
goes to the 90’s (see [GR] and [G], and also [CC]). Recall that a semialgebraic
subset of Rn is a set which can be described as a finite boolean combination of poly-
nomial equalities and inequalities. A semialgebraic function on a semialgebraic set
M is a continuous function f : M → R whose graph is a semialgebraic set. As
it is well-known, the set S(M) of semialgebraic functions on M is an R-algebra
and the set S∗(M) of bounded semialgebraic functions on M is an R-subalgebra
of S(M). To refer to properties of both rings simultaneously, we will write S⋄(M)
to allude either S(M) or S∗(M).

Our purpose is to study the topological and algebraic properties of the spectra
and maximal spectra of such rings. Since the usual notations for these objects
become cumbersome, we replace them by the following ones. Let M ⊂ Rn be a
semialgebraic set. We denote

Specs(M) = Spec(S(M)) Spec*
s (M) = Spec(S∗(M)),

βsM = Specmax(S(M)) β*
sM = Specmax(S∗(M)).

Again we may allude to the respective spectra of both rings simultaneously by
setting Spec⋄

s (M) equals Specs(M) or Spec*
s (M) and β⋄

sM equals βsM or β*
sM . As

we will show in section 2.1 the real spectra and real maximal spectra of S⋄(M)
coincide with its classical Zariski spectra and maximal spectra. Consequently we
will not be concerned about real spectra.

We point out here the most remarkable results of this memoir. We are in-
terested in analyzing until what extend the rings of semialgebraic functions on a
semialgebraic set determines it up to homeomorphism, and how much information
they provide about its semialgebraic compactifications. Namely,
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(1) It is shown that the ring S(M) classifies the semialgebraic set M up to
semialgebraic homeomorphism. On the other hand, the ring S∗(M) classifies the
semialgebraic set M , up to semialgebraic homeomorphism and outside a finite
subset η(M) ⊂ M depending only on M . Moreover, the spectra Specs(M) and
Spec*

s (M) are homeomorphic if and only if the rings S(M) and S∗(M) are iso-
morphic, and this is so if and only if M is compact, or equivalently if both rings
coincide. In contrast, the maximal spectra βsM and β*

sM are always homeomor-
phic; hence they will be denoted by βsM . Unfortunately, this last homeomorphism
has no functorial character.

(2) Although these rings S⋄(M) do not enjoy some of the nice properties of rings
of Nash or polynomial functions, namely, they are not noetherian, their ideals do
not have in general primary decomposition,. . . however they are Gelfand rings and
they have finite Krull dimension equal to the dimension of M . Recall that a ring
is Gelfand if each prime ideal is contained just in one maximal ideal. As to the
dimension, we also prove that the height of the maximal ideal consisting of all
functions vanishing at a point p ∈M equals the local dimension of M at p.

(3) In the same vein as the classical Stone–Cěch compactification, we prove that
βsM is the smallest compactification of M such that each bounded semialgebraic
function onM extends continuously to βsM . This is why we will call βsM the semi-
algebraic Stone–Cěch compactification of M . Moreover, it can be characterized as
the smallest compactification that dominates all the semialgebraic compactifica-
tions of M . These results suggest that the topology of βsM can be rescued from
the semialgebraic compactifications of M . In fact, we will be interested in deter-
mining the main topological properties of the residue ∂M = βsM \M and we
prove first that it has finitely many connected components, whose number equals
the number of connected components of the residue of a suitable semialgebraic
compactification of M . Other remarkable properties of ∂M are that it is locally
connected and that its local compactness can be characterized just in terms of
the topology of M . We also describe and use in a crucial way some distinguished
subsets of the residue ∂M , which have a deep geometric meaning.
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Smooth approximation of definable continuously differentiable
functions in some in o-minimal structures

Andreas Fischer

Whitney’s approximation theorem, cf. [4], states that every continuously dif-
ferentiable function f can be approximated by an analytic function g, such that
the difference between f and g and their derivatives is less than any given positive
continuous function ε.

M. Shiota proved in [3] the semi-algebraic version of this theorem, that is, if f
and ε are semi-algebraic, the statement remains valid and we can claim g to be
semi-algebraic.

Recall that an o-minimal structure on R is a collection of boolean algebras Sn

of definable sets, n ∈ N, where Sn is a subset of the power set of Rn which contains
all semi-algebraic sets, such that linear projections of definable sets are definable
and all definable subsets of R are semi-algebraic. If the graph of a function f
belongs to some Sn, then f is called definable.

Shiota’s method does not apply to any other o-minimal structure.
Here we prove the following approximation theorem for a certain subclass of

o-minimal structures in which the exponential function is definable.

Theorem 1. Let M be an o-minimal expansion of the real exponential field with
smooth cell decomposition. Let U ⊂ Rn be definable and open, and let f : U → R

be definable and continuously differentiable. Then, for every definable continuous
function ε : U → (0,∞), there is a definable smooth function g : U → R such that

|Dαf(u) −Dαg(u)| < ε(u), u ∈ U, α1 + ...+ αn ≤ 1.
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Analogous to analytic approximation, we can conclude that definable open sets
are definably C∞ diffeomorph if and only if they are C1 diffeomorph, and also that
we can separate definable disjoint closed sets by definable smooth functions.

Contrary to analytic approximation, our methods imply that the functions f
and g coincide outside of any pregiven definable open neighbourhood of the clo-
sure of the set of non-smooth points. Therefore the separation argument can be
strengthened as follows.

If A,B are definable closed disjoint subsets of Rn, there is a definable smooth
function ϕ : Rn → R such that A ⊂ {ϕ = 1} and B ⊂ {ϕ = 0}.

This implies the following two consequences.
Firstly, if U ⊂ Rn is a definable open set, then the definable sheaf consisting of

the smooth definable functions from U to R is fine.
Secondly, if A is a closed definable set, U a definable open neighbourhood of

A and f : U → R a definable smooth function, then there is a definable smooth
function F : Rn → R which coincides with f in A.

References

[1] Fischer, A. Peano differentiable functions in o-minimal structures doctoral thesis, University

of Passau, 2006
[2] van den Dries, L. ,Miller, C. Geometric categories and o-minimal structures. Duke Math. J.

84 (1996), no. 2, 497–540
[3] Shiota, M. The extension theorem for Nash functions. Real algebraic geometry and quadratic

forms (Rennes, 1981), pp. 343–357, Lecture Notes in Math., 959, Springer, Berlin-New York,
1982.

[4] Whitney, H. Analytic extensions of differentiable functions defined in closed sets. Trans Am.
Math. Soc. 36, 63-89 (1934)

Non-algebraic dessins d’enfants and zeros of eigenfunctions of
anharmonic oscillators

Andrej Gabrielov

Consider an eigenvalue problem

(1) −y′′ + P (z)y = λy, y(−∞) = y(∞) = 0.

Here P = czd + . . . is a real polynomial of even degree d with c > 0. This is
known as a (quantum) anharmonic oscillator. It is well known that the spectrum
is discrete, the eigenvalues λ0 < λ1 < . . . are real and simple, and λn → ∞
as n → ∞. Eigenfunctions are real entire functions of the order (d + 2)/2, an
eigenfunction φn with the eigenvalue λn has n real zeros.

If P is even, each eigenfunction φ is either even or odd, and can be normalized
either as φ(0) = 1 or as φ′(0) = 1. Let ψ be another solution of −y′′ + Py = λy
(without boundary conditions) with the same eigenvalue λ as φ, normalized as
ψ(0) = 0, ψ′(0) = 1 if φ(0) = 1 and as ψ(0) = 1, ψ′(0) = 0 if φ(0) = 0. Then
f = φ/ψ is an odd meromorphic function of the order (d + 2)/2 without critical
points. At infinity, f has asymptotic values aj in each of d + 2 Stokes sectors Sj
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separated by the Stokes directions θ = π(2j − 1)/(d + 2). Here j is considered
a residue modulo d + 2. These values satisfy aj+1 6= aj and a0 = ad/2+1 = 0.
They are also symmetric with respect to the real and imaginary axes: a−j =
āj , aj+d/2+1 = −aj.

Let d = 4. Then

(2) a2 = −ā1, a4 = a1, a5 = ā1 a0 = a3 = 0.

One can show that, a1 in 2 is neither real or pure imaginary, so f has 5 distinct
asymptotic values. Let us choose 4 disjoint loops Γ1, . . . ,Γ4 with the ends at ∞
passing around the non-zero asymptotic values of f and such that their union is
symmetric with respect to the real and imaginary axes. Then preimage f−1(Γ1 ∪
· · · ∪ Γ4 defines a partition of C that has 6 unbounded domains (corresponding to
the Stokes sectors) and each zero of f is inside one of its bounded domains. The
set of edges of this partition is a planar graph which, after contraction of loops
and some additional reduction, becomes a double-symmetric planar tree with 6
infinite ends. From the classification of such trees, we derive the following result

Theorem 1. Any eigenfunction φ of the eigenvalue problem 1 for an even poly-
nomial P of degree 4 has all its zeros either real or pure imaginary.

A theorem by Nevanlinna allows one to recover f from a given planar graph
and a set of asymptotic values. This allows us to derive analytic properties of
eigenfunctions of anharmonic oscillators from the the combinatorial properties of
planar trees, similar to representation of algebraic functions by dessins d’enfants.

Topology and irreducibility of real algebraic varieties — Deformations
of real algebraic varieties in irreducible models

Riccardo Ghiloni

1. Introduction and main theorem

In complex algebraic and analytic geometry, the usual notion of irreducibility
defines a topological invariant on varieties equipped with the euclidean topology.
This follows easily from the equivalence between irreducibility and connectedness
of the nonsingular locus, and from the fact that the topological codimension of the
singular locus is ≥ 2.

The aim of this paper is to show that, in the real case, the situation is completely
different. In fact, we prove that every real algebraic variety of positive dimension
is irreducible up to a semialgebraic homeomorphism. More precisely, given a real
algebraic variety X of positive dimension, we construct a semialgebraically trivial
family {ξt : Xt −→ X}t∈R of semialgebraic homeomorphisms between real al-
gebraic varieties such that X0 = X , ξ0 is the identity map on X and, for each
t ∈ R \ {0}, Xt is irreducible. In the case X is nonsingular, the preceding family
{ξt : Xt −→ X}t∈R can be choosen in such a way that, for each t ∈ R \ {0}, Xt is
an irreducible nonsingular real algebraic variety and ξt is a Nash isomorphism.
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In what follows, by a real algebraic set, we mean an algebraic subset of some Rn.
Unless otherwise indicated, all real algebraic sets are equipped with the euclidean
topology. The notion of irreducibility is refered to the Zariski topology. Let
X be a real algebraic set. We indicate by Nonsing(X) the set of nonsingular
points of X of maximum dimension and by Sing(X) the set X \ Nonsing(X). If
X = Nonsing(X), then X is called nonsingular. We define the Zariski dimension
of X as the maximum dimension of the Zariski tangent spaces of X . Let Y be
another real algebraic set and let h : X −→ Y be a semialgebraic homeomorphism.
We say that h is good if h(Sing(X)) = Sing(Y ), the restriction of h from Sing(X)
to Sing(Y ) is a biregular isomorphism and the restriction of h from Nonsing(X)
to Nonsing(Y ) is a Nash isomorphism.

Let us introduce the notion of semialgebraic deformation of a real algebraic set.

Definition. Let X and X∗ be real algebraic sets and let π : X∗ −→ R be a regular
function. A continuous semialgebraic map ξ : X∗ −→ X is called semialgebraic
deformation of X parametrized by π if the restriction of ξ to π−1(0) is a biregular
isomorphism and the map h := (ξ, π) : X∗ −→ X × R is a semialgebraic home-
omorphism. Furthermore, if h is good (resp. h is a Nash isomorphism), then ξ
is said to be a good semialgebraic deformation (resp. a Nash deformation) of X
parametrized by π.

Let X be a real algebraic set, let ξ : X∗ −→ X be a semialgebraic deformation of
X parametrized by π : X∗ −→ R and let t ∈ R. It is immediate to verify that the
restriction of ξ to π−1(t) is a semialgebraic homeomorphism and, if ξ is good, the
following hold: the restriction of ξ from π−1(t)∩Sing(X∗) to Sing(X) is a biregular
isomorphism, π−1(t) \ Sing(X∗) ⊂ Nonsing(π−1(t)) and the restriction of ξ from
π−1(t) \ Sing(X∗) to Nonsing(X) is a Nash isomorphism. The reader observes
that, when X is nonsingular, the notions of good semialgebraic deformation and
of Nash deformation of X coincide.

We are now in position to state our main theorem.

Theorem 1. Let X be a real algebraic set of positive dimension r and let z be
its Zariski dimension. Then there exist an integer N = N(r, z) depending only on
r and z, an algebraic subset X∗ of RN × R and, denoting by π : X∗ −→ R the
restriction to X∗ of the natural projection of RN ×R onto the last factor R, a good
semialgebraic deformation ξ : X∗ −→ X of X parametrized by π such that, for
each t ∈ R \ {0}, π−1(t) is irreducible.

As a consequence, we obtain:

Corollary 2. Every real algebraic set of positive dimension is irreducible up to a
good semialgebraic homeomorphism.

In the nonsingular case, the preceding results can be restated as follows:
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Theorem 3. For each nonsingular real algebraic set X of positive dimension,
there exists a Nash deformation ξ : X∗ −→ X of X parametrized by a regular
submersion π : X∗ −→ R such that, for each t ∈ R \ {0}, π−1(t) is an irreducible
nonsingular real algebraic set.

Corollary 4. Every nonsingular real algebraic set of positive dimension is Nash
isomorphic to an irreducible nonsingular real algebraic set.

The compact case of the latter result was originally proved by Tognoli in [5].
We have a conjecture:

Conjecture. In Theorem 3, the adjective “nonsingular” can be omitted. In
particular, every real algebraic set of positive dimension is Nash isomorphic to
an irreducible real algebraic set.

2. Sketch of the proof

Our proof of the main theorem is quite long and technical. Here, we sketch the
proof of Corollary 2. The ideas presented below to prove this corollary are the
same we use to prove the main theorem.

Sketch of the proof of Corollary 2. We organize the proof into six steps.
Step I: compactification. Let X be an algebraic subset of Rn of dimension r > 0

and let S := Sing(X). Since the Alexandrov compactification of X can be made
algebraic, we may suppose that X is compact.

Step II: resolution of singularities. By Hironaka’s resolution theorem, there

exist a compact nonsingular real algebraic set X̃ , a finite union A of nonsingular

hypersurfaces of X̃ in general position and a regular map π : X̃ −→ X such that

A = π−1(S) and the restriction of π from X̃\A to X\S is a biregular isomorphism.
Step III: Tognoli’s approximation technique. By a classical approximation tech-

nique due to Tognoli [5], we may suppose that X̃ is irreducible.
Step IV: adding a tail. Making use of a translation if needed, we may suppose

that S is contained in the half space {x̄ = (x1, . . . , xn) ∈ Rn |x1 ≤ −2}. Let q be
a polynomial in R[x̄] such that S = q−1(0). Identify Rn with Rn × {0} ⊂ Rn+1.
For each t ∈ R, define Qt ∈ R[x̄, y] by the formula (y2 + q4(x̄))(y2 +

∑n
i=1 x

2
i −

1) + t(y2 + 2q4(x̄)). Observe that Q−1
0 is equal to the disjoint union of S and

of the standard sphere Sn of Rn+1. Moreover, for each t ∈ R, S is contained
in Q−1

t (0). It is easy to see that, for each t ∈ R \ {0}, Qt is irreducible as
element of C[x̄, y]. Choosing a small positive real number t, the algebraic subset
T := Q−1

t (0) of Rn+1 is irreducible and equal to the disjoint union of S and of
a Nash submanifold M of Rn+1 arbitrarily close to Sn. Since S is algebraic and
disjoint from M , there is a regular map ρ : T ′ −→ T from a nonsingular real
algebraic set T ′ to T such that ρ(T ′) = M and the restriction of ρ from T ′ to

M is a Nash isomorphism. Consider the product variety X̃ × Rn+1−r (which is
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irreducible) and let ψ : T ′ −→ X̃ × Rn+1−r be a Nash embedding whose image is

contained in a contractible open subset of (X̃ \A)×(Rn+1−r\{0}). Such a ψ exists

because dim(X̃×Rn+1−r) = n+1 and T ′ is Nash diffeomorphic to Sn. Improving
Theorem 4 and Lemma 5 of [1], we may suppose that T ′′ := ψ(T ′) is a nonsingular

algebraic subset of X̃ × Rn+1−r and ψ : T ′ −→ T ′′ is a biregular isomorphism.
Indicate by g : T ′′ −→ T the regular map ρ ◦ ψ−1. Applying an improved version
of the Real Algebraic Blowing Down Lemma (see Proposition 2.6.1 of [2]) to the

data X̃×Rn+1−r ⊃ T ′′ g−→ T , we obtain an irreducible algebraic subset P of some

RN homeomorphic to (X̃×Rn+1−r)∪g T , containing (A×Rn+1−r)∪(X̃×{0}) and
equal to the disjoint union of S and of a Nash submanifold P ′ of RN arbitrarily

close to X̃ × Rn+1−r.
Step V: Dubois–Efroymson cut. In 1974, Dubois and Efroymson [3] proved the

following dimension theorem: “Let W be an irreducible real algebraic set and let
Z be an algebraic subset of W such that c := dim(W ) − dim(Z) ≥ 2. Then there
exists an irreducible algebraic subset of W of codimension 1 containing Z”. In [4],
we improve this result as follows: “Let e ∈ {1, . . . , c − 1} and let F : W −→ Re

be a regular map vanishing on Z. Suppose there is a nonsingular point p of W
such that F (p) = 0 and the rank of the differential of F at p is equal to e. Then
there exists a regular map G : W −→ Re such that, for each t ∈ (−1, 1) \ {0},
the set {w ∈ W |F (w) + tG(w) = 0} is an irreducible algebraic subset of W of
codimension e containing Z”. Applying the latter result to the real algebraic sets
P ⊃ S, we obtain an irreducible real algebraic set X∗ equal to the disjoint union

of S and of a Nash submanifold M∗ of RN arbitrarily close to X̃ × {0}. Observe
that the set A∗ := (A × Rn+1−r) ∩M∗ is algebraic and the natural projection
µ : A∗ −→ A is a Nash isomorphism.

Step VI: real algebraic blowing down. Define the regular map f : A∗ ⊔ S −→ S
by f(x) := π(µ(x)) if x ∈ A∗ and f(x) := x if x ∈ S. By the above–mentioned
Real Algebraic Blowing Down Lemma, X∗∪f S is homeomorphic to an irreducible
real algebraic set X ′. By construction of X∗ and of X ′, it follows the existence of
a good semialgebraic homeomorphism from X to X ′. �
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Rational real algebraic models of topological surfaces

Johannes Huisman

(joint work with I. Biswas)

Let X be a nonsingular rational real projective surface. Then the set X(R) of
real points of X is a compact connected topological surface. Comessatti showed
thatX(R) is either nonorientable, or it is diffeomorphic to one of S2 and S1×S1 [2].
Conversely, each of these topological surfaces admits a rational real algebraic model,
or rational model for short. In other words, if S is a compact connected topological
surface which is either nonorientable or diffeomorphic to one of S2 and S1 × S1,
then there is a nonsingular rational real projective surface X such that X(R) is
diffeomorphic to S.

Two rational models X and Y of S are said to be isomorphic if there is a
birational map

f : X 99K Y

such that X(R) is contained in the domain of definition of f , and

f|X(R) : X(R) −→ Y (R)

is a diffeomorphism. Equivalently, X and Y are isomorphic models if and only if
the real algebraic varieties X(R) and Y (R) are biregularly isomorphic in the sense
of [1] (see [5, p. 517–518]).

We address the following question. Given a compact connected topological
surface S, what is the number of nonisomorphic rational models of S?

It is known that the topological surfaces S2, S1 × S1 and P2(R) have exactly
one rational model, up to isomorphism. Mangolte has shown that the same holds
for the Klein bottle (the 2-fold connected sum of the real projective plane) [4,
Theorem 1.3].

Mangolte asked how large n should be so that the n-fold connected sum of the
real projective plane admits more than one rational model, up to isomorphism;
see the comments following Theorem 1.3 in [4]. The following theorem shows that
there is no such integer n.

Theorem 1. Let S be a compact connected real two-manifold. Assume that S is
either nonorientable, or it is diffeomorphic to one of S2 and S1 × S1. Then there
is exactly one rational model of S, up to isomorphism. In other words, any two
rational models of S are isomorphic.

Our proof is based on the Minimal Model Program for real algebraic surfaces
developed in [3], and some explicit constructions of birational maps between real
algebraic surfaces whose restrictions to the real points are diffeomorphisms.

Acknowledgement. The author thanks the Tata Institute of Fundamental
Research for its hospitality.
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Bd. 12, Springer Verlag, 1987

[2] Comessatti, A.: Sulla connessione delle superfizie razionali reali, Annali di Math. 23 (1914),
215–283

[3] Kollár, J.: The topology of real algebraic varieties. Current developments in mathematics,
Int. Press, Somerville (2001), 197–231

[4] Mangolte, F.: Real algebraic morphisms on 2-dimensional conic bundles, Adv. Geom. 6
(2006), no. 2, 199–213, arXiv:math.AG/0310325

[5] Ronga, F., Vust, T.: Diffeomorfismi birazionali del piano proiettivo reale, Comm. Math.
Helv. 80 (2005), 517–540

Tropical Welschinger invariants

Ilia Itenberg

(joint work with Viatcheslav Kharlamov and Eugenii Shustin)

The talk is devoted to an enumeration of real rational curves interpolating fixed
collections of real points in a real algebraic surface Σ, more precisely, to the fol-
lowing question: given a real divisor D and a generic collection w of c1(Σ) ·D− 1
real points in Σ, how many of the complex rational curves belonging to the linear
system |D| and passing through the points of w are real ? By rational curves we
mean irreducible genus zero curves and their degenerations, so that they form in
|D| a projective subvariety S(Σ, D); this subvariety is called the Severi variety. A
curve on a real surface Σ is called real, if the curve is invariant under the involution
c : Σ → Σ defining the real structure of Σ.

While, under mild conditions on Σ andD, the number of complex curves in ques-
tion is the same for all generic collections w (it equals to the degree of S(Σ, D)),
it is no more the case for real curves (except few very particular situations).

J.-Y. Welschinger [8, 9] discovered a way to attribute weights ±1 to the real
solutions in question so that the number of real solutions counted with weights
becomes independent of the choice of a generic collection of real points. As an
immediate consequence, the absolute value of the Welschinger invariant WΣ,D

provides a lower bound on the number RΣ,D(w) of real solutions: RΣ,D(w) ≥
|WΣ,D|.

In some cases (for example, in the case of toric Del Pezzo surfaces; recall
that there are five toric Del Pezzo surfaces: the projective plane P2, the prod-
uct P1 ×P1 of projective lines, and P2 with k blown up points in general position,
where k = 1, 2 or 3) Welschinger invariants can be calculated using Mikhalkin’s
approach [5, 6] which deals with a corresponding count of tropical curves. In trop-
ical geometry, complicated non-linear algebro-geometric objects are replaced by
simpler piecewise-linear ones. For example, tropical plane curves are piecewise-
linear graphs whose edges have rational slopes. Tropical curves can be seen as
algebraic curves over the tropical semiring (max,+).
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Using the tropical approach, we proved (see [1]) the logarithmic equivalence
for the Welschinger and Gromov-Witten invariants of any toric Del Pezzo sur-
face equipped with its tautological real structure, i.e., the real structure which is
provided by the toric structure.

Theorem 1 (see [1]). Let Σ be a toric Del Pezzo surface equipped with its tauto-
logical real structure, and D an ample divisor on Σ. The sequences logWΣ,nD and
logGWΣ,nD, n ∈ N, of the Welschinger invariants and the corresponding Gromov-
Witten invariants are asymptotically equivalent. More precisely, logWΣ,nD =
logGWΣ,nD +O(n) and logGWΣ,nD = (c1(Σ) ·D) · n logn+O(n).

We also defined (see [2]) a series of relative tropical Welschinger-type invariants
of real toric surfaces. In the Del Pezzo case, these invariants can be seen as real
tropical analogs of relative Gromov-Witten invariants, and are subject to recursive
formulas of Caporaso-Harris type.

In the present talk, we consider generic collections of real points on the pro-
jective plane blown up at 4 real points in general position and prove that the
logarithmic equivalence of the Welschinger and Gromov-Witten invariants holds
in this situation as well.

Theorem 2. Let Σ be the projective plane P2 blown up at 4 real points in general
position, and D an ample divisor on Σ. The sequences logWΣ,nD and logGWΣ,nD,
n ∈ N, of the Welschinger invariants and the corresponding Gromov-Witten in-
variants are asymptotically equivalent.

The proof is based on a new version of the correspondence theorem, whose proof
in turn uses an appropriate tropical Caporaso-Harris type formulas. In particular,
we get recursive formulas that allow one to calculate Welschinger invariants of P2

blown up at 4 real points in general position.

References

[1] I. Itenberg, V. Kharlamov, and E. Shustin, Logarithmic equivalence of Welschinger and
Gromov-Witten invariants, Russian Math. Surveys 59 (2004), no. 6, 1093–1116.

[2] I. Itenberg, V. Kharlamov, and E. Shustin, A Caporaso-Harris type formula for Welschinger
invariants of real toric Del Pezzo surfaces. Preprint math.AG/0608549, 2006, 1 - 39 (to
appear in Commentarii Math. Helvetici).

[3] M. Kapranov Amoebas over non-Archimedean fields, Preprint, 2000.
[4] M. Kontsevich and Ya. Soibelman Homological mirror symmetry and torus fibrations,

Preprint, arXiv: math.SG/0011041, 2000.
[5] G. Mikhalkin, Counting curves via the lattice paths in polygons, Comptes Rend. Acad. Sci.

Paris, Sér. I, 336 (2003), no. 8, 629–634.
[6] G. Mikhalkin, Enumerative tropical algebraic geometry in R2, J. Amer. Math. Soc. 18

(2005), 313–377.
[7] O. Viro, Dequantization of Real Algebraic Geometry on a Logarithmic Paper, Proceedings of

the 3rd European Congress of Mathematicians, Birkhäuser, Progress in Math. 201, (2001),
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Sums of hermitian squares, Connes’ embedding problem and the
BMV Conjecture

Igor Klep

(joint work with Markus Schweighofer)

Throughout this note R will denote an associative ring with 1. If R is endowed
with an involution x 7→ x∗, we denote by Sym(R) := {x ∈ R | x = x∗} the set
of hermitian elements and by Σ2(R) := {∑m

i=1 x
∗
i xi | m ∈ N, xi ∈ R} ⊆ Sym(R)

the set of sums of hermitian squares. We introduce an equivalence relation (cyclic

equivalence) on R by declaring that x
cyc
∼ y means that x− y is a sum of commu-

tators in R.
Let k ∈ {R,C} and let ks×s be the k-algebra of square matrices over k of

size s ∈ N := {1, 2, . . .} with the involution A 7→ A∗, where A∗ is the conjugate
transpose of A. It is easy to show that for all A ∈ Sym(ks×s),

(a) A is positive semidefinite ⇔ A ∈ Σ2(ks×s);

(b) tr(A) = 0 ⇔ A
cyc
∼ 0;

(c) tr(A) ≥ 0 ⇔ ∃B ∈ Σ2(ks×s) : A
cyc
∼ B,

where tr denotes the trace of a matrix. Let n ∈ N, X̄ := (X1, . . . , Xn) be variables
(or symbols) and let 〈X̄〉 be the semigroup generated freely by X̄ whose elements
are words in the n letters X1, . . . , Xn (including the empty word 1). Let k〈X̄〉
denote the corresponding semigroup algebra, i.e., the free associative k-algebra
over X̄ consisting of polynomials in n noncommuting variables X̄ with coefficients
in k. We endow this ring with the involution p 7→ p∗ given by X∗

i = Xi and a∗ = a
for a ∈ k. For each word w ∈ 〈X̄〉, w∗ is thus the reverse word. Given f ∈ k〈X̄〉,
we say that:

(a),(a)’ f is positive semidefinite everywhere (on the hypercube) if
f(A1, . . . , An) is positive semidefinite for all s ∈ N and (contractions)
Ai ∈ Sym(ks×s);

(b),(b)’ the trace of f vanishes everywhere (on the hypercube) if
tr(A1, . . . , An) = 0 for all s ∈ N and (contractions) Ai ∈ Sym(ks×s);

(c),(c)’ the trace of f is nonnegative everywhere (on the hypercube) if
tr(A1, . . . , An) ≥ 0 for all s ∈ N and (contractions) Ai ∈ Sym(ks×s).

A contraction is a matrix A with ‖A‖ ≤ 1 and the hypercube is the set

{(A1, . . . , An) ∈ Sym(Rs×s)n | s ∈ N, ‖Ai‖ ≤ 1}.
One can ask if these geometric conditions can be translated into algebraic iden-

tities in the algebra k〈X̄〉 which are analogous to the case of the algebra ks×s.
Despite the huge activity in the commutative case, these “noncommutative ques-
tions” have been hardly examined before the breakthrough work of Helton [Hel]
in 2002 (cf. McCullough and Putinar [MP]):
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(a) f ∈ Sym(k〈X̄〉) is positive semidefinite everywhere ⇔ f ∈ Σ2(k〈X̄〉).
Later Helton and McCullough [HM] studied (a)’, proving:

(a)’ f ∈ Sym(k〈X̄〉) is positive semidefinite on the hypercube ⇔
∀ε > 0 : f + ε ∈Mk〈X̄〉.

Here Mk〈X̄〉 denotes the quadratic module generated by {1 −X2
1 , . . . , 1 −X2

n} ink〈X̄〉, i.e., Mk〈X̄〉 = {σ +
∑

i,j g
∗
ij(1 −X2

i )gij | σ ∈ Σ2, gij ∈ k〈X̄〉}.

In our joint work [KS1, KS2] we study (b), (b)’, (c) and (c)’. We prove that for
all f ∈ Sym(k〈X̄〉),
(b), (b)’ the trace of f vanishes everywhere (on the hypercube) ⇔ f ∼ 0.

We also prove the following variant of (c):

Theorem. For f ∈ C〈X̄〉, τ(f(A1, . . . , An)) ≥ 0 for every separable II1-factor
F with trace τ and all contractions A1, . . . , An ∈ Sym(F) ⇔ for every ε ∈ R>0,

f + ε
cyc
∼ g ∈MC〈X̄〉 for some g ∈ C〈X̄〉.

We were able to show that the matrix variant of (c) is equivalent to a problem
of Alain Connes [Con] concerning von Neumann algebras and dating back to 1976.

Connes’ Conjecture. Let R denote the hyperfinite and let F be a separable type
II1 factor. If U is a free ultrafilter on N, then F can be embedded (as a ring with
involution) in the ultraproduct RU .

Here RU is an ultraproduct in the sense of von Neumann algebras with trace
and is itself a factor of type II1. This embedding problem has recently gained a
lot of attention: Kirchberg [Kir] has shown in 1993 that it is equivalent to some
interesting problems in the theory of operator algebras and Banach spaces.

Algebraic reformulation of Connes’ Conjecture. If f ∈ Sym(R〈X̄〉) and
the trace of f is nonnegative on the hypercube, then for every ε > 0 there is a

g ∈MR〈X̄〉 such that f + ε
cyc
∼ g.

This algebraic formulation entails entirely new approaches to Connes’ problem.
Under the hypothesis that the conjecture holds, we were for example able to prove
a version with bounds on the degree of the representation using the theory of
real closed fields, valuation theory and model theory. Moreover, it is possible to
systematically consider polynomials in few variables or of small degree to obtain
ideas. We could already show that the conjecture holds for a certain class of
polynomials in two variables. Finally, one can do numerical experiments to test
special classes of polynomials. It is in fact possible to maximize λ ∈ R such that
f − λ has the desired representation by solving a sequence of SDPs.

For the remainder of this note let n = 2 and write (X,Y ) instead of (X1, X2).
In [KS2] we give examples of polynomials f ∈ Sym(k〈X,Y 〉) such that the trace

of f is nonnegative everywhere, but there are no g ∈ Σ2(k〈X,Y 〉) with f
cyc
∼ g.
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(One may even replace f by f + λ for λ > 0 and still get the same conclusion.)
One particular example of such a polynomial is

f := X6Y 6 +X4Y 2X2Y 4 + X4Y 4X2Y 2 +X4Y 6X2 +X2Y 2X4Y 4 +

X2Y 2X2Y 2X2Y 2 +X2Y 2X2Y 4X2 +X2Y 4X4Y 2 +

X2Y 4X2Y 2X2 +X2Y 6X4 + Y 2X6Y 4 + Y 2X4Y 2X2Y 2 +

Y 2X4Y 4X2 + Y 2X2Y 2X4Y 2 + Y 2X2Y 2X2Y 2X2 +

Y 2X2Y 4X4 + Y 4X6Y 2 + Y 4X4Y 2X2 + Y 4X2Y 2X4 + Y 6X6.

This polynomial is related to the so-called Bessis-Moussa-Villani (BMV) conjec-
ture [BMV] from theoretical physics. An easily accessible equivalent formulation
due to Lieb and Seiringer [LS] is the following:

Bessis-Moussa-Villani Conjecture. Whenever A,B ∈ Sym(ks×s) are positive
semidefinite, the polynomial tr

(
(A+ tB)m

)
∈ R[t] has nonnegative coefficients.

The coefficient of tk in p is the trace of Sm,k(A,B), the sum of all words of
length m in A and B, in which exactly k B’s appear. It is known that the trace of
Sm,k(A,B) is nonnegative for all positive semidefinite A,B in the following cases:

(1) k ≤ 2 or m− k ≤ 2 (2) s ≤ 2
(3) m = 6 [Hi] (4) m = 7 [Hae].

In [KS2] we use sums of hermitian squares to study the conjecture, e.g. with

f1 := 3X3Y 4X2 ∈ k〈X,Y 〉,
f2 := 3X5Y 4 + 3X3Y 2X2Y 2 + 3XY 2X4Y 2 ∈ k〈X,Y 〉,
f3 := 3XY 2X2Y 2X2 + 3XY 4X4 ∈ k〈X,Y 〉,

S9,4(X2, Y 2)
cyc
∼ f∗

1 f1 + f∗
2 f2 + f∗

3 f3,

showing that the trace of S9,4(A,B) is nonnegative for positive semidefinite A,B.
On the other hand, S9,3(X2, Y 2) is not cyclically equivalent to an element of
Σ2(k〈X,Y 〉). Nevertheless, we were able to prove:

Theorem. The BMV conjecture holds for m ≤ 9.
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On the Schur-Szegö composition of polynomials in one variable

Vladimir Petrov Kostov

(joint work with Boris Shapiro)

Definition 1. A polynomial in one variable is called hyperbolic if it has only real
roots. We write HP for “hyperbolic polynomial”.

The Schur-Szegö composition of two polynomials P (x) =
∑n

i=0 C
i
naix

i and
Q(x) =

∑n
i=0 C

i
nbix

i is given by P ∗ Q(x) =
∑n

i=0 C
i
naibix

i. Let Poln denote
the linear space of all polynomials in x of degree ≤ n. We always use its basis
B := (xn, xn−1, . . . , 1). To P ∈ Poln one can associate the operator TP determined
by the condition: TP (1+x)n = P (x). One has TP (xi) = ai, i = 0, 1, . . . , n. We refer
to the sequence {ai} as to the diagonal sequence of P . Any two such operators TP

and TQ commute and their product TPTQ corresponds to P ∗Q. The Schur-Szegö
composition theorem reads:

Theorem 2. Given any linear-fractional image K of the unit disk containing all
the roots of P one has that any root of P ∗Q is the product of some root of Q by
−γ where γ ∈ K.

Denote byHypn ⊂ Poln the set of all HPs and byHyp+
n (resp. Hyp−n ) its subset

of HPs with all positive (resp. all negative) roots. Denote by Hu,v,w ⊂ Hypn

(u, v, w ∈ N∪ 0, u+ v+w = n) the set of all HPs with u negative and w positive
roots and a v-fold zero root.

Proposition 3. If P,Q ∈ Hypn and if Q ∈ Hyp+
n or Q ∈ Hyp−n , then P ∗ Q ∈

Hypn. Moreover, all roots of P ∗Q lie in [−M,−m] where M is the maximal and
m is the minimal pairwise product of roots of P and Q.

A diagonal sequence, (or an operator T : Poln → Poln acting diagonally in B) is
called a finite multiplier sequence (FMS), if it sends Hypn into Hypn. The set Mn

of all FMS is a semigroup. The following theorem defines a linear diffeomorphism

of Mn and Hyp
+

n ∪Hyp−n .
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Theorem 4. For T ∈End(PolRk ) the following two conditions are equivalent:

(i) T is a finite multiplier sequence;

(ii) All different from 0 roots of the polynomial PT (x) =
∑k

j=0 C
j
kγjx

j are of
the same sign.

Proposition 5. (see [KoSh]) Given P , Q ∈ PolCn such that xP , xQ are roots
respectively of P , Q of multiplicity mP , mQ with mP + mQ ≥ n, one has that
−xPxQ is a root of P ∗Q of multiplicity mP + mQ − n. (If mP + mQ = n, then
−xPxQ is not a root of P ∗Q.)

Remark 6. If mP > 0, mQ > 0 and mP + mQ < n, then −xPxQ might or might
not be a root of P ∗Q. Example: −1 is a root of ((x − 1)(x − 2)(x − 3)) ∗ ((x −
1)(x− 4)(x− d)) iff d = 17/23.

Proposition 7. (see [KoSh]) For any P ∈ Hu,v,w and any Q ∈ Hyp−n one has
P ∗ Q ∈ Hu,v,w. In particular, Hyp−n is a semigroup w.r.t. the Schur-Szegö
composition.

The roots of P , Q and P ∗Q involved in Proposition 5 (i.e. of the form −xPxQ

where mP + mQ > n) are called A-roots, the remaining roots of P , Q, P ∗Q are
called B-roots. With one exception – if 0 is a root of P , then it is considered as
A-root of P ∗ Q. Associate to P ∈ Hypn its multiplicity vector (i.e. the vector
whose components are the multiplicities of the distinct roots of P listed in the
increasing order). For a root α of P ∈ Hypn denote by [α]− (resp. [α]+) the total
number of roots of P to the left (resp. to the right) of α and by sign(α) the sign
of α.

Theorem 8. (see [KoSh]) For any P ∈ Hypn and Q ∈ Hyp−n the multiplicity
vector of P ∗ Q is uniquely determined by Proposition 7 and the following condi-
tions:

(i) For any A-root α 6= 0 of P and any A-root β of Q one has [−αβ]− =
[α]− + [β]sign(α).

(ii) Every B-root of P ∗Q is simple.

Corollary 9. The Schur-Szegö composition restricted to Hyp−n induces a semi-
group structure on the set of all multiplicity vectors considered as ordered partitions
of n. E.g. (2, 14, 1) ∗ (5, 6, 6) = (1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1).
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Real algebraic morphisms represent few homotopy classes

Wojciech Kucharz

(joint work with Jacek Bochnak)

Let Y be a compact nonsingular real algebraic set. We define a numerical
invariant β(Y ) to be the supremum of all nonnegative integers n with the following
property: for every n-dimensional compact connected nonsingular real algebraic
set X , every continuous map from X into Y is homotopic to a regular map. One
easily sees that if d is an integer satisfying 0 ≤ d ≤ β(Y ), then every continuous
map from any d-dimensional compact connected nonsingular real algebraic set
into Y is homotopic to a regular map. There is a subtle connection between β(Y )

and the subgroups Halg
i (Y,Z/2) of Hi(Y,Z/2), i ≥ 0, generated by the homology

classes represented by i-dimensional algebraic subsets of Y .

Theorem 1. If dimY = p and Halg
p−k(Y,Z/2) 6= 0 for some k ≥ 1, then β(Y ) ≤ k.

In particular, β(Y ) ≤ dimY , provided dimY ≥ 1.

This result has the following two consequences.

Corollary 2. If the k-th Stiefel-Whitney class of Y is nonzero for some k ≥ 1,
then β(Y ) ≤ k. In particular, β(Y ) = 0 or β(Y ) = 1, provided Y is nonorientable.

Corollary 3. If dim Y = p and Hk(Y,Z/2) 6= 0 for some k satisfying 0 < k < p,
then

β(Y ) ≤
{

max{k, p− k} − 1 ≤ p− 2 for k 6= p
2

p
2 for k = p

2

The computation of the exact value of β(Y ) is hard, except in some special
cases. If dim Y = 0, then β(Y ) = ∞. For dimY = 1, we have β(Y ) = 1 if Y is
rational, and β(Y ) = 0 otherwise. The case dim(Y ) = 2 is more complicated.

Theorem 4. Assume dim Y = 2. Then β(Y ) = 0 or β(Y ) = 1, and either value
can occur. If Y is either rational or homeomorphic to the 2-sphere, then β(Y ) = 1.

There are several conjectures related to the problem under consideration. We
only mention two of them.

Conjecture 5. If dimY ≥ 2, then β(Y ) ≤ dimY −1. In particular, β(Sn) = n−1
for n ≥ 2, where Sn is the unit n-sphere.

It follows from Theorem 1 and [2] that β(Sn) = n− 1 if n is even.

Conjecture 6. For any pair (n, p) of nonnegative integers, every continuous map
from Sn into Sp is homotopic to a regular map.

This conjecture is true for some pairs (n, p), c.f. [1, 5, 6]
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Positive polynomials and fibre products of varieties

Salma Kuhlmann

Approximation of positive polynomials by sums of squares originates around
Hilbert’s 17th problem, and has today important applications to polynomial opti-
misation.

In the first part of my talk, I will survey the main recent results achieved on that
topic: I will consider positive (respectively, non-negative) polynomials on compact
(respectively, unbounded) semi-algebraic sets. I will discuss representations in
the associated preorderings (respectively, linear representations in the associated
quadratic module). The representation often depends on the dimension of the
semi-algebraic set; I will present stronger results in the low dimensional case.

In the second part of the talk, I will consider two special situations: (i) when
the positive polynomials under consideration are invariant under the action of a
linear reductive group (ii) when the positive polynomials under consideration are
sparse (that is, satisfy some separation and overlap conditions on the variables
appearing in the monomials).

The problem of representing invariant polynomials by sums of squares is re-
duced to the usual representation problem by virtue of the orbit map. We discuss
examples where the orbit map is exploited to this end.

The problem of sparse representations of sparse polynomials was first consid-
ered by Kojima and Lasserre. They were interested in optimization under the
sparsity relaxation. They were able to give a sparse version of Putinar’s theorem
for Archimedean modules, provided that the overlap of the variables satisfies the
so-called running intersection property. We present an algebraic interpretation
(in the language of fibre products of algebraic varieties) of the Kojima-Lasserre
results. We give a sparse version of the moment problem, and of the various other
approximations of the cone of positive semi-definite polynomials.

We present some open problems.
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Trajectories of Subriemannian gradients of polynomials

Krzysztof Kurdyka

(joint work with Din Si-Tiep, Patrice Orro)

Let X1, . . . , Xn−1 be polynomial vector fields on Rn. Assume that they are
linearly independent at any x ∈ Rn. We denote by ∆x the hyperplane generated
by X1(x), . . . , Xn−1(x). We define now the powers of ∆ in the following way

∆1 = ∆, ∆r+1 = span({[X,Y ], X ∈ ∆r, Y ∈ ∆} ∪ ∆r),

where [X,Y ] stands for Lie brackets. We say that the distribution ∆ is totally non-
holonomic (or that it satisfies Hörmander’s condition) if there exists an integer r
such that

∆r
x = Rn, x ∈ Rn.

A subriemannian metric g (see e.g. [2]) on the distribution ∆ is a scalar product gx

on each ∆x which varies smoothly with x. In the case we consider it will be chosen
in such a way that X1(x), . . . , Xn−1(x) is an orthonormal basis. For ξ ∈ ∆x we
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write |ξ| = gx(ξ, ξ)1/2. We say that an absolutely continuous curve γ : [a, b] → Rn

is horizontal if

γ′(t) ∈ ∆γ(t),

for any t ∈ (a, b) such that γ′(t) exists. We define subriemannian length of a
horizontal curve γ as

l(γ) =

∫ b

a

|γ′(t)|dt.

Suppose that f : Rn → R be a polynomial, we define horizontal gradient of f as

∇hf(x) =

n−1∑

i=1

∂f

∂Xi
(x)Xi(x).

Of course ∇hf is a vector field on Rn. It depends on the distribution ∆ and
the metric g. We study some properties of trajectories of ∇hf that is the curves
γ : [a, b] → Rn such that

γ′(t) = ∇hf(γ(t)), t ∈ (a, b).

Finally we define horizontal critical set of f as Vf = {∇hf = 0}.
Example 1. Heisenberg’s distribution on R3 is defined by

X1 =
∂

∂x1
− x2

2

∂

∂x3
, X2 =

∂

∂x2
+
x1

2

∂

∂x3

For f(x) = x3 trajectories of ∇hf are spiraling around Vf = {x1 = x2 = 0}.
When we consider their length between two levels of f , say between {x3 = 0} and
{x3 = 1}, we can compute that their length equals 2

r , where r is distance of γ(t)
to Vf ,which is constant in this case. Hence, unlike the Riemannian case studied
by  Lojasiewicz [4] and others [3], [1], these lengths are not uniformly bounded.

For any γ > 0 we define a subriemannian metric gγ(x) = dist(x, Vf )γg(x) which
is degenerate on Vf . It induces a distance δγ on Rn \ Vf , as infimum of length (in
gγ metric) of horizontal curves joining two given points. For general distribitions
of the above type we have

Theorem 2. For a given polynomial f : Rn → R there exists γ > 0 such that if
x(t), t ∈ [t1, t2] is a trajectory of ∇hf in compact subset B of Rn, then the length
(in gγ metric) of x(t) is finite. Precisely is bounded by c|f(x(t2)) − f(x(t1))| for
some c = c(B) > 0.

We obtain more precise results for some special type of distributions defined by

(1) Xi =
∂

∂x1
+ P1(x1, .., xn−1)

∂

∂xn
, i = 1, . . . , n− 1,

where Pi are polynomials such that (P1, . . . , Pn−1) is not a gradient. Note that
the classical Heisenberg’s and Martinet’s flat distribution are of that type. Let
Rd[x] denote the space of polynomials in n variables od degree ≤ d.
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Theorem 3. There is an open dense semialgebraic set Ld ⊂ Rd[x] such that if
f ∈ Ld, then Vf is a smooth algebraic curve (or an empty set) moreover f is a
Morse function on Vf . Clearly Ld depends on the distribution (1).

Theorem 4. If f ∈ Ld, then Theorem 1 holds with γ = 1, moreover the distance
δ1 extends to a distance on Rn.

Theorem 5. Assume f ∈ Ld, if x(t), t ∈ [t1, t2) is a trajectory of ∇hf in a
compact subset B of Rn, then lim

t→t2
x(t) = x0 exists. Moreover, x0 ∈ Vf if and only

if t2 = ∞.

We have also an exemple of a distribution of type (1) with a polynomial function
f∈/Ld such that some trajectory ∇hf has no limit, it accumulates on a cycle. This
cannot happen in the Riemmnnian case [4].
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Real singular Del Pezzo surfaces and threefolds fibred by rational
curves

Frédéric Mangolte

(joint work with Fabrizio Catanese)

1. Introduction

Let f : W → X be a real smooth projective threefold fibred by rational curves.
Suppose that W (R) is orientable. Then, by [3, Theorem 1.1], a connected compo-
nent M ⊂W (R) is obtained from a Seifert fibred manifold or a connected sum of
lens spaces by taking connected sums with a finite number of copies of P3(R) and
a finite number of copies of S1 × S2.

Let ν := ν(M) be the integer defined as follows:

(1) If g : M → F is a Seifert fibration, ν denotes the number of multiple fibres
of g

(2) If M is a connected sum of lens spaces, ν denotes the number of lens spaces

Theorem 1. If X is a geometrically rational surface, then ν ≤ 4.
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This result answers in affirmative a question of Kollár who proved in 1999 that
ν ≤ 6 and suggested that 4 would be the sharp bound.

We derive Theorem 1 from a careful study of real singular Del Pezzo surfaces
with only rational double points as singularities (see Theorem 2).

Thanks to the Minimal Model Program over R, the original setting f : W → X
is replaced by the following: W is a real projective 3-fold with terminal singularities
such that KW is Cartier along W (R) and f : W → X is a rational curve fibration
over R such that −KW is f -ample.

Let M be a connected component of the topological normalization W (R) (see
next section) and assume that M is a Seifert fibred 3-dimensional manifold or
a connected sum of lens spaces. Then, by [2, Thm. 2.6], there exists a Werther
fibration g : M → F over a 2-manifold with boundary. Werther fibrations are
defined in [2], but for our purpose it is sufficient to recall that g|g−1(F\∂F ) is
a Seifert fibration. Now there is an injection from the set of multiple fibres of
g|g−1(F\∂F ) to the set of singular points of X contained in f(M) which are of

type A+ and globally separating (see next section). Under this injection, the
multiplicity of the Seifert fibre equals µ+ 1 if the singular point is of type A+

µ .
Theorem 1 is now a corollary of the following:

Theorem 2. Let X be a projective surface defined over R. Suppose that X is
geometrically rational with Du Val singularities. Then a connected component M
of X(R) contains at most 4 Du Val singular points which are not of type A− and
globally nonseparating.

2. Rational surfaces with Du Val singularities

On a surface, a rational double point is called a Du Val singularity. Over C,
these singularities are classified by their Dynkin diagrams, namely Aµ, µ ≥ 1, Dµ,
µ ≥ 4, E6, E7, E8.

Over R, there are more possibilities. In particular, a surface singularity will be
said to be of type A+

µ if it is real analytically equivalent to

x2 + y2 − zµ+1 = 0, µ ≥ 1 ;

and of type A−
µ if it is real analytically equivalent to

x2 − y2 − zµ+1 = 0, µ ≥ 1 .

The type A+
1 is real analytically isomorphic to A−

1 ; otherwise, singularities with
different names are not isomorphic.

Definition 1. Let V be a symplicial complex with only a finite number of points
x ∈ V where V is not a manifold. Define the topological normalization

n : V → V

as the unique proper continuous map such that n is a homeomorphism over the set
of points where V is a manifold and n−1(x) is in one-to-one correspondence with
the connected components of a good punctured neighborhood of x in V otherwise.
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Definition 2. Let X be a real algebraic surface with isolated singularities, and
let x ∈ X(R) be a singular point of type A±

µ with µ odd. The topological nor-

malization X(R) has two connected components locally near x. We will say that
x is globally separating if these two local components are on different connected
components of X(R) and globally nonseparating otherwise.

Definition 3. Let X be a projective surface with Du Val singularities, let

P := SingX \
{
x is of type A−

µ , and x is globally nonseparating
}
.

Lemma 1 (Kollár). Let n : X(R) → X(R) be the topological normalization, and

define M1,M2, . . . ,Mr be the connected components of X(R). The unordered
sequence of numbers #(n−1(P) ∩ Mi) := mi, i = 1, 2, . . . , r is an invariant of
extremal birational contractions of projective surfaces with Du Val singularities.

Applying the Minimal Model Program over R to a geometrically rational surface
with Du Val singularities, we reduce the proof of Theorem 2 to the study of singular
Del Pezzo surfaces of degree one.

Recall that a Del Pezzo surface X is by definition a surface whose anticanonical
divisor is ample. We add the adjective Du Val to emphasize that we allow X
to have Du Val singularities. Let X be a real Du Val Del Pezzo surface and let
S → X be the minimal resolution of singularities. The smooth surface S has nef
anticanonical divisor and is called a weak Del Pezzo surface by many authors.

We obtain a Del Pezzo surface X of degree 1 by blowing up a finite number
of pairs of conjugate imaginary smooth points and some real smooth point (there
are several choices to do this).

The anticanonical model of a Del Pezzo surface X of degree 1 is a ramified
double covering q : X → Q of a quadric cone Q ⊂ P3 whose branch locus is the
union of the vertex of the cone and a cubic section not passing through the vertex
(see e.g. [1, Exposé V]).

Let X ′ be the singular elliptic surface obtained from X by blowing up the
pull-back by q of the vertex of the cone.

The surface X ′ is a ramified double covering of the Hirzebruch surface F2 whose
branch curve is the union of the unique section of negative selfintersection, the
section at infinity Σ∞, and a trisection B disjoint from Σ∞.

If the trisection is irreducible, then it has at most 4 singular points because it
has genus 4. The heart of the proof is the study of normal forms for the reducible
B. After studying the normal forms for the reducible branch curves, it appears
that in almost all cases, the number of singular points is less than or equal to
4. There will remain only two cases to examine separately. In one case, the fifth
point turns out to be of type A+

1
∼= A−

1 globally nonseparating and in the second
case, the fifth point turns out to be of type A−

2 .



Reelle Algebraische Geometrie 791

References

[1] M. Demazure, Surfaces de Del Pezzo, II, III, IV et V, In: Séminaire sur les singularités des
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Fixed points of automorphisms of real algebraic curves

Jean-Philippe Monnier

In this note, a real algebraic curve X is a proper geometrically integral scheme
over R of dimension 1. Let g denote the genus of X ; throughout the paper we
assume g ≥ 2 and X(R) 6= ∅.

An automorphism ϕ of X is an isomorphism of schemes of X with itself. Seeing
X as a compact Klein surface, May proved in that the order of a group of auto-
morphisms of X is bounded above by 12(g−1). Moreover, he also proved that the
maximum possible order of an automorphism of X is 2g + 2. The corresponding
results for Riemann surfaces are well-known; Hurwitz proved that a compact Rie-
mann surface of genus g ≥ 2 cannot have more than 84(g−1) automorphisms and
Wiman showed that the order of a cyclic group of automorphisms of a compact
Riemann surface of genus g ≥ 2 is at most 4g + 2.

If ϕ ∈ Aut(X) then ϕ extends to an automorphism ϕC of XC = X×SpecRSpec C

such that ϕC(Q) = ϕC(Q̄) for any closed point Q of XC. We will denote by
µ(ϕC) (resp. µR(ϕ)) the number of closed (resp. real closed) fixed points of ϕC

(resp. ϕ). The Riemann-Hurwitz inequality for the number of fixed points of an
automorphism gives

µ(ϕC) ≤ 2 +
2g − 2|ϕ|g′
|ϕ| − 1

.

Let s be the number of coonected components of X(R), we give new Riemann-
Hurwitz inequalities for real curves depending on g and s.

Theorem 1. Let ϕ be a non-trivial automorphism of order N of a real curve. If π :

X → X/〈ϕ〉 has at least one real ramification point then µ(ϕC) ≤ 2+ 2g−2s+µR(ϕ
N
2 )

|ϕ|−1 .

Consequently, µ(ϕC)−µR(ϕ
N
2 ) ≤ 2 + 2g−2s

|ϕ|−1 ≤ 2(g+ 1− s). If |ϕ| ≥ g+ 2− s then

µ(ϕC) − µR(ϕ
N
2 ) ≤ 2.

Theorem 2. Let ϕ be a non-trivial automorphism of X such that π : X → X ′ =
X/〈ϕ〉 is without real ramification points. Then

µ(ϕC) ≤ 4 + 2
g + 1 − s

|ϕ| − 1
if s > 1

and

µ(ϕC) ≤ 4 + 2
g − 1

|ϕ| − 1
if s = 1.
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Consequently, µ(ϕC) ≤ 4 if |ϕ| ≥ g + 3 − s (resp.|ϕ| ≥ g + 1) and if s > 1 (resp.
s = 1).

We give some nice consequences of the previous theorems.

Corollary 3. Let ϕ be an automorphism of order N > 1 of an M-curve.

(1) If one of the fixed points of ϕC is real then all are real.
(2) If N > 2 and if π : X → X/〈ϕ〉 has at least one real ramification point

then ϕC is fixed point free.
(3) If π : X → X ′ = X/〈ϕ〉 is without real ramification points then µ(ϕC) ≤ 4.

Using these new Riemann-Hurwitz inequalities , we derive some consequences
concerning the maximum order of an automorphism and the maximum order of
an abelian group of automorphisms of a real curve. We also bound the full group
of automorphisms of a real hyperelliptic curve.

Theorem 4. Let G be a group of automorphisms of X of order N > 1 such that
π : X → X/G has at least one real ramification point.

(1) If G is cyclic then |G| ≤ 2s ≤ 2g + 2.
(2) If G is abelian then |G| ≤ inf {4s, 2g + 2 + 4(g + 1 − s)} ≤ 3g + 3.

Theorem 5. Let G be a group of automorphisms of X of order N > 1 such that
π : X → X/G is without real ramification point.

(1) If G is cyclic then |G| ≤ sup{2g+4−s, 2g+2− 2
3s} if s > 1 and |G| ≤ 2g+2

if s = 1.
(2) If G is abelian then |G| ≤ g + 3 + 2(g + 1 − s) ≤ 3g + 3.

Theorem 6. Let X be a real hyperelliptic curve.

(1) If the hyperelliptic involution ı has at least a real fixed point (e.g. if s ≥ 3)
then |Aut(X)| ≤ 4s ≤ 4g + 4.

(2) If the hyperelliptic involution ı does not have any real fixed point then
|Aut(X)| ≤ 4g + 4.

Blow-analytic equivalence of two variable real analytic function germs

Adam Parusiński

(joint work with Satoshi Koike)

We give a complete characterisation of blow-analytic equivalence classes of 2 vari-
able function germs.

Theorem 1. Let f : (R2, 0) → (R, 0) and g : (R2, 0) → (R, 0) be real analytic
function germs. Then the following conditions are equivalent

(1) f and g are blow-analytically equivalent.
(2) f and g have weakly isomorphic minimal resolution spaces.
(3) The real tree models of f and g are isomorphic.
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This theorem can be stated in the oriented and non-oriented case. In this report
we consider only the non-oriented case.

We say that f(x, y) and g(x, y) have weakly isomorphic resolution spaces if there

exist resolutions µ : (M,µ−1(0)) → (R2, 0), µ̃ : (M̃, µ̃−1(0) → (R2, 0) of f(x, y)

and g(x, y), respectively, and a homeomorphism Φ : M → M̃ such that:

(1) Φ(µ−1(0)) = µ̃−1(0) and Φ((f ◦ µ)−1(0)) = (g ◦ µ̃)−1(0).
(2) If C is a component of (f ◦ µ)−1(0) then mult C f ◦ µ = mult φ(C) g ◦ µ̃.
(3) f ◦ µ(p) > 0 iff g ◦ µ̃(Φ(p)) > 0.

Blow-analytic equivalence. The blow-analytic equivalence was introduced by
Tzee-Char Kuo at the end of 1970’s [5], [6], [7]. For survey articles see [1], [2].

We say that two real analytic function germs f : (Rn, 0) → (R, 0) and g :
(Rn, 0) → (R, 0) are blow-analytically equivalent if there exist real modifications µ :
(M,µ−1(0)) → (Rn, 0), µ′ : (M ′, µ′−1(0)) → (Rn, 0) and an analytic isomorphism
Φ : (M,µ−1(0)) → (M ′, µ′−1(0)) which induces a homeomorphism h : (Rn, 0) →
(Rn, 0) such that f = g ◦ h, that is the following diagram is commutative:

(M,µ−1(0))
µ−→ (Rn, 0)

f−→ (R, 0)

Φ

y h

y
∥∥∥

(M̃, µ̃−1(0))
µ̃−→ (Rn, 0)

g−→ (R, 0)

Let X,Y be a real analytic connected manifolds of pure dimension n. We say
that a proper real analytic mapping σ : X → Y is a real modification if there exist
complexifications XC, YC of X and Y , respectively, and a holomorphic extension
σC : XC → YC of σ, such that σC is an isomorphism in the complement of a closed
nowhere dense subset B of XC. (That is σC resticted to XC \ B is open and an
isomorphism onto its image.)

Note that a real analytic map that is an isomorphism in the complement of a
closed nowhere dense subset is not necessarily a real modification, as for instance
σ : R → R, σ(x) = x3. Using an argument similar to the classical elimination of
indeterminacy of the rational maps between algebraic surfaces, we show that

Theorem 2. Let X,Y be connected nonsingular real analytic surfaces and let
σ : X → Y be a proper surjective real analytic map. Then σ is a real modification
if and only if it is a composition of point blowings-up.

Idea of proof of Theorem 1. If f(x, y) and g(x, y) are blow-analytically
equivalent then, by Theorem 2, there exists a commutative diagram

(M,µ′−1
(E1))

µ′

−→ (R̃2, E1)
π−→ (R2, 0)

f−→ R

Φ

y ∃h1 ?

y h

y
∥∥∥

(M̃, µ̃′
−1

(Ẽ1))
µ̃′

−→ (R̃2, Ẽ1)
π̃−→ (R2, 0)

g−→ R

where π and π̃ denote the blowing-up of the origin, µ′ and µ̃′ are compositions
of point blowings-up, Φ is an analytic isomorphism and h is a homeomorphism
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such that f = g ◦ h. Using the combinatorial properties of dual graphs of real
resolutions we show the existence a homeomorphism h1.

Therefore, by induction, f and g are cascade blow-analytic equivalent, i. e.

(1)

M
bk−→ Mk−1

bk−1−−−→ · · · b2−→ M1
b1−→ R2 f−→ R

Φ

y
yhk−1

yh1

yh

∥∥∥

M̃
b̃k−→ M̃k−1

b̃k−1−−−→ · · · b̃2−→ M̃1
b1−→ R2 g−→ R,

where bi, b̃i are point blowings-up and hi are homeomorphisms.
A function blow-analytically equivalent to normal crossings is normal crossings

(we show it for two variable function germs, the general case is open) and hence
we may get rid of unnecessary blowings-up and assume that both b1 ◦ · · · ◦ bk and
b̃1◦· · ·◦ b̃k are the minimal resolutions of f and g resp.. This shows the implication
(1) =⇒ (2) of Theorem 1. The implication (2) =⇒ (1) is fairly standard.

The following properties of cascade blow-analytic homeomorphisms (i.e. the
homeomorphisms like h in (1)), are used in the proof of (1)⇐⇒ (3) of Theorem 1.

Theorem 3. Let h : (R2, 0) → (R2, 0) be a cascade blow-analytic homeomorphism
that does not change the orientation. Then

(a) h preserves the Puiseux characteristics sequence of real analytic demi-bran-
ches γ : [0, ε) → R2, the signs of coefficients at the Puiseux characteris-
tic exponents, and the order of contact between two real analytic demi-
branches.

(b) There exists a constant C > 0 such that for (x, y) close to the origin

C−1‖(x, y)‖ ≤ ‖h(x, y)‖ ≤ C‖(x, y)‖, C−1 ≤ Jac(h)(x, y) ≤ C.

Remark 1. Kobayashi and Kuo [3] constructed an example of a blow-analytic
homeomorphism that sends a smooth curve to a singular one and vice versa. By
Theorem 3 such a homeomorphism cannot be a cascade one.

Real tree model. The real tree model is an analog of the tree model of [8] of a
complex analytic function germ and, for a given real analytic f(x, y), encodes the
information about the order contact and the Puiseux characteristic exponents of
the Newton-Puiseux roots of f . For a complex root of f

x = λ(y) = a1y
n1/N + a2y

n2/N ,+ · · · N ≤ n1 < n2 < · · · .
it takes into account its part up to the first non-real coefficient. The real tree
model contains also the information about the signs of coefficients at the Puiseux
characteristic exponents. Thanks to Theorem 3 the proof of (1) ⇐⇒ (3) of The-
orem 1 is based on a fairly straightforward computation of the change of the tree
model by a blowing-up.

Examples. Abderrahmane showed that blow-analytically equivalent weighted ho-
mogeneous singular f(x, y) and g(x, y) have the same weights. The blow-analytic
classification of Brieskorn two variable singularities ±xp ± yq was obtained in [4].
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These results can be also easily verified by Theorem 1. Here are examples that
cannot be distinguished by the previously known methods

(1) x3 + y5 and x3 − y5 are not blow-analytically equivalent by an orientation
preserving homeomorphism.

(2) x(x3 − y5)(x3 + y5), x(x3 − y5)(x3 − 2y5) are not blow-analytically equiv-
alent.
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Pólya’s Theorem with Zeros

Victoria Powers

Let R[X ] := R[x1, . . . , xn] and let R+[X ] denote polynomials in R[X ] with non-
negative coefficients.

Pólya’s Theorem [2] says that if p is a homogeneous polynomial in n variables
which is positive on the standard n-simplex, then for a sufficiently large exponent
N , (x1 + · · · + xn)Np ∈ R+[X ]. This elegant and beautiful result has many
applications, both in pure and applied mathematics.

In [3], the second and third authors gave an explicit bound for the exponent
N in terms of the size of the coefficients and the minimum value of p on the
simplex. This result has been used by other authors in applications; for example
M. Schweighofer [5] used this quantitative Pólya’s Theorem to give an algorithmic
proof of Schmüdgen’s Positivstellensatz, and de Klerk and Pasechnik [1] used it to
give results on approximating the stability number of a graph.

One can ask the following: When does Pólya’s Theorem holds if the condition
“positive on ∆n” is relaxed to “nonnegative on ∆n”? Previously, in joint work
with B. Reznick [4], we extended Pólya’s theorem with bound to forms which are
positive on the simplex apart from a certain type of zero on the corners of the
simplex.
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In recent joint work with M. Castle and B. Reznick (unpublished), we study
the question further. In particular, we give a constructive version, with degree
bounds, of a result of M. Schweighofer from [6] which is, roughly speaking, a
localized version of Pólya’s Theorem:

Proposition 1. Given p ∈ R[X ] and suppose there exists closed S ⊆ ∆n such
that there are homogeneous g1, . . . , gm ∈ R[X ], and h1, ..., hm ∈ R[X ]+ with

(1) p = g1h1 + · · · + gmhm

(2) gi(x) > 0 for all x ∈ S.

Suppose further that there exists a closed set T with T ⊆ S ⊆ ∆n and B ∈ N

with the following property: Whenever α, β, γ ∈ Nn with α
|α| ∈ T , β + γ = α,

γ ∈ supp(hi) for some i, and |β| ≥ B, then β
|β| ∈ S. Then there exists N ∈ N

such that for all α ∈ Nn with α
|α| ∈ T , the coefficient of Xα in (X1 + ...+Xn)Nf

is nonnegative.
In particular, for each i, let k(i) be the bound from Lemma 1 for gi on S, i.e.,

k(i) =
di(di − 1)

2

L(gi)

λi
− di,

where λi is the minimum of gi on S and di = deg gi. Then we can take

N = max{k(g1), . . . , k(gm), B}.
We can apply the proposition to give an improvement of the results in [4]:

Suppose p is positive on ∆n except for a zero at one v1 := (1, 0, . . . 0). Let
pd(x2, . . . , xn) be the leading coefficient of p as a polynomial in x1 and e = degx1

p,
so that

p = pd(x2, . . . , xn)xe
1 + q(x1, . . . , xn)

where degx1
q < e. Note that our assumptions on p imply that pd is positive

definite. Let R[X̃] denote R[x2, . . . , xn] and for α = (α2, . . . , αn) ∈ Nn−1, let X̃α

denote xα2
2 · · · · · xαn

n .

Theorem 1. Given p as above, suppose that supp(pd) contains a multiple of every
monomial in supp(q) which appears with a negative coefficient. Then p satisfies the
conclusion of Pólya’s Theorem if and only if every coefficient in pd is nonnegative.

In particular, suppose every coefficient of pd is nonnegative. Then we can find
an expression

p =

m∑

i=1

X̃γi(cix
e
1 + φi),

with γi ∈ Nn−1, 0 < ci ∈ R, and φi ∈ R[X ] with degx1
φi < e. Let c = mini{ci}

and U the sum of the absolute values of the coefficients of p. Now let r := c
c+2U

and s := c
2

(
c

c+2U

)e

and let λ be the minimum of p on the closure of ∆n\∆n(1, r).

Then for

N > max

{
e(e− 1)

2

L(p)

s
,
d(d− 1)

2

L(p)

λ

}
,

all coefficients of (x1 + · · · + xn)np are nonnegative.
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Hilbert’s construction of psd polynomials that are not a sum of
squares

Bruce Reznick

Summary: In 1888, Hilbert described how to find real polynomials which take
only non-negative values but which are not a sum of squares of polynomials. His
construction was so restrictive that no explicit examples appeared until the late
1960s. We revisit and generalize Hilbert’s construction and discuss old and new
examples.

A real (not necessarily homogeneous) polynomial p(x1, . . . , xn) is psd or positive
if p(a) ≥ 0 for all a ∈ Rn; it is sos or a sum of squares if there exist polynomials
hj so that p =

∑
h2

j . Let Pn,m denote the cone of real psd forms of degree m in n
variables and Σn,m its subcone of sos forms and let ∆n,m = Pn,m r Σn,m. It was
well-known by the mid-19th century that ∆2,m = ∆n,2 = ∅. Hilbert showed in
1888 that P3,4 = Σ3,4, and that this is the only other case in which Pn,m = Σn,m:
it suffices to find forms in ∆3,6 and ∆4,4 and multiply them by powers of linear
forms if necessary. Throughout this talk, we toggle between forms in n variables
and polynomials in n−1 variables. We first present Hilbert’s construction in ∆3,6,
dehomogenized to two variables.

Suppose f1(x, y) and f2(x, y) are two real cubic polynomials with precisely nine
distinct real common zeros – {πi}, indexed arbitrarily – so that no three of the
πi’s lie on a line and no six lie on a quadratic. Then there exists a quadratic
φ(x, y) with zeros at {π1, . . . , π5} and a quartic ψ(x, y) with the same zeros and
which is singular at {π6, π7, π8}; the sextic φψ is singular at {π1, . . . , π8}. Hilbert
showed that we can take (φψ)(π9) > 0 and that there exists c > 0 so that p =
f2
1 + f2

2 + cφψ is positive. If p =
∑
h2

j , then each hj is a cubic which vanishes

on {π1, . . . , π8}, so that (by Cayley-Bacharach) hj(π9) = 0 as well. It follows that
0 = p(π9) = c(φψ)(π9), a contradiction.

Hilbert’s restriction on the common zeros of the polynomials meant that no very
simple example could be constructed, and the first explicit element in any ∆n,m
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was not produced for many decades. In 1965, Motzkin presented a specific sextic
polynomial m(x, y) which is positive by the arithmetic-geometric inequality and
which is not sos by the arrangement of monomials in its Newton polytope. (Olga
Taussky-Todd, who had a lifelong interest in sums of squares and was Hilbert’s
last assistant, heard Motzkin speak, and informed him that m(x, y) was the first
example.) After homogenization,

(1) M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2 ∈ ∆3,6.

Around the same time and independently, R. M. Robinson wrote that he saw “an
unpublished example of a ternary sextic worked out recently by W. J. Ellison
using Hilbert’s method. It is, as would be expected, very complicated. After
seeing this, I discovered that an astonishing simplification would be possible by
dropping some unnecessary assumptions made by Hilbert.” Robinson observed
that the cubics f1(x, y) = x3 − x and f2(x, y) = y3 − y have nine common zeros;
namely, the 3 × 3 square {−1, 0, 1}2. There are eight different lines which contain
three of these points. Nonetheless, the sextic (x2−1)(y2−1)(1−x2−y2) is singular
at the outer eight points and is positive at (0, 0). By taking the maximum value
for c in Hilbert’s construction and homogenizing, Robinson showed that

(2) R(x, y, z) = x6 + y6 + z6−x4y2−x4z2−x2y4−x2z4− y4z2− y2z4 + 3x2y2z2

is in ∆3,6. The papers of Motzkin and Robinson renewed interest in the subject,
leading to more examples, including one by M. D. Choi and T. Y. Lam:

(3) S(x, y, z) = x4y2 + y4z2 + z4x2 − 3x2y2z2 ∈ ∆3,6.

The talk presented an analysis of the underlying part of Hilbert’s Method, al-
lowing for considerable generalization. There are two main parts to the Method:
a general perturbation of a given positive polynomial with fixed zeros by an arbi-
trary form which is singular at those zeros. We need the zeros to be “singular non
troppo” or “round”: the lowest order terms in the Taylor series at each zero must
be a positive definite quadratic form. This perturbation preserves positivity and
the zeros, but the perturbed polynomial might not be sos. The key point of the
argument is that, under certain circumstances, there are polynomials of degree 2d
which are singular on a set A ⊆ Rn, but are not in the vector space generated by
products of polynomials of degree d which vanish on A.

As a result, we are able to show that Robinson’s simplification always works;
that is, the Hilbert construction is valid when f1 and f2 are ternary cubics with
exactly nine real intersections, whether or not three are on a line or not. We also
show that if seven points are chosen in the plane, no four on a line, not all on a
quadratic, then there is a positive polynomial p which is not sos and has those
seven points as zeros. The proofs require Bezout’s Theorem and a considerable
amount of old-fashioned curve theory.
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For example, let
(4)

A = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (1, 1,−1), (1,−1, 1), (1,−1,−1)},
F1(x, y, z) = x(y2 − z2), F2(x, y, z) = y(z2 − x2), F3(x, y, z) = z(x2 − y2),

G(x, y, z) = (x2 − y2)(x2 − z2)(y2 − z2).

It is easy to show that the Fk’s span the set of ternary cubics which vanish on A
and that G is singular on A and not in the span of the FjFk’s. It follows that
for some c > 0, Pc := F 2

1 + F 2
2 + F 2

3 + cG is psd and not sos. In fact, P1 = 2S,
providing a new derivation of (3).

Choi, Lam and Reznick showed in 1980 that if P ∈ ∆3,6, then P has finitely
many zeros, and the maximum possible number is 10. At that time, the Robinson
form R was essentially the only known example of such a sextic. Using Hilbert’s
Method, we are able to construct many new examples.

For t > 0, let

(5)

Rt(x, y, z) :=
(
t4 + 2t2 − 3

3

)
(x3 − xz2)2 +

(
1 + 2t2 − 3t4

3t4

)
(y3 − yz2)2 +R(x, y, z);

Rt is psd with ten zeros and not sos. For t2 < 1
2 , let

(6)
Mt(x, y, z) = (1 − 2t2)(x4y2 + x2y4) + t4(x4z2 + y4z2)

−(3 − 8t2 + 2t4)x2y2z2 − 2t2(x2 + y2)z4 + z6;

Mt is psd with ten zeros and not sos. Let

(7)
St(x, y, z) = t4(x6 + y6 + z6) + (1 − 2t6)(x4y2 + y4z2 + z4x2)

+(t8 − 2t2)(x2y4 + y2z4 + z2x4) − 3(1 − 2t2 + t4 − 2t6 + t8)x2y2z2;

St is always psd and not sos; it has ten zeros if t > 0. Note that S0 = M , S1 = S,
so St provides a “homotopy” between S and M in ∆3,6 in the class of positive
forms with ten zeros. Finally, though it only has seven zeros, we note that

(8) Uc(x, y, z) = x2y2(x−y)2+y2z2(y−z)2+z2x2(z−x)2+cxyz(x−y)(y−z)(z−x)

is psd when |c| ≤ 4
√√

2 − 1 and sos only if c = 0.
As one example in higher degree, for m ∈ N, let

(9) (t)m =

m−1∏

j=0

(t− j).

Then for d ≥ 3 and some cd > 0, the polynomial

(10) (x)2d + (y)2d + cd(x)2(y)2(x + y − 2)d−1(x + y − 4)d−3

is psd and not sos, and has at least
(
d+2
2

)
− 2 zeros.
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We can also answer a question of Robinson, and show that (ax2 + by2 +

cz2)R(x, y, z) is sos if and only if a, b, c ≥ 0 and
√
a,
√
b,
√
c are the sides of a

(possibly degenerate) triangle.
Further examples and proofs will soon appear in a much longer publication.

Certificates of Positivity in the Bernstein basis

Marie-Françoise Roy

(joint work with Fatima Boudaoud, Fabrizio Caruso, Richard Leroy)

Let P ∈ Z[X] be a polynomial of degree p with coefficients of bitsize bounded by
τ . If P is positive on [−1, 1], we obtain a certificate of positivity (i.e. a description
of the polynomial making obvious that it is positive) of bitsize O(p4(τ + log2 p)).
Previoussimilar results had a bitsize complexity exponential in p and τ . We extend
this technique to the multivariate case (no complexity estimate so far).

1. What is a certificate of positivity in the Bernstein basis?

(1) Bernp,i(ℓ, r) =

(
p

i

)
(X − ℓ)i(r −X)p−i

(r − ℓ)p
,

for i = 0, . . . , p.
Think of

1 =

(
r −X

r − ℓ
+
X − ℓ

r − ℓ

)p

− take positive values on (ℓ, r),
− Bernp,0(ℓ, r) is positive at ℓ, Bernp,p(ℓ, r) is positive at r,
− basis of the vector-space of polynomials of degree 6 p

b(P, p, ℓ, r) is the ordered list of coefficients of P in the Bernstein basis.
b(P, p, ℓ, r)0 is the value of P at ℓ and b(P, p, ℓ, r)p is the value of P at r.
Cert(P, d, ℓ, r) : all the elements of b(P, d, ℓ, r) are non negative, with

b(P, d, ℓ, r)0 > 0, b(P, d, ℓ, r)d > 0.
Cert(P, d, ℓ, r) guarantees the existence of a certificate of positivity for P on

[ℓ, r], i.e. a description of P making obvious that it is positive on [ℓ, r]: b(P, d, ℓ, r)
If Cert(P, p,−1, 1) holds, P is positive on [−1, 1].
Reciprocal not true !

P = 5X2 − 4X + 1.

P is positive on [−1, 1], but b(P, 2,−1, 1) = [10,−4, 2] and Cert(P, 2,−1, 1) does
not hold. However, since b(P, 21,−1, 1) is

(2) [210, 182, 156, 132, 110, 90, 72, 56, 42, 30, 20, 12, 6, 2, 0, 0, 2, 6, 12, 20, 30, 42]

Cert(P, 21,−1, 1) does hold. 21 is the smallest natural number with this prop-
erty.
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Bernstein (1915): if P is positive on [−1, 1], there exists d > p such that
Cert(P, d,−1, 1) holds. Bernstein degree: smallest natural number d such that
Cert(P, d,−1, 1) holds:

Powers and Reznick (2001): quantitative bound on the Bernstein degree expo-
nential in p and τ .

Wanted: different , smaller, certificate of positivity for P on [−1, 1] using also
the Bernstein basis.

Idea: keep the initial degree, refine the interval; look for certificates of positivity
on subintervals.

Cert(P, d, L) means: L: −1 = ℓ0 < ℓ1 < . . . < ℓn−1 < ℓn = 1 is a subdivision:
for each i = 1, . . . , n Cert(P, d, ℓi−1, ℓi) holds.

If P is positive on [−1, 1], find a subdivision L such that Cert(P, p, L)
holds.

Tool: a litte geometry
Notation: Var is the number of sign changes in a sequence of numbers

Theorem 1. P square free
If P has no root in the circle of diameter (ℓ, r), then Var(b(P, p, ℓ, r)) = 0.

Why shorter ? Adaptativity ! Subintervals of different length, short intervals
being concentrated on parts of | − 1, 1] where the sign of P is less obvious.

Consider P = 5X2 − 4X + 1, its certificate of positivity is:
[[[−1, 0] , 1, [10, 3, 1]] , [[0, 1/2] , 4, [4, 0, 1]] , [[1/2, 1] , 4, [1, 2, 8]]]
which reads as

− subdivision −1 < 0 < 1/2 < 1
− b(P, 2,−1, 0) = [10, 3, 1],
− b(4P, 2, 0, 1/2) = [4, 0, 1],
− b(4P, 2, 1/2, 1) = [1, 2, 8].

2. Certificate of positivity

− certificate of positivity if Q positive on [−1, 1],
− or point x of [−1, 1] such that Q(x) 6 0 otherwise.

Idea: try to isolate real roots of Q, no roots implies proof of positivity (or
negativity).
Algorithm 1. (De Casteljau)

• Input: ([ℓ, r], b(P, p, ℓ, r)) and m.
• Output: ([ℓ,m], b(P, p, ℓ,m)) and ([m, r], b(P, p,m, r)).
• Procedure:

– Initialization: b
(0)
j := b(cP, p, ℓ, r)j , for j = 0, . . . , p.

– For i = 1, . . . , p,
− For j = 0, . . . , p− i, compute

b
(i)
j := ((r −m)b

(i−1)
j + (m− ℓ)b

(i−1)
j+1 )/(r − ℓ).

− Output

b′ = b
(0)
0 , . . . , b

(j)
0 , . . . , b

(p)
0 ,

b′′ = b
(p)
0 , . . . , b

(p−j)
j , . . . , b

(0)
p
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Algorithm 2. [Square free certificate of positivity]

• Input: square-free Q ∈ Z[X ] of degre q.
• Output:

− POS if Q > 0 on [−1, 1], certified by b(Q, q, L) where L is a rational
subdivision of [−1, 1] of length n,

− NEG similar
− NO and a point x such that Q(x) = 0, or a segment [ℓ, r] such that
Q(ℓ)Q(r) < 0.

• Procedure:

– Initialization:
M := {([−1, 1], b(Q, q,−1, 1))},
Pos(Q) := ∅,Neg(Q) := ∅.

– While M is non-empty,
− Remove an element ([ℓ, r], b) from M .
− If b0 = 0 return NO and [ℓ].
− If bp = 0 return NO and [r].
− If b0bp < 0, return NO and [ℓ, r].
− If Var(b) = 0,

→ if b0 > 0 and bp > 0, add ([ℓ, r], b) to Pos(Q),
→ if b0 < 0 and bp < 0, add ([ℓ, r], b) to Neg(Q).

− Else m = (ℓ+ r)/2, compute b′ and b′′, using Algorithm 2 with
input b(Q, ℓ, r), add

([ℓ,m], b′), ([mr], b′′)

to M .
– If Pos(Q) := ∅, return NEG and Neg(Q).
– If Neg(Q) := ∅, return POS and Pos(Q).

Proposition 2. The number of nodes of the binary tree output by Algorithm 2 is
at most 2(2τ + 3ν + 3)q.

Example of P = X4 + 64X2 − 16X + 1.

− Var(b(3P/2, 4,−1, 1) = [123, 12,−29,−12, 752]) = 2: refine [−1, 1].
− Var(b(3P, 4,−1, 0) = [246, 135, 59, 15, 3]) = 0,

Var(b(3P, 4, 0, 1) = [3,−9, 11, 63, 150])=2: refine [0, 1].
− Var(b(324P, 4, 0, 1/2) = [48,−48,−16, 144, 435]) = 2: refine [0, 1/2], while

Var(b(324P, 4, 1/2, 1) = [435, 726, 1148, 1704, 2400]) = 0.
− Var(b(328P, 4, 0, 1/4) = [768, 0,−256, 0, 771]) = 2: refine [0, 1/4], while

Var(b(328P, 4, 1/4, 1/2) = [771, 1542, 2828, 4632, 6960]) = 0.
− Isolation phase stops: Var(b(3212P, 4, 0, 1/8) = [12288, 6144, 2048, 0, 3]) =

0, and Var( b(3212P, 4, 1/8, 1/4) = [3, 6, 2060, 6168, 12336]) = 0.
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3. Comparison

3.1. Minimum of a polynomial.

Theorem 3. The minimum of P is at least 2−2p(1+τ+ν)+(τ+1).

Proof (indication): Use resultants to estimate the bitsize of the polynomial
whose roots are the values of P at the roots of P ′

Is this bound accurate ?
Bugeaud and Mignotte:

A(k, p) = X2p + (2kX − 1)2.

minimum close to the estimation of Theorem 3 [3]: if τ = 2k, the minimum of
A(k, p) smaller than the value 2−pτ obtained at x = 2−k, depends exponentially
on p and τ .

3.2. Size of certificates of positivity. Bernstein degree is estimated by

(3) p(p− 1)2p(2τ+3ν+3)+ν−2,

quantitative bound on the Bernstein degree

(4) 6
p(p− 1)

2

L

λ

where λ minimum of P (x) on [−1, 1], L maximum value of the elements of
b(P, p,−1, 1): estimation on λ given by Theorem 3, estimation on L by bitsize of
Bernstein coefficients.

3.2.1. With respect to the bit size. Powers and Reznick’s bound is sharp
For the family of polynomials of degree 2 indexed by k ∈ N, Pk = (2k−1)X2+1,

the Bernstein degree is precisely 2k −1. Our certificate of positivity for Pk : linear

− b(Pk, 2,−1, 0) = [2k, 1, 1],
− b(Pk, 2, 0, 1) = [1, 1, 2k].

3.2.2. With respect to the degree. Consider A(k, p) = X2p + (2kX−1)2 Numerical
experiments performed using SARAG

− when p = 1, A(1, 1) = 5X2 − 4X + 1, first example
− when p = 2, the Bernstein degree is 82, while our certificate of positivity

is much smaller

[[[−1, 0], 3, [30, 18, 11, 6, 3]], [[0, 1/2], 48, [48, 24, 8, 0, 3]],

[[1/2, 1], 48, [3, 6, 20, 48, 96]]].

Bernstein degree of A(1, p) exponential in p, bigger than 22p + 2p − 1 . It is
not hard to prove that b(A(1, p), 2N, 0, 1)N < 0 for any N < 22p−1 + p.
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4. Multivariate polynomials

Bersntein’s basis exists: k variables, L simplexdefined by k+1 linear inequalities
ℓi > 0, i = 0, . . . , k, normalized by 1 = ℓ0 + . . . + ℓk. Let i = (i0, . . . , ik),

i0 + . . .+ ik = p,
(
p
i

)
multinomial coefficient, ℓi =

∏k
j=0 ℓ

ij

j

(5) Bernp,i(L) =

(
p

i

)
ℓi

Think of

1 =
(
ℓ0 + . . .+ ℓk

)p

− take positive values on L,
− gives values at the vertices of the simples
− basis of the vector-space of polynomials of degree 6 p

Global and local certificates of positivity exist. Bernstein theorem holds: increase
degree. Local certificates exist: subdivide until there are no sign variations

Generalizaiton of De Casteljau exists.
Algorithm 3. (Multivariate De Casteljau)

• Input: (L, b(P, p, L)) and m, a baryrenter of the vertices with weight
α = (α0, . . . , αk), L0, . . . , Lk the k + 1 simplices subdivided

• Output: L0, . . . , Lk the k+1 simplices after subdivision, (Li, b(P, p, Li)),
i = 0, . . . , k.

• Procedure:
– Initialization: b

(0)
j := b(P, p, ℓ, r)j , for j = (j0, . . . , jk), j0+. . .+jk = p

.
– For i = 1, . . . , p,

− Let es = (0, . . . , 0, 1, 0, . . . , 0), 1 at place number s.
− For j = (j0, . . . , jk), j0 + . . .+ jk = p-j, compute

b
(i)
j :=

∑k
s=0 αsb

(i−1)
j+es

.
− Output coefficients on right face

bs,j = b
(js)
j−jses

Algorithm for certificate of positivity exisits: subdivide until all coefficients are
positive.

Problem : quantitative bounds ? in the univariate case, polynomial in d and τ ,
here ?

References

[1] S. Basu, R. Pollack, M.-F. Roy, Algorithms in real algebraic geometry, Springer-Verlag,
second edition (2006). On line at http://perso.univ-rennes1.fr/marie-francoise.roy/

[2] S. Bernstein, Sur la représentation des polynômes positifs, Soobshch. Kharkov matem.
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A connectedness theorem for real spectra of polynomial rings, in
connection with Pierce-Birkhoff conjecture

Daniel Schaub

(joint work with Frano̧is Lucas, James J. Madden, Mark Spivakovsky)

Throughout, R will denote a real closed field and A the polynomial ring
R[x1, . . . , xn].

The Pierce-Birkhoff conjecture asserts that any piecewise-polynomial function
f : Rn → R can be expressed as a maximum of minima of a finite family of
polynomials. In this lecture we describe where we are in our program for a proof
of the Pierce-Birkhoff conjecture in its full generality (the best results up to now
are due to Louis Mahé [13], who proved the conjecture for n = 2, as well as some
partial results for n = 3).

We start by stating the Pierce–Birkhoff conjecture in its original form as it was
first stated by M. Henriksen and H. Isbell in the early nineteen sixties.

Definition 1. A function f : Rn → R is said to be piecewise polynomial if Rn

can be covered by a finite collection of closed semi-algebraic sets Pi such that for
each i there exists a polynomial fi ∈ A satisfying f |Pi

= fi|Pi
. If f is a piecewise

polynomial function, we say that f is defined by r polynomials if r is the number
of distinct polynomials among the fi above.

Clearly, any piecewise polynomial function is continuous. Piecewise polynomial
functions form a ring, containing A, which is denoted by PW (A).

On the other hand, one can consider the (lattice-ordered) ring of all the func-
tions obtained from A by iterating the operations of sup and inf. Since applying
the operations of sup and inf to polynomials produces functions which are piece-
wise polynomial, this ring is contained in PW (A) (the latter ring is closed under
sup and inf). It is natural to ask whether the two rings coincide. The precise
statement of the conjecture is:

Conjecture 2. (Pierce-Birkhoff) If f : Rn → R is in PW (A), then there exists
a finite family of polynomials gij ∈ A such that f = sup

i
inf
j

(gij) (in other words,

for all x ∈ Rn, f(x) = sup
i

inf
j

(gij(x))).
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In 1989 J.J. Madden [11] reformulated this conjecture in terms of the real spec-
trum of A and separating ideals. Let us recall Madden’s formulation together with
the relevant definitions.

First, we need to recall the notion of a point of the real spectrum of a ring.
Let B be a ring. A point α in the real spectrum of B is, by definition, the data
of a prime ideal p of B, and a total ordering ≤ of the quotient ring B/p, or,
equivalently, of the field of fractions of B/p. Another way of defining the point α
is as a homomorphism from B to a real closed field, where two homomorphisms
are identified if they have the same kernel p and induce the same total ordering
on B/p.

The ideal p is called the support of α and denoted by pα, the quotient ring
B/pα by B[α], its field of fractions by B(α) and the real closure of B(α) by k(α).
The total ordering of B(α) is denoted by ≤α. Sometimes we write α = (pα,≤α).

Definition 3. The real spectrum of B, denoted by Sper B, is the collection of all
pairs α = (pα,≤α), where pα is a prime ideal of B and ≤α is a total ordering of
B/pα.

The real spectrum Sper B is endowed with two natural topologies, the spectral
(or Harrison) topology and the constructible topology.

Next we define the notion of separating ideal, introduced by Madden in [11] :

Definition 4. Let B be a ring. For γ, δ ∈ Sper B, the separating ideal of γ and
δ, denoted by < γ, δ >, is the ideal of B generated by all the elements f ∈ B which
change sign between γ and δ, that is, all the f such that f(γ) ≥ 0 and f(δ) ≤ 0
(or vice versa).

Let f be a piecewise polynomial function on Rn and α ∈ Sper A. Let the
notation be as in Definition 1. The covering Rn =

⋃
i

Pi induces a corresponding

covering Sper A =
⋃
i

P̃i of the real spectrum. Pick and fix an i such that α ∈ P̃i.

We set fα := fi. We refer to fα as a local polynomial representative of f at α. In
general, the choice of i is not uniquely determined by α. Implicit in the notation
fα is the fact that one such choice has been made.

In [11], Madden reduced the Pierce–Birkhoff conjecture to a purely local state-
ment about separating ideals and the real spectrum. Namely, he showed that the
Pierce-Birkhoff conjecture is equivalent to

Conjecture 5. (Pierce-Birkhoff conjecture, the abstract version) Let f
be a piecewise polynomial function and α, β points in Sper A. Let fα ∈ A be a
local representative of f at α and fβ ∈ A a local representative of f at β. Then
fα − fβ ∈< α, β >.

We now state a conjecture which implies the Pierce-Birkhoff conjecture:
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Conjecture 6. (the Connectedness conjecture) Let α, β ∈ Sper A and let
g1, . . . , gs be a finite collection of elements of A, not belonging to < α, β >. Then
there exists a connected set C ⊂ Sper A such that α, β ∈ C and C ∩ {gi = 0} = ∅
for i ∈ {1, . . . , s} (in other words, α and β belong to the same connected component
of the set Sper A \ {g1 . . . gs = 0}).

The special case when s = 1 is Madden’s “separation conjecture”; it is equiv-
alent to the special case of Pierce-Birkhoff conjecture when the number of semi-
algebraic pieces defining the piecewise polynomial function f is precisely 2.
This reduces the Pierce-Birkhoff conjecture to constructing, for each α, β ∈ Sper A,
connected sets in Sper A having certain properties.

The following theorem, though not in itself enough for the proof of the Pierce-
Birkhoff conjecture, is the first and simplest example of the sort of connected sets
we really need.

We first define the valuation να of B(α) associated to a point α of the real
spectrum. The valuation να is defined using the order ≤α. It has the following
properties :

(1) να(B[α]) ≥ 0
(2) given positive elements x, y ∈ B(α),

(1) να(x) < να(y) ⇒ x > Ny, ∀N ∈ N.

Finally, we state the main theorem. Let A = R[x1, . . . , xn] be a polynomial
ring and denote by νδ be the valuation associated to the point δ ∈ Sper(A).
Let ωij , θil ∈ Q, i ∈ {1, . . . , n}, j ∈ {1, . . . , q}, l ∈ {1, . . . , u}.

Let hj(νδ(x)) =
n∑

i=1

ωijνδ(xi) for j ∈ {1, . . . , q} and zl(νδ(x)) =
n∑

i=1

θilνδ(xi) for

l ∈ {1, . . . , u}, where we write x in place of (x1, . . . , xn) and νδ(x) for the n-tuple
(νδ(x1), . . . , νδ(xn)).

Theorem 7. The set

S = {δ ∈ Sper(A) | xi >δ 0, i ∈ {1, . . . , n}, hj(νδ(x)) > 0, j ∈ {1, . . . , q}

(2) zl(νδ(x)) = 0, l ∈ {1, . . . , u}}
is connected in the spectral topology.

In other words, subsets of Sper A defined by finitely many Q-linear equations
and strict inequalities on ν(x1), . . . , ν(xn) are connected.

To understand the relation between this theorem and the Connectedness Con-
jecture, we need to introduce the theory of approximate roots of a valuation. Given
a ring A and a valuation ν, non-negative on A, a family of approximate roots is
a collection {Qi}, finite or countable, of elements of A. A generalized monomial
(with respect to a given collection {Qi} of approximate roots) is, by definition,
an element of A of the form

∏
j

Q
γj

j , γj ∈ N. The main defining properties of the
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approximate roots are the fact that every ν-ideal I in A is generated by general-
ized monomials contained in it, that is, generalized monomials

∏
j

Q
γj

j satisfying
∑
j

γjν(Qj) ≥ ν(I), and the fact that for each i, Qi is described by an explicit

formula in terms of Q1, ..., Qi−1. In particular, the valuation ν is completely de-
termined by the set {Qi} and the values ν(Qi).

We then show that every element g ∈ A can be written as a finite sum of the
form

(3) g = cQθ +

N∑

j=1

cjQ
δj ,

where c and cj are elements of A such that ν(c) = ν(cj) = 0 and Qθ and Qδj are
generalized monomials such that

(4) ν
(
Qθ
)
< ν

(
Qδj

)
for 1 ≤ j ≤ N.

Now let δ ∈ Sper(A) and let ν = νδ. Then, by (1) and (4) the sign of g with
respect to ≤δ is determined by the sign of its leading coefficient c.

Let α, β ∈ Sper(A) having a common specialization. We will give in [10] an ex-
plicit description of the set of generalized monomials (with respect to approximate
roots Qi common to να and νβ) which generate the separating ideal < α, β >. Fur-
thermore we show that all the approximate roots Qi for να such that Qi∈/ < α, β >
are also approximate roots for νβ and vice versa.

Now let g ∈ Sper(A)\ < α, β >, as in the separation conjecture. The fact that
g∈/ < α, β > implies the existence of an expression (3) in which all the approximate
roots Qi are common for να and νβ and the inequalities (4) hold for both ν = να

and ν = νβ .
The inequalities (4) can be viewed as linear inequalities on ν(Q1), . . . , ν(Qt)

with integer coefficients.
To prove this conjecture, one of our main ideas is to look for a connected set

C ⊂ Sper(A) having the following properties :
(1) α, β ∈ C;
(2) the Qi appearing in (3) are approximate roots simultaneously for all the νδ,

δ ∈ C;
(3) the inequalities (4) hold for ν = νδ, for all δ ∈ C;
(4) the leading coefficient c keeps a constant sign on C.
Once such a C is found, (1) and (4) imply that the sign of g on C is constant,

which proves that α and β lie in the same connected component of Sper(A) \ {g =
0}.
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(5) The set C(g, α, β) =

{
δ ∈ Sper(A)

∣∣∣∣ Qi > 0, i ∈ {1, . . . , t},
t∑

i=1

ωijνδ(Qi) > 0, j ∈ {1, . . . , q},
t∑

i=1

λijνδ(Qi) = 0, j ∈ {1, . . . , l}
}
,

where ωij , λij ∈ Z, all the inequalities (4) described above appear among the
t∑

i=1

ωijνδ(Qi) > 0 and the remaining equalities and inequalities on the right hand

side of (5) encode the fact that Q1, . . . , Qt are approximate roots for νδ for
all δ belonging to C(g, α, β). If g1, . . . , gs is a finite collection of elements of

A \ < α, β >, we put C(g1, . . . , gs, α, β) =
s⋂

i=1

C(gi, α, β). By construction, both

sets C(g, α, β) and C(g1, . . . , gs, α, β) contain α and β, the element g does not
change sign on C(g, α, β) and none of the elements g1, . . . , gs change sign on
C(g1, . . . , gs, α, β). Thus to prove the separation conjecture it is sufficient to prove
that
C(g, α, β) is connected and to prove the Pierce–Birkhoff conjecture it is suffi-
cient to prove that C(g1, . . . , gs, α, β) is connected. This makes that the set S of
theorem 7 is a special case of the kind of connected sets we are looking for.
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Gradient tentacles and sums of squares

Markus Schweighofer

This report is mainly based on [Sch] where more details can be found.

Let always f ∈ R[X̄] := R[X1, . . . , Xn]. Our motivation is the problem to
compute (numerically to a given precision) the infimum

f∗ := inf f(Rn) ∈ R ∪ {−∞}

of a polynomial f on Rn. This problem is anyway very hard but it seems to be
even harder if f is bounded from below but does not attain a minimum on Rn,
e.g. n = 2, X̄ = (X,Y ) and f = (1 −XY )2 + Y 2. Whereas

f∗ = sup{a ∈ R | f − a ≥ 0 on Rn},

is very difficult to compute,

sup{a ∈ R | f − a ∈
∑

R[X̄]2}

can easily be computed by solving a semidefinite program (SDP). The problem is
however that for fixed degree and large number of variables, very few nonnegative
f are sums of squares. The idea in this talk is to combine sums of squares with
calculus. This idea is originally due to Demmel, Nie and Sturmfels who proved
the following theorem [NDS].

Theorem 1 (Demmel, Nie, Sturmfels). Consider the gradient ideal

I :=

(
∂f

∂X1
, . . . ,

∂f

∂Xn

)

of f and suppose f∗ ∈ f(Rn). Denoting by V (I) ⊆ Cn the reduced affine variety
defined by I (the gradient variety of f), we have that the following are equivalent:

(i) f ≥ 0 on Rn

(ii) f ≥ 0 on V (I) ∩ Rn

(iii) f ∈∑R[X̄ ]2 +
√
I

(iv) f + ε ∈∑R[X̄]2 + I for all ε > 0

As a corollary, we get that f∗ = sup{a ∈ R | f − a ∈ ∑R[X̄]2 + I} can be
computed by solving a sequence of SDPs provided that f∗ ∈ f(Rn). In the very
hard case that f∗ 6∈ f(Rn), this method might however yield to completely wrong
results. For example, this method would output 1 for f = (1 −XY )2 + Y 2 since
the only critical point of f is the origin and f(0) = 1. But in fact, we have f∗ = 0
for this f .

A way out of this problem would be to prove the following conjecture. In all
practical examples we computed the corresponding SDP relaxations worked very
well and led quickly to f∗.
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Conjecture 2. In Theorem 1, the assumption f∗ ∈ f(Rn) can be removed if one
replaces the gradient ideal by

I :=

(
∂f

∂Xi
Xj , . . . ,

∂f

∂Xj
Xi | 1 ≤ i < j ≤ n

)
.

In the following, we will replace the real part of the gradient variety by larger
semialgebraic subsets defined by polynomial inequalities depending only on ∇f .

Definition 3. The polynomial

g := 1 −
(

n∑

i=1

(
∂f

∂Xi

)2
)

n∑

i=1

X2
i ∈ R[X̄]

defines the gradient tentacle

S(∇f) := {x ∈ Rn | ‖∇f(x)‖‖x‖ ≤ 1} ⊆ Rn.

Theorem 4. Suppose the condition (∗) below holds and f is bounded from below
on Rn. Then the following are equivalent:

(i) f ≥ 0 on Rn

(ii) f ≥ 0 on S(∇f)
(iii) f + ε ∈∑R[X̄]2 + g

∑
R[X̄]2

Here (∗) is a condition from Parusiński [Par], namely that there are only finitely
many z ∈ Pn−1(C) such that ∇fd(z) = fd−1(z) = 0 where d := deg f and fk is the
k-homogeneous part of f . This condition is true generically. In fact, generically
there is even no such z. Of course, (∗) is always satisfied for n = 2. Moreover, we
do not know if (∗) is really necessary for Theorem 4 to hold.

Definition 5. For S ⊆ Rn, we introduce the set R∞(f, S) of asymptotic values of
f on S which consists of all y ∈ R such that there is a sequence (xk)k∈N of points
xk ∈ S with limk→∞ ‖xk‖ = ∞ and limk→∞ f(xk) = y.

We now can formulate one of the ingredients of the proof of Theorem 4, namely
the following theorem which relies on the theory of iterated rings of bounded
elements [Sch].

Theorem 6. Let f, g1, . . . , gm ∈ R[X̄] and set

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.
Suppose that

(a) f is bounded on S,
(b) R∞(f, S) is a finite subset of R>0 and
(c) f > 0 on S.

Then f is in the preordering generated by g1, . . . , gm in R[X̄ ].

We will apply this theorem only for the case m = 1. In this case, the preordering
in question is just

∑
R[X̄ ]2 + g

∑
R[X̄ ]2 where g := g1. To prove Theorem 4 from

Theorem 6, it suffices to show that f is bounded on S(∇f) (we refer to [Spo]),
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(A) R∞(f, S(∇f)) is finite if (∗) holds and that
(B) f∗ ∈ R∞(f, S(∇f)) if f is bounded from below and f∗ 6∈ f(Rn).

Definition 7. Denote by B(f) the bifurcation set of f , i.e., the smallest subset of
R such that for its complement A in R, f |f−1(A) : f−1(A) → A is a locally trivial
C∞ fiber bundle. The set K(f) of generalized critical values of f consists of all
y ∈ R for which there exists a sequence (xk)k∈N in Rn such that

lim
k→∞

‖∇f(xk)‖(1 + ‖xk‖) = 0 and lim
k→∞

f(xk) = y.

We make use the following well-known theorem (see, e.g., [KOS, Theorem 3.1]).

Theorem 8. Suppose f ∈ R[X̄ ]. Then B(f) ⊆ K(f) and K(f) is finite.

From this follows easily (B) above. The following result is surprising and can
be derived from [Par, Theorem 1.4].

Theorem 9. (∗) =⇒ R∞(f, S(∇f)) ⊆ K(f)

This implies of course (A) above. Without (∗), the previous theorem is in
general not true. As already said, it is an open problem if one can avoid assumption
(*) in Theorem 4. Anyway, there is a way of getting rid of this condition by
using what we call higher gradient tentacles. These gradient tentacles have the
computational disadvantage that the degree of the defining inequality can be much
bigger. Also it is not a priori clear how big the degree has to be chosen.

Definition 10. The polynomial

gN := 1 − ‖∇f(x)‖2N (1 + ‖x‖2)N+1 ∈ R[X̄]

where N ∈ N defines the N -th higher gradient tentacle of f

S(∇f,N) := {x ∈ Rn | ‖∇f(x)‖2N (1 + ‖x‖2)N+1 ≤ 1}.

Clearly, we have

V (I) ∩ Rn ⊆ S(∇f, 1) ⊆ S(∇f, 2) ⊆ · · · ⊆ S(∇f)

where I is the gradient ideal of f . Now the analog of (A) is easier to show than
before but for (B) we now need results of Kurdyka, Orro and Simon [KOS].

Theorem 11. Suppose f is bounded from below. Then there is N0 ∈ N such that
for all N ≥ N0, the following are equivalent:

(i) f ≥ 0 on Rn

(ii) f ≥ 0 on S(∇f,N)
(iii) f + ε ∈∑R[X̄]2 + gN

∑
R[X̄]2 for all ε > 0

If f∗ ∈ f(Rn), then these conditions are equivalent for all N .
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Upper bounds on the number of homotopy types of sets defined by
fewnomials

Nicolai Vorobjov

(joint work with Saugata Basu)

We understand the complexity of a polynomial P ∈ R[X1, . . . , Xm] as a measure of
the size of its defining formula. There are several natural measures, among them:

(i) the degree d = deg(P );
(ii) the number r of monomials in P ;

(iii) the additive complexity a of P .

(We say that P has additive complexity a if, starting with variables X1, . . . , Xm

and constants in R, and applying additions and multiplications, a formula repre-
senting P can be obtained using at most a additions and an unlimited number of
multiplications, see the formal definition in [2, 4, 1].)

In their book [2], Benedetti and Risler, generalizing examples (i)–(iii), intro-
duced an axiomatic definition of the complexity of a polynomial, and consequently,
of a semi-algebraic set. Axioms include the analogy of Bezout inequality, i.e., an
upper bound on the number of non-degenerate isolated solutions of any system of
m polynomial equations, as an explicit function of the complexity of polynomials.
In the case (i), this is the usual Bezout inequality, in the case (ii) this is the Kho-
vanskii’s bound [6], the latter also easily implies an upper bound in the additive
complexity case (iii) (see [2]).

Benedetti and Risler conjectured that there is a finite number of of homeomor-
phism types of semi-algebraic sets of the given complexity. They also formulated
their conjecture for particular cases (ii) and (iii) above (the truth of the conjec-
ture in the case (i) easily follows from Hardt’s triviality theorem [5]). In these
cases the conjecture was proved independently by van den Dries [4] and Coste [3]
using o-minimality, without producing any explicit upper bounds on the number
of homeomorphism types as functions of the complexity.



814 Oberwolfach Report 14/2007

We prove a weaker but effective versions of cases (ii), (iii) of the conjecture.
Namely, we give explicit, single exponential upper bounds on the number of pos-
sible homotopy types of semi-algebraic sets.

Let φ be a Boolean formula with variables in {ai, bi, ci| 1 ≤ i ≤ s}. For an
ordered list P = (P1, . . . , Ps) of polynomials Pi ∈ R[X1, . . . , Xm], we denote by
φP the formula obtained from φ by replacing for each i, 1 ≤ i ≤ s, the variable ai

(respectively, bi and ci) by Pi = 0 (respectively, by Pi > 0 and by Pi < 0).

Definition 1. We say that two ordered lists P = (P1, . . . , Ps), Q = (Q1, . . . , Qs)
of polynomials Pi, Qi ∈ R[X1, . . . , Xm] have the same homotopy type if for any
Boolean formula φ, the semialgebraic sets defined by φP and φQ are homotopy
equivalent.

Let Mm,r be the family of ordered lists P = (P1, . . . , Ps) of polynomials Pi ∈
R[X1, . . . , Xm] with the total number of monomials in all polynomials in P not
exceeding r.

Theorem 2 ([1]). The number of different homotopy types of ordered lists in
Mm,r does not exceed

(1) 2O(mr)4 .

In particular, the number of different homotopy types of semi-algebraic sets defined
by a fixed formula φP , where P varies over Mm,r, does not exceed (1).

A similar bound is true for the additive complexity.
The proof of Theorem 1 is based on a new single exponential upper bound on

the number of homotopy types of fibres of the projection map of a semi-Pfaffian
set. To simplify the notations we formulate here this bound for a special case of
semi-algebraic sets.

Let P ⊂ R[X1, . . . , Xm, Y1, . . . , Yn], and let φ be a Boolean formula with atoms
of the form P = 0, P > 0, P < 0, where P ∈ P . We call the semi-algebraic set
S ⊂ Rm+n defined by φ, a P-semi-algebraic set. Let πS be the restriction to S of
the projection map π : Rm+n → Rn.

Theorem 3 ([1]). Let the cardinality #P = s, and for every P ∈ P, the degree
deg(P ) < d. Then there exists a finite set A ⊂ Rn, with

#A ≤ (2msnd)O(mn),

such that for every y ∈ Rn there exists z ∈ A such that for every P-semi-algebraic
set S ⊂ Rm+n, the set π−1

S (y) is homotopy equivalent to π−1
S (z). In particular, for

any fixed P-semi-algebraic set S, the number of different homotopy types of fibres
π−1

S (y) for various y ∈ π(S) is also bounded by

(2msnd)O(mn).

A similar theorem is true for finite families P of real Pfaffian functions, and
projections πS of P-semi-Pfaffian sets S. It implies Theorem 1, using a technique
for representing fewnomials as Pfaffian functions, introduced in § 3, Chapter 9 of
[4].
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Lower bounds, sharpness in real enumerative geometry

Jean-Yves Welschinger

Complex plane rational curves are images of holomorphic maps from the Rie-
mann sphere to the complex projective plane. Plane rational curves of a given
degree form a (3d − 1)-parameter family. It is a classical result of complex enu-
merative geometry that the number Nd of degree d rational curves passing through
3d−1 generic points in the plane does not depend on the choice of the points. These
curves are all immersed with only ordinary double points as singularities. This
is no more true over the real numbers, basically because the field of real number
is not algebraically closed. Namely, choose r generic points x1, . . . , xr in the real
projective plane and s generic pairs of complex conjugated points ξ1, ξ1, . . . , ξs, ξs,
where r + 2s = 3d − 1. Denote by Rd(x, ξ) the finite set of degree d real ra-
tional curves containing x, ξ. The cardinality of this set depends on the choice
of x, ξ. However these real rational curves have two kinds of real double points.
Non-isolated real double points are local intersection of two real branches, like
x2 − y2 = 0, whereas isolated real double points are local intersection of two com-
plex conjugated branches, like x2 + y2 = 0. For C ∈ Rd(x, ξ), denote by m(C) its
number of real isolated double points and set

χd
r(x, ξ) =

∑

C∈Rd(x,ξ)

(−1)m(C) ∈ Z.

Theorem 1. The integer χd
r(x, ξ) does not depend on the generic choice of x, ξ.

�

Hence, the complex projective plane together with its complex conjugation
comes with a family of enumerative invariants (χd

r)d∈N∗,0≤r≤3d−1,r=3d−1 mod (2).
They provide lower bounds in real enumerative geometry, namely.

Corollary 2. |χd
r | ≤(∗) #Rd(x, ξ) ≤ Nd.

I did obtain these results couple of years ago. They hold more generally for any
symplectic four-manifold equipped with an antisymplectic involution, see [1]. The
main result I did explain here was the following sharpness result.
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Theorem 3. For every d ∈ N∗ and 0 ≤ r ≤ 1, the lower bounds (∗) is sharp.

Moreover, sign(χd
r) = (−1)

(d−1)(d−2)
2 .

This means that there exists a configuration x, ξ of points such that all elements

of Rd(x, ξ) are counted with respect to the same sign in χd
r , the parity of the smooth

genus (d−1)(d−2)
2 . Such configuration of points are obtained when ξ is very closed

to a real imaginary conic -of equation x2 +y2 +z2 = 0-. This sharpness result also
holds in a much more general situation, it is announced in [2]. The tool to prove it
comes from symplectic field theory, one stretches the manifold near its real locus.
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